Sample records for nanocrystal building blocks

  1. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    PubMed Central

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-01-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987

  2. High-performance thermoelectric nanocomposites from nanocrystal building blocks.

    PubMed

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu

    2016-03-07

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  3. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties

    NASA Astrophysics Data System (ADS)

    Huang, Limin; Chen, Zhuoying; Wilson, James D.; Banerjee, Sarbajit; Robinson, Richard D.; Herman, Irving P.; Laibowitz, Robert; O'Brien, Stephen

    2006-08-01

    Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. We report the synthesis, processing, and electrical characterization of thin (<100nm thick) nanostructured thin films of barium titanate (BaTiO3) built from uniform nanoparticles (<20nm in diameter). We introduce a form of processing as a step toward the ability to prepare textured films based on assembly of nanoparticles. Essential to this approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. Our method offers a versatile means of preparing BaTiO3 nanocrystals, which can be used as a basis for micropatterned or continuous BaTiO3 nanocrystal thin films. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. We investigated the preparation of well-isolated BaTiO3 nanocrystals smaller than 10nm with control over aggregation and crystal densities on various substrates such as Si, Si /SiO2, Si3N4/Si, and Pt-coated Si substrates. BaTiO3 nanocrystal thin films were then prepared, resulting in films with a uniform nanocrystalline grain texture. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO3 nanocrystalline films with grain sizes in the range of 10-30nm. Dielectric measurements of the films show dielectic constants in the range of 85-90 over the 1KHz -100KHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit highly uniform nanostructured texture and grain sizes.

  4. Nanomagnetism study of highly-ordered iron oxide nanocrystal assemblies fabricated by the Langmuir-Blodgett technique.

    PubMed

    Zhang, HaiTao; Bao, NiNa; Yuan, Du; Ding, Jun

    2013-09-21

    Iron oxide nanocrystals are ideal building blocks for the construction of flexible nanodevices whose performance can be modulated by controlling the morphology of isolated particles and their organizational form. This work demonstrates the fabrication of high quality Langmuir-Blodgett (LB) nanocrystal assemblies with limited overlapping and higher coverage by systemically and combinatorially optimizing the parameters of compression pressure and quantity of spread nanocrystals. Monodispersed iron oxide nanocrystals with a diameter of 11.8 nm were synthesized by thermal decomposition of Fe(CO)5 in trioctylamine with the presence of oleic acid. Multilayer nanocrystal assemblies were obtained through a layer-by-layer (LBL) process by repeating the transfer procedure after their hydrophilicity had been improved via treatment in a UV-ozone oven. The quality of nanocrystal assemblies was investigated by UV-vis spectrometry and scanning electron microscopy. The nanomagnetism for the nanostructures of different combination manners was studied systemically by a superconducting quantum interference device (SQUID). A lower superparamagnetic blocking temperature was found in the monolayer Fe3O4 nanocrystal assembly. The superparamagnetic blocking temperature in magnetic nanocrystal assemblies could be tuned through modifying the interparticle interactions among the interlayer and intralayers by controlling the layer number of the assemblies.

  5. INFERENCE BUILDING BLOCKS

    DTIC Science & Technology

    2018-02-15

    address the problem that probabilistic inference algorithms are diÿcult and tedious to implement, by expressing them in terms of a small number of...building blocks, which are automatic transformations on probabilistic programs. On one hand, our curation of these building blocks reflects the way human...reasoning with low-level computational optimization, so the speed and accuracy of the generated solvers are competitive with state-of-the-art systems. 15

  6. Hierarchical Materials Design by Pattern Transfer Printing of Self-Assembled Binary Nanocrystal Superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paik, Taejong; Yun, Hongseok; Fleury, Blaise

    We demonstrate the fabrication of hierarchical materials by controlling the structure of highly ordered binary nanocrystal superlattices (BNSLs) on multiple length scales. Combinations of magnetic, plasmonic, semiconducting, and insulating colloidal nanocrystal (NC) building blocks are self-assembled into BNSL membranes via the liquid–interfacial assembly technique. Free-standing BNSL membranes are transferred onto topographically structured poly(dimethylsiloxane) molds via the Langmuir–Schaefer technique and then deposited in patterns onto substrates via transfer printing. BNSLs with different structural motifs are successfully patterned into various meso- and microstructures such as lines, circles, and even three-dimensional grids across large-area substrates. A combination of electron microscopy and grazing incidencemore » small-angle X-ray scattering (GISAXS) measurements confirm the ordering of NC building blocks in meso- and micropatterned BNSLs. This technique demonstrates structural diversity in the design of hierarchical materials by assembling BNSLs from NC building blocks of different composition and size by patterning BNSLs into various size and shape superstructures of interest for a broad range of applications.« less

  7. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE PAGES

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; ...

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  8. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    PubMed

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  9. General method for the synthesis of hierarchical nanocrystal-based mesoporous materials.

    PubMed

    Rauda, Iris E; Buonsanti, Raffaella; Saldarriaga-Lopez, Laura C; Benjauthrit, Kanokraj; Schelhas, Laura T; Stefik, Morgan; Augustyn, Veronica; Ko, Jesse; Dunn, Bruce; Wiesner, Ulrich; Milliron, Delia J; Tolbert, Sarah H

    2012-07-24

    Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn(3)O(4) is demonstrated here.

  10. Analog Building Blocks for Communications Modems.

    DTIC Science & Technology

    1977-01-01

    x*—*- A0-A039 82b ELECTRONIC COMMUNICATIONS INC ST PETERSBURG FLA F/6 9/5 ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS .(U) JAN 77 B BLACK...F33615-7<t-C-1120 UNCLASSIFIED AFAL-TR-76-29 NL ANALOG BUILDING BLOCKS FOR COMMUNICATIONS MODEMS ELECTRONIC COMMUNICATIONS INC. A SUBSIDIARY OF...Idantltr Or Mac* numb*,; Avionics Building-Block modules Frequency Synthesize* Costas Demodulator Amplifier Modem Frequency Multiplier ’ -^ « TRACT

  11. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    PubMed

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  12. The Building Blocks of Geology.

    ERIC Educational Resources Information Center

    Gibson, Betty O.

    2001-01-01

    Discusses teaching techniques for teaching about rocks, minerals, and the differences between them. Presents a model-building activity that uses plastic building blocks to build crystal and rock models. (YDS)

  13. Ready fabrication of thin-film electrodes from building nanocrystals for micro-supercapacitors.

    PubMed

    Chen, Zheng; Weng, Ding; Wang, Xiaolei; Cheng, Yanhua; Wang, Ge; Lu, Yunfeng

    2012-04-18

    Thin-film pseudocapacitor electrodes with ultrafast lithium storage kinetics, high capacitance and excellent cycling stability were fabricated from monodispersed TiO(2) building nanocrystals, providing a novel approach towards next-generation micro-supercapacitor applications. This journal is © The Royal Society of Chemistry 2012

  14. Functionalized Helical Building Blocks for Nanoelectronics.

    PubMed

    Khokhlov, Khrystofor; Schuster, Nathaniel J; Ng, Fay; Nuckolls, Colin

    2018-04-06

    Molecular building blocks are designed and created for the cis- and trans-dibrominated perylenediimides. The syntheses are simple and provide these useful materials on the gram scale. To demonstrate their synthetic versatility, these building blocks were used to create new dimeric perylenediimide helixes. Two of these helical dimers are twistacenes, and one is a helicene. Crucially, each possesses regiochemically defined functionality that allows the dimer helix to be elaborated into higher oligomers. It would be very difficult to prepare these helical PDI building blocks regioselectively without the methods described.

  15. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    NASA Astrophysics Data System (ADS)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  16. Building Curriculum during Block Play

    ERIC Educational Resources Information Center

    Andrews, Nicole

    2015-01-01

    Blocks are not just for play! In this article, Nicole Andrews describes observing the interactions of three young boys enthusiastically engaged in the kindergarten block center of their classroom, using blocks in a building project that displayed their ability to use critical thinking skills, physics exploration, and the development of language…

  17. Cellulose nanocrystals, nanofibers, and their composites as renewable smart materials

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Zhai, Lindong; Mun, Seongcheol; Ko, Hyun-U.; Yun, Young-Min

    2015-04-01

    Cellulose is one of abundant renewable biomaterials in the world. Over 1.5 trillion tons of cellulose is produced per year in nature by biosynthesis, forming microfibrils which in turn aggregate to form cellulose fibers. Using new effective methods these microfibrils can be disintegrated from the fibers to nanosized materials, so called cellulose nanocrystal (CNC) and cellulose nanofiber (CNF). The CNC and CNF have extremely good strength properties, dimensional stability, thermal stability and good optical properties on top of their renewable behavior, which can be a building block of new materials. This paper represents recent advancement of cellulose nanocrystals and cellulose nanofibers, followed by their possibility for smart materials. Natural behaviors, extraction, modification of cellulose nanocrystals and fibers are explained and their synthesis with nanomaterials is introduced, which is necessary to meet the technological requirements for smart materials. Also, its challenges are addressed.

  18. Nanocrystal assembly for bottom-up plasmonic materials

    NASA Astrophysics Data System (ADS)

    Tao, Andrea Rae

    2007-12-01

    Plasmonic materials are emerging as key platforms for applications that rely on the manipulation of light at small length scales. Materials that possess sub-wavelength metallic features support either localized or propagating surface plasmons that can induce huge local electromagnetic fields at the metal surface, facilitating a host of extraordinary optical phenomena. For many of the breakthrough photonic, spectroscopic, and optoelectronic applications of plasmonics, the bottom-up fabrication of these materials from low-dimensional structures has yet to be explored. Because colloidal metal nanostructures can be readily synthesized with controlled shapes and sizes, and because these structures also generate plasmon-mediated evanescent fields near their surfaces when irradiated with light, Ag nanocrystals and nanowires are ideal building blocks for rationally designed plasmonic materials. This dissertation addresses three major challenges: (1) the synthesis of Ag polyhedral nanocrystals and nanowires, (2) the bottom-up organization of these nanostructures into one-, two-, and three-dimensional assemblies, and (3) the application of these assemblies as spectroscopic sensing platforms. Faceted Ag colloids were synthesized in high yield and with remarkable monodispersity using the polyol process, where Ag+ is reduced in the presence of a polymer capping agent that serves to regulate nucleation and crystallographic growth direction. The resulting nanocrystals and nanowires are bound exclusively by {100} and {111} crystal planes, where nanowires possess pentagonal cross-sections and nanocrystals possess octahedral symmetry. Because allowed plasmon modes are explicitly dictated by geometric considerations, each shape exhibits a unique scattering spectrum in the optical wavelengths. These shaped colloidal building blocks were assembled into ordered groupings and superlattices to achieve controlled electromagnetic coupling between individual nanostructures. Of particular

  19. NANOSTRUCTURED METAL OXIDE CATALYSTS VIA BUILDING BLOCK SYNTHESES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig E. Barnes

    2013-03-05

    A broadly applicable methodology has been developed to prepare new single site catalysts on silica supports. This methodology requires of three critical components: a rigid building block that will be the main structural and compositional component of the support matrix; a family of linking reagents that will be used to insert active metals into the matrix as well as cross link building blocks into a three dimensional matrix; and a clean coupling reaction that will connect building blocks and linking agents together in a controlled fashion. The final piece of conceptual strategy at the center of this methodology involves dosingmore » the building block with known amounts of linking agents so that the targeted connectivity of a linking center to surrounding building blocks is obtained. Achieving targeted connectivities around catalytically active metals in these building block matrices is a critical element of the strategy by which single site catalysts are obtained. This methodology has been demonstrated with a model system involving only silicon and then with two metal-containing systems (titanium and vanadium). The effect that connectivity has on the reactivity of atomically dispersed titanium sites in silica building block matrices has been investigated in the selective oxidation of phenols to benezoquinones. 2-connected titanium sites are found to be five times as active (i.e. initial turnover frequencies) than 4-connected titanium sites (i.e. framework titanium sites).« less

  20. Data Policy Construction Set - Building Blocks from Childhood Constructions

    NASA Astrophysics Data System (ADS)

    Fleischer, Dirk; Paul-Stueve, Thilo; Jobmann, Alexandra; Farrenkopf, Stefan

    2016-04-01

    A complete construction set of building blocks usually comes with instructions and these instruction include building stages. The products of these building stages usually build from very general parts become highly specialized building parts for very unique features of the whole construction model. This sounds very much like the construction or organization of an interdisciplinary research project, institution or association, doesn't it! The creation process of an overarching data policy for a project group or institution is exactly the combination of individual interests with the common goal of a collaborative data policy and can be compared with the building stages of a construction set of building blocks and the building instructions. Keeping this in mind we created the data policy construction set of textual building blocks. This construction set is subdivided into several building stages or parts each containing multiple building blocks as text blocks. By combining building blocks of all subdivisions it is supposed to create a cascading data policy document. Cascading from the top level as a construction set provider for all further down existing levels such as project, themes, work packages or Universities, faculties, institutes down to the working level of working groups. The working groups are picking from the remaining building blocks in the provided construction set the suitable blocks for its working procedures to create a very specific policy from the available construction set provided by the top level community. Nevertheless, if a working group realized that there are missing building blocks or worse that there are missing building parts, then they have the chance to add the missing pieces to the construction set of direct an future use. This cascading approach enables project or institution wide application of the encoded rules from the textual level on access to data storage infrastructure. This structured approach is flexible enough to allow for

  1. Building Blocks for Personal Brands

    ERIC Educational Resources Information Center

    Thomas, Lisa Carlucci

    2011-01-01

    In this article, the author discusses the four essential building blocks for personal brands: (1) name; (2) message; (3) channels; and (4) bridges. However, outstanding building materials can only take a person so far. The author emphasizes that vision, determination, faith, a sense of humor, and humility are also required.

  2. Nanoscale Multigate TiN Metal Nanocrystal Memory Using High-k Blocking Dielectric and High-Work-Function Gate Electrode Integrated on Silcon-on-Insulator Substrate

    NASA Astrophysics Data System (ADS)

    Lu, Chi-Pei; Luo, Cheng-Kei; Tsui, Bing-Yue; Lin, Cha-Hsin; Tzeng, Pei-Jer; Wang, Ching-Chiun; Tsai, Ming-Jinn

    2009-04-01

    In this study, a charge-trapping-layer-engineered nanoscale n-channel trigate TiN nanocrystal nonvolatile memory was successfully fabricated on silicon-on-insulator (SOI) wafer. An Al2O3 high-k blocking dielectric layer and a P+ polycrystalline silicon gate electrode were used to obtain low operation voltage and suppress the back-side injection effect, respectively. TiN nanocrystals were formed by annealing TiN/Al2O3 nanolaminates deposited by an atomic layer deposition system. The memory characteristics of various samples with different TiN wetting layer thicknesses, post-deposition annealing times, and blocking oxide thicknesses were also investigated. The sample with a thicker wetting layer exhibited a much larger memory window than other samples owing to its larger nanocrystal size. Good retention with a mere 12% charge loss for up to 10 years and high endurance were also obtained. Furthermore, gate disturbance and read disturbance were measured with very small charge migrations after a 103 s stressing bias.

  3. The 10 building blocks of high-performing primary care.

    PubMed

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements-engaged leadership, data-driven improvement, empanelment, and team-based care-that assist the implementation of the other 6 building blocks-patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement.

  4. Nanosized Building Blocks for Customizing Novel Antibiofilm Approaches.

    PubMed

    Paula, A J; Koo, H

    2017-02-01

    Recent advances in nanotechnology provide unparalleled flexibility to control the composition, size, shape, surface chemistry, and functionality of materials. Currently available engineering approaches allow precise synthesis of nanocompounds (e.g., nanoparticles, nanostructures, nanocrystals) with both top-down and bottom-up design principles at the submicron level. In this context, these "nanoelements" (NEs) or "nanosized building blocks" can 1) generate new nanocomposites with antibiofilm properties or 2) be used to coat existing surfaces (e.g., teeth) and exogenously introduced surfaces (e.g., restorative or implant materials) for prevention of bacterial adhesion and biofilm formation. Furthermore, functionalized NEs 3) can be conceived as nanoparticles to carry and selectively release antimicrobial agents after attachment or within oral biofilms, resulting in their disruption. The latter mechanism includes "smart release" of agents when triggered by pathogenic microenvironments (e.g., acidic pH or low oxygen levels) for localized and controlled drug delivery to simultaneously kill bacteria and dismantle the biofilm matrix. Here we discuss inorganic, metallic, polymeric, and carbon-based NEs for their outstanding chemical flexibility, stability, and antibiofilm properties manifested when converted into bioactive materials, assembled on-site or delivered at biofilm-surface interfaces. Details are provided on the emerging concept of the rational design of NEs and recent technological breakthroughs for the development of a new generation of nanocoatings or functional nanoparticles for biofilm control in the oral cavity.

  5. Fault-tolerant computer study. [logic designs for building block circuits

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.; Avizienis, A. A.; Ercegovac, M. D.

    1981-01-01

    A set of building block circuits is described which can be used with commercially available microprocessors and memories to implement fault tolerant distributed computer systems. Each building block circuit is intended for VLSI implementation as a single chip. Several building blocks and associated processor and memory chips form a self checking computer module with self contained input output and interfaces to redundant communications buses. Fault tolerance is achieved by connecting self checking computer modules into a redundant network in which backup buses and computer modules are provided to circumvent failures. The requirements and design methodology which led to the definition of the building block circuits are discussed.

  6. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    PubMed

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  7. Building blocks for subleading helicity operators

    DOE PAGES

    Kolodrubetz, Daniel W.; Moult, Ian; Stewart, Iain W.

    2016-05-24

    On-shell helicity methods provide powerful tools for determining scattering amplitudes, which have a one-to-one correspondence with leading power helicity operators in the Soft-Collinear Effective Theory (SCET) away from singular regions of phase space. We show that helicity based operators are also useful for enumerating power suppressed SCET operators, which encode subleading amplitude information about singular limits. In particular, we present a complete set of scalar helicity building blocks that are valid for constructing operators at any order in the SCET power expansion. In conclusion, we also describe an interesting angular momentum selection rule that restricts how these building blocks canmore » be assembled.« less

  8. Single molecule magnets from magnetic building blocks

    NASA Astrophysics Data System (ADS)

    Kroener, W.; Paretzki, A.; Cervetti, C.; Hohloch, S.; Rauschenbach, S.; Kern, K.; Dressel, M.; Bogani, L.; M&üLler, P.

    2013-03-01

    We provide a basic set of magnetic building blocks that can be rationally assembled, similar to magnetic LEGO bricks, in order to create a huge variety of magnetic behavior. Using rare-earth centers and multipyridine ligands, fine-tuning of intra and intermolecular exchange interaction is demonstrated. We have investigated a series of molecules with monomeric, dimeric and trimeric lanthanide centers using SQUID susceptometry and Hall bar magnetometry. A home-made micro-Hall-probe magnetometer was used to measure magnetic hysteresis loops at mK temperatures and fields up to 17 T. All compounds show hysteresis below blocking temperatures of 3 to 4 K. The correlation of the assembly of the building blocks with the magnetic properties will be discussed.

  9. Intercultural Communication Activities in the Classroom: Turning Stumbling Blocks into Building Blocks.

    ERIC Educational Resources Information Center

    Dillon, Randy K.

    This paper explores behavior patterns that inhibit effective communication in everyday, educational, and business cross-cultural settings. Opportunities to change these inhibiting patterns, metaphorically referred to as "stumbling blocks," into building blocks or tools for successful intercultural understandings are discussed in the…

  10. Engineering the formation of secondary building blocks within hollow interiors.

    PubMed

    Li, Xiaobo; Liu, Xiao; Ma, Yi; Li, Mingrun; Zhao, Jiao; Xin, Hongchuan; Zhang, Lei; Yang, Yan; Li, Can; Yang, Qihua

    2012-03-15

    Secondary building blocks within the cavities of primary silica-architecture building blocks are successfully engineered. The immobilized surfactant directs the selective dissolution and reassembly of dissolved silicate species for the formation of secondary building blocks (hollow nanospheres/nanorods; see figure). Supported TiO(2) on nanostructures with multilevel interiors is shown to exhibit significantly enhanced activity in photocatalytic H(2) production. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. The 10 Building Blocks of High-Performing Primary Care

    PubMed Central

    Bodenheimer, Thomas; Ghorob, Amireh; Willard-Grace, Rachel; Grumbach, Kevin

    2014-01-01

    Our experiences studying exemplar primary care practices, and our work assisting other practices to become more patient centered, led to a formulation of the essential elements of primary care, which we call the 10 building blocks of high-performing primary care. The building blocks include 4 foundational elements—engaged leadership, data-driven improvement, empanelment, and team-based care—that assist the implementation of the other 6 building blocks—patient-team partnership, population management, continuity of care, prompt access to care, comprehensiveness and care coordination, and a template of the future. The building blocks, which represent a synthesis of the innovative thinking that is transforming primary care in the United States, are both a description of existing high-performing practices and a model for improvement. PMID:24615313

  12. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    NASA Astrophysics Data System (ADS)

    Hasaneen, El-Sayed A. M.

    nanocrystal charge has a strong effect on the memory characteristics. Also, the programming operation of the memory cell has been investigated. The tunneling rate from quantum well channel to quantum dot (nanocrystal) gate is calculated. The calculations include various memory parameters, wavefunctions, and energies of quantum well channel and quantum dot gate. The use of floating gate nanocrystal memory as a transistor with a programmable threshold voltage has been demonstrated. The incorporation of FG-NCFETs to design programmable integrated circuit building blocks has been discussed. This includes the design of programmable current and voltage reference circuits. Finally, we demonstrated the design of tunable gain op-amp incorporating FG-NCFETs. Programmable integrated circuit building blocks can be used in intelligent analog and digital systems.

  13. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    NASA Astrophysics Data System (ADS)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  14. SRA Real Math Building Blocks PreK. What Works Clearinghouse Intervention Report

    ERIC Educational Resources Information Center

    What Works Clearinghouse, 2007

    2007-01-01

    "SRA Real Math Building Blocks PreK" (also referred to as "Building Blocks for Math") is a supplemental mathematics curriculum designed to develop preschool children's early mathematical knowledge through various individual and small- and large-group activities. It uses "Building Blocks for Math PreK" software,…

  15. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  16. Living Nanocrystals: Synthesis of Precisely Defined Metal Oxide Nanocrystals Through a Continuous Growth Process

    NASA Astrophysics Data System (ADS)

    Jansons, Adam Wayne

    Colloidal nanocrystals offer new and improved performance in applications as well as less environmental impact when compared to traditional device fabrication methods. The important properties that enable improved applications are a direct result of nanocrystal structure. While there have been many great advances in the production of colloidal nanocrystals over the past three decades, precise, atomic-level control of the size, composition, and structure of the inorganic core remains challenging. Rather than dictate these material aspects through traditional synthetic routes, this dissertation details the development and exploitation of a colloidal nanocrystal synthetic method inspired by polymerization reactions. Living polymerization reactions offer precise control of polymer size and structure and have tremendously advanced polymer science, allowing the intuitive production of polymers and block co-polymers of well-defined molecular weights. Similarly, living nanocrystal synthetic methods allow an enhanced level of structural control, granting the synthesis of binary, doped, and core/shell nanocrystals of well-defined size, composition, and structure. This improved control in turn grants enhanced nanocrystal property performance and deepens our understanding of structure/property relationships. This dissertation defines living nanocrystal growth and demonstrates the potential of the living methods in the colloidal production of oxide nanocrystals. After a brief introduction, living growth is defined and discussed in the context of synthetic prerequisites, attributes, and outcomes. Living growth is also compared to more traditional colloidal nanocrystal synthetic methods. The following chapters then demonstrate the precise control living approaches offer in three separate studies; the first highlights sub-nanometer control of nanocrystal size from 2-22+ nm in diameter. Next the improvement in nanocrystal composition is illustrated using several transition metal

  17. Development of Test Article Building Block (TABB) for deployable platform systems

    NASA Technical Reports Server (NTRS)

    Greenberg, H. S.; Barbour, R. T.

    1984-01-01

    The concept of a Test Article Building Block (TABB) is described. The TABB is a ground test article that is representative of a future building block that can be used to construct LEO and GEO deployable space platforms for communications and scientific payloads. This building block contains a main housing within which the entire structure, utilities, and deployment/retraction mechanism are stowed during launch. The end adapter secures the foregoing components to the housing during launch. The main housing and adapter provide the necessary building-block-to-building-block attachments for automatically deployable platforms. Removal from the shuttle cargo bay can be accomplished with the remote manipulator system (RMS) and/or the handling and positioning aid (HAPA). In this concept, all the electrical connections are in place prior to launch with automatic latches for payload attachment provided on either the end adapters or housings. The housings also can contain orbiter docking ports for payload installation and maintenance.

  18. COMPRESSOR BUILDING, TRA626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    COMPRESSOR BUILDING, TRA-626. ELEVATIONS. WINDOWS. WALL SECTIONS. PUMICE BLOCK BUILDING HOUSED COMPRESSORS FOR AIRCRAFT NUCLEAR PROPULSION EXPERIMENTS. MTR-626-IDO-2S, 3/1952. INL INDEX NO. 531-0626-00-396-110535, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  19. Big Questions: The Ultimate Building Blocks of Matter

    ScienceCinema

    Lincoln, Don

    2018-01-16

    The Standard Model of particle physics treats quarks and leptons as having no size at all. Quarks are found inside protons and neutrons and the most familiar lepton is the electron. While the best measurements to date support that idea, there is circumstantial evidence that suggests that perhaps the these tiny particles might be composed of even smaller building blocks. This video explains this circumstantial evidence and introduces some very basic ideas of what those building blocks might be.

  20. Adolescent Boys' and Girls' Block Constructions Differ in Structural Balance: A Block-Building Characteristic Related to Math Achievement

    ERIC Educational Resources Information Center

    Casey, Beth M.; Pezaris, Elizabeth E.; Bassi, Julie

    2012-01-01

    Two studies were conducted on block building in adolescents, assessing middle school (Study 1) and high school students (Study 2). Students were asked to build something interesting with blocks. In both samples, the same pattern of gender differences were found; boys built taller structures than girls, and balanced a larger number of blocks on a…

  1. Building Blocks: Enmeshing Technology and Creativity with Artistic Pedagogical Technologies

    ERIC Educational Resources Information Center

    Janzen, Katherine J.; Perry, Beth; Edwards, Margaret

    2017-01-01

    Using the analogy of children's building blocks, the reader is guided through the results of a research study that explored the use of three Artistic Pedagogical Technologies (APTs). "Building blocks" was the major theme that emerged from the data. Sub-themes included developing community, enhancing creativity, and risk taking. The…

  2. Tops as building blocks for G 2 manifolds

    NASA Astrophysics Data System (ADS)

    Braun, Andreas P.

    2017-10-01

    A large number of examples of compact G 2 manifolds, relevant to supersymmetric compactifications of M-Theory to four dimensions, can be constructed by forming a twisted connected sum of two building blocks times a circle. These building blocks, which are appropriate K3-fibred threefolds, are shown to have a natural and elegant construction in terms of tops, which parallels the construction of Calabi-Yau manifolds via reflexive polytopes. In particular, this enables us to prove combinatorial formulas for the Hodge numbers and other relevant topological data.

  3. Large space erectable structures - building block structures study

    NASA Technical Reports Server (NTRS)

    Armstrong, W. H.; Skoumal, D. E.; Straayer, J. W.

    1977-01-01

    A modular planar truss structure and a long slender boom concept identified as building block approaches to construction of large spacecraft configurations are described. The concepts are compatible in weight and volume goals with the Space Transportation System, use standard structural units, and represent high on-orbit productivity in terms of structural area or beam length. Results of structural trade studies involving static and dynamic analyses of a single module and rigid body deployment analyses to assess kinetics and kinematics of automatic deployment of the building block modules are presented.

  4. Two innovative solutions based on fibre concrete blocks designed for building substructure

    NASA Astrophysics Data System (ADS)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  5. Realignment of Nanocrystal Aggregates into Single Crystals as a Result of Inherent Surface Stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhaoming; Pan, Haihua; Zhu, Genxing

    2016-07-19

    Assembly of nanoparticles building blocks during single crystal growth is widely observed in both natural and synthetic environments. Although this form of non-classical crystallization is generally described by oriented attachment, random aggregation of building blocks leading to single crystal products is also observed, but the mechanism of crystallographic realignment is unknown. We herein reveal that random attachment during aggregation-based growth initially produces a non-oriented growth front. Subsequent evolution of the orientation is driven by the inherent surface stress applied by the disordered surface layer and results in single crystal formation via grain boundary migration. This mechanism is corroborated by measurementsmore » of orientation rate vs external stress, demonstrating a predictive relationship between the two. These findings advance our understanding of aggregation-based growth of natural minerals by nanocrystals, and suggest an approach to material synthesis that takes advantage of stress induced co-alignment.« less

  6. The Development of Spatial Skills through Interventions Involving Block Building Activities

    ERIC Educational Resources Information Center

    Casey, Beth M.; Andrews, Nicole; Schindler, Holly; Kersh, Joanne E.; Samper, Alexandra; Copley, Juanita

    2008-01-01

    This study investigated the use of block-building interventions to develop spatial-reasoning skills in kindergartners. Two intervention conditions and a control condition were included to determine, first, whether the block building activities themselves benefited children's spatial skills, and secondly, whether a story context further improved…

  7. Building Blocks for Sustainable Communities: Assistance from Grantees

    EPA Pesticide Factsheets

    EPA awarded Building Blocks for Sustainable Communities grants to four nonprofit organizations with extensive expertise in community sustainability. These organizations deliver technical assistance to communities.

  8. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun

    2013-06-01

    Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.

  9. Hydration effects on the electronic properties of eumelanin building blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assis Oliveira, Leonardo Bruno; Departamento de Física - CEPAE, Universidade Federal de Goiás, 74690-900 Goiânia, GO; Escola de Ciências Exatas e da Computação, Pontifícia Universidade Católica de Goiás, 74605-010 Goiânia, GO

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in themore » electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54–79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180–220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a “chemical disorder model,” where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.« less

  10. Hydration effects on the electronic properties of eumelanin building blocks.

    PubMed

    Assis Oliveira, Leonardo Bruno; L Fonseca, Tertius; Costa Cabral, Benedito J; Coutinho, Kaline; Canuto, Sylvio

    2016-08-28

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  11. Hydration effects on the electronic properties of eumelanin building blocks

    NASA Astrophysics Data System (ADS)

    Assis Oliveira, Leonardo Bruno; L. Fonseca, Tertius; Costa Cabral, Benedito J.; Coutinho, Kaline; Canuto, Sylvio

    2016-08-01

    Theoretical results for the electronic properties of eumelanin building blocks in the gas phase and water are presented. The building blocks presently investigated include the monomeric species DHI (5,6-dihydroxyindole) or hydroquinone (HQ), DHICA (5,6-dihydroxyindole-2-carboxylic acid), indolequinone (IQ), quinone methide (MQ), two covalently bonded dimers [HM ≡ HQ + MQ and IM ≡ IQ + MQ], and two tetramers [HMIM ≡ HQ + IM, IMIM ≡ IM + IM]. The electronic properties in water were determined by carrying out sequential Monte Carlo/time dependent density functional theory calculations. The results illustrate the role played by hydrogen bonding and electrostatic interactions in the electronic properties of eumelanin building blocks in a polar environment. In water, the dipole moments of monomeric species are significantly increased ([54-79]%) relative to their gas phase values. Recently, it has been proposed that the observed enhancement of the higher-energy absorption intensity in eumelanin can be explained by excitonic coupling among eumelanin protomolecules [C.-T. Chen et al., Nat. Commun. 5, 3859 (2014)]. Here, we are providing evidence that for DHICA, IQ, and HMIM, the electronic absorption toward the higher-energy end of the spectrum ([180-220] nm) is enhanced by long-range Coulombic interactions with the water environment. It was verified that by superposing the absorption spectra of different eumelanin building blocks corresponding to the monomers, dimers, and tetramers in liquid water, the behaviour of the experimental spectrum, which is characterised by a nearly monotonic decay from the ultraviolet to the infrared, is qualitatively reproduced. This result is in keeping with a "chemical disorder model," where the broadband absorption of eumelanin pigments is determined by the superposition of the spectra associated with the monomeric and oligomeric building blocks.

  12. Molecular Clusters: Nanoscale Building Blocks for Solid-State Materials.

    PubMed

    Pinkard, Andrew; Champsaur, Anouck M; Roy, Xavier

    2018-04-17

    The programmed assembly of nanoscale building blocks into multicomponent hierarchical structures is a powerful strategy for the bottom-up construction of functional materials. To develop this concept, our team has explored the use of molecular clusters as superatomic building blocks to fabricate new classes of materials. The library of molecular clusters is rich with exciting properties, including diverse functionalization, redox activity, and magnetic ordering, so the resulting cluster-assembled solids, which we term superatomic crystals (SACs), hold the promise of high tunability, atomic precision, and robust architectures among a diverse range of other material properties. Molecular clusters have only seldom been used as precursors for functional materials. Our team has been at the forefront of new developments in this exciting research area, and this Account focuses on our progress toward designing materials from cluster-based precursors. In particular, this Account discusses (1) the design and synthesis of molecular cluster superatomic building blocks, (2) their self-assembly into SACs, and (3) their resulting collective properties. The set of molecular clusters discussed herein is diverse, with different cluster cores and ligand arrangements to create an impressive array of solids. The cluster cores include octahedral M 6 E 8 and cubane M 4 E 4 (M = metal; E = chalcogen), which are typically passivated by a shell of supporting ligands, a feature upon which we have expanded upon by designing and synthesizing more exotic ligands that can be used to direct solid-state assembly. Building from this library, we have designed whole families of binary SACs where the building blocks are held together through electrostatic, covalent, or van der Waals interactions. Using single-crystal X-ray diffraction (SCXRD) to determine the atomic structure, a remarkable range of compositional variability is accessible. We can also use this technique, in tandem with vibrational

  13. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-09-16

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  14. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  15. Automate Your Physical Plant Using the Building Block Approach.

    ERIC Educational Resources Information Center

    Michaelson, Matt

    1998-01-01

    Illustrates how Mount Saint Vincent University (Halifax), by upgrading the control and monitoring of one building or section of the school at a time, could produce savings in energy and operating costs and improve the environment. Explains a gradual, "building block" approach to facility automation that provides flexibility without a…

  16. Epoxy Monomers Cured by High Cellulosic Nanocrystal Loading.

    PubMed

    Khelifa, Farid; Habibi, Youssef; Bonnaud, Leila; Dubois, Philippe

    2016-04-27

    The present study focuses on the use of cellulose nanocrystals (CNC) as the main constituent of a nanocomposite material and takes advantage of hydroxyl groups, characteristic of the CNC chemical structure, to thermally cross-link an epoxy resin. An original and simple approach is proposed, based on the collective sticking of CNC building blocks with the help of a DGEBA/TGPAP-based epoxy resin. Scientific findings suggest that hydroxyl groups act as a toxic-free cross-linking agent of the resin. The enhanced protection against water degradation as compared to neat CNC film and the improvement of mechanical properties of the synthesized films are attributed to a good compatibility between the CNC and the resin. Moreover, the preservation of CNC optical properties at high concentrations opens the way to applying these materials in photonic devices.

  17. Mission building blocks for outer solar system exploration.

    NASA Technical Reports Server (NTRS)

    Herman, D.; Tarver, P.; Moore, J.

    1973-01-01

    Description of the technological building blocks required for exploring the outer planets with maximum scientific yields under stringent resource constraints. Two generic spacecraft types are considered: the Mariner and the Pioneer. Following a discussion of the outer planet mission constraints, the evolutionary development of spacecraft, probes, and propulsion building blocks is presented. Then, program genealogies are shown for Pioneer and Mariner missions and advanced propulsion systems to illustrate the soundness of a program based on spacecraft modification rather than on the development of new spacecraft for each mission. It is argued that, for minimum costs, technological advancement should occur in an evolutionary manner from mission to mission. While this strategy is likely to result in compromises on specific missions, the realization of the overall objectives calls for an advance commitment to the entire mission series.

  18. Metabolomics analysis: Finding out metabolic building blocks

    PubMed Central

    2017-01-01

    In this paper we propose a new methodology for the analysis of metabolic networks. We use the notion of strongly connected components of a graph, called in this context metabolic building blocks. Every strongly connected component is contracted to a single node in such a way that the resulting graph is a directed acyclic graph, called a metabolic DAG, with a considerably reduced number of nodes. The property of being a directed acyclic graph brings out a background graph topology that reveals the connectivity of the metabolic network, as well as bridges, isolated nodes and cut nodes. Altogether, it becomes a key information for the discovery of functional metabolic relations. Our methodology has been applied to the glycolysis and the purine metabolic pathways for all organisms in the KEGG database, although it is general enough to work on any database. As expected, using the metabolic DAGs formalism, a considerable reduction on the size of the metabolic networks has been obtained, specially in the case of the purine pathway due to its relative larger size. As a proof of concept, from the information captured by a metabolic DAG and its corresponding metabolic building blocks, we obtain the core of the glycolysis pathway and the core of the purine metabolism pathway and detect some essential metabolic building blocks that reveal the key reactions in both pathways. Finally, the application of our methodology to the glycolysis pathway and the purine metabolism pathway reproduce the tree of life for the whole set of the organisms represented in the KEGG database which supports the utility of this research. PMID:28493998

  19. Origami-inspired building block and parametric design for mechanical metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo

    2016-08-01

    An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.

  20. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-07

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device.

  1. Determining Possible Building Blocks of the Earth and Mars

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; OBrien, K. M.

    2004-01-01

    One of the fundamental questions concerning planetary formation is exactly what material did the planets form from? All the planets in our solar system are believed to have formed out of material from the solar nebula. Chondritic meteorites appear to sample this primitive material. Chondritic meteorites are generally classified into 13 major groups, which have a variety of compositions. Detailed studies of possible building blocks of the terrestrial planets require samples that can be used to estimate the bulk chemistry of these bodies. This study will focus on trying to determine possible building blocks of Earth and Mars since samples of these two planets can be studied in detail in the laboratory.

  2. The Cellular Building Blocks of Breathing

    PubMed Central

    Ramirez, J.M.; Doi, A.; Garcia, A.J.; Elsen, F.P.; Koch, H.; Wei, A.D.

    2013-01-01

    Respiratory brainstem neurons fulfill critical roles in controlling breathing: they generate the activity patterns for breathing and contribute to various sensory responses including changes in O2 and CO2. These complex sensorimotor tasks depend on the dynamic interplay between numerous cellular building blocks that consist of voltage-, calcium-, and ATP-dependent ionic conductances, various ionotropic and metabotropic synaptic mechanisms, as well as neuromodulators acting on G-protein coupled receptors and second messenger systems. As described in this review, the sensorimotor responses of the respiratory network emerge through the state-dependent integration of all these building blocks. There is no known respiratory function that involves only a small number of intrinsic, synaptic, or modulatory properties. Because of the complex integration of numerous intrinsic, synaptic, and modulatory mechanisms, the respiratory network is capable of continuously adapting to changes in the external and internal environment, which makes breathing one of the most integrated behaviors. Not surprisingly, inspiration is critical not only in the control of ventilation, but also in the context of “inspiring behaviors” such as arousal of the mind and even creativity. Far-reaching implications apply also to the underlying network mechanisms, as lessons learned from the respiratory network apply to network functions in general. PMID:23720262

  3. How Crossover Speeds up Building Block Assembly in Genetic Algorithms.

    PubMed

    Sudholt, Dirk

    2017-01-01

    We reinvestigate a fundamental question: How effective is crossover in genetic algorithms in combining building blocks of good solutions? Although this has been discussed controversially for decades, we are still lacking a rigorous and intuitive answer. We provide such answers for royal road functions and OneMax, where every bit is a building block. For the latter, we show that using crossover makes every ([Formula: see text]+[Formula: see text]) genetic algorithm at least twice as fast as the fastest evolutionary algorithm using only standard bit mutation, up to small-order terms and for moderate [Formula: see text] and [Formula: see text]. Crossover is beneficial because it can capitalize on mutations that have both beneficial and disruptive effects on building blocks: crossover is able to repair the disruptive effects of mutation in later generations. Compared to mutation-based evolutionary algorithms, this makes multibit mutations more useful. Introducing crossover changes the optimal mutation rate on OneMax from [Formula: see text] to [Formula: see text]. This holds both for uniform crossover and k-point crossover. Experiments and statistical tests confirm that our findings apply to a broad class of building block functions.

  4. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  5. An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition

    NASA Astrophysics Data System (ADS)

    Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni

    2010-08-01

    This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).

  6. Composition of clusters and building blocks in amylopectins from maize mutants deficient in starch synthase III.

    PubMed

    Zhu, Fan; Bertoft, Eric; Seetharaman, Koushik

    2013-12-18

    Branches in amylopectin are distributed along the backbone. Units of the branches are building blocks (smaller) and clusters (larger) based on the distance between branches. In this study, composition of clusters and building blocks of amylopectins from dull1 maize mutants deficient in starch synthase III (SSIII) with a common genetic background (W64A) were characterized and compared with the wild type. Clusters were produced from amylopectins by partial hydrolysis using α-amylase of Bacillus amyloliquefaciens and were subsequently treated with phosphorylase a and β-amylase to produce φ,β-limit dextrins. Clusters were further extensively hydrolyzed with the α-amylase to produce building blocks. Structures of clusters and building blocks were analyzed by diverse chromatographic techniques. The results showed that the dull1 mutation resulted in larger clusters with more singly branched building blocks. The average cluster contained ~5.4 blocks in dull1 mutants and ~4.2 blocks in the wild type. The results are compared with previous results from SSIII-deficient amo1 barley and suggest fundamental differences in the cluster structures.

  7. Effective Light Directed Assembly of Building Blocks with Microscale Control.

    PubMed

    Dinh, Ngoc-Duy; Luo, Rongcong; Christine, Maria Tankeh Asuncion; Lin, Weikang Nicholas; Shih, Wei-Chuan; Goh, James Cho-Hong; Chen, Chia-Hung

    2017-06-01

    Light-directed forces have been widely used to pattern micro/nanoscale objects with precise control, forming functional assemblies. However, a substantial laser intensity is required to generate sufficient optical gradient forces to move a small object in a certain direction, causing limited throughput for applications. A high-throughput light-directed assembly is demonstrated as a printing technology by introducing gold nanorods to induce thermal convection flows that move microparticles (diameter = 40 µm to several hundreds of micrometers) to specific light-guided locations, forming desired patterns. With the advantage of effective light-directed assembly, the microfluidic-fabricated monodispersed biocompatible microparticles are used as building blocks to construct a structured assembly (≈10 cm scale) in ≈2 min. The control with microscale precision is approached by changing the size of the laser light spot. After crosslinking assembly of building blocks, a novel soft material with wanted pattern is approached. To demonstrate its application, the mesenchymal stem-cell-seeded hydrogel microparticles are prepared as functional building blocks to construct scaffold-free tissues with desired structures. This light-directed fabrication method can be applied to integrate different building units, enabling the bottom-up formation of materials with precise control over their internal structure for bioprinting, tissue engineering, and advanced manufacturing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Incorporating GIS building data and census housing statistics for sub-block-level population estimation

    USGS Publications Warehouse

    Wu, S.-S.; Wang, L.; Qiu, X.

    2008-01-01

    This article presents a deterministic model for sub-block-level population estimation based on the total building volumes derived from geographic information system (GIS) building data and three census block-level housing statistics. To assess the model, we generated artificial blocks by aggregating census block areas and calculating the respective housing statistics. We then applied the model to estimate populations for sub-artificial-block areas and assessed the estimates with census populations of the areas. Our analyses indicate that the average percent error of population estimation for sub-artificial-block areas is comparable to those for sub-census-block areas of the same size relative to associated blocks. The smaller the sub-block-level areas, the higher the population estimation errors. For example, the average percent error for residential areas is approximately 0.11 percent for 100 percent block areas and 35 percent for 5 percent block areas.

  9. Adsorption of vitamin E on mesoporous titania nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw; Lin, C.T.; Wu, S.M.

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C tomore » 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.« less

  10. Encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework.

    PubMed

    Zhang, Huabin; Lin, Ping; Chen, Erxia; Tan, Yanxi; Wen, Tian; Aldalbahi, Ali; Alshehri, Saad M; Yamauchi, Yusuke; Du, Shaowu; Zhang, Jian

    2015-03-23

    The first example of an inorganic-organic composite framework with an interpenetrated diamondoid inorganic building block, featuring unique {InNa}n helices and {In12 Na16 } nano-rings, has been constructed and structurally characterized. This framework also represents a unique example of encapsulation of an interpenetrated diamondoid inorganic building block in a metal-organic framework. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. University Education in Ontario: Shared Goals & Building Blocks.

    ERIC Educational Resources Information Center

    Council of Ontario Universities, Toronto.

    This brochure suggests five goals that are likely to be shared by the people of Ontario, their government, and the province's publicly funded universities for a strong university system, and identifies the building blocks and resource-related commitments that would enable Ontario universities to achieve these goals. The goals are: (1) all…

  12. Building Blocks of Psychology: on Remaking the Unkept Promises of Early Schools.

    PubMed

    Gozli, Davood G; Deng, Wei Sophia

    2018-03-01

    The appeal and popularity of "building blocks", i.e., simple and dissociable elements of behavior and experience, persists in psychological research. We begin our assessment of this research strategy with an historical review of structuralism (as espoused by E. B. Titchener) and behaviorism (espoused by J. B. Watson and B. F. Skinner), two movements that held the assumption in their attempts to provide a systematic and unified discipline. We point out the ways in which the elementism of the two schools selected, framed, and excluded topics of study. After the historical review, we turn to contemporary literature and highlight the persistence of research into building blocks and the associated framing and exclusions in psychological research. The assumption that complex categories of human psychology can be understood in terms of their elementary components and simplest forms seems indefensible. In specific cases, therefore, reliance on the assumption requires justification. Finally, we review alternative strategies that bypass the commitment to building blocks.

  13. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Salemizadeh Parizi, Saman; Caruntu, Gabriel

    2015-07-01

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent

  14. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  15. Fuel-Mediated Transient Clustering of Colloidal Building Blocks.

    PubMed

    van Ravensteijn, Bas G P; Hendriksen, Wouter E; Eelkema, Rienk; van Esch, Jan H; Kegel, Willem K

    2017-07-26

    Fuel-driven assembly operates under the continuous influx of energy and results in superstructures that exist out of equilibrium. Such dissipative processes provide a route toward structures and transient behavior unreachable by conventional equilibrium self-assembly. Although perfected in biological systems like microtubules, this class of assembly is only sparsely used in synthetic or colloidal analogues. Here, we present a novel colloidal system that shows transient clustering driven by a chemical fuel. Addition of fuel causes an increase in hydrophobicity of the building blocks by actively removing surface charges, thereby driving their aggregation. Depletion of fuel causes reappearance of the charged moieties and leads to disassembly of the formed clusters. This reassures that the system returns to its initial, equilibrium state. By taking advantage of the cyclic nature of our system, we show that clustering can be induced several times by simple injection of new fuel. The fuel-mediated assembly of colloidal building blocks presented here opens new avenues to the complex landscape of nonequilibrium colloidal structures, guided by biological design principles.

  16. Fault-tolerant building-block computer study

    NASA Technical Reports Server (NTRS)

    Rennels, D. A.

    1978-01-01

    Ultra-reliable core computers are required for improving the reliability of complex military systems. Such computers can provide reliable fault diagnosis, failure circumvention, and, in some cases serve as an automated repairman for their host systems. A small set of building-block circuits which can be implemented as single very large integration devices, and which can be used with off-the-shelf microprocessors and memories to build self checking computer modules (SCCM) is described. Each SCCM is a microcomputer which is capable of detecting its own faults during normal operation and is described to communicate with other identical modules over one or more Mil Standard 1553A buses. Several SCCMs can be connected into a network with backup spares to provide fault-tolerant operation, i.e. automated recovery from faults. Alternative fault-tolerant SCCM configurations are discussed along with the cost and reliability associated with their implementation.

  17. Synthesis of Triamino Acid Building Blocks with Different Lipophilicities

    PubMed Central

    Maity, Jyotirmoy; Honcharenko, Dmytro; Strömberg, Roger

    2015-01-01

    To obtain different amino acids with varying lipophilicity and that can carry up to three positive charges we have developed a number of new triamino acid building blocks. One set of building blocks was achieved by aminoethyl extension, via reductive amination, of the side chain of ortnithine, diaminopropanoic and diaminobutanoic acid. A second set of triamino acids with the aminoethyl extension having hydrocarbon side chains was synthesized from diaminobutanoic acid. The aldehydes needed for the extension by reductive amination were synthesized from the corresponding Fmoc-L-2-amino fatty acids in two steps. Reductive amination of these compounds with Boc-L-Dab-OH gave the C4-C8 alkyl-branched triamino acids. All triamino acids were subsequently Boc-protected at the formed secondary amine to make the monomers appropriate for the N-terminus position when performing Fmoc-based solid-phase peptide synthesis. PMID:25876040

  18. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers.

    PubMed

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children's block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children's block building performance. Chinese preschoolers ( N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children's block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation.

  19. Effect of metal ions on photoluminescence, charge transport, magnetic and catalytic properties of all-inorganic colloidal nanocrystals and nanocrystal solids.

    PubMed

    Nag, Angshuman; Chung, Dae Sung; Dolzhnikov, Dmitriy S; Dimitrijevic, Nada M; Chattopadhyay, Soma; Shibata, Tomohiro; Talapin, Dmitri V

    2012-08-22

    Colloidal semiconductor nanocrystals (NCs) provide convenient "building blocks" for solution-processed solar cells, light-emitting devices, photocatalytic systems, etc. The use of inorganic ligands for colloidal NCs dramatically improved inter-NC charge transport, enabling fast progress in NC-based devices. Typical inorganic ligands (e.g., Sn(2)S(6)(4-), S(2-)) are represented by negatively charged ions that bind covalently to electrophilic metal surface sites. The binding of inorganic charged species to the NC surface provides electrostatic stabilization of NC colloids in polar solvents without introducing insulating barriers between NCs. In this work we show that cationic species needed for electrostatic balance of NC surface charges can also be employed for engineering almost every property of all-inorganic NCs and NC solids, including photoluminescence efficiency, electron mobility, doping, magnetic susceptibility, and electrocatalytic performance. We used a suite of experimental techniques to elucidate the impact of various metal ions on the characteristics of all-inorganic NCs and developed strategies for engineering and optimizing NC-based materials.

  20. Serotonin-Labeled CdSe Nanocrystals: Applications for Neuroscience

    NASA Astrophysics Data System (ADS)

    Kippeny, Tadd; Adkins, Erika; Adams, Scott; Thomlinson, Ian; Schroeter, Sally; Defelice, Louis; Blakely, Randy; Rosenthal, Sandra

    2000-03-01

    Serotonin (5-hydroxytryptamine, 5-HT) is an important neurotransmitter which has been linked to the regulation of critical behaviors including sleep, appetite, and mood. The serotonin transporter (SERT) is a 12-transmembrane domain protein responsible for clearance of serotonin from extracellular spaces following release. In order to assess the potential for use of ligand-conjugated nanocrystals to target cell surface receptors, ion channels, and transporters we have measured the ability of serotonin-labeled CdSe nanocrystals (SNACs) to block the uptake of tritiated serotonin by the human and Drosophila serotonin transporters (hSERT and dSERT). Estimated Ki values, the SNAC concentration at which half of the serotonin transport activity is blocked, were determined by nonlinear regression to be Ki (hSERT ) = 74uM and Ki (dSERT ) = 29uM. These values and our inability to detect free serotonin indicate that SNACs selectively interact with the serotonin recognition site of the transporter. We have also exposed the SNACs to cells containing ionotropic serotonin receptors and have measured the electrical response of the cell using a two microelectrode voltage clamp. We find that serotonin receptors do respond to the SNACs and we measure currents similar to the free serotonin response. These results indicate that ligand-conjugated nanocrystals can be used to label both receptor and transporter proteins. Initial fluorescence labeling experiments will be discussed.

  1. Synthesis of new nanocrystal materials

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser Hassan Abd El-Fattah

    Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of Ti

  2. Nanocrystal structures

    DOEpatents

    Eisler, Hans J [Stoneham, MA; Sundar, Vikram C [Stoneham, MA; Walsh, Michael E [Everett, MA; Klimov, Victor I [Los Alamos, NM; Bawendi, Moungi G [Cambridge, MA; Smith, Henry I [Sudbury, MA

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  3. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  4. The Impact of Individual Differences, Types of Model and Social Settings on Block Building Performance among Chinese Preschoolers

    PubMed Central

    Tian, Mi; Deng, Zhu; Meng, Zhaokun; Li, Rui; Zhang, Zhiyi; Qi, Wenhui; Wang, Rui; Yin, Tingting; Ji, Menghui

    2018-01-01

    Children’s block building performances are used as indicators of other abilities in multiple domains. In the current study, we examined individual differences, types of model and social settings as influences on children’s block building performance. Chinese preschoolers (N = 180) participated in a block building activity in a natural setting, and performance was assessed with multiple measures in order to identify a range of specific skills. Using scores generated across these measures, three dependent variables were analyzed: block building skills, structural balance and structural features. An overall MANOVA showed that there were significant main effects of gender and grade level across most measures. Types of model showed no significant effect in children’s block building. There was a significant main effect of social settings on structural features, with the best performance in the 5-member group, followed by individual and then the 10-member block building. These findings suggest that boys performed better than girls in block building activity. Block building performance increased significantly from 1st to 2nd year of preschool, but not from second to third. The preschoolers created more representational constructions when presented with a model made of wooden rather than with a picture. There was partial evidence that children performed better when working with peers in a small group than when working alone or working in a large group. It is suggested that future study should examine other modalities rather than the visual one, diversify the samples and adopt a longitudinal investigation. PMID:29441031

  5. Oligomers and Polymers Based on Pentacene Building Blocks

    PubMed Central

    Lehnherr, Dan; Tykwinski, Rik R.

    2010-01-01

    Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.

  6. The Building Blocks of Life Move from Ground to Tree to Animal and Back to Ground

    NASA Astrophysics Data System (ADS)

    Davidson, E. A.

    2015-12-01

    I generally use combinations of big words to describe my science, such as biogeochemistry, ecosystem ecology, nutrient cycling, stoichiometry, tropical deforestation, land-use change, agricultural intensification, eutrophication, greenhouse gas emissions, and sustainable development. I didn't expect to use any of these words, but I was surprised that I couldn't use some others that seem simple enough to me, such as farm, plant, soil, and forest. I landed on "building blocks" as my metaphor for the forms of carbon, nitrogen, phosphorus, and other elements that I study as they cycle through and among ecosystems. I study what makes trees and other kinds of life grow. We all know that they need the sun and that they take up water from the ground, but what else do trees need from the ground? What do animals that eat leaves and wood get from the trees? Just as we need building blocks to grow our bodies, trees and animals also need building blocks for growing their bodies. Trees get part of their building blocks from the ground and animals get theirs from what they eat. When animals poop and when leaves fall, some of their building blocks return to the ground. When they die, their building blocks also go back to the ground. I also study what happens to the ground, the water, and the air when we cut down trees, kill or shoo away the animals, and make fields to grow our food. Can we grow enough food and still keep the ground, water, and air clean? I think the answer is yes, but it will take better understanding of how all of those building blocks fit together and move around, from ground to tree to animal and back to ground.

  7. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.

    PubMed

    Zhang, Xinghao; Qiu, Xiongying; Kong, Debin; Zhou, Lu; Li, Zihao; Li, Xianglong; Zhi, Linjie

    2017-07-25

    Nanostructuring is a transformative way to improve the structure stability of high capacity silicon for lithium batteries. Yet, the interface instability issue remains and even propagates in the existing nanostructured silicon building blocks. Here we demonstrate an intrinsically dual stabilized silicon building block, namely silicene flowers, to simultaneously address the structure and interface stability issues. These original Si building blocks as lithium battery anodes exhibit extraordinary combined performance including high gravimetric capacity (2000 mAh g -1 at 800 mA g -1 ), high volumetric capacity (1799 mAh cm -3 ), remarkable rate capability (950 mAh g -1 at 8 A g -1 ), and excellent cycling stability (1100 mA h g -1 at 2000 mA g -1 over 600 cycles). Paired with a conventional cathode, the fabricated full cells deliver extraordinarily high specific energy and energy density (543 Wh kg ca -1 and 1257 Wh L ca -1 , respectively) based on the cathode and anode, which are 152% and 239% of their commercial counterparts using graphite anodes. Coupled with a simple, cost-effective, scalable synthesis approach, this silicon building block offers a horizon for the development of high-performance batteries.

  8. Geospatial-enabled Data Exploration and Computation through Data Infrastructure Building Blocks

    NASA Astrophysics Data System (ADS)

    Song, C. X.; Biehl, L. L.; Merwade, V.; Villoria, N.

    2015-12-01

    Geospatial data are present everywhere today with the proliferation of location-aware computing devices and sensors. This is especially true in the scientific community where large amounts of data are driving research and education activities in many domains. Collaboration over geospatial data, for example, in modeling, data analysis and visualization, must still overcome the barriers of specialized software and expertise among other challenges. The GABBs project aims at enabling broader access to geospatial data exploration and computation by developing spatial data infrastructure building blocks that leverage capabilities of end-to-end application service and virtualized computing framework in HUBzero. Funded by NSF Data Infrastructure Building Blocks (DIBBS) initiative, GABBs provides a geospatial data architecture that integrates spatial data management, mapping and visualization and will make it available as open source. The outcome of the project will enable users to rapidly create tools and share geospatial data and tools on the web for interactive exploration of data without requiring significant software development skills, GIS expertise or IT administrative privileges. This presentation will describe the development of geospatial data infrastructure building blocks and the scientific use cases that help drive the software development, as well as seek feedback from the user communities.

  9. Alq3 nanorods: promising building blocks for optical devices.

    PubMed

    Chen, Wei; Peng, Qing; Li, Yadong

    2008-07-17

    Monodisperse Alq3 nanorods with hexagonal-prism-like morphology are produced via a facile, emulsion based synthesis route. The photoluminescence of individual nanorods differs from the bulk material. These nanorods are promising building blocks for novel optical devices. Copyright © 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure of clusters and building blocks in amylopectin from African rice accessions.

    PubMed

    Gayin, Joseph; Abdel-Aal, El-Sayed M; Marcone, Massimo; Manful, John; Bertoft, Eric

    2016-09-05

    Enzymatic hydrolysis in combination with gel-permeation and anion-exchange chromatography techniques were employed to characterise the composition of clusters and building blocks of amylopectin from two African rice (Oryza glaberrima) accessions-IRGC 103759 and TOG 12440. The samples were compared with one Asian rice (Oryza sativa) sample (cv WITA 4) and one O. sativa×O. glaberrima cross (NERICA 4). The average DP of clusters from the African rice accessions (ARAs) was marginally larger (DP=83) than in WITA 4 (DP=81). However, regarding average number of chains, clusters from the ARAs represented both the smallest and largest clusters. Overall, the result suggested that the structure of clusters in TOG 12440 was dense with short chains and high degree of branching, whereas the situation was the opposite in NERICA 4. IRGC 103759 and WITA 4 possessed clusters with intermediate characteristics. The commonest type of building blocks in all samples was group 2 (single branched dextrins) representing 40.3-49.4% of the blocks, while groups 3-6 were found in successively lower numbers. The average number of building blocks in the clusters was significantly larger in NERICA 4 (5.8) and WITA 4 (5.7) than in IRGC 103759 and TOG 12440 (5.1 and 5.3, respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  12. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.

    PubMed

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O'Connor, Mary; Shapiro, Bruce A

    2008-10-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes.

  13. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler☆

    PubMed Central

    Bindewald, Eckart; Grunewald, Calvin; Boyle, Brett; O’Connor, Mary; Shapiro, Bruce A.

    2013-01-01

    One approach to designing RNA nanoscale structures is to use known RNA structural motifs such as junctions, kissing loops or bulges and to construct a molecular model by connecting these building blocks with helical struts. We previously developed an algorithm for detecting internal loops, junctions and kissing loops in RNA structures. Here we present algorithms for automating or assisting many of the steps that are involved in creating RNA structures from building blocks: (1) assembling building blocks into nanostructures using either a combinatorial search or constraint satisfaction; (2) optimizing RNA 3D ring structures to improve ring closure; (3) sequence optimisation; (4) creating a unique non-degenerate RNA topology descriptor. This effectively creates a computational pipeline for generating molecular models of RNA nanostructures and more specifically RNA ring structures with optimized sequences from RNA building blocks. We show several examples of how the algorithms can be utilized to generate RNA tecto-shapes. PMID:18838281

  14. Synthesis of most polyene natural product motifs using just twelve building blocks and one coupling reaction

    PubMed Central

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-01-01

    The inherent modularity of polypeptides, oligonucleotides, and oligosaccharides has been harnessed to achieve generalized building block-based synthesis platforms. Importantly, like these other targets, most small molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled the synthesis of a wide range of polyene frameworks covering all of this natural product chemical space, and first total syntheses of the polyene natural products asnipyrone B, physarigin A, and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach for making small molecules in the laboratory. PMID:24848233

  15. Statistical analysis of atmospheric turbulence about a simulated block building

    NASA Technical Reports Server (NTRS)

    Steely, S. L., Jr.

    1981-01-01

    An array of towers instrumented to measure the three components of wind speed was used to study atmospheric flow about a simulated block building. Two-point spacetime correlations of the longitudinal velocity component were computed along with two-point spatial correlations. These correlations are in good agreement with fundamental concepts of fluid mechanics. The two-point spatial correlations computed directly were compared with correlations predicted by Taylor's hypothesis and excellent agreement was obtained at the higher levels which were out of the building influence. The correlations fall off significantly in the building wake but recover beyond the wake to essentially the same values in the undisturbed, higher regions.

  16. Interlocking Toy Building Blocks as Hands-On Learning Modules for Blind and Visually Impaired Chemistry Students

    ERIC Educational Resources Information Center

    Melaku, Samuel; Schreck, James O.; Griffin, Kameron; Dabke, Rajeev B.

    2016-01-01

    Interlocking toy building blocks (e.g., Lego) as chemistry learning modules for blind and visually impaired (BVI) students in high school and undergraduate introductory or general chemistry courses are presented. Building blocks were assembled on a baseplate to depict the relative changes in the periodic properties of elements. Modules depicting…

  17. A building block for hardware belief networks.

    PubMed

    Behin-Aein, Behtash; Diep, Vinh; Datta, Supriyo

    2016-07-21

    Belief networks represent a powerful approach to problems involving probabilistic inference, but much of the work in this area is software based utilizing standard deterministic hardware based on the transistor which provides the gain and directionality needed to interconnect billions of them into useful networks. This paper proposes a transistor like device that could provide an analogous building block for probabilistic networks. We present two proof-of-concept examples of belief networks, one reciprocal and one non-reciprocal, implemented using the proposed device which is simulated using experimentally benchmarked models.

  18. Photoelectroreduction of Building-Block Chemicals.

    PubMed

    Chen, Fengjiao; Cui, Wei; Zhang, Jie; Wang, Yeyun; Zhou, Junhua; Hu, Yongpan; Li, Yanguang; Lee, Shuit-Tong

    2017-06-12

    Conventional photoelectrochemical cells utilize solar energy to drive the chemical conversion of water or CO 2 into useful chemical fuels. Such processes are confronted with general challenges, including the low intrinsic activities and inconvenient storage and transportation of their gaseous products. A photoelectrochemical approach is proposed to drive the reductive production of industrial building-block chemicals and demonstrate that succinic acid and glyoxylic acid can be readily synthesized on Si nanowire array photocathodes free of any cocatalyst and at room temperature. These photocathodes exhibit a positive onset potential, large saturation photocurrent density, high reaction selectivity, and excellent operation durability. They capitalize on the large photovoltage generated from the semiconductor/electrolyte junction to partially offset the required external bias, and thereby make this photoelectrosynthetic approach significantly more sustainable compared to traditional electrosynthesis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A Working Model of Protein Synthesis Using Lego(TM) Building Blocks.

    ERIC Educational Resources Information Center

    Templin, Mark A.; Fetters, Marcia K.

    2002-01-01

    Uses Lego building blocks to improve the effectiveness of teaching about protein synthesis. Provides diagrams and pictures for a 2-3 day student activity. Discusses mRNA, transfer RNA, and a protein synthesis model. (MVL)

  20. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. π-Extended Isoindigo-Based Derivative: A Promising Electron-Deficient Building Block for Polymer Semiconductors.

    PubMed

    Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi

    2017-11-22

    The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.

  2. Solvent mediated hybrid 2D materials: black phosphorus - graphene heterostructured building blocks assembled for sodium ion batteries.

    PubMed

    Li, Mengya; Muralidharan, Nitin; Moyer, Kathleen; Pint, Cary L

    2018-06-07

    Here we demonstrate the broad capability to exploit interactions at different length scales in 2D materials to prepare macroscopic functional materials containing hybrid black phosphorus/graphene (BP/G) heterostructured building blocks. First, heterostructured 2D building blocks are self-assembled during co-exfoliation in the solution phase based on electrostatic attraction of different 2D materials. Second, electrophoretic deposition is used as a tool to assemble these building blocks into macroscopic films containing these self-assembled 2D heterostructures. Characterization of deposits formed using this technique elucidates the presence of stacked and sandwiched 2D heterostructures, and zeta potential measurements confirm the mechanistic interactions driving this assembly. Building on the exceptional sodium alloying capacity of BP, these materials were demonstrated as superior binder-free and additive-free anodes for sodium batteries with specific discharge capacity of 2365 mA h gP-1 and long stable cycling duration. This study demonstrates how controllable co-processing of 2D materials can enable material control for stacking and building block assembly relevant to broad future applications of 2D materials.

  3. Building Blocks for Transport-Class Hybrid and Turboelectric Vehicles

    NASA Technical Reports Server (NTRS)

    Jankovsky, Amy; Bowman, Cheryl; Jansen, Ralph

    2016-01-01

    NASA has been investing in research efforts to define potential vehicles that use hybrid and turboelectric propulsion to enable savings in fuel burn and carbon usage. This paper overviews the fundamental building blocks that have been derived from those studies and details what key performance parameters have been defined, what key ground and flight tests need to occur, and highlights progress toward each.

  4. Efficient Risk Determination of Risk of Road Blocking by Means of MMS and Data of Buildings and Their Surrounding

    NASA Astrophysics Data System (ADS)

    Nose, Kazuhito; Hatake, Shuhei

    2016-06-01

    Massive earthquake named "Tonankai Massive earthquake" is predicted to occur in the near future and is feared to cause severe damage in Kinki District . "Hanshin-Awaji Massive Earthquake" in 1995 destroyed most of the buildings constructed before 1981 and not complying with the latest earthquake resistance standards. Collapsed buildings blocked roads, obstructed evacuation, rescue and firefighting operations and inflicted further damages.To alleviate the damages, it is important to predict the points where collapsed buildings are likely block the roads and to take precautions in advance. But big cities have an expanse of urban areas with densely-distributed buildings, and it requires time and cost to check each and every building whether or not it will block the road. In order to reduce blocked roads when a disaster strikes, we made a study and confirmed that the risk of road blocking can be determined easily by means of the latest technologies of survey and geographical information.

  5. Recent advances in synthesis of bacterial rare sugar building blocks and their applications.

    PubMed

    Emmadi, Madhu; Kulkarni, Suvarn S

    2014-07-01

    Covering: 1964 to 2013. Bacteria have unusual glycans on their surfaces which distinguish them from the host cells. These unique structures offer avenues for targeting bacteria with specific therapeutics and vaccine. However, these rare sugars are not accessible in acceptable purity and amounts by isolation from natural sources. Thus, procurement of orthogonally protected rare sugar building blocks through efficient chemical synthesis is regarded as a crucial step towards the development of glycoconjugate vaccines. This Highlight focuses on recent advances in the synthesis of the bacterial deoxy amino hexopyranoside building blocks and their application in constructing various biologically important bacterial O-glycans.

  6. Engineering multifunctional protein nanoparticles by in vitro disassembling and reassembling of heterologous building blocks

    NASA Astrophysics Data System (ADS)

    Unzueta, Ugutz; Serna, Naroa; Sánchez-García, Laura; Roldán, Mónica; Sánchez-Chardi, Alejandro; Mangues, Ramón; Villaverde, Antonio; Vázquez, Esther

    2017-12-01

    The engineering of protein self-assembling at the nanoscale allows the generation of functional and biocompatible materials, which can be produced by easy biological fabrication. The combination of cationic and histidine-rich stretches in fusion proteins promotes oligomerization as stable protein-only regular nanoparticles that are composed by a moderate number of building blocks. Among other applications, these materials are highly appealing as tools in targeted drug delivery once empowered with peptidic ligands of cell surface receptors. In this context, we have dissected here this simple technological platform regarding the controlled disassembling and reassembling of the composing building blocks. By applying high salt and imidazole in combination, nanoparticles are disassembled in a process that is fully reversible upon removal of the disrupting agents. By taking this approach, we accomplish here the in vitro generation of hybrid nanoparticles formed by heterologous building blocks. This fact demonstrates the capability to generate multifunctional and/or multiparatopic or multispecific materials usable in nanomedical applications.

  7. Thermal-induced phase transition and assembly of hexagonal metastable In 2O 3 nanocrystals: A new approach to In 2O 3 functional materials

    NASA Astrophysics Data System (ADS)

    Shu, Shiwen; Yu, Dabin; Wang, Yan; Wang, Feng; Wang, Zirong; Zhong, Wu

    2010-10-01

    This paper reports on the thermal-induced performance of hexagonal metastable In 2O 3 nanocrystals involving in phase transition and assembly, with particular emphasis on the assembly for the preparation of functional materials. For In 2O 3 nanocrystals, the metastable phase was found to be thermally unstable and transform to cubic phase when temperature was higher than 600 °C, accompanied by assembly as well as evolution of optical properties, but the two polymorphs coexisted at the temperature ranging from 600 to 900 °C, during which the content of product phase and crystal size gradually increased upon increasing temperature. The assembly of In 2O 3 nanocrystals can be developed to fabricate In 2O 3 functional materials, such as various ceramic materials, or even desired nano- or micro-structures, by using metastable In 2O 3 nanocrystals as precursors or building blocks. The electrical resistivity of In 2O 3 conductive film fabricated by a hot-pressing route was as low as 3.72×10 -3 Ω cm, close to that of In 2O 3 single crystal, which is important for In 2O 3 that is always used as conductive materials. The findings should be of importance for both the wide applications of In 2O 3 in optical and electronic devices and theoretical investigations on crystal structures.

  8. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications

    NASA Astrophysics Data System (ADS)

    Chen, L.; Lai, C.; Marchewka, R.; Berry, R. M.; Tam, K. C.

    2016-07-01

    Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films on PET substrates showed good flexibility and enhanced stability in both water and ethanol. The modified PET films with structural colors from thin-film interference and photoluminescence from QDs can be used in anti-counterfeiting applications.Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ~40 degrees). Nanothin films

  9. Colloidal nanocrystals as LEGO® bricks for building electronic band structure models.

    PubMed

    Tadjine, Athmane; Delerue, Christophe

    2018-03-28

    The synthesis of self-assembled semiconductor nanocrystal (NC) superlattices using oriented attachment recently became a flourishing research topic. This technique already produced remarkable forms of NC superlattices, such as linear chains, mono and multilayer square lattices, and silicene-like honeycomb lattices. In the case of lead chalcogenide semiconductors where NCs are in the form of truncated nanocubes, the attachment mostly occurs via (100) facets. In this work, we show that all these structures can be seen as sub-structures of a simple cubic lattice. From this, we investigate a rich variety of one-dimensional or two-dimensional superlattices that could be built as few lines or few layers taken from the same cubic system following different crystallographic orientations. Each NC can be therefore considered as a LEGO® brick, and any superlattice can be obtained from another one by rearranging the bricks. Moreover, we show that this concept of LEGO® bricks can be extended to the calculation of the electronic band structure of the superlattices. This leads to a simple yet powerful way to build analytical Hamiltonians that present band structures in excellent agreement with more elaborate atomistic tight-binding calculations. This LEGO® concept could guide the synthesis of superlattices and LEGO® Hamiltonians should greatly simplify further studies on the (opto-)electronic properties of such structures.

  10. Highly crystalline covalent organic frameworks from flexible building blocks.

    PubMed

    Xu, Liqian; Ding, San-Yuan; Liu, Junmin; Sun, Junliang; Wang, Wei; Zheng, Qi-Yu

    2016-03-28

    Two novel 2D covalent organic frameworks (TPT-COF-1 and TPT-COF-2) were synthesized from the flexible 2,4,6-triaryloxy-1,3,5-triazine building blocks on a gram scale, which show high crystallinity and large surface area. The controllable formation of highly ordered frameworks is mainly attributed to the self-assembly Piedfort unit of 2,4,6-triaryloxy-1,3,5-triazine.

  11. Dendronized Metal Nanoparticles-Self-Organizing Building Blocks for the Design of New Functional Materials

    DTIC Science & Technology

    2016-04-01

    characterization has just started.       The hybrids that we have synthesized are based on plasmonic gold and  silver   nanoparticles  (NPs) but  the concept  is...AFRL-AFOSR-UK-TR-2016-0010 Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials Bertrand...2015 4. TITLE AND SUBTITLE Dendronized metal nanoparticles - self-organizing building blocks for the design of new functional materials 5a. CONTRACT

  12. Transportable Payload Operations Control Center reusable software: Building blocks for quality ground data systems

    NASA Technical Reports Server (NTRS)

    Mahmot, Ron; Koslosky, John T.; Beach, Edward; Schwarz, Barbara

    1994-01-01

    The Mission Operations Division (MOD) at Goddard Space Flight Center builds Mission Operations Centers which are used by Flight Operations Teams to monitor and control satellites. Reducing system life cycle costs through software reuse has always been a priority of the MOD. The MOD's Transportable Payload Operations Control Center development team established an extensive library of 14 subsystems with over 100,000 delivered source instructions of reusable, generic software components. Nine TPOCC-based control centers to date support 11 satellites and achieved an average software reuse level of more than 75 percent. This paper shares experiences of how the TPOCC building blocks were developed and how building block developer's, mission development teams, and users are all part of the process.

  13. Utilization of the Building-Block Approach in Structural Mechanics Research

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Jegley, Dawn C.; McGowan, David M.; Bush, Harold G.; Waters, W. Allen

    2005-01-01

    In the last 20 years NASA has worked in collaboration with industry to develop enabling technologies needed to make aircraft safer and more affordable, extend their lifetime, improve their reliability, better understand their behavior, and reduce their weight. To support these efforts, research programs starting with ideas and culminating in full-scale structural testing were conducted at the NASA Langley Research Center. Each program contained development efforts that (a) started with selecting the material system and manufacturing approach; (b) moved on to experimentation and analysis of small samples to characterize the system and quantify behavior in the presence of defects like damage and imperfections; (c) progressed on to examining larger structures to examine buckling behavior, combined loadings, and built-up structures; and (d) finally moved to complicated subcomponents and full-scale components. Each step along the way was supported by detailed analysis, including tool development, to prove that the behavior of these structures was well-understood and predictable. This approach for developing technology became known as the "building-block" approach. In the Advanced Composites Technology Program and the High Speed Research Program the building-block approach was used to develop a true understanding of the response of the structures involved through experimentation and analysis. The philosophy that if the structural response couldn't be accurately predicted, it wasn't really understood, was critical to the progression of these programs. To this end, analytical techniques including closed-form and finite elements were employed and experimentation used to verify assumptions at each step along the way. This paper presents a discussion of the utilization of the building-block approach described previously in structural mechanics research and development programs at NASA Langley Research Center. Specific examples that illustrate the use of this approach are

  14. Ribozyme-catalysed RNA synthesis using triplet building blocks.

    PubMed

    Attwater, James; Raguram, Aditya; Morgunov, Alexey S; Gianni, Edoardo; Holliger, Philipp

    2018-05-15

    RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme. © 2018, Attwater et al.

  15. Fabrication of nanocrystal ink based superstrate-type CuInS₂ thin film solar cells.

    PubMed

    Cho, Jin Woo; Park, Se Jin; Kim, Woong; Min, Byoung Koun

    2012-07-05

    A CuInS₂ (CIS) nanocrystal ink was applied to thin film solar cell devices with superstrate-type configuration. Monodispersed CIS nanocrystals were synthesized by a colloidal synthetic route and re-dispersed in toluene to form an ink. A spray method was used to coat CIS films onto conducting glass substrates. Prior to CIS film deposition, TiO₂ and CdS thin films were also prepared as a blocking layer and a buffer layer, respectively. We found that both a TiO₂ blocking layer and a CdS buffer layer are necessary to generate photoresponses in superstrate-type devices. The best power conversion efficiency (∼1.45%) was achieved by the CIS superstrate-type thin film solar cell device with 200 and 100 nm thick TiO₂ and CdS films, respectively.

  16. HUBBLE AND KECK DISCOVER GALAXY BUILDING BLOCK

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image shows a very small, faint galaxy 'building block' newly discovered by a unique collaboration between ground- and space-based telescopes. Hubble and the 10-meter Keck Telescopes in Hawaii joined forces, using a galaxy cluster which acts as gravitational lens to detect what scientists believe is one of the smallest very distant objects ever found. The galaxy cluster Abell 2218 was used by a team of European and American astronomers led by Richard Ellis (Caltech) in their systematic search for intrinsically faint distant star-forming systems. Without help from Abell 2218's exceptional magnifying power to make objects appear about 30 times brighter, the galaxy building block would have been undetectable. In the image to the right, the object is seen distorted into two nearly identical, very red 'images' by the gravitational lens. The image pair represents the magnified result of a single background object gravitationally lensed by Abell 2218 and viewed at a distance of 13.4 billion light-years. The intriguing object contains only one million stars, far fewer than a mature galaxy, and scientists believe it is very young. Such young star-forming systems of low mass at early cosmic times are likely to be the objects from which present-day galaxies have formed. In the image to the left, the full overview of the galaxy cluster Abell 2218 is seen. This image was taken by Hubble in 1999 at the completion of Hubble Servicing Mission 3A. Credit: NASA, ESA, Richard Ellis (Caltech) and Jean-Paul Kneib (Observatoire Midi-Pyrenees, France) Acknowledgment: NASA, A. Fruchter and the ERO Team (STScI and ST-ECF)

  17. Synthesis and applications of heterostructured semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Khon, Elena

    Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their

  18. Building blocks for correlated superconductors and magnets

    DOE PAGES

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; ...

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. In addition, successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials designmore » and synthesis.« less

  19. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    PubMed

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  20. Enantiopure heterobimetallic single-chain magnets from the chiral Ru(III) building block.

    PubMed

    Ru, Jing; Gao, Feng; Wu, Tao; Yao, Min-Xia; Li, Yi-Zhi; Zuo, Jing-Lin

    2014-01-21

    A pair of one-dimensional enantiomers based on the versatile chiral dicyanoruthenate(III) building block have been synthesized and they are chiral single-chain magnets with the effective spin-reversal barrier of 28.2 K.

  1. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  2. Colloidal Inorganic Nanocrystal Based Nanocomposites: Functional Materials for Micro and Nanofabrication

    PubMed Central

    Ingrosso, Chiara; Panniello, AnnaMaria; Comparelli, Roberto; Curri, Maria Lucia; Striccoli, Marinella

    2010-01-01

    The unique size- and shape-dependent electronic properties of nanocrystals (NCs) make them extremely attractive as novel structural building blocks for constructing a new generation of innovative materials and solid-state devices. Recent advances in material chemistry has allowed the synthesis of colloidal NCs with a wide range of compositions, with a precise control on size, shape and uniformity as well as specific surface chemistry. By incorporating such nanostructures in polymers, mesoscopic materials can be achieved and their properties engineered by choosing NCs differing in size and/or composition, properly tuning the interaction between NCs and surrounding environment. In this contribution, different approaches will be presented as effective opportunities for conveying colloidal NC properties to nanocomposite materials for micro and nanofabrication. Patterning of such nanocomposites either by conventional lithographic techniques and emerging patterning tools, such as ink jet printing and nanoimprint lithography, will be illustrated, pointing out their technological impact on developing new optoelectronic and sensing devices.

  3. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

    PubMed Central

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-ichi

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block. PMID:28684973

  4. PBF Reactor Building (PER620). Detail of arrangement of highdensity blocks ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). Detail of arrangement of high-density blocks and other basement shielding. Date: February 1966. Ebasco Services 1205 PER/PBF 620-A-7. INEEL index no. 761-0620-00-205-123070 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  5. Surface chemical modification of nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, Brett Anthony; Milliron, Delia Jane; Rosen, Evelyn Louise

    Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.

  6. Application of soil block without burning process and calcium silicate panels as building wall in mountainous area

    NASA Astrophysics Data System (ADS)

    Noerwasito, Vincentius Totok; Nasution, Tanti Satriana Rosary

    2017-11-01

    Utilization of local building materials in a residential location in mountainous area is very important, considering local material as a low-energy building material because of low transport energy. The local building materials used in this study are walls made from soil blocks. The material was made by the surrounding community from compacted soil without burning process. To maximize the potential of soil block to the outdoor temperature in the mountains, it is necessary to add non-local building materials as an insulator from the influence of the outside air. The insulator was calcium silicate panel. The location of the research is Trawas sub-district, Mojokerto regency, which is a mountainous area. The research problem is on applying the composition of local materials and calcium silicate panels that it will be able to meet the requirements as a wall building material and finding to what extent the impact of the wall against indoor temperature. The result from this research was the application of soil block walls insulated by calcium silicate panels in a building model. Besides, because of the utilization of those materials, the building has a specific difference between indoor and outdoor temperature. Thus, this model can be applied in mountainous areas in Indonesia.

  7. A mixed molecular building block strategy for the design of nested polyhedron metal-organic frameworks.

    PubMed

    Tian, Dan; Chen, Qiang; Li, Yue; Zhang, Ying-Hui; Chang, Ze; Bu, Xian-He

    2014-01-13

    A mixed molecular building block (MBB) strategy for the synthesis of double-walled cage-based porous metal-organic frameworks (MOFs) is presented. By means of this method, two isostructural porous MOFs built from unprecedented double-walled metal-organic octahedron were obtained by introducing two size-matching C3 -symmetric molecular building blocks with different rigidities. With their unique framework structures, these MOFs provide, to the best of our knowledge, the first examples of double-walled octahedron-based MOFs. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. De novo design of molecular architectures by evolutionary assembly of drug-derived building blocks.

    PubMed

    Schneider, G; Lee, M L; Stahl, M; Schneider, P

    2000-07-01

    An evolutionary algorithm was developed for fragment-based de novo design of molecules (TOPAS, TOPology-Assigning System). This stochastic method aims at generating a novel molecular structure mimicking a template structure. A set of approximately 25,000 fragment structures serves as the building block supply, which were obtained by a straightforward fragmentation procedure applied to 36,000 known drugs. Eleven reaction schemes were implemented for both fragmentation and building block assembly. This combination of drug-derived building blocks and a restricted set of reaction schemes proved to be a key for the automatic development of novel, synthetically tractable structures. In a cyclic optimization process, molecular architectures were generated from a parent structure by virtual synthesis, and the best structure of a generation was selected as the parent for the subsequent TOPAS cycle. Similarity measures were used to define 'fitness', based on 2D-structural similarity or topological pharmacophore distance between the template molecule and the variants. The concept of varying library 'diversity' during a design process was consequently implemented by using adaptive variant distributions. The efficiency of the design algorithm was demonstrated for the de novo construction of potential thrombin inhibitors mimicking peptide and non-peptide template structures.

  9. Using the World Health Organization health system building blocks through survey of healthcare professionals to determine the performance of public healthcare facilities.

    PubMed

    Manyazewal, Tsegahun

    2017-01-01

    Acknowledging the health system strengthening agenda, the World Health Organization (WHO) has formulated a health systems framework that describes health systems in terms of six building blocks. This study aimed to determine the current status of the six WHO health system building blocks in public healthcare facilities in Ethiopia. A quantitative, cross-sectional study was conducted in five public hospitals in central Ethiopia which were in a post-reform period. A self-administered, structured questionnaire which covered the WHO's six health system building blocks was used to collect data on healthcare professionals who consented. Data was analyzed using IBM SPSS version 20. The overall performance of the public hospitals was 60% when weighed against the WHO building blocks which, in this procedure, needed a minimum of 80% score. For each building block, performance scores were: information 53%, health workforce 55%, medical products and technologies 58%, leadership and governance 61%, healthcare financing 62%, and service delivery 69%. There existed a significant difference in performance among the hospitals ( p  < .001). The study proved that the WHO's health system building blocks are useful for assessing the process of strengthening health systems in Ethiopia. The six blocks allow identifying different improvement opportunities in each one of the hospitals. There was no contradiction between the indicators of the WHO building blocks and the health sustainable development goal (SDG) objectives. However, such SDG objectives should not be a substitute for strategies to strengthen health systems.

  10. A Library of Rad Hard Mixed-Voltage/Mixed-Signal Building Blocks for Integration of Avionics Systems for Deep Space

    NASA Technical Reports Server (NTRS)

    Mojarradi, M. M.; Blaes, B.; Kolawa, E. A.; Blalock, B. J.; Li, H. W.; Buck, K.; Houge, D.

    2001-01-01

    To build the sensor intensive system-on-a-chip for the next generation spacecrafts for deep space, Center for Integration of Space Microsystems at JPL (CISM) takes advantage of the lower power rating and inherent radiation resistance of Silicon on Insulator technology (SOI). We are developing a suite of mixed-voltage and mixed-signal building blocks in Honeywell's SOI process that can enable the rapid integration of the next generation avionics systems with lower power rating, higher reliability, longer life, and enhanced radiation tolerance for spacecrafts such as the Europa Orbiter and Europa Lander. The mixed-voltage building blocks are predominantly for design of adaptive power management systems. Their design centers around an LDMOS structure that is being developed by Honeywell, Boeing Corp, and the University of Idaho. The mixed-signal building blocks are designed to meet the low power, extreme radiation requirement of deep space applications. These building blocks are predominantly used to interface analog sensors to the digital CPU of the next generation avionics system on a chip. Additional information is contained in the original extended abstract.

  11. Building blocks toward contemporary trauma theory: Ferenczi 's paradigm shift.

    PubMed

    Mészáros, Judit

    2010-12-01

    In laying down the building blocks of contemporary trauma theory, Ferenczi asserted that trauma is founded on real events and that it occurs in the interpersonal and intersubjective dynamics of object relations. He stressed the significance of the presence or lack of a trusted person in the post-traumatic situation. After the trauma, the loneliness and later the isolation of the victim represent a serious pathogenic source. In the traumatic situation, the victim and the persecutor/aggressor operate differing ego defense mechanisms. Ferenczi was the first to describe the ego defense mechanism of identification with the aggressor. Ferenczi pointed out the characteristic features of the role of analyst/therapist with which (s)he may assist the patient in working through the trauma, among them being the development of a therapeutic atmosphere based on trust, so that the traumatic experiences can be relived, without which effective therapeutic change cannot be achieved. For the analyst, countertransference, as part of authentic communication, is incorporated into the therapeutic process. These are the key building blocks that are laid down by Ferenczi in his writings and appear in later works on trauma theory.

  12. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction.

    PubMed

    Woerly, Eric M; Roy, Jahnabi; Burke, Martin D

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin b-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  13. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction

    NASA Astrophysics Data System (ADS)

    Woerly, Eric M.; Roy, Jahnabi; Burke, Martin D.

    2014-06-01

    The inherent modularity of polypeptides, oligonucleotides and oligosaccharides has been harnessed to achieve generalized synthesis platforms. Importantly, like these other targets, most small-molecule natural products are biosynthesized via iterative coupling of bifunctional building blocks. This suggests that many small molecules also possess inherent modularity commensurate with systematic building block-based construction. Supporting this hypothesis, here we report that the polyene motifs found in >75% of all known polyene natural products can be synthesized using just 12 building blocks and one coupling reaction. Using the same general retrosynthetic algorithm and reaction conditions, this platform enabled both the synthesis of a wide range of polyene frameworks that covered all of this natural-product chemical space and the first total syntheses of the polyene natural products asnipyrone B, physarigin A and neurosporaxanthin β-D-glucopyranoside. Collectively, these results suggest the potential for a more generalized approach to making small molecules in the laboratory.

  14. Nanosized Building Blocks for Customizing Novel Antibiofilm Approaches

    PubMed Central

    Paula, A.J.; Koo, H.

    2016-01-01

    Recent advances in nanotechnology provide unparalleled flexibility to control the composition, size, shape, surface chemistry, and functionality of materials. Currently available engineering approaches allow precise synthesis of nanocompounds (e.g., nanoparticles, nanostructures, nanocrystals) with both top-down and bottom-up design principles at the submicron level. In this context, these “nanoelements” (NEs) or “nanosized building blocks” can 1) generate new nanocomposites with antibiofilm properties or 2) be used to coat existing surfaces (e.g., teeth) and exogenously introduced surfaces (e.g., restorative or implant materials) for prevention of bacterial adhesion and biofilm formation. Furthermore, functionalized NEs 3) can be conceived as nanoparticles to carry and selectively release antimicrobial agents after attachment or within oral biofilms, resulting in their disruption. The latter mechanism includes “smart release” of agents when triggered by pathogenic microenvironments (e.g., acidic pH or low oxygen levels) for localized and controlled drug delivery to simultaneously kill bacteria and dismantle the biofilm matrix. Here we discuss inorganic, metallic, polymeric, and carbon-based NEs for their outstanding chemical flexibility, stability, and antibiofilm properties manifested when converted into bioactive materials, assembled on-site or delivered at biofilm-surface interfaces. Details are provided on the emerging concept of the rational design of NEs and recent technological breakthroughs for the development of a new generation of nanocoatings or functional nanoparticles for biofilm control in the oral cavity. PMID:27856967

  15. 2016 Summer Series - Kenneth Cheung: Building Blocks for Aerospace Structures

    NASA Image and Video Library

    2016-06-16

    Strong, ultra-lightweight materials are expected to play a key role in the design of future aircraft and space vehicles. Lower structural mass leads to improved performance, maneuverability, efficiency, range and payload capacity. Dr. Kenneth Cheung is developing cellular composite building blocks, or digital materials, to create transformable aerostructures. In his presentation, Dr. Cheung will discuss the implications of the digital materials and morphing structures.

  16. Using Interlocking Toy Building Blocks to Assess Conceptual Understanding in Chemistry

    ERIC Educational Resources Information Center

    Geyer, Michael J.

    2017-01-01

    A current emphasis on teaching conceptual chemistry via the particulate nature of matter has led to the need for new, effective ways to assess students' conceptual understanding of this view of chemistry. This article provides a simple, inexpensive way to use interlocking toy building blocks (e.g., LEGOs) in both formative and summative…

  17. Building blocks for social accountability: a conceptual framework to guide medical schools.

    PubMed

    Preston, Robyn; Larkins, Sarah; Taylor, Judy; Judd, Jenni

    2016-08-26

    This paper presents a conceptual framework developed from empirical evidence, to guide medical schools aspiring towards greater social accountability. Using a multiple case study approach, seventy-five staff, students, health sector representatives and community members, associated with four medical schools, participated in semi-structured interviews. Two schools were in Australia and two were in the Philippines. These schools were selected because they were aspiring to be socially accountable. Data was collected through on-site visits, field notes and a documentary review. Abductive analysis involved both deductive and inductive iterative theming of the data both within and across cases. The conceptual framework for socially accountable medical education was built from analyzing the internal and external factors influencing the selected medical schools. These factors became the building blocks that might be necessary to assist movement to social accountability. The strongest factor was the demands of the local workforce situation leading to innovative educational programs established with or without government support. The values and professional experiences of leaders, staff and health sector representatives, influenced whether the organizational culture of a school was conducive to social accountability. The wider institutional environment and policies of their universities affected this culture and the resourcing of programs. Membership of a coalition of socially accountable medical schools created a community of learning and legitimized local practice. Communities may not have recognized their own importance but they were fundamental for socially accountable practices. The bedrock of social accountability, that is, the foundation for all building blocks, is shared values and aspirations congruent with social accountability. These values and aspirations are both a philosophical understanding for innovation and a practical application at the health systems and

  18. PUS Services Software Building Block Automatic Generation for Space Missions

    NASA Astrophysics Data System (ADS)

    Candia, S.; Sgaramella, F.; Mele, G.

    2008-08-01

    The Packet Utilization Standard (PUS) has been specified by the European Committee for Space Standardization (ECSS) and issued as ECSS-E-70-41A to define the application-level interface between Ground Segments and Space Segments. The ECSS-E- 70-41A complements the ECSS-E-50 and the Consultative Committee for Space Data Systems (CCSDS) recommendations for packet telemetry and telecommand. The ECSS-E-70-41A characterizes the identified PUS Services from a functional point of view and the ECSS-E-70-31 standard specifies the rules for their mission-specific tailoring. The current on-board software design for a space mission implies the production of several PUS terminals, each providing a specific tailoring of the PUS services. The associated on-board software building blocks are developed independently, leading to very different design choices and implementations even when the mission tailoring requires very similar services (from the Ground operative perspective). In this scenario, the automatic production of the PUS services building blocks for a mission would be a way to optimize the overall mission economy and improve the robusteness and reliability of the on-board software and of the Ground-Space interactions. This paper presents the Space Software Italia (SSI) activities for the development of an integrated environment to support: the PUS services tailoring activity for a specific mission. the mission-specific PUS services configuration. the generation the UML model of the software building block implementing the mission-specific PUS services and the related source code, support documentation (software requirements, software architecture, test plans/procedures, operational manuals), and the TM/TC database. The paper deals with: (a) the project objectives, (b) the tailoring, configuration, and generation process, (c) the description of the environments supporting the process phases, (d) the characterization of the meta-model used for the generation, (e) the

  19. Single-trabecula building block for large-scale finite element models of cancellous bone.

    PubMed

    Dagan, D; Be'ery, M; Gefen, A

    2004-07-01

    Recent development of high-resolution imaging of cancellous bone allows finite element (FE) analysis of bone tissue stresses and strains in individual trabeculae. However, specimen-specific stress/strain analyses can include effects of anatomical variations and local damage that can bias the interpretation of the results from individual specimens with respect to large populations. This study developed a standard (generic) 'building-block' of a trabecula for large-scale FE models. Being parametric and based on statistics of dimensions of ovine trabeculae, this building block can be scaled for trabecular thickness and length and be used in commercial or custom-made FE codes to construct generic, large-scale FE models of bone, using less computer power than that currently required to reproduce the accurate micro-architecture of trabecular bone. Orthogonal lattices constructed with this building block, after it was scaled to trabeculae of the human proximal femur, provided apparent elastic moduli of approximately 150 MPa, in good agreement with experimental data for the stiffness of cancellous bone from this site. Likewise, lattices with thinner, osteoporotic-like trabeculae could predict a reduction of approximately 30% in the apparent elastic modulus, as reported in experimental studies of osteoporotic femora. Based on these comparisons, it is concluded that the single-trabecula element developed in the present study is well-suited for representing cancellous bone in large-scale generic FE simulations.

  20. Block Play and Mathematics Learning in Preschool: The Effects of Building Complexity, Peer and Teacher Interactions in the Block Area, and Replica Play Materials

    ERIC Educational Resources Information Center

    Trawick-Smith, Jeffrey; Swaminathan, Sudha; Baton, Brooke; Danieluk, Courtney; Marsh, Samantha; Szarwacki, Monika

    2017-01-01

    Block play has been included in early childhood classrooms for over a century, yet few studies have examined its effects on learning. Several previous investigations indicate that the complexity of block building is associated with math ability, but these studies were often conducted in adult-guided, laboratory settings. In the present…

  1. Galactic Building Blocks Seen Swarming Around Andromeda

    NASA Astrophysics Data System (ADS)

    2004-02-01

    Green Bank, WV - A team of astronomers using the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) has made the first conclusive detection of what appear to be the leftover building blocks of galaxy formation -- neutral hydrogen clouds -- swarming around the Andromeda Galaxy, the nearest large spiral galaxy to the Milky Way. This discovery may help scientists understand the structure and evolution of the Milky Way and all spiral galaxies. It also may help explain why certain young stars in mature galaxies are surprisingly bereft of the heavy elements that their contemporaries contain. Andromeda Galaxy This image depicts several long-sought galactic "building blocks" in orbit of the Andromeda Galaxy (M31). The newfound hydrogen clouds are depicted in a shade of orange (GBT), while gas that comprises the massive hydrogen disk of Andromeda is shown at high-resolution in blue (Westerbork Sythesis Radio Telescope). CREDIT: NRAO/AUI/NSF, WSRT (Click on Image for Larger Version) "Giant galaxies, like Andromeda and our own Milky Way, are thought to form through repeated mergers with smaller galaxies and through the accretion of vast numbers of even lower mass 'clouds' -- dark objects that lack stars and even are too small to call galaxies," said David A. Thilker of the Johns Hopkins University in Baltimore, Maryland. "Theoretical studies predict that this process of galactic growth continues today, but astronomers have been unable to detect the expected low mass 'building blocks' falling into nearby galaxies, until now." Thilker's research is published in the Astrophysical Journal Letters. Other contributors include: Robert Braun of the Netherlands Foundation for Research in Astronomy; Rene A.M. Walterbos of New Mexico State University; Edvige Corbelli of the Osservatorio Astrofisico di Arcetri in Italy; Felix J. Lockman and Ronald Maddalena of the National Radio Astronomy Observatory (NRAO) in Green Bank, West Virginia; and Edward Murphy of the

  2. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  3. Assessing the Potential of Folded Globular Polyproteins As Hydrogel Building Blocks

    PubMed Central

    2016-01-01

    The native states of proteins generally have stable well-defined folded structures endowing these biomolecules with specific functionality and molecular recognition abilities. Here we explore the potential of using folded globular polyproteins as building blocks for hydrogels. Photochemically cross-linked hydrogels were produced from polyproteins containing either five domains of I27 ((I27)5), protein L ((pL)5), or a 1:1 blend of these proteins. SAXS analysis showed that (I27)5 exists as a single rod-like structure, while (pL)5 shows signatures of self-aggregation in solution. SANS measurements showed that both polyprotein hydrogels have a similar nanoscopic structure, with protein L hydrogels being formed from smaller and more compact clusters. The polyprotein hydrogels showed small energy dissipation in a load/unload cycle, which significantly increased when the hydrogels were formed in the unfolded state. This study demonstrates the use of folded proteins as building blocks in hydrogels, and highlights the potential versatility that can be offered in tuning the mechanical, structural, and functional properties of polyproteins. PMID:28006103

  4. Quantitative NMR Approach to Optimize the Formation of Chemical Building Blocks from Abundant Carbohydrates.

    PubMed

    Elliot, Samuel G; Tolborg, Søren; Sádaba, Irantzu; Taarning, Esben; Meier, Sebastian

    2017-07-21

    The future role of biomass-derived chemicals relies on the formation of diverse functional monomers in high yields from carbohydrates. Recently, it has become clear that a series of α-hydroxy acids, esters, and lactones can be formed from carbohydrates in alcohol and water solvents using tin-containing catalysts such as Sn-Beta. These compounds are potential building blocks for polyesters bearing additional olefin and alcohol functionalities. An NMR approach was used to identify, quantify, and optimize the formation of these building blocks in the Sn-Beta-catalyzed transformation of abundant carbohydrates. Record yields of the target molecules can be achieved by obstructing competing reactions through solvent selection. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Design and synthesis of unnatural heparosan and chondroitin building blocks

    PubMed Central

    Bera, Smritilekha; Linhardt, Robert J.

    2011-01-01

    Triazole linked heparosan and chondroitin disaccharide and tetrasaccharide building blocks were synthesized in a stereoselective manner by applying a very efficient Copper Catalyzed Azide-Alkyne Cycloadditions (CuAAC) reaction of appropriately substituted azido-glucuronic acid and propargyluted N-acetyl glucosamine and N-acetyl galactosamine derivative respectively. The resulting suitably substituted tetrasaccharide analogs can be easily converted into azide and alkyne unit for further synthesis of higher oligosaccharide analogs. PMID:21438620

  6. Nanocrystals Technology for Pharmaceutical Science.

    PubMed

    Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng

    2018-05-17

    Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Bi-continuous Multi-component Nanocrystal Superlattices for Solar Energy Conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie; Murray, Christopher; Kikkawa, James

    2017-06-14

    Our SISGR program studied an emerging class of nanomaterials wherein different combinations of semiconductor or semiconductor and plasmonic nanocrystals (NCs) are self-assembled into three-dimensional multi-component superlattices. The NC assemblies were designed to form bicontinuous semiconductor NC sublattices with type-II energy offsets to drive charge separation onto electron and hole transporting sublattices for collection and introduce plasmonic NCs to increase solar absorption and charge separation. Our group is expert in synthesizing and assembling an extraordinary variety of artificial systems by tailoring the NC building blocks and the superlattice unit cell geometry. Under this DOE BES Materials Chemistry program, we introduced chemicalmore » methods to control inter-particle distance and to dope NC assemblies, which enabled our demonstration of strong electronic communication between NCs and the use of NC thin films as electronic materials. We synthesized, assembled and structurally, spectroscopically, and electrically probed NC superlattices to understand and manipulate the flow of energy and charge toward discovering the design rules and optimizing these complex architectures to create materials that efficiently convert solar radiation into electricity.« less

  8. Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays.

    PubMed

    Kinder, Erich; Moroz, Pavel; Diederich, Geoffrey; Johnson, Alexa; Kirsanova, Maria; Nemchinov, Alexander; O'Connor, Timothy; Roth, Dan; Zamkov, Mikhail

    2011-12-21

    A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells. © 2011 American Chemical Society

  9. Stereoselective total synthesis of Oxylipin from open chain gluco-configured building block.

    PubMed

    Borkar, Santosh Ramdas; Aidhen, Indrapal Singh

    2017-04-18

    Total synthesis of naturally occurring Oxylipin has been achieved from open chain gluco-configured building block which is readily assembled from inexpensive and commercially available D-(+)-gluconolactone. Grignard reaction and Wittig olefination reactions are key steps for the requisite CC bond formation. Copyright © 2017. Published by Elsevier Ltd.

  10. Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.

    PubMed

    Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M

    2011-10-01

    Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.

  11. Microwave spectroscopy of biomolecular building blocks.

    PubMed

    Alonso, José L; López, Juan C

    2015-01-01

    Microwave spectroscopy, considered as the most definitive gas phase structural probe, is able to distinguish between different conformational structures of a molecule, because they have unique spectroscopic constants and give rise to distinct individual rotational spectra.Previously, application of this technique was limited to molecular specimens possessing appreciable vapor pressures, thus discarding the possibility of studying many other molecules of biological importance, in particular those with high melting points, which had a tendency to undergo thermal reactions, and ultimately degradation, upon heating.Nowadays, the combination of laser ablation with Fourier transform microwave spectroscopy techniques, in supersonic jets, has enabled the gas-phase study of such systems. In this chapter, these techniques, including broadband spectroscopy, as well as results of their application into the study of the conformational panorama and structure of biomolecular building blocks, such as amino acids, nucleic bases, and monosaccharides, are briefly discussed, and with them, the tools for conformational assignation - rotational constants, nuclear quadrupole coupling interaction, and dipole moment.

  12. Determining Possible Building Blocks of the Earth

    NASA Technical Reports Server (NTRS)

    Burbine, T. H.; O'Brien, K. M.

    2003-01-01

    Introduction: One of the fundamental questions concerning the formation of the Earth is what is it made out of. The Earth appears to have condensed out of material from the solar nebula. We sample this "primitive" material in the form of chondritic meteorites. One of the most important constraints on possible building blocks for the Earth is the Earth#s oxygen iso-topic composition. Rocks from the Earth and Moon plot along a line (the terrestrial fractionation line) in diagrams of delta(sup 17)O (% relative to Standard Mean Ocean Water or SMOW) versus delta(sup 18)O (% relative to SMOW). Chondritic meteorites fall above and below this line. Distances from this line are given as Delta(sup 17)O (%) (= delta(sup 17)O - 0.52 x delta(sup 18)O).

  13. Silicon nanocrystal inks, films, and methods

    DOEpatents

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  14. From synthesis to function via iterative assembly of N-methyliminodiacetic acid boronate building blocks.

    PubMed

    Li, Junqi; Grillo, Anthony S; Burke, Martin D

    2015-08-18

    The study and optimization of small molecule function is often impeded by the time-intensive and specialist-dependent process that is typically used to make such compounds. In contrast, general and automated platforms have been developed for making peptides, oligonucleotides, and increasingly oligosaccharides, where synthesis is simplified to iterative applications of the same reactions. Inspired by the way natural products are biosynthesized via the iterative assembly of a defined set of building blocks, we developed a platform for small molecule synthesis involving the iterative coupling of haloboronic acids protected as the corresponding N-methyliminodiacetic acid (MIDA) boronates. Here we summarize our efforts thus far to develop this platform into a generalized and automated approach for small molecule synthesis. We and others have employed this approach to access many polyene-based compounds, including the polyene motifs found in >75% of all polyene natural products. This platform further allowed us to derivatize amphotericin B, the powerful and resistance-evasive but also highly toxic last line of defense in treating systemic fungal infections, and thereby understand its mechanism of action. This synthesis-enabled mechanistic understanding has led us to develop less toxic derivatives currently under evaluation as improved antifungal agents. To access more Csp(3)-containing small molecules, we gained a stereocontrolled entry into chiral, non-racemic α-boryl aldehydes through the discovery of a chiral derivative of MIDA. These α-boryl aldehydes are versatile intermediates for the synthesis of many Csp(3) boronate building blocks that are otherwise difficult to access. In addition, we demonstrated the utility of these types of building blocks in accessing pharmaceutically relevant targets via an iterative Csp(3) cross-coupling cycle. We have further expanded the scope of the platform to include stereochemically complex macrocyclic and polycyclic molecules

  15. Linked supramolecular building blocks for enhanced cluster formation

    DOE PAGES

    McLellan, Ross; Palacios, Maria A.; Beavers, Christine M.; ...

    2015-01-09

    Methylene-bridged calix[4]arenes have emerged as extremely versatile ligand supports in the formation of new polymetallic clusters possessing fascinating magnetic properties. Metal ion binding rules established for this building block allow one to partially rationalise the complex assembly process. The ability to covalently link calix[4]arenes at the methylene bridge provides significantly improved control over the introduction of different metal centres to resulting cluster motifs. Clusters assembled from bis-calix[4]arenes and transition metal ions or 3d-4f combinations display characteristic features of the analogous calix[4]arene supported clusters, thereby demonstrating an enhanced and rational approach towards the targeted synthesis of complex and challenging structures.

  16. Synthesis of orthogonally protected bacterial, rare-sugar and D-glycosamine building blocks.

    PubMed

    Emmadi, Madhu; Kulkarni, Suvarn S

    2013-10-01

    Bacterial glycoconjugates comprise atypical deoxy amino sugars that are not present on the human cell surface, making them good targets for drug discovery and carbohydrate-based vaccine development. Unfortunately, they cannot be isolated with sufficient purity in acceptable amounts, and therefore chemical synthesis is a crucial step toward the development of these products. Here we describe a detailed protocol for the synthesis of orthogonally protected bacterial deoxy amino hexopyranoside (2,4-diacetamido-2,4,6-trideoxyhexose (DATDH), D-bacillosamine, D-fucosamine, and 2-acetamido-4-amino-2,4,6-trideoxy-D-galactose (AAT)), D-glucosamine and D-galactosamine building blocks starting from β-D-thiophenylmannoside. Readily available β-D-thiophenylmannoside was first converted into the corresponding 2,4-diols via deoxygenation or silylation at C6, followed by O3 acylation. The 2,4-diols were converted into 2,4-bis-trifluoromethanesulfonates, which underwent highly regioselective, one-pot, double-serial and double-parallel displacements by azide, phthalimide, acetate and nitrite ions as nucleophiles. Thus, D-rhamnosyl- and D-mannosyl 2,4-diols can be efficiently transformed into various rare sugars and D-galactosamine, respectively, as orthogonally protected thioglycoside building blocks on a gram scale in 1-2 d, in 54-85% overall yields, after a single chromatographic purification. This would otherwise take 1-2 weeks. D-Glucosamine building blocks can be prepared from β-D-thiophenylmannoside in four steps via C2 displacement of triflates by azide in 2 d and in 66-70% overall yields. These procedures have been applied to the synthesis of L-serine-linked trisaccharide of Neisseria meningitidis and a rare disaccharide fragment of the zwitterionic polysaccharide (ZPS) A1 (ZPS A1) of Bacteroides fragilis.

  17. LEGO® bricks as building blocks for centimeter-scale biological environments: the case of plants.

    PubMed

    Lind, Kara R; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil.

  18. QWIP products and building blocks for high performance systems

    NASA Astrophysics Data System (ADS)

    Costard, E.; Bois, Ph.; Marcadet, X.; Nedelcu, A.

    2005-10-01

    Standard GaAs/AlGaAs quantum well infrared photodetectors (QWIP) are coming out from the laboratory. In this paper we demonstrate that production and research cannot be dissociated in order to make the new generation of thermal imagers benefit as fast as possible from the building blocks developed by researchers. Since 2002, the THALES group has been manufacturing sensitive arrays using QWIP technology based on GaAs techniques through THALES Research and Technology Laboratory. This QWIP technology allows the realization of large staring arrays for thermal imagers (TI) working in the IR band III (8-12 μm). A review of the current QWIP products is presented. In the past researchers claimed many advantages of QWIPs. Uniformity was one of these and was the key parameter for the production initiation. Another advantage widely claimed also for QWIPs was the so-called band-gap engineering, allowing the custom design of quantum structure to fulfill the requirements of specific applications like very long wavelength or multispectral detection. In this paper, we present the performances for Middle Wavelength InfraRed (MWIR) detections and demonstrate the ability of QWIP's to cover the two spectral ranges (3-5 μm and 8-20 μm). Last but not least, the versatility of the GaAs processing appeared for QWIPs as an important gift. This assumption was well founded. We give here some results achieved on building blocks for two color QWIP pixels. We also report the expected performances of focal plane arrays that we are currently developing with the CEA-LETI-SLIR.

  19. Engineering cell factories for producing building block chemicals for bio-polymer synthesis.

    PubMed

    Tsuge, Yota; Kawaguchi, Hideo; Sasaki, Kengo; Kondo, Akihiko

    2016-01-21

    Synthetic polymers are widely used in daily life. Due to increasing environmental concerns related to global warming and the depletion of oil reserves, the development of microbial-based fermentation processes for the production of polymer building block chemicals from renewable resources is desirable to replace current petroleum-based methods. To this end, strains that efficiently produce the target chemicals at high yields and productivity are needed. Recent advances in metabolic engineering have enabled the biosynthesis of polymer compounds at high yield and productivities by governing the carbon flux towards the target chemicals. Using these methods, microbial strains have been engineered to produce monomer chemicals for replacing traditional petroleum-derived aliphatic polymers. These developments also raise the possibility of microbial production of aromatic chemicals for synthesizing high-performance polymers with desirable properties, such as ultraviolet absorbance, high thermal resistance, and mechanical strength. In the present review, we summarize recent progress in metabolic engineering approaches to optimize microbial strains for producing building blocks to synthesize aliphatic and high-performance aromatic polymers.

  20. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  1. PBF Reactor Building (PER620). After lowering reactor vessel onto blocks, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620). After lowering reactor vessel onto blocks, it is rolled on logs into PBF. Metal framework under vessel is handling device. Various penetrations in reactor bottom were for instrumentation, poison injection, drains. Large one, below center "manhole" was for primary coolant. Photographer: Larry Page. Date: February 13, 1970. INEEL negative no. 70-736 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. Nanocrystals-Related Synthesis, Assembly, and Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Bo; Yu, Williams; Seo, Jaetae

    2012-01-01

    During the past decades, nanocrystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nanomaterials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nanomaterials is still an important goal in modern materials physics and chemistry. Especially, the world s demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate changemore » due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nanocrystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nanomaterials to provide the authors with a platform and readers with the latest achievements of nanocrystals-related synthesis, assembly, and energy applications.« less

  3. Use of CdS quantum dot-functionalized cellulose nanocrystal films for anti-counterfeiting applications.

    PubMed

    Chen, L; Lai, C; Marchewka, R; Berry, R M; Tam, K C

    2016-07-21

    Structural colors and photoluminescence have been widely used for anti-counterfeiting and security applications. We report for the first time the use of CdS quantum dot (QD)-functionalized cellulose nanocrystals (CNCs) as building blocks to fabricate nanothin films via layer-by-layer (LBL) self-assembly for anti-counterfeiting applications. Both negatively- and positively-charged CNC/QD nanohybrids with a high colloidal stability and a narrow particle size distribution were prepared. The controllable LBL coating process was characterized by scanning electron microscopy and ellipsometry. The rigid structure of CNCs leads to nanoporous structured films on poly(ethylene terephthalate) (PET) substrates with high transmittance (above 70%) over the entire range of visible light and also resulted in increased hydrophilicity (contact angles of ∼40 degrees). Nanothin films on PET substrates showed good flexibility and enhanced stability in both water and ethanol. The modified PET films with structural colors from thin-film interference and photoluminescence from QDs can be used in anti-counterfeiting applications.

  4. Dual-mode MOS SOI nanoscale transistor serving as a building block for optical communication between blocks

    NASA Astrophysics Data System (ADS)

    Bendayan, Michael; Sabo, Roi; Zolberg, Roee; Mandelbaum, Yaakov; Chelly, Avraham; Karsenty, Avi

    2017-02-01

    We developed a new type of silicon MOSFET Quantum Well transistor, coupling both electronic and optical properties which should overcome the indirect silicon bandgap constraint, and serve as a future light emitting device in the range 0.8-2μm, as part of a new building block in integrated circuits allowing ultra-high speed processors. Such Quantum Well structure enables discrete energy levels for light recombination. Model and simulations of both optical and electric properties are presented pointing out the influence of the channel thickness and the drain voltage on the optical emission spectrum.

  5. LEGO® Bricks as Building Blocks for Centimeter-Scale Biological Environments: The Case of Plants

    PubMed Central

    Lind, Kara R.; Sizmur, Tom; Benomar, Saida; Miller, Anthony; Cademartiri, Ludovico

    2014-01-01

    LEGO bricks are commercially available interlocking pieces of plastic that are conventionally used as toys. We describe their use to build engineered environments for cm-scale biological systems, in particular plant roots. Specifically, we take advantage of the unique modularity of these building blocks to create inexpensive, transparent, reconfigurable, and highly scalable environments for plant growth in which structural obstacles and chemical gradients can be precisely engineered to mimic soil. PMID:24963716

  6. Mussel-inspired nano-building block assemblies for mimicking extracellular matrix microenvironments with multiple functions.

    PubMed

    Wang, Zhenming; Jia, Zhanrong; Jiang, Yanan; Li, Pengfei; Han, Lu; Lu, Xiong; Ren, Fuzeng; Wang, Kefeng; Yuan, Huiping

    2017-08-03

    The assembly of nano-building blocks is an effective way to produce artificial extracellular matrix microenvironments with hierarchical micro/nano structures. However, it is hard to assemble different types of nano-building blocks, to form composite coatings with multiple functions, by traditional layer-by-layer (LbL) self-assembly methods. Inspired by the mussel adhesion mechanism, we developed polydopamine (PDA)-decorated bovine serum albumin microspheres (BSA-MS) and nano-hydroxyapatite (nano-HA), and assembled them to form bioactive coatings with micro/nano structures encapsulating bone morphogenetic protein-2 (BMP-2). First, PDA-decorated nano-HA (nano-pHA) was obtained by oxidative polymerization of dopamine on nano-HA. Second, BMP-2-encapsulated BSA microspheres were prepared through desolvation, and then were also decorated by PDA (pBSA-MS). Finally, the nano-pHA and pBSA-MS were assembled using the adhesive properties of PDA. Bone marrow stromal cell cultures and in vivo implantation, showed that the pHA/pBSA (BMP-2) coatings can promote cell adhesion, proliferation, and benefited for osteoinductivity. PDA decoration was also applied to assemble various functional nanoparticles, such as nano-HA, polystyrene, and Fe 3 O 4 nanoparticles. In summary, this study provides a novel strategy for the assembly of biofunctional nano-building blocks, which surpasses traditional LbL self-assembly of polyelectrolytes, and can find broad applications in bioactive agents delivery or multi-functional coatings.

  7. Silicon nanocrystals as handy biomarkers

    NASA Astrophysics Data System (ADS)

    Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Futamura, Yasuhiro; Tilley, Richard; Yamamoto, Kenji

    2007-02-01

    Quantum dots (QDs) have brighter and longer fluorescence than organic dyes. Therefore, QDs can be applied to biotechnology, and have capability to be applied to medical technology. Currently, among the several types of QDs, CdSe with a ZnS shell is one of the most popular QDs to be used in biological experiments. However, when the CdSe QDs were applied to clinical technology, potential toxicological problems due to CdSe core should be considered. To eliminate the problem, silicon nanocrystals, which have the potential of biocompatibility, could be a candidate of alternate probes. Silicon nanocrystals have been synthesized using several techniques such as aerosol, electrochemical etching, laser pyrolysis, plasma deposition, and colloids. Recently, the silicon nanocrystals were reported to be synthesized in inverse micelles and also stabilized with 1-heptene or allylamine capping. Blue fluorescence of the nanocrystals was observed when excited with a UV light. The nanocrystals covered with 1-heptene are hydrophobic, whereas the ones covered with allylamine are hydrophilic. To test the stability in cytosol, the water-soluble nanocrystals covered with allylamine were examined with a Hela cell incorporation experiment. Bright blue fluorescence of the nanocrystals was detected in the cytosol when excited with a UV light, implying that the nanocrystals were able to be applied to biological imaging. In order to expand the application range, we synthesized and compared a series of silicon nanocrystals, which have variable surface modification, such as alkyl group, alcohol group, and odorant molecules. This study will provide a wider range of optoelectronic applications and bioimaging technology.

  8. Real World of Industrial Chemistry: Ethylene: The Organic Chemical Industry's Most Important Building Block.

    ERIC Educational Resources Information Center

    Fernelius, W. Conrad, Ed.; And Others

    1979-01-01

    The value of ethylene, as the organic chemical industry's most important building block, is discussed. The discussion focuses on the source of ethylene, its various forms and functions, and the ways in which the forms are made. (SA)

  9. Trainer's Guide to Building Blocks for Teaching Preschoolers with Special Needs [CD-ROM

    ERIC Educational Resources Information Center

    Joseph, Gail E.; Sandall, Susan R.; Schwartz, Ilene S.

    2010-01-01

    An essential teaching companion for instructors of pre-K educators, this convenient CD-ROM is a vivid blueprint for effective inclusive education using the popular "Building Blocks" approach. Following the structure of the bestselling textbook, this comprehensive guide helps teacher educators provide effective instruction on the three types of…

  10. Effects of a Preschool Mathematics Curriculum: Summative Research on the "Building Blocks" Project

    ERIC Educational Resources Information Center

    Clements, Douglas H.; Sarama, Julie

    2007-01-01

    This study evaluated the efficacy of a preschool mathematics program based on a comprehensive model of developing research-based software and print curricula. Building Blocks, funded by the National Science Foundation, is a curriculum development project focused on creating research-based, technology-enhanced mathematics materials for pre-K…

  11. Multifunctional Nanoparticles Self-Assembled from Small Organic Building Blocks for Biomedicine.

    PubMed

    Xing, Pengyao; Zhao, Yanli

    2016-09-01

    Supramolecular self-assembly shows significant potential to construct responsive materials. By tailoring the structural parameters of organic building blocks, nanosystems can be fabricated, whose performance in catalysis, energy storage and conversion, and biomedicine has been explored. Since small organic building blocks are structurally simple, easily modified, and reproducible, they are frequently employed in supramolecular self-assembly and materials science. The dynamic and adaptive nature of self-assembled nanoarchitectures affords an enhanced sensitivity to the changes in environmental conditions, favoring their applications in controllable drug release and bioimaging. Here, recent significant research advancements of small-organic-molecule self-assembled nanoarchitectures toward biomedical applications are highlighted. Functionalized assemblies, mainly including vesicles, nanoparticles, and micelles are categorized according to their topological morphologies and functions. These nanoarchitectures with different topologies possess distinguishing advantages in biological applications, well incarnating the structure-property relationship. By presenting some important discoveries, three domains of these nanoarchitectures in biomedical research are covered, including biosensors, bioimaging, and controlled release/therapy. The strategies regarding how to design and characterize organic assemblies to exhibit biomedical applications are also discussed. Up-to-date research developments in the field are provided and research challenges to be overcome in future studies are revealed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Switchable Ni–Mn–Ga Heusler nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayak, Alexey T.; Beckman, Scott P.; Tiago, Murilo L.

    2008-10-02

    Here, we examined bulk-like Heusler nanocrystals using real-space pseudopotentials constructed within density functional theory. The nanocrystals were made of various compositions of Ni-Mn-Ga in the size range from 15 up to 169 atoms. Among these compositions, the closest to the stoichiometric Ni 2MnGa were found to be the most stable. The Ni-based nanocrystals retained a tendency for tetragonal distortion, which is inherited from the bulk properties. Surface effects suppress the tetragonal structure in the smaller Ni-based nanocrystals, while bigger nanocrystals develop a bulk-like tetragonal distortion. We suggest the possibility of switchable Ni-Mn-Ga nanocrystals, which could be utilized for magnetic nano-shape-memorymore » applications.« less

  13. Molecular Building Block-Based Electronic Charges for High-Throughput Screening of Metal-Organic Frameworks for Adsorption Applications.

    PubMed

    Argueta, Edwin; Shaji, Jeena; Gopalan, Arun; Liao, Peilin; Snurr, Randall Q; Gómez-Gualdrón, Diego A

    2018-01-09

    Metal-organic frameworks (MOFs) are porous crystalline materials with attractive properties for gas separation and storage. Their remarkable tunability makes it possible to create millions of MOF variations but creates the need for fast material screening to identify promising structures. Computational high-throughput screening (HTS) is a possible solution, but its usefulness is tied to accurate predictions of MOF adsorption properties. Accurate adsorption simulations often require an accurate description of electrostatic interactions, which depend on the electronic charges of the MOF atoms. HTS-compatible methods to assign charges to MOF atoms need to accurately reproduce electrostatic potentials (ESPs) and be computationally affordable, but current methods present an unsatisfactory trade-off between computational cost and accuracy. We illustrate a method to assign charges to MOF atoms based on ab initio calculations on MOF molecular building blocks. A library of building blocks with built-in charges is thus created and used by an automated MOF construction code to create hundreds of MOFs with charges "inherited" from the constituent building blocks. The molecular building block-based (MBBB) charges are similar to REPEAT charges-which are charges that reproduce ESPs obtained from ab initio calculations on crystallographic unit cells of nanoporous crystals-and thus similar predictions of adsorption loadings, heats of adsorption, and Henry's constants are obtained with either method. The presented results indicate that the MBBB method to assign charges to MOF atoms is suitable for use in computational high-throughput screening of MOFs for applications that involve adsorption of molecules such as carbon dioxide.

  14. Charge Transport in Semiconductor Nanocrystal Solids

    NASA Astrophysics Data System (ADS)

    Talapin, Dmitri; Shevchenko, Elena; Lee, Jong Soo; Urban, Jeffrey; Mitzi, David; Murray, Christopher

    2007-03-01

    Self-assembly of chemically-synthesized nanocrystals can yield complex long-range ordered structures which can be used as model systems for studying transport phenomena in low-dimensional materials [1]. Treatment of close-packed PbSe nanocrystal arrays with hydrazine enhanced exchange coupling between the nanocrystals and improved conductance by more than ten orders of magnitude compared to native nanocrystal films [2]. The conductivity of PbSe nanocrystal solids can be switched between n- and p-type transports by controlling the saturation of electronic states at nanocrystal surfaces. Nanocrystal arrays form the n- and p-channels of field-effect transistors with electron and hole mobilities of 2.5 cm^2V-1s-1 and 0.3 cm^2V-1s-1, respectively, and current modulation Ion/Ioff˜10^3-10^4. The field-effect mobility in PbSe nanocrystal arrays is higher than the mobility of organic transistors while the easy switch between n- and p-transport allows realization of complimentary circuits and p-n junctions for nanocrystal-based solar cells and thermoelectric devices. [1] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray. Nature 439, 55 (2006). [2] D. V. Talapin, C. B. Murray. Science 310, 86 (2005).

  15. Key Building Blocks via Enzyme-Mediated Synthesis

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Pietruszka, Jörg

    Biocatalytic approaches to valuable building blocks in organic synthesis have emerged as an important tool in the last few years. While first applications were mainly based on hydrolases, other enzyme classes such as oxidoreductases or lyases moved into the focus of research. Nowadays, a vast number of biotransformations can be found in the chemical and pharmaceutical industries delivering fine chemicals or drugs. The mild reaction conditions, high stereo-, regio-, and chemoselectivities, and the often shortened reaction pathways lead to economical and ecological advantages of enzymatic conversions. Due to the enormous number of enzyme-mediated syntheses, the present chapter is not meant to be a complete review, but to deliver comprehensive insights into well established enzymatic systems and recent advances in the application of enzymes in natural product synthesis. Furthermore, it is focused on the most frequently used enzymes or enzyme classes not covered elsewhere in the present volume.

  16. Automated electrochemical assembly of the protected potential TMG-chitotriomycin precursor based on rational optimization of the carbohydrate building block.

    PubMed

    Nokami, Toshiki; Isoda, Yuta; Sasaki, Norihiko; Takaiso, Aki; Hayase, Shuichi; Itoh, Toshiyuki; Hayashi, Ryutaro; Shimizu, Akihiro; Yoshida, Jun-ichi

    2015-03-20

    The anomeric arylthio group and the hydroxyl-protecting groups of thioglycosides were optimized to construct carbohydrate building blocks for automated electrochemical solution-phase synthesis of oligoglucosamines having 1,4-β-glycosidic linkages. The optimization study included density functional theory calculations, measurements of the oxidation potentials, and the trial synthesis of the chitotriose trisaccharide. The automated synthesis of the protected potential N,N,N-trimethyl-d-glucosaminylchitotriomycin precursor was accomplished by using the optimized building block.

  17. Nanocrystal synthesis

    DOEpatents

    Tisdale, William; Prins, Ferry; Weidman, Mark; Beck, Megan

    2016-11-01

    A method of preparing monodisperse MX semiconductor nanocrystals can include contacting an M-containing precursor with an X donor to form a mixture, where the molar ratio between the M containing precursor and the X donor is large. Alternatively, if additional X donor is added during the reaction, a smaller ratio between the M containing precursor and the X donor can be used to prepare monodisperse MX semiconductor nanocrystals.

  18. Biomolecular Assembly of Gold Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused inmore » three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.« less

  19. Rapid and annealing-free self-assembly of DNA building blocks for 3D hydrogel chaperoned by cationic comb-type copolymers.

    PubMed

    Zhang, Zheng; Wu, Yuyang; Yu, Feng; Niu, Chaoqun; Du, Zhi; Chen, Yong; Du, Jie

    2017-10-01

    The construction and self-assembly of DNA building blocks are the foundation of bottom-up development of three-dimensional DNA nanostructures or hydrogels. However, most self-assembly from DNA components is impeded by the mishybridized intermediates or the thermodynamic instability. To enable rapid production of complicated DNA objects with high yields no need for annealing process, herein different DNA building blocks (Y-shaped, L- and L'-shaped units) were assembled in presence of a cationic comb-type copolymer, poly (L-lysine)-graft-dextran (PLL-g-Dex), under physiological conditions. The results demonstrated that PLL-g-Dex not only significantly promoted the self-assembly of DNA blocks with high efficiency, but also stabilized the assembled multi-level structures especially for promoting the complicated 3D DNA hydrogel formation. This study develops a novel strategy for rapid and high-yield production of DNA hydrogel even derived from instable building blocks at relatively low DNA concentrations, which would endow DNA nanotechnology for more practical applications.

  20. Cellulose nanocrystals the next big nano-thing?

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladar, Andras; Dagata, John; Farkas, Natalia; Ming, Bin; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2008-08-01

    Biomass surrounds us from the smallest alga to the largest redwood tree. Even the largest trees owe their strength to a newly-appreciated class of nanomaterials known as cellulose nanocrystals (CNC). Cellulose, the world's most abundant natural, renewable, biodegradable polymer, occurs as whisker like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. Therefore, the basic raw materials for a future of new nanomaterials breakthroughs already abound in the environment and are available to be utilized in an array of future materials once the manufacturing processes and nanometrology are fully developed. This presentation will discuss some of the instrumentation, metrology and standards issues associated with nanomanufacturing of cellulose nanocrystals. The use of lignocellulosic fibers derived from sustainable, annually renewable resources as a reinforcing phase in polymeric matrix composites provides positive environmental benefits with respect to ultimate disposability and raw material use. Today we lack the essential metrology infrastructure that would enable the manufacture of nanotechnology-based products based on CNCs (or other new nanomaterial) to significantly impact the U.S. economy. The basic processes common to manufacturing - qualification of raw materials, continuous synthesis methods, process monitoring and control, in-line and off-line characterization of product for quality control purposes, validation by standard reference materials - are not generally in place for nanotechnology based products, and thus are barriers to innovation. One advantage presented by the study of CNCs is that, unlike other nanomaterials, at least, cellulose nanocrystal manufacturing is already a sustainable and viable bulk process. Literally tons of cellulose nanocrystals can be generated each day, producing other viable byproducts such as glucose (for alternative fuel) and gypsum (for buildings).There is an immediate need for the

  1. Tuning surface grafting density of CeO2 nanocrystals with near- and supercritical solvent characteristics.

    PubMed

    Giroire, B; Slostowski, C; Marre, S; Aymonier, C; Aida, T; Hojo, D; Aoki, N; Takami, S; Adschiri, T

    2016-01-21

    In this work, the solvent effect on the synthesis of CeO2 nanocrystals synthesized in near- and supercritical alcohols is discussed. The materials prepared displayed a unique morphology of small nanocrystals (<10 nm) aggregated into larger nanospheres (∼100-200 nm). In such syntheses, alcohol molecules directly interact with the nanocrystal surface through alkoxide and carboxylate bondings. The grafting density was quantified from the weight loss measured using thermogravimetric analysis. A direct correlation between the grafting density and the alcohol chain length can be established. It was demonstrated that the shorter the alcohol chain length (i.e. methanol), the higher the surface coverage is. This trend is independent of the synthesis mode (batch or continuous). Additionally, an influence of the grafting density on the resulting nanocrystal size was established. It is suggested that the surface coverage has a high influence on the early stages of the nucleation and growth. Indeed, when high surface coverages are reached, all surface active sites are blocked, limiting the growth step and therefore leading to smaller particles. This effect was noticed with the materials prepared in the continuous mode where shorter reaction time was performed.

  2. Electron transfer between colloidal ZnO nanocrystals.

    PubMed

    Hayoun, Rebecca; Whitaker, Kelly M; Gamelin, Daniel R; Mayer, James M

    2011-03-30

    Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.

  3. Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.

    We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less

  4. Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO 2

    DOE PAGES

    Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.; ...

    2017-08-28

    We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less

  5. Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis

    PubMed Central

    Alsharif, Naif H; Berger, Christine E M; Varanasi, Satya S; Chao, Yimin; Horrocks, Benjamin R; Datta, Harish K

    2009-01-01

    Nanocrystals of various inorganic materials are being considered for application in the life sciences as fluorescent labels and for such therapeutic applications as drug delivery or targeted cell destruction. The potential applications of the nanoparticles are critically compromised due to the well-documented toxicity and lack of understanding about the mechanisms involved in the intracellular internalization. Here intracellular internalization and toxicity of alkyl-capped silicon nanocrystals in human neoplastic and normal primary cells is reported. The capped nanocrystals lack cytotoxicity, and there is a marked difference in the rate and extent of intracellular accumulation of the nanoparticles between human cancerous and non-cancerous primary cells, the rate and extent being higher in the malignant cells compared to normal human primary cells. The exposure of the cells to the alkyl-capped nanocrystals demonstrates no evidence of in vitro cytotoxicity when assessed by cell morphology, apoptosis, and cell viability assays. The internalization of the nanocrystals by Hela and SW1353 cells is almost completely blocked by the pinocytosis inhibitors filipin, cytochalasin B, and actinomycin D. The internalization process is not associated with any surface change in the nanoparticles, as their luminescence spectrum is unaltered upon transport into the cytosol. The observed dramatic difference in the rate and extent of internalization of the nanocrystals between malignant and non-malignant cells therefore offers potential application in the management of human neoplastic conditions. PMID:19058285

  6. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or

  7. Building Trades. Block II. Foundations.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Twelve informational lessons and eleven manipulative lessons are provided on foundations as applied to the building trades. Informational lessons cover land measurements; blueprint reading; level instruments; building and site planning; building site preparation; laying out building lines; soil preparation and special evacuation; concrete forms;…

  8. Biomimetic, Strong, Tough, and Self-Healing Composites Using Universal Sealant-Loaded, Porous Building Blocks.

    PubMed

    Hwang, Sung Hoon; Miller, Joseph B; Shahsavari, Rouzbeh

    2017-10-25

    Many natural materials, such as nacre and dentin, exhibit multifunctional mechanical properties via structural interplay between compliant and stiff constituents arranged in a particular architecture. Herein, we present, for the first time, the bottom-up synthesis and design of strong, tough, and self-healing composite using simple but universal spherical building blocks. Our composite system is composed of calcium silicate porous nanoparticles with unprecedented monodispersity over particle size, particle shape, and pore size, which facilitate effective loading and unloading with organic sealants, resulting in 258% and 307% increases in the indentation hardness and elastic modulus of the compacted composite. Furthermore, heating the damaged composite triggers the controlled release of the nanoconfined sealant into the surrounding area, enabling moderate recovery in strength and toughness. This work paves the path towards fabricating a novel class of biomimetic composites using low-cost spherical building blocks, potentially impacting bone-tissue engineering, insulation, refractory and constructions materials, and ceramic matrix composites.

  9. α-Haloaldehydes: versatile building blocks for natural product synthesis.

    PubMed

    Britton, Robert; Kang, Baldip

    2013-02-01

    The diastereoselective addition of organometallic reagents to α-chloroaldehydes was first reported in 1959 and occupies a historically significant role as the prototypical reaction for Cornforth's model of stereoinduction. Despite clear synthetic potential for these reagents, difficulties associated with producing enantiomerically enriched α-haloaldehydes limited their use in natural product synthesis through the latter half of the 20th century. In recent years, however, a variety of robust, organocatalytic processes have been reported that now provide direct access to optically enriched α-haloaldehydes and have motivated renewed interest in their use as building blocks for natural product synthesis. This Highlight summarizes the methods available for the enantioselective preparation of α-haloaldehydes and their stereoselective conversion into natural products.

  10. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block

    NASA Astrophysics Data System (ADS)

    Bayeh, Liela; Le, Phong Q.; Tambar, Uttam K.

    2017-07-01

    The stereoselective oxidation of hydrocarbons is one of the most notable advances in synthetic chemistry over the past fifty years. Inspired by nature, enantioselective dihydroxylations, epoxidations and other oxidations of unsaturated hydrocarbons have been developed. More recently, the catalytic enantioselective allylic carbon-hydrogen oxidation of alkenes has streamlined the production of pharmaceuticals, natural products, fine chemicals and other functional materials. Allylic functionalization provides a direct path to chiral building blocks with a newly formed stereocentre from petrochemical feedstocks while preserving the olefin functionality as a handle for further chemical elaboration. Various metal-based catalysts have been discovered for the enantioselective allylic carbon-hydrogen oxidation of simple alkenes with cyclic or terminal double bonds. However, a general and selective allylic oxidation using the more common internal alkenes remains elusive. Here we report the enantioselective, regioselective and E/Z-selective allylic oxidation of unactivated internal alkenes via a catalytic hetero-ene reaction with a chalcogen-based oxidant. Our method enables non-symmetric internal alkenes to be selectively converted into allylic functionalized products with high stereoselectivity and regioselectivity. Stereospecific transformations of the resulting multifunctional chiral building blocks highlight the potential for rapidly converting internal alkenes into a broad range of enantioenriched structures that can be used in the synthesis of complex target molecules.

  11. Microbial production of building block chemicals and polymers.

    PubMed

    Lee, Jeong Wook; Kim, Hyun Uk; Choi, Sol; Yi, Jongho; Lee, Sang Yup

    2011-12-01

    Owing to our increasing concerns on the environment, climate change, and limited natural resources, there has recently been considerable effort exerted to produce chemicals and materials from renewable biomass. Polymers we use everyday can also be produced either by direct fermentation or by polymerization of monomers that are produced by fermentation. Recent advances in metabolic engineering combined with systems biology and synthetic biology are allowing us to more systematically develop superior strains and bioprocesses for the efficient production of polymers and monomers. Here, we review recent trends in microbial production of building block chemicals that can be subsequently used for the synthesis of polymers. Also, recent successful cases of direct one-step production of polymers are reviewed. General strategies for the production of natural and unnatural platform chemicals are described together with representative examples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  13. Advances in metabolic pathway and strain engineering paving the way for sustainable production of chemical building blocks.

    PubMed

    Chen, Yun; Nielsen, Jens

    2013-12-01

    Bio-based production of chemical building blocks from renewable resources is an attractive alternative to petroleum-based platform chemicals. Metabolic pathway and strain engineering is the key element in constructing robust microbial chemical factories within the constraints of cost effective production. Here we discuss how the development of computational algorithms, novel modules and methods, omics-based techniques combined with modeling refinement are enabling reduction in development time and thus advance the field of industrial biotechnology. We further discuss how recent technological developments contribute to the development of novel cell factories for the production of the building block chemicals: adipic acid, succinic acid and 3-hydroxypropionic acid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Numerical model of a single nanocrystal devoted to the study of disordered nanocrystal floating gates of new flash memories

    NASA Astrophysics Data System (ADS)

    Leroy, Yann; Armeanu, Dumitru; Cordan, Anne-Sophie

    2011-05-01

    The improvement of our model concerning a single nanocrystal that belongs to a nanocrystal floating gate of a flash memory is presented. In order to extend the gate voltage range applicability of the model, the 3D continuum of states of either metallic or semiconducting electrodes is discretized into 2D subbands. Such an approach gives precise information about the mechanisms behind the charging or release processes of the nanocrystal. Then, the self-energy and screening effects of an electron within the nanocrystal are evaluated and introduced in the model. This enables a better determination of the operating point of the nanocrystal memory. The impact of those improvements on the charging or release time of the nanocrystal is discussed.

  15. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  16. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  17. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  18. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G [Boston, MA; Sundar, Vikram C [New York, NY

    2008-02-05

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

  19. Quantum confinement of nanocrystals within amorphous matrices

    NASA Astrophysics Data System (ADS)

    Lusk, Mark T.; Collins, Reuben T.; Nourbakhsh, Zahra; Akbarzadeh, Hadi

    2014-02-01

    Nanocrystals encapsulated within an amorphous matrix are computationally analyzed to quantify the degree to which the matrix modifies the nature of their quantum-confinement power—i.e., the relationship between nanocrystal size and the gap between valence- and conduction-band edges. A special geometry allows exactly the same amorphous matrix to be applied to nanocrystals of increasing size to precisely quantify changes in confinement without the noise typically associated with encapsulating structures that are different for each nanocrystal. The results both explain and quantify the degree to which amorphous matrices redshift the character of quantum confinement. The character of this confinement depends on both the type of encapsulating material and the separation distance between the nanocrystals within it. Surprisingly, the analysis also identifies a critical nanocrystal threshold below which quantum confinement is not possible—a feature unique to amorphous encapsulation. Although applied to silicon nanocrystals within an amorphous silicon matrix, the methodology can be used to accurately analyze the confinement softening of other amorphous systems as well.

  20. Synthesis of ligand-stabilized metal oxide nanocrystals and epitaxial core/shell nanocrystals via a lower-temperature esterification process.

    PubMed

    Ito, Daisuke; Yokoyama, Shun; Zaikova, Tatiana; Masuko, Keiichiro; Hutchison, James E

    2014-01-28

    The properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors. Slow injection (0.2 mL/min) of an oleic acid solution of the metal oleate complex into an oleyl alcohol solvent at 230 °C results in a rapid esterification reaction and the production of metal oxide nanocrystals. The approach produces high yields of crystalline, monodisperse metal oxide nanoparticles containing manganese, iron, cobalt, zinc, and indium within 20 min. Synthesis of tin-doped indium oxide (ITO) can be accomplished with good control of the tin doping levels. Finally, the method makes it possible to perform epitaxial growth of shells onto nanocrystal cores to produce core/shell nanocrystals.

  1. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  2. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  3. Colloidal inorganic nanocrystals: Nucleation, growth and biological applications

    NASA Astrophysics Data System (ADS)

    Lynch, Jared James

    Colloidal inorganic nanocrystals are a class of material whose size ranges from a few nanometers to a hundred nanometers in dimension. These nanocrystals have size dependent properties that differ significantly from the bulk material counterparts. Due to their unique physical properties colloidal inorganic nanocrystals have several promising applications in a diverse range of areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents the study of the formation of iron oxide nanocrystals under the influence of solvent and Ar gas bubbles, the phase transfer of metal oxide nanocrystals into water using inorganic ions, and the doping of semiconductor CdS/ZnS core/shell nanocrystals with copper and silver ions. First, the formation of iron oxide nanocrystals is investigated in the presence of boiling solvent or Ar bubbles. Using a non-injection based synthesis method, the thermal decomposition of iron oleate was studied under various reaction conditions, and the role of the bubbles on the nucleation and growth of iron oxide nanocrystals was determined. Kinetics studies were used to elucidate how latent heat transfer from the bubbles allows for "active monomers" to form preferentially from exothermic reactions taking place during nucleation. General insights into colloidal inorganic nanocrystal formation are discussed. Second, a non-injection based synthesis for CdS/ZnS core/shell nanocrystals is used to make high quality semiconductor particles which are intentionally doped with Cu or Ag ions. The Ag ions effect on the optical properties of the CdS/ZnS nanocrystals is investigated. The absorption and fluorescence of the samples is measured as a function of time and temperature. Proposed mechanisms for the observations are given and thoroughly discussed. Comparisons between previous results for Cu doped CdS/ZnS nanocrystals are also made to further understand how doping of semiconductor

  4. Self-assembly of water-soluble nanocrystals

    DOEpatents

    Fan, Hongyou [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM; Lopez, Gabriel P [Albuquerque, NM

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  5. Theoretical and technological building blocks for an innovation accelerator

    NASA Astrophysics Data System (ADS)

    van Harmelen, F.; Kampis, G.; Börner, K.; van den Besselaar, P.; Schultes, E.; Goble, C.; Groth, P.; Mons, B.; Anderson, S.; Decker, S.; Hayes, C.; Buecheler, T.; Helbing, D.

    2012-11-01

    Modern science is a main driver of technological innovation. The efficiency of the scientific system is of key importance to ensure the competitiveness of a nation or region. However, the scientific system that we use today was devised centuries ago and is inadequate for our current ICT-based society: the peer review system encourages conservatism, journal publications are monolithic and slow, data is often not available to other scientists, and the independent validation of results is limited. The resulting scientific process is hence slow and sloppy. Building on the Innovation Accelerator paper by Helbing and Balietti [1], this paper takes the initial global vision and reviews the theoretical and technological building blocks that can be used for implementing an innovation (in first place: science) accelerator platform driven by re-imagining the science system. The envisioned platform would rest on four pillars: (i) Redesign the incentive scheme to reduce behavior such as conservatism, herding and hyping; (ii) Advance scientific publications by breaking up the monolithic paper unit and introducing other building blocks such as data, tools, experiment workflows, resources; (iii) Use machine readable semantics for publications, debate structures, provenance etc. in order to include the computer as a partner in the scientific process, and (iv) Build an online platform for collaboration, including a network of trust and reputation among the different types of stakeholders in the scientific system: scientists, educators, funding agencies, policy makers, students and industrial innovators among others. Any such improvements to the scientific system must support the entire scientific process (unlike current tools that chop up the scientific process into disconnected pieces), must facilitate and encourage collaboration and interdisciplinarity (again unlike current tools), must facilitate the inclusion of intelligent computing in the scientific process, must facilitate

  6. "Looking through the Eyes of the Learner": Implementation of Building Blocks for Student Engagement

    ERIC Educational Resources Information Center

    D'Annolfo, Suzanne Cordier; Schumann, Jeffrey A.

    2012-01-01

    The Building Blocks for Student Engagement (BBSE) protocol was designed to provide a consistent framework of common language and a visual point of reference shared among students, teachers and school leaders to keep a laser-like focus on the instructional core and student engagement. Grounded in brain-based learning and implemented in urban,…

  7. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Nanocrystal thin film fabrication methods and apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  9. RNA and RNP as Building Blocks for Nanotechnology and Synthetic Biology.

    PubMed

    Ohno, Hirohisa; Saito, Hirohide

    2016-01-01

    Recent technologies that aimed to elucidate cellular function have revealed essential roles for RNA molecules in living systems. Our knowledge concerning functional and structural information of naturally occurring RNA and RNA-protein (RNP) complexes is increasing rapidly. RNA and RNP interaction motifs are structural units that function as building blocks to constitute variety of complex structures. RNA-central synthetic biology and nanotechnology are constructive approaches that employ the accumulated information and build synthetic RNA (RNP)-based circuits and nanostructures. Here, we describe how to design and construct synthetic RNA (RNP)-based devices and structures at the nanometer-scale for biological and future therapeutic applications. RNA/RNP nanostructures can also be utilized as the molecular scaffold to control the localization or interactions of target molecule(s). Moreover, RNA motifs recognized by RNA-binding proteins can be applied to make protein-responsive translational "switches" that can turn gene expression "on" or "off" depending on the intracellular environment. This "synthetic RNA and RNP world" will expand tools for nanotechnology and synthetic biology. In addition, these reconstructive approaches would lead to a greater understanding of building principle in naturally occurring RNA/RNP molecules and systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Culture's building blocks: investigating cultural evolution in a LEGO construction task.

    PubMed

    McGraw, John J; Wallot, Sebastian; Mitkidis, Panagiotis; Roepstorff, Andreas

    2014-01-01

    ONE OF THE MOST ESSENTIAL BUT THEORETICALLY VEXING ISSUES REGARDING THE NOTION OF CULTURE IS THAT OF CULTURAL EVOLUTION AND TRANSMISSION: how a group's accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of "culture" into its component "building blocks." In this paper, we present a model for scientifically investigating cultural processes by analyzing the ways people develop conventions in a series of LEGO construction tasks. The data revealed a surprising pattern in the selection of building bricks as well as features of car design across consecutive building sessions. Our findings support a novel methodology for studying the development and transmission of culture through the microcosm of interactive LEGO design and assembly.

  11. Optical properties and ensemble characteristics of size purified Silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Bradley

    molecular weight, phase separation can be supressed; we use this to build a prototype nanocomposite printing device. Finally, the nanocrystals are PEGylated and introduced into an aqueous biological environment to demonstrate their potential for use in biological labelling and sensing devices. The development of superlattice structures from monodisperse SiNC fractions and their use in solid-state lighting and solar cell applications are also explored.

  12. Nanocrystals for electronics.

    PubMed

    Panthani, Matthew G; Korgel, Brian A

    2012-01-01

    Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.

  13. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  14. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  15. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  16. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  17. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  18. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  19. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  20. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2017-06-06

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  1. Charge transport in metal oxide nanocrystal-based materials

    NASA Astrophysics Data System (ADS)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  2. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  3. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    2005-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations.

  4. The Development of Logico-Mathematical Knowledge in a Block-Building Activity at Ages 1-4

    ERIC Educational Resources Information Center

    Kamii, Constance; Miyakawa, Yoko; Kato, Yasuhiko

    2004-01-01

    To study the developmental interrelationships among various aspects of logico-mathematical knowledge, 80 one- to 4-year-olds were individually asked to build "something tall" with 20 blocks. Percentages of new and significant behaviors increased with age and were analyzed in terms of the development of logico-mathematical relationships. It was…

  5. Development Considerations for Nanocrystal Drug Products.

    PubMed

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  6. Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F-POSS): Building Blocks for Low Surface Energy Materials

    DTIC Science & Technology

    2010-10-21

    Technical Paper 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Functional Perfluoroalkyl Polyhedral Oligomeric Silsesquioxane (F...long chain fluorinated alkyl groups ranging from 6-12 carbon atoms in length. Herein, a disilanol perfluoroalkyl polyhedral oligomeric...FUNCTIONAL PERFLUOROALKYL POLYHEDRAL OLIGOMERIC SILSESQUIOXANES (F-POSS): BUILDING BLOCKS FOR LOW SURFACE ENERGY MATERIA LS Sean M Rami,.e:, Yvonne Dia

  7. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  8. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  9. Building blocks for protein interaction devices

    PubMed Central

    Grünberg, Raik; Ferrar, Tony S.; van der Sloot, Almer M.; Constante, Marco; Serrano, Luis

    2010-01-01

    Here, we propose a framework for the design of synthetic protein networks from modular protein–protein or protein–peptide interactions and provide a starter toolkit of protein building blocks. Our proof of concept experiments outline a general work flow for part–based protein systems engineering. We streamlined the iterative BioBrick cloning protocol and assembled 25 synthetic multidomain proteins each from seven standardized DNA fragments. A systematic screen revealed two main factors controlling protein expression in Escherichia coli: obstruction of translation initiation by mRNA secondary structure or toxicity of individual domains. Eventually, 13 proteins were purified for further characterization. Starting from well-established biotechnological tools, two general–purpose interaction input and two readout devices were built and characterized in vitro. Constitutive interaction input was achieved with a pair of synthetic leucine zippers. The second interaction was drug-controlled utilizing the rapamycin-induced binding of FRB(T2098L) to FKBP12. The interaction kinetics of both devices were analyzed by surface plasmon resonance. Readout was based on Förster resonance energy transfer between fluorescent proteins and was quantified for various combinations of input and output devices. Our results demonstrate the feasibility of parts-based protein synthetic biology. Additionally, we identify future challenges and limitations of modular design along with approaches to address them. PMID:20215443

  10. Elfin: An algorithm for the computational design of custom three-dimensional structures from modular repeat protein building blocks.

    PubMed

    Yeh, Chun-Ting; Brunette, T J; Baker, David; McIntosh-Smith, Simon; Parmeggiani, Fabio

    2018-02-01

    Computational protein design methods have enabled the design of novel protein structures, but they are often still limited to small proteins and symmetric systems. To expand the size of designable proteins while controlling the overall structure, we developed Elfin, a genetic algorithm for the design of novel proteins with custom shapes using structural building blocks derived from experimentally verified repeat proteins. By combining building blocks with compatible interfaces, it is possible to rapidly build non-symmetric large structures (>1000 amino acids) that match three-dimensional geometric descriptions provided by the user. A run time of about 20min on a laptop computer for a 3000 amino acid structure makes Elfin accessible to users with limited computational resources. Protein structures with controlled geometry will allow the systematic study of the effect of spatial arrangement of enzymes and signaling molecules, and provide new scaffolds for functional nanomaterials. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Optical determination of crystal phase in semiconductor nanocrystals

    PubMed Central

    Lim, Sung Jun; Schleife, André; Smith, Andrew M.

    2017-01-01

    Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II–VI, III–V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic. Moreover, diffraction methods are low-throughput, incompatible with solution samples and require large sample quantities. Here we report the identification of unambiguous optical signatures of cubic and hexagonal phases in II–VI nanocrystals using absorption spectroscopy and first-principles electronic-structure theory. High-energy spectral features allow rapid identification of phase, even in small nanocrystals (∼2 nm), and may help predict polytypic nanocrystals from differential phase contributions. These theoretical and experimental insights provide simple and accurate optical crystallographic analysis for liquid-dispersed nanomaterials, to improve the precision of nanocrystal engineering and improve our understanding of nanocrystal reactions. PMID:28513577

  12. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  13. A polynomial-chaos-expansion-based building block approach for stochastic analysis of photonic circuits

    NASA Astrophysics Data System (ADS)

    Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea

    2018-02-01

    The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.

  14. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  15. Rapid formation of complexity in the total synthesis of natural products enabled by oxabicyclo[2.2.1]heptene building blocks.

    PubMed

    Schindler, Corinna S; Carreira, Erick M

    2009-11-01

    This critical review showcases examples of rapid formation of complexity in total syntheses starting from 7-oxabicyclo[2.2.1]hept-5-ene derivatives. An overview of methods allowing synthetic access to these building blocks is provided and their application in recently developed synthetic transformations to structurally complex systems is illustrated. In addition, the facile access to a novel oxabicyclo[2.2.1]heptene derived building block is presented which significantly enlarges the possibilities of previously known chemical transformations and is highlighted in the enantioselective route to the core of the banyaside and suomilide natural products (107 references).

  16. Concept analysis and the building blocks of theory: misconceptions regarding theory development.

    PubMed

    Bergdahl, Elisabeth; Berterö, Carina M

    2016-10-01

    The purpose of this article is to discuss the attempts to justify concepts analysis as a way to construct theory - a notion often advocated in nursing. The notion that concepts are the building blocks or threads from which theory is constructed is often repeated. It can be found in many articles and well-known textbooks. However, this notion is seldom explained or defended. The notion of concepts as building blocks has also been questioned by several authors. However, most of these authors seem to agree to some degree that concepts are essential components from which theory is built. Discussion paper. Literature was reviewed to synthesize and debate current knowledge. Our point is that theory is not built by concepts analysis or clarification and we will show that this notion has its basis in some serious misunderstandings. We argue that concept analysis is not a part of sound scientific method and should be abandoned. The current methods of concept analysis in nursing have no foundation in philosophy of science or in language philosophy. The type of concept analysis performed in nursing is not a way to 'construct' theory. Rather, theories are formed by creative endeavour to propose a solution to a scientific and/or practical problem. The bottom line is that the current style and form of concept analysis in nursing should be abandoned in favour of methods in line with modern theory of science. © 2016 John Wiley & Sons Ltd.

  17. Public Opinion on Youth, Crime and Race: A Guide for Advocates. Building Blocks for Youth.

    ERIC Educational Resources Information Center

    Soler, Mark

    This guide summarizes public opinion research on youth and juvenile justice issues from the Building Blocks for Youth focus groups and various national polls. Overall, the public is less fearful about crime than in the past but believes juvenile crime is increasing. There is serious public concern about the effectiveness of the juvenile justice…

  18. Plasmonic light-sensitive skins of nanocrystal monolayers

    NASA Astrophysics Data System (ADS)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  19. Optical properties of silicon nanocrystals synthesized in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Pell, Lindsay; Korgel, Brian A.

    2002-11-01

    We developed a supercritical solution phase synthesis of silicon nanocrystals. High temperature and pressure (500°C, >140 bar) conditions allow a wet chemical approach to this challenging synthesis. Diphenylsilane was used as a silicon precursor and long chain thiols and alcohols were used to sterically stabilize the luminescent nanocrystals. Moderate size separation was achieved via size exclusion chromatography using crosslinked styrene divinylbenzene beads. Size separated fractions of silicon nanocrystals exhibit quantum efficiencies of 12% while polydisperse samples have quantum efficiencies of 5%. Nanocrystal size distributions have been determined with transmission electron microscopy and further characterized with atomic force microscopy (AFM). These silicon nanocrystals have size tunable photoluminescence as indicated by their ensemble spectroscopy and further verified through AFM and single nanocrystal photoluminescence spectroscopy. Fluorescence intermittency (characteristic of single CdSe nanocrystals) is present in our isolated silicon nanocrystals and is one of the criteria used to distinguish single crystals from clusters of particles.

  20. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    DOE PAGES

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; ...

    2017-07-31

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single-and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) ofmore » micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. In conclusion, the rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.« less

  1. High-temperature crystallization of nanocrystals into three-dimensional superlattices.

    PubMed

    Wu, Liheng; Willis, Joshua J; McKay, Ian Salmon; Diroll, Benjamin T; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J

    2017-08-10

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  2. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  3. Plasmid Vectors and Molecular Building Blocks for the Development of Genetic Manipulation Tools for Trypanosoma cruzi

    PubMed Central

    Bouvier, León A.; Cámara, María de los Milagros; Canepa, Gaspar E.; Miranda, Mariana R.; Pereira, Claudio A.

    2013-01-01

    The post genomic era revealed the need for developing better performing, easier to use and more sophisticated genetic manipulation tools for the study of Trypanosoma cruzi, the etiological agent of Chagas disease. In this work a series of plasmids that allow genetic manipulation of this protozoan parasite were developed. First of all we focused on useful tools to establish selection strategies for different strains and which can be employed as expression vectors. On the other hand molecular building blocks in the form of diverse selectable markers, modifiable fluorescent protein and epitope-tag coding sequences were produced. Both types of modules were harboured in backbone molecules conceived to offer multiple construction and sub-cloning strategies. These can be used to confer new properties to already available genetic manipulation tools or as starting points for whole novel designs. The performance of each plasmid and building block was determined independently. For illustration purposes, some simple direct practical applications were conducted. PMID:24205392

  4. Exploring the building blocks of social cognition: spontaneous agency perception and visual perspective taking in autism.

    PubMed

    Zwickel, Jan; White, Sarah J; Coniston, Devorah; Senju, Atsushi; Frith, Uta

    2011-10-01

    Individuals with autism spectrum disorders have highly characteristic impairments in social interaction and this is true also for those with high functioning autism or Asperger syndrome (AS). These social cognitive impairments are far from global and it seems likely that some of the building blocks of social cognition are intact. In our first experiment, we investigated whether high functioning adults who also had a diagnosis of AS would be similar to control participants in terms of their eye movements when watching animated triangles in short movies that normally evoke mentalizing. They were. Our second experiment using the same movies, tested whether both groups would spontaneously adopt the visuo-spatial perspective of a triangle protagonist. They did. At the same time autistic participants differed in their verbal accounts of the story line underlying the movies, confirming their specific difficulties in on-line mentalizing. In spite of this difficulty, two basic building blocks of social cognition appear to be intact: spontaneous agency perception and spontaneous visual perspective taking.

  5. Transition-Metal Decorated Aluminum Nanocrystals.

    PubMed

    Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie

    2017-10-24

    Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

  6. Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.

    PubMed

    van der Meulen, Machteld I; Petkov, Nikolay; Morris, Michael A; Kazakova, Olga; Han, Xinhai; Wang, Kang L; Jacob, Ajey P; Holmes, Justin D

    2009-01-01

    Magnetically doped Si and Ge nanowires have potential application in future nanowire spin-based devices. Here, we report a supercritical fluid method for producing single crystalline Mn-doped Ge nanowires with a Mn-doping concentration of between 0.5-1.0 atomic % that display ferromagnetism above 300 K and a superior performance with respect to the hole mobility of around 340 cm(2)/Vs, demonstrating the potential of using these nanowires as building blocks for electronic devices.

  7. Autonomously Self-Adhesive Hydrogels as Building Blocks for Additive Manufacturing.

    PubMed

    Deng, Xudong; Attalla, Rana; Sadowski, Lukas P; Chen, Mengsu; Majcher, Michael J; Urosev, Ivan; Yin, Da-Chuan; Selvaganapathy, P Ravi; Filipe, Carlos D M; Hoare, Todd

    2018-01-08

    We report a simple method of preparing autonomous and rapid self-adhesive hydrogels and their use as building blocks for additive manufacturing of functional tissue scaffolds. Dynamic cross-linking between 2-aminophenylboronic acid-functionalized hyaluronic acid and poly(vinyl alcohol) yields hydrogels that recover their mechanical integrity within 1 min after cutting or shear under both neutral and acidic pH conditions. Incorporation of this hydrogel in an interpenetrating calcium-alginate network results in an interfacially stiffer but still rapidly self-adhesive hydrogel that can be assembled into hollow perfusion channels by simple contact additive manufacturing within minutes. Such channels withstand fluid perfusion while retaining their dimensions and support endothelial cell growth and proliferation, providing a simple and modular route to produce customized cell scaffolds.

  8. Electrochemically Induced Insulator-Metal-Insulator Transformations of Vanadium Dioxide Nanocrystal Films

    NASA Astrophysics Data System (ADS)

    Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy

    Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.

  9. An Imide-Based Pentacyclic Building Block for n-Type Organic Semiconductors

    DOE PAGES

    Wu, Fu-Peng; Un, Hio-Ieng; Li, Yongxi; ...

    2017-10-09

    For this study a new electron-deficient unit with fused 5-heterocyclic ring was developed by replacing a cyclopenta-1,3-diene from electron-rich donor indacenodithiophene (IDT) with cyclohepta-4,6-diene-1,3-diimde unit. The imide bridging endows BBI with fixed planar configuration and both low the highest occupied molecular orbital (HOMO) (-6.24 eV) and the lowest unoccupied molecular orbit (LUMO) (-2.57 eV) energy levels. Organic field-effect transistors (OFETs) based on BBI polymers exhibit electron mobility up to 0.34 cm 2 V -1 s -1, which indicates that the BBI is a promising n-type building block for optoelectronics.

  10. An Imide-Based Pentacyclic Building Block for n-Type Organic Semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Fu-Peng; Un, Hio-Ieng; Li, Yongxi

    For this study a new electron-deficient unit with fused 5-heterocyclic ring was developed by replacing a cyclopenta-1,3-diene from electron-rich donor indacenodithiophene (IDT) with cyclohepta-4,6-diene-1,3-diimde unit. The imide bridging endows BBI with fixed planar configuration and both low the highest occupied molecular orbital (HOMO) (-6.24 eV) and the lowest unoccupied molecular orbit (LUMO) (-2.57 eV) energy levels. Organic field-effect transistors (OFETs) based on BBI polymers exhibit electron mobility up to 0.34 cm 2 V -1 s -1, which indicates that the BBI is a promising n-type building block for optoelectronics.

  11. Building Quality Report Cards for Geriatric Care in The Netherlands: Using Concept Mapping to Identify the Appropriate "Building Blocks" from the Consumer's Perspective

    ERIC Educational Resources Information Center

    Groenewoud, A. Stef; van Exel, N. Job A.; Berg, Marc; Huijsman, Robbert

    2008-01-01

    Purpose: This article reports on a study to identify "building blocks" for quality report cards for geriatric care. Its aim is to present (a) the results of the study and (b) the innovative step-by-step approach that was developed to arrive at these results. Design and Methods: We used Concept Mapping/Structured Conceptualization to…

  12. Culture’s building blocks: investigating cultural evolution in a LEGO construction task

    PubMed Central

    McGraw, John J.; Wallot, Sebastian; Mitkidis, Panagiotis; Roepstorff, Andreas

    2014-01-01

    One of the most essential but theoretically vexing issues regarding the notion of culture is that of cultural evolution and transmission: how a group’s accumulated solutions to invariant challenges develop and persevere over time. But at the moment, the notion of applying evolutionary theory to culture remains little more than a suggestive trope. Whereas the modern synthesis of evolutionary theory has provided an encompassing scientific framework for the selection and transmission of biological adaptations, a convincing theory of cultural evolution has yet to emerge. One of the greatest challenges for theorists is identifying the appropriate time scales and units of analysis in order to reduce the intractably large and complex phenomenon of “culture” into its component “building blocks.” In this paper, we present a model for scientifically investigating cultural processes by analyzing the ways people develop conventions in a series of LEGO construction tasks. The data revealed a surprising pattern in the selection of building bricks as well as features of car design across consecutive building sessions. Our findings support a novel methodology for studying the development and transmission of culture through the microcosm of interactive LEGO design and assembly. PMID:25309482

  13. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency

    PubMed Central

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-01-01

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W−1 due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications. PMID:26066737

  14. Wrapping cytochrome c around single-wall carbon nanotube: engineered nanohybrid building blocks for infrared detection at high quantum efficiency.

    PubMed

    Gong, Youpin; Liu, Qingfeng; Wilt, Jamie Samantha; Gong, Maogang; Ren, Shenqiang; Wu, Judy

    2015-06-11

    Biomolecule cytochrome c (Cty c), a small molecule of a chain of amino acids with extraordinary electron transport, was helically wrapped around a semiconductive single-wall carbon nanotube (s-SWCNT) to form a molecular building block for uncooled infrared detection with two uniquely designed functionalities: exciton dissociation to free charge carriers at the heterojunction formed on the s-SWCNT/Cty c interface and charge transport along the electron conducting chain of Cty c (acceptor) and hole conducting channel through s-SWCNT (donor). Such a design aims at addressing the long-standing challenges in exciton dissociation and charge transport in an SWCNT network, which have bottlenecked development of photonic SWCNT-based infrared detectors. Using these building blocks, uncooled s-SWCNT/Cyt c thin film infrared detectors were synthesized and shown to have extraordinary photoresponsivity up to 0.77 A W(-1) due to a high external quantum efficiency (EQE) in exceeding 90%, which represents a more than two orders of magnitude enhancement than the best previously reported on CNT-based infrared detectors with EQE of only 1.72%. From a broad perspective, this work on novel s-SWCNT/Cyt c nanohybrid infrared detectors has developed a successful platform of engineered carbon nanotube/biomolecule building blocks with superior properties for optoelectronic applications.

  15. Nanocrystal Targeting In Vivo

    DTIC Science & Technology

    2002-08-01

    Shearwater Polymers , Huntsville, AL) was thiolated with iminothiolane. Thiolated PEG was directly added to a solution of mercaptoacetic acid- coated qdots...Nanocrystal targeting in vivo Maria E. Åkerman*†‡, Warren C. W. Chan†‡, Pirjo Laakkonen*, Sangeeta N. Bhatia†, and Erkki Ruoslahti*§ *Cancer Research...set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (᝺ nm) inorganic nanocrystals

  16. Colloidal nanocrystals and method of making

    DOEpatents

    Kahen, Keith

    2015-10-06

    A tight confinement nanocrystal comprises a homogeneous center region having a first composition and a smoothly varying region having a second composition wherein a confining potential barrier monotonically increases and then monotonically decreases as the smoothly varying region extends from the surface of the homogeneous center region to an outer surface of the nanocrystal. A method of producing the nanocrystal comprises forming a first solution by combining a solvent and at most two nanocrystal precursors; heating the first solution to a nucleation temperature; adding to the first solution, a second solution having a solvent, at least one additional and different precursor to form the homogeneous center region and at most an initial portion of the smoothly varying region; and lowering the solution temperature to a growth temperature to complete growth of the smoothly varying region.

  17. Measuring the Valence of Nanocrystal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Jonathan Scharle

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystalmore » with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.« less

  18. Building Blocks for Reliable Complex Nonlinear Numerical Simulations

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    This talk describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  19. Origami building blocks: Generic and special four-vertices

    NASA Astrophysics Data System (ADS)

    Waitukaitis, Scott; van Hecke, Martin

    2016-02-01

    Four rigid panels connected by hinges that meet at a point form a four-vertex, the fundamental building block of origami metamaterials. Most materials designed so far are based on the same four-vertex geometry, and little is known regarding how different geometries affect folding behavior. Here we systematically categorize and analyze the geometries and resulting folding motions of Euclidean four-vertices. Comparing the relative sizes of sector angles, we identify three types of generic vertices and two accompanying subtypes. We determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special four-vertices and serves as a roadmap for designing origami metamaterials.

  20. Origami building blocks: Generic and special four-vertices.

    PubMed

    Waitukaitis, Scott; van Hecke, Martin

    2016-02-01

    Four rigid panels connected by hinges that meet at a point form a four-vertex, the fundamental building block of origami metamaterials. Most materials designed so far are based on the same four-vertex geometry, and little is known regarding how different geometries affect folding behavior. Here we systematically categorize and analyze the geometries and resulting folding motions of Euclidean four-vertices. Comparing the relative sizes of sector angles, we identify three types of generic vertices and two accompanying subtypes. We determine which folds can fully close and the possible mountain-valley assignments. Next, we consider what occurs when sector angles or sums thereof are set equal, which results in 16 special vertex types. One of these, flat-foldable vertices, has been studied extensively, but we show that a wide variety of qualitatively different folding motions exist for the other 15 special and 3 generic types. Our work establishes a straightforward set of rules for understanding the folding motion of both generic and special four-vertices and serves as a roadmap for designing origami metamaterials.

  1. The Building Blocks of Digital Media Literacy: Socio-Material Participation and the Production of Media Knowledge

    ERIC Educational Resources Information Center

    Dezuanni, Michael

    2015-01-01

    This article outlines the knowledge and skills students develop when they engage in digital media production and analysis in school settings. The metaphor of "digital building blocks" is used to describe the material practices, conceptual understandings and production of knowledge that lead to the development of digital media literacy.…

  2. Optical Properties of CdSe/ZnS Nanocrystals

    PubMed Central

    Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong

    2014-01-01

    Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047

  3. Colloidal PbS nanocrystals integrated to Si-based photonics for applications at telecom wavelengths

    NASA Astrophysics Data System (ADS)

    Humer, M.; Guider, R.; Jantsch, W.; Fromherz, T.

    2013-05-01

    In the last decade, Si based photonics has made major advances in terms of design, fabrication, and device implementation. But due to Silicon's indirect bandgap, it still remains a challenge to create efficient Si-based light emitting devices. In order to overcome this problem, an approach is to develop hybrid systems integrating light-emitting materials into Si. A promising class of materials for this purpose is the class of semiconducting nanocrystal quantum dots (NCs) that are synthesized by colloidal chemistry. As their absorption and emission wavelength depends on the dot size, which can easily be controlled during synthesis, they are extremely attractive as building blocks for nanophotonic applications. For applications in telecom wavelength, Lead chalcogenide colloidal NCs are optimum materials due to their unique optical, electronic and nonlinear properties. In this work, we experimentally demonstrate the integration of PbS nanocrystals into Si-based photonic structures like slot waveguides and ring resonators as optically pumped emitters for room temperature applications. In order to create such hybrid structures, the NCs were dissolved into polymer resists and drop cast on top of the device. Upon optical pumping, intense photoluminescence emission from the resonating modes is recorded at the output of the waveguide with transmission quality factors up to 14000. The polymer host material was investigated with respect to its ability to stabilize the NC's photoluminescence emission against degradation under ambient conditions. The waveguide-ring coupling efficiency was also investigated as function of the NCs concentrations blended into the polymer matrix. The integration of colloidal quantum dots into Silicon photonic structures as demonstrated in this work is a very versatile technique and thus opens a large range of applications utilizing the linear and nonlinear optical properties of PbS NCs at telecom wavelengths.

  4. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  5. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation.

    PubMed

    Lei, Yaya; Kong, Yindi; Sui, Hong; Feng, Jun; Zhu, Rongyue; Wang, Wenping

    2016-10-01

    The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA.

  6. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  7. Isolating and moving single atoms using silicon nanocrystals

    DOEpatents

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  8. Conjugated block copolymers: A building block for high-performance organic photovoltaics

    NASA Astrophysics Data System (ADS)

    Guo, Changhe

    State-of-the-art organic photovoltaics rely on kinetically trapped, partially phase-separated structures of donor/acceptor mixtures to create a high interfacial area for exciton dissociation and networks of bicontinuous phases for charge transport. Nevertheless, intrinsic structural disorder and weak intermolecular interactions in polymer blends limit the performance and stability of organic electronic devices. We demonstrate a potential strategy to control morphology and donor/acceptor heterojunctions through conjugated block copolymer poly(3-hexylthiophene)- block-poly((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (P3HT-b-PFTBT). Block copolymers can self-assemble into well-ordered nanostructures ideal for photovoltaic applications. When utilized as the photovoltaic active layer, P3HT-b-PFTBT block copolymer devices demonstrate thermal stability and photoconversion efficiency of 3% well beyond devices composed of the constituent polymer blends. Resonant soft X-ray scattering (RSOXS) is used to elucidate the structural origin for efficient block copolymer photovoltaics. Energy tuning in soft X-ray ranges gives RSOXS chemical sensitivity to characterize organic thin films with compositionally similar phases or complicated multiphase systems. RSOXS reveals that the remarkable performance of P3HT-b-PFTBT devices is due to self-assembly into nanoscale in-plane lamellar morphology, which not only establishes an equilibrium microstructure amenable for exciton dissociation but also provides pathways for efficient charge transport. Furthermore, we find evidence that covalent control of donor/acceptor interfaces in block copolymers has the potential to promote charge separation and optimize the photoconversion process by limiting charge recombination. To visualize the nanostructure in organic thin films, we introduce low energy-loss energy-filtered transmission electron microscopy (EFTEM) as an important alternative

  9. The assessment of professional competence: building blocks for theory development.

    PubMed

    van der Vleuten, C P M; Schuwirth, L W T; Scheele, F; Driessen, E W; Hodges, B

    2010-12-01

    This article presents lessons learnt from experiences with assessment of professional competence. Based on Miller's pyramid, a distinction is made between established assessment technology for assessing 'knows', 'knowing how' and 'showing how' and more recent developments in the assessment of (clinical) performance at the 'does' level. Some general lessons are derived from research of and experiences with the established assessment technology. Here, many paradoxes are revealed and empirical outcomes are often counterintuitive. Instruments for assessing the 'does' level are classified and described, and additional general lessons for this area of performance assessment are derived. These lessons can also be read as general principles of assessment (programmes) and may provide theoretical building blocks to underpin appropriate and state-of-the-art assessment practices. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Nanoporous Gold as a Platform for a Building Block Catalyst

    DOE PAGES

    Wittstock, Arne; Wichmann, Andre; Baeumer, Marcus

    2012-09-25

    The porous bulk materials are of great interest in catalysis because they can be employed in heterogeneous gas and liquid phase catalysis, electrocatalysis, and in electrocatalytic sensing. Nanoporous gold gained considerable attraction in this context because it is the prime example of a corrosion-derived nanoporous bulk metal. Moreover, the material was shown to be a very active and selective Au type catalyst for a variety of oxidation reactions. In leveraging the functionalization of the surface of the material with various additives, its catalytic applications can be extended and tuned. In this review, we will summarize recent developments in using nanoporousmore » gold as the platform for the development of high performance catalytic materials by adding metals, metal oxides, and molecular functionalities as building blocks.« less

  11. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    PubMed

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  12. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    PubMed Central

    Armijo, Leisha M.; Brandt, Yekaterina I.; Mathew, Dimple; Yadav, Surabhi; Maestas, Salomon; Rivera, Antonio C.; Cook, Nathaniel C.; Withers, Nathan J.; Smolyakov, Gennady A.; Adolphi, Natalie; Monson, Todd C.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek

    2012-01-01

    Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments. PMID:28348300

  13. The Building Blocks for JWST I and T (Integrations and Test) to Operations - From Simulator to Flight Units

    NASA Technical Reports Server (NTRS)

    Fatig, Curtis; Ochs, William; Johns, Alan; Seaton, Bonita; Adams, Cynthia; Wasiak, Francis; Jones, Ronald; Jackson, Wallace

    2012-01-01

    The James Webb Space Telescope (JWST) Project has an extended integration and test (I&T) phase due to long procurement and development times of various components as well as recent launch delays. The JWST Ground Segment and Operations group has developed a roadmap of the various ground and flight elements and their use in the various JWST I&T test programs. The JWST Project s building block approach to the eventual operational systems, while not new, is complex and challenging; a large-scale mission like JWST involves international partners, many vendors across the United States, and competing needs for the same systems. One of the challenges is resource balancing so simulators and flight products for various elements congeal into integrated systems used for I&T and flight operations activities. This building block approach to an incremental buildup provides for early problem identification with simulators and exercises the flight operations systems, products, and interfaces during the JWST I&T test programs. The JWST Project has completed some early I&T with the simulators, engineering models and some components of the operational ground system. The JWST Project is testing the various flight units as they are delivered and will continue to do so for the entire flight and operational system. The JWST Project has already and will continue to reap the value of the building block approach on the road to launch and flight operations.

  14. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  15. Enhanced luminescence of Cu-In-S nanocrystals by surface modification.

    PubMed

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin; Shin, Pyung-Woo

    2012-04-01

    We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.

  16. Self-assembling peptide-based building blocks in medical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acar, Handan; Srivastava, Samanvaya; Chung, Eun Ji

    Peptides and peptide-conjugates, comprising natural and synthetic building blocks, are an increasingly popular class of biomaterials. Self-assembled nanostructures based on peptides and peptide-conjugates offer advantages such as precise selectivity and multifunctionality that can address challenges and limitations in the clinic. In this review article, we discuss recent developments in the design and self-assembly of various nanomaterials based on peptides and peptide-conjugates for medical applications, and categorize them into two themes based on the driving forces of molecular self-assembly. First, we present the self-assembled nanostructures driven by the supramolecular interactions between the peptides, with or without the presence of conjugates. Themore » studies where nanoassembly is driven by the interactions between the conjugates of peptide-conjugates are then presented. Particular emphasis is given to in vivo studies focusing on therapeutics, diagnostics, immune modulation and regenerative medicine. Finally, challenges and future perspectives are presented.« less

  17. Aminobenzoates as building blocks for natural product assembly lines.

    PubMed

    Walsh, Christopher T; Haynes, Stuart W; Ames, Brian D

    2012-01-01

    The ortho-, meta-, and para- regioisomers of aminobenzoate are building blocks for a wide range of microbial natural products. Both the ortho-isomer (anthranilate) and PABA derive from the central shikimate pathway metabolite chorismate while the meta-isomer is not available by that route and starts from UDP-3-aminoglucose. PABA is largely funnelled into folate biosynthesis while anthranilate is the scaffold for biosynthetic elaboration into many natural heterocycles, most notably with its role in indole formation for tryptophan biosynthesis. Anthranilate is also converted to benzodiazepinones, fumiquinazolines, quinoxalines, phenoxazines, benzoxazolinates, quinolones, and phenazines, often with redox enzyme participation. The 5-hydroxy form of 3-aminobenzaote is the starter unit for ansa-bridged rifamycins, ansamitocins, and geldanamycins, whereas regioisomers 2-hydroxy, 4-hydroxy and 2,4-dihydroxy-3-aminobenzoate are key components of antimycin, grixazone, and platencin and platensimycin biosynthesis, respectively. The enzymatic mechanisms for generation of the aminobenzoate regioisomers and their subsequent utilization for diverse heterocycle and macrocycle construction are examined.

  18. Biophysical properties of dermal building-blocks affects extra cellular matrix assembly in 3D endogenous macrotissue.

    PubMed

    Urciuolo, F; Garziano, A; Imparato, G; Panzetta, V; Fusco, S; Casale, C; Netti, P A

    2016-01-29

    The fabrication of functional tissue units is one of the major challenges in tissue engineering due to their in vitro use in tissue-on-chip systems, as well as in modular tissue engineering for the construction of macrotissue analogs. In this work, we aim to engineer dermal tissue micromodules obtained by culturing human dermal fibroblasts into porous gelatine microscaffold. We proved that such stromal cells coupled with gelatine microscaffolds are able to synthesize and to assemble an endogenous extracellular matrix (ECM) resulting in tissue micromodules, which evolve their biophysical features over the time. In particular, we found a time-dependent variation of oxygen consumption kinetic parameters, of newly formed ECM stiffness and of micromodules self-aggregation properties. As consequence when used as building blocks to fabricate larger tissues, the initial tissue micromodules state strongly affects the ECM organization and maturation in the final macrotissue. Such results highlight the role of the micromodules properties in controlling the formation of three-dimensional macrotissue in vitro, defining an innovative design criterion for selecting tissue-building blocks for modular tissue engineering.

  19. Strategies for interfacing inorganic nanocrystals with biological systems based on polymer-coating.

    PubMed

    Palui, Goutam; Aldeek, Fadi; Wang, Wentao; Mattoussi, Hedi

    2015-01-07

    Interfacing inorganic nanoparticles and biological systems with the aim of developing novel imaging and sensing platforms has generated great interest and much activity. However, the effectiveness of this approach hinges on the ability of the surface ligands to promote water-dispersion of the nanoparticles with long term colloidal stability in buffer media. These surface ligands protect the nanostructures from the harsh biological environment, while allowing coupling to target molecules, which can be biological in nature (e.g., proteins and peptides) or exhibit specific photo-physical characteristics (e.g., a dye or a redox-active molecule). Amphiphilic block polymers have provided researchers with versatile molecular platforms with tunable size, composition and chemical properties. Hence, several groups have developed a wide range of polymers as ligands or micelle capsules to promote the transfer of a variety of inorganic nanomaterials to buffer media (including magnetic nanoparticles and semiconductor nanocrystals) and render them biocompatible. In this review, we first summarize the established synthetic routes to grow high quality nanocrystals of semiconductors, metals and metal oxides. We then provide a critical evaluation of the recent developments in the design, optimization and use of various amphiphilic copolymers to surface functionalize the above nanocrystals, along with the strategies used to conjugate them to target biomolecules. We finally conclude by providing a summary of the most promising applications of these polymer-coated inorganic platforms in sensor design, and imaging of cells and tissues.

  20. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  1. 2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.

    PubMed

    Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R

    2015-02-15

    Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Controlling upconversion nanocrystals for emerging applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  3. Zirconia nanocrystals as submicron level biological label

    NASA Astrophysics Data System (ADS)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.

    2012-08-01

    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  4. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study.

    PubMed

    Mutale, Wilbroad; Bond, Virginia; Mwanamwenge, Margaret Tembo; Mlewa, Susan; Balabanova, Dina; Spicer, Neil; Ayles, Helen

    2013-08-01

    The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia's MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating communities seemed to lack the capacity

  5. Doping effect in Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  6. A crown-like heterometallic unit as the building block for a 3D In-Ge-S framework.

    PubMed

    Han, Xiaohui; Wang, Zhenqing; Xu, Jin; Liu, Dan; Wang, Cheng

    2015-12-14

    Supertetrahedral clusters are the most common building blocks in constructing Group 13/14/16 microporous metal chalcogenide materials while other types of clusters are yet scarcely explored. Herein, a new crown-like building unit [In3Ge3S16] has been obtained. The units assemble into a 3D framework [C6H14NO]4[In6Ge3S17]·1.5H2O (1) via a dual-connection mode and a SrSi2 (srs)-type topology could be achieved by treating each unit as a tri-connected node.

  7. Single-exciton optical gain in semiconductor nanocrystals.

    PubMed

    Klimov, Victor I; Ivanov, Sergei A; Nanda, Jagjit; Achermann, Marc; Bezel, Ilya; McGuire, John A; Piryatinski, Andrei

    2007-05-24

    Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron-hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant ( approximately 100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons.

  8. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGES

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  9. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  10. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals

    NASA Astrophysics Data System (ADS)

    Ma, Nan; Sargent, Edward H.; Kelley, Shana O.

    2009-02-01

    Colloidal semiconductor nanocrystals are widely used as lumiphores in biological imaging because their luminescence is both strong and stable, and because they can be biofunctionalized. During synthesis, nanocrystals are typically passivated with hydrophobic organic ligands, so it is then necessary either to replace these ligands or encapsulate the nanocrystals with hydrophilic moieties to make the lumiphores soluble in water. Finally, biological labels must be added to allow the detection of nucleic acids, proteins and specific cell types. This multistep process is time- and labour-intensive and thus out of reach of many researchers who want to use luminescent nanocrystals as customized lumiphores. Here, we show that a single designer ligand-a chimeric DNA molecule-can controllably program both the growth and the biofunctionalization of the nanocrystals. One part of the DNA sequence controls the nanocrystal passivation and serves as a ligand, while another part controls the biorecognition. The synthetic protocol reported here is straightforward and produces a homogeneous dispersion of nanocrystal lumiphores functionalized with a single biomolecular receptor. The nanocrystals exhibit strong optical emission in the visible region, minimal toxicity and have hydrodynamic diameters of ~6 nm, which makes them suitable for bioimaging. We show that the nanocrystals can specifically bind DNA, proteins or cells that have unique surface recognition markers.

  11. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  12. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Li, Dongke; Cao, Yunqing; Xu, Jun; Chen, Kunji

    2018-06-01

    Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed. Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).

  13. Environment‐Adaptive Coassembly/Self‐Sorting and Stimulus‐Responsiveness Transfer Based on Cholesterol Building Blocks

    PubMed Central

    Xing, Pengyao; Tham, Huijun Phoebe; Li, Peizhou; Chen, Hongzhong; Xiang, Huijing

    2017-01-01

    Abstract Manipulating the property transfer in nanosystems is a challenging task since it requires switchable molecular packing such as separate aggregation (self‐sorting) or synergistic aggregation (coassembly). Herein, a unique manipulation of self‐sorting/coassembly aggregation and the observation of switchable stimulus‐responsiveness transfer in a two component self‐assembly system are reported. Two building blocks bearing the same cholesterol group give versatile topological structures in polar and nonpolar solvents. One building block (cholesterol conjugated cynanostilbene, CCS) consists of cholesterol conjugated with a cynanostilbene unit, and the other one (C10CN) is comprised of cholesterol connected with a naphthalimide group having a flexible long alkyl chain. Their assemblies including gel, crystalline plates, and vesicles are obtained. In gel and crystalline plate phases, the self‐sorting behavior dominates, while synergistic coassembly occurs in vesicle phase. Since CCS having the cyanostilbene group can respond to the light irradiation, it undergoes light‐induced chiral amplification. C10CN is thermally responsive, whereby its supramolecular chirality is inversed upon heating. In coassembled vesicles, it is interestingly observed that their responsiveness can be transferred by each other, i.e., the C10CN segment is sensitive to the light irradiation, while CCS is thermoresponsive. This unprecedented behavior of the property transfer may shine a light to the precise fabrication of smart materials. PMID:29375976

  14. Search for water and life's building blocks in the Universe: An Introduction

    NASA Astrophysics Data System (ADS)

    Kwok, Sun

    Water and organics are commonly believed to be the essential ingredients for life on Earth. The development of infrared and submillimeter observational techniques has resulted in the detection of water in circumstellar envelopes, interstellar clouds, comets, asteroids, planetary satellites and the Sun. Complex organics have also been found in stellar ejecta, diffuse and molecular clouds, meteorites, interplanetary dust particles, comets and planetary satellites. In this Focus Meeting, we will discuss the origin, distribution, and detection of water and other life's building blocks both inside and outside of the Solar System. The possibility of extraterrestrial organics and water on the origin of life on Earth will also be discussed.

  15. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    PubMed Central

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the development of homogeneous thin films as required for photovoltaic and optoelectronic applications. Recent experiments reveal spontaneous merging of drop-casted CsPbBr3 nanocrystals, which is promoted by humidity and mild-temperature treatments and arrested by electron beam irradiation. Here, we make use of atom-resolved annular dark-field imaging microscopy and valence electron energy loss spectroscopy in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope to investigate the aggregation between individual nanocrystals at the atomic level. We show that the merging process preserves the elemental composition and electronic structure of CsPbBr3 and takes place between nanocrystals of different sizes and orientations. In particular, we reveal seamless stitching for aligned nanocrystals, similar to that reported in the past for graphene flakes. Because the crystallographic alignment occurs naturally in drop-casted layers of CsPbX3 nanocrystals, our findings constitute the essential first step toward the development of large-area nanosheets with band gap energies predesigned by the nanocrystal choice—the gateway to large-scale photovoltaic applications of inorganic perovskites. PMID:29355301

  16. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals.

    PubMed

    Gomez, Leyre; Lin, Junhao; de Weerd, Chris; Poirier, Lucas; Boehme, Simon C; von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-02-14

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX 3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the development of homogeneous thin films as required for photovoltaic and optoelectronic applications. Recent experiments reveal spontaneous merging of drop-casted CsPbBr 3 nanocrystals, which is promoted by humidity and mild-temperature treatments and arrested by electron beam irradiation. Here, we make use of atom-resolved annular dark-field imaging microscopy and valence electron energy loss spectroscopy in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope to investigate the aggregation between individual nanocrystals at the atomic level. We show that the merging process preserves the elemental composition and electronic structure of CsPbBr 3 and takes place between nanocrystals of different sizes and orientations. In particular, we reveal seamless stitching for aligned nanocrystals, similar to that reported in the past for graphene flakes. Because the crystallographic alignment occurs naturally in drop-casted layers of CsPbX 3 nanocrystals, our findings constitute the essential first step toward the development of large-area nanosheets with band gap energies predesigned by the nanocrystal choice-the gateway to large-scale photovoltaic applications of inorganic perovskites.

  17. Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks.

    PubMed

    Osada, Minoru; Sasaki, Takayoshi

    2012-01-10

    Two-dimensional (2D) nanosheets, which possess atomic or molecular thickness and infinite planar lengths, are regarded as the thinnest functional nanomaterials. The recent development of methods for manipulating graphene (carbon nanosheet) has provided new possibilities and applications for 2D systems; many amazing functionalities such as high electron mobility and quantum Hall effects have been discovered. However, graphene is a conductor, and electronic technology also requires insulators, which are essential for many devices such as memories, capacitors, and gate dielectrics. Along with graphene, inorganic nanosheets have thus increasingly attracted fundamental research interest because they have the potential to be used as dielectric alternatives in next-generation nanoelectronics. Here, we review the progress made in the properties of dielectric nanosheets, highlighting emerging functionalities in electronic applications. We also present a perspective on the advantages offered by this class of materials for future nanoelectronics. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies.

    PubMed

    Fu, Qiang; Sun, Jin; Zhang, Dong; Li, Mo; Wang, Yongjun; Ling, Guixia; Liu, Xiaohong; Sun, Yinghua; Sui, Xiaofan; Luo, Cong; Sun, Le; Han, Xiaopeng; Lian, He; Zhu, Meng; Wang, Siling; He, Zhonggui

    2013-09-01

    This study intended to develop nimodipine (NMD) nanocrystals with different sizes for oral administration and to investigate the relationship between dissolution and pharmacokinetics for NMD nanocrystals and Nimotop(®). NMD nanocrystals were prepared by combination of microprecipitation and high pressure homogenization and were further lyophilized. The particle size, morphology and aqueous solubility of the NMD nanocrystals were determined. With Nimotop(®) as the control, the dissolution rate was evaluated and the pharmacokinetic study was undertaken in beagle dogs. NMD nanocrystals with mean diameters of about 159.0, 503.0 and 833.3 nm were prepared, respectively. The lyophilization didn't affect the particle sizes of the redispersed nanocrystals. The aqueous solubility was significantly improved and displayed a size-dependent manner. The nanocrystals exhibited lower dissolution patterns than Nimotop(®) under non-sink condition, but bioavailability of the two nanocrystals (159.0 and 833.3 nm) was equivalent, about 2.6-fold higher than Nimotop(®). In conclusion, oral nanocrystal drug delivery system was a promising strategy in improving the oral bioavailability of poorly soluble or insoluble drugs. But we could not establish a favorable in vitro in vivo correlation for NMD nanocrystals and Nimotop(®) and thus the oral absorption mechanism of the NMD nanocrystals required further study. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Biopolymers Containing Unnatural Building Blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultz, Peter G.

    2013-06-30

    Although the main chain structure of polymers has a profound effect on their materials properties, the side groups can also have dramatic effects on their properties including conductivity, liquid crystallinity, hydrophobicity, elasticity and biodegradability. Unfortunately control over the side chain structure of polymers remains a challenge – it is difficult to control the sequence of chain elongation when mixtures of monomers are polymerized, and postpolymerization side chain modification is made difficult by polymer effects on side chain reactivity. In contrast, the mRNA templated synthesis of polypeptides on the ribosome affords absolute control over the primary sequence of the twenty aminomore » acid monomers. Moreover, the length of the biopolymer is precisely controlled as are sites of crosslinking. However, whereas synthetic polymers can be synthesized from monomers with a wide range of chemically defined structures, ribosomal biosynthesis is largely limited to the 20 canonical amino acids. For many applications in material sciences, additional building blocks would be desirable, for example, amino acids containing metallocene, photoactive, and halogenated side chains. To overcome this natural constraint we have developed a method that allows unnatural amino acids, beyond the common twenty, to be genetically encoded in response to nonsense or frameshift codons in bacteria, yeast and mammalian cells with high fidelity and good yields. Here we have developed methods that allow identical or distinct noncanonical amino acids to be incorporated at multiple sites in a polypeptide chain, potentially leading to a new class of templated biopolymers. We have also developed improved methods for genetically encoding unnatural amino acids. In addition, we have genetically encoded new amino acids with novel physical and chemical properties that allow selective modification of proteins with synthetic agents. Finally, we have evolved new metal-ion binding sites in

  20. Colloidal Nanocrystals with Near-infrared Optical Properties: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Panthani, Matthew George

    2011-07-01

    Colloidal nanocrystals with optical properties in the near-infrared (NIR) are of interest for many applications such as photovoltaic (PV) energy conversion, bioimaging, and therapeutics. For PVs and other electronic devices, challenges in using colloidal nanomaterials often deal with the surfaces. Because of the high surface-to-volume ratio of small nanocrystals, surfaces and interfaces play an enhanced role in the properties of nanocrystal films and devices. Organic ligand-capped CuInSe2 (CIS) and Cu(InXGa 1-X)Se2 (CIGS) nanocrystals were synthesized and used as the absorber layer in prototype solar cells. By fabricating devices from spray-coated CuInSe nanocrystals under ambient conditions, solar-to-electric power conversion efficiencies as high as 3.1% were achieved. Many treatments of the nanocrystal films were explored. Although some treatments increased the conductivity of the nanocrystal films, the best devices were from untreated CIS films. By modifying the reaction chemistry, quantum-confined CuInSe XS2-X (CISS) nanocrystals were produced. The potential of the CISS nanocrystals for targeted bioimaging was demonstrated via oral delivery to mice and imaging of nanocrystal fluorescence. The size-dependent photoluminescence of Si nanocrystals was measured. Si nanocrystals supported on graphene were characterized by conventional transmission electron microscopy and spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM). Enhanced imaging contrast and resolution was achieved by using Cs-corrected STEM with a graphene support. In addition, clear imaging of defects and the organic-inorganic interface was enabled by utilizing this technique.

  1. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less

  2. Formation of noble metal nanocrystals in the presence of biomolecules

    NASA Astrophysics Data System (ADS)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  3. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    PubMed Central

    Liu, Minglu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146

  4. Metal halide solid-state surface treatment for nanocrystal materials

    DOEpatents

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  5. Hydrotalcite catalysis for the synthesis of new chiral building blocks.

    PubMed

    Rodilla, Jesus M; Neves, Patricia P; Pombal, Sofia; Rives, Vicente; Trujillano, Raquel; Díez, David

    2016-01-01

    The use of hydrotalcites for the synthesis of two chiral building blocks in a simple way is described as a new and green methodology. The synthesis of these compounds implies a regioselective Baeyer-Villiger reaction in a very selective way with ulterior opening and lactonisation. This methodology should be considered green for the use of hydrogen peroxide as the only oxidant and hydrotalcites as the catalyst, and because no residues are produced apart from water. The procedure is very adequate for using in gram scale, in order to increase the value of the obtained compounds. The conditions are excellent and can be applied for nonstable compounds, as they are very mild. The synthesised compounds are magnific starting materials for the synthesis of biologically active or natural compounds. The use of a cheap, commercial and chiral compound as carvone disposable in both enantiomeric forms adds an extra value to this methodology.

  6. C–H arylation of unsubstituted furan and thiophene with acceptor bromides: access to donor–acceptor–donor-type building blocks for organic electronics.

    PubMed

    Matsidik, Rukiya; Martin, Johannes; Schmidt, Simon; Obermayer, Johannes; Lombeck, Florian; Nübling, Fritz; Komber, Hartmut; Fazzi, Daniele; Sommer, Michael

    2015-01-16

    Pd-catalyzed direct arylation (DA) reaction conditions have been established for unsubstituted furan (Fu) and thiophene (Th) with three popular acceptor building blocks to be used in materials for organic electronics, namely 4,7-dibromo-2,1,3-benzothiadiazole (BTBr2), N,N′-dialkylated 2,6-dibromonaphthalene-1,4,5,8-bis(dicarboximide) (NDIBr2), and 1,4-dibromotetrafluorobenzene (F4Br2). Reactions with BTBr2, F4Br2, and NDIBr2 require different solvents to obtain high yields. The use of dimethylacetamide (DMAc) is essential for the successful coupling of BTBr2 and F4Br2, but detrimental for NDIBr2, as the electron-deficient NDI core is prone to nucleophilic core substitution in DMAc as solvent but not in toluene. NDIFu2 is much more planar compared to NDITh2, resulting in an enhanced charge-transfer character, which makes it an interesting building block for conjugated systems designed for organic electronics. This study highlights direct arylation as a simple and inexpensive method to construct a series of important donor–acceptor–donor building blocks to be further used for the preparation of a variety of conjugated materials.

  7. Intrinsic Folding Proclivities in Cyclic β-Peptide Building Blocks: Configuration and Heteroatom Effects Analyzed by Conformer-Selective Spectroscopy and Quantum Chemistry.

    PubMed

    Alauddin, Mohammad; Gloaguen, Eric; Brenner, Valérie; Tardivel, Benjamin; Mons, Michel; Zehnacker-Rentien, Anne; Declerck, Valérie; Aitken, David J

    2015-11-09

    This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic β-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Cellulose nanocrystals with tunable surface charge for nanomedicine

    NASA Astrophysics Data System (ADS)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  9. Microscopic theory of cation exchange in CdSe nanocrystals.

    PubMed

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  10. Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis.

    PubMed

    Su, Yu-Wei; Lin, Wei-Hao; Hsu, Yung-Jung; Wei, Kung-Hwa

    2014-11-01

    Conjugated polymer/nanocrystal composites have attracted much attention for use in renewable energy applications because of their versatile and synergistic optical and electronic properties. Upon absorbing photons, charge separation occurs in the nanocrystals, generating electrons and holes for photocurrent flow or reduction/oxidation (redox) reactions under proper conditions. Incorporating these nanocrystals into conjugated polymers can complement the visible light absorption range of the polymers for photovoltaics applications or allow the polymers to sensitize or immobilize the nanocrystals for photocatalysis. Here, the current developments of conjugated polymer/nanocrystal nanocomposites for bulk heterojunction-type photovoltaics incorporating Cd- and Pb-based nanocrystals or quantum dots are reviewed. The effects of manipulating the organic ligands and the concentration of the nanocrystal precursor, critical factors that affect the shape and aggregation of the nanocrystals, are also discussed. In the conclusion, the mechanisms through which conjugated polymers can sensitize semiconductor nanocrystals (TiO2 , ZnO) to ensure efficient charge separation, as well as how they can support immobilized nanocrystals for use in photocatalysis, are addressed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Cation Exchange Reactions for Improved Quality and Diversity of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Beberwyck, Brandon James

    Observing the size and shape dependent physical properties of semiconductor nanocrystals requires synthetic methods capable of not only composition and crystalline phase control but also molecular scale uniformity for a particle consisting of tens to hundreds of thousands of atoms. The desire for synthetic methods that produce uniform nanocrystals of complex morphologies continues to increase as nanocrystals find roles in commercial applications, such as biolabeling and display technologies, that are simultaneously restricting material compositions. With these constraints, new synthetic strategies that decouple the nanocrystal's chemical composition from its morphology are necessary. This dissertation explores the cation exchange reaction of colloidal semiconductor nanocrystals, a template-based chemical transformation that enables the interconversion of nanocrystals between a variety of compositions while maintaining their size dispersity and morphology. Chapter 1 provides an introduction to the versatility of this replacement reaction as a synthetic method for semiconductor nanocrystals. An overview of the fundamentals of the cation exchange reaction and the diversity of products that are achievable is presented. Chapter 2 examines the optical properties of nanocrystal heterostructures produced through cation exchange reactions. The deleterious impact of exchange on the photoluminescence is correlated to residual impurities and a simple annealing protocol is demonstrated to achieve photoluminescence yields comparable to samples produced by conventional methods. Chapter 3 investigates the extension of the cation exchange reaction beyond ionic nanocrystals. Covalent III-V nanocrystal of high crystallinity and low size dispersity are synthesized by the cation exchange of cadmium pnictide nanocrystals with group 13 ions. Lastly, Chapter 4 highlights future studies to probe cation exchange reactions in colloidal semiconductor nanocrystals and progress that needs to be

  12. Systems thinking in practice: the current status of the six WHO building blocks for health system strengthening in three BHOMA intervention districts of Zambia: a baseline qualitative study

    PubMed Central

    2013-01-01

    Background The primary bottleneck to achieving the MDGs in low-income countries is health systems that are too fragile to deliver the volume and quality of services to those in need. Strong and effective health systems are increasingly considered a prerequisite to reducing the disease burden and to achieving the health MDGs. Zambia is one of the countries that are lagging behind in achieving millennium development targets. Several barriers have been identified as hindering the progress towards health related millennium development goals. Designing an intervention that addresses these barriers was crucial and so the Better Health Outcomes through Mentorship (BHOMA) project was designed to address the challenges in the Zambia’s MOH using a system wide approach. We applied systems thinking approach to describe the baseline status of the Six WHO building blocks for health system strengthening. Methods A qualitative study was conducted looking at the status of the Six WHO building blocks for health systems strengthening in three BHOMA districts. We conducted Focus group discussions with community members and In-depth Interviews with key informants. Data was analyzed using Nvivo version 9. Results The study showed that building block specific weaknesses had cross cutting effect in other health system building blocks which is an essential element of systems thinking. Challenges noted in service delivery were linked to human resources, medical supplies, information flow, governance and finance building blocks either directly or indirectly. Several barriers were identified as hindering access to health services by the local communities. These included supply side barriers: Shortage of qualified health workers, bad staff attitude, poor relationships between community and health staff, long waiting time, confidentiality and the gender of health workers. Demand side barriers: Long distance to health facility, cost of transport and cultural practices. Participating

  13. Biomimetic synthesis of noble metal nanocrystals

    NASA Astrophysics Data System (ADS)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  14. Silicon crystallization in nanodot arrays organized by block copolymer lithography

    NASA Astrophysics Data System (ADS)

    Perego, Michele; Andreozzi, Andrea; Seguini, Gabriele; Schamm-Chardon, Sylvie; Castro, Celia; BenAssayag, Gerard

    2014-12-01

    Asymmetric polystyrene- b-polymethylmethacrylate (PS- b-PMMA) block copolymers are used to fabricate nanoporous PS templates with different pore diameter depending on the specific substrate neutralization protocol. The resulting polymeric templates are used as masks for the subsequent deposition of a thin ( h = 5 nm) amorphous Si layer by electron beam evaporation. After removal of the polymeric film and of the silicon excess, well-defined hexagonally packed amorphous Si nanodots are formed on the substrate. Their average diameter ( d < 20 nm), density (1.2 × 1011 cm-2), and lateral distribution closely mimic the original nanoporous template. Upon capping with SiO2 and high temperature annealing (1050 °C, N2), each amorphous Si nanodot rearranges in agglomerates of Si nanocrystals ( d < 4 nm). The average diameter and shape of these Si nanocrystals strongly depend on the size of the initial Si nanodot.

  15. Building Blocks of Contemporary HRD Research: A Citation Analysis on Human Resource Development Quarterly between 2007 and 2013

    ERIC Educational Resources Information Center

    Mehdiabadi, Amir Hedayati; Seo, Gaeun; Huang, Wenhao David; Han, Seung-hyun Caleb

    2017-01-01

    Human resource development is known to encapsulate a collection of social science disciplines including communications, psychology, and economics. Since these and other similar areas are the cornerstones of HRD, the changing nature of HRD demands constant reflections on the value and building blocks of contemporary HRD inquiries. This article…

  16. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  17. SiC Multi-Chip Power Modules as Power-System Building Blocks

    NASA Technical Reports Server (NTRS)

    Lostetter, Alexander; Franks, Steven

    2007-01-01

    The term "SiC MCPMs" (wherein "MCPM" signifies "multi-chip power module") denotes electronic power-supply modules containing multiple silicon carbide power devices and silicon-on-insulator (SOI) control integrated-circuit chips. SiC MCPMs are being developed as building blocks of advanced expandable, reconfigurable, fault-tolerant power-supply systems. Exploiting the ability of SiC semiconductor devices to operate at temperatures, breakdown voltages, and current densities significantly greater than those of conventional Si devices, the designs of SiC MCPMs and of systems comprising multiple SiC MCPMs are expected to afford a greater degree of miniaturization through stacking of modules with reduced requirements for heat sinking. Moreover, the higher-temperature capabilities of SiC MCPMs could enable operation in environments hotter than Si-based power systems can withstand. The stacked SiC MCPMs in a given system can be electrically connected in series, parallel, or a series/parallel combination to increase the overall power-handling capability of the system. In addition to power connections, the modules have communication connections. The SOI controllers in the modules communicate with each other as nodes of a decentralized control network, in which no single controller exerts overall command of the system. Control functions effected via the network include synchronization of switching of power devices and rapid reconfiguration of power connections to enable the power system to continue to supply power to a load in the event of failure of one of the modules. In addition to serving as building blocks of reliable power-supply systems, SiC MCPMs could be augmented with external control circuitry to make them perform additional power-handling functions as needed for specific applications: typical functions could include regulating voltages, storing energy, and driving motors. Because identical SiC MCPM building blocks could be utilized in a variety of ways, the cost

  18. Nanobiotechnology with S-layer proteins as building blocks.

    PubMed

    Sleytr, Uwe B; Schuster, Bernhard; Egelseer, Eva M; Pum, Dietmar; Horejs, Christine M; Tscheliessnig, Rupert; Ilk, Nicola

    2011-01-01

    One of the key challenges in nanobiotechnology is the utilization of self- assembly systems, wherein molecules spontaneously associate into reproducible aggregates and supramolecular structures. In this contribution, we describe the basic principles of crystalline bacterial surface layers (S-layers) and their use as patterning elements. The broad application potential of S-layers in nanobiotechnology is based on the specific intrinsic features of the monomolecular arrays composed of identical protein or glycoprotein subunits. Most important, physicochemical properties and functional groups on the protein lattice are arranged in well-defined positions and orientations. Many applications of S-layers depend on the capability of isolated subunits to recrystallize into monomolecular arrays in suspension or on suitable surfaces (e.g., polymers, metals, silicon wafers) or interfaces (e.g., lipid films, liposomes, emulsomes). S-layers also represent a unique structural basis and patterning element for generating more complex supramolecular structures involving all major classes of biological molecules (e.g., proteins, lipids, glycans, nucleic acids, or combinations of these). Thus, S-layers fulfill key requirements as building blocks for the production of new supramolecular materials and nanoscale devices as required in molecular nanotechnology, nanobiotechnology, biomimetics, and synthetic biology. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments

    NASA Astrophysics Data System (ADS)

    Huber, Matthias C.; Schreiber, Andreas; von Olshausen, Philipp; Varga, Balázs R.; Kretz, Oliver; Joch, Barbara; Barnert, Sabine; Schubert, Rolf; Eimer, Stefan; Kele, Péter; Schiller, Stefan M.

    2015-01-01

    Nanoscale biological materials formed by the assembly of defined block-domain proteins control the formation of cellular compartments such as organelles. Here, we introduce an approach to intentionally ‘program’ the de novo synthesis and self-assembly of genetically encoded amphiphilic proteins to form cellular compartments, or organelles, in Escherichia coli. These proteins serve as building blocks for the formation of artificial compartments in vivo in a similar way to lipid-based organelles. We investigated the formation of these organelles using epifluorescence microscopy, total internal reflection fluorescence microscopy and transmission electron microscopy. The in vivo modification of these protein-based de novo organelles, by means of site-specific incorporation of unnatural amino acids, allows the introduction of artificial chemical functionalities. Co-localization of membrane proteins results in the formation of functionalized artificial organelles combining artificial and natural cellular function. Adding these protein structures to the cellular machinery may have consequences in nanobiotechnology, synthetic biology and materials science, including the constitution of artificial cells and bio-based metamaterials.

  20. Phase Stability and Transformations in Vanadium Oxide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Bergerud, Amy Jo

    to the bulk stable corundum phase of V2O3 with concurrent particle coarsening. This, in combination with the enhanced stability of the nanocrystals over bulk, suggests that the bixbyite phase may be stabilized due to surface energy effects, a well-known phenomenon in nanocrystal research. In Chapter 3, the reversible incorporation of oxygen in bixbyite V 2O3 is reported, which can be controlled by varying temperature and oxygen partial pressure. Based on XRD and thermogravimetric analysis, it is found that oxygen occupies interstitial sites in the bixbyite lattice. Two oxygen atoms per unit cell can be incorporated rapidly and with minimal changes to the structure while the addition of three or more oxygen atoms destabilizes the structure, resulting in a phase change that can be reversed upon oxygen removal. Density functional theory (DFT) supports the reversible occupation of interstitial sites in bixbyite by oxygen and the 1.1 eV barrier to oxygen diffusion predicted by DFT matches the activation energy of the oxidation process derived from observations by in situ XRD. The observed rapid oxidation kinetics are thus facilitated by short diffusion paths through the bixbyite nanocrystals. Due to the exceptionally low temperatures of oxidation and reduction, this material, made from earth-abundant atoms, is proposed for use in oxygen storage applications, where oxygen is reversibly stored and released. Further oxidation of bixbyite V2O3 under controlled oxygen partial pressure can lead to the formation of nanocrystalline vanadium dioxide (VO2), a material that is studied for its MIT that occurs at 68 C in the bulk. This transformation is accompanied by a change in crystal structure, from monoclinic to rutile phase, and a change in optical properties, from infrared transparent to infrared blocking. Because of this, VO2 is promising for thermochromic smart window applications, where optical properties vary with temperature. Recently, alternative stimuli have been

  1. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  2. Osteoblasts Growth Behaviour on Bio-Based Calcium Carbonate Aragonite Nanocrystal

    PubMed Central

    Zakaria, Zuki Abu Bakar

    2014-01-01

    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process. PMID:24734228

  3. Equivalence of the EMD- and NEMD-based decomposition of thermal conductivity into microscopic building blocks.

    PubMed

    Matsubara, Hiroki; Kikugawa, Gota; Ishikiriyama, Mamoru; Yamashita, Seiji; Ohara, Taku

    2017-09-21

    Thermal conductivity of a material can be comprehended as being composed of microscopic building blocks relevant to the energy transfer due to a specific microscopic process or structure. The building block is called the partial thermal conductivity (PTC). The concept of PTC is essential to evaluate the contributions of various molecular mechanisms to heat conduction and has been providing detailed knowledge of the contribution. The PTC can be evaluated by equilibrium molecular dynamics (EMD) and non-equilibrium molecular dynamics (NEMD) in different manners: the EMD evaluation utilizes the autocorrelation of spontaneous heat fluxes in an equilibrium state whereas the NEMD one is based on stationary heat fluxes in a non-equilibrium state. However, it has not been fully discussed whether the two methods give the same PTC or not. In the present study, we formulate a Green-Kubo relation, which is necessary for EMD to calculate the PTCs equivalent to those by NEMD. Unlike the existing theories, our formulation is based on the local equilibrium hypothesis to describe a clear connection between EMD and NEMD simulations. The equivalence of the two derivations of PTCs is confirmed by the numerical results for liquid methane and butane. The present establishment of the EMD-NEMD correspondence makes the MD analysis of PTCs a robust way to clarify the microscopic origins of thermal conductivity.

  4. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  5. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    PubMed

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  6. Near-infrared light emitting device using semiconductor nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  7. Plasmonic engineering of spontaneous emission from silicon nanocrystals.

    PubMed

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells.

  8. Building blocks for the development of an interface for high-throughput thin layer chromatography/ambient mass spectrometric analysis: a green methodology.

    PubMed

    Cheng, Sy-Chyi; Huang, Min-Zong; Wu, Li-Chieh; Chou, Chih-Chiang; Cheng, Chu-Nian; Jhang, Siou-Sian; Shiea, Jentaie

    2012-07-17

    Interfacing thin layer chromatography (TLC) with ambient mass spectrometry (AMS) has been an important area of analytical chemistry because of its capability to rapidly separate and characterize the chemical compounds. In this study, we have developed a high-throughput TLC-AMS system using building blocks to deal, deliver, and collect the TLC plate through an electrospray-assisted laser desorption ionization (ELDI) source. This is the first demonstration of the use of building blocks to construct and test the TLC-MS interfacing system. With the advantages of being readily available, cheap, reusable, and extremely easy to modify without consuming any material or reagent, the use of building blocks to develop the TLC-AMS interface is undoubtedly a green methodology. The TLC plate delivery system consists of a storage box, plate dealing component, conveyer, light sensor, and plate collecting box. During a TLC-AMS analysis, the TLC plate was sent to the conveyer from a stack of TLC plates placed in the storage box. As the TLC plate passed through the ELDI source, the chemical compounds separated on the plate would be desorbed by laser desorption and subsequently postionized by electrospray ionization. The samples, including a mixture of synthetic dyes and extracts of pharmaceutical drugs, were analyzed to demonstrate the capability of this TLC-ELDI/MS system for high-throughput analysis.

  9. One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Qing Ling; Yang, Ye Feng; He, Hai Ping; Chen, Dong Dong; Ye, Zhi Zhen; Jin, Yi Zheng

    2010-05-01

    A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In-ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.

  10. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Scarfiello, Riccardo; Nobile, Concetta; Cozzoli, P. Davide

    2016-12-01

    Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical-chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex “colloidal molecules”, in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs) in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques, will be described

  11. Methylidynetrisphosphonates: Promising C1 building block for the design of phosphate mimetics

    PubMed Central

    Romanenko, Vadim D

    2013-01-01

    Summary Methylidynetrisphosphonates are representatives of geminal polyphosphonates bearing three phosphonate (PO3H2) groups at the bridged carbon atom. Like well-known methylenebisphosphonates (BPs), they are characterized by a P–C–P backbone structure and are chemically stable mimetics of the endogenous metabolites, i.e., inorganic pyrophosphates (PPi). Because of its analogy to PPi and an ability to chelate metal ions, the 1,1,1-trisphosphonate structure is of great potential as a C1 building block for the design of phosphate mimetics. The purpose of this review is to present a concise summary of the state of the art in trisphosphonate chemistry with particular emphasis on the synthesis, structure, reactions, and potential medicinal applications of these compounds. PMID:23766816

  12. Total synthesis of a CD-ring: side-chain building block for preparing 17-epi-calcitriol derivatives from the Hajos-Parrish dione.

    PubMed

    Michalak, Karol; Wicha, Jerzy

    2011-08-19

    An efficient synthesis of the key building block for 17-epi-calctriol from the Hajos-Parrish dione involving a sequence of diastereoselective transformation of the azulene core and the side-chain construction is presented.

  13. Systematic approach to in-depth understanding of photoelectrocatalytic bacterial inactivation mechanisms by tracking the decomposed building blocks.

    PubMed

    Sun, Hongwei; Li, Guiying; Nie, Xin; Shi, Huixian; Wong, Po-Keung; Zhao, Huijun; An, Taicheng

    2014-08-19

    A systematic approach was developed to understand, in-depth, the mechanisms involved during the inactivation of bacterial cells using photoelectrocatalytic (PEC) processes with Escherichia coli K-12 as the model microorganism. The bacterial cells were found to be inactivated and decomposed primarily due to attack from photogenerated H2O2. Extracellular reactive oxygen species (ROSs), such as H2O2, may penetrate into the bacterial cell and cause dramatically elevated intracellular ROSs levels, which would overwhelm the antioxidative capacity of bacterial protective enzymes such as superoxide dismutase and catalase. The activities of these two enzymes were found to decrease due to the ROSs attacks during PEC inactivation. Bacterial cell wall damage was then observed, including loss of cell membrane integrity and increased permeability, followed by the decomposition of cell envelope (demonstrated by scanning electronic microscope images). One of the bacterial building blocks, protein, was found to be oxidatively damaged due to the ROSs attacks, as well. Leakage of cytoplasm and biomolecules (bacterial building blocks such as proteins and nucleic acids) were evident during prolonged PEC inactivation process. The leaked cytoplasmic substances and cell debris could be further degraded and, ultimately, mineralized with prolonged PEC treatment.

  14. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals.

    PubMed

    Sen Gupta, Surashree; Ghosh, Mahua

    2017-10-01

    Octacosanol is a lesser known nutraceutical with the potential for treatment of several inflammatory diseases, high cholesterol, Parkinson's symptoms and tumour growth along with the capacity to improve athletic performance. But its lipophilicity and large structure inhibits extended solubility in water resulting in poor absorption and a low bioavailability. In the present work, sodium salt of octacosyl sulfate was synthesized. It displayed improved water solubility. Its nanocrystals, synthesized by means of nanoprecipitation technique, enhanced diffusion velocity, antioxidant capacity, shelf-life, penetrability and bioavailability. Particle size of the nanocrystals ranged between 197 and 220nm. Both modified octacosanol and its nanocrystals displayed maximum lipid peroxidation activities at a concentration 1000ppm, but nanocrystals demonstrated higher prevention. From freeze-thaw cycles it was evident that normal octacosanol crystals were far more prone to temperature variations than the nanocrystals. A pronounced increase in release/diffusion rate and bioavailability was observed for the nanocrystals of the modified octacosanol. In vitro release kinetics, bioavailability and bioequivalence were studied. Relative bioavailability for gastric passage and pancreatic passage of nanocrystals was 2.58 times and 1.81 times that of normal crystals respectively. Furthermore the nanocrystals displayed a superior in vitro release rate, while following a non-Fickian mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    PubMed

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  16. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    NASA Astrophysics Data System (ADS)

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-10-01

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  17. Preparation of Self-assembly Mesoporous TiO2 Using Block Copolymer Pluronic PE6200 Template

    NASA Astrophysics Data System (ADS)

    Septina, W.; Yuliarto, B.; Nugraha

    2008-03-01

    In this research, nanocrystal mesoporous TiO2 powders were synthesized by sol-gel method, with TiCl4 as a precursor in methanol solution. Block copolymer Pluronic PE 6200 was used as pores template. It was found that from the XRD measurements, both at 400 °C and 450 °C calcination temperatures, resulted in nanocrystal TiO2 with anatase phase. Based on N2 adsorption characterization (BET method), TiO2 samples have surface area 108 m2/g and 88 m2/g for 400 °C and 450 °C calcination temperatures respectively. From Small-angle Neutron Scattering (SANS) patterns, it is investigated that TiO2 samples have mesoporous structure where the pore order degree depend on the calcination temperature.

  18. Identifying the Evolutionary Building Blocks of the Cardiac Conduction System

    PubMed Central

    Jensen, Bjarke; Boukens, Bastiaan J. D.; Postma, Alex V.; Gunst, Quinn D.; van den Hoff, Maurice J. B.; Moorman, Antoon F. M.; Wang, Tobias; Christoffels, Vincent M.

    2012-01-01

    The endothermic state of mammals and birds requires high heart rates to accommodate the high rates of oxygen consumption. These high heart rates are driven by very similar conduction systems consisting of an atrioventricular node that slows the electrical impulse and a His-Purkinje system that efficiently activates the ventricular chambers. While ectothermic vertebrates have similar contraction patterns, they do not possess anatomical evidence for a conduction system. This lack amongst extant ectotherms is surprising because mammals and birds evolved independently from reptile-like ancestors. Using conserved genetic markers, we found that the conduction system design of lizard (Anolis carolinensis and A. sagrei), frog (Xenopus laevis) and zebrafish (Danio rerio) adults is strikingly similar to that of embryos of mammals (mouse Mus musculus, and man) and chicken (Gallus gallus). Thus, in ectothermic adults, the slow conducting atrioventricular canal muscle is present, no fibrous insulating plane is formed, and the spongy ventricle serves the dual purpose of conduction and contraction. Optical mapping showed base-to-apex activation of the ventricles of the ectothermic animals, similar to the activation pattern of mammalian and avian embryonic ventricles and to the His-Purkinje systems of the formed hearts. Mammalian and avian ventricles uniquely develop thick compact walls and septum and, hence, form a discrete ventricular conduction system from the embryonic spongy ventricle. Our study uncovers the evolutionary building plan of heart and indicates that the building blocks of the conduction system of adult ectothermic vertebrates and embryos of endotherms are similar. PMID:22984480

  19. Organization of 'nanocrystal molecules' using DNA

    NASA Astrophysics Data System (ADS)

    Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang; Wilson, Troy E.; Loweth, Colin J.; Bruchez, Marcel P.; Schultz, Peter G.

    1996-08-01

    PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2-4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size6-10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

  20. Molecular building blocks and their architecture in biologically/environmentally compatible soft matter chemical machinery.

    PubMed

    Toyota, Taro; Banno, Taisuke; Nitta, Sachiko; Takinoue, Masahiro; Nomoto, Tomonori; Natsume, Yuno; Matsumura, Shuichi; Fujinami, Masanori

    2014-01-01

    This review briefly summarizes recent developments in the construction of biologically/environmentally compatible chemical machinery composed of soft matter. Since environmental and living systems are open systems, chemical machinery must continuously fulfill its functions not only through the influx and generation of molecules but also via the degradation and dissipation of molecules. If the degradation or dissipation of soft matter molecular building blocks and biomaterial molecules/polymers can be achieved, soft matter particles composed of them can be used to realize chemical machinery such as selfpropelled droplets, drug delivery carriers, tissue regeneration scaffolds, protocell models, cell-/tissuemarkers, and molecular computing systems.

  1. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Scher, Erik C [Menlo Park, CA; Manna, Liberato [Berkeley, CA

    2011-11-22

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  2. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C; Manna, Liberato

    2013-12-17

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  3. Shaped nanocrystal particles and methods for working the same

    DOEpatents

    Alivisatos, A. Paul; Sher, Eric C.; Manna, Liberato

    2007-12-25

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  4. Quantification of urban structure on building block level utilizing multisensoral remote sensing data

    NASA Astrophysics Data System (ADS)

    Wurm, Michael; Taubenböck, Hannes; Dech, Stefan

    2010-10-01

    Dynamics of urban environments are a challenge to a sustainable development. Urban areas promise wealth, realization of individual dreams and power. Hence, many cities are characterized by a population growth as well as physical development. Traditional, visual mapping and updating of urban structure information of cities is a very laborious and cost-intensive task, especially for large urban areas. For this purpose, we developed a workflow for the extraction of the relevant information by means of object-based image classification. In this manner, multisensoral remote sensing data has been analyzed in terms of very high resolution optical satellite imagery together with height information by a digital surface model to retrieve a detailed 3D city model with the relevant land-use / land-cover information. This information has been aggregated on the level of the building block to describe the urban structure by physical indicators. A comparison between the indicators derived by the classification and a reference classification has been accomplished to show the correlation between the individual indicators and a reference classification of urban structure types. The indicators have been used to apply a cluster analysis to group the individual blocks into similar clusters.

  5. Engineering of Organic Nanocrystals by Electrocrystallization

    NASA Astrophysics Data System (ADS)

    Kilani, Mohamed

    This work discusses the experimental and theoretical methods used to control the morphology of nanocrystals. The hypothesis of the thermodynamic/kinetic control of the morphology was verified. We applied the electrocrystallization to make K(def)TCP nanocrystals and we tuned the electrochemical parameters to determine their influence on the nanocrystals morphologies. The characterization was mainly performed with AFM and FE-SEM. We presented in this work the possibility to control the morphology of K(def)TCP using the electrochemical parameters. The obtained shapes ranged from nanorods to rhombohedral shape, which is reported for the first time. The observed growth behavior was modeled and simulated with a method based on Monte-Carlo techniques. The simulation results show a qualitative match with the experimental findings. This work contributes to the understanding of the crystal growth behavior and the thermodynamic/kinetic morphology transition using electrocrystallization.

  6. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals

    DOE PAGES

    Freppon, Daniel J.; Men, Long; Burkhow, Sadie J.; ...

    2016-11-25

    Here we present the time-correlated luminescence of isolated nanocrystals of five methylammonium lead mixed-halide perovskite compositions (CH 3NH 3PbBr 3$-$xI x) that were synthesized with varying iodide and bromide anion loading. All analyzed nanocrystals had a spherical morphology with diameters in the range of 2 to 32 nm. The luminescence maxima of CH 3NH 3PbBr 3$-$xI x nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by varying the halide loading. Both CH 3NH 3PbI 3 and CH 3NH 3PbBr 3 nanocrystals exhibited no luminescence intermittency for more than 90% of the 250 s analysis time, as definedmore » by a luminescence intensity three standard deviations above the background. The mixed halide CH 3NH 3PbBr 0.75I 0.25, CH 3NH 3PbBr 0.50I 0.50, and CH 3NH 3PbBr 0.25I 0.75 nanocrystals exhibited luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively. Irrespective of luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) constant, (b) multimodal, (c) photobrightening, and (d) photobleaching. Finally, based on their photophysics, the CH 3NH 3PbBr 3$-$xI x nanocrystals can be expected to be useful in a wide-range of applications where low and non-intermittent luminescence is desirable, for example as imaging probes and in films for energy conversion devices.« less

  7. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freppon, Daniel J.; Men, Long; Burkhow, Sadie J.

    Here we present the time-correlated luminescence of isolated nanocrystals of five methylammonium lead mixed-halide perovskite compositions (CH 3NH 3PbBr 3$-$xI x) that were synthesized with varying iodide and bromide anion loading. All analyzed nanocrystals had a spherical morphology with diameters in the range of 2 to 32 nm. The luminescence maxima of CH 3NH 3PbBr 3$-$xI x nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by varying the halide loading. Both CH 3NH 3PbI 3 and CH 3NH 3PbBr 3 nanocrystals exhibited no luminescence intermittency for more than 90% of the 250 s analysis time, as definedmore » by a luminescence intensity three standard deviations above the background. The mixed halide CH 3NH 3PbBr 0.75I 0.25, CH 3NH 3PbBr 0.50I 0.50, and CH 3NH 3PbBr 0.25I 0.75 nanocrystals exhibited luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively. Irrespective of luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) constant, (b) multimodal, (c) photobrightening, and (d) photobleaching. Finally, based on their photophysics, the CH 3NH 3PbBr 3$-$xI x nanocrystals can be expected to be useful in a wide-range of applications where low and non-intermittent luminescence is desirable, for example as imaging probes and in films for energy conversion devices.« less

  8. The Use of Cellulose Nanocrystals for Potential Application in Topical Delivery of Hydroquinone.

    PubMed

    Taheri, Azade; Mohammadi, Mina

    2015-07-01

    Nanotechnology-based drug delivery systems can enhance drug permeation through the skin and improve the drug stability. The biodegradability and biocompatibility of cellulose nanocrystals have made these nanoparticles good candidates to use in biomedical applications. The hyperpigmentation is a common skin disorder that could be caused by number of reasons such as sun exposure and pregnancy. Hydroquinone could inhibit the production of melanin and eliminate the discolorations of skin. This study is aimed at introducing cellulose nanocrystals as suitable carriers for drug delivery to skin. Prepared cellulose nanocrystals were characterized by dynamic light scattering and atomic force microscopy. The size of cellulose nanocrystals determined using dynamic light scattering was 301 ± 10 nm. Hydroquinone-cellulose nanocrystal complex was prepared by incubating of hydroquinone solution in cellulose nanocrystals suspension. The size of hydroquinone-cellulose nanocrystal complex determined using dynamic light scattering was 310 ± 10 nm. The hydroquinone content of the hydroquinone-cellulose complex was determined using UV/vis spectroscopy. Hydroquinone was bound to cellulose nanocrystals representing 79.3 ± 2% maximum binding efficiency when 1.1 mg hydroquinone was added to 1 mL of cellulose nanocrystals suspension (2 mg cellulose nanocrystal). The hydroquinone-cellulose nanocrystal complex showed an approximately sustained release profile of hydroquinone. Approximately, 80% of bound hydroquinone released in 4 h. © 2014 John Wiley & Sons A/S.

  9. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai

    2016-09-01

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  10. Learning and optimization with cascaded VLSI neural network building-block chips

    NASA Technical Reports Server (NTRS)

    Duong, T.; Eberhardt, S. P.; Tran, M.; Daud, T.; Thakoor, A. P.

    1992-01-01

    To demonstrate the versatility of the building-block approach, two neural network applications were implemented on cascaded analog VLSI chips. Weights were implemented using 7-b multiplying digital-to-analog converter (MDAC) synapse circuits, with 31 x 32 and 32 x 32 synapses per chip. A novel learning algorithm compatible with analog VLSI was applied to the two-input parity problem. The algorithm combines dynamically evolving architecture with limited gradient-descent backpropagation for efficient and versatile supervised learning. To implement the learning algorithm in hardware, synapse circuits were paralleled for additional quantization levels. The hardware-in-the-loop learning system allocated 2-5 hidden neurons for parity problems. Also, a 7 x 7 assignment problem was mapped onto a cascaded 64-neuron fully connected feedback network. In 100 randomly selected problems, the network found optimal or good solutions in most cases, with settling times in the range of 7-100 microseconds.

  11. Creating ligand-free silicon germanium alloy nanocrystal inks.

    PubMed

    Erogbogbo, Folarin; Liu, Tianhang; Ramadurai, Nithin; Tuccarione, Phillip; Lai, Larry; Swihart, Mark T; Prasad, Paras N

    2011-10-25

    Particle size is widely used to tune the electronic, optical, and catalytic properties of semiconductor nanocrystals. This contrasts with bulk semiconductors, where properties are tuned based on composition, either through doping or through band gap engineering of alloys. Ideally, one would like to control both size and composition of semiconductor nanocrystals. Here, we demonstrate production of silicon-germanium alloy nanoparticles by laser pyrolysis of silane and germane. We have used FTIR, TEM, XRD, EDX, SEM, and TOF-SIMS to conclusively determine their structure and composition. Moreover, we show that upon extended sonication in selected solvents, these bare nanocrystals can be stably dispersed without ligands, thereby providing the possibility of using them as an ink to make patterned films, free of organic surfactants, for device fabrication. The engineering of these SiGe alloy inks is an important step toward the low-cost fabrication of group IV nanocrystal optoelectronic, thermoelectric, and photovoltaic devices.

  12. Level Anticrossing of Impurity States in Semiconductor Nanocrystals

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Ponomareva, Irina O.; Leonov, Mikhail Yu.; Perova, Tatiana S.; Berwick, Kevin; Baranov, Alexander V.; Fedorov, Anatoly V.

    2014-01-01

    The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states' coupling strength. PMID:25369911

  13. "Science SQL" as a Building Block for Flexible, Standards-based Data Infrastructures

    NASA Astrophysics Data System (ADS)

    Baumann, Peter

    2016-04-01

    We have learnt to live with the pain of separating data and metadata into non-interoperable silos. For metadata, we enjoy the flexibility of databases, be they relational, graph, or some other NoSQL. Contrasting this, users still "drown in files" as an unstructured, low-level archiving paradigm. It is time to bridge this chasm which once was technologically induced, but today can be overcome. One building block towards a common re-integrated information space is to support massive multi-dimensional spatio-temporal arrays. These "datacubes" appear as sensor, image, simulation, and statistics data in all science and engineering domains, and beyond. For example, 2-D satellilte imagery, 2-D x/y/t image timeseries and x/y/z geophysical voxel data, and 4-D x/y/z/t climate data contribute to today's data deluge in the Earth sciences. Virtual observatories in the Space sciences routinely generate Petabytes of such data. Life sciences deal with microarray data, confocal microscopy, human brain data, which all fall into the same category. The ISO SQL/MDA (Multi-Dimensional Arrays) candidate standard is extending SQL with modelling and query support for n-D arrays ("datacubes") in a flexible, domain-neutral way. This heralds a new generation of services with new quality parameters, such as flexibility, ease of access, embedding into well-known user tools, and scalability mechanisms that remain completely transparent to users. Technology like the EU rasdaman ("raster data manager") Array Database system can support all of the above examples simultaneously, with one technology. This is practically proven: As of today, rasdaman is in operational use on hundreds of Terabytes of satellite image timeseries datacubes, with transparent query distribution across more than 1,000 nodes. Therefore, Array Databases offering SQL/MDA constitute a natural common building block for next-generation data infrastructures. Being initiator and editor of the standard we present principles

  14. Anomalous Suppression of Valley Splittings in Lead Salt Nanocrystals

    NASA Astrophysics Data System (ADS)

    Poddubny, Alexander; Nestoklon, Mikhail; Goupalov, Serguei

    2012-02-01

    Atomistic sp^3d^5s^* tight-binding theory of PbSe and PbS nanocrystals is developed. It is demonstrated, that the valley splittings of confined electrons and holes strongly and peculiarly depend on the geometry of a nanocrystal. When the nanocrystal lacks a microscopic center of inversion and has Td symmetry, the splittings are strongly suppressed as compared to the more symmetric nanocrystals with Oh symmetry, having an inversion center. This effect is quite unusual because typically a higher symmetry of a physical system implies a higher degeneracy of its energy levels, while in our case the suppression of the splittings occurs in NCs having lower symmetry. Nevertheless, we were able to explain this puzzling behavior using mathematical apparatus of the group theory.

  15. Colloidal synthesis of biocompatible iron disulphide nanocrystals.

    PubMed

    Santos-Cruz, J; Nuñez-Anita, R E; Mayén-Hernández, S A; Martínez-Alvarez, O; Acosta-Torres, L S; de la Fuente-Hernández, J; Campos-González, E; Vega-González, M; Arenas-Arrocena, M C

    2018-08-01

    The aim of this research was to synthesis biocompatible iron disulphide nanocrystals at different reaction temperatures using the colloidal synthesis methodology. Synthesis was conducted at the 220-240 °C range of reaction temperatures at intervals of 5 °C in an inert argon atmosphere. The toxicity of iron disulphide nanocrystals was evaluated in vitro using mouse fibroblast cell line. Two complementary assays were conducted: the first to evaluate cell viability of the fibroblast via an MTT assay and the second to determine the preservation of fibroblast nuclei integrity through DAPI staining, which labels nuclear DNA in fluorescence microscopes. Through TEM and HRTEM, we observed a cubic morphology of pyrite iron disulphide nanocrystals ranging in sizes 25-50 nm (225 °C), 50-70 nm (230 °C) and >70 nm (235 °C). Through X-ray diffraction, we observed a mixture of pyrite and pyrrohotite in the samples synthesized at 225 °C and 240 °C, showing the best photocatalytic activity at 80% and 65%, respectively, for the degradation of methylene blue after 120 minutes. In all experimental groups, iron disulphide nanocrystals were biocompatible, i.e. no statistically significant differences were observed between experimental groups as shown in a one-way ANOVA and Tukey's test. Based on all of these results, we recommend non-cytotoxic semiconductor iron sulphide nanocrystals for biomedical applications.

  16. Main-chain supramolecular block copolymers.

    PubMed

    Yang, Si Kyung; Ambade, Ashootosh V; Weck, Marcus

    2011-01-01

    Block copolymers are key building blocks for a variety of applications ranging from electronic devices to drug delivery. The material properties of block copolymers can be tuned and potentially improved by introducing noncovalent interactions in place of covalent linkages between polymeric blocks resulting in the formation of supramolecular block copolymers. Such materials combine the microphase separation behavior inherent to block copolymers with the responsiveness of supramolecular materials thereby affording dynamic and reversible materials. This tutorial review covers recent advances in main-chain supramolecular block copolymers and describes the design principles, synthetic approaches, advantages, and potential applications.

  17. Spectroscopic investigation of some building blocks of organic conductors: A comparative study

    NASA Astrophysics Data System (ADS)

    Mukherjee, V.; Yadav, T.

    2017-04-01

    Theoretical molecular structures and IR and Raman spectra of di and tetra methyl substituted tetrathiafulvalene and tetraselenafulvalene molecules have been studied. These molecules belong to the organic conductor family and are immensely used as building blocks of several organic conducting devices. The Hartree-Fock and density functional theory with exchange functional B3LYP have been employed for computational purpose. We have also performed normal coordinate analysis to scale the theoretical frequencies and to calculate potential energy distributions for the conspicuous assignments. The exciting frequency and temperature dependent Raman spectra have also presented. Optimization results reveal that the sulphur derivatives possess boat shape while selenium derivatives possess planner structures. Natural bond orbitals analysis has also been performed to study second order interaction between donors and acceptors and to compute molecular orbital occupancy and energy.

  18. Pinenes: Abundant and Renewable Building Blocks for a Variety of Sustainable Polymers.

    PubMed

    Winnacker, Malte

    2018-05-14

    Pinenes - a group of monoterpenes containing a double bond - are very suitable renewable building blocks for a variety of sustainable polymers and materials. Their abundance from mainly non-edible parts of plants as well as the feasibility to isolate them render these compounds unique amongst the variety of biomass that is utilizable for novel materials. Accordingly, their use for the synthesis of biobased polymers has been investigated intensively, and strong progress has been made with this especially within the past 2-3 years. Direct cationic or radical polymerization via the double bonds as well as polymerization upon their further functionalization can afford a variety of sustainable polymers suitable for many applications, which is summarized in this article. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Membranes. Metal-organic framework nanosheets as building blocks for molecular sieving membranes.

    PubMed

    Peng, Yuan; Li, Yanshuo; Ban, Yujie; Jin, Hua; Jiao, Wenmei; Liu, Xinlei; Yang, Weishen

    2014-12-12

    Layered metal-organic frameworks would be a diverse source of crystalline sheets with nanometer thickness for molecular sieving if they could be exfoliated, but there is a challenge in retaining the morphological and structural integrity. We report the preparation of 1-nanometer-thick sheets with large lateral area and high crystallinity from layered MOFs. They are used as building blocks for ultrathin molecular sieve membranes, which achieve hydrogen gas (H2) permeance of up to several thousand gas permeation units (GPUs) with H2/CO2 selectivity greater than 200. We found an unusual proportional relationship between H2 permeance and H2 selectivity for the membranes, and achieved a simultaneous increase in both permeance and selectivity by suppressing lamellar stacking of the nanosheets. Copyright © 2014, American Association for the Advancement of Science.

  20. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  1. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?

    PubMed

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

  2. Nanocrystal sensitized photovoltaics and photodetectors with performance enhanced using ligand engineering

    NASA Astrophysics Data System (ADS)

    Schut, David M.; Williams, George M., Jr.; Arteaga, Stefan; Allen, Thomas L.; Novet, Thomas

    2011-06-01

    Nanocrystal quantum dot photovoltaics and photodetectors with performance optimized by engineering the nanocrystals size and the optoelectronic properties of the nanocrystal's chemical coating are reported. Due to the large surface-to-volume ratio inherent to nanocrystals, the surface effects of ligands used to chemically coat and passivate nanocrystals play a significant role in device performance. However, the optoelectronic properties of ligands are difficult to ascertain, as the band structure of the ligand-capped nanoparticle system is complex and difficult to model. Using density-of-states measurements, we demonstrate that modeling of electropositive and electronegative substituents and use of the Hammett equation, are useful tools in optimizing nanocrystal detector performance. A new particle, the Janus-II nanoparticles, developed using 'charge-donating' and 'charge-withdrawing' ligands distributed over opposite surfaces of the nanocrystal, is described. The polarizing ligands of the Janus-II nanoparticle form a degeneracy-splitting dipole, which reduces the overlap integral between excitonic states, and thus reduces the probability of carrier recombination, allowing carrier extraction to take place more efficiently. This is shown to allow increased photodetection efficiencies and to allow the capture of multiple exciton events in working photodetectors.

  3. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.

    PubMed

    Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S

    2014-01-14

    Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.

  4. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachleben, Joseph Robert

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10 -8 s -1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O 2 and ultraviolet. A method formore » measuring 14N- 1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T 1 and T 2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.« less

  5. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  6. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  7. Nanocrystal for ocular drug delivery: hope or hype.

    PubMed

    Sharma, Om Prakash; Patel, Viral; Mehta, Tejal

    2016-08-01

    The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.

  8. Construction of three-dimensional DNA hydrogels from linear building blocks.

    PubMed

    Nöll, Tanja; Schönherr, Holger; Wesner, Daniel; Schopferer, Michael; Paululat, Thomas; Nöll, Gilbert

    2014-08-04

    A three-dimensional DNA hydrogel was generated by self-assembly of short linear double-stranded DNA (dsDNA) building blocks equipped with sticky ends. The resulting DNA hydrogel is thermoresponsive and the length of the supramolecular dsDNA structures varies with temperature. The average diffusion coefficients of the supramolecular dsDNA structures formed by self-assembly were determined by diffusion-ordered NMR spectroscopy (DOSY NMR) for temperatures higher than 60 °C. Temperature-dependent rheological measurements revealed a gel point of 42±1 °C. Below this temperature, the resulting material behaved as a true gel of high viscosity with values for the storage modulus G' being significantly larger than that for the loss modulus G''. Frequency-dependent rheological measurements at 20 °C revealed a mesh size (ξ) of 15 nm. AFM analysis of the diluted hydrogel in the dry state showed densely packed structures of entangled chains, which are also expected to contain multiple interlocked rings and catenanes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Building Blocks for Reliable Complex Nonlinear Numerical Simulations. Chapter 2

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    This chapter describes some of the building blocks to ensure a higher level of confidence in the predictability and reliability (PAR) of numerical simulation of multiscale complex nonlinear problems. The focus is on relating PAR of numerical simulations with complex nonlinear phenomena of numerics. To isolate sources of numerical uncertainties, the possible discrepancy between the chosen partial differential equation (PDE) model and the real physics and/or experimental data is set aside. The discussion is restricted to how well numerical schemes can mimic the solution behavior of the underlying PDE model for finite time steps and grid spacings. The situation is complicated by the fact that the available theory for the understanding of nonlinear behavior of numerics is not at a stage to fully analyze the nonlinear Euler and Navier-Stokes equations. The discussion is based on the knowledge gained for nonlinear model problems with known analytical solutions to identify and explain the possible sources and remedies of numerical uncertainties in practical computations. Examples relevant to turbulent flow computations are included.

  10. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    DOEpatents

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  11. Nanocrystal Additives for Advanced Lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Gregory; Lohuis, James; Demas, Nicholaos

    The innovations in engine and drivetrain lubricants are mainly driven by ever more stringent regulations, which demand better fuel economy, lower carbon emission, and less pollution. Many technologies are being developed for the next generations of vehicles to achieve these goals. Even if these technologies can be adopted, there still is a significant need for a “drop-in” lubricant solution for the existing ground vehicle fleet to reap immediate fuel savings at the same time reduce the pollution. Dramatic improvements were observed when Pixelligent’s proprietary, mono-dispersed, and highly scalable metal oxide nanocrystals were added to the base oils. The dispersions inmore » base and formulated oils are clear and without any change of appearance and viscosity. However, the benefits provided by the nanocrystals were limited to the base oils due to the interference of exiting additives in the fully formulated oils. Developing a prototype formulation including the nanocrystals that can demonstrate the same improvements observed in the base oils is a critical step toward the commercialization of these advanced nano-additives. A ‘bottom-up’ approach was adopted to develop a prototype lubricant formulation to avoid the complicated interactions with the multitude of additives, only minimal numbers of most essential additives are added, step by step, into the formulation, to ensure that they are compatible with the nanocrystals and do not compromise their tribological performance. Tribological performance are characterized to come up with the best formulations that can demonstrate the commercial potential of the nano-additives.« less

  12. Optical properties of Si and Ge nanocrystals: Parameter-free calculations

    NASA Astrophysics Data System (ADS)

    Ramos, L. E.; Weissker, H.-Ch.; Furthmüller, J.; Bechstedt, F.

    2005-12-01

    The cover picture of the current issue refers to the Edi-tor's Choice article of Ramos et al. [1]. The paper gives an overview of the electronic and optical properties of silicon and germanium nanocrystals determined by state-of-the-art ab initio methods. Nanocrystals have promising applications in opto-electronic devices, since they can be used to confine electrons and holes and facilitate radiative recombination. Since meas-urements for single nanoparticles are difficult to make, ab initio theoretical investigations become important to understand the mechanisms of luminescence.The cover picture shows nanocrystals of four sizes with tetrahedral coordination whose dangling bonds at the surface are passivated with hydrogen. As often observed in experiments, the nanocrystals are not perfectly spherical, but contain facets. Apart from the size of the nanocrystals, which determines the quantum confinement, the way their dangling bonds are passivated is relevant for their electronic and optical properties. For instance, the passivation with hydroxyls reduces the quantum confine-ment. On the other hand, the oxidation of the silicon nanocrys-tals increases the quantum confinement and reduces the effect of single surface terminations on the gap. Due to the oscillator strengths of the lowest-energy optical transitions, Ge nanocrys-tals are in principle more suitable for opto-electronic applica-tions than Si nanocrystals.The first author, Luis E. Ramos, is a postdoc at the Institute of Solid-State Physics and Optics (IFTO), Friedrich-Schiller University Jena, Germany. He investigates electronic and optical properties of semiconductor nanocrystallites and is a member of the European Network of Excellence NANO-QUANTA and of the European Theoretical Spectroscopy Facility (ETSF).

  13. Optical Properties of Nanocrystal Interfaces in Compressed MgO Nanopowders

    PubMed Central

    2011-01-01

    The optical properties and charge trapping phenomena observed on oxide nanocrystal ensembles can be strongly influenced by the presence of nanocrystal interfaces. MgO powders represent a convenient system to study these effects due to the well-defined shape and controllable size distributions of MgO nanocrystals. The spectroscopic properties of nanocrystal interfaces are investigated by monitoring the dependence of absorption characteristics on the concentration of the interfaces in the nanopowders. The presence of interfaces is found to affect the absorption spectra of nanopowders more significantly than changing the size of the constituent nanocrystals and, thus, leading to the variation of the relative abundance of light-absorbing surface structures. We find a strong absorption band in the 4.0−5.5 eV energy range, which was previously attributed to surface features of individual nanocrystals, such as corners and edges. These findings are supported by complementary first-principles calculations. The possibility to directly address such interfaces by tuning the energy of excitation may provide new means for functionalization and chemical activation of nanostructures and can help improve performance and reliability for many nanopowder applications. PMID:21443262

  14. Increased electronic coupling in silicon nanocrystal networks doped with F4-TCNQ.

    PubMed

    Carvalho, Alexandra; Oberg, Sven; Rayson, Mark J; Briddon, Patrick R

    2013-02-01

    The modification of the electronic structure of silicon nanocrystals using an organic dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is investigated using first-principles calculations. It is shown that physisorbed F4-TCNQ molecules have the effect of oxidizing the nanocrystal, attracting the charge density towards the F4-TCNQ-nanocrystal interface, and decreasing the excitation energy of the system. In periodic F4-TCNQ/nanocrystal superlattices, F4-TCNQ is suggested to enhance exciton separation, and in the presence of free holes, to serve as a bridge for electron/hole transfer between adjacent nanocrystals.

  15. Synthesis of icosahedral gold nanocrystals: a thermal process strategy.

    PubMed

    Zhou, Min; Chen, Shenhao; Zhao, Shiyong

    2006-03-16

    We demonstrate a one-step thermal process route to the synthesis of icosahedral gold nanocrystals. By regulating the concentrations of poly(vinyl pyrrolidone) (PVP) and HAuCl4 or changing the temperature, we can readily access the shapes of icosahedral nanocrystals with good uniformity. These gold nanostructures, with unique geometrical shapes, might find use in areas that include photonics, optoelectronics, and optical sensing. We also observed that these gold nanocrystals have a strong tendency to be immobilized spontaneously on the glass substrate.

  16. Lifetime of excitons localized in Si nanocrystals in amorphous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, O. B.; Belolipetskiy, A. V., E-mail: alexey.belolipetskiy@mail.ioffe.ru; Yassievich, I. N.

    2016-05-15

    The introduction of nanocrystals plays an important role in improving the stability of the amorphous silicon films and increasing the carrier mobility. Here we report results of the study on the photoluminescence and its dynamics in the films of amorphous hydrogenated silicon containing less than 10% of silicon nanocrystals. The comparing of the obtained experimental results with the calculated probability of the resonant tunneling of the excitons localized in silicon nanocrystals is presented. Thus, it has been estimated that the short lifetime of excitons localized in Si nanocrystal is controlled by the resonant tunneling to the nearest tail state ofmore » the amorphous matrix.« less

  17. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals

    PubMed Central

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-01-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures. PMID:24115781

  18. Low temperature biosynthesis of Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction.

    PubMed

    Du, Xiaoyong; He, Wen; Zhang, Xudong; Ma, Jinyun; Wang, Chonghai; Li, Chuanshan; Yue, Yuanzheng

    2013-04-01

    We demonstrate a biomimetic synthesis methodology that allows us to create Li2O-MgO-P2O5-TiO2 nanocrystalline glass with mesoporous structure at lower temperature. We design a 'nanocrystal-glass' configuration to build a nanoarchitecture by means of yeast cell templates self-assembly followed by the controlled in-situ biomineralization of materials on the cell wall. Electrochemically active nanocrystals are used as the lamellar building blocks of mesopores, and the semiconductive glass phase can act both as the 'glue' between nanocrystals and functionalized component. The Li2O-MgO-P2O5-TiO2 nanocrystalline glass exhibits outstanding thermal stability, high conductivity and wide potential window. This approach could be applied to many other multicomponent glass-ceramics to fabricate mesoporous conducting materials for solid-state lithium batteries. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A Shifted Block Lanczos Algorithm 1: The Block Recurrence

    NASA Technical Reports Server (NTRS)

    Grimes, Roger G.; Lewis, John G.; Simon, Horst D.

    1990-01-01

    In this paper we describe a block Lanczos algorithm that is used as the key building block of a software package for the extraction of eigenvalues and eigenvectors of large sparse symmetric generalized eigenproblems. The software package comprises: a version of the block Lanczos algorithm specialized for spectrally transformed eigenproblems; an adaptive strategy for choosing shifts, and efficient codes for factoring large sparse symmetric indefinite matrices. This paper describes the algorithmic details of our block Lanczos recurrence. This uses a novel combination of block generalizations of several features that have only been investigated independently in the past. In particular new forms of partial reorthogonalization, selective reorthogonalization and local reorthogonalization are used, as is a new algorithm for obtaining the M-orthogonal factorization of a matrix. The heuristic shifting strategy, the integration with sparse linear equation solvers and numerical experience with the code are described in a companion paper.

  20. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.

    PubMed

    Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule

    2015-11-25

    The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure.

  1. Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication

    NASA Astrophysics Data System (ADS)

    Decossas, Sébastien; Mazen, Frédéric; Baron, Thierry; Brémond, Georges; Souifi, Abdelkader

    2003-12-01

    An atomic force microscopy (AFM) tip has been used to manipulate silicon nanocrystals deposited by low-pressure chemical vapour deposition on thermally oxidized p-type Si wafer. Three nanomanipulation methods are presented. The first one catches a nanocrystal with the AFM tip and deposits it elsewhere: the tip is used as an electrostatic 'nano-crane'. The second one simultaneously manipulates a set of nanocrystals in order to draw well-defined unidimensional lines: the tip is used as a 'nano-broom'. The third one manipulates individual nanocrystals with a precision of about 10 nm using both oscillating and contact AFM modes. Switching from strong interaction forces (chemical) to weak ones (van der Waals, electrostatic or capillarity) is the basis of these manipulation methods. We have applied the second method to connect two electrodes drawn by e-beam and lift-off with a 70 nm long silicon nanocrystal chain. Current versus voltage characterization of the nanofabricated device shows that the increase in nanocrystal density gives rise to conduction between the connected electrodes. Resonant tunnelling effects resulting from Si nanocrystal (nc-Si) multiple tunnel junctions have been observed at 300 K. We also show that offset charges directly influence the position of the resonant tunnelling peaks. Finally, the possibility of manipulating nc-Si with a diameter of around 5 nm is shown to be a promising way to fabricate single electron devices operating at room temperature and fully compatible with silicon technology.

  2. Band gap and composition engineering on a nanocrystal (BCEN) in solution.

    PubMed

    Peng, Xiaogang

    2010-11-16

    Colloidal nanocrystals with "artificial" composition and electron band structure promise to expand the fields of nanomaterials and inorganic chemistry. Despite their promise as functional materials, the fundamental science associated with the synthesis, characterization, and properties of colloidal nanocrystals is still in its infancy and deserves systematic study. Furthermore, such studies are important for our basic understanding of crystallization, surface science, and solid state chemistry. "Band gap and composition engineering on a nanocrystal" (BCEN) refers to the synthesis of a colloidal nanocrystal with composition and/or electron energy band structure that are not found in natural bulk crystals. The BCEN nanostructure shown in the Figure includes a magnetic domain for the separation and recycling of the complex nanostructure, a photoactivated catalytic center, and an additional chemical catalytic center. A thin but porous film (such as a silicate) might be coated onto the nanocrystal, both to provide chemical stability and to isolate the reaction processes from the bulk solution. This example is a catalytic complex analogous to an enzyme that facilitates two sequential reactions in a microenvironment different from bulk solution. The synthesis of colloidal nanocrystals has advanced by a quantum leap in the past two decades. The field now seems ready to extend colloidal nanocrystal synthesis into the BCEN regime. Although BCEN is a very new branch of synthetic chemistry, this Account describes advances in related synthetic and characterization techniques that can serve as a useful starting point for this new area of investigation. To put these ideas into context, this Account compares this new field with organic synthesis, the most developed branch in synthetic chemistry. The structural and functional diversity of organic compounds results from extending design and synthesis beyond the construction of natural organic compounds. If this idea also holds true

  3. Systems and methods of detecting force and stress using tetrapod nanocrystal

    DOEpatents

    Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul

    2013-08-20

    Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

  4. Natural supramolecular building blocks: from virus coat proteins to viral nanoparticles.

    PubMed

    Liu, Zhi; Qiao, Jing; Niu, Zhongwei; Wang, Qian

    2012-09-21

    Viruses belong to a fascinating class of natural supramolecular structures, composed of multiple copies of coat proteins (CPs) that assemble into different shapes with a variety of sizes from tens to hundreds of nanometres. Because of their advantages including simple/economic production, well-defined structural features, unique shapes and sizes, genetic programmability and robust chemistries, recently viruses and virus-like nanoparticles (VLPs) have been used widely in biomedical applications and materials synthesis. In this critical review, we highlight recent advances in the use of virus coat proteins (VCPs) and viral nanoparticles (VNPs) as building blocks in self-assembly studies and materials development. We first discuss the self-assembly of VCPs into VLPs, which can efficiently incorporate a variety of different materials as cores inside the viral protein shells. Then, the self-assembly of VNPs at surfaces or interfaces is summarized. Finally, we discuss the co-assembly of VNPs with different functional materials (178 references).

  5. Probing the Conformational Landscape of Polyether Building Blocks in Supersonic Jets

    NASA Astrophysics Data System (ADS)

    Bocklitz, Sebastian; Hewett, Daniel M.; Zwier, Timothy S.; Suhm, Martin A.

    2016-06-01

    Polyethylene oxides (Polyethylene glycoles) and their phenoxy-capped analogs represent a prominent class of important polymers that are highly used as precursor molecules in supramolecular reactions. After a detailed study on the simplest representative (1,2-dimethoxyethane) [1], we present results on oligoethylene oxides with increasing chain lengths obtained by spontaneous Raman scattering in a supersonic jet. Through variation of stagnation pressure, carrier gas, nozzle distance and temperature we gain information on the conformational landscape as well as the mutual interconversion of low energy conformers. The obtained results are compared to state-of-the-art quantum chemical calculations. Additionally, we present UV as well as IR-UV and UV-UV double resonance studies on 1-methoxy-2-phenoxyethane in a supersonic jet. These complementary techniques allow for conformationally selective electronic and vibrational spectra in a closely related conformational landscape. [1] S. Bocklitz, M. A. Suhm, Constraining the Conformational Landscape of a Polyether Building Block by Raman Jet Spectroscopy, Z. Phys. Chem. 2015, 229, 1625-1648.

  6. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?

    PubMed Central

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E.

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. The aim of this article is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Toward the end of this article, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take. PMID:19053095

  7. Metal Sulfide Nanocrystals inside Ferritin with Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Hansen, Kameron; Peterson, J. Ryan; Olsen, Cameron; Hogg, Heather; Colton, John; Watt, Richard; Colton Team

    Ferritin is a spherical protein shell used universally by organisms to store iron. Due to a number of ferritin's properties (a conductive shell, ability to be arranged in ordered arrays, and high stability), recent theoretical work has proposed that non-native semiconductor nanocrystals inside ferritin can be used for high-efficiency solar energy conversion. We present research on the synthesis of a variety of these nanocrystals (PbS, CuS, Mo2S, ZnS, and PbSe) inside ferritin's hollow interior and band gap energies of the resulting ferritin-nanocrystal constructs. We also report preliminary solar cell results for dye sensitized solar cells with PbS-ferritin as the dye.

  8. Dispersions of Aramid Nanofibers: A New Nanoscale Building Block

    PubMed Central

    Yang, Ming; Cao, Keqin; Sui, Lang; Qi, Ying; Zhu, Jian; Waas, Anthony; Arruda, Ellen M.; Kieffer, John; Thouless, M. D.; Kotov, Nicholas A.

    2011-01-01

    Stable dispersions of nanofibers are virtually unknown for synthetic polymers. They can complement analogous dispersions of inorganic components, such as nanoparticles, nanowires, nanosheets, etc as a fundamental component of a toolset for design of nanostructures and metamaterials via numerous solvent-based processing methods. As such, strong flexible polymeric nanofibers are very desirable for the effective utilization within composites of nanoscale inorganic components such as nanowires, carbon nanotubes, graphene, and others. Here stable dispersions of uniform high-aspect-ratio aramid nanofibers (ANFs) with diameters between 3 and 30 nm and up to 10 μm in length were successfully obtained. Unlike the traditional approaches based on polymerization of monomers, they are made by controlled dissolution of standard macroscale form of the aramid polymer, i.e. well known Kevlar threads, and revealed distinct morphological features similar to carbon nanotubes. ANFs are successfully processed into films using layer-by-layer (LBL) assembly as one of the potential methods of preparation of composites from ANFs. The resultant films are transparent and highly temperature resilient. They also display enhanced mechanical characteristics making ANF films highly desirable as protective coatings, ultrastrong membranes, as well as building blocks of other high performance materials in place of or in combination with carbon nanotubes. PMID:21800822

  9. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  10. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals

    DTIC Science & Technology

    2009-06-30

    Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of

  11. Synthesis, characterization and design of a nanocrystal based photovoltaic device

    NASA Astrophysics Data System (ADS)

    Erwin, Mary Margaret

    Nanocomposites have shown promise as the active layer for photovoltaic energy conversion. Devices consisting of CdSe nanocrystals and semiconducting polymer, and devices consisting of C60 and semiconducting polymer have been recently investigated. This work will present the rational design, synthesis, fabrication and characterization of a nanocomposite photovoltaic device-containing Poly 3-hexylthiophene (P3HT), Cadmium Selenium (CdSe) nanocrystals, and C60. The use of these three components allows for a dedicated light harvester, CdSe nanocrystals, a dedicated hole transporter, P3HT, and a dedicated electron transporter, C60. Two primary premises were investigated in this work; first what effect the size of the nanocrystal would have on the efficiency of the devices and second would the addition of C 60 to a CdSe nanocrystal/semiconducting polymer device increase the efficiency of the devices. Three sizes of CdSe nanocrystals (30A, 45A, and 72A) were used in the photoactive layer. Five different composites were used for the photoactive layer ranging from 20% CdSe or C60 to 80% CdSe or C60 of each size of CdSe nanocrystal, while the percentage of P3HT was held constant at 20%. All of the composites were tested at 514 nm at 5 W/m2 and at the industry standard of AM 1.5 at 1000 W/m2 (1 sun). After all the results were analyzed, it was seen that with the addition of C60 only a small percentage of CdSe nanocrystals would be required to make an efficient device, thus making this device cost effective and with more research a viable new source of photovoltaic energy.

  12. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    PubMed

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  13. Establishing an Appropriate Level of Detail (LoD) for a Building Information Model (BIM) - West Block, Parliament Hill, Ottawa, Canada

    NASA Astrophysics Data System (ADS)

    Fai, S.; Rafeiro, J.

    2014-05-01

    In 2011, Public Works and Government Services Canada (PWGSC) embarked on a comprehensive rehabilitation of the historically significant West Block of Canada's Parliament Hill. With over 17 thousand square meters of floor space, the West Block is one of the largest projects of its kind in the world. As part of the rehabilitation, PWGSC is working with the Carleton Immersive Media Studio (CIMS) to develop a building information model (BIM) that can serve as maintenance and life-cycle management tool once construction is completed. The scale and complexity of the model have presented many challenges. One of these challenges is determining appropriate levels of detail (LoD). While still a matter of debate in the development of international BIM standards, LoD is further complicated in the context of heritage buildings because we must reconcile the LoD of the BIM with that used in the documentation process (terrestrial laser scan and photogrammetric survey data). In this paper, we will discuss our work to date on establishing appropriate LoD within the West Block BIM that will best serve the end use. To facilitate this, we have developed a single parametric model for gothic pointed arches that can be used for over seventy-five unique window types present in the West Block. Using the AEC (CAN) BIM as a reference, we have developed a workflow to test each of these window types at three distinct levels of detail. We have found that the parametric Gothic arch significantly reduces the amount of time necessary to develop scenarios to test appropriate LoD.

  14. Emission efficiency limit of Si nanocrystals

    PubMed Central

    Limpens, Rens; Luxembourg, Stefan L.; Weeber, Arthur W.; Gregorkiewicz, Tom

    2016-01-01

    One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use of a low-temperature hydrogen passivation treatment we demonstrate a maximum emission quantum efficiency of approximately 35%. This is the highest value ever reported for this type of material. By cross-correlating PL lifetime with EQE values, we obtain a comprehensive understanding of the efficiency limiting processes induced by Pb-defects. We establish that the observed record efficiency corresponds to an interface density of Pb-centers of 1.3 × 1012 cm12, which is 2 orders of magnitude higher than for the best Si/SiO2 interface. This result implies that Si nanocrystals with up to 100% emission efficiency are feasible. PMID:26786062

  15. Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.

    PubMed

    Bozyigit, Deniz; Jakob, Michael; Yarema, Olesya; Wood, Vanessa

    2013-04-24

    We demonstrate current-based, deep level transient spectroscopy (DLTS) on semiconductor nanocrystal solids to obtain quantitative information on deep-lying trap states, which play an important role in the electronic transport properties of these novel solids and impact optoelectronic device performance. Here, we apply this purely electrical measurement to an ethanedithiol-treated, PbS nanocrystal solid and find a deep trap with an activation energy of 0.40 eV and a density of NT = 1.7 × 10(17) cm(-3). We use these findings to draw and interpret band structure models to gain insight into charge transport in PbS nanocrystal solids and the operation of PbS nanocrystal-based solar cells.

  16. Protein unfolding versus β-sheet separation in spider silk nanocrystals

    NASA Astrophysics Data System (ADS)

    Alam, Parvez

    2014-03-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths.

  17. A generalized analog implementation of piecewise linear neuron models using CCII building blocks.

    PubMed

    Soleimani, Hamid; Ahmadi, Arash; Bavandpour, Mohammad; Sharifipoor, Ozra

    2014-03-01

    This paper presents a set of reconfigurable analog implementations of piecewise linear spiking neuron models using second generation current conveyor (CCII) building blocks. With the same topology and circuit elements, without W/L modification which is impossible after circuit fabrication, these circuits can produce different behaviors, similar to the biological neurons, both for a single neuron as well as a network of neurons just by tuning reference current and voltage sources. The models are investigated, in terms of analog implementation feasibility and costs, targeting large scale hardware implementations. Results show that, in order to gain the best performance, area and accuracy; these models can be compromised. Simulation results are presented for different neuron behaviors with CMOS 350 nm technology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Using OpenMP vs. Threading Building Blocks for Medical Imaging on Multi-cores

    NASA Astrophysics Data System (ADS)

    Kegel, Philipp; Schellmann, Maraike; Gorlatch, Sergei

    We compare two parallel programming approaches for multi-core systems: the well-known OpenMP and the recently introduced Threading Building Blocks (TBB) library by Intel®. The comparison is made using the parallelization of a real-world numerical algorithm for medical imaging. We develop several parallel implementations, and compare them w.r.t. programming effort, programming style and abstraction, and runtime performance. We show that TBB requires a considerable program re-design, whereas with OpenMP simple compiler directives are sufficient. While TBB appears to be less appropriate for parallelizing existing implementations, it fosters a good programming style and higher abstraction level for newly developed parallel programs. Our experimental measurements on a dual quad-core system demonstrate that OpenMP slightly outperforms TBB in our implementation.

  19. Building Numbers from Primes

    ERIC Educational Resources Information Center

    Burkhart, Jerry

    2009-01-01

    Prime numbers are often described as the "building blocks" of natural numbers. This article shows how the author and his students took this idea literally by using prime factorizations to build numbers with blocks. In this activity, students explore many concepts of number theory, including the relationship between greatest common factors and…

  20. Blockbusters: Ideas for the Block Center.

    ERIC Educational Resources Information Center

    Adams, Polly K.; Nesmith, Jaynie

    1996-01-01

    Goals of block building in early childhood classrooms focus on physical, social, cognitive, and emotional development. Reports survey results of the value teachers place on block play. Offers illustrations of task cards to use with blocks in math, language arts, social studies, and science. Discusses guidelines and suggests idea cards and sentence…

  1. The aggregation and characteristics of radiation-induced defects in lithium fluoride nanocrystals

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Korzhik, M. V.; Martynovich, E. F.; Runets, L. P.; Stupak, A. P.

    2013-02-01

    It has been established that diffusion activation energies for anion vacancies and centres ? in lithium fluoride nanocrystals are higher than those in bulk crystals. In nanocrystals, ? centres migrating in the range of the temperature close to room temperature is not observed and these centres remain stable. The ratio of centres ? and F 2 concentrations in nanocrystals is higher than in bulk crystals. A new type of colour centres, which is absent in bulk crystals, is discovered in nanocrystals.

  2. Knowledge Gateways: The Building Blocks.

    ERIC Educational Resources Information Center

    Hawkins, Donald T.; And Others

    1988-01-01

    Discusses the need for knowledge gateway systems to provide access to scattered information and the use of technologies in gateway building, including artificial intelligence and expert systems, networking, online retrieval systems, optical storage, and natural language processing. The status of four existing gateways is described. (20 references)…

  3. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  4. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  5. Syntheses and applications of manganese-doped II-VI semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, Heesun

    Syntheses, characterizations, and applications of two different Mn-doped semiconductor nanocrystals, ZnS:Mn and CdS:Mn/ZnS core/shell, were investigated. ZnS:Mn nanocrystals with sizes between 3 and 4 nm were synthesized via a competitive reaction chemistry. A direct current (dc) electroluminescent (EL) device having a hybrid organic/inorganic multilayer structure of an indium tin oxide (ITO) transparent conducting electrode, a (poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT-PSS) and a poly(N-vinylcarbazole) (PVK) bilayer hole transport film, a ZnS:Mn nanocrystal layer, and Al dot contacts was demonstrated to emit blue (˜445 and ˜495 nm) from PVK and yellow (˜600 nm) light from Mn activator in ZnS. The EL emission spectrum was dependent upon both the voltage and Mn concentration, showing a decreasing nanocrystal to PVK emission ratio from 10 at 20 V to 4 at 28 V, and an increasing ratio from 1.3 at 0.40 mol % to 4.3 at 2.14 mol %. Mn-doped CdS core nanocrystals were produced ranging from 1.5 to 2.3 nm in diameter with a ZnS shell via a reverse micelle process. In contrast to CdS:Mn nanocrystals passivated by n-dodecanethiol, ZnS-passivated CdS:Mn (CdS:Mn/ZnS core/shell) nanocrystals were efficient and photostable. CdS:Mn/ZnS core/shell nanocrystals exhibited a quantum yield of ˜18%, and the photoluminescence (PL) intensity increased by 40% after 400 nm UV irradiation in air. X-ray photoelectron spectroscopy (XPS) data showed that UV irradiation of CdS:Mn/ZnS nanocrystals induces the photooxidation of the ZnS shell surface to ZnSO4. This photooxidation product is presumably responsible for the increased PL emission by serving as a passivating surface layer. Luminescent lifetime data from the core/shell nanocrystals could be fit with two exponential functions, with a time constant of ˜170 nsec for the defect-related centers and of ˜1 msec for the Mn centers. The CdS:Mn/ZnS nanocrystals with a core crystal diameter of 2.3 nm and a 0.4 nm thick Zn

  6. CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Eyley, Samuel; Vandamme, Dries; Lama, Sanjaya; van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim

    2015-08-01

    Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems. Electronic supplementary information (ESI) available: Spectra for all products. See DOI: 10.1039/C5NR03853G

  7. Synthesis of borylated porphyrin and bromo- porphyrin as building blocks for light harvesting antenna molecule

    NASA Astrophysics Data System (ADS)

    Radzuan, Nuur Haziqah Mohd; Hassan, Nurul Izzaty; Bakar, Muntaz Abu

    2018-04-01

    The building blocks for synthesis of light harvesting antenna which are 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-diphenylporphyrin, 5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)-10,20-dihexylporphyrin and 5,10,15,20-tetra-(bromophenyl)porphyrin were synthesized. Borylated porphyrin was synthesized by Suzuki coupling reaction between A2BC bromo-porphyrin and pinacolborane. Whereas 5,10,15,20-tetra-(bromophenyl) porphyrin was synthesized by Lindsey condensation reaction between pyrrole and 4-bromobenzaldehyde. 1H-NMR, 13C-NMR spectroscopy and UV-visible spectroscopy confirmed the successful formation of all compounds.

  8. The Influence of Building Block Play on Mathematics Achievement and Logical and Divergent Thinking in Italian Primary School Mathematics Classes

    ERIC Educational Resources Information Center

    Pirrone, Concetta; Tienken, Christopher H.; Pagano, Tatiana; Di Nuovo, Santo

    2018-01-01

    In an experimental study to explain the effect of structured Building Block Play with LEGO™ bricks on 6-year-old student mathematics achievement and in the areas of logical thinking, divergent thinking, nonverbal reasoning, and mental imagery, students in the experimental group scored significantly higher (p = 0.05) in mathematics achievement and…

  9. Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging

    PubMed Central

    Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.

    2011-01-01

    We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646

  10. Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties.

    PubMed

    Cao, Xuebo; Gu, Li

    2005-02-01

    In this paper we describe the preparation of homogeneously needle-shaped cobalt ferrite (CoFe(2)O(4)) nanocrystals on a large scale through the smooth decomposition of urea and the resulting co-precipitation of Co(2+) and Fe(3+) in oleic acid micelles. Furthermore, we found that other ferrite nanocrystals with a needle-like shape, such as zinc ferrite (ZnFe(2)O(4)) and nickel ferrite (NiFe(2)O(4)), can be prepared by the same process. Needle-shaped CoFe(2)O(4) nanocrystals dispersed in an aqueous solution containing oleic acid exhibit excellent stability and the formed colloid does not produce any precipitations after two months, which is of prime importance if these materials are applied in magnetic fluids. X-ray diffraction (XRD) measurements were used to characterize the phase and component of the co-precipitation products, and demonstrate that they are spinel ferrite with a cubic symmetry. Transmission electron microscopy (TEM) observation showed that all the nanocrystals present a needle-like shape with a 22 nm short axis and an aspect ratio of around 6. Varying the concentration of oleic acid did not bring about any obvious influence on the size distribution and shapes of CoFe(2)O(4). The magnetic properties of the needle-shaped CoFe(2)O(4) nanocrystals were evaluated by using a vibrating sample magnetometer (VSM), electron paramagnetic resonance (EPR), and a Mössbauer spectrometer, and the results all demonstrated that CoFe(2)O(4) nanocrystals were superparamagnetic at room temperature.

  11. High-purity Cu nanocrystal synthesis by a dynamic decomposition method.

    PubMed

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  12. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    NASA Astrophysics Data System (ADS)

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  13. Shape control of II-VI semiconductor nanomaterials.

    PubMed

    Kumar, Sandeep; Nann, Thomas

    2006-03-01

    Anisotropic II-VI semiconductor nanocrystals and nanoparticles have become important building blocks for (potential) nanotechnological applications. Even though a wide variety of differently shaped nanoparticles of this class can be prepared, the underlying mechanisms are mostly not fully understood. This Review article provides a brief overview of the currently studied shape-evolution mechanisms and the most prominent synthesis methods for such particles, with an aim to provide a fundamental understanding on how different morphologies evolve, and to function as a tool to aid in the preparation of specific nanocrystals.

  14. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.

    PubMed

    Azzaro, Michael S; Dodin, Amro; Zhang, Diana Y; Willard, Adam P; Roberts, Sean T

    2018-05-09

    Researchers have long sought to use surface ligands to enhance energy migration in nanocrystal solids by decreasing the physical separation between nanocrystals and strengthening their electronic coupling. Exciton-delocalizing ligands, which possess frontier molecular orbitals that strongly mix with nanocrystal band-edge states, are well-suited for this role because they can facilitate carrier-wave function extension beyond the nanocrystal core, reducing barriers for energy transfer. This report details the use of the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) to tune the transport rate and diffusion length of excitons in CdSe nanocrystal solids. A film composed of oleate-terminated CdSe nanocrystals is subjected to a solid-state ligand exchange to replace oleate with PDTC. Exciton migration in the films is subsequently investigated by femtosecond transient absorption. Our experiments indicate that the treatment of nanocrystal films with PDTC leads to rapid (∼400 fs) downhill energy migration (∼80 meV), while no such migration occurs in oleate-capped films. Kinetic Monte Carlo simulations allow us to extract both rates and length scales for exciton diffusion in PDTC-treated films. These simulations reproduce dynamics observed in transient absorption measurements over a range of temperatures and confirm excitons hop via a Miller-Abrahams mechanism. Importantly, our experiments and simulations show PDTC treatment increases the exciton hopping rate to 200 fs, an improvement of 5 orders of magnitude relative to oleate-capped films. This exciton hopping rate stands as one of the fastest determined for CdSe solids. The facile, room-temperature processing and improved transport properties offered by the solid-state exchange of exciton-delocalizing ligands show they offer promise for the construction of strongly coupled nanocrystal arrays.

  15. Spontaneous Self-Assembly of Perovskite Nanocrystals into Electronically Coupled Supercrystals: Toward Filling the Green Gap.

    PubMed

    Tong, Yu; Yao, En-Ping; Manzi, Aurora; Bladt, Eva; Wang, Kun; Döblinger, Markus; Bals, Sara; Müller-Buschbaum, Peter; Urban, Alexander S; Polavarapu, Lakshminarayana; Feldmann, Jochen

    2018-06-05

    Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr 3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at ≈530-535 nm, while the individual nanocubes emit a cyan-green color (≈512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr 3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  17. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.

    PubMed

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

  18. Impact: a low cost, reconfigurable, digital beamforming common module building block for next generation phased arrays

    NASA Astrophysics Data System (ADS)

    Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris

    2015-05-01

    Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.

  19. Expedient Route To Access Rare Deoxy Amino l-Sugar Building Blocks for the Assembly of Bacterial Glycoconjugates.

    PubMed

    Sanapala, Someswara Rao; Kulkarni, Suvarn S

    2016-04-13

    Bacterial glycoproteins and oligosaccharides contain several rare deoxy amino l-sugars which are virtually absent in the human cells. This structural difference between the bacterial and host cell surface glycans can be exploited for the development of carbohydrate based vaccines and target specific drugs. However, the unusual deoxy amino l-sugars present in the bacterial glycoconjugates are not available from natural sources. Thus, procurement of orthogonally protected rare l-sugar building blocks through efficient chemical synthesis is a crucial step toward the synthesis of structurally well-defined and homogeneous complex glycans. Herein, we report a general and expedient methodology to access a variety of unusual deoxy amino l-sugars starting from readily available l-rhamnose and l-fucose via highly regioselective, one-pot double serial and double parallel displacements of the corresponding 2,4-bistriflates using azide and nitrite anions as nucleophiles. Alternatively, regioselective monotriflation at O2, O3, and O4 of l-rhamnose/l-fucose allowed selective inversions at respective positions leading to diverse rare sugars. The orthogonally protected deoxy amino l-sugar building blocks could be stereoselectively assembled to obtain biologically relevant bacterial O-glycans, as exemplified by the first total synthesis of the amino linker-attached, conjugation-ready tetrasaccharide of O-PS of Yersinia enterocolitica O:50 strain 3229 and the trisaccharide of Pseudomonas chlororaphis subsp. aureofaciens strain M71.

  20. Core-Shell Particles as Building Blocks for Systems with High Duality Symmetry

    NASA Astrophysics Data System (ADS)

    Rahimzadegan, Aso; Rockstuhl, Carsten; Fernandez-Corbaton, Ivan

    2018-05-01

    Material electromagnetic duality symmetry requires a system to have equal electric and magnetic responses. Intrinsically dual materials that meet the duality conditions at the level of the constitutive relations do not exist in many frequency bands. Nevertheless, discrete objects like metallic helices and homogeneous dielectric spheres can be engineered to approximate the dual behavior. We exploit the extra degrees of freedom of a core-shell dielectric sphere in a particle optimization procedure. The duality symmetry of the resulting particle is more than 1 order of magnitude better than previously reported nonmagnetic objects. We use T -matrix-based multiscattering techniques to show that the improvement is transferred onto the duality symmetry of composite objects when the core-shell particle is used as a building block instead of homogeneous spheres. These results are relevant for the fashioning of systems with high duality symmetry, which are required for some technologically important effects.

  1. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  2. The surface structure of silver-coated gold nanocrystals and its influence on shape control

    DOE PAGES

    Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; ...

    2015-07-08

    Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less

  3. Cyclodextrins as versatile building blocks for regenerative medicine.

    PubMed

    Alvarez-Lorenzo, Carmen; García-González, Carlos A; Concheiro, Angel

    2017-12-28

    Cyclodextrins (CDs) are one of the most versatile substances produced by nature, and it is in the aqueous biological environment where the multifaceted potential of CDs can be completely unveiled. CDs form inclusion complexes with a variety of guest molecules, including polymers, producing very diverse biocompatible supramolecular structures. Additionally, CDs themselves can trigger cell differentiation to distinct lineages depending on the substituent groups and also promote salt nucleation. These features together with the affinity-driven regulated release of therapeutic molecules, growth factors and gene vectors explain the rising interest for CDs as building blocks in regenerative medicine. Supramolecular poly(pseudo)rotaxane structures and zipper-like assemblies exhibit outstanding viscoelastic properties, performing as syringeable implants. The sharp shear-responsiveness of the supramolecular assemblies is opening new avenues for the design of bioinks for 3D printing and also of electrospun fibers. CDs can also be transformed into polymerizable monomers to prepare alternative nanostructured materials. The aim of this review is to analyze the role that CDs may play in regenerative medicine through the analysis of the last decade research. Most applications of CD-based scaffolds are focussed on non-healing bone fractures, cartilage reparation and skin recovery, but also on even more challenging demands such as neural grafts. For the sake of clarity, main sections of this review are organized according to the architecture of the CD-based scaffolds, mainly syringeable supramolecular hydrogels, 3D printed scaffolds, electrospun fibers, and composites, since the same scaffold type may find application in different tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less

  5. Single step synthesis of high-purity CoO nanocrystals.

    PubMed

    Yang, Huaming; Ouyang, Jing; Tang, Aidong

    2007-07-19

    Both octahedral and slice-shaped cubic cobalt monoxide (CoO) nanocrystals with narrow size distributions have been successfully synthesized by a simple solvothermal route. It was found that conditions of the solvothermal treatment showed obvious effects on the formation and purity of the as-synthesized CoO nanocrystals, only when cobalt acetate was used as the cobalt source and when temperature reached 190 degrees C could CoO be produced; also, freeze-drying was necessary for obtaining pure CoO. Size of the CoO nanocrystals varied from 30 to 130 nm. Morphology of the products could be controlled by simply changing the type of surfactant in solvent, and the octahedral CoO nanocrystals showed rounded turns. Purity of the products was detected by intensive X-ray photoelectron spectroscopy (XPS) investigation and Fourier transform infrared spectroscopy (FTIR) combined with differential scanning calorimetry/thermal gravity (DSC/TG). The results indicated an absence of unexpected trivalence cobalt series on surface of the samples, thanks to the protection of the surface by trace amount of carbonate ions, adsorbed hydroxylation, and surfactant with a maximum thickness of 2 nm, which were proved by high-resolution transmission electron microscopy (HRTEM). The as-synthesized CoO nanoparticles were added into positive electrode of Ni/MH batteries, and discharge/charge cycling tests were performed under different rates from 0.1C to 5.0C. The results indicated that the specific capacities of batteries with addition of 5% octahedral or slice CoO nanocrystals at 0.1C were 393.3 and 318.1 mAh/g, respectively, which were higher than that without CoO (269.2mAh/g). Specific capacity of battery with addition of 5% octahedral CoO nanocrystals was 40% higher than that without CoO at 5.0C. Octahedral CoO nanocrystals show better electrochemical activity than slice CoO and indicate interesting potential in the field of electrochemical application.

  6. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  7. Statistical molecular design of building blocks for combinatorial chemistry.

    PubMed

    Linusson, A; Gottfries, J; Lindgren, F; Wold, S

    2000-04-06

    The reduction of the size of a combinatorial library can be made in two ways, either base the selection on the building blocks (BB's) or base it on the full set of virtually constructed products. In this paper we have investigated the effects of applying statistical designs to BB sets compared to selections based on the final products. The two sets of BB's and the virtually constructed library were described by structural parameters, and the correlation between the two characterizations was investigated. Three different selection approaches were used both for the BB sets and for the products. In the first two the selection algorithms were applied directly to the data sets (D-optimal design and space-filling design), while for the third a cluster analysis preceded the selection (cluster-based design). The selections were compared using visual inspection, the Tanimoto coefficient, the Euclidean distance, the condition number, and the determinant of the resulting data matrix. No difference in efficiency was found between selections made in the BB space and in the product space. However, it is of critical importance to investigate the BB space carefully and to select an appropriate number of BB's to result in an adequate diversity. An example from the pharmaceutical industry is then presented, where selection via BB's was made using a cluster-based design.

  8. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  9. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul A.

    2016-12-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with onemore » or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.« less

  10. Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.

    PubMed

    Prozorov, Tanya; Palo, Pierre; Wang, Lijun; Nilsen-Hamilton, Marit; Jones, DeAnna; Orr, Daniel; Mallapragada, Surya K; Narasimhan, Balaji; Canfield, Paul C; Prozorov, Ruslan

    2007-10-01

    Magnetotactic bacteria produce exquisitely ordered chains of uniform magnetite (Fe(3)O(4)) nanocrystals, and the use of the bacterial mms6 protein allows for the shape-selective synthesis of Fe(3)O(4) nanocrystals. Cobalt ferrite (CoFe(2)O(4)) nanoparticles, on the other hand, are not known to occur in living organisms. Here we report on the use of the recombinant mms6 protein in a templated synthesis of CoFe(2)O(4) nanocrystals in vitro. We have covalently attached the full-length mms6 protein and a synthetic C-terminal domain of mms6 protein to self-assembling polymers in order to template hierarchical CoFe(2)O(4) nanostructures. This new synthesis pathway enables facile room-temperature shape-specific synthesis of complex magnetic crystalline nanomaterials with particle sizes in the range of 40-100 nm that are difficult to produce using conventional techniques.

  11. A dual-colored bio-marker made of doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.

    2008-08-01

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  12. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    PubMed Central

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827

  13. Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals

    PubMed Central

    Wheeler, Lance M.; Neale, Nathan R.; Chen, Ting; Kortshagen, Uwe R.

    2013-01-01

    Colloidal semiconductor nanocrystals have attracted attention for cost-effective, solution-based deposition of quantum-confined thin films for optoelectronics. However, two significant challenges must be addressed before practical nanocrystal-based devices can be realized. The first is coping with the ligands that terminate the nanocrystal surfaces. Though ligands provide the colloidal stability needed to cast thin films from solution, these ligands dramatically hinder charge carrier transport in the resulting film. Second, after a conductive film is achieved, doping has proven difficult for further control of the optoelectronic properties of the film. Here we report the ability to confront both of these challenges by exploiting the ability of silicon to engage in hypervalent interactions with hard donor molecules. For the first time, we demonstrate the significant potential of applying the interaction to the nanocrystal surface. In this study, hypervalent interactions are shown to provide colloidal stability as well as doping of silicon nanocrystals. PMID:23893292

  14. Mononuclear, trinuclear, and hetero-trinuclear supramolecular complexes containing a new tri-sulfonate ligand and cobalt(II)/copper(II)-(1,10-phenanthroline) 2 building blocks

    NASA Astrophysics Data System (ADS)

    Yu, Yunfang; Wei, Yongqin; Broer, Ria; Sa, Rongjian; Wu, Kechen

    2008-03-01

    Novel mononuclear, trinuclear, and hetero-trinuclear supermolecular complexes, [Co(phen) 2(H 2O)(HTST)]·2H 2O ( 1), [Co 3(phen) 6(H 2O) 2(TST) 2]·7H 2O ( 2), and [Co 2Cu(phen) 6(H 2O) 2(TST) 2]·10H 2O ( 3), have been synthesized by the reactions of a new tri-sulfonate ligand (2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, H 3TST) with the M2+ ( M=Co, Cu) and the second ligand 1,10-phenanthroline (phen). Complex 1 contains a cis-Co(II)(phen) 2 building block and an HTST as monodentate ligand; complex 2 consists of two TST as bidentate ligands connecting one trans- and two cis-Co(II)(phen) 2 building blocks; complex 3 is formed by replacing the trans-Co(II)(phen) 2 in 2 with a trans-Cu(II)(phen) 2, which is the first reported hetero-trinuclear supramolecular complex containing both the Co(II)(phen) 2 and Cu(II)(phen) 2 as building blocks. The study shows the flexible multifunctional self-assembly capability of the H 3TST ligands presenting in these supramolecular complexes through coordinative, H-bonding and even π- π stacking interactions. The photoluminescent optical properties of these complexes are also investigated and discussed as well as the second-order nonlinear optical properties of 1.

  15. Structure refinement for tantalum nitrides nanocrystals with various morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai

    2012-07-15

    Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less

  16. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    PubMed

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  17. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

    PubMed

    Kwon, Soon Gu; Hyeon, Taeghwan

    2008-12-01

    Nanocrystals exhibit interesting electrical, optical, magnetic, and chemical properties not achieved by their bulk counterparts. Consequently, to fully exploit the potential of nanocrystals, the synthesis of nanocrystals must focus on producing materials with uniform size and shape. Top-down physical processes can produce large quantities of nanocrystals, but controlling the size is difficult with these methods. On the other hand, colloidal chemical synthetic methods can produce uniform nanocrystals with a controlled particle size. In this Account, we present our synthesis of uniform nanocrystals of various shapes and materials, and we discuss the kinetics of nanocrystal formation. We employed four different synthetic approaches including thermal decomposition, nonhydrolytic sol-gel reactions, thermal reduction, and use of reactive chalcogen reagents. We synthesized uniform oxide nanocrystals via heat-up methods. This method involved slowly heat-up reaction mixtures composed of metal precursors, surfactants, and solvents from room temperature to high temperature. We then held reaction mixtures at an aging temperature for a few minutes to a few hours. Kinetics studies revealed a three-step mechanism for the synthesis of nanocrystals through the heat-up method with size distribution control. First, as metal precursors thermally decompose, monomers accumulate. At the aging temperature, burst nucleation occurs rapidly; at the end of this second phase, nucleation stops, but continued diffusion-controlled growth leads to size focusing to produce uniform nanocrystals. We used nonhydrolytic sol-gel reactions to synthesize various transition metal oxide nanocrystals. We employed ester elimination reactions for the synthesis of ZnO and TiO(2) nanocrystals. Uniform Pd nanoparticles were synthesized via a thermal reduction reaction induced by heating up a mixture of Pd(acac)(2), tri-n-octylphosphine, and oleylamine to the aging temperature. Similarly, we synthesized

  18. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Jesse H.; Surendranath, Yogesh; Alivisatos, Paul

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentrationmore » in porous semiconductor thin films.« less

  19. Supramolecular Assembly of Single-Source Metal-Chalcogenide Nanocrystal Precursors.

    PubMed

    Smith, Stephanie C; Bryks, Whitney; Tao, Andrea R

    2018-05-28

    In this Feature Article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.

  20. Cloning nanocrystal morphology with soft templates

    NASA Astrophysics Data System (ADS)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  1. Electron tomography and 3D molecular simulations of platinum nanocrystals

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Demortière, Arnaud; Petit, Christophe; Bulou, Hervé; Hirlimann, Charles; Ersen, Ovidiu

    2012-07-01

    This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface.This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30990d

  2. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites.

    PubMed

    Rajisha, K R; Maria, H J; Pothan, L A; Ahmad, Zakiah; Thomas, S

    2014-06-01

    Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joseph B.; Dandu, Naveen; Velizhanin, Kirill A.

    2015-10-27

    Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respectmore » to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.« less

  4. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    PubMed

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  5. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    PubMed

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  6. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

  7. A Radiation-Tolerant, Low-Power Non-Volatile Memory Based on Silicon Nanocrystal Quantum Dots

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Boer, E. A.; Ostraat, M. L.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.; deBlauwe, J.; Green, M. L.

    2001-01-01

    Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO2 is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few- or single-electron storage in a small number of nanocrystal elements. In addition, the nanocrystal layer fabrication technique should be simple, 8-inch wafer compatible and well controlled in program/erase threshold voltage swing was seen during 100,000 program and erase cycles. Additional near-term goals for this project include extensive testing for radiation hardness and the development of artificial layered tunnel barrier heterostructures which have the potential for large speed enhancements for read/write of nanocrystal memory elements, compared with conventional flash devices. Additional information is contained in the original extended abstract.

  8. Fundamental absorption edge of NiO nanocrystals

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Druzhinin, A. V.; Kim, G. A.; Gruzdev, N. B.; Yermakov, A. Ye.; Uimin, M. A.; Byzov, I. V.; Shchegoleva, N. N.; Vykhodets, V. B.; Kurennykh, T. E.

    2013-12-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5-4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p-d charge transfer transitions form the fundamental absorption edge.

  9. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.

    PubMed

    Li, Shu; Steigerwald, Michael L; Brus, Louis E

    2009-05-26

    We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.

  10. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitskii, O.A., E-mail: balitskii@electronics.wups.lviv.ua; Demchenko, P.Yu.; Mijowska, E.

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuningmore » their spectral characteristics to higher energy solar photons.« less

  11. Building block diode laser concept for high brightness laser output in the kW range and its applications

    NASA Astrophysics Data System (ADS)

    Ferrario, Fabio; Fritsche, Haro; Grohe, Andreas; Hagen, Thomas; Kern, Holger; Koch, Ralf; Kruschke, Bastian; Reich, Axel; Sanftleben, Dennis; Steger, Ronny; Wallendorf, Till; Gries, Wolfgang

    2016-03-01

    The modular concept of DirectPhotonics laser systems is a big advantage regarding its manufacturability, serviceability as well as reproducibility. By sticking to identical base components an economic production allows to serve as many applications as possible while keeping the product variations minimal. The modular laser design is based on single emitters and various combining technics. In a first step we accept a reduction of the very high brightness of the single emitters by vertical stacking several diodes in fast axis. This can be theoretically done until the combined fast axis beam quality is on a comparable level as the individual diodes slow axis beam quality without loosing overall beam performance after fiber coupling. Those stacked individual emitters can be wavelength stabilized by an external resonator, providing the very same feedback to each of those laser diodes which leads to an output power of about 100 W with BPP of <3.5 mm*mrad (FA) and <5 mm*mrad (SA). In the next steps, further power scaling is accomplished by polarization and wavelength multiplexing yielding high optical efficiencies of more than 80% and resulting in a building block module with about 500 W launched into a 100 μm fiber with 0.15 NA. Higher power levels can be achieved by stacking those building blocks using the very same dense spectral combing technique up to multi kW Systems without further reduction of the BPP. The 500 W building blocks are consequently designed in a way that they feature a high flexibility with regard to their emitting wavelength bandwidth. Therefore, new wavelengths can be implemented by only exchanging parts and without any additional change of the production process. This design principal theoretically offers the option to adapt the wavelength of those blocks to any applications, from UV, visible into the far IR as long as there are any diodes commercially available. This opens numerous additional applications like laser pumping, scientific

  12. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  13. Structural phase transitions in niobium oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  14. Biorefineries for the production of top building block chemicals and their derivatives.

    PubMed

    Choi, Sol; Song, Chan Woo; Shin, Jae Ho; Lee, Sang Yup

    2015-03-01

    Due to the growing concerns on the climate change and sustainability on petrochemical resources, DOE selected and announced the bio-based top 12 building blocks and discussed the needs for developing biorefinery technologies to replace the current petroleum based industry in 2004. Over the last 10 years after its announcement, many studies have been performed for the development of efficient technologies for the bio-based production of these chemicals and derivatives. Now, ten chemicals among these top 12 chemicals, excluding the l-aspartic acid and 3-hydroxybutyrolactone, have already been commercialized or are close to commercialization. In this paper, we review the current status of biorefinery development for the production of these platform chemicals and their derivatives. In addition, current technological advances on industrial strain development for the production of platform chemicals using micro-organisms will be covered in detail with case studies on succinic acid and 3-hydroxypropionic acid as examples. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  15. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity

    NASA Astrophysics Data System (ADS)

    Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon

    2015-12-01

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of

  16. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems.

    PubMed

    Muto, Yutaka; Yokoyama, Shigeyuki

    2012-01-01

    'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules. Copyright © 2012 John Wiley & Sons, Ltd.

  17. Synthetic polycations with controlled charge density and molecular weight as building blocks for biomaterials.

    PubMed

    Kleinberger, Rachelle M; Burke, Nicholas A D; Zhou, Christal; Stöver, Harald D H

    2016-01-01

    A series of polycations prepared by RAFT copolymerization of N-(3-aminopropyl)methacrylamide hydrochloride (APM) and N-(2-hydroxypropyl)methacrylamide, with molecular weights of 15 and 40 kDa, and APM content of 10-75 mol%, were tested as building blocks for electrostatically assembled hydrogels such as those used for cell encapsulation. Complexation and distribution of these copolymers within anionic calcium alginate gels, as well as cytotoxicity, cell attachment, and cell proliferation on surfaces grafted with the copolymers were found to depend on composition and molecular weight. Copolymers with lower cationic charge density and lower molecular weight showed less cytotoxicity and cell adhesion, and were more mobile within alginate gels. These findings aid in designing improved polyelectrolyte complexes for use as biomaterials.

  18. Recurrence of 49-base decamers, nonomers, and octamers within mouse C mu gene of Ig heavy chain and its primordial building block.

    PubMed Central

    Yazaki, A; Ohno, S

    1983-01-01

    Within the published 2,168-base-long mouse C mu gene of Ig heavy chain consisting of four coding and four noncoding segments, 2 base decamers, 8 nonomers, and 39 octamers recurred. Recurring base heptamers (about 100) and hexamers (about 350) were simply too numerous to merit individual identification. In spite of extensive overlaps between these recurring base decamers to hexamers, they occupied nearly the entire length of mouse Ig C mu gene. As with other genes of the beta-sheet-forming beta 2-microglobulin family, the Ig C mu gene (flanking and intervening noncoding sequences included) is not a unique sequence but rather it is degenerate repeats of the 45-base-long primordial building-block sequence uniquely its own. This primordial building block must originally have specified the 15-amino-acid-residue-long primordial arm of beta-sheet-forming loops, the characteristics of the beta 2-microglobulin family of polypeptides. PMID:6403948

  19. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal-Organic Frameworks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Wen-Yang; Cai, Rong; Pham, Tony

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal–organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu₂(O₂C-)₄], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu₃O(N 4–x(CH) xC-)₃] (x = 0, 1, or 2). Remotely, the chemicalmore » stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1.« less

  20. Photoelectron spectra of some antibiotic building blocks: 2-azetidinone and thiazolidine-carboxylic acid.

    PubMed

    Ahmed, Marawan; Ganesan, Aravindhan; Wang, Feng; Feyer, Vitaliy; Plekan, Oksana; Prince, Kevin C

    2012-08-23

    X-ray photoelectron spectra of the core and valence levels of the fundamental building blocks of β-lactam antibiotics have been investigated and compared with theoretical calculations. The spectra of the compounds 2-azetidinone and the 2- and 4-isomers of thiazolidine-carboxylic acid are interpreted in the light of theoretical calculations. The spectra of the two isomers of thiazolidine-carboxylic acid are rather similar, as expected, but show clear effects due to isomerization. Both isomers are analogues of proline, which is well-known to populate several low energy conformers in the gas phase. We have investigated the low energy conformers of thiazolidine-4-carboxylic acid theoretically in more detail and find some spectroscopic evidence that multiple conformers may be present. The measured valence levels are assigned for all three compounds, and the character of the frontier orbitals is identified and analyzed.

  1. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  2. Charge injection and discharging of Si nanocrystals and arrays by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.

    2000-01-01

    Charge injection and storage in dense arrays of silicon nanocrystals in SiO(sub 2) is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few-or single- electron storage in a small number of nanocrystal elements.

  3. An Organolanthanide Building Block Approach to Single-Molecule Magnets.

    PubMed

    Harriman, Katie L M; Murugesu, Muralee

    2016-06-21

    and experimental chemistry allows us to shed light on the mechanisms and electronic properties that govern the slow relaxation dynamics inherent to this unique set of SMMs, thus providing insight into the role by which both symmetry and crystal field effects contribute to the magnetic properties. As we look to the future success of such materials in practical devices, we must gain an understanding of how the 4f elements communicate magnetically, a subject upon which there is still limited knowledge. As such, we have described our work on coupling mononuclear metallocenes to generate new dinuclear SMMs. Through a building block approach, we have been able to gain access to new double,- triple- and quadruple-decker complexes that possess remarkable properties; exhibiting TB of 12 K and Ueff above 300 K. Our goal is to develop a fundamental platform from which to study 4f coupling, while maintaining and enhancing the strict axiality of the anisotropy of the 4f ions. This Account will present a successful strategy employed in the production of novel and high-performing SMMs, as well as a clear overview of the lessons learned throughout.

  4. Plastic Fibre Reinforced Soil Blocks as a Sustainable Building Material

    NASA Astrophysics Data System (ADS)

    Prasad, C. K. Subramania; Nambiar, E. K. Kunhanandan; Abraham, Benny Mathews

    2012-10-01

    Solid waste management, especially the huge quantity of waste plastics, is one of the major environmental concerns nowadays. Their employability in block making in the form of fibres, as one of the methods of waste management, can be investigated through a fundamental research. This paper highlights the salient observations from a systematic investigation on the effect of embedded fibre from plastic waste on the performance of stabilised mud blocks. Stabilisation of the soil was done by adding cement, lime and their combination. Plastic fibre in chopped form from carry bags and mineral water bottles were added (0.1% & 0.2% by weight of soil) as reinforcement. The blocks were tested for density, and compressive strength, and observed failure patterns were analysed. Blocks with 0.1% of plastic fibres showed an increase in strength of about 3 to 10%. From the observations of failure pattern it can be concluded that benefits of fibre reinforcement includes both improved ductility in comparison with raw blocks and inhibition of crack propogation after its initial formation.

  5. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals

    DOE PAGES

    Kim, Jongwook; Agrawal, Ankit; Krieg, Franziska; ...

    2016-05-16

    Doped semiconductor nanocrystals are an emerging class of materials hosting localized surface plasmon resonance (LSPR) over a wide optical range. Studies so far have focused on tuning LSPR frequency by controlling the dopant and carrier concentrations in diverse semiconductor materials. However, the influence of anisotropic nanocrystal shape and of intrinsic crystal structure on LSPR remain poorly explored. Here, we illustrate how these two factors collaborate to determine LSPR characteristics in hexagonal cesium-doped tungsten oxide nanocrystals. The effect of shape anisotropy is systematically analyzed via synthetic control of nanocrystal aspect ratio (AR), from disks to nanorods. We demonstrate the dominant influencemore » of crystalline anisotropy, which uniquely causes strong LSPR band-splitting into two distinct peaks with comparable intensities. Modeling typically used to rationalize particle shape effects is refined by taking into account the anisotropic dielectric function due to crystalline anisotropy, thus fully accounting for the AR-dependent evolution of multiband LSPR spectra. Furthermore, this new insight into LSPR of semiconductor nanocrystals provides a novel strategy for an exquisite tuning of LSPR line shape.« less

  6. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals

    DOE PAGES

    Ye, Xingchen; Zhu, Chenhui; Ercius, Peter; ...

    2015-12-02

    Multicomponent nanocrystal superlattices represent an interesting class of material that derives emergent properties from mesoscale structure, yet their programmability can be limited by the alkyl-chain-based ligands decorating the surfaces of the constituent nanocrystals. Polymeric ligands offer distinct advantages, as they allow for more precise tuning of the effective size and ‘interaction softness’ through changes to the polymer’s molecular weight, chemical nature, architecture, persistence length and surrounding solvent. Here we show the formation of 10 different binary nanocrystal superlattices (BNSLs) with both two- and three-dimensional order through independent adjustment of the core size of spherical nanocrystals and the molecular weight ofmore » densely grafted polystyrene ligands. These polymer-brush-based ligands introduce new energetic contributions to the interparticle potential that stabilizes various BNSL phases across a range of length scales and interparticle spacings. In conclusion, our study opens the door for nanocrystals to become modular elements in the design of functional particle brush solids with controlled nanoscale interfaces and mesostructures.« less

  7. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers

    NASA Astrophysics Data System (ADS)

    Su, Huilan; Han, Jie; Dong, Qun; Xu, Jia; Chen, Ying; Gu, Yu; Song, Weiqiang; Zhang, Di

    2011-02-01

    Silver chloride (AgCl) nanocrystals were formed and grown on silk fibroin fibers (SFFs) by a room-temperature process. Practically, the degummed SFFs were immersed into silver nitrate solution and sodium chloride solution in turn. The amino acids on the SFF surface were negatively charged in alkaline impregnant, providing locations to immobilize silver ions and form silver chloride seeds. AgCl nanocrystals can further grow into cubic AgCl nanocrystals with an edge of about 100 nm. The morphologies of the AgCl nanocrystals were mostly influenced by the concentration of sodium chloride solution and the special configurations of the SFFs. The target AgCl/SFF nanocomposites constructed by AgCl nanocrystals and substrate SFFs could be used as photocatalysts in water splitting and antibacterial agents. This work provides an important example in the introduction of natural biofibers to the synthesis of functional hybrid nanocomposites by a green and mild technique.

  8. Synthesis of histone proteins by CPE ligation using a recombinant peptide as the C-terminal building block.

    PubMed

    Kawakami, Toru; Yoshikawa, Ryo; Fujiyoshi, Yuki; Mishima, Yuichi; Hojo, Hironobu; Tajima, Shoji; Suetake, Isao

    2015-11-01

    The post-translational modification of histones plays an important role in gene expression. We report herein on a method for synthesizing such modified histones by ligating chemically prepared N-terminal peptides and C-terminal recombinant peptide building blocks. Based on their chemical synthesis, core histones can be categorized as two types; histones H2A, H2B and H4 which contain no Cys residues, and histone H3 which contains a Cys residue(s) in the C-terminal region. A combination of native chemical ligation and desulphurization can be simply used to prepare histones without Cys residues. For the synthesis of histone H3, the endogenous Cys residue(s) must be selectively protected, while keeping the N-terminal Cys residue of the C-terminal building block that is introduced for purposes of chemical ligation unprotected. To this end, a phenacyl group was successfully utilized to protect endogenous Cys residue(s), and the recombinant peptide was ligated with a peptide containing a Cys-Pro ester (CPE) sequence as a thioester precursor. Using this approach it was possible to prepare all of the core histones H2A, H2B, H3 and H4 with any modifications. The resulting proteins could then be used to prepare a core histone library of proteins that have been post-translationally modified. © The Authors 2015. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  9. A generalized locomotion CPG architecture based on oscillatory building blocks.

    PubMed

    Yang, Zhijun; França, Felipe M G

    2003-07-01

    Neural oscillation is one of the most extensively investigated topics of artificial neural networks. Scientific approaches to the functionalities of both natural and artificial intelligences are strongly related to mechanisms underlying oscillatory activities. This paper concerns itself with the assumption of the existence of central pattern generators (CPGs), which are the plausible neural architectures with oscillatory capabilities, and presents a discrete and generalized approach to the functionality of locomotor CPGs of legged animals. Based on scheduling by multiple edge reversal (SMER), a primitive and deterministic distributed algorithm, it is shown how oscillatory building block (OBB) modules can be created and, hence, how OBB-based networks can be formulated as asymmetric Hopfield-like neural networks for the generation of complex coordinated rhythmic patterns observed among pairs of biological motor neurons working during different gait patterns. It is also shown that the resulting Hopfield-like network possesses the property of reproducing the whole spectrum of different gaits intrinsic to the target locomotor CPGs. Although the new approach is not restricted to the understanding of the neurolocomotor system of any particular animal, hexapodal and quadrupedal gait patterns are chosen as illustrations given the wide interest expressed by the ongoing research in the area.

  10. 2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EXTERIOR VIEW OF BUILDING 25B (TEST CHAMBER BUILDING) AND WIND TUNNEL, LOOKING NORTHWEST (1991). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  11. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    PubMed

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  12. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    PubMed

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  13. Block Play: Practical Suggestions for Common Dilemmas

    ERIC Educational Resources Information Center

    Tunks, Karyn Wellhousen

    2009-01-01

    Learning materials and teaching methods used in early childhood classrooms have fluctuated greatly over the past century. However, one learning tool has stood the test of time: Wood building blocks, often called unit blocks, continue to be a source of pleasure and learning for young children at play. Wood blocks have the unique capacity to engage…

  14. Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals

    NASA Astrophysics Data System (ADS)

    Sarkas, Harry W.; Kidder, Linda H.; Bowen, Kit H.

    1995-01-01

    We present the photoelectron spectra of negatively charged cesium iodide nanocrystals recorded using 2.540 eV photons. The species examined were produced using an inert gas condensation cluster ion source, and they ranged in size from (CsI)-n=13 to nanocrystal anions comprised of 330 atoms. Nanocrystals showing two distinct types of photoemission behavior were observed. For (CsI)-n=13 and (CsI)-n=36-165, a plot of cluster anion photodetachment threshold energies vs n-1/3 gives a straight line extrapolating (at n-1/3=0, i.e., n=∞) to 2.2 eV, the photoelectric threshold energy for F centers in bulk cesium iodide. The linear extrapolation of the cluster anion data to the corresponding bulk property implies that the electron localization in these gas-phase nanocrystals is qualitatively similar to that of F centers in extended alkali halide crystals. These negatively charged cesium iodide nanocrystals are thus shown to support embryonic forms of F centers, which mature with increasing cluster size toward condensed phase impurity centers. Under an alternative set of source conditions, nanocrystals were produced which showed significantly lower photodetachment thresholds than the aforementioned F-center cluster anions. For these species, containing 83-131 atoms, a plot of their cluster anion photodetachment threshold energies versus n-1/3 gives a straight line which extrapolates to 1.4 eV. This value is in accord with the expected photoelectric threshold energy for F' centers in bulk cesium iodide, i.e., color centers with two excess electrons in a single defect site. These nanocrystals are interpreted to be the embryonic F'-center containing species, Cs(CsI)-n=41-65.

  15. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.

    PubMed

    Oh, Soong Ju; Berry, Nathaniel E; Choi, Ji-Hyuk; Gaulding, E Ashley; Paik, Taejong; Hong, Sung-Hoon; Murray, Christopher B; Kagan, Cherie R

    2013-03-26

    We investigate the effects of stoichiometric imbalance on the electronic properties of lead chalcogenide nanocrystal films by introducing excess lead (Pb) or selenium (Se) through thermal evaporation. Hall-effect and capacitance-voltage measurements show that the carrier type, concentration, and Fermi level in nanocrystal solids may be precisely controlled through their stoichiometry. By manipulating only the stoichiometry of the nanocrystal solids, we engineer the characteristics of electronic and optoelectronic devices. Lead chalcogenide nanocrystal field-effect transistors (FETs) are fabricated at room temperature to form ambipolar, unipolar n-type, and unipolar p-type semiconducting channels as-prepared and with excess Pb and Se, respectively. Introducing excess Pb forms nanocrystal FETs with electron mobilities of 10 cm(2)/(V s), which is an order of magnitude higher than previously reported in lead chalcogenide nanocrystal devices. Adding excess Se to semiconductor nanocrystal solids in PbSe Schottky solar cells enhances the power conversion efficiency.

  16. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  17. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  18. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  19. Hydrophilic interaction chromatography-multiple reaction monitoring mass spectrometry method for basic building block analysis of low molecular weight heparins prepared through nitrous acid depolymerization.

    PubMed

    Sun, Xiaojun; Guo, Zhimou; Yu, Mengqi; Lin, Chao; Sheng, Anran; Wang, Zhiyu; Linhardt, Robert J; Chi, Lianli

    2017-01-06

    Low molecular weight heparins (LMWHs) are important anticoagulant drugs that are prepared through depolymerization of unfractionated heparin. Based on the types of processing reactions and the structures of the products, LMWHs can be divided into different classifications. Enoxaparin is prepared by benzyl esterification and alkaline depolymerization, while dalteparin and nadroparin are prepared through nitrous acid depolymerization followed by borohydride reduction. Compositional analysis of their basic building blocks is an effective way to provide structural information on heparin and LMWHs. However, most current compositional analysis methods have been limited to heparin and enoxaparin. A sensitive and comprehensive approach is needed for detailed investigation of the structure of LMWHs prepared through nitrous acid depolymerization, especially their characteristic saturated non-reducing end (NRE) and 2,5-anhydro-d-mannitol reducing end (RE). A maltose modified hydrophilic interaction column offers improved separation of complicated mixtures of acidic disaccharides and oligosaccharides. A total of 36 basic building blocks were unambiguously identified by high-resolution tandem mass spectrometry (MS). Multiple reaction monitoring (MRM) MS/MS quantification was developed and validated in the analysis of dalteparin and nadroparin samples. Each group of building blocks revealed different aspects of the properties of LMWHs, such as functional motifs required for anticoagulant activity, the structure of heparin starting materials, cleavage sites in the depolymerization reaction, and undesired structural modifications resulting from side reactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    NASA Astrophysics Data System (ADS)

    Zhao, Tiancong; Nguyen, Nam-Trung; Xie, Yang; Sun, Xiaofei; Li, Qin; Li, Xiaomin

    2017-12-01

    Mesoporous SiO2 nanoparticles (MSNs) are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2) on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.

  1. Nanocrystal synthesis in microfluidic reactors: where next?

    PubMed

    Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C

    2014-09-07

    The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.

  2. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Charina L; Alivisatos, A Paul

    2009-10-20

    Quantum dots, which have found widespread use in fields such as biomedicine, photovoltaics, and electronics, are often called artificial atoms due to their size-dependent physical properties. Here this analogy is extended to consider artificial nanocrystal molecules, formed from well-defined groupings of plasmonically or electronically coupled single nanocrystals. Just as a hydrogen molecule has properties distinct from two uncoupled hydrogen atoms, a key feature of nanocrystal molecules is that they exhibit properties altered from those of the component nanoparticles due to coupling. The nature of the coupling between nanocrystal atoms and its response to vibrations and deformations of the nanocrystal moleculemore » bonds are of particular interest. We discuss synthetic approaches, predicted and observed physical properties, and prospects and challenges toward this new class of materials.« less

  3. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  4. Intrinsic behavior of face-centered-cubic supra-crystals of nanocrystals self-organized on mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2005-12-01

    We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.

  5. Quantitative tunneling spectroscopy of nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]).more » Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics« less

  6. Low-frequency (1/f) noise in nanocrystal field-effect transistors.

    PubMed

    Lai, Yuming; Li, Haipeng; Kim, David K; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2014-09-23

    We investigate the origins and magnitude of low-frequency noise in high-mobility nanocrystal field-effect transistors and show the noise is of 1/f-type. Sub-band gap states, in particular, those introduced by nanocrystal surfaces, have a significant influence on the 1/f noise. By engineering the device geometry and passivating nanocrystal surfaces, we show that in the linear and saturation regimes the 1/f noise obeys Hooge's model of mobility fluctuations, consistent with transport of a high density of accumulated carriers in extended electronic states of the NC thin films. In the subthreshold regime, the Fermi energy moves deeper into the mobility gap and sub-band gap trap states give rise to a transition to noise dominated by carrier number fluctuations as described in McWhorter's model. CdSe nanocrystal field-effect transistors have a Hooge parameter of 3 × 10(-2), comparable to other solution-deposited, thin-film devices, promising high-performance, low-cost, low-noise integrated circuitry.

  7. In situ microscopy of the self-assembly of branched nanocrystals in solution

    DOE PAGES

    Sutter, Eli; Tkachenko, Alexei V.; Sutter, Peter; ...

    2016-04-04

    Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifiesmore » the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.« less

  8. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.

    PubMed

    Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand

    2016-08-24

    Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.

  9. In situ microscopy of the self-assembly of branched nanocrystals in solution

    NASA Astrophysics Data System (ADS)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  10. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

    PubMed Central

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-01-01

    Hot-carrier solar cells can overcome the Shockley-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells. PMID:28176882

  11. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals.

    PubMed

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-02-08

    Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.

  12. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant

    2014-11-01

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in

  13. A pH-Sensitive, Biobased Calcium Carbonate Aragonite Nanocrystal as a Novel Anticancer Delivery System

    PubMed Central

    Ismail, Maznah; Tengku Ibrahim, Tengku Azmi; Zakaria, Zuki Abu Bakar

    2013-01-01

    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO3/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO3/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO3/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO3 nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy. PMID:24324966

  14. Chiral thiazoline and thiazole building blocks for the synthesis of peptide-derived natural products.

    PubMed

    Just-Baringo, Xavier; Albericio, Fernando; Alvarez, Mercedes

    2014-01-01

    Thiazoline and thiazole heterocycles are privileged motifs found in numerous peptide-derived natural products of biological interest. During the last decades, the synthesis of optically pure building blocks has been addressed by numerous groups, which have developed a plethora of strategies to that end. Efficient and reliable methodologies that are compatible with the intricate and capricious architectures of natural products are a must to further develop their science. Structure confirmation, structure-activity relationship studies and industrial production are fields of paramount importance that require these robust methodologies in order to successfully bring natural products into the clinic. Today's chemist toolbox is assorted with many powerful methods for chiral thiazoline and thiazole synthesis. Ranging from biomimetic approaches to stereoselective alkylations, one is likely to find a suitable method for their needs.

  15. Exploring the Chemistry of Bicyclic Isoxazolidines for the Multicomponent Synthesis of Glycomimetic Building Blocks.

    PubMed

    Hoogenboom, Jorin; Lutz, Martin; Zuilhof, Han; Wennekes, Tom

    2016-10-07

    Starting from a chiral furanone, the nitrone-olefin [3 + 2] cycloaddition can be used to obtain bicyclic isoxazolidines for which we report a set of reactions to selectively modify each functional position. These synthetically versatile bicyclic isoxazolidines allowed us to obtain complex glycomimetic building blocks, like iminosugars, via multicomponent chemistry. For example, a library of 20 pipecolic acid derivatives, a recurring motif in various prescription drugs, could be obtained via a one-pot Staudinger/aza-Wittig/Ugi three-component reaction of a bicyclic isoxazolidine-derived azido-hemiacetal. Notably, specific pipecolic acids in this library were obtained via hydrolysis of an unique tricyclic imidate side product of the Ugi reaction. The azido-hemiacetal was also converted into an aza-C-glycoside iminosugar via an unprecendented one-pot Staudinger/aza-Wittig/Mannich reaction.

  16. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity.

    PubMed

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-06-21

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (M(w)/M(n) = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm(-1), which is even higher than that of the highest previously reported value (16 S cm(-1)). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.

  17. Dermal miconazole nitrate nanocrystals - formulation development, increased antifungal efficacy & skin penetration.

    PubMed

    Pyo, Sung Min; Hespeler, David; Keck, Cornelia M; Müller, Rainer H

    2017-10-05

    Miconazole nitrate nanosuspension was developed to increase its antifungal activity and dermal penetration. In addition, the nanosuspension was combined with the synergistic additive chlorhexidine digluconate. The production was performed by wet bead milling and both production and formulation parameters were optimized. A stabilizer screening revealed poloxamer 407 and Tween 80 both at 0.15% as the most effective stabilizers for miconazole nanosuspensions at 1.0%. The nanocrystals were incorporated into a hydroxypropyl cellulose gel base. Short-term stability (3months) of the nanocrystal bulk population could be shown at room temperature and fridge. Besides the stable bulk nanocrystals, some longitudinal crystal growth to needle like crystals occurred. The addition of ionic compounds as the chlorhexidine digluconate often destabilizes suspensions. Surprisingly here, the addition minimized the crystal growth. An underlying mechanism is proposed. An inhibition zone assay was performed using Candida albicans (ATCC ® 10231™). When comparing the nanocrystals in suspension and in gel to μm-sized miconazole nitrate formulations and two market products, the increase in inhibition zone diameter for the nanosuspension formulations was most pronounced in the chlorhexidine digluconate free formulations. These nanocrystal formulations were closely or similarly effective as the microsuspensions and the market products containing the synergistic chlorhexidine digluconate, showing the potential of the nanosuspension formulation. Nanosuspension performance was even further increased when chlorhexidine digluconate was added. Ex-vivo skin penetration studies on porcine ears revealed distinctly less remaining miconazole nitrate on the skin surface for nanocrystals (e.g., 76-86%) compared to market products (e.g. 94%). Also, penetration was increased e.g. in skin depth of 5-10μm from <1.0/1.7% to e.g. 3.3-6.2% for nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential.

    PubMed

    Shete, Ganesh; Bansal, Arvind Kumar

    2016-08-01

    Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.

  19. Singlet Oxygen Generation Mediated By Silicon Nanocrystal Assemblies

    DTIC Science & Technology

    2011-01-01

    Lattice fringes in Fig.3 d correspond to the (111) atomic planes of Si nanocrystals. Length scales are indicated. Downscaling of the stain etched PSi...intensity of 1W/cm2 in a time scale of a few hours a monolayer of oxygen is formed on the surface of Si nanocrystals. Fig. 8. Infrared absorption...solution. Fig. 10. PL intensity as a function of continuously prolonged etching of Si powder. Inset: PL suppression level (can be scaled as singlet

  20. Doped and codoped silicon nanocrystals: The role of surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Marri, Ivan; Degoli, Elena; Ossicini, Stefano

    2017-12-01

    Si nanocrystals have been extensively studied because of their novel properties and their potential applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. These new properties are achieved through the combination of the quantum confinement of carriers and the strong influence of surface chemistry. As in the case of bulk Si the tuning of the electronic, optical and transport properties is related to the possibility of doping, in a controlled way, the nanocrystals. This is a big challenge since several studies have revealed that doping in Si nanocrystals differs from the one of the bulk. Theory and experiments have underlined that doping and codoping are influenced by a large number of parameters such as size, shape, passivation and chemical environment of the silicon nanocrystals. However, the connection between these parameters and dopant localization as well as the occurrence of self-purification effects are still not clear. In this review we summarize the latest progress in this fascinating research field considering free-standing and matrix-embedded Si nanocrystals both from the theoretical and experimental point of view, with special attention given to the results obtained by ab-initio calculations and to size-, surface- and interface-induced effects.