Sample records for nanocrystal technology drug

  1. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential.

    PubMed

    Shete, Ganesh; Bansal, Arvind Kumar

    2016-08-01

    Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.

  2. State of the art of nanocrystals technology for delivery of poorly soluble drugs

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqi; Du, Juan; Wang, Lulu; Wang, Yancai

    2016-09-01

    Formulation of nanocrystals is a distinctive approach which can effectively improve the delivery of poorly water-soluble drugs, thus enticing the development of the nanocrystals technology. The characteristics of nanocrystals resulted in an exceptional drug delivery conductance, including saturation solubility, dissolution velocity, adhesiveness, and affinity. Nanocrystals were treated as versatile pharmaceuticals that could be delivered through almost all routes of administration. In the current review, oral, pulmonary, and intravenous routes of administration were presented. Also, the targeting of drug nanocrystals, as well as issues of efficacy and safety, were also discussed. Several methods were applied for nanocrystals production including top-down production strategy (media milling, high-pressure homogenization), bottom-up production strategy (antisolvent precipitation, supercritical fluid process, and precipitation by removal of solvent), and the combination approaches. Moreover, this review also described the evaluation and characterization of the drug nanocrystals and summarized the current commercial pharmaceutical products utilizing nanocrystals technology.

  3. Nanocrystals Technology for Pharmaceutical Science.

    PubMed

    Cheng, Zhongyao; Lian, Yumei; Kamal, Zul; Ma, Xin; Chen, Jianjun; Zhou, Xinbo; Su, Jing; Qiu, Mingfeng

    2018-05-17

    Nanocrystals technology is a promising method for improving the dissolution rate and enhancing the bioavailability of poorly soluble drugs. In recent years, it has been developing rapidly and applied to drug research and engineering. Nanocrystal drugs can be formulated into various dosage forms. This review mainly focused on the nanocrystals technology and its application in pharmaceutical science. Firstly, different preparation methods of nanocrystal technology and the characterization of nanocrystal drugs are briefly described. Secondly, the application of nanocrystals technology in pharmaceutical science is mainly discussed followed by the introduction of sustained release formulations. Then, the scaling up process, marketed nanocrystal drug products and regulatory aspects about nanodrugs are summarized. Finally, the specific challenges and opportunities of nanocrystals technology for pharmaceutical science are summarized and discussed. This review will provide a comprehensive guide for scientists and engineers in the field of pharmaceutical science and biochemical engineering. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Combinative Particle Size Reduction Technologies for the Production of Drug Nanocrystals

    PubMed Central

    Salazar, Jaime; Müller, Rainer H.; Möschwitzer, Jan P.

    2014-01-01

    Nanosizing is a suitable method to enhance the dissolution rate and therefore the bioavailability of poorly soluble drugs. The success of the particle size reduction processes depends on critical factors such as the employed technology, equipment, and drug physicochemical properties. High pressure homogenization and wet bead milling are standard comminution techniques that have been already employed to successfully formulate poorly soluble drugs and bring them to market. However, these techniques have limitations in their particle size reduction performance, such as long production times and the necessity of employing a micronized drug as the starting material. This review article discusses the development of combinative methods, such as the NANOEDGE, H 96, H 69, H 42, and CT technologies. These processes were developed to improve the particle size reduction effectiveness of the standard techniques. These novel technologies can combine bottom-up and/or top-down techniques in a two-step process. The combinative processes lead in general to improved particle size reduction effectiveness. Faster production of drug nanocrystals and smaller final mean particle sizes are among the main advantages. The combinative particle size reduction technologies are very useful formulation tools, and they will continue acquiring importance for the production of drug nanocrystals. PMID:26556191

  5. Development Considerations for Nanocrystal Drug Products.

    PubMed

    Chen, Mei-Ling; John, Mathew; Lee, Sau L; Tyner, Katherine M

    2017-05-01

    Nanocrystal technology has emerged as a valuable tool for facilitating the delivery of poorly water-soluble active pharmaceutical ingredients (APIs) and enhancing API bioavailability. To date, the US Food and Drug Administration (FDA) has received over 80 applications for drug products containing nanocrystals. These products can be delivered by different routes of administration and are used in a variety of therapeutic areas. To aid in identifying key developmental considerations for these products, a retrospective analysis was performed on the submissions received by the FDA to date. Over 60% of the submissions were for the oral route of administration. Based on the Biopharmaceutics Classification System (BCS), most nanocrystal drugs submitted to the FDA are class II compounds that possess low aqueous solubility and high intestinal permeability. Impact of food on drug bioavailability was reduced for most nanocrystal formulations as compared with their micronized counterparts. For all routes of administration, dose proportionality was observed for some, but not all, nanocrystal products. Particular emphasis in the development of nanocrystal products was placed on the in-process tests and controls at critical manufacturing steps (such as milling process), mitigation and control of process-related impurities, and the stability of APIs or polymorphic form (s) during manufacturing and upon storage. This emphasis resulted in identifying challenges to the development of these products including accurate determination of particle size (distribution) of drug substance and/or nanocrystal colloidal dispersion, identification of polymorphic form (s), and establishment of drug substance/product specifications.

  6. Nanocrystal for ocular drug delivery: hope or hype.

    PubMed

    Sharma, Om Prakash; Patel, Viral; Mehta, Tejal

    2016-08-01

    The complexity of the structure and nature of the eye emanates a challenge for drug delivery to formulation scientists. Lower bioavailability concern of conventional ocular formulation provokes the interest of researchers in the development of novel drug delivery system. Nanotechnology-based formulations have been extensively investigated and found propitious in improving bioavailability of drugs by overcoming ocular barriers prevailing in the eye. The advent of nanocrystals helped in combating the problem of poorly soluble drugs specifically for oral and parenteral drug delivery and led to development of various marketed products. Nanocrystal-based formulations explored for ocular drug delivery have been found successful in achieving increase in retention time, bioavailability, and permeability of drugs across the corneal and conjunctival epithelium. In this review, we have highlighted the ocular physiology and barriers in drug delivery. A comparative analysis of various nanotechnology-based ocular formulations is done with their pros and cons. Consideration is also given to various methods of preparation of nanocrystals with their patented technology. This article highlights the success achieved in conquering various challenges of ocular delivery by the use of nanocrystals while emphasizing on its advantages and application for ocular formulation. The perspectives of nanocrystals as an emerging flipside to explore the frontiers of ocular drug delivery are discussed.

  7. A novel solubilization technique for poorly soluble drugs through the integration of nanocrystal and cocrystal technologies.

    PubMed

    Karashima, Masatoshi; Kimoto, Kouya; Yamamoto, Katsuhiko; Kojima, Takashi; Ikeda, Yukihiro

    2016-10-01

    The aim of the present study was to develop a novel solubilization technique consisting of a nano-cocrystal suspension by integrating cocrystal and nanocrystal formulation technologies to maximize solubilization over current solubilizing technologies. Monodisperse carbamazepine-saccharin, indomethacin-saccharin, and furosemide-caffeine nano-cocrystal suspensions, as well as a furosemide-cytosine nano-salt suspension, were successfully prepared with particle sizes of less than 300nm by wet milling with the stabilizers hydroxypropyl methylcellulose and sodium dodecyl sulfate. Interestingly, the properties of resultant nano-cocrystal suspensions were dramatically changed depending on the physicochemical and structural properties of the cocrystals. In the formulation optimization, the concentration and ratio of the stabilizers also influenced the zeta potentials and particles sizes of the resultant nano-cocrystal suspensions. Raman spectroscopic analysis revealed that the crystalline structures of the cocrystals were maintained in the nanosuspensions, and were physically stable for at least one month. Furthermore, their dissolution profiles were significantly improved over current solubilization-enabling technologies, nanocrystals, and cocrystals. In the present study, we demonstrated that nano-cocrystal formulations can be a new promising option for solubilization techniques to improve the absorption of poorly soluble drugs, and can expand the development potential of poorly soluble candidates in the pharmaceutical industry. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A New Method for Delivering a Hydrophobic Drug for Photodynamic Therapy Using Pure Nanocrystal Form of the Drug

    PubMed Central

    Baba, Koichi; Pudavar, Haridas E.; Roy, Indrajit; Ohulchanskyy, Tymish Y.; Chen, Yihui; Pandey, Ravindra; Prasad, Paras N.

    2008-01-01

    A carrier free method for delivery of a hydrophobic drug in its pure form, using nanocrystals (nano sized crystals) is proposed. To demonstrate this technique, nanocrystals of a hydrophobic photosensitizing anticancer drug 2-devinyl-2-(1-hexyloxyethyl)pyropheophorbide (HPPH), have been synthesized using re-precipitation method. The resulting drug nanocrystals were monodispersed and stable in aqueous dispersion, without the necessity of an additional stabilizer (surfactant). As shown by confocal microscopy, these pure drug nanocrystals were taken-up by the cancer cells with high avidity. Though the fluorescence and photodynamic activity of the drug were substantially quenched in the form of nanocrystals in aqueous suspension, both these characteristics were recovered under in vitro and in vivo conditions. This recovery of drug activity and fluorescence is possibly due to the interaction of nanocrystals with serum albumin, resulting in conversion of the drug nanocrystals into the molecular form. This was confirmed by demonstrating similar recovery in presence of Fetal Bovine Serum (FBS) or Bovine Serum Albumin (BSA). Under similar treatment conditions, the HPPH in nanocrystal form or in 1% Tween 80/water formulation showed comparable in vitro and in vivo efficacy. PMID:17266331

  9. Crystallization Methods for Preparation of Nanocrystals for Drug Delivery System.

    PubMed

    Gao, Yuan; Wang, Jingkang; Wang, Yongli; Yin, Qiuxiang; Glennon, Brian; Zhong, Jian; Ouyang, Jinbo; Huang, Xin; Hao, Hongxun

    2015-01-01

    Low water solubility of drug products causes delivery problems such as low bioavailability. The reduced particle size and increased surface area of nanocrystals lead to the increasing of the dissolution rate. The formulation of drug nanocrystals is a robust approach and has been widely applied to drug delivery system (DDS) due to the significant development of nanoscience and nanotechnology. It can be used to improve drug efficacy, provide targeted delivery and minimize side-effects. Crystallization is the main and efficient unit operation to produce nanocrystals. Both traditional crystallization methods such as reactive crystallization, anti-solvent crystallization and new crystallization methods such as supercritical fluid crystallization, high-gravity controlled precipitation can be used to produce nanocrystals. The current mini-review outlines the main crystallization methods addressed in literature. The advantages and disadvantages of each method were summarized and compared.

  10. Nanocrystal: a novel approach to overcome skin barriers for improved topical drug delivery.

    PubMed

    Patel, Viral; Sharma, Om Prakash; Mehta, Tejal

    2018-04-01

    Skin is an important route of drug delivery for the treatment of various dermatological conditions. The advent of nanotechnology is paving the roadmaps for topical drug delivery by providing sustained release as well as maintaining a localized effect, outweighing the toxicity concern. Area covered: This review highlighted the morphology of skin, its barrier nature as well as drug penetration pathways after topical application of formulations. The existing methods to improve topical drug delivery, by infringing or permeating the skin barriers, are discussed. This context concretes the foundation to accentuate the need for the development of nanocrystal-based topical formulation. The mechanism of drug release, immediate as well as sustained release, after topical administration of drug nanocrystals is also elaborated. The special emphasis is given on the breakthrough achieved, in topical drug delivery using drug nanocrystals, so far in the plethora of literature, patents, and products, under clinical trial as well as in the market. Expert opinion: The current research on nanocrystals for topical drug delivery is highlighting the breakthroughs achieved so far. The output of these research envisages that topical nanocrystals based formulations can be a novel strategy for the drugs which are facing solubility, bioavailability and toxicity concerns.

  11. Mesoporous materials and nanocrystals for enhancing the dissolution behavior of poorly water-soluble drugs.

    PubMed

    Santos, Helder A; Peltonen, Leena; Limnell, Tarja; Hirvonen, Jouni

    2013-01-01

    Advanced drug delivery formulations are presently recognized as promising tools for overcoming the adverse physicochemical properties of conventional drug molecules, such as poor water solubility, which often leads to poor drug bioavailability. Oral drug delivery is considered as the easiest and most convenient route of drug administration. However, via the current trends utilizing combinatorial chemistry and high throughput screening in drug development, new drug molecules are moving towards lipophilic and poorly water-soluble large molecules, and the oral delivery route is becoming increasingly challenging. In this context, formulation of poorly soluble and/or permeable drugs using mesoporous materials and nanocrystals technology have proven to be highly successful due to the greater surface/volume ratio of these systems, resulting in improvements in dissolution and bioavailability, as well as enhanced drug permeability. This review addresses the issues of poorly water-soluble drugs with a major focus on recent developments in the application of the mesoporous materials (e.g., porous silicon and silica) and nanocrystals in drug delivery applications. In addition, we present several recent examples of the significant potential of these materials for the pharmaceutical field.

  12. Nanocrystal cellulose as drug excipient in transdermal patch for wound healing: an overview

    NASA Astrophysics Data System (ADS)

    Zuki, S. A. Mohd; Rahman, N. Abd; Abu Bakar, N. F.

    2018-03-01

    Wound must be carefully treated to avoid serious infection that needs costly treatment. Method to enhance the recovery of the wound is crucial to have effective wound treatment. One of the technologies in wound treatment is transdermal patch that has the benefits of being non-invasive, easy to handle and permits constant drug dosage. In order to obtain a good controlled drug release, drug excipient needs to be investigated. Recently, natural Nanocrystal Cellulose (NCC) which can be synthesized from animal, algae, microorganism or plant has been actively used in drug delivery system as excipient. The application of NCC is advantageous due to its large surface area, biodegradable, non-toxic and abundance source.

  13. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  14. Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products.

    PubMed

    Van Eerdenbrugh, Bernard; Van den Mooter, Guy; Augustijns, Patrick

    2008-11-19

    During the last 10-15 years, the formulation of drugs as nanocrystals has rapidly evolved into a mature drug delivery strategy, with currently five products on the market. The major characteristic of these systems is the rapid dissolution velocity, enabling bioavailability enhancement after oral administration. This mini-review focuses on recent advances with respect to three topics considering drug nanocrystals. The first topic is nanosuspension stabilization. A current literature status is provided and special attention is given to studies attempting to extend our physicochemical understanding of the underlying principles. The second part describes recent advances on miniaturization of nanosuspension production, to enable formulation screening during preclinical development. Finally, literature available on further nanosuspensions solidification is discussed, focussing on the maintenance of the preservation of the rapid dissolution properties of the nanocrystals after further downstream processing.

  15. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    NASA Astrophysics Data System (ADS)

    Zhan, Honglei; Liang, Jun F.

    2016-12-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  16. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid.

    PubMed

    Zhan, Honglei; Liang, Jun F

    2016-12-09

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC 50  < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field.

  17. Extreme Activity of Drug Nanocrystals Coated with A Layer of Non-Covalent Polymers from Self-Assembled Boric Acid

    PubMed Central

    Zhan, Honglei; Liang, Jun F.

    2016-01-01

    Non-covalent polymers have remarkable advantages over synthetic polymers for wide biomedical applications. In this study, non-covalent polymers from self-assembled boric acid were used as the capping reagent to replace synthetic polymers in drug crystallization. Under acidic pH, boric acid self-assembled on the surface of drug nanocrystals to form polymers with network-like structures held together by hydrogen bonds. Coating driven by boric acid self-assembly had negligible effects on drug crystallinity and structure but resulted in drug nanocrystals with excellent dispersion properties that aided in the formation of a more stable suspension. Boric acid coating improved drug stability dramatically by preventing drug molecules from undergoing water hydrolysis in a neutral environment. More importantly, the specific reactivity of orthoboric groups to diols in cell glycocalyx facilitated a rapid cross-membrane translocation of drug nanocrystals, leading to efficient intracellular drug delivery, especially on cancer cells with highly expressed sialic acids. Boric acid coated nanocrystals of camptothecin, an anticancer drug with poor aqueous solubility and stability, demonstrated extreme cytotoxic activity (IC50 < 5.0 μg/mL) to cancer cells compared to synthetic polymer coated CPT nanocrystals and free CPT. Surface coating using non-covalent polymers from self-assembled boric acid will have wide biomedical applications especially in biomaterials and drug delivery field. PMID:27934922

  18. Mechanism of generation of drug nanocrystals in celecoxib: mannitol nanocrystalline solid dispersion.

    PubMed

    Bhatt, Varun; Shete, Ganesh; Bansal, Arvind Kumar

    2015-11-10

    Objective of this work was to understand the mechanism of formation of celecoxib nanocrystals in celecoxib: mannitol nanocrystalline solid dispersion (NSD). Solution of celecoxib and mannitol was spray dried in 1:1 (g:g) proportion to obtain NSD, with average crystallite size of 214.07 ± 45.27 nm. Solubility parameters of celecoxib and mannitol were 23.1 MPa(1/2) and 38.5 MPa(1/2), respectively, hinting their immiscibility. Formation of nanocrystals during NanoCrySP proceeds via intermediate amorphous form of the drug. Earlier work from our lab on hesperetin-mannitol system, had underlined the role of plasticization of amorphous drug by excipient in the formation of nanocrystals. However, in present case, mannitol failed to plasticize amorphous celecoxib and Tg of amorphous celecoxib (56.8°C) showed a negligible change (54.8°C) in presence of mannitol. However, DSC data also suggested crystallization inducing potential of mannitol on amorphous celecoxib. Polarized light microscopy provided evidence that, mannitol facilitated heterogeneous nucleation of amorphous celecoxib at their interface. Transmission electron microscopy analysis suggested that, mannitol acted as a physical barrier to crystal growth of celecoxib crystallites. Thus, though mannitol did not plasticize amorphous celecoxib, it aided in nanocrystal generation by heterogeneous nucleation and providing physical barrier to crystal growth. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Microfluidic Technology: Uncovering the Mechanisms of Nanocrystal Nucleation and Growth.

    PubMed

    Lignos, Ioannis; Maceiczyk, Richard; deMello, Andrew J

    2017-05-16

    The controlled and reproducible formation of colloidal semiconductor nanocrystals (or quantum dots) is of central importance in nanoscale science and technology. The tunable size- and shape-dependent properties of such materials make them ideal candidates for the development of efficient and low-cost displays, solar cells, light-emitting devices, and catalysts. The formidable difficulties associated with the macroscale preparation of semiconductor nanocrystals (possessing bespoke optical and chemical properties) result from the fact that underlying reaction mechanisms are complex and that the reactive environment is difficult to control. Automated microfluidic reactors coupled with monitoring systems and optimization algorithms aim to elucidate complex reaction mechanisms that govern both nucleation and growth of nanocrystals. Such platforms are ideally suited for the efficient optimization of reaction parameters, assuring the reproducible synthesis of nanocrystals with user-defined properties. This Account aims to inform the nanomaterials community about how microfluidic technologies can supplement flask experimentation for the ensemble investigation of formation mechanisms and design of semiconductor nanocrystals. We present selected studies outlining the preparation of quantum dots using microfluidic systems with integrated analytics. Such microfluidic reaction systems leverage the ability to extract real-time information regarding optical, structural, and compositional characteristics of quantum dots during nucleation and growth stages. The Account further highlights our recent research activities focused on the development and application of droplet-based microfluidics with integrated optical detection systems for the efficient and rapid screening of reaction conditions and a better understanding of the mechanisms of quantum dot synthesis. We describe the features and operation of fully automated microfluidic reactors and their subsequent application to high

  20. Multifunctional superparamagnetic nanocrystals for imaging and targeted drug delivery to the lung

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Brandt, Yekaterina I.; Withers, Nathan J.; Plumley, John B.; Cook, Nathaniel C.; Rivera, Antonio C.; Yadav, Surabhi; Smolyakov, Gennady A.; Monson, Todd; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek

    2012-03-01

    Iron oxide colloidal nanocrystals (ferrofluids) are investigated for application in the treatment of cystic fibrosis lung infections, the leading cause of mortality in cystic fibrosis patients. We investigate the use of iron oxide nanocrystals to increase the effectiveness of inhalation aerosol antibiotics therapy through two mechanisms: directed particle movement in the presence of a static external magnetic field and magnetic hyperthermia. Magnetic hyperthermia is an effective method for decreasing the viscosity of the mucus and biofilm thereby increasing drug, immune cell, and antibody penetration to the affected area. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Nanocrystals in the superparamagnetic to ferromagnetic size range exhibited excellent heating power. Additionally, iron oxide-zinc selenide core-shell nanoparticles were prepared in parallel in order to allow imaging of the iron oxide nanoparticles.

  1. Iron Oxide Nanocrystals for Magnetic Hyperthermia Applications

    PubMed Central

    Armijo, Leisha M.; Brandt, Yekaterina I.; Mathew, Dimple; Yadav, Surabhi; Maestas, Salomon; Rivera, Antonio C.; Cook, Nathaniel C.; Withers, Nathan J.; Smolyakov, Gennady A.; Adolphi, Natalie; Monson, Todd C.; Huber, Dale L.; Smyth, Hugh D. C.; Osiński, Marek

    2012-01-01

    Magnetic nanocrystals have been investigated extensively in the past several years for several potential applications, such as information technology, MRI contrast agents, and for drug conjugation and delivery. A specific property of interest in biomedicine is magnetic hyperthermia—an increase in temperature resulting from the thermal energy released by magnetic nanocrystals in an external alternating magnetic field. Iron oxide nanocrystals of various sizes and morphologies were synthesized and tested for specific losses (heating power) using frequencies of 111.1 kHz and 629.2 kHz, and corresponding magnetic field strengths of 9 and 25 mT. Polymorphous nanocrystals as well as spherical nanocrystals and nanowires in paramagnetic to ferromagnetic size range exhibited good heating power. A remarkable 30 °C temperature increase was observed in a nanowire sample at 111 kHz and magnetic field of 25 mT (19.6 kA/m), which is very close to the typical values of 100 kHz and 20 mT used in medical treatments. PMID:28348300

  2. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania—Synthesis and Antibacterial Properties

    PubMed Central

    Svensson, Fredric G.; Agafonov, Alexander V.; Håkansson, Sebastian; Seisenbaeva, Gulaim A.

    2018-01-01

    Spherical cellulose nanocrystal-based hybrids grafted with titania nanoparticles were successfully produced for topical drug delivery. The conventional analytical filter paper was used as a precursor material for cellulose nanocrystals (CNC) production. Cellulose nanocrystals were extracted via a simple and quick two-step process based on first the complexation with Cu(II) solution in aqueous ammonia followed by acid hydrolysis with diluted H2SO4. Triclosan was selected as a model drug for complexation with titania and further introduction into the nanocellulose based composite. Obtained materials were characterized by a broad variety of microscopic, spectroscopic, and thermal analysis methods. The drug release studies showed long-term release profiles of triclosan from the titania based nanocomposite that agreed with Higuchi model. The bacterial susceptibility tests demonstrated that released triclosan retained its antibacterial activity against Escherichia coli and Staphylococcus aureus. It was found that a small amount of titania significantly improved the antibacterial activity of obtained nanocomposites, even without immobilization of model drug. Thus, the developed hybrid patches are highly promising candidates for potential application as antibacterial agents. PMID:29642486

  3. Hybrid Drug Delivery Patches Based on Spherical Cellulose Nanocrystals and Colloid Titania-Synthesis and Antibacterial Properties.

    PubMed

    Evdokimova, Olga L; Svensson, Fredric G; Agafonov, Alexander V; Håkansson, Sebastian; Seisenbaeva, Gulaim A; Kessler, Vadim G

    2018-04-08

    Spherical cellulose nanocrystal-based hybrids grafted with titania nanoparticles were successfully produced for topical drug delivery. The conventional analytical filter paper was used as a precursor material for cellulose nanocrystals (CNC) production. Cellulose nanocrystals were extracted via a simple and quick two-step process based on first the complexation with Cu(II) solution in aqueous ammonia followed by acid hydrolysis with diluted H₂SO₄. Triclosan was selected as a model drug for complexation with titania and further introduction into the nanocellulose based composite. Obtained materials were characterized by a broad variety of microscopic, spectroscopic, and thermal analysis methods. The drug release studies showed long-term release profiles of triclosan from the titania based nanocomposite that agreed with Higuchi model. The bacterial susceptibility tests demonstrated that released triclosan retained its antibacterial activity against Escherichia coli and Staphylococcus aureus . It was found that a small amount of titania significantly improved the antibacterial activity of obtained nanocomposites, even without immobilization of model drug. Thus, the developed hybrid patches are highly promising candidates for potential application as antibacterial agents.

  4. Cellulose Nanocrystal Membranes as Excipients for Drug Delivery Systems

    PubMed Central

    Barbosa, Ananda M.; Robles, Eduardo; Ribeiro, Juliana S.; Lund, Rafael G.; Carreño, Neftali L. V.; Labidi, Jalel

    2016-01-01

    In this work, cellulose nanocrystals (CNCs) were obtained from flax fibers by an acid hydrolysis assisted by sonochemistry in order to reduce reaction times. The cavitation inducted during hydrolysis resulted in CNC with uniform shapes, and thus further pretreatments into the cellulose are not required. The obtained CNC exhibited a homogeneous morphology and high crystallinity, as well as typical values for surface charge. Additionally, CNC membranes were developed from CNC solution to evaluation as a drug delivery system by the incorporation of a model drug. The drug delivery studies were carried out using chlorhexidine (CHX) as a drug and the antimicrobial efficiency of the CNC membrane loaded with CHX was examined against Gram-positive bacteria Staphylococcus aureus (S. Aureus). The release of CHX from the CNC membranes is determined by UV-Vis. The obtaining methodology of the membranes proved to be simple, and these early studies showed a potential use in antibiotic drug delivery systems due to the release kinetics and the satisfactory antimicrobial activity. PMID:28774122

  5. Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery.

    PubMed

    Li, Haiyan; Lv, Nana; Li, Xue; Liu, Botao; Feng, Jing; Ren, Xiaohong; Guo, Tao; Chen, Dawei; Fraser Stoddart, J; Gref, Ruxandra; Zhang, Jiwen

    2017-06-08

    Metal-organic frameworks (MOFs), which are typically embedded in polymer matrices as composites, are emerging as a new class of carriers for sustained drug delivery. Most of the MOFs and the polymers used so far in these composites, however, are not pharmaceutically acceptable. In the investigation reported herein, composites of γ-cyclodextrin (γ-CD)-based MOFs (CD-MOFs) and polyacrylic acid (PAA) were prepared by a solid in oil-in-oil (s/o/o) emulsifying solvent evaporation method. A modified hydrothermal protocol has been established which produces efficiently at 50 °C in 6 h micron (5-10 μm) and nanometer (500-700 nm) diameter CD-MOF particles of uniform size with smooth surfaces and powder X-ray diffraction patterns that are identical with those reported in the literature. Ibuprofen (IBU) and Lansoprazole (LPZ), both insoluble in water and lacking in stability, were entrapped with high drug loading in nanometer-sized CD-MOFs by co-crystallisation (that is more effective than impregnation) without causing MOF crystal degradation during the loading process. On account of the good dispersion of drug-loaded CD-MOF nanocrystals inside polyacrylic acid (PAA) matrices and the homogeneous distribution of the drug molecules within these crystals, the composite microspheres exhibit not only spherical shapes and sustained drug release over a prolonged period of time, but they also demonstrate reduced cell toxicity. The cumulative release rate for IBU (and LPZ) follows the trend: IBU-γ-CD complex microspheres (ca. 80% in 2 h) > IBU microspheres > IBU-CD-MOF/PAA composite microspheres (ca. 50% in 24 h). Importantly, no burst release of IBU (and LPZ) was observed from the CD-MOF/PAA composite microspheres, suggesting an even distribution of the drug as well as strong drug carrier interactions inside the CD-MOF. In summary, these composite microspheres, composed of CD-MOF nanocrystals embedded in a biocompatible polymer (PAA) matrix, constitute an efficient and

  6. Noscapinoids bearing silver nanocrystals augmented drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1, mouse melanoma skin cancer cells.

    PubMed

    Soni, Naina; Jyoti, Kiran; Jain, Upendra Kumar; Katyal, Anju; Chandra, Ramesh; Madan, Jitender

    2017-06-01

    Noscapine (Nos) and reduced brominated analogue of noscapine (Red-Br-Nos) prevent cellular proliferation and induce apoptosis in cancer cells either alone or in combination with other chemotherapeutic drugs. However, owing to poor physicochemical properties, Nos and Red-Br-Nos have demonstrated their anticancer activity at higher and multiple doses. Therefore, in present investigation, silver nanocrystals of noscapinoids (Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals) were customized to augment drug delivery, cytotoxicity, apoptosis and cellular uptake in B16F1 mouse melanoma cancer cells. Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals were prepared separately by precipitation method. The mean particle size of Nos-Ag 2+ nanocrystals was measured to be 25.33±3.52nm, insignificantly (P>0.05) different from 27.43±4.51nm of Red-Br-Nos-Ag 2+ nanocrystals. Furthermore, zeta-potential of Nos-Ag 2+ nanocrystals was determined to be -25.3±3.11mV significantly (P<0.05) different from -15.2±3.33mV of Red-Br-Nos-Ag 2+ nanocrystals. The shape of tailored nanocrystals was slightly spherical and or irregular in shape. The architecture of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals was crystalline in nature. FT-IR spectroscopy evinced the successful interaction of Ag 2+ nanocrystals with Nos and Red-Br-Nos, respectively. The superior therapeutic efficacy of tailored nanocrystals was measured in terms of enhanced cytotoxicity, apoptosis and cellular uptake. The Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals exhibited an IC 50 of 16.6μM and 6.5μM, significantly (P<0.05) lower than 38.5μM of Nos and 10.3μM of Red-Br-Nos, respectively. Finally, cellular morphological alterations in B16F1 cells upon internalization of Nos-Ag 2+ nanocrystals and Red-Br-Nos-Ag 2+ nanocrystals provided the evidences for accumulation within membrane-bound cytoplasmic vacuoles and in enlarged lysosomes and thus triggered mitochondria mediated apoptosis via

  7. Silicon nanocrystals as handy biomarkers

    NASA Astrophysics Data System (ADS)

    Fujioka, Kouki; Hoshino, Akiyoshi; Manabe, Noriyoshi; Futamura, Yasuhiro; Tilley, Richard; Yamamoto, Kenji

    2007-02-01

    Quantum dots (QDs) have brighter and longer fluorescence than organic dyes. Therefore, QDs can be applied to biotechnology, and have capability to be applied to medical technology. Currently, among the several types of QDs, CdSe with a ZnS shell is one of the most popular QDs to be used in biological experiments. However, when the CdSe QDs were applied to clinical technology, potential toxicological problems due to CdSe core should be considered. To eliminate the problem, silicon nanocrystals, which have the potential of biocompatibility, could be a candidate of alternate probes. Silicon nanocrystals have been synthesized using several techniques such as aerosol, electrochemical etching, laser pyrolysis, plasma deposition, and colloids. Recently, the silicon nanocrystals were reported to be synthesized in inverse micelles and also stabilized with 1-heptene or allylamine capping. Blue fluorescence of the nanocrystals was observed when excited with a UV light. The nanocrystals covered with 1-heptene are hydrophobic, whereas the ones covered with allylamine are hydrophilic. To test the stability in cytosol, the water-soluble nanocrystals covered with allylamine were examined with a Hela cell incorporation experiment. Bright blue fluorescence of the nanocrystals was detected in the cytosol when excited with a UV light, implying that the nanocrystals were able to be applied to biological imaging. In order to expand the application range, we synthesized and compared a series of silicon nanocrystals, which have variable surface modification, such as alkyl group, alcohol group, and odorant molecules. This study will provide a wider range of optoelectronic applications and bioimaging technology.

  8. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  9. Development and characterization of lecithin stabilized glibenclamide nanocrystals for enhanced solubility and drug delivery.

    PubMed

    Kumar, B Sajeev; Saraswathi, R; Kumar, K Venkates; Jha, S K; Venkates, D P; Dhanaraj, S A

    2014-05-01

    Novel LNCs (lipid nanocrystals) were developed with an aim to improve the solubility, stability and targeting efficiency of the model drug glibenclamide (GLB). PEG 20000, Tween 80 and soybean lecithin were used as polymer, surfactant and complexing agent, respectively. GLB nanocrystals (NCs) were prepared by precipitation process and complexed using hot and cold melt technique. The LNCs were evaluated by drug loading, saturation solubility (SL), optical clarity, in vitro dissolution, solid state characterization, in vivo and stability analysis. LNCs exhibited a threefold increase in SL and a higher dissolution rate than GLB. The percentage dissolution efficiency was found to decrease with increase in PEG 20000. The average particle size was in the range of 155-842 nm and zeta potential values tend to increase after complexation. X-ray powder diffractometry and differential scanning calorimetry results proved the crystallinity prevailed in the samples. Spherical shaped particles (<1000 nm) with a lipid coat on the surface were observed in scanning electron microscopy analysis. Fourier transform infrared results proved the absence of interaction between drug and polymer and stability study findings proved that LNCs were stable. In vivo study findings showed a decrease in drug concentration to pancreas in male Wistar rats. It can be concluded that LNCs are could offer enhanced solubility, dissolution rate and stability for poorly water soluble drugs. The targeting efficiency of LNCs was decreased and further membrane permeability studies ought to be carried out.

  10. The Use of Cellulose Nanocrystals for Potential Application in Topical Delivery of Hydroquinone.

    PubMed

    Taheri, Azade; Mohammadi, Mina

    2015-07-01

    Nanotechnology-based drug delivery systems can enhance drug permeation through the skin and improve the drug stability. The biodegradability and biocompatibility of cellulose nanocrystals have made these nanoparticles good candidates to use in biomedical applications. The hyperpigmentation is a common skin disorder that could be caused by number of reasons such as sun exposure and pregnancy. Hydroquinone could inhibit the production of melanin and eliminate the discolorations of skin. This study is aimed at introducing cellulose nanocrystals as suitable carriers for drug delivery to skin. Prepared cellulose nanocrystals were characterized by dynamic light scattering and atomic force microscopy. The size of cellulose nanocrystals determined using dynamic light scattering was 301 ± 10 nm. Hydroquinone-cellulose nanocrystal complex was prepared by incubating of hydroquinone solution in cellulose nanocrystals suspension. The size of hydroquinone-cellulose nanocrystal complex determined using dynamic light scattering was 310 ± 10 nm. The hydroquinone content of the hydroquinone-cellulose complex was determined using UV/vis spectroscopy. Hydroquinone was bound to cellulose nanocrystals representing 79.3 ± 2% maximum binding efficiency when 1.1 mg hydroquinone was added to 1 mL of cellulose nanocrystals suspension (2 mg cellulose nanocrystal). The hydroquinone-cellulose nanocrystal complex showed an approximately sustained release profile of hydroquinone. Approximately, 80% of bound hydroquinone released in 4 h. © 2014 John Wiley & Sons A/S.

  11. Precipitation-lyophilization-homogenization (PLH) for preparation of clarithromycin nanocrystals: influencing factors on physicochemical properties and stability.

    PubMed

    Morakul, Boontida; Suksiriworapong, Jiraphong; Leanpolchareanchai, Jiraporn; Junyaprasert, Varaporn Buraphacheep

    2013-11-30

    Nanocrystals is one of effective technologies used to improve solubility and dissolution behavior of poorly soluble drugs. Clarithromycin is classified in BCS class II having low bioavailability due to very low dissolution behavior. The main purpose of this study was to investigate an efficiency of clarithromycin nanocrystals preparation by precipitation-lyophilization-homogenization (PLH) combination method in comparison with high pressure homogenization (HPH) method. The factors influencing particle size reduction and physical stability were assessed. The results showed that the PLH technique provided an effective and rapid reduction of particle size of nanocrystals to 460 ± 10 nm with homogeneity size distribution after only the fifth cycle of homogenization, whereas the same size was attained after 30 cycles by the HPH method. The smallest nanocrystals were achieved by using the combination of poloxamer 407 (2%, w/v) and SLS (0.1%, w/v) as stabilizers. This combination could prevent the particle aggregation over 3-month storage at 4 °C. The results from SEM showed that the clarithromycin nanocrystals were in cubic-shaped similar to its initial particle morphology. The DSC thermogram and X-ray diffraction pattern of nanocrystals were not different from the original drug except for intensity of peaks which indicated the presenting of nanocrystals in the crystalline state and/or partial amorphous form. In addition, the dissolution of the clarithromycin nanocrystals was dramatically increased as compared to the coarse clarithromycin. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.

    PubMed

    Wang, Hong; Zhang, Guangxing; Ma, Xueqin; Liu, Yanhua; Feng, Jun; Park, Kinam; Wang, Wenping

    2017-06-01

    Poly (lactide-co-glycolide) (PLGA) microparticles are widely used for controlled drug delivery. Emulsion methods have been commonly used for preparation of PLGA microparticles, but they usually result in low loading capacity, especially for drugs with poor solubility in organic solvents. In the present study, the nanocrystal technology and a water-soluble polymer template method were used to fabricate nanocrystal-loaded microparticles with improved drug loading and encapsulation efficiency for prolonged delivery of breviscapine. Breviscapine nanocrystals were prepared using a precipitation-ultrasonication method and further loaded into PLGA microparticles by casting in a mold from a water-soluble polymer. The obtained disc-like particles were then characterized and compared with the spherical particles prepared by an emulsion-solvent evaporation method. X-ray powder diffraction (XRPD) and confocal laser scanning microscopy (CLSM) analysis confirmed a highly-dispersed state of breviscapine inside the microparticles. The drug form, loading percentage and fabrication techniques significantly affected the loading capacity and efficiency of breviscapine in PLGA microparticles, and their release performance as well. Drug loading was increased from 2.4% up to 15.3% when both nanocrystal and template methods were applied, and encapsulation efficiency increased from 48.5% to 91.9%. But loading efficiency was reduced as the drug loading was increased. All microparticles showed an initial burst release, and then a slow release period of 28days followed by an erosion-accelerated release phase, which provides a sustained delivery of breviscapine over a month. A relatively stable serum drug level for more than 30days was observed after intramuscular injection of microparticles in rats. Therefore, PLGA microparticles loaded with nanocrystals of poorly soluble drugs provided a promising approach for long-term therapeutic products characterized with preferable in vitro and in vivo

  13. Nimodipine nanocrystals for oral bioavailability improvement: preparation, characterization and pharmacokinetic studies.

    PubMed

    Fu, Qiang; Sun, Jin; Zhang, Dong; Li, Mo; Wang, Yongjun; Ling, Guixia; Liu, Xiaohong; Sun, Yinghua; Sui, Xiaofan; Luo, Cong; Sun, Le; Han, Xiaopeng; Lian, He; Zhu, Meng; Wang, Siling; He, Zhonggui

    2013-09-01

    This study intended to develop nimodipine (NMD) nanocrystals with different sizes for oral administration and to investigate the relationship between dissolution and pharmacokinetics for NMD nanocrystals and Nimotop(®). NMD nanocrystals were prepared by combination of microprecipitation and high pressure homogenization and were further lyophilized. The particle size, morphology and aqueous solubility of the NMD nanocrystals were determined. With Nimotop(®) as the control, the dissolution rate was evaluated and the pharmacokinetic study was undertaken in beagle dogs. NMD nanocrystals with mean diameters of about 159.0, 503.0 and 833.3 nm were prepared, respectively. The lyophilization didn't affect the particle sizes of the redispersed nanocrystals. The aqueous solubility was significantly improved and displayed a size-dependent manner. The nanocrystals exhibited lower dissolution patterns than Nimotop(®) under non-sink condition, but bioavailability of the two nanocrystals (159.0 and 833.3 nm) was equivalent, about 2.6-fold higher than Nimotop(®). In conclusion, oral nanocrystal drug delivery system was a promising strategy in improving the oral bioavailability of poorly soluble or insoluble drugs. But we could not establish a favorable in vitro in vivo correlation for NMD nanocrystals and Nimotop(®) and thus the oral absorption mechanism of the NMD nanocrystals required further study. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Doxorubicin-conjugated mesoporous magnetic colloidal nanocrystal clusters stabilized by polysaccharide as a smart anticancer drug vehicle.

    PubMed

    Li, Dian; Tang, Jing; Wei, Chuan; Guo, Jia; Wang, Shilong; Chaudhary, Deeptangshu; Wang, Changchun

    2012-09-10

    Fabrication of magnetic nanocarriers that demonstrate enhanced biocompatibility and excellent colloidal stability is critical for the application of magnetic-motored drug delivery, and it remains a challenge. Herein, a novel approach to synthesize mesoporous magnetic colloidal nanocrystal clusters (MMCNCs) that are stabilized by agarose is described; these clusters demonstrate high magnetization, large surface area and pore volume, excellent colloidal stability, enhanced biocompatibility, and acid degradability. The hydroxyl groups of agarose, which cover the surface of the magnetic nanocrystals, are modified with vinyl groups, followed by click reaction with mercaptoacetyl hydrazine to form the terminal hydrazide (-CONHNH(2)). The anticancer agent doxorubicin (DOX) is then conjugated to MMCNCs through a hydrazone bond. The resulting hydrazone is acid cleavable, thereby providing a pH-sensitive drug release capability. This novel carrier provides an important step towards the construction of a new family of magnetic-motored drug-delivery systems. The experimental results show that the release rate of DOX from the DOX-conjugated MMCNCs (MMCNCs-DOX) is dramatically improved at low pH (tumor cell: pH 4-5 in the late stage of endolysosome and pH 5-6 from the early to late endosome), while almost no DOX is released at neutral pH (blood plasma). The cell cytotoxicity of the MMCNCs-DOX measured by MTT assay exhibits a comparable antitumor efficacy but lower cytotoxicity for normal cell lines, when measured against the free drug, thus achieving the aim of reducing side effects to normal tissues associated with controlled drug release. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Conjugation of Hot-Melt Extrusion with High-Pressure Homogenization: a Novel Method of Continuously Preparing Nanocrystal Solid Dispersions.

    PubMed

    Ye, Xingyou; Patil, Hemlata; Feng, Xin; Tiwari, Roshan V; Lu, Jiannan; Gryczke, Andreas; Kolter, Karl; Langley, Nigel; Majumdar, Soumyajit; Neupane, Dipesh; Mishra, Sanjay R; Repka, Michael A

    2016-02-01

    Over the past few decades, nanocrystal formulations have evolved as promising drug delivery systems owing to their ability to enhance the bioavailability and maintain the stability of poorly water-soluble drugs. However, conventional methods of preparing nanocrystal formulations, such as spray drying and freeze drying, have some drawbacks including high cost, time and energy inefficiency, traces of residual solvent, and difficulties in continuous operation. Therefore, new techniques for the production of nanocrystal formulations are necessary. The main objective of this study was to introduce a new technique for the production of nanocrystal solid dispersions (NCSDs) by combining high-pressure homogenization (HPH) and hot-melt extrusion (HME). Efavirenz (EFZ), a Biopharmaceutics Classification System class II drug, which is used for the treatment of human immunodeficiency virus (HIV) type I, was selected as the model drug for this study. A nanosuspension (NS) was first prepared by HPH using sodium lauryl sulfate (SLS) and Kollidon® 30 as a stabilizer system. The NS was then mixed with Soluplus® in the extruder barrel, and the water was removed by evaporation. The decreased particle size and crystalline state of EFZ were confirmed by scanning electron microscopy, zeta particle size analysis, and differential scanning calorimetry. The increased dissolution rate was also determined. EFZ NCSD was found to be highly stable after storage for 6 months. In summary, the conjugation of HPH with HME technology was demonstrated to be a promising novel method for the production of NCSDs.

  16. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  17. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation.

    PubMed

    Lei, Yaya; Kong, Yindi; Sui, Hong; Feng, Jun; Zhu, Rongyue; Wang, Wenping

    2016-10-01

    The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA.

  18. Fatigue characteristics of SAE52100 steel via ultrasonic nanocrystal surface modification technology.

    PubMed

    Pyun, Young Sik; Suh, Chang Min; Yamaguchi, Tokutaro; Im, Jong Soon; Kim, Jun Hyong; Amanov, Auezhan; Park, Jeong Hyeon

    2012-07-01

    Ultrasonic nanocrystal surface modification (UNSM) technology is a novel surface modification technology that can improve the mechanical and tribological properties of interacting surfaces in relative motion. UNSM treatment was utilized to improve the wear resistance fatigue strength of slim bearing rings made of SAE52100 bearing steel without damaging the raceway surfaces. In this study, wear and fatigue results that were subjected to different impact loads of the UNSM treatment were investigated and compared with those of the untreated specimen. The microhardness of the UNSM-treated specimens increased by about 20%, higher than that of the untreated specimens. The X-ray diffraction analysis showed that a compressive residual stress of more than 1,000 MPa was induced after the UNSM treatment. Also, electron backscatter diffraction analysis was used to study the surface structure and nanograin refinement. The results showed that the rolling contact fatigue life and the rotary bending fatigue strength of the UNSM-treated specimens increased by about 80% and 31%, respectively, compared to those of the untreated specimen. These results might be attributed to the increased microhardness, the induced compressive residual stress, and the nanocrystal structure modification after the UNSM treatment. In addition, the fracture surface analysis showed that the fish eye crack initiation phenomenon was observed after the UNSM treatment.

  19. Release kinetics and cell viability of ibuprofen nanocrystals produced by melt-emulsification.

    PubMed

    Fernandes, A R; Dias-Ferreira, J; Cabral, C; Garcia, M L; Souto, E B

    2018-06-01

    The clinical use of poorly water-soluble drugs has become a big challenge in pharmaceutical development due to the compromised bioavailability of the drugs in vivo. Nanocrystals have been proposed as a formulation strategy to improve the dissolution properties of these drugs. The benefits of using nanocrystals in drug delivery, when compared to other nanoparticles, are related to their production facilities, simple structure, and suitability for a variety of administration routes. High pressure homogenization (HPH) is the most promising production process, which can be employed at low or high temperatures. Ibuprofen nanocrystals with a mean size below 175 nm, and polydispersity below 0.18, have been produced by melt-emulsification, followed by HPH. Two nanocrystal formulations, differing on the surfactant composition, have been produced, their in vitro ibuprofen release tested in Franz diffusion cells and adjusted to several kinetic models (zero order, first order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, Baker-Lonsdale and Weibull model). Cell viability was assessed at 3, 6 and 24 h of incubation on human epithelial colorectal cells (Caco-2) by AlamarBlue ® colorimetric assay. For both formulations, Caco-2 cells viability was dependent on the drug concentration and time of exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Characterization and evaluation in vivo of baicalin-nanocrystals prepared by an ultrasonic-homogenization-fluid bed drying method.

    PubMed

    Shi-Ying, Jin; Jin, Han; Shi-Xiao, Jin; Qing-Yuan, Lv; Jin-Xia, Bai; Chen, Hong-Ge; Rui-Sheng, Li; Wei, Wu; Hai-Long, Yuan

    2014-01-01

    To improve the absorption and bioavailability of baicalin using a nanocrystal (or nanosuspension) drug delivery system. A tandem, ultrasonic-homogenization-fluid bed drying technology was applied to prepare baicalin-nanocrystal dried powders, and the physicochemical properties of baicalin-nanocrystals were characterized by scanning electron microscopy, photon correlation spectroscopy, powder X-ray diffraction, physical stability, and solubility experiments. Furthermore, in situ intestine single-pass perfusion experiments and pharmacokinetics in rats were performed to make a comparison between the microcrystals of baicalin and pure baicalin in their absorption properties and bioavailability in vivo. The mean particle size of baicalin-nanocrystals was 236 nm, with a polydispersity index of 0.173, and a zeta potential value of -34.8 mV, which provided a guarantee for the stability of the reconstituted nanosuspension. X-Ray diffraction results indicated that the crystallinity of baicalin was decreased through the ultrasonic-homogenization process. Physical stability experiments showed that the prepared baicalin-nanocrystals were sufficiently stable. It was shown that the solubility of baicalin in the form of nanocrystals, at 495 μg·mL(-1), was much higher than the baicalin-microcrystals and the physical mixture (135 and 86.4 μg·mL(-1), respectively). In situ intestine perfusion experiments demonstrated a clear advantage in the dissolution and absorption characteristics for baicalin-nanocrystals compared to the other formulations. In addition, after oral administration to rats, the particle size decrease from the micron to nanometer range exhibited much higher in vivo bioavailability (with the AUC(0-t) value of 206.96 ± 21.23 and 127.95 ± 14.41 mg·L(-1)·h(-1), respectively). The nanocrystal drug delivery system using an ultrasonic-homogenization-fluid bed drying process is able to improve the absorption and in vivo bioavailability of baicalin, compared with pure

  1. β-Cyclodextrin polymer brushes decorated magnetic colloidal nanocrystal clusters for the release of hydrophobic drugs

    NASA Astrophysics Data System (ADS)

    Lv, Shaonan; Zhao, Meiqin; Cheng, Changjing; Zhao, Zhigang

    2014-05-01

    β-Cyclodextrin (β-CD) polymer brushes decorated magnetic Fe3O4 colloidal nanocrystal clusters (Fe3O4@PG-CD) were fabricated by a combination of surface-initiated atom transfer radical polymerization on the surface of Br-anchored Fe3O4 colloidal nanocrystal clusters (Fe3O4-Br) and ring-opening reaction of epoxy groups. The resulted Fe3O4@PG-CD hybrid nanoparticles were characterized by several methods including Fourier transform infrared, transmission electron microscope, dynamic light scattering instrument, X-ray diffraction, thermogravimetric analysis, and vibrating sample magnetometer. Moreover, the potential of as-synthesized Fe3O4@PG-CD as a carrier of hydrophobic anticancer drug 5-fluorouracil (5-FU) was also investigated. The results showed that the prepared Fe3O4@PG-CD have core/shell structure and high saturated magnetism. 5-FU could be loaded into the Fe3O4@PG-CD via the formation of β-CD/5-FU inclusion complex. Furthermore, the Fe3O4@PG-CD displayed a high loading capacity and pH-dependent release behavior for 5-FU. The release behavior demonstrated a simple Fickian diffusion in the acidic environment (pH 2.0 and 4.0) but neither non-Fickian nor anomalous when neutral. The results reveal that this nanosystem seems to be a very promising vehicle for the hydrophobic drugs for pH-dependent controlled release.

  2. A pH-Sensitive, Biobased Calcium Carbonate Aragonite Nanocrystal as a Novel Anticancer Delivery System

    PubMed Central

    Ismail, Maznah; Tengku Ibrahim, Tengku Azmi; Zakaria, Zuki Abu Bakar

    2013-01-01

    The synthesised biobased calcium carbonate nanocrystals had demonstrated to be an effective carrier for delivery of anticancer drug doxorubicin (DOX). The use of these nanocrystals displayed high levels of selectivity and specificity in achieving effective cancer cell death without nonspecific toxicity. These results confirmed that DOX was intercalated into calcium carbonate nanocrystals at high loading and encapsulation efficiency (4.8 and 96%, resp.). The CaCO3/DOX nanocrystals are relatively stable at neutral pH (7.4), resulting in slow release, but the nanocrystals progressively dissociated in acidic pH (4.8) regimes, triggering faster release of DOX. The CaCO3/DOX nanocrystals exhibited high uptake by MDA MB231 breast cancer cells and a promising potential delivery of DOX to target cells. In vitro chemosensitivity using MTT, modified neutral red/trypan blue assay, and LDH on MDA MB231 breast cancer cells revealed that CaCO3/DOX nanocrystals are more sensitive and gave a greater reduction in cell growth than free DOX. Our findings suggest that CaCO3 nanocrystals hold tremendous promise in the areas of controlled drug delivery and targeted cancer therapy. PMID:24324966

  3. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension.

    PubMed

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2015-01-01

    The top-down approach is frequently used for drug nanocrystal production. A large number of review papers have referred to the top-down approach in terms of process parameters such as stabilizer selection. However, a very important factor, that is, the influence of drug properties, has been not addressed so far. This review will first discuss different nanocrystal technologies in brief. The focus will be on reviewing the different drug properties such as solid state and particle morphology on the efficiency of particle size reduction during top-down processes. Furthermore, the drug properties in the final nanosuspensions are critical for drug dissolution velocity. Therefore, another focus is the characterization of drugs in obtained nanosuspension. Drug physical properties play an important role in the production efficiency. The combinative technologies using modified drugs could significantly improve the performances of top-down processes. However, further understanding of the drug millability and homogenization will still be needed. In addition, a carefully established characterization system for nansuspension is essential.

  4. Nanocrystal structures

    DOEpatents

    Eisler, Hans J [Stoneham, MA; Sundar, Vikram C [Stoneham, MA; Walsh, Michael E [Everett, MA; Klimov, Victor I [Los Alamos, NM; Bawendi, Moungi G [Cambridge, MA; Smith, Henry I [Sudbury, MA

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  5. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  6. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    PubMed Central

    Liu, Minglu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146

  7. Nanocrystal Additives for Advanced Lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Gregory; Lohuis, James; Demas, Nicholaos

    The innovations in engine and drivetrain lubricants are mainly driven by ever more stringent regulations, which demand better fuel economy, lower carbon emission, and less pollution. Many technologies are being developed for the next generations of vehicles to achieve these goals. Even if these technologies can be adopted, there still is a significant need for a “drop-in” lubricant solution for the existing ground vehicle fleet to reap immediate fuel savings at the same time reduce the pollution. Dramatic improvements were observed when Pixelligent’s proprietary, mono-dispersed, and highly scalable metal oxide nanocrystals were added to the base oils. The dispersions inmore » base and formulated oils are clear and without any change of appearance and viscosity. However, the benefits provided by the nanocrystals were limited to the base oils due to the interference of exiting additives in the fully formulated oils. Developing a prototype formulation including the nanocrystals that can demonstrate the same improvements observed in the base oils is a critical step toward the commercialization of these advanced nano-additives. A ‘bottom-up’ approach was adopted to develop a prototype lubricant formulation to avoid the complicated interactions with the multitude of additives, only minimal numbers of most essential additives are added, step by step, into the formulation, to ensure that they are compatible with the nanocrystals and do not compromise their tribological performance. Tribological performance are characterized to come up with the best formulations that can demonstrate the commercial potential of the nano-additives.« less

  8. Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEG-DSPE for imaging and chemotherapy.

    PubMed

    Guo, Fuqiang; Shang, Jiajia; Zhao, Hai; Lai, Kangrong; Li, Yang; Fan, Zhongxiong; Hou, Zhenqing; Su, Guanghao

    2017-12-01

    As one of nanomedicine delivery systems (NDSs), drug nanocrystals exhibited an excellent anticancer effect. Recently, differences of internalization mechanisms and subcellular localization of both drug nanocrystals and small molecular free drug have drawn much attention. In this paper, paclitaxel (PTX) as a model anticancer drug was directly labeled with 4-chloro-7-nitro-1, 2, 3-benzoxadiazole (NBD-Cl) (a drug-fluorophore conjugate Ma et al. (2016) and Wang et al. (2016) [1,2] (PTX-NBD)). PTX-NBD was synthesized by nucleophilic substitution reaction of PTX with NBD-Cl in high yield and characterized by fluorescence, XRD, ESI-MS, and FT-IR analysis. Subsequently, the cube-shaped PTX-NBD nanocrystals were prepared with an antisolvent method followed by surface functionalization of SPC and MPEG-DSPE. The obtained specific shaped PTX-NBD@PC-PEG NCs had a hydrodynamic particle size of ∼50nm, excellent colloidal stability, and a high drug-loading content of ∼64%. Moreover, in comparison with free PTX-NBD and the sphere-shaped PTX-NBD nanocrystals with surface functionalization of SPC and MPEG-DSPE (PTX-NBD@PC-PEG NSs), PTX-NBD@PC-PEG NCs remarkably reduced burst release and improved cellular uptake efficiency and in vitro cancer cell killing ability. In a word, the work highlights the potential of theranostic prodrug nanocrystals based on the drug-fluorophore conjugates for cell imaging and chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Cellulose nanocrystals with tunable surface charge for nanomedicine

    NASA Astrophysics Data System (ADS)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For

  10. Mesoporous biocompatible and acid-degradable magnetic colloidal nanocrystal clusters with sustainable stability and high hydrophobic drug loading capacity.

    PubMed

    Luo, Bin; Xu, Shuai; Luo, An; Wang, Wen-Rui; Wang, Shi-Long; Guo, Jia; Lin, Yao; Zhao, Dong-Yuan; Wang, Chang-Chun

    2011-02-22

    Fabrication of magnetic particles (MPs) with high magnetization and large surface area simultaneously is critical for the application of MPs in bioseparation and drug delivery but remains a challenge. In this article, we describe an unprecedented approach to synthesize mesoporous magnetic colloidal nanocrystal clusters (MCNCs) stabilized by poly(γ-glutamic acid) (PGA) with high magnetization, large surface area (136 m(2)/g) and pore volume (0.57 cm(3)/g), excellent colloidal stability, prominent biocompatibility, and acid degradability. This result provides the important step toward the construction of a new family of MCNCs and demonstrates its capacity in a "magnetic motor" drug delivery system. Here, as an example, we explore the applicability of as-prepared mesoporous MCNCs as hydrophobic drug delivery vehicles (paclitaxel as model drug), and the resultant loading capacity is as high as 35.0 wt %. The antitumor efficacy measured by MTT assay is significantly enhanced, compared with free drugs. Thus, combined with their inherent high magnetization, the mesoporous MCNCs pave the way for applying magnetic targeting drug carriers in antitumor therapeutics.

  11. Improved oral bioavailability for lutein by nanocrystal technology: formulation development, in vitro and in vivo evaluation.

    PubMed

    Chang, Daoxiao; Ma, Yanni; Cao, Guoyu; Wang, Jianhuan; Zhang, Xia; Feng, Jun; Wang, Wenping

    2018-08-01

    Lutein is a kind of natural carotenoids possessing many pharmacological effects. The application of lutein was limited mainly due to its low oral bioavailability caused by poor aqueous solubility. Nanocrystal formulation of lutein was developed to improve the oral bioavailability in this study. The nanosuspension was prepared by the anti-solvent precipitation-ultrasonication method and optimized by Box-Behnken design, followed by freeze-drying to obtain lutein nanocrystals. The nanocrystals were characterized on their physical properties, in vitro dissolution and in vivo absorption performance. Lutein nanocrystals showed as tiny spheres with an average particle size of 110.7 nm. The result of diffractograms indicated that the percent crystallinity of lutein was 89.4% in coarse powder and then declined in nanocrystal formulation. The saturated solubility of lutein in water increased from 7.3 μg/ml for coarse powder up to 215.7 μg/ml for lutein nanocrystals. The dissolution rate of lutein nanocrystals was significantly higher than that of coarse powder or the physical mixture. The C max and AUC 0-24 h of lutein nanocrystals after oral administration in rats was 3.24 and 2.28 times higher than those of lutein suspension, respectively. These results indicated that the nanocrystal formulation could significantly enhance the dissolution and absorption of lutein and might be a promising approach for improving its oral bioavailability.

  12. Level Anticrossing of Impurity States in Semiconductor Nanocrystals

    PubMed Central

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Ponomareva, Irina O.; Leonov, Mikhail Yu.; Perova, Tatiana S.; Berwick, Kevin; Baranov, Alexander V.; Fedorov, Anatoly V.

    2014-01-01

    The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states' coupling strength. PMID:25369911

  13. Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors.

    PubMed

    Kim, David K; Lai, Yuming; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2012-01-01

    Colloidal semiconductor nanocrystals are emerging as a new class of solution-processable materials for low-cost, flexible, thin-film electronics. Although these colloidal inks have been shown to form single, thin-film field-effect transistors with impressive characteristics, the use of multiple high-performance nanocrystal field-effect transistors in large-area integrated circuits has not been shown. This is needed to understand and demonstrate the applicability of these discrete nanocrystal field-effect transistors for advanced electronic technologies. Here we report solution-deposited nanocrystal integrated circuits, showing nanocrystal integrated circuit inverters, amplifiers and ring oscillators, constructed from high-performance, low-voltage, low-hysteresis CdSe nanocrystal field-effect transistors with electron mobilities of up to 22 cm(2) V(-1) s(-1), current modulation >10(6) and subthreshold swing of 0.28 V dec(-1). We fabricated the nanocrystal field-effect transistors and nanocrystal integrated circuits from colloidal inks on flexible plastic substrates and scaled the devices to operate at low voltages. We demonstrate that colloidal nanocrystal field-effect transistors can be used as building blocks to construct complex integrated circuits, promising a viable material for low-cost, flexible, large-area electronics.

  14. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  15. Cation Exchange Reactions for Improved Quality and Diversity of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Beberwyck, Brandon James

    Observing the size and shape dependent physical properties of semiconductor nanocrystals requires synthetic methods capable of not only composition and crystalline phase control but also molecular scale uniformity for a particle consisting of tens to hundreds of thousands of atoms. The desire for synthetic methods that produce uniform nanocrystals of complex morphologies continues to increase as nanocrystals find roles in commercial applications, such as biolabeling and display technologies, that are simultaneously restricting material compositions. With these constraints, new synthetic strategies that decouple the nanocrystal's chemical composition from its morphology are necessary. This dissertation explores the cation exchange reaction of colloidal semiconductor nanocrystals, a template-based chemical transformation that enables the interconversion of nanocrystals between a variety of compositions while maintaining their size dispersity and morphology. Chapter 1 provides an introduction to the versatility of this replacement reaction as a synthetic method for semiconductor nanocrystals. An overview of the fundamentals of the cation exchange reaction and the diversity of products that are achievable is presented. Chapter 2 examines the optical properties of nanocrystal heterostructures produced through cation exchange reactions. The deleterious impact of exchange on the photoluminescence is correlated to residual impurities and a simple annealing protocol is demonstrated to achieve photoluminescence yields comparable to samples produced by conventional methods. Chapter 3 investigates the extension of the cation exchange reaction beyond ionic nanocrystals. Covalent III-V nanocrystal of high crystallinity and low size dispersity are synthesized by the cation exchange of cadmium pnictide nanocrystals with group 13 ions. Lastly, Chapter 4 highlights future studies to probe cation exchange reactions in colloidal semiconductor nanocrystals and progress that needs to be

  16. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?

    PubMed

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

  17. Surface chemical modification of nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helms, Brett Anthony; Milliron, Delia Jane; Rosen, Evelyn Louise

    Nanocrystals comprising organic ligands at surfaces of the plurality of nanocrystals are provided. The organic ligands are removed from the surfaces of the nanocrystals using a solution comprising a trialkyloxonium salt in a polar aprotic solvent. The removal of the organic ligands causes the nanocrystals to become naked nanocrystals with cationic surfaces.

  18. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations.

    PubMed

    Leone, Federica; Cavalli, Roberta

    2015-01-01

    A nanosuspension or nanocrystal suspension is a versatile formulation combining conventional and innovative features. It comprises 100% pure drug nanoparticles with sizes in the nano-scale range, generally stabilized by surfactants or polymers. Nanosuspensions are usually obtained in liquid media with bottom-up and top-down methods or by their combination. They have been designed to enhance the solubility, the dissolution rate and the bioavailability of drugs via various administration routes. Due to their small sizes, nanosuspensions can be also considered a drug delivery nanotechnology for the preparation of nanomedicine products. This review focuses on the state of the art of the nanocrystal-based formulation. It describes theory characteristics, design parameters, preparation methods, stability issues, as well as specific in vivo applications. Innovative strategies proposed to obtain nanomedicine formulation using nanocrystals are also reported. Many drug nanodelivery systems have been developed to increase the bioavailability of drugs and to decrease adverse side effects, but few can be industrially manufactured. Nanocrystals can close this gap by combining traditional and innovative drug formulations. Indeed, they can be used in many pharmaceutical dosage forms as such, or developed as new nano-scaled products. Engineered surface nanocrystals have recently been proposed as a dual strategy for stability enhancement and targeting delivery of nanocrystals.

  19. Living Nanocrystals: Synthesis of Precisely Defined Metal Oxide Nanocrystals Through a Continuous Growth Process

    NASA Astrophysics Data System (ADS)

    Jansons, Adam Wayne

    Colloidal nanocrystals offer new and improved performance in applications as well as less environmental impact when compared to traditional device fabrication methods. The important properties that enable improved applications are a direct result of nanocrystal structure. While there have been many great advances in the production of colloidal nanocrystals over the past three decades, precise, atomic-level control of the size, composition, and structure of the inorganic core remains challenging. Rather than dictate these material aspects through traditional synthetic routes, this dissertation details the development and exploitation of a colloidal nanocrystal synthetic method inspired by polymerization reactions. Living polymerization reactions offer precise control of polymer size and structure and have tremendously advanced polymer science, allowing the intuitive production of polymers and block co-polymers of well-defined molecular weights. Similarly, living nanocrystal synthetic methods allow an enhanced level of structural control, granting the synthesis of binary, doped, and core/shell nanocrystals of well-defined size, composition, and structure. This improved control in turn grants enhanced nanocrystal property performance and deepens our understanding of structure/property relationships. This dissertation defines living nanocrystal growth and demonstrates the potential of the living methods in the colloidal production of oxide nanocrystals. After a brief introduction, living growth is defined and discussed in the context of synthetic prerequisites, attributes, and outcomes. Living growth is also compared to more traditional colloidal nanocrystal synthetic methods. The following chapters then demonstrate the precise control living approaches offer in three separate studies; the first highlights sub-nanometer control of nanocrystal size from 2-22+ nm in diameter. Next the improvement in nanocrystal composition is illustrated using several transition metal

  20. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?

    PubMed Central

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E.

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. The aim of this article is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Toward the end of this article, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take. PMID:19053095

  1. The future of quantum dots in drug discovery.

    PubMed

    Lin, Guimiao; Yin, Feng; Yong, Ken-Tye

    2014-09-01

    The rapid development of drug discovery today is inseparable from the interaction of advanced particle technologies and new drug synthesis protocols. Quantum dots (QDs) are regarded as a unique class of fluorescent labels, with unique optical properties such as high brightness and long-term colloidal and optical stability; these are suitable for optical imaging, drug delivery and optical tracking, fluorescence immunoassay and other medicinal applications. More importantly, QD possesses a rich surface chemistry property that is useful for incorporating various drug molecules, targeting ligands, and additional contrast agents (e.g., MRI, PET, etc.) onto the nanoparticle surface for achieving targeted and traceable drug delivery therapy at both cellular and systemic levels. In recent times, the advancement of QD technology has promoted the use of functionalized nanocrystals for in vivo applications. Such research is paving the way for drug discovery using various bioconjugated QD formulations. In this editorial, the authors highlight the current research progress and future applications of QDs in drug discovery.

  2. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  3. Oral fast-dissolving films containing lutein nanocrystals for improved bioavailability: formulation development, in vitro and in vivo evaluation.

    PubMed

    Liu, Chen; Chang, Daoxiao; Zhang, Xinhui; Sui, Hong; Kong, Yindi; Zhu, Rongyue; Wang, Wenping

    2017-11-01

    Lutein is widely used as diet supplement for prevention of age-related macular degeneration. However, the application and efficacy of lutein in food and nutritional products has been hampered due to its poor solubility and low oral bioavailability. This study aimed to develop and evaluate the formulation of oral fast-dissolving film (OFDF) containing lutein nanocrystals for enhanced bioavailability and compliance. Lutein nanocrystals were prepared by anti-solvent precipitation method and then encapsulated into the films by solvent casting method. The formulation of OFDF was optimized by Box-Behnken Design (BBD) as follows: HPMC 2.05% (w/v), PEG 400 1.03% (w/v), Cremophor EL 0.43% (w/v). The obtained films exhibited uniform thickness of 35.64 ± 1.64 μm and drug content of 0.230 ± 0.003 mg/cm 2 and disintegrated rapidly in 29 ± 8 s. The nanocrystal-loaded films with reconstituted particle size of 377.9 nm showed better folding endurance and faster release rate in vitro than the conventional OFDFs with raw lutein. The microscope images, thermograms, and diffractograms indicated that lutein nanocrystals were highly dispersed into the films. After administrated to SD rats, t max was decreased from 3 h for oral solution formulation to less than 0.8 h for OFDF formulations, and C max increased from 150 ng/mL for solution to 350 ng/mL for conventional OFDF or 830 ng/mL for nanocrystal OFDF. The AUC 0-24h of conventional or nanocrystal OFDF was 1.37 or 2.08-fold higher than that of the oral solution, respectively. These results suggested that drug nanocrystal-loaded OFDF can be applied as a promising approach for enhanced bioavailability of poor soluble drugs like lutein.

  4. Size-tunable phosphorescence in colloidal metastable gamma-Ga2O3 nanocrystals.

    PubMed

    Wang, Ting; Farvid, Shokouh S; Abulikemu, Mutalifu; Radovanovic, Pavle V

    2010-07-14

    We report a colloidal synthesis of gallium oxide (Ga(2)O(3)) nanocrystals having metastable cubic crystal structure (gamma phase) and uniform size distribution. Using the synthesized nanocrystal size series we demonstrate for the first time a size-tunable photoluminescence in Ga(2)O(3) from ultraviolet to blue, with the emission shifting to lower energies with increasing nanocrystal size. The observed photoluminescence is dominated by defect-based donor-acceptor pair recombination and has a lifetime of several milliseconds. Importantly, the decay of this phosphorescence is also size dependent. The phosphorescence energy and the decay rate increase with decreasing nanocrystal size, owing to a reduced donor-acceptor separation. These results allow for a rational and predictable tuning of the optical properties of this technologically important material and demonstrate the possibility of manipulating the localized defect interactions via nanocrystal size. Furthermore, the same defect states, particularly donors, are also implicated in electrical conductivity rendering monodispersed Ga(2)O(3) nanocrystals a promising material for multifunctional optoelectronic structures and devices.

  5. Biocompatibility of bio based calcium carbonate nanocrystals aragonite polymorph on NIH 3T3 fibroblast cell line.

    PubMed

    Kamba, Abdullahi Shafiu; Ismail, Maznah; Ibrahim, Tengku Azmi Tengku; Zakaria, Zuki Abu Bakar

    2014-01-01

    Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line. Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope. The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed. The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.

  6. Fabrication of all-inorganic nanocrystal solids through matrix encapsulation of nanocrystal arrays.

    PubMed

    Kinder, Erich; Moroz, Pavel; Diederich, Geoffrey; Johnson, Alexa; Kirsanova, Maria; Nemchinov, Alexander; O'Connor, Timothy; Roth, Dan; Zamkov, Mikhail

    2011-12-21

    A general strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films is reported. The present methodology goes beyond the traditional ligand-interlinking scheme and relies on encapsulation of morphologically defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles while rendering the nanocrystal film photoconductive. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces, and show compelling light-harvesting performance in prototype solar cells. © 2011 American Chemical Society

  7. Synthesis, screening, and nanocrystals preparation of rhein amide derivatives.

    PubMed

    Chen, Lijiang; Zhang, Jinfeng; Rong, Jinghong; Liu, Yu; Zhao, Jinhua; Cui, Qingguo; Wang, Xin; Liang, Xiao; Pan, Hao; Liu, Hongsheng

    2018-04-23

    Rhein (RH) have many bioactivities, but the application was limited of its poor solubility. The present study aimed to establish an efficient method for the synthesis of rhein amide derivatives (RAD) to increase the solubility and anti-tumor activity. RAD exhibited stronger anti-tumor activity than RH in MTT assay. The solubility and oil/water partition coefficient results indicated that rhein-phenylalanine and rhein-isoleucine have better absorption effect, which was consolidated in pharmacokinetic study. Then, rhein-phenylalanine and rhein-isoleucine were prepared into nanocrystals via the precipitation-high pressure homogenization method. Additionally, the nanocrystals both displayed much higher dissolution profiles than the bulk drugs. Pharmacokinetics study indicated that the AUC 0-∞ and C max of nanocrystals increased markedly (p < 0.01). However, the concentration of RH-Phe-NC was far less than RH-Ile-NC in plasma. Consequently, RH-Ile-NC was validated to be an applicable way to improve the bioavailability of RH, which owns a promising future in clinical application.

  8. Bioinspired greigite magnetic nanocrystals: chemical synthesis and biomedicine applications

    PubMed Central

    Feng, Mei; Lu, Yang; Yang, Yuan; Zhang, Meng; Xu, Yun-Jun; Gao, Huai-Ling; Dong, Liang; Xu, Wei-Ping; Yu, Shu-Hong

    2013-01-01

    Large scale greigite with uniform dimensions has stimulated significant demands for applications such as hyperthermia, photovoltaics, medicine and cell separation, etc. However, the inhomogeneity and hydrophobicity for most of the as prepared greigite crystals has limited their applications in biomedicine. Herein, we report a green chemical method utilizing β-cyclodextrin (β-CD) and polyethylene glycol (PEG) to synthesize bioinspired greigite (Fe3S4) magnetic nanocrystals (GMNCs) with similar structure and magnetic property of magnetosome in a large scale. β-CD and PEG is responsible to control the crystal phase and morphology, as well as to bound onto the surface of nanocrystals and form polymer layers. The GMNCs exhibit a transverse relaxivity of 94.8 mM−1s−1 which is as high as iron oxide nanocrystals, and an entrapment efficiency of 58.7% for magnetic guided delivery of chemotherapeutic drug doxorubicin. Moreover, enhanced chemotherapeutic treatment of mice tumor was obtained via intravenous injection of doxorubicin loaded GMNCs. PMID:24141204

  9. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

    PubMed

    Kwon, Soon Gu; Hyeon, Taeghwan

    2008-12-01

    nanoparticles of copper and nickel using metal(II) acetylacetonates. Ni/Pd core/shell nanoparticles were synthesized by simply heating the reaction mixture composed of acetylacetonates of nickel and palladium. Using alternative chalcogen reagents, we synthesized uniform nanocrystals of various metal chalcogenides. Uniform nanocrystals of PbS, ZnS, CdS, and MnS were obtained by heating reaction mixtures composed of metal chlorides and sulfur dissolved in oleylamine. In the future, a detailed understanding of nanocrystal formation kinetics and synthetic chemistry will lead to the synthesis of uniform nanocrystals with controlled size, shape, and composition. In particular, the synthesis of uniform nanocrystals of doped materials, core/shell materials, and multicomponent materials is still a challenge. We expect that these uniformly sized nanocrystals will find important applications in areas including information technology, biomedicine, and energy/environmental technology.

  10. Atomic force microscopy nanomanipulation of silicon nanocrystals for nanodevice fabrication

    NASA Astrophysics Data System (ADS)

    Decossas, Sébastien; Mazen, Frédéric; Baron, Thierry; Brémond, Georges; Souifi, Abdelkader

    2003-12-01

    An atomic force microscopy (AFM) tip has been used to manipulate silicon nanocrystals deposited by low-pressure chemical vapour deposition on thermally oxidized p-type Si wafer. Three nanomanipulation methods are presented. The first one catches a nanocrystal with the AFM tip and deposits it elsewhere: the tip is used as an electrostatic 'nano-crane'. The second one simultaneously manipulates a set of nanocrystals in order to draw well-defined unidimensional lines: the tip is used as a 'nano-broom'. The third one manipulates individual nanocrystals with a precision of about 10 nm using both oscillating and contact AFM modes. Switching from strong interaction forces (chemical) to weak ones (van der Waals, electrostatic or capillarity) is the basis of these manipulation methods. We have applied the second method to connect two electrodes drawn by e-beam and lift-off with a 70 nm long silicon nanocrystal chain. Current versus voltage characterization of the nanofabricated device shows that the increase in nanocrystal density gives rise to conduction between the connected electrodes. Resonant tunnelling effects resulting from Si nanocrystal (nc-Si) multiple tunnel junctions have been observed at 300 K. We also show that offset charges directly influence the position of the resonant tunnelling peaks. Finally, the possibility of manipulating nc-Si with a diameter of around 5 nm is shown to be a promising way to fabricate single electron devices operating at room temperature and fully compatible with silicon technology.

  11. Self-Assembled Nanocrystals of Polycyclic Aromatic Hydrocarbons Show Photostable Single-Photon Emission.

    PubMed

    Pazzagli, Sofia; Lombardi, Pietro; Martella, Daniele; Colautti, Maja; Tiribilli, Bruno; Cataliotti, Francesco Saverio; Toninelli, Costanza

    2018-05-22

    Quantum technologies could largely benefit from the control of quantum emitters in sub-micrometric size crystals. These are naturally prone to integration in hybrid devices, including heterostructures and complex photonic devices. Currently available quantum emitters in nanocrystals suffer from spectral instability, preventing their use as single-photon sources for most quantum optics operations. In this work we report on the performances of single-photon emission from organic nanocrystals (average size of hundreds of nm), made of anthracene (Ac) and doped with dibenzoterrylene (DBT) molecules. The source has hours-long photostability with respect to frequency and intensity, both at room and at cryogenic temperature. When cooled to 3 K, the 00-zero phonon line shows linewidth values (50 MHz) close to the lifetime limit. Such optical properties in a nanocrystalline environment recommend the proposed organic nanocrystals as single-photon sources for integrated photonic quantum technologies.

  12. Silicon nanocrystal inks, films, and methods

    DOEpatents

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  13. Heterostructures Prepared by Surface Modification of Nanocrystals

    ERIC Educational Resources Information Center

    Lee, Bo Hyun

    2009-01-01

    Inorganic nanocrystals (NCs) have drawn the attention from many researchers due to their promising potentials for next generation technologies, from photovoltaics to biological applications. Various types of NCs have become available by synthetic protocols developed in the last two decades. In addition, multicomponent hybrid NCs which can be…

  14. Biomedical Nanocrystal Agents: Design, Synthesis, and Applications

    NASA Astrophysics Data System (ADS)

    Cho, Minjung

    In these days, nanomaterials are applied in a variety of biomedical applications including magnetic resonance imaging (MRI), cell imaging, drug delivery, and cell separation. Most MRI contrast agents affect the longitudinal relaxation time (T1) and transverse relaxation time (T2 ) of water protons in the tissue and result in increased positive or negative contrast. Here, we report the optimization of r1 (1/T 1) or r2 (1/T2) relaxivity dynamics with diameter controlled gadolinium oxide nanocrystals (2˜22 nm) and iron based magnetic nanocrystals (4 ˜33 nm). The r1 and r2 MR relaxivity values of hydrated nanocrystals were optimized and examined depending on their core diameter, surface coating, and compositions; the high r1 value of gadolinium oxide was 40-60 S-1mM-1, which is 10-15 fold higher than that of commercial Gd (III) chelates (4.3˜4.6 S-1mM-1). Moreover, in vitro toxicological studies revealed that polymer coated nanocrystals suspensions had no significant effect on human dermal fibroblast (HDF) cells even at high concentration. Towards multimodal imaging or multifunctional ability, we developed the iron oxide/QDs complexes, which consist of cores of iron oxide that act as nucleation sites for fluorescent QDs. The choice of variable QDs helped to visualize and remove large iron oxide materials in a magnetic separation. Additionally, diluted materials concentrated on the magnet could be fluorescently detected even at very low concentration. The designed MRI or multifunctional nanomaterials will give great and powerful uses in biomedical applications.

  15. Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-08-15

    After use in oral pharmaceutical products, nanocrystals are meanwhile applied to improve the dermal penetration of cosmetic actives (e.g. rutin, hesperidin) and of drugs. By now, nanocrystals are only dermally applied made from poorly soluble actives. The novel concept is to formulate nanocrystals also from medium soluble actives, and to apply a dermal formulation containing additionally nanocrystals. The nanocrystals should act as fast dissolving depot, increase saturation solubility and especially accumulate in the hair follicles, to further increase skin penetration. Caffeine was used as model compound with relevance to market products, and a particular process was developed for the production of caffeine nanocrystals to overcome the supersaturation related effect of crystal growth and fiber formation - typical with medium soluble compounds. It is based on low energy milling (pearl milling) in combination with low dielectric constant dispersion media (water-ethanol or ethanol-propylene glycol mixtures) and optimal stabilizers. Most successful was Carbopol(®) 981 (e.g. 20% caffeine in ethanol-propylene glycol 3:7 with 2% Carbopol, w/w). Nanocrystals with varied sizes can now be produced in a controlled process e.g. 660 nm (optimal for hair follicle accumulation) to 250 nm (optimal for fast dissolution). The short term test proved stability over 2 months of the present formulation being sufficient to perform in vivo testing of the novel concept. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  17. Cellular internalization of LiNbO3 nanocrystals for second harmonic imaging and the effects on stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Li, Jianhua; Qiu, Jichuan; Guo, Weibo; Wang, Shu; Ma, Baojin; Mou, Xiaoning; Tanes, Michael; Jiang, Huaidong; Liu, Hong

    2016-03-01

    Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration-dependent viability. Most importantly, rMSCs labeled with 50 μg per mL of LN nanocrystals retained their ability to differentiate into both osteogenic and adipogenic lineages. The results prove that LN nanocrystals can be used as a cytocompatible, near-infrared (NIR) light driven cell label for long-term imaging, without hindering stem cell differentiation. This work will promote the use of LN nanocrystals to broader applications like deep-tissue tracking, remote drug delivery and stem cell therapy.Second harmonic generation (SHG) nanocrystals have recently been reported to label cancer cells and other functional cell lines due to their unique double-frequency property. In this paper, we report for the first time the use of lithium niobate (LiNbO3, LN) nanocrystals as SHG labels for imaging stem cells. Rat mesenchymal stem cells (rMSCs) were labeled with LN nanocrystals in order to study the cellular internalization of the nanocrystals and the influence on stem cell differentiation. The results showed that LN nanocrystals were endocytosed by the rMSCs and the distribution of the internalized nanoparticles demonstrated a high consistency with the orientation of the actin filaments. Besides, LN-labeled rMSCs showed a concentration

  18. Switchable Ni–Mn–Ga Heusler nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zayak, Alexey T.; Beckman, Scott P.; Tiago, Murilo L.

    2008-10-02

    Here, we examined bulk-like Heusler nanocrystals using real-space pseudopotentials constructed within density functional theory. The nanocrystals were made of various compositions of Ni-Mn-Ga in the size range from 15 up to 169 atoms. Among these compositions, the closest to the stoichiometric Ni 2MnGa were found to be the most stable. The Ni-based nanocrystals retained a tendency for tetragonal distortion, which is inherited from the bulk properties. Surface effects suppress the tetragonal structure in the smaller Ni-based nanocrystals, while bigger nanocrystals develop a bulk-like tetragonal distortion. We suggest the possibility of switchable Ni-Mn-Ga nanocrystals, which could be utilized for magnetic nano-shape-memorymore » applications.« less

  19. Charge Transport in Semiconductor Nanocrystal Solids

    NASA Astrophysics Data System (ADS)

    Talapin, Dmitri; Shevchenko, Elena; Lee, Jong Soo; Urban, Jeffrey; Mitzi, David; Murray, Christopher

    2007-03-01

    Self-assembly of chemically-synthesized nanocrystals can yield complex long-range ordered structures which can be used as model systems for studying transport phenomena in low-dimensional materials [1]. Treatment of close-packed PbSe nanocrystal arrays with hydrazine enhanced exchange coupling between the nanocrystals and improved conductance by more than ten orders of magnitude compared to native nanocrystal films [2]. The conductivity of PbSe nanocrystal solids can be switched between n- and p-type transports by controlling the saturation of electronic states at nanocrystal surfaces. Nanocrystal arrays form the n- and p-channels of field-effect transistors with electron and hole mobilities of 2.5 cm^2V-1s-1 and 0.3 cm^2V-1s-1, respectively, and current modulation Ion/Ioff˜10^3-10^4. The field-effect mobility in PbSe nanocrystal arrays is higher than the mobility of organic transistors while the easy switch between n- and p-transport allows realization of complimentary circuits and p-n junctions for nanocrystal-based solar cells and thermoelectric devices. [1] E. V. Shevchenko, D. V. Talapin, N. A. Kotov, S. O'Brien, C. B. Murray. Nature 439, 55 (2006). [2] D. V. Talapin, C. B. Murray. Science 310, 86 (2005).

  20. Cellulose nanocrystals, nanofibers, and their composites as renewable smart materials

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Zhai, Lindong; Mun, Seongcheol; Ko, Hyun-U.; Yun, Young-Min

    2015-04-01

    Cellulose is one of abundant renewable biomaterials in the world. Over 1.5 trillion tons of cellulose is produced per year in nature by biosynthesis, forming microfibrils which in turn aggregate to form cellulose fibers. Using new effective methods these microfibrils can be disintegrated from the fibers to nanosized materials, so called cellulose nanocrystal (CNC) and cellulose nanofiber (CNF). The CNC and CNF have extremely good strength properties, dimensional stability, thermal stability and good optical properties on top of their renewable behavior, which can be a building block of new materials. This paper represents recent advancement of cellulose nanocrystals and cellulose nanofibers, followed by their possibility for smart materials. Natural behaviors, extraction, modification of cellulose nanocrystals and fibers are explained and their synthesis with nanomaterials is introduced, which is necessary to meet the technological requirements for smart materials. Also, its challenges are addressed.

  1. Nanocrystal synthesis

    DOEpatents

    Tisdale, William; Prins, Ferry; Weidman, Mark; Beck, Megan

    2016-11-01

    A method of preparing monodisperse MX semiconductor nanocrystals can include contacting an M-containing precursor with an X donor to form a mixture, where the molar ratio between the M containing precursor and the X donor is large. Alternatively, if additional X donor is added during the reaction, a smaller ratio between the M containing precursor and the X donor can be used to prepare monodisperse MX semiconductor nanocrystals.

  2. Biomolecular Assembly of Gold Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused inmore » three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.« less

  3. Electron transfer between colloidal ZnO nanocrystals.

    PubMed

    Hayoun, Rebecca; Whitaker, Kelly M; Gamelin, Daniel R; Mayer, James M

    2011-03-30

    Colloidal ZnO nanocrystals capped with dodecylamine and dissolved in toluene can be charged photochemically to give stable solutions in which electrons are present in the conduction bands of the nanocrystals. These conduction-band electrons are readily monitored by EPR spectroscopy, with g* values that correlate with the nanocrystal sizes. Mixing a solution of charged small nanocrystals (e(-)(CB):ZnO-S) with a solution of uncharged large nanocrystals (ZnO-L) caused changes in the EPR spectrum indicative of quantitative electron transfer from small to large nanocrystals. EPR spectra of the reverse reaction, e(-)(CB):ZnO-L + ZnO-S, showed that electrons do not transfer from large to small nanocrystals. Stopped-flow kinetics studies monitoring the change in the UV band-edge absorption showed that reactions of 50 μM nanocrystals were complete within the 5 ms mixing time of the instrument. Similar results were obtained for the reaction of charged nanocrystals with methyl viologen (MV(2+)). These and related results indicate that the electron-transfer reactions of these colloidal nanocrystals are quantitative and very rapid, despite the presence of ~1.5 nm long dodecylamine capping ligands. These soluble ZnO nanocrystals are thus well-defined redox reagents suitable for studies of electron transfer involving semiconductor nanostructures.

  4. Zero-reabsorption doped-nanocrystal luminescent solar concentrators.

    PubMed

    Erickson, Christian S; Bradshaw, Liam R; McDowall, Stephen; Gilbertson, John D; Gamelin, Daniel R; Patrick, David L

    2014-04-22

    Optical concentration can lower the cost of solar energy conversion by reducing photovoltaic cell area and increasing photovoltaic efficiency. Luminescent solar concentrators offer an attractive approach to combined spectral and spatial concentration of both specular and diffuse light without tracking, but they have been plagued by luminophore self-absorption losses when employed on practical size scales. Here, we introduce doped semiconductor nanocrystals as a new class of phosphors for use in luminescent solar concentrators. In proof-of-concept experiments, visibly transparent, ultraviolet-selective luminescent solar concentrators have been prepared using colloidal Mn(2+)-doped ZnSe nanocrystals that show no luminescence reabsorption. Optical quantum efficiencies of 37% are measured, yielding a maximum projected energy concentration of ∼6× and flux gain for a-Si photovoltaics of 15.6 in the large-area limit, for the first time bounded not by luminophore self-absorption but by the transparency of the waveguide itself. Future directions in the use of colloidal doped nanocrystals as robust, processable spectrum-shifting phosphors for luminescent solar concentration on the large scales required for practical application of this technology are discussed.

  5. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun

    2013-06-01

    Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.

  6. Antisense oligonucleotide technologies in drug discovery.

    PubMed

    Aboul-Fadl, Tarek

    2006-09-01

    The principle of antisense oligonucleotide (AS-OD) technologies is based on the specific inhibition of unwanted gene expression by blocking mRNA activity. It has long appeared to be an ideal strategy to leverage new genomic knowledge for drug discovery and development. In recent years, AS-OD technologies have been widely used as potent and promising tools for this purpose. There is a rapid increase in the number of antisense molecules progressing in clinical trials. AS-OD technologies provide a simple and efficient approach for drug discovery and development and are expected to become a reality in the near future. This editorial describes the established and emerging AS-OD technologies in drug discovery.

  7. A novel approach for the fabrication of all-inorganic nanocrystal solids: Semiconductor matrix encapsulated nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Moroz, Pavel

    Growing fossil fuels consumption compels researchers to find new alternative pathways to produce energy. Along with new materials for the conversion of different types of energy into electricity innovative methods for efficient processing of energy sources are also introduced. The main criteria for the success of such materials and methods are the low cost and compelling performance. Among different types of materials semiconductor nanocrystals are considered as promising candidates for the role of the efficient and cheap absorbers for solar energy applications. In addition to the anticipated cost reduction, the integration of nanocrystals (NC) into device architectures is inspired by the possibility of tuning the energy of electrical charges in NCs via nanoparticle size. However, the stability of nanocrystals in photovoltaic devices is limited by the stability of organic ligands which passivate the surface of semiconductors to preserve quantum confinement. The present work introduces a new strategy for low-temperature processing of colloidal nanocrystals into all-inorganic films: semiconductor matrix encapsulated nanocrystal arrays (SMENA). This methodology goes beyond the traditional ligand-interlinking scheme and relies on the encapsulation of morphologically-defined nanocrystal arrays into a matrix of a wide-band gap semiconductor, which preserves optoelectronic properties of individual nanoparticles. Fabricated solids exhibit excellent thermal stability, which is attributed to the heteroepitaxial structure of nanocrystal-matrix interfaces. The main characteristics and properties of these solids were investigated and compared with ones of traditionally fabricated nanocrystal films using standard spectroscopic, optoelectronic and electronic techniques. As a proof of concept, we. We also characterized electron transport phenomena in different types of nanocrystal films using all-optical approach. By measuring excited carrier lifetimes in either ligand-linked or

  8. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  9. Numerical model of a single nanocrystal devoted to the study of disordered nanocrystal floating gates of new flash memories

    NASA Astrophysics Data System (ADS)

    Leroy, Yann; Armeanu, Dumitru; Cordan, Anne-Sophie

    2011-05-01

    The improvement of our model concerning a single nanocrystal that belongs to a nanocrystal floating gate of a flash memory is presented. In order to extend the gate voltage range applicability of the model, the 3D continuum of states of either metallic or semiconducting electrodes is discretized into 2D subbands. Such an approach gives precise information about the mechanisms behind the charging or release processes of the nanocrystal. Then, the self-energy and screening effects of an electron within the nanocrystal are evaluated and introduced in the model. This enables a better determination of the operating point of the nanocrystal memory. The impact of those improvements on the charging or release time of the nanocrystal is discussed.

  10. Optically coded nanocrystal taggants and optical frequency IDs

    NASA Astrophysics Data System (ADS)

    Williams, George M., Jr.; Allen, Thomas; Dupuy, Charles; Novet, Thomas; Schut, David

    2010-04-01

    A series of nanocrystal and nanocrystal quantum dot taggant technologies were developed for covertly tagging and tracking objects of interest. Homogeneous and heterogeneous nanocrystal taggant designs were developed and optimized for ultraviolet through infrared emissions, utilizing either Dexter energy transfer or Förster resonant energy transfer (FRET) between specific absorbing and emitting functionalities. The conversion efficiency, target-specific identification, and adhesion properties of the taggants were engineered by means of various surface ligand chemistries. The ability to engineer poly-functional ligands was shown effective in the detection of a biological agent simulant, detected through a NC photoluminescence that is altered in the presence of the agent of interest; the technique has broad potential applicability to chemical, biological, and explosive (CBE) agent detection. The NC photoluminescence can be detected by a remote LIDAR system; the performance of a taggant system has been modeled and subsequently verified in a series of controlled field tests. LIDAR detection of visible-emitting taggants was shown to exceed 2.8 km in calibrated field tests, and from these field data and calibrated laboratory measurements we predict >5 km range in the covert shortwavelength infrared (SWIR) spectral region.

  11. Reproducible, high-throughput synthesis of colloidal nanocrystals for optimization in multidimensional parameter space.

    PubMed

    Chan, Emory M; Xu, Chenxu; Mao, Alvin W; Han, Gang; Owen, Jonathan S; Cohen, Bruce E; Milliron, Delia J

    2010-05-12

    While colloidal nanocrystals hold tremendous potential for both enhancing fundamental understanding of materials scaling and enabling advanced technologies, progress in both realms can be inhibited by the limited reproducibility of traditional synthetic methods and by the difficulty of optimizing syntheses over a large number of synthetic parameters. Here, we describe an automated platform for the reproducible synthesis of colloidal nanocrystals and for the high-throughput optimization of physical properties relevant to emerging applications of nanomaterials. This robotic platform enables precise control over reaction conditions while performing workflows analogous to those of traditional flask syntheses. We demonstrate control over the size, size distribution, kinetics, and concentration of reactions by synthesizing CdSe nanocrystals with 0.2% coefficient of variation in the mean diameters across an array of batch reactors and over multiple runs. Leveraging this precise control along with high-throughput optical and diffraction characterization, we effectively map multidimensional parameter space to tune the size and polydispersity of CdSe nanocrystals, to maximize the photoluminescence efficiency of CdTe nanocrystals, and to control the crystal phase and maximize the upconverted luminescence of lanthanide-doped NaYF(4) nanocrystals. On the basis of these demonstrative examples, we conclude that this automated synthesis approach will be of great utility for the development of diverse colloidal nanomaterials for electronic assemblies, luminescent biological labels, electroluminescent devices, and other emerging applications.

  12. Connecting the Particles in the Box - Controlled Fusion of Hexamer Nanocrystal Clusters within an AB6 Binary Nanocrystal Superlattice

    PubMed Central

    Treml, Benjamin E.; Lukose, Binit; Clancy, Paulette; Smilgies, Detlef-M; Hanrath, Tobias

    2014-01-01

    Binary nanocrystal superlattices present unique opportunities to create novel interconnected nanostructures by partial fusion of specific components of the superlattice. Here, we demonstrate the binary AB6 superlattice of PbSe and Fe2O3 nanocrystals as a model system to transform the central hexamer of PbSe nanocrystals into a single fused particle. We present detailed structural analysis of the superlattices by combining high-resolution X-ray scattering and electron microscopy. Molecular dynamics simulations show optimum separation of nanocrystals in agreement with the experiment and provide insights into the molecular configuration of surface ligands. We describe the concept of nanocrystal superlattices as a versatile ‘nanoreactor' to create and study novel materials based on precisely defined size, composition and structure of nanocrystals into a mesostructured cluster. We demonstrate ‘controlled fusion' of nanocrystals in the clusters in reactions initiated by thermal treatment and pulsed laser annealing. PMID:25339169

  13. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  14. Terbium-Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties.

    PubMed

    Ma, Baojin; Wu, Yu; Zhang, Shan; Wang, Shicai; Qiu, Jichuan; Zhao, Lili; Guo, Daidong; Duan, Jiazhi; Sang, Yuanhua; Li, Linlin; Jiang, Huaidong; Liu, Hong

    2017-02-28

    Terbium-aspartic acid (Tb-Asp) nanocrystals with chirality-dependent tunable fluorescent properties can be synthesized through a facile synthesis method through the coordination between Tb and Asp. Asp with different chirality (dextrorotation/d and levogyration/l) changes the stability of the coordination center following fluorescent absorption/emission ability differences. Compared with l-Asp, d-Asp can coordinate Tb to form a more stable center, following the higher quantum yield and longer fluorescence life. Fluorescence intensity of Tb-Asp linearly increases with increase ratio of d-Asp in the mixed chirality Tb-Asp system, and the fluorescent properties of Tb-Asp nanocrystals can be tuned by adjusting the chirality ratio. Tb-Asp nanocrystals possess many advantage, such as high biocompatibility, without any color in visible light irradiation, monodispersion with very small size, and long fluorescent life. Those characteristics will give them great potential in many application fields, such as low-cost antifake markers and advertisements using inkjet printers or for molds when dispersed in polydimethylsiloxane. In addition, europium can also be used to synthesize Eu-Asp nanoparticles. Importantly, the facile, low-cost, high-yield, mass-productive "green" process provides enormous advantages for synthesis and application of fluorescent nanocrystals, which will have great impact in nanomaterial technology.

  15. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  16. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G [Boston, MA; Sundar, Vikram C [New York, NY

    2008-02-05

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

  17. Quantum confinement of nanocrystals within amorphous matrices

    NASA Astrophysics Data System (ADS)

    Lusk, Mark T.; Collins, Reuben T.; Nourbakhsh, Zahra; Akbarzadeh, Hadi

    2014-02-01

    Nanocrystals encapsulated within an amorphous matrix are computationally analyzed to quantify the degree to which the matrix modifies the nature of their quantum-confinement power—i.e., the relationship between nanocrystal size and the gap between valence- and conduction-band edges. A special geometry allows exactly the same amorphous matrix to be applied to nanocrystals of increasing size to precisely quantify changes in confinement without the noise typically associated with encapsulating structures that are different for each nanocrystal. The results both explain and quantify the degree to which amorphous matrices redshift the character of quantum confinement. The character of this confinement depends on both the type of encapsulating material and the separation distance between the nanocrystals within it. Surprisingly, the analysis also identifies a critical nanocrystal threshold below which quantum confinement is not possible—a feature unique to amorphous encapsulation. Although applied to silicon nanocrystals within an amorphous silicon matrix, the methodology can be used to accurately analyze the confinement softening of other amorphous systems as well.

  18. Synthesis of ligand-stabilized metal oxide nanocrystals and epitaxial core/shell nanocrystals via a lower-temperature esterification process.

    PubMed

    Ito, Daisuke; Yokoyama, Shun; Zaikova, Tatiana; Masuko, Keiichiro; Hutchison, James E

    2014-01-28

    The properties of metal oxide nanocrystals can be tuned by incorporating mixtures of matrix metal elements, adding metal ion dopants, or constructing core/shell structures. However, high-temperature conditions required to synthesize these nanocrystals make it difficult to achieve the desired compositions, doping levels, and structural control. We present a lower temperature synthesis of ligand-stabilized metal oxide nanocrystals that produces crystalline, monodisperse nanocrystals at temperatures well below the thermal decomposition point of the precursors. Slow injection (0.2 mL/min) of an oleic acid solution of the metal oleate complex into an oleyl alcohol solvent at 230 °C results in a rapid esterification reaction and the production of metal oxide nanocrystals. The approach produces high yields of crystalline, monodisperse metal oxide nanoparticles containing manganese, iron, cobalt, zinc, and indium within 20 min. Synthesis of tin-doped indium oxide (ITO) can be accomplished with good control of the tin doping levels. Finally, the method makes it possible to perform epitaxial growth of shells onto nanocrystal cores to produce core/shell nanocrystals.

  19. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  20. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  1. Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties

    NASA Astrophysics Data System (ADS)

    Huang, Limin; Chen, Zhuoying; Wilson, James D.; Banerjee, Sarbajit; Robinson, Richard D.; Herman, Irving P.; Laibowitz, Robert; O'Brien, Stephen

    2006-08-01

    Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. We report the synthesis, processing, and electrical characterization of thin (<100nm thick) nanostructured thin films of barium titanate (BaTiO3) built from uniform nanoparticles (<20nm in diameter). We introduce a form of processing as a step toward the ability to prepare textured films based on assembly of nanoparticles. Essential to this approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. Our method offers a versatile means of preparing BaTiO3 nanocrystals, which can be used as a basis for micropatterned or continuous BaTiO3 nanocrystal thin films. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. We investigated the preparation of well-isolated BaTiO3 nanocrystals smaller than 10nm with control over aggregation and crystal densities on various substrates such as Si, Si /SiO2, Si3N4/Si, and Pt-coated Si substrates. BaTiO3 nanocrystal thin films were then prepared, resulting in films with a uniform nanocrystalline grain texture. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO3 nanocrystalline films with grain sizes in the range of 10-30nm. Dielectric measurements of the films show dielectic constants in the range of 85-90 over the 1KHz -100KHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit highly uniform nanostructured texture and grain sizes.

  2. Colloidal inorganic nanocrystals: Nucleation, growth and biological applications

    NASA Astrophysics Data System (ADS)

    Lynch, Jared James

    Colloidal inorganic nanocrystals are a class of material whose size ranges from a few nanometers to a hundred nanometers in dimension. These nanocrystals have size dependent properties that differ significantly from the bulk material counterparts. Due to their unique physical properties colloidal inorganic nanocrystals have several promising applications in a diverse range of areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents the study of the formation of iron oxide nanocrystals under the influence of solvent and Ar gas bubbles, the phase transfer of metal oxide nanocrystals into water using inorganic ions, and the doping of semiconductor CdS/ZnS core/shell nanocrystals with copper and silver ions. First, the formation of iron oxide nanocrystals is investigated in the presence of boiling solvent or Ar bubbles. Using a non-injection based synthesis method, the thermal decomposition of iron oleate was studied under various reaction conditions, and the role of the bubbles on the nucleation and growth of iron oxide nanocrystals was determined. Kinetics studies were used to elucidate how latent heat transfer from the bubbles allows for "active monomers" to form preferentially from exothermic reactions taking place during nucleation. General insights into colloidal inorganic nanocrystal formation are discussed. Second, a non-injection based synthesis for CdS/ZnS core/shell nanocrystals is used to make high quality semiconductor particles which are intentionally doped with Cu or Ag ions. The Ag ions effect on the optical properties of the CdS/ZnS nanocrystals is investigated. The absorption and fluorescence of the samples is measured as a function of time and temperature. Proposed mechanisms for the observations are given and thoroughly discussed. Comparisons between previous results for Cu doped CdS/ZnS nanocrystals are also made to further understand how doping of semiconductor

  3. Self-assembly of water-soluble nanocrystals

    DOEpatents

    Fan, Hongyou [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM; Lopez, Gabriel P [Albuquerque, NM

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  4. Nanocrystal thin film fabrication methods and apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  5. Nanocrystals for electronics.

    PubMed

    Panthani, Matthew G; Korgel, Brian A

    2012-01-01

    Semiconductor nanocrystals are promising materials for low-cost large-area electronic device fabrication. They can be synthesized with a wide variety of chemical compositions and size-tunable optical and electronic properties as well as dispersed in solvents for room-temperature deposition using various types of printing processes. This review addresses research progress in large-area electronic device applications using nanocrystal-based electrically active thin films, including thin-film transistors, light-emitting diodes, photovoltaics, and thermoelectrics.

  6. Effect of particle size on solubility, dissolution rate, and oral bioavailability: evaluation using coenzyme Q10 as naked nanocrystals

    PubMed Central

    Sun, Jiao; Wang, Fan; Sui, Yue; She, Zhennan; Zhai, Wenjun; Wang, Chunling; Deng, Yihui

    2012-01-01

    In this paper work, four naked nanocrystals (size range 80–700 nm) were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold. PMID:23166438

  7. Semiconductor nanocrystals for novel optical applications

    NASA Astrophysics Data System (ADS)

    Moon, Jong-Sik

    Inspired by the promise of enhanced spectral response, photorefractive polymeric composites photosensitized with semiconductor nanocrystals have emerged as an important class of materials. Here, we report on the photosensitization of photorefractive polymeric composites at visible wavelengths through the inclusion of narrow band-gap semiconductor nanocrystals composed of PbS. Through this approach, internal diffraction efficiencies in excess of 82%, two-beam-coupling gain coefficients in excess of 211 cm-1, and response times 34 ms have been observed, representing some of the best figures-of-merit reported on this class of materials. In addition to providing efficient photosensitization, however, extensive studies of these hybrid composites have indicated that the inclusion of nanocrystals also provides an enhancement in the charge-carrier mobility and subsequent reduction in the photorefractive response time. Through this approach with PbS as charge-carrier, unprecedented response times of 399 micros were observed, opening the door for video and other high-speed applications. It is further demonstrated that this improvement in response time occurs with little sacrifice in photorefractive efficiency and with internal diffraction efficiencies of 72% and two- beam-coupling gain coefficients of 500 cm-1 being measured. A thorough analysis of the experimental data is presented, supporting the hypothesized mechanism of the enhanced charge mobility without the accompaniment of superfluous traps. Finally, water soluble InP/ZnS and CdSe/ZnS quantum dots interacted with CPP and Herceptin to apply them as a bio-maker. Both of quantum dots showed the excellent potential for use in biomedical imaging and drug delivery applications. It is anticipated that these approaches can play a significant role in the eventual commercialization of these classes of materials.

  8. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  9. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  10. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  11. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  12. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  13. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon [Pinole, CA; Schlamp, Michael C [Plainsboro, NJ; Alivisatos, A Paul [Oakland, CA

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  14. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  15. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2017-06-06

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  16. Chitosan nanoparticles/cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide.

    PubMed

    Abo-Elseoud, Wafaa S; Hassan, Mohammad L; Sabaa, Magdy W; Basha, Mona; Hassan, Enas A; Fadel, Shaimaa M

    2018-05-01

    The aim of the present work was to study the use of cellulose nanocrystals (CNC) and chitosan nanoparticles (CHNP) for developing controlled-release drug delivery system of the anti-hyperglycemic drug Repaglinide (RPG). CNC was isolated from palm fruit stalks by sulfuric acid hydrolysis; the dimensions of the isolated nanocrystals were 86-237 nm in length and 5-7 nm in width. Simple and economic method was used for the fabrication of controlled release drug delivery system from CNC and CHNP loaded with RPG drug via ionic gelation of chitosan in the presence of CNC and RPG. The prepared systems showed high drug encapsulation efficiency of about ~98%. Chemical modification of CNC by oxidation to introduce carboxylic groups on their surface (OXCNC) was also carried out for further controlling of RPG release. Particles size analysis showed that the average size of CHNP was about 197 nm while CHNP/CNC/RPG or CHNP/OXCNC/RPG nanoparticles showed average size of 215-310 nm. Compatibility studies by Fourier transform infrared (FTIR) spectroscopy showed no chemical reaction between RPG and the system's components used. By studying the drug release kinetic, all the prepared RPG formulations followed Higuchi model, indicating that the drug released by diffusion through the nanoparticles polymeric matrix. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Charge transport in metal oxide nanocrystal-based materials

    NASA Astrophysics Data System (ADS)

    Runnerstrom, Evan Lars

    There is probably no class of materials more varied, more widely used, or more ubiquitous than metal oxides. Depending on their composition, metal oxides can exhibit almost any number of properties. Of particular interest are the ways in which charge is transported in metal oxides: devices such as displays, touch screens, and smart windows rely on the ability of certain metal oxides to conduct electricity while maintaining visible transparency. Smart windows, fuel cells, and other electrochemical devices additionally rely on efficient transport of ionic charge in and around metal oxides. Colloidal synthesis has enabled metal oxide nanocrystals to emerge as a relatively new but highly tunable class of materials. Certain metal oxide nanocrystals, particularly highly doped metal oxides, have been enjoying rapid development in the last decade. As in myriad other materials systems, structure dictates the properties of metal oxide nanocrystals, but a full understanding of how nanocrystal synthesis, the processing of nanocrystal-based materials, and the structure of nanocrystals relate to the resulting properties of nanocrystal-based materials is still nascent. Gaining a fundamental understanding of and control over these structure-property relationships is crucial to developing a holistic understanding of metal oxide nanocrystals. The unique ability to tune metal oxide nanocrystals by changing composition through the introduction of dopants or by changing size and shape affords a way to study the interplay between structure, processing, and properties. This overall goal of this work is to chemically synthesize colloidal metal oxide nanocrystals, process them into useful materials, characterize charge transport in materials based on colloidal metal oxide nanocrystals, and develop ways to manipulate charge transport. In particular, this dissertation characterizes how the charge transport properties of metal oxide nanocrystal-based materials depend on their processing and

  18. Plasmon-induced carrier polarization in semiconductor nanocrystals.

    PubMed

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V

    2018-06-01

    Spintronics 1 and valleytronics 2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals 3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In 2 O 3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes 11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  19. Plasmon-induced carrier polarization in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Yin, Penghui; Tan, Yi; Fang, Hanbing; Hegde, Manu; Radovanovic, Pavle V.

    2018-06-01

    Spintronics1 and valleytronics2 are emerging quantum electronic technologies that rely on using electron spin and multiple extrema of the band structure (valleys), respectively, as additional degrees of freedom. There are also collective properties of electrons in semiconductor nanostructures that potentially could be exploited in multifunctional quantum devices. Specifically, plasmonic semiconductor nanocrystals3-10 offer an opportunity for interface-free coupling between a plasmon and an exciton. However, plasmon-exciton coupling in single-phase semiconductor nanocrystals remains challenging because confined plasmon oscillations are generally not resonant with excitonic transitions. Here, we demonstrate a robust electron polarization in degenerately doped In2O3 nanocrystals, enabled by non-resonant coupling of cyclotron magnetoplasmonic modes11 with the exciton at the Fermi level. Using magnetic circular dichroism spectroscopy, we show that intrinsic plasmon-exciton coupling allows for the indirect excitation of the magnetoplasmonic modes, and subsequent Zeeman splitting of the excitonic states. Splitting of the band states and selective carrier polarization can be manipulated further by spin-orbit coupling. Our results effectively open up the field of plasmontronics, which involves the phenomena that arise from intrinsic plasmon-exciton and plasmon-spin interactions. Furthermore, the dynamic control of carrier polarization is readily achieved at room temperature, which allows us to harness the magnetoplasmonic mode as a new degree of freedom in practical photonic, optoelectronic and quantum-information processing devices.

  20. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  1. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  2. Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing

    2018-01-01

    Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.

  3. Development of curcumin-cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems.

    PubMed

    Ndong Ntoutoume, Gautier M A; Granet, Robert; Mbakidi, Jean Pierre; Brégier, Frédérique; Léger, David Y; Fidanzi-Dugas, Chloë; Lequart, Vincent; Joly, Nicolas; Liagre, Bertrand; Chaleix, Vincent; Sol, Vincent

    2016-02-01

    The synthesis of curcumin-cyclodextrin/cellulose nanocrystals (CNCx) nano complexes was performed. CNCx were functionalized by ionic association with cationic β-cyclodextrin (CD) and CD/CNCx complexes were used to encapsulate curcumin. Preliminary in vitro results showed that the resulting curcumin-CD/CNCx complexes exerted antiproliferative effect on colorectal and prostatic cancer cell lines, with IC50s lower than that of curcumin alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Optical determination of crystal phase in semiconductor nanocrystals

    PubMed Central

    Lim, Sung Jun; Schleife, André; Smith, Andrew M.

    2017-01-01

    Optical, electronic and structural properties of nanocrystals fundamentally derive from crystal phase. This is especially important for polymorphic II–VI, III–V and I-III-VI2 semiconductor materials such as cadmium selenide, which exist as two stable phases, cubic and hexagonal, each with distinct properties. However, standard crystallographic characterization through diffraction yields ambiguous phase signatures when nanocrystals are small or polytypic. Moreover, diffraction methods are low-throughput, incompatible with solution samples and require large sample quantities. Here we report the identification of unambiguous optical signatures of cubic and hexagonal phases in II–VI nanocrystals using absorption spectroscopy and first-principles electronic-structure theory. High-energy spectral features allow rapid identification of phase, even in small nanocrystals (∼2 nm), and may help predict polytypic nanocrystals from differential phase contributions. These theoretical and experimental insights provide simple and accurate optical crystallographic analysis for liquid-dispersed nanomaterials, to improve the precision of nanocrystal engineering and improve our understanding of nanocrystal reactions. PMID:28513577

  5. Effects of Heavy Ion Exposure on Nanocrystal Nonvolatile Memory

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Suhail, Mohammed; Kuhn, Peter; Prinz, Erwin; Kim, Hak; LaBel, Kenneth A.

    2004-01-01

    We have irradiated engineering samples of Freescale 4M nonvolatile memories with heavy ions. They use Silicon nanocrystals as the storage element, rather than the more common floating gate. The irradiations were performed using the Texas A&M University cyclotron Single Event Effects Test Facility. The chips were tested in the static mode, and in the dynamic read mode, dynamic write (program) mode, and dynamic erase mode. All the errors observed appeared to be due to single, isolated bits, even in the program and erase modes. These errors appeared to be related to the micro-dose mechanism. All the errors corresponded to the loss of electrons from a programmed cell. The underlying physical mechanisms will be discussed in more detail later. There were no errors, which could be attributed to malfunctions of the control circuits. At the highest LET used in the test (85 MeV/mg/sq cm), however, there appeared to be a failure due to gate rupture. Failure analysis is being conducted to confirm this conclusion. There was no unambiguous evidence of latchup under any test conditions. Generally, the results on the nanocrystal technology compare favorably with results on currently available commercial floating gate technology, indicating that the technology is promising for future space applications, both civilian and military.

  6. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  7. Structural Fingerprinting of Nanocrystals in the Transmission Electron Microscope

    NASA Astrophysics Data System (ADS)

    Rouvimov, Sergei; Plachinda, Pavel; Moeck, Peter

    2010-03-01

    Three novel strategies for the structurally identification of nanocrystals in a transmission electron microscope are presented. Either a single high-resolution transmission electron microscopy image [1] or a single precession electron diffractogram (PED) [2] may be employed. PEDs from fine-grained crystal powders may also be utilized. Automation of the former two strategies is in progress and shall lead to statistically significant results on ensembles of nanocrystals. Open-access databases such as the Crystallography Open Database which provides more than 81,500 crystal structure data sets [3] or its mainly inorganic and educational subsets [4] may be utilized. [1] http://www.scientificjournals.org/journals 2007/j/of/dissertation.htm [2] P. Moeck and S. Rouvimov, in: {Drugs and the Pharmaceutical Sciences}, Vol. 191, 2009, 270-313 [3] http://cod.ibt.lt, http://www.crystallography.net, http://cod.ensicaen.fr, http://nanocrystallography.org, http://nanocrystallography.net, http://journals.iucr.org/j/issues/2009/04/00/kk5039/kk5039.pdf [4] http://nanocrystallography.research.pdx.edu/CIF-searchable

  8. Ultrasonication of Bismuth Telluride Nanocrystals Fabricated by Solvothermal Method

    NASA Technical Reports Server (NTRS)

    Chu, Sang-Hyon; Choi, Sang H.; Kim, Jae-Woo; King, Glen C.; Elliott, James R.

    2006-01-01

    The objective of this study is to evaluate the effect of ultrasonication on bismuth telluride nanocrystals prepared by solvothermal method. In this study, a low dimensional nanocrystal of bismuth telluride (Bi2Te3) was synthesized by a solvothermal process in an autoclave at 180 C and 200 psi. During the solvothermal reaction, organic surfactants effectively prevented unwanted aggregation of nanocrystals in a selected solvent while controlling the shape of the nanocrystal. The atomic ratio of bismuth and tellurium was determined by energy dispersive spectroscopy (EDS). The cavitational energy created by the ultrasonic probe was varied by the ultrasonication process time, while power amplitude remained constant. The nanocrystal size and its size distribution were measured by field emission scanning electron microscopy (FESEM) and a dynamic light scattering system. When the ultrasonication time increased, the average size of bismuth telluride nanocrystal gradually increased due to the direct collision of nanocrystals. The polydispersity of the nanocrystals showed a minimum when the ultrasonication was applied for 5 min. Keywords: bismuth telluride, nanocrystal, low-dimensional, ultrasonication, solvothermal

  9. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    PubMed

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  10. A Novel Thermal Electrochemical Synthesis Method for Production of Stable Colloids of "Naked" Metal (Ag) Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Michael Z.; Easterly, Clay E

    Solution synthesis of nanocrystal silver is reviewed. This paper reports a novel thermal electrochemical synthesis (TECS) for producing metal Ag nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25-100oC), low voltage (1-50 V DC) on Ag electrodes, and simple water or aqueous solutions as reaction medium. Furthermore, a tubular dialysis membrane surround electrodes proves favorable to produce nanosized (<10 nm) Ag nanocrystals. Different from those nanocrystals reported in literature, our nanocrystals have several unique features: (1) small nanometer size, (2) nakedness , i.e., surfaces of metal nanocrystals are free of organic ligands or capping moleculesmore » and no need of dispersant in synthesis solutions, and (3) colloidally stable in water solutions. It was discovered that Ag nanoparticles with initially large size distribution can be homogenized into near-monodispersed system by a low power (< 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, stable, and uniform sized. In the presence of stabilizing agent (also as supporting electrolyte) such as polyvinyl alcohol (PVA), large yield of silver nanoparticles (<100nm) in the form of thick milky sols are produced.« less

  11. Modular Integration of Upconverting Nanocrystal-Dendrimer Composites for Folate Receptor-Specific NIR Imaging and Light-Triggered Drug Release.

    PubMed

    Wong, Pamela T; Chen, Dexin; Tang, Shengzhuang; Yanik, Sean; Payne, Michael; Mukherjee, Jhindan; Coulter, Alexa; Tang, Kenny; Tao, Ke; Sun, Kang; Baker, James R; Choi, Seok Ki

    2015-12-02

    Upconversion nanocrystals (UCNs) display near-infrared (NIR)-responsive photoluminescent properties for NIR imaging and drug delivery. The development of effective strategies for UCN integration with other complementary nanostructures for targeting and drug conjugation is highly desirable. This study reports on a core/shell-based theranostic system designed by UCN integration with a folate (FA)-conjugated dendrimer for tumor targeting and with photocaged doxorubicin as a cytotoxic agent. Two types of UCNs (NaYF4:Yb/Er (or Yb/Tm); diameter = ≈50 to 54 nm) are described, each displaying distinct emission properties upon NIR (980 nm) excitation. The UCNs are surface modified through covalent attachment of photocaged doxorubicin (ONB-Dox) and a multivalent FA-conjugated polyamidoamine (PAMAM) dendrimer G5(FA)6 to prepare UCN@(ONB-Dox)(G5FA). Surface plasmon resonance experiments performed with G5(FA)6 dendrimer alone show nanomolar binding avidity (KD = 5.9 × 10(-9) M) to the folate binding protein. This dendrimer binding corresponds with selective binding and uptake of UCN@(ONB-Dox)(G5FA) by FAR-positive KB carcinoma cells in vitro. Furthermore, UCN@(ONB-Dox)(G5FA) treatment of FAR(+) KB cells inhibits cell growth in a light dependent manner. These results validate the utility of modularly integrated UCN-dendrimer nanocomposites for cell type specific NIR imaging and light-controlled drug release, thus serving as a new theranostic system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Plasmonic light-sensitive skins of nanocrystal monolayers

    NASA Astrophysics Data System (ADS)

    Akhavan, Shahab; Gungor, Kivanc; Mutlugun, Evren; Demir, Hilmi Volkan

    2013-04-01

    We report plasmonically coupled light-sensitive skins of nanocrystal monolayers that exhibit sensitivity enhancement and spectral range extension with plasmonic nanostructures embedded in their photosensitive nanocrystal platforms. The deposited plasmonic silver nanoparticles of the device increase the optical absorption of a CdTe nanocrystal monolayer incorporated in the device. Controlled separation of these metallic nanoparticles in the vicinity of semiconductor nanocrystals enables optimization of the photovoltage buildup in the proposed nanostructure platform. The enhancement factor was found to depend on the excitation wavelength. We observed broadband sensitivity improvement (across 400-650 nm), with a 2.6-fold enhancement factor around the localized plasmon resonance peak. The simulation results were found to agree well with the experimental data. Such plasmonically enhanced nanocrystal skins hold great promise for large-area UV/visible sensing applications.

  13. Optical properties of silicon nanocrystals synthesized in supercritical fluids

    NASA Astrophysics Data System (ADS)

    Pell, Lindsay; Korgel, Brian A.

    2002-11-01

    We developed a supercritical solution phase synthesis of silicon nanocrystals. High temperature and pressure (500°C, >140 bar) conditions allow a wet chemical approach to this challenging synthesis. Diphenylsilane was used as a silicon precursor and long chain thiols and alcohols were used to sterically stabilize the luminescent nanocrystals. Moderate size separation was achieved via size exclusion chromatography using crosslinked styrene divinylbenzene beads. Size separated fractions of silicon nanocrystals exhibit quantum efficiencies of 12% while polydisperse samples have quantum efficiencies of 5%. Nanocrystal size distributions have been determined with transmission electron microscopy and further characterized with atomic force microscopy (AFM). These silicon nanocrystals have size tunable photoluminescence as indicated by their ensemble spectroscopy and further verified through AFM and single nanocrystal photoluminescence spectroscopy. Fluorescence intermittency (characteristic of single CdSe nanocrystals) is present in our isolated silicon nanocrystals and is one of the criteria used to distinguish single crystals from clusters of particles.

  14. Evolution of biofunctional semiconductor nanocrystals: a calorimetric investigation.

    PubMed

    Ghosh, Debasmita; Mondal, Somrita; Roy, Chandra Nath; Saha, Abhijit

    2013-12-14

    Semiconductor nanomaterials have found numerous applications in optoelectronic device fabrication and in platforms for drug delivery and hyperthermia cancer treatment, and in various other biomedical fields because of their high photochemical stability and size-tunable photoluminescence (PL). However, little attention has been paid to exploring the energetics of formation of these semiconductor nanoparticles. We demonstrate that formation of nanocrystals with biofunctionalization supported by widely used groups, BSA and cysteine, is an exothermic spontaneous process driven by enthalpy. The whole energetics of the reaction shows that formation of smaller particles is favored with lower synthesis temperature. Further, it is shown that the thermodynamics of nanoparticle formation is strongly influenced by the conformation of the protein matrix. We also demonstrate that protein supported formation of nanocrystals is thermodynamically more favorable compared to that involving smaller organic thiol groups. The favorable enthalpy of formation compensates unfavorable entropy, resulting in favorable Gibbs free energy. Thus, this study can open up new avenues for establishing a thermodynamic basis for the design of nanosystems with new and tunable properties.

  15. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    DOE PAGES

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; ...

    2017-07-31

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single-and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) ofmore » micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. In conclusion, the rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.« less

  16. High-temperature crystallization of nanocrystals into three-dimensional superlattices.

    PubMed

    Wu, Liheng; Willis, Joshua J; McKay, Ian Salmon; Diroll, Benjamin T; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J

    2017-08-10

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  17. High-temperature crystallization of nanocrystals into three-dimensional superlattices

    NASA Astrophysics Data System (ADS)

    Wu, Liheng; Willis, Joshua J.; McKay, Ian Salmon; Diroll, Benjamin T.; Qin, Jian; Cargnello, Matteo; Tassone, Christopher J.

    2017-08-01

    Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.

  18. Transition-Metal Decorated Aluminum Nanocrystals.

    PubMed

    Swearer, Dayne F; Leary, Rowan K; Newell, Ryan; Yazdi, Sadegh; Robatjazi, Hossein; Zhang, Yue; Renard, David; Nordlander, Peter; Midgley, Paul A; Halas, Naomi J; Ringe, Emilie

    2017-10-24

    Recently, aluminum has been established as an earth-abundant alternative to gold and silver for plasmonic applications. Particularly, aluminum nanocrystals have shown to be promising plasmonic photocatalysts, especially when coupled with catalytic metals or oxides into "antenna-reactor" heterostructures. Here, a simple polyol synthesis is presented as a flexible route to produce aluminum nanocrystals decorated with eight varieties of size-tunable transition-metal nanoparticle islands, many of which have precedence as heterogeneous catalysts. High-resolution and three-dimensional structural analysis using scanning transmission electron microscopy and electron tomography shows that abundant nanoparticle island decoration in the catalytically relevant few-nanometer size range can be achieved, with many islands spaced closely to their neighbors. When coupled with the Al nanocrystal plasmonic antenna, these small decorating islands will experience increased light absorption and strong hot-spot generation. This combination makes transition-metal decorated aluminum nanocrystals a promising material platform to develop plasmonic photocatalysis, surface-enhanced spectroscopies, and quantum plasmonics.

  19. Alkyl-Capped Silicon Nanocrystals Lack Cytotoxicity and have Enhanced Intracellular Accumulation in Malignant Cells via Cholesterol-Dependent Endocytosis

    PubMed Central

    Alsharif, Naif H; Berger, Christine E M; Varanasi, Satya S; Chao, Yimin; Horrocks, Benjamin R; Datta, Harish K

    2009-01-01

    Nanocrystals of various inorganic materials are being considered for application in the life sciences as fluorescent labels and for such therapeutic applications as drug delivery or targeted cell destruction. The potential applications of the nanoparticles are critically compromised due to the well-documented toxicity and lack of understanding about the mechanisms involved in the intracellular internalization. Here intracellular internalization and toxicity of alkyl-capped silicon nanocrystals in human neoplastic and normal primary cells is reported. The capped nanocrystals lack cytotoxicity, and there is a marked difference in the rate and extent of intracellular accumulation of the nanoparticles between human cancerous and non-cancerous primary cells, the rate and extent being higher in the malignant cells compared to normal human primary cells. The exposure of the cells to the alkyl-capped nanocrystals demonstrates no evidence of in vitro cytotoxicity when assessed by cell morphology, apoptosis, and cell viability assays. The internalization of the nanocrystals by Hela and SW1353 cells is almost completely blocked by the pinocytosis inhibitors filipin, cytochalasin B, and actinomycin D. The internalization process is not associated with any surface change in the nanoparticles, as their luminescence spectrum is unaltered upon transport into the cytosol. The observed dramatic difference in the rate and extent of internalization of the nanocrystals between malignant and non-malignant cells therefore offers potential application in the management of human neoplastic conditions. PMID:19058285

  20. Photomedicine with laser drug delivery technologies

    NASA Astrophysics Data System (ADS)

    Zharov, Vladimir P.; Latyshev, Alexei S.; Leviev, Dmitry O.

    1999-07-01

    This paper presents a new technology, which consists in utilizing laser drug delivery methods for the purposes of photodrug therapy. According to this technology, photosensitizer is applied onto the treated surface and then the solution is either impregnated or injected into the medium, with it being suggested to employ laser drug delivery techniques for the impregnation and injection of the photosensitizer. After introducing the photosensitizer, the area is illuminated by a matrix of light-emission diodes.

  1. Engineering Plasmonic Nanocrystal Coupling through Template-Assisted Self-Assembly

    NASA Astrophysics Data System (ADS)

    Greybush, Nicholas J.

    The construction of materials from nanocrystal building blocks represents a powerful new paradigm for materials design. Just as nature's materials orchestrate intricate combinations of atoms from the library of the periodic table, nanocrystal "metamaterials" integrate individual nanocrystals into larger architectures with emergent collective properties. The individual nanocrystal "meta-atoms" that make up these materials are themselves each a nanoscale atomic system with tailorable size, shape, and elemental composition, enabling the creation of hierarchical materials with predesigned structure at multiple length scales. However, an improved fundamental understanding of the interactions among individual nanocrystals is needed in order to translate this structural control into enhanced functionality. The ability to form precise arrangements of nanocrystals and measure their collective properties is therefore essential for the continued development of nanocrystal metamaterials. In this dissertation, we utilize template-assisted self-assembly and spatially-resolved spectroscopy to form and characterize individual nanocrystal oligomers. At the intersection of "top-down" and "bottom-up" nanoscale patterning schemes, template-assisted self-assembly combines the design freedom of lithography with the chemical control of colloidal synthesis to achieve unique nanocrystal configurations. Here, we employ shape-selective templates to assemble new plasmonic structures, including heterodimers of Au nanorods and upconversion phosphors, a series of hexagonally-packed Au nanocrystal oligomers, and triangular formations of Au nanorods. Through experimental analysis and numerical simulation, we elucidate the means through which inter-nanocrystal coupling imparts collective optical properties to the plasmonic assemblies. Our self-assembly and measurement strategy offers a versatile platform for exploring optical interactions in a wide range of material systems and application areas.

  2. Nanocrystal Targeting In Vivo

    DTIC Science & Technology

    2002-08-01

    Shearwater Polymers , Huntsville, AL) was thiolated with iminothiolane. Thiolated PEG was directly added to a solution of mercaptoacetic acid- coated qdots...Nanocrystal targeting in vivo Maria E. Åkerman*†‡, Warren C. W. Chan†‡, Pirjo Laakkonen*, Sangeeta N. Bhatia†, and Erkki Ruoslahti*§ *Cancer Research...set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (᝺ nm) inorganic nanocrystals

  3. Colloidal nanocrystals and method of making

    DOEpatents

    Kahen, Keith

    2015-10-06

    A tight confinement nanocrystal comprises a homogeneous center region having a first composition and a smoothly varying region having a second composition wherein a confining potential barrier monotonically increases and then monotonically decreases as the smoothly varying region extends from the surface of the homogeneous center region to an outer surface of the nanocrystal. A method of producing the nanocrystal comprises forming a first solution by combining a solvent and at most two nanocrystal precursors; heating the first solution to a nucleation temperature; adding to the first solution, a second solution having a solvent, at least one additional and different precursor to form the homogeneous center region and at most an initial portion of the smoothly varying region; and lowering the solution temperature to a growth temperature to complete growth of the smoothly varying region.

  4. Measuring the Valence of Nanocrystal Surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Jonathan Scharle

    2016-11-30

    The goal of this project is to understand and control the interplay between nanocrystal stoichiometry, surface ligand binding and exchange, and the optoelectronic properties of semiconductor nanocrystals in solution and in thin solid films. We pursued three research directions with this goal in mind: 1) We characterized nanocrystal stoichiometry and its influence on the binding of L-type and X-type ligands, including the thermodynamics of binding and the kinetics of ligand exchange. 2) We developed a quantitative understanding of the relationship between surface ligand passivation and photoluminescence quantum yield. 3) We developed methods to replace the organic ligands on the nanocrystalmore » with halide ligands and controllably deposit these nanocrystals into thin films, where electrical measurements were used to investigate the electrical transport and internanocrystal electronic coupling.« less

  5. Nonlinear optical methods for the analysis of protein nanocrystals and biological tissues

    NASA Astrophysics Data System (ADS)

    Dow, Ximeng You

    Structural biology underpins rational drug design and fundamental understanding of protein function. X-ray diffraction (XRD) has been the golden standard for solving for high-resolution protein structure. Second harmonic generation (SHG) microscopy has been developed by the Simpson lab as a sensitive, crystal-specific detection method for the identification of protein crystal and help optimize the crystallization condition. Protein nanocrystals has been widely used for structure determination of membrane proteins in serial femtosecond nanocrystallography. In this thesis work, novel nonlinear optical methods were developed to address the challenges associated with the detection and characterization of protein nanocrystals. SHG-correlation spectroscopy (SHG-CS) was developed to take advantage of the diffusing motion and retrieve the size distribution and crystal quality of the nanocrystals. Polarization-dependent SHG imaging technique was developed to measure the relative orientation as well as the internal structure of the sample. Two photon- excited fluorescence has been used in the Simpson lab as a complementary measurement besides the inherent SHG signal from the crystals. A novel instrumentation development was also introduced in this thesis work to greatly improve the speed of fluorescence lifetime imaging (FLIM).

  6. Chitosan based atorvastatin nanocrystals: effect of cationic charge on particle size, formulation stability, and in-vivo efficacy

    PubMed Central

    Kurakula, Mallesh; El-Helw, AM; Sobahi, Tariq R; Abdelaal, Magdy Y

    2015-01-01

    Cationic charged chitosan as stabilizer was evaluated in preparation of nanocrystals using probe sonication method. The influence of cationic charge densities of chitosan (low CSL, medium CSM, high CSH molecular weights) and Labrasol® in solubility enhancement and modifying the release was investigated, using atorvastatin (ATR) as poorly soluble model drug. Compared to CSM and CSH; low cationic charge of CSL acted as both electrostatic and steric stabilizer by significant size reduction to 394 nm with charge of 21.5 meV. Solubility of ATR-CSL increased to 60-fold relative to pure ATR and ATR-L. Nanocrystals were characterized for physiochemical properties. Scanning electron microscopy revealed scaffold-like structures with high surface area. X-ray powder diffractometry and differential scanning calorimetry revealed crystalline to slight amorphous state changes after cationic charge size reduction. Fourier transform-infrared spectra indicated no potent drug-excipient interactions. The enhanced dissolution profile of ATR-CSL indicates that sustained release was achieved compared with ATR-L and Lipitor®. Anti-hyperlipidemic performance was pH dependent where ATR-CSL exhibited 2.5-fold higher efficacy at pH 5 compared to pH 6 and Lipitor®. Stability studies indicated marked changes in size and charge for ATR-L compared to ATR-CSL exemplifying importance of the stabilizer. Therefore, nanocrystals developed with CSL as a stabilizer is a promising choice to enhance dissolution, stability, and in-vivo efficacy of major Biopharmaceutical Classification System II/IV drugs. PMID:25609947

  7. Optical Properties of CdSe/ZnS Nanocrystals

    PubMed Central

    Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong

    2014-01-01

    Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047

  8. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  9. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol-ene protocol: a potential anticancer drug nanocarrier.

    PubMed

    Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek

    2013-03-15

    Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  11. Isolating and moving single atoms using silicon nanocrystals

    DOEpatents

    Carroll, Malcolm S.

    2010-09-07

    A method is disclosed for isolating single atoms of an atomic species of interest by locating the atoms within silicon nanocrystals. This can be done by implanting, on the average, a single atom of the atomic species of interest into each nanocrystal, and then measuring an electrical charge distribution on the nanocrystals with scanning capacitance microscopy (SCM) or electrostatic force microscopy (EFM) to identify and select those nanocrystals having exactly one atom of the atomic species of interest therein. The nanocrystals with the single atom of the atomic species of interest therein can be sorted and moved using an atomic force microscope (AFM) tip. The method is useful for forming nanoscale electronic and optical devices including quantum computers and single-photon light sources.

  12. Interfacial interactions between calcined hydroxyapatite nanocrystals and substrates.

    PubMed

    Okada, Masahiro; Furukawa, Keiko; Serizawa, Takeshi; Yanagisawa, Yoshihiko; Tanaka, Hidekazu; Kawai, Tomoji; Furuzono, Tsutomu

    2009-06-02

    Interfacial interactions between calcined hydroxyapatite (HAp) nanocrystals and surface-modified substrates were investigated by measuring adsorption behavior and adhesion strength with a quartz crystal microbalance (QCM) and a contact-mode atomic force microscope (AFM), respectively. The goal was to develop better control of HAp-nanocrystal coatings on biomedical materials. HAp nanocrystals with rodlike or spherical morphology were prepared by a wet chemical process followed by calcination at 800 degrees C with an antisintering agent to prevent the formation of sintered polycrystals. The substrate surface was modified by chemical reaction with a low-molecular-weight compound, or graft polymerization with a functional monomer. QCM measurement showed that the rodlike HAp nanocrystals adsorbed preferentially onto anionic COOH-modified substrates compared to cationic NH2- or hydrophobic CH3-modified substrates. On the other hand, the spherical nanocrystals adsorbed onto NH2- and COOH-modified substrates, which indicates that the surface properties of the HAp nanocrystals determined their adsorption behavior. The adhesion strength, which was estimated from the force required to move the nanocrystal in contact-mode AFM, on a COOH-grafted substrate prepared by graft polymerization was almost 9 times larger than that on a COOH-modified substrate prepared by chemical reaction with a low-molecular-weight compound, indicating that the long-chain polymer grafted on the substrate mitigated the surface roughness mismatch between the nanocrystal and the substrate. The adhesion strength of the nanocrystal bonded covalently by the coupling reaction to a Si(OCH3)-grafted substrate prepared by graft polymerization was approximately 1.5 times larger than that when adsorbed on the COOH-grafted substrate.

  13. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties.

    PubMed

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-02

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.

  14. Enhanced luminescence of Cu-In-S nanocrystals by surface modification.

    PubMed

    Kim, Young-Kuk; Cho, Young-Sang; Chung, Kookchae; Choi, Chul-Jin; Shin, Pyung-Woo

    2012-04-01

    We have synthesized highly luminescent Cu-In-S nanocrystals by heating the mixture of metal carboxylates and alkylthiol under inert atmosphere. We modified the surface of CIS nanocrystals with zinc carboxylate and subsequent injection of alkylthiol. As a result of the surface modification, highly luminescent CIS@ZnS core/shell nanocrystals were synthesized. The luminescence quantum yield (QY) of best CIS@ZnS nanocrystals was above 50%, which is more than 10 times higher than the initial QY of CIS nanocrystals before surface modification (QY = 3%). Detailed study on the luminescence mechanism implies that etching of the surface of nanocrystals by dissociated carboxylate group (CH3COO-) and formation of epitaxial shell by Zn with sulfur from alkylthiol efficiently removed the surface defects which are major non-radiative recombination sites in semiconductor nanocrystals. In this study, we developed a novel surface modification route for monodispersed highly luminescent Cu-In-S nanocrystals with less toxic and highly stable precursors.

  15. International Drug Discovery Science and Technology--BIT's Seventh Annual Congress.

    PubMed

    Bodovitz, Steven

    2010-01-01

    BIT's Seventh Annual International Drug Discovery Science and Technology Congress, held in Shanghai, included topics covering new therapeutic and technological developments in the field of drug discovery. This conference report highlights selected presentations on open-access approaches to R&D, novel and multifactorial targets, and technologies that assist drug discovery. Investigational drugs discussed include the anticancer agents astuprotimut-r (GlaxoSmithKline plc) and AS-1411 (Antisoma plc).

  16. Solidification drug nanosuspensions into nanocrystals by freeze-drying: a case study with ursodeoxycholic acid.

    PubMed

    Ma, Yue-Qin; Zhang, Zeng-Zhu; Li, Gang; Zhang, Jing; Xiao, Han-Yang; Li, Xian-Fei

    2016-03-01

    To elucidate the effect of solidification processes on the redispersibility of drug nanocrystals (NC) during freeze-drying, ursodeoxycholic acid (UDCA) nanosuspensions were transformed into UDCA-NC via different solidification process included freezing and lyophilization. The effect of different concentrations of stabilizers and cryoprotectants on redispersibility of UDCA-NC was investigated, respectively. The results showed that the redispersibility of UDCA-NC was RDI-20 °C < RDI-80 °C < RDI-196 °C during freezing, which indicated the redispersibility of UDCA-NC at the conventional temperature was better more than those at moderate and rigorous condition. Compared to the drying strengthen, the employed amount and type of stabilizers more dramatically affected the redispersibility of UDCA-NC during lyophilization. The hydroxypropylmethylcellulose and PVPK30 were effective to protect UDCA-NC from damage during lyophilization, which could homogeneously adsorb into the surface of NC to prevent from agglomerates. The sucrose and glucose achieved excellent performance that protected UDCA-NC from crystal growth during lyophilization, respectively. It was concluded that UDCA-NC was subjected to agglomeration during solidification transformation, and the degree of agglomeration suffered varied with the type and the amounts of stabilizers used, as well as different solidification conditions. The PVPK30-sucrose system was more effective to protect UDCA-NC from the damage during solidification process.

  17. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Yin, Yadong [Moreno Valley, CA; Erdonmez, Can Kerem [Berkeley, CA

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  18. 2-Hydroxypropyltrimethylammonium xylan adsorption onto rod-like cellulose nanocrystal.

    PubMed

    Sim, Jae Hyun; Dong, Shuping; Röemhild, Katrin; Kaya, Abdulaziz; Sohn, Daewon; Tanaka, Keiji; Roman, Maren; Heinze, Thomas; Esker, Alan R

    2015-02-15

    Chemical incompatibility and relatively weak interaction between lignocellulosic fibers and synthetic polymers have made studies of wood fiber-thermoplastic composite more challenging. In this study, adsorption of 2-hydroxypropyltrimethylammonium xylans onto rod-like cellulose nanocrystals are investigated by zeta-potential measurements, and polarized and depolarized dynamic light scattering as a factor for better understanding of lignocellulosic fibers and cellulose nanocrystals. Zeta-potential measurements show xylan derivative adsorption onto cellulose nanocrystals. Decay time distributions of the ternary system and binary system from dynamic light scattering show that aggregates exist in the binary system and they disappear in the ternary system. At low 2-hydroxypropyltrimethylammonium xylan concentrations relative to that of cellulose nanocrystal, xylan derivatives adsorbed onto some of the cellulose nanocrystal. Hence, more xylan derivatives adsorbed onto cellulose nanocrystal increased with increasing xylan derivative concentration. Also, the concentration dependence of the ratio of the rotational diffusion coefficient to the translational diffusion coefficient revealed a strong adsorptive interaction between xylan derivatives and the cellulose nanocrystals. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Controlling upconversion nanocrystals for emerging applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  20. Zirconia nanocrystals as submicron level biological label

    NASA Astrophysics Data System (ADS)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.

    2012-08-01

    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  1. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  2. Doping effect in Si nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Dongke; Xu, Jun; Zhang, Pei; Jiang, Yicheng; Chen, Kunji

    2018-06-01

    Intentional doping in semiconductors is a fundamental issue since it can control the conduction type and ability as well as modify the optical and electronic properties. To realize effective doping is the basis for developing semiconductor devices. However, by reducing the size of a semiconductor, like Si, to the nanometer scale, the doping effects become complicated due to the coupling between the quantum confinement effect and the surfaces and/or interfaces effect. In particular, by introducing phosphorus or boron impurities as dopants into material containing Si nanocrystals with a dot size of less than 10 nm, it exhibits different behaviors and influences on the physical properties from its bulk counterpart. Understanding the doping effects in Si nanocrystals is currently a challenge in order to further improve the performance of the next generation of nano-electronic and photonic devices. In this review, we present an overview of the latest theoretical studies and experimental results on dopant distributions and their effects on the electronic and optical properties of Si nanocrystals. In particular, the advanced characterization techniques on dopant distribution, the carrier transport process as well as the linear and nonlinear optical properties of doped Si nanocrystals, are systematically summarized.

  3. Fenofibrate Nanocrystals Embedded in Oral Strip-Films for Bioavailability Enhancement

    PubMed Central

    Barvaliya, Manish; Zhang, Lu; Anovadiya, Ashish; Brahmbhatt, Harshad; Paul, Parimal; Tripathi, Chandrabhanu

    2018-01-01

    The aim of the present study was to make a fenofibrate (FNB) nanocrystal (NC) by wet media milling, characterizations and formulates into oral strip-films (OSFs). Mechanical properties, redispersion study, and solid-state characterizations results suggested that reduction of drug crystal size at nanoscale and incorporation into OSFs does not affect the solid-state properties of the drug. In vitro dissolution kinetics showed enhanced dissolution rate was easily manipulated by changing the thickness of the OSF. In situ UV-imaging was used to monitor drug dissolution qualitatively and quantitatively in real time. Results confirm that the intrinsic dissolution rates and surface drug concentration measured with this device were in agreement with the USP-IV dissolution profiles. In vivo pharmacokinetics in rabbits showed a significant difference in the pharmacokinetics parameter (1.4 fold increase bioavailability) of FNB NC-loaded OSFs as compared to the marketed formulation “Tricor” and as-received (pristine) drug. This approach of drug nanocrystallization and incorporation into OSFs may have significant applications in cost-effective tools for bioavailability enhancement of FNB. PMID:29438297

  4. Single-exciton optical gain in semiconductor nanocrystals.

    PubMed

    Klimov, Victor I; Ivanov, Sergei A; Nanda, Jagjit; Achermann, Marc; Bezel, Ilya; McGuire, John A; Piryatinski, Andrei

    2007-05-24

    Nanocrystal quantum dots have favourable light-emitting properties. They show photoluminescence with high quantum yields, and their emission colours depend on the nanocrystal size--owing to the quantum-confinement effect--and are therefore tunable. However, nanocrystals are difficult to use in optical amplification and lasing. Because of an almost exact balance between absorption and stimulated emission in nanoparticles excited with single electron-hole pairs (excitons), optical gain can only occur in nanocrystals that contain at least two excitons. A complication associated with this multiexcitonic nature of light amplification is fast optical-gain decay induced by non-radiative Auger recombination, a process in which one exciton recombines by transferring its energy to another. Here we demonstrate a practical approach for obtaining optical gain in the single-exciton regime that eliminates the problem of Auger decay. Specifically, we develop core/shell hetero-nanocrystals engineered in such a way as to spatially separate electrons and holes between the core and the shell (type-II heterostructures). The resulting imbalance between negative and positive charges produces a strong local electric field, which induces a giant ( approximately 100 meV or greater) transient Stark shift of the absorption spectrum with respect to the luminescence line of singly excited nanocrystals. This effect breaks the exact balance between absorption and stimulated emission, and allows us to demonstrate optical amplification due to single excitons.

  5. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGES

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  6. Structure and transformation of tactoids in cellulose nanocrystal suspensions

    NASA Astrophysics Data System (ADS)

    Wang, Pei-Xi; Hamad, Wadood Y.; MacLachlan, Mark J.

    2016-05-01

    Cellulose nanocrystals obtained from natural sources are of great interest for many applications. In water, cellulose nanocrystals form a liquid crystalline phase whose hierarchical structure is retained in solid films after drying. Although tactoids, one of the most primitive components of liquid crystals, are thought to have a significant role in the evolution of this phase, they have evaded structural study of their internal organization. Here we report the capture of cellulose nanocrystal tactoids in a polymer matrix. This method allows us to visualize, for the first time, the arrangement of cellulose nanocrystals within individual tactoids by electron microscopy. Furthermore, we can follow the structural evolution of the liquid crystalline phase from tactoids to iridescent-layered films. Our insights into the early nucleation events of cellulose nanocrystals give important information about the growth of cholesteric liquid crystalline phases, especially for cellulose nanocrystals, and are crucial for preparing photonics-quality films.

  7. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals

    NASA Astrophysics Data System (ADS)

    Ma, Nan; Sargent, Edward H.; Kelley, Shana O.

    2009-02-01

    Colloidal semiconductor nanocrystals are widely used as lumiphores in biological imaging because their luminescence is both strong and stable, and because they can be biofunctionalized. During synthesis, nanocrystals are typically passivated with hydrophobic organic ligands, so it is then necessary either to replace these ligands or encapsulate the nanocrystals with hydrophilic moieties to make the lumiphores soluble in water. Finally, biological labels must be added to allow the detection of nucleic acids, proteins and specific cell types. This multistep process is time- and labour-intensive and thus out of reach of many researchers who want to use luminescent nanocrystals as customized lumiphores. Here, we show that a single designer ligand-a chimeric DNA molecule-can controllably program both the growth and the biofunctionalization of the nanocrystals. One part of the DNA sequence controls the nanocrystal passivation and serves as a ligand, while another part controls the biorecognition. The synthetic protocol reported here is straightforward and produces a homogeneous dispersion of nanocrystal lumiphores functionalized with a single biomolecular receptor. The nanocrystals exhibit strong optical emission in the visible region, minimal toxicity and have hydrodynamic diameters of ~6 nm, which makes them suitable for bioimaging. We show that the nanocrystals can specifically bind DNA, proteins or cells that have unique surface recognition markers.

  8. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  9. Si nanocrystals-based multilayers for luminescent and photovoltaic device applications

    NASA Astrophysics Data System (ADS)

    Lu, Peng; Li, Dongke; Cao, Yunqing; Xu, Jun; Chen, Kunji

    2018-06-01

    Low dimensional Si materials have attracted much attention because they can be developed in many kinds of new-generation nano-electronic and optoelectronic devices, among which Si nanocrystals-based multilayered material is one of the most promising candidates and has been extensively studied. By using multilayered structures, the size and distribution of nanocrystals as well as the barrier thickness between two adjacent Si nanocrystal layers can be well controlled, which is beneficial to the device applications. This paper presents an overview of the fabrication and device applications of Si nanocrystals, especially in luminescent and photovoltaic devices. We first introduce the fabrication methods of Si nanocrystals-based multilayers. Then, we systematically review the utilization of Si nanocrystals in luminescent and photovoltaic devices. Finally, some expectations for further development of the Si nanocrystals-based photonic and photovoltaic devices are proposed. Project supported by the National Natural Science Foundation of China (Nos. 11774155, 11274155).

  10. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals

    PubMed Central

    2018-01-01

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the development of homogeneous thin films as required for photovoltaic and optoelectronic applications. Recent experiments reveal spontaneous merging of drop-casted CsPbBr3 nanocrystals, which is promoted by humidity and mild-temperature treatments and arrested by electron beam irradiation. Here, we make use of atom-resolved annular dark-field imaging microscopy and valence electron energy loss spectroscopy in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope to investigate the aggregation between individual nanocrystals at the atomic level. We show that the merging process preserves the elemental composition and electronic structure of CsPbBr3 and takes place between nanocrystals of different sizes and orientations. In particular, we reveal seamless stitching for aligned nanocrystals, similar to that reported in the past for graphene flakes. Because the crystallographic alignment occurs naturally in drop-casted layers of CsPbX3 nanocrystals, our findings constitute the essential first step toward the development of large-area nanosheets with band gap energies predesigned by the nanocrystal choice—the gateway to large-scale photovoltaic applications of inorganic perovskites. PMID:29355301

  11. Extraordinary Interfacial Stitching between Single All-Inorganic Perovskite Nanocrystals.

    PubMed

    Gomez, Leyre; Lin, Junhao; de Weerd, Chris; Poirier, Lucas; Boehme, Simon C; von Hauff, Elizabeth; Fujiwara, Yasufumi; Suenaga, Kazutomo; Gregorkiewicz, Tom

    2018-02-14

    All-inorganic cesium lead halide perovskite nanocrystals are extensively studied because of their outstanding optoelectronic properties. Being of a cubic shape and typically featuring a narrow size distribution, CsPbX 3 (X = Cl, Br, and I) nanocrystals are the ideal starting material for the development of homogeneous thin films as required for photovoltaic and optoelectronic applications. Recent experiments reveal spontaneous merging of drop-casted CsPbBr 3 nanocrystals, which is promoted by humidity and mild-temperature treatments and arrested by electron beam irradiation. Here, we make use of atom-resolved annular dark-field imaging microscopy and valence electron energy loss spectroscopy in a state-of-the-art low-voltage monochromatic scanning transmission electron microscope to investigate the aggregation between individual nanocrystals at the atomic level. We show that the merging process preserves the elemental composition and electronic structure of CsPbBr 3 and takes place between nanocrystals of different sizes and orientations. In particular, we reveal seamless stitching for aligned nanocrystals, similar to that reported in the past for graphene flakes. Because the crystallographic alignment occurs naturally in drop-casted layers of CsPbX 3 nanocrystals, our findings constitute the essential first step toward the development of large-area nanosheets with band gap energies predesigned by the nanocrystal choice-the gateway to large-scale photovoltaic applications of inorganic perovskites.

  12. Recent advances in inkjet dispensing technologies: applications in drug discovery.

    PubMed

    Zhu, Xiangcheng; Zheng, Qiang; Yang, Hu; Cai, Jin; Huang, Lei; Duan, Yanwen; Xu, Zhinan; Cen, Peilin

    2012-09-01

    Inkjet dispensing technology is a promising fabrication methodology widely applied in drug discovery. The automated programmable characteristics and high-throughput efficiency makes this approach potentially very useful in miniaturizing the design patterns for assays and drug screening. Various custom-made inkjet dispensing systems as well as specialized bio-ink and substrates have been developed and applied to fulfill the increasing demands of basic drug discovery studies. The incorporation of other modern technologies has further exploited the potential of inkjet dispensing technology in drug discovery and development. This paper reviews and discusses the recent developments and practical applications of inkjet dispensing technology in several areas of drug discovery and development including fundamental assays of cells and proteins, microarrays, biosensors, tissue engineering, basic biological and pharmaceutical studies. Progression in a number of areas of research including biomaterials, inkjet mechanical systems and modern analytical techniques as well as the exploration and accumulation of profound biological knowledge has enabled different inkjet dispensing technologies to be developed and adapted for high-throughput pattern fabrication and miniaturization. This in turn presents a great opportunity to propel inkjet dispensing technology into drug discovery.

  13. Recent technologies in pulsatile drug delivery systems

    PubMed Central

    Jain, Deepika; Raturi, Richa; Jain, Vikas; Bansal, Praveen; Singh, Ranjit

    2011-01-01

    Pulsatile drug delivery systems (PDDS) have attracted attraction because of their multiple benefits over conventional dosage forms. They deliver the drug at the right time, at the right site of action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. These systems are designed according to the circadian rhythm of the body, and the drug is released rapidly and completely as a pulse after a lag time. These products follow the sigmoid release profile characterized by a time period. These systems are beneficial for drugs with chronopharmacological behavior, where nocturnal dosing is required, and for drugs that show the first-pass effect. This review covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Marketed technologies, such as PulsincapTM, Diffucaps®, CODAS®, OROS® and PULSYSTM, follow the above mechanism to render a sigmoidal drug release profile. Diseases wherein PDDS are promising include asthma, peptic ulcers, cardiovascular ailments, arthritis and attention deficit syndrome in children and hypercholesterolemia. Pulsatile drug delivery systems have the potential to bring new developments in the therapy of many diseases. PMID:23507727

  14. Colloidal Nanocrystals with Near-infrared Optical Properties: Synthesis, Characterization, and Applications

    NASA Astrophysics Data System (ADS)

    Panthani, Matthew George

    2011-07-01

    Colloidal nanocrystals with optical properties in the near-infrared (NIR) are of interest for many applications such as photovoltaic (PV) energy conversion, bioimaging, and therapeutics. For PVs and other electronic devices, challenges in using colloidal nanomaterials often deal with the surfaces. Because of the high surface-to-volume ratio of small nanocrystals, surfaces and interfaces play an enhanced role in the properties of nanocrystal films and devices. Organic ligand-capped CuInSe2 (CIS) and Cu(InXGa 1-X)Se2 (CIGS) nanocrystals were synthesized and used as the absorber layer in prototype solar cells. By fabricating devices from spray-coated CuInSe nanocrystals under ambient conditions, solar-to-electric power conversion efficiencies as high as 3.1% were achieved. Many treatments of the nanocrystal films were explored. Although some treatments increased the conductivity of the nanocrystal films, the best devices were from untreated CIS films. By modifying the reaction chemistry, quantum-confined CuInSe XS2-X (CISS) nanocrystals were produced. The potential of the CISS nanocrystals for targeted bioimaging was demonstrated via oral delivery to mice and imaging of nanocrystal fluorescence. The size-dependent photoluminescence of Si nanocrystals was measured. Si nanocrystals supported on graphene were characterized by conventional transmission electron microscopy and spherical aberration (Cs)-corrected scanning transmission electron microscopy (STEM). Enhanced imaging contrast and resolution was achieved by using Cs-corrected STEM with a graphene support. In addition, clear imaging of defects and the organic-inorganic interface was enabled by utilizing this technique.

  15. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describemore » our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).« less

  16. Formation of noble metal nanocrystals in the presence of biomolecules

    NASA Astrophysics Data System (ADS)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  17. Metal halide solid-state surface treatment for nanocrystal materials

    DOEpatents

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  18. Microscopic theory of cation exchange in CdSe nanocrystals.

    PubMed

    Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C

    2014-10-10

    Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.

  19. Conjugated polymer/nanocrystal nanocomposites for renewable energy applications in photovoltaics and photocatalysis.

    PubMed

    Su, Yu-Wei; Lin, Wei-Hao; Hsu, Yung-Jung; Wei, Kung-Hwa

    2014-11-01

    Conjugated polymer/nanocrystal composites have attracted much attention for use in renewable energy applications because of their versatile and synergistic optical and electronic properties. Upon absorbing photons, charge separation occurs in the nanocrystals, generating electrons and holes for photocurrent flow or reduction/oxidation (redox) reactions under proper conditions. Incorporating these nanocrystals into conjugated polymers can complement the visible light absorption range of the polymers for photovoltaics applications or allow the polymers to sensitize or immobilize the nanocrystals for photocatalysis. Here, the current developments of conjugated polymer/nanocrystal nanocomposites for bulk heterojunction-type photovoltaics incorporating Cd- and Pb-based nanocrystals or quantum dots are reviewed. The effects of manipulating the organic ligands and the concentration of the nanocrystal precursor, critical factors that affect the shape and aggregation of the nanocrystals, are also discussed. In the conclusion, the mechanisms through which conjugated polymers can sensitize semiconductor nanocrystals (TiO2 , ZnO) to ensure efficient charge separation, as well as how they can support immobilized nanocrystals for use in photocatalysis, are addressed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Biomimetic synthesis of noble metal nanocrystals

    NASA Astrophysics Data System (ADS)

    Chiu, Chin-Yi

    At the nanometer scale, the physical and chemical properties of materials heavily depend on their sizes and shapes. This fact has triggered considerable efforts in developing controllable nanomaterial synthesis. The controlled growth of colloidal nanocrystal is a kinetic process, in which high-energy facets grow faster and then vanish, leading to a nanocrystal enclosed by low-energy facets. Identifying a surfactant that can selectively bind to a particular crystal facet and thus lower its surface energy, is critical and challenging in shape controlled synthesis of nanocrystals. Biomolecules exhibiting exquisite molecular recognition properties can be exploited to precisely engineer nanostructured materials. In the first part of my thesis, we employed the phage display technique to select a specific multifunctional peptide sequence which can bind on Pd surface and mediate Pd crystal nucleation and growth, achieving size controlled synthesis of Pd nanocrystals in aqueous solution. We further demonstrated a rational biomimetic approach to the predictable synthesis of nanocrystals enclosed by a particular facet in the case of Pt. Specifically, Pt {100} and Pt {111} facet-specific peptides were identified and used to synthesize Pt nanocubes and Pt nano-tetrahedrons, respectively. The mechanistic studies of Pt {111} facet-specific peptide had led us to study the facet-selective adsorption of aromatic molecules on noble metal surfaces. The discoveries had achieved the development of design strategies to select facet-selective molecules which can synthesize nanocrystals with expected shapes in both Pt and Pd system. At last, we exploited Pt facet-specific peptides and controlled the molecular interaction to produce one- and three- dimensional nanostructures composed of anisotropic nanoparticles in synthetic conditions without supramolecular pre-organization, demonstrating the full potential of biomolecules in mediating material formation process. My research on biomimetic

  1. Conjugation of hydroxyapatite nanocrystals with human immunoglobulin G for nanomedical applications.

    PubMed

    Iafisco, Michele; Varoni, Elena; Di Foggia, Michele; Pietronave, Stefano; Fini, Milena; Roveri, Norberto; Rimondini, Lia; Prat, Maria

    2012-02-01

    Inorganic nanosized drug carriers are a promising field in nanomedicine applied to cancer. Their conjugation with antibodies combines the properties of the nanoparticles themselves with the specific and selective recognition ability of the antibodies to antigens. Biomimetic carbonate-hydroxyapatite (HA) nanoparticles were synthesized and fully characterized; human IgGs, used as model antibodies, were coupled to these nanocrystals. The maximum loading amount, the interaction modelling, the preferential orientation and the secondary structure modifications were evaluated using theoretical models (Langmuir, Freundlich and Langmuir-Freundlich) spectroscopic (UV-Vis, Raman), calorimetric (TGA), and immunochemical techniques (ELISA, Western Blot). HA nanoparticles of about 30 nm adsorbed human IgGs, in a dose-dependent, saturable and stable manner with micromolar affinity and adsorption capability around 2.3 mg/m(2). Adsorption isotherm could be described by Langmuir-Freundlich model, and was due to both energetically homogeneous and heterogeneous binding sites on HA surface, mainly of electrostatic nature. Binding did not induce secondary structure modification of IgGs. A preferential IgG end-on orientation with the involvement of IgG Fc moiety in the adsorption seems most probable due to the steric hindrance of their Fab domains. Biomimetic HA nanocrystals are suitable substrates to produce nanoparticles which can be functionalized with antibodies for efficient targeted drug delivery to tumours. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Size- and shape-dependent surface thermodynamic properties of nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Qingshan; Xue, Yongqiang; Cui, Zixiang

    2018-05-01

    As the fundamental properties, the surface thermodynamic properties of nanocrystals play a key role in the physical and chemical changes. However, it remains ambiguous about the quantitative influence regularities of size and shape on the surface thermodynamic properties of nanocrystals. Thus by introducing interface variables into the Gibbs energy and combining Young-Laplace equation, relations between the surface thermodynamic properties (surface Gibbs energy, surface enthalpy, surface entropy, surface energy and surface heat capacity), respectively, and size of nanocrystals with different shapes were derived. Theoretical estimations of the orders of the surface thermodynamic properties of nanocrystals agree with available experimental values. Calculated results of the surface thermodynamic properties of Au, Bi and Al nanocrystals suggest that when r > 10 nm, the surface thermodynamic properties linearly vary with the reciprocal of particle size, and when r < 10 nm, the effect of particle size on the surface thermodynamic properties becomes greater and deviates from linear variation. For nanocrystals with identical equivalent diameter, the more the shape deviates from sphere, the larger the surface thermodynamic properties (absolute value) are.

  3. Application of the combinative particle size reduction technology H 42 to produce fast dissolving glibenclamide tablets.

    PubMed

    Salazar, Jaime; Müller, Rainer H; Möschwitzer, Jan P

    2013-07-16

    Standard particle size reduction techniques such as high pressure homogenization or wet bead milling are frequently used in the production of nanosuspensions. The need for micronized starting material and long process times are their evident disadvantages. Combinative particle size reduction technologies have been developed to overcome the drawbacks of the standard techniques. The H 42 combinative technology consists of a drug pre-treatment by means of spray-drying followed by standard high pressure homogenization. In the present paper, spray-drying process parameters influencing the diminution effectiveness, such as drug and surfactant concentration, were systematically analyzed. Subsequently, the untreated and pre-treated drug powders were homogenized for 20 cycles at 1500 bar. For untreated, micronized glibenclamide, the particle size analysis revealed a mean particle size of 772 nm and volume-based size distribution values of 2.686 μm (d50%) and 14.423 μm (d90%). The use of pre-treated material (10:1 glibenclamide/docusate sodium salt ratio spray-dried as ethanolic solution) resulted in a mean particle size of 236 nm and volume-based size distribution values of 0.131 μm (d50%) and 0.285 μm (d90%). These results were markedly improved compared to the standard process. The nanosuspensions were further transferred into tablet formulations. Wet granulation, freeze-drying and spray-drying were investigated as downstream methods to produce dry intermediates. Regarding the dissolution rate, the rank order of the downstream processes was as follows: Spray-drying>freeze-drying>wet granulation. The best drug release (90% within 10 min) was obtained for tablets produced with spray-dried nanosuspension containing 2% mannitol as matrix former. In comparison, the tablets processed with micronized glibenclamide showed a drug release of only 26% after 10 min. The H 42 combinative technology could be successfully applied in the production of small drug nanocrystals. A

  4. Noninvasive remote-controlled release of drug molecules in vitro using magnetic actuation of mechanized nanoparticles.

    PubMed

    Thomas, Courtney R; Ferris, Daniel P; Lee, Jae-Hyun; Choi, Eunjoo; Cho, Mi Hyeon; Kim, Eun Sook; Stoddart, J Fraser; Shin, Jeon-Soo; Cheon, Jinwoo; Zink, Jeffrey I

    2010-08-11

    Mesoporous silica nanoparticles are useful nanomaterials that have demonstrated the ability to contain and release cargos with mediation by gatekeepers. Magnetic nanocrystals have the ability to exhibit hyperthermic effects when placed in an oscillating magnetic field. In a system combining these two materials and a thermally sensitive gatekeeper, a unique drug delivery system can be produced. A novel material that incorporates zinc-doped iron oxide nanocrystals within a mesoporous silica framework that has been surface-modified with pseudorotaxanes is described. Upon application of an AC magnetic field, the nanocrystals generate local internal heating, causing the molecular machines to disassemble and allowing the cargos (drugs) to be released. When breast cancer cells (MDA-MB-231) were treated with doxorubicin-loaded particles and exposed to an AC field, cell death occurred. This material promises to be a noninvasive, externally controlled drug delivery system with cancer-killing properties.

  5. Pentacle gold-copper alloy nanocrystals: a new system for entering male germ cells in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Lin, Yu; He, Rong; Sun, Liping; Yang, Yushan; Li, Wenqing; Sun, Fei

    2016-12-01

    Gold-based nanocrystals have attracted considerable attention for drug delivery and biological applications due to their distinct shapes. However, overcoming biological barriers is a hard and inevitable problem, which restricts medical applications of nanomaterials in vivo. Seeking for an efficient transportation to penetrate biological barriers is a common need. There are three barriers: blood-testis barrier, blood-placenta barrier, and blood-brain barrier. Here, we pay close attention to the blood-testis barrier. We found that the pentacle gold-copper alloy nanocrystals not only could enter GC-2 cells in vitro in a short time, but also could overcome the blood-testis barrier and enter male germ cells in vivo. Furthermore, we demonstrated that the entrance efficiency would become much higher in the development stages. The results also suggested that the pentacle gold-copper alloy nanocrystals could easier enter to germ cells in the pathological condition. This system could be a new method for theranostics in the reproductive system.

  6. Processing of Copper Zinc Tin Sulfide Nanocrystal Dispersions for Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Williams, Bryce Arthur

    A scalable and inexpensive renewable energy source is needed to meet the expected increase in electricity demand throughout the developed and developing world in the next 15 years without contributing further to global warming through CO2 emissions. Photovoltaics may meet this need but current technologies are less than ideal requiring complex manufacturing processes and/or use of toxic, rare-earth materials. Copper zinc tin sulfide (Cu 2ZnSnS4, CZTS) solar cells offer a true "green" alternative based upon non-toxic and abundant elements. Solution-based processes utilizing CZTS nanocrystal dispersions followed by high temperature annealing have received significant research attention due to their compatibility with traditional roll-to-roll coating processes. In this work, CZTS nanocrystal (5-35 nm diameters) dispersions were utilized as a production pathway to form solar absorber layers. Aerosol-based coating methods (aerosol jet printing and ultrasonic spray coating) were optimized for formation of dense, crack-free CZTS nanocrystal coatings. The primary variables underlying determination of coating morphology within the aerosol-coating parameter space were investigated. It was found that the liquid content of the aerosol droplets at the time of substrate impingement play a critical role. Evaporation of the liquid from the aerosol droplets during coating was altered through changes to coating parameters as well as to the CZTS nanocrystal dispersions. In addition, factors influencing conversion of CZTS nanocrystal coatings into dense, large-grained polycrystalline films suitable for solar cell development during thermal annealing were studied. The roles nanocrystal size, carbon content, sodium uptake, and sulfur pressure were found to have pivotal roles in film microstructure evolution. The effects of these parameters on film morphology, grain growth rates, and chemical makeup were analyzed from electron microscopy images as well as compositional analysis

  7. Near-infrared emitting fluorescent nanocrystals-labeled natural killer cells as a platform technology for the optical imaging of immunotherapeutic cells-based cancer therapy

    NASA Astrophysics Data System (ADS)

    Taik Lim, Yong; Cho, Mi Young; Noh, Young-Woock; Chung, Jin Woong; Chung, Bong Hyun

    2009-11-01

    This study describes the development of near-infrared optical imaging technology for the monitoring of immunotherapeutic cell-based cancer therapy using natural killer (NK) cells labeled with fluorescent nanocrystals. Although NK cell-based immunotherapeutic strategies have drawn interest as potent preclinical or clinical methods of cancer therapy, there are few reports documenting the molecular imaging of NK cell-based cancer therapy, primarily due to the difficulty of labeling of NK cells with imaging probes. Human natural killer cells (NK92MI) were labeled with anti-human CD56 antibody-coated quantum dots (QD705) for fluorescence imaging. FACS analysis showed that the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 have no effect on the cell viability. The effect of anti-human CD56 antibody-coated QD705 labeling on the NK92MI cell function was investigated by measuring interferon gamma (IFN- γ) production and cytolytic activity. Finally, the NK92MI cells labeled with anti-human CD56 antibody-coated QD705 showed a therapeutic effect similar to that of unlabeled NK92MI cells. Images of intratumorally injected NK92MI cells labeled with anti-human CD56 antibody-coated could be acquired using near-infrared optical imaging both in vivo and in vitro. This result demonstrates that the immunotherapeutic cells labeled with fluorescent nanocrystals can be a versatile platform for the effective tracking of injected therapeutic cells using optical imaging technology, which is very important in cell-based cancer therapies.

  8. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  9. Osteoblasts Growth Behaviour on Bio-Based Calcium Carbonate Aragonite Nanocrystal

    PubMed Central

    Zakaria, Zuki Abu Bakar

    2014-01-01

    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process. PMID:24734228

  10. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  11. Near-infrared light emitting device using semiconductor nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  12. Plasmonic engineering of spontaneous emission from silicon nanocrystals.

    PubMed

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells.

  13. Intracellular delivery of peptide nucleic acid and organic molecules using zeolite-L nanocrystals.

    PubMed

    Bertucci, Alessandro; Lülf, Henning; Septiadi, Dedy; Manicardi, Alex; Corradini, Roberto; De Cola, Luisa

    2014-11-01

    The design and synthesis of smart nanomaterials can provide interesting potential applications for biomedical purposes from bioimaging to drug delivery. Manufacturing multifunctional systems in a way to carry bioactive molecules, like peptide nucleic acids able to recognize specific targets in living cells, represents an achievement towards the development of highly selective tools for both diagnosis and therapeutics. This work describes a very first example of the use of zeolite nanocrystals as multifunctional nanocarriers to deliver simultaneously PNA and organic molecules into living cells. Zeolite-L nanocrystals are functionalized by covalently attaching the PNA probes onto the surface, while the channel system is filled with fluorescent guest molecules. The cellular uptake of the PNA/Zeolite-L hybrid material is then significantly increased by coating the whole system with a thin layer of biodegradable poly-L-lysine. The delivery of DAPI as a model drug molecule, inserted into the zeolite pores, is also demonstrated to occur in the cells, proving the multifunctional ability of the system. Using this zeolite nanosystem carrying PNA probes designed to target specific RNA sequences of interest in living cells could open new possibilities for theranostic and gene therapy applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. One-Step Synthesis of Monodisperse In-Doped ZnO Nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Qing Ling; Yang, Ye Feng; He, Hai Ping; Chen, Dong Dong; Ye, Zhi Zhen; Jin, Yi Zheng

    2010-05-01

    A method for the synthesis of high quality indium-doped zinc oxide (In-doped ZnO) nanocrystals was developed using a one-step ester elimination reaction based on alcoholysis of metal carboxylate salts. The resulting nearly monodisperse nanocrystals are well-crystallized with typically crystal structure identical to that of wurtzite type of ZnO. Structural, optical, and elemental analyses on the products indicate the incorporation of indium into the host ZnO lattices. The individual nanocrystals with cubic structures were observed in the 5% In-ZnO reaction, due to the relatively high reactivity of indium precursors. Our study would provide further insights for the growth of doped oxide nanocrystals, and deepen the understanding of doping process in colloidal nanocrystal syntheses.

  15. Nanocrystal synthesis and thin film formation for earth abundant photovoltaics

    NASA Astrophysics Data System (ADS)

    Carter, Nathaniel J.

    Providing access to on-demand energy at the global scale is a grand challenge of our time. The fabrication of solar cells from nanocrystal inks comprising earth abundant elements represents a scalable and sustainable photovoltaic technology with the potential to meet the global demand for electricity. Solar cells with Cu2ZnSn(S,Se)4 (CZTSSe) absorber layers are of particular interest due to the high absorption coefficient of CZTSSe, its band gap in the ideal range for efficient photovoltaic power conversion, and the relative abundance of its constituent elements in the earth's crust. Despite the promise of this material system, CZTSSe solar cell efficiencies reported throughout literature have failed to exceed 12.6%, principally due to the low open-circuit voltage (VOC) achieved in these devices compared to the absorber band gap. The work presented herein primarily aims to address the low VOC problem. First, the fundamental cause for such low VOC's is investigated. Interparticle compositional inhomogeneities identified in the synthesized CZTS nanocrystals and their effect on the absorber layer formation and device performance are characterized. Real-time energy-dispersive x-ray diffraction (EDXRD) elucidates the role of these inhomogeneities in the mechanism by which a film of CZTS nanocrystals converts into a dense absorber layer comprising micron-sized CZTSSe grains upon annealing in a selenium atmosphere (selenization). Additionally, a direct correlation between the nanocrystal inhomogeneities and the VOC in completed devices is observed. Detailed characterization of CZTSSe solar cells identifies electrical potential fluctuations in the CZTSSe absorber - due to spatial composition variations not unlike those observed in the nanocrystals - as a primary V OC inhibitor. Additional causes for low VOC's in CZTSSe solar cells proposed in the literature involve recombination at the interface between the CZTSSe absorber and: (1) the n-type, CdS buffer layer, or (2) the

  16. Octacosanol educes physico-chemical attributes, release and bioavailability as modified nanocrystals.

    PubMed

    Sen Gupta, Surashree; Ghosh, Mahua

    2017-10-01

    Octacosanol is a lesser known nutraceutical with the potential for treatment of several inflammatory diseases, high cholesterol, Parkinson's symptoms and tumour growth along with the capacity to improve athletic performance. But its lipophilicity and large structure inhibits extended solubility in water resulting in poor absorption and a low bioavailability. In the present work, sodium salt of octacosyl sulfate was synthesized. It displayed improved water solubility. Its nanocrystals, synthesized by means of nanoprecipitation technique, enhanced diffusion velocity, antioxidant capacity, shelf-life, penetrability and bioavailability. Particle size of the nanocrystals ranged between 197 and 220nm. Both modified octacosanol and its nanocrystals displayed maximum lipid peroxidation activities at a concentration 1000ppm, but nanocrystals demonstrated higher prevention. From freeze-thaw cycles it was evident that normal octacosanol crystals were far more prone to temperature variations than the nanocrystals. A pronounced increase in release/diffusion rate and bioavailability was observed for the nanocrystals of the modified octacosanol. In vitro release kinetics, bioavailability and bioequivalence were studied. Relative bioavailability for gastric passage and pancreatic passage of nanocrystals was 2.58 times and 1.81 times that of normal crystals respectively. Furthermore the nanocrystals displayed a superior in vitro release rate, while following a non-Fickian mode. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals.

    PubMed

    Bardhan, Rizia; Hedges, Lester O; Pint, Cary L; Javey, Ali; Whitelam, Stephen; Urban, Jeffrey J

    2013-10-01

    A quantitative understanding of nanocrystal phase transformations would enable more efficient energy conversion and catalysis, but has been hindered by difficulties in directly monitoring well-characterized nanoscale systems in reactive environments. We present a new in situ luminescence-based probe enabling direct quantification of nanocrystal phase transformations, applied here to the hydriding transformation of palladium nanocrystals. Our approach reveals the intrinsic kinetics and thermodynamics of nanocrystal phase transformations, eliminating complications of substrate strain, ligand effects and external signal transducers. Clear size-dependent trends emerge in nanocrystals long accepted to be bulk-like in behaviour. Statistical mechanical simulations show these trends to be a consequence of nanoconfinement of a thermally driven, first-order phase transition: near the phase boundary, critical nuclei of the new phase are comparable in size to the nanocrystal itself. Transformation rates are then unavoidably governed by nanocrystal dimensions. Our results provide a general framework for understanding how nanoconfinement fundamentally impacts broad classes of thermally driven solid-state phase transformations relevant to hydrogen storage, catalysis, batteries and fuel cells.

  18. Multicolour synthesis in lanthanide-doped nanocrystals through cation exchange in water

    NASA Astrophysics Data System (ADS)

    Han, Sanyang; Qin, Xian; An, Zhongfu; Zhu, Yihan; Liang, Liangliang; Han, Yu; Huang, Wei; Liu, Xiaogang

    2016-10-01

    Meeting the high demand for lanthanide-doped luminescent nanocrystals across a broad range of fields hinges upon the development of a robust synthetic protocol that provides rapid, just-in-time nanocrystal preparation. However, to date, almost all lanthanide-doped luminescent nanomaterials have relied on direct synthesis requiring stringent controls over crystal nucleation and growth at elevated temperatures. Here we demonstrate the use of a cation exchange strategy for expeditiously accessing large classes of such nanocrystals. By combining the process of cation exchange with energy migration, the luminescence properties of the nanocrystals can be easily tuned while preserving the size, morphology and crystal phase of the initial nanocrystal template. This post-synthesis strategy enables us to achieve upconversion luminescence in Ce3+ and Mn2+-activated hexagonal-phased nanocrystals, opening a gateway towards applications ranging from chemical sensing to anti-counterfeiting.

  19. Synthesis of new nanocrystal materials

    NASA Astrophysics Data System (ADS)

    Hassan, Yasser Hassan Abd El-Fattah

    Colloidal semiconductor nanocrystals (NCs) have sparked great excitement in the scientific community in last two decades. NCs are useful for both fundamental research and technical applications in various fields owing to their size and shape-dependent properties and their potentially inexpensive and excellent chemical processability. These NCs are versatile fluorescence probes with unique optical properties, including tunable luminescence, high extinction coefficient, broad absorption with narrow photoluminescence, and photobleaching resistance. In the past few years, a lot of attention has been given to nanotechnology based on using these materials as building blocks to design light harvesting assemblies. For instant, the pioneering applications of NCs are light-emitting diodes, lasers, and photovoltaic devices. Synthesis of the colloidal stable semiconductor NCs using the wet method of the pyrolysis of organometallic and chalcogenide precursors, known as hot-injection approach, is the chart-topping preparation method in term of high quality and monodisperse sized NCs. The advancement in the synthesis of these artificial materials is the core step toward their applications in a broad range of technologies. This dissertation focuses on exploring various innovative and novel synthetic methods of different types of colloidal nanocrystals, both inorganic semiconductors NCs, also known as quantum dots (QDs), and organic-inorganic metal halide-perovskite materials, known as perovskites. The work presented in this thesis focuses on pursuing fundamental understanding of the synthesis, material properties, photophysics, and spectroscopy of these nanostructured semiconductor materials. This thesis contains 6 chapters and conclusions. Chapters 1?3 focus on introducing theories and background of the materials being synthesized in the thesis. Chapter 4 demonstrates our synthesis of colloidal linker--free TiO2/CdSe NRs heterostructures with CdSe QDs grown in the presence of Ti

  20. Organization of 'nanocrystal molecules' using DNA

    NASA Astrophysics Data System (ADS)

    Alivisatos, A. Paul; Johnsson, Kai P.; Peng, Xiaogang; Wilson, Troy E.; Loweth, Colin J.; Bruchez, Marcel P.; Schultz, Peter G.

    1996-08-01

    PATTERNING matter on the nanometre scale is an important objective of current materials chemistry and physics. It is driven by both the need to further miniaturize electronic components and the fact that at the nanometre scale, materials properties are strongly size-dependent and thus can be tuned sensitively1. In nanoscale crystals, quantum size effects and the large number of surface atoms influence the, chemical, electronic, magnetic and optical behaviour2-4. 'Top-down' (for example, lithographic) methods for nanoscale manipulation reach only to the upper end of the nanometre regime5; but whereas 'bottom-up' wet chemical techniques allow for the preparation of mono-disperse, defect-free crystallites just 1-10 nm in size6-10, ways to control the structure of nanocrystal assemblies are scarce. Here we describe a strategy for the synthesis of'nanocrystal molecules', in which discrete numbers of gold nanocrystals are organized into spatially defined structures based on Watson-Crick base-pairing interactions. We attach single-stranded DNA oligonucleotides of defined length and sequence to individual nanocrystals, and these assemble into dimers and trimers on addition of a complementary single-stranded DNA template. We anticipate that this approach should allow the construction of more complex two-and three-dimensional assemblies.

  1. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A Paul [Oakland, CA; Scher, Erik C [Menlo Park, CA; Manna, Liberato [Berkeley, CA

    2011-11-22

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  2. Shaped nanocrystal particles and methods for making the same

    DOEpatents

    Alivisatos, A. Paul; Scher, Erik C; Manna, Liberato

    2013-12-17

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  3. Shaped nanocrystal particles and methods for working the same

    DOEpatents

    Alivisatos, A. Paul; Sher, Eric C.; Manna, Liberato

    2007-12-25

    Shaped nanocrystal particles and methods for making shaped nanocrystal particles are disclosed. One embodiment includes a method for forming a branched, nanocrystal particle. It includes (a) forming a core having a first crystal structure in a solution, (b) forming a first arm extending from the core having a second crystal structure in the solution, and (c) forming a second arm extending from the core having the second crystal structure in the solution.

  4. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-09-16

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  5. Engineering of Organic Nanocrystals by Electrocrystallization

    NASA Astrophysics Data System (ADS)

    Kilani, Mohamed

    This work discusses the experimental and theoretical methods used to control the morphology of nanocrystals. The hypothesis of the thermodynamic/kinetic control of the morphology was verified. We applied the electrocrystallization to make K(def)TCP nanocrystals and we tuned the electrochemical parameters to determine their influence on the nanocrystals morphologies. The characterization was mainly performed with AFM and FE-SEM. We presented in this work the possibility to control the morphology of K(def)TCP using the electrochemical parameters. The obtained shapes ranged from nanorods to rhombohedral shape, which is reported for the first time. The observed growth behavior was modeled and simulated with a method based on Monte-Carlo techniques. The simulation results show a qualitative match with the experimental findings. This work contributes to the understanding of the crystal growth behavior and the thermodynamic/kinetic morphology transition using electrocrystallization.

  6. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  7. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals

    DOE PAGES

    Freppon, Daniel J.; Men, Long; Burkhow, Sadie J.; ...

    2016-11-25

    Here we present the time-correlated luminescence of isolated nanocrystals of five methylammonium lead mixed-halide perovskite compositions (CH 3NH 3PbBr 3$-$xI x) that were synthesized with varying iodide and bromide anion loading. All analyzed nanocrystals had a spherical morphology with diameters in the range of 2 to 32 nm. The luminescence maxima of CH 3NH 3PbBr 3$-$xI x nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by varying the halide loading. Both CH 3NH 3PbI 3 and CH 3NH 3PbBr 3 nanocrystals exhibited no luminescence intermittency for more than 90% of the 250 s analysis time, as definedmore » by a luminescence intensity three standard deviations above the background. The mixed halide CH 3NH 3PbBr 0.75I 0.25, CH 3NH 3PbBr 0.50I 0.50, and CH 3NH 3PbBr 0.25I 0.75 nanocrystals exhibited luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively. Irrespective of luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) constant, (b) multimodal, (c) photobrightening, and (d) photobleaching. Finally, based on their photophysics, the CH 3NH 3PbBr 3$-$xI x nanocrystals can be expected to be useful in a wide-range of applications where low and non-intermittent luminescence is desirable, for example as imaging probes and in films for energy conversion devices.« less

  8. Photophysical properties of wavelength-tunable methylammonium lead halide perovskite nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freppon, Daniel J.; Men, Long; Burkhow, Sadie J.

    Here we present the time-correlated luminescence of isolated nanocrystals of five methylammonium lead mixed-halide perovskite compositions (CH 3NH 3PbBr 3$-$xI x) that were synthesized with varying iodide and bromide anion loading. All analyzed nanocrystals had a spherical morphology with diameters in the range of 2 to 32 nm. The luminescence maxima of CH 3NH 3PbBr 3$-$xI x nanocrystals were tuned to wavelengths ranging between 498 and 740 nm by varying the halide loading. Both CH 3NH 3PbI 3 and CH 3NH 3PbBr 3 nanocrystals exhibited no luminescence intermittency for more than 90% of the 250 s analysis time, as definedmore » by a luminescence intensity three standard deviations above the background. The mixed halide CH 3NH 3PbBr 0.75I 0.25, CH 3NH 3PbBr 0.50I 0.50, and CH 3NH 3PbBr 0.25I 0.75 nanocrystals exhibited luminescence intermittency in 18%, 4% and 26% of the nanocrystals, respectively. Irrespective of luminescence intermittency, luminescence intensities were classified for each nanocrystal as: (a) constant, (b) multimodal, (c) photobrightening, and (d) photobleaching. Finally, based on their photophysics, the CH 3NH 3PbBr 3$-$xI x nanocrystals can be expected to be useful in a wide-range of applications where low and non-intermittent luminescence is desirable, for example as imaging probes and in films for energy conversion devices.« less

  9. Creating ligand-free silicon germanium alloy nanocrystal inks.

    PubMed

    Erogbogbo, Folarin; Liu, Tianhang; Ramadurai, Nithin; Tuccarione, Phillip; Lai, Larry; Swihart, Mark T; Prasad, Paras N

    2011-10-25

    Particle size is widely used to tune the electronic, optical, and catalytic properties of semiconductor nanocrystals. This contrasts with bulk semiconductors, where properties are tuned based on composition, either through doping or through band gap engineering of alloys. Ideally, one would like to control both size and composition of semiconductor nanocrystals. Here, we demonstrate production of silicon-germanium alloy nanoparticles by laser pyrolysis of silane and germane. We have used FTIR, TEM, XRD, EDX, SEM, and TOF-SIMS to conclusively determine their structure and composition. Moreover, we show that upon extended sonication in selected solvents, these bare nanocrystals can be stably dispersed without ligands, thereby providing the possibility of using them as an ink to make patterned films, free of organic surfactants, for device fabrication. The engineering of these SiGe alloy inks is an important step toward the low-cost fabrication of group IV nanocrystal optoelectronic, thermoelectric, and photovoltaic devices.

  10. Anomalous Suppression of Valley Splittings in Lead Salt Nanocrystals

    NASA Astrophysics Data System (ADS)

    Poddubny, Alexander; Nestoklon, Mikhail; Goupalov, Serguei

    2012-02-01

    Atomistic sp^3d^5s^* tight-binding theory of PbSe and PbS nanocrystals is developed. It is demonstrated, that the valley splittings of confined electrons and holes strongly and peculiarly depend on the geometry of a nanocrystal. When the nanocrystal lacks a microscopic center of inversion and has Td symmetry, the splittings are strongly suppressed as compared to the more symmetric nanocrystals with Oh symmetry, having an inversion center. This effect is quite unusual because typically a higher symmetry of a physical system implies a higher degeneracy of its energy levels, while in our case the suppression of the splittings occurs in NCs having lower symmetry. Nevertheless, we were able to explain this puzzling behavior using mathematical apparatus of the group theory.

  11. Colloidal synthesis of biocompatible iron disulphide nanocrystals.

    PubMed

    Santos-Cruz, J; Nuñez-Anita, R E; Mayén-Hernández, S A; Martínez-Alvarez, O; Acosta-Torres, L S; de la Fuente-Hernández, J; Campos-González, E; Vega-González, M; Arenas-Arrocena, M C

    2018-08-01

    The aim of this research was to synthesis biocompatible iron disulphide nanocrystals at different reaction temperatures using the colloidal synthesis methodology. Synthesis was conducted at the 220-240 °C range of reaction temperatures at intervals of 5 °C in an inert argon atmosphere. The toxicity of iron disulphide nanocrystals was evaluated in vitro using mouse fibroblast cell line. Two complementary assays were conducted: the first to evaluate cell viability of the fibroblast via an MTT assay and the second to determine the preservation of fibroblast nuclei integrity through DAPI staining, which labels nuclear DNA in fluorescence microscopes. Through TEM and HRTEM, we observed a cubic morphology of pyrite iron disulphide nanocrystals ranging in sizes 25-50 nm (225 °C), 50-70 nm (230 °C) and >70 nm (235 °C). Through X-ray diffraction, we observed a mixture of pyrite and pyrrohotite in the samples synthesized at 225 °C and 240 °C, showing the best photocatalytic activity at 80% and 65%, respectively, for the degradation of methylene blue after 120 minutes. In all experimental groups, iron disulphide nanocrystals were biocompatible, i.e. no statistically significant differences were observed between experimental groups as shown in a one-way ANOVA and Tukey's test. Based on all of these results, we recommend non-cytotoxic semiconductor iron sulphide nanocrystals for biomedical applications.

  12. Modern drug discovery technologies: opportunities and challenges in lead discovery.

    PubMed

    Guido, Rafael V C; Oliva, Glaucius; Andricopulo, Adriano D

    2011-12-01

    The identification of promising hits and the generation of high quality leads are crucial steps in the early stages of drug discovery projects. The definition and assessment of both chemical and biological space have revitalized the screening process model and emphasized the importance of exploring the intrinsic complementary nature of classical and modern methods in drug research. In this context, the widespread use of combinatorial chemistry and sophisticated screening methods for the discovery of lead compounds has created a large demand for small organic molecules that act on specific drug targets. Modern drug discovery involves the employment of a wide variety of technologies and expertise in multidisciplinary research teams. The synergistic effects between experimental and computational approaches on the selection and optimization of bioactive compounds emphasize the importance of the integration of advanced technologies in drug discovery programs. These technologies (VS, HTS, SBDD, LBDD, QSAR, and so on) are complementary in the sense that they have mutual goals, thereby the combination of both empirical and in silico efforts is feasible at many different levels of lead optimization and new chemical entity (NCE) discovery. This paper provides a brief perspective on the evolution and use of key drug design technologies, highlighting opportunities and challenges.

  13. Nanocrystal sensitized photovoltaics and photodetectors with performance enhanced using ligand engineering

    NASA Astrophysics Data System (ADS)

    Schut, David M.; Williams, George M., Jr.; Arteaga, Stefan; Allen, Thomas L.; Novet, Thomas

    2011-06-01

    Nanocrystal quantum dot photovoltaics and photodetectors with performance optimized by engineering the nanocrystals size and the optoelectronic properties of the nanocrystal's chemical coating are reported. Due to the large surface-to-volume ratio inherent to nanocrystals, the surface effects of ligands used to chemically coat and passivate nanocrystals play a significant role in device performance. However, the optoelectronic properties of ligands are difficult to ascertain, as the band structure of the ligand-capped nanoparticle system is complex and difficult to model. Using density-of-states measurements, we demonstrate that modeling of electropositive and electronegative substituents and use of the Hammett equation, are useful tools in optimizing nanocrystal detector performance. A new particle, the Janus-II nanoparticles, developed using 'charge-donating' and 'charge-withdrawing' ligands distributed over opposite surfaces of the nanocrystal, is described. The polarizing ligands of the Janus-II nanoparticle form a degeneracy-splitting dipole, which reduces the overlap integral between excitonic states, and thus reduces the probability of carrier recombination, allowing carrier extraction to take place more efficiently. This is shown to allow increased photodetection efficiencies and to allow the capture of multiple exciton events in working photodetectors.

  14. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.

    PubMed

    Wang, Qinchao; Wang, Yiqian; Guo, Peizhi; Li, Qun; Ding, Ruixue; Wang, Baoyan; Li, Hongliang; Liu, Jingquan; Zhao, X S

    2014-01-14

    Palladium (Pd) nanocrystals have been synthesized by using formic acid as the reducing agent at room temperature. When the concentration of formic acid was increased continuously, the size of Pd nanocrystals first decreased to a minimum and then increased slightly again. The products have been investigated by a series of techniques, including X-ray diffraction, high-resolution transmission electron microscopy (HRTEM), UV-vis absorption, and electrochemical measurements. The formation of Pd nanocrystals is proposed to be closely related to the dynamical imbalance of the growth and dissolution rate of Pd nanocrystals associated with the adsorption of formate ions onto the surface of the intermediates. It is found that small Pd nanocrystals showed blue-shifted adsorption peaks compared with large ones. Pd nanocrystals with the smallest size display the highest electrocatalytic activity for the electrooxidation of formic acid and ethanol on the basis of cyclic voltammetry and chronoamperometric data. It is suggested that both the electrochemical active surface area and the small size effect are the key roles in determining the electrocatalytic performances of Pd nanocrystals. A "dissolution-deposition-aggregation" process is proposed to explain the variation of the electrocatalytic activity during the electrocatalysis according to the HRTEM characterization.

  15. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sachleben, Joseph Robert

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and 13C enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution 1H and 13C liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 Å. Internal motion is estimated to be slow with a correlation time > 10 -8 s -1. The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O 2 and ultraviolet. A method formore » measuring 14N- 1H J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T 1 and T 2 experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in 13C enriched solids is demonstrated by experiments on zinc acetate and L-alanine.« less

  16. Nuclear magnetic relaxation studies of semiconductor nanocrystals and solids

    NASA Astrophysics Data System (ADS)

    Sachleben, J. R.

    1993-09-01

    Semiconductor nanocrystals, small biomolecules, and C-13 enriched solids were studied through the relaxation in NMR spectra. Surface structure of semiconductor nanocrystals (CdS) was deduced from high resolution H-1 and C-13 liquid state spectra of thiophenol ligands on the nanocrystal surfaces. The surface coverage by thiophenol was found to be low, being 5.6 and 26% for nanocrystal radii of 11.8 and 19.2 angstrom. Internal motion is estimated to be slow with a correlation time greater than 10(exp -8) s(exp -1). The surface thiophenol ligands react to form a dithiophenol when the nanocrystals were subjected to O2 and ultraviolet. A method for measuring (N-14)-(H-1) J-couplings is demonstrated on pyridine and the peptide oxytocin; selective 2D T(sub 1) and T(sub 2) experiments are presented for measuring relaxation times in crowded spectra with overlapping peaks in 1D, but relaxation effects interfere. Possibility of carbon-carbon cross relaxation in C-13 enriched solids is demonstrated by experiments on zinc acetate and L-alanine.

  17. Nanonization strategies for poorly water-soluble drugs.

    PubMed

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  18. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  19. Colloidal infrared reflective and transparent conductive aluminum-doped zinc oxide nanocrystals

    DOEpatents

    Buonsanti, Raffaella; Milliron, Delia J

    2015-02-24

    The present invention provides a method of preparing aluminum-doped zinc oxide (AZO) nanocrystals. In an exemplary embodiment, the method includes (1) injecting a precursor mixture of a zinc precursor, an aluminum precursor, an amine, and a fatty acid in a solution of a vicinal diol in a non-coordinating solvent, thereby resulting in a reaction mixture, (2) precipitating the nanocrystals from the reaction mixture, thereby resulting in a final precipitate, and (3) dissolving the final precipitate in an apolar solvent. The present invention also provides a dispersion. In an exemplary embodiment, the dispersion includes (1) nanocrystals that are well separated from each other, where the nanocrystals are coated with surfactants and (2) an apolar solvent where the nanocrystals are suspended in the apolar solvent. The present invention also provides a film. In an exemplary embodiment, the film includes (1) a substrate and (2) nanocrystals that are evenly distributed on the substrate.

  20. Optical properties of Si and Ge nanocrystals: Parameter-free calculations

    NASA Astrophysics Data System (ADS)

    Ramos, L. E.; Weissker, H.-Ch.; Furthmüller, J.; Bechstedt, F.

    2005-12-01

    The cover picture of the current issue refers to the Edi-tor's Choice article of Ramos et al. [1]. The paper gives an overview of the electronic and optical properties of silicon and germanium nanocrystals determined by state-of-the-art ab initio methods. Nanocrystals have promising applications in opto-electronic devices, since they can be used to confine electrons and holes and facilitate radiative recombination. Since meas-urements for single nanoparticles are difficult to make, ab initio theoretical investigations become important to understand the mechanisms of luminescence.The cover picture shows nanocrystals of four sizes with tetrahedral coordination whose dangling bonds at the surface are passivated with hydrogen. As often observed in experiments, the nanocrystals are not perfectly spherical, but contain facets. Apart from the size of the nanocrystals, which determines the quantum confinement, the way their dangling bonds are passivated is relevant for their electronic and optical properties. For instance, the passivation with hydroxyls reduces the quantum confine-ment. On the other hand, the oxidation of the silicon nanocrys-tals increases the quantum confinement and reduces the effect of single surface terminations on the gap. Due to the oscillator strengths of the lowest-energy optical transitions, Ge nanocrys-tals are in principle more suitable for opto-electronic applica-tions than Si nanocrystals.The first author, Luis E. Ramos, is a postdoc at the Institute of Solid-State Physics and Optics (IFTO), Friedrich-Schiller University Jena, Germany. He investigates electronic and optical properties of semiconductor nanocrystallites and is a member of the European Network of Excellence NANO-QUANTA and of the European Theoretical Spectroscopy Facility (ETSF).

  1. Optical Properties of Nanocrystal Interfaces in Compressed MgO Nanopowders

    PubMed Central

    2011-01-01

    The optical properties and charge trapping phenomena observed on oxide nanocrystal ensembles can be strongly influenced by the presence of nanocrystal interfaces. MgO powders represent a convenient system to study these effects due to the well-defined shape and controllable size distributions of MgO nanocrystals. The spectroscopic properties of nanocrystal interfaces are investigated by monitoring the dependence of absorption characteristics on the concentration of the interfaces in the nanopowders. The presence of interfaces is found to affect the absorption spectra of nanopowders more significantly than changing the size of the constituent nanocrystals and, thus, leading to the variation of the relative abundance of light-absorbing surface structures. We find a strong absorption band in the 4.0−5.5 eV energy range, which was previously attributed to surface features of individual nanocrystals, such as corners and edges. These findings are supported by complementary first-principles calculations. The possibility to directly address such interfaces by tuning the energy of excitation may provide new means for functionalization and chemical activation of nanostructures and can help improve performance and reliability for many nanopowder applications. PMID:21443262

  2. Integration of Antibody Array Technology into Drug Discovery and Development.

    PubMed

    Huang, Wei; Whittaker, Kelly; Zhang, Huihua; Wu, Jian; Zhu, Si-Wei; Huang, Ruo-Pan

    Antibody arrays represent a high-throughput technique that enables the parallel detection of multiple proteins with minimal sample volume requirements. In recent years, antibody arrays have been widely used to identify new biomarkers for disease diagnosis or prognosis. Moreover, many academic research laboratories and commercial biotechnology companies are starting to apply antibody arrays in the field of drug discovery. In this review, some technical aspects of antibody array development and the various platforms currently available will be addressed; however, the main focus will be on the discussion of antibody array technologies and their applications in drug discovery. Aspects of the drug discovery process, including target identification, mechanisms of drug resistance, molecular mechanisms of drug action, drug side effects, and the application in clinical trials and in managing patient care, which have been investigated using antibody arrays in recent literature will be examined and the relevance of this technology in progressing this process will be discussed. Protein profiling with antibody array technology, in addition to other applications, has emerged as a successful, novel approach for drug discovery because of the well-known importance of proteins in cell events and disease development.

  3. Increased electronic coupling in silicon nanocrystal networks doped with F4-TCNQ.

    PubMed

    Carvalho, Alexandra; Oberg, Sven; Rayson, Mark J; Briddon, Patrick R

    2013-02-01

    The modification of the electronic structure of silicon nanocrystals using an organic dopant, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4-TCNQ), is investigated using first-principles calculations. It is shown that physisorbed F4-TCNQ molecules have the effect of oxidizing the nanocrystal, attracting the charge density towards the F4-TCNQ-nanocrystal interface, and decreasing the excitation energy of the system. In periodic F4-TCNQ/nanocrystal superlattices, F4-TCNQ is suggested to enhance exciton separation, and in the presence of free holes, to serve as a bridge for electron/hole transfer between adjacent nanocrystals.

  4. Synthesis of icosahedral gold nanocrystals: a thermal process strategy.

    PubMed

    Zhou, Min; Chen, Shenhao; Zhao, Shiyong

    2006-03-16

    We demonstrate a one-step thermal process route to the synthesis of icosahedral gold nanocrystals. By regulating the concentrations of poly(vinyl pyrrolidone) (PVP) and HAuCl4 or changing the temperature, we can readily access the shapes of icosahedral nanocrystals with good uniformity. These gold nanostructures, with unique geometrical shapes, might find use in areas that include photonics, optoelectronics, and optical sensing. We also observed that these gold nanocrystals have a strong tendency to be immobilized spontaneously on the glass substrate.

  5. Lifetime of excitons localized in Si nanocrystals in amorphous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusev, O. B.; Belolipetskiy, A. V., E-mail: alexey.belolipetskiy@mail.ioffe.ru; Yassievich, I. N.

    2016-05-15

    The introduction of nanocrystals plays an important role in improving the stability of the amorphous silicon films and increasing the carrier mobility. Here we report results of the study on the photoluminescence and its dynamics in the films of amorphous hydrogenated silicon containing less than 10% of silicon nanocrystals. The comparing of the obtained experimental results with the calculated probability of the resonant tunneling of the excitons localized in silicon nanocrystals is presented. Thus, it has been estimated that the short lifetime of excitons localized in Si nanocrystal is controlled by the resonant tunneling to the nearest tail state ofmore » the amorphous matrix.« less

  6. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals

    PubMed Central

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-01-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal–semiconductor nano-heterostructures. PMID:24115781

  7. 76 FR 58020 - Prescription Drug User Fee Act IV Information Technology Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-19

    ...] Prescription Drug User Fee Act IV Information Technology Plan AGENCY: Food and Drug Administration, HHS. ACTION... information technology (IT) plan entitled ``PDUFA IV Information Technology Plan'' (updated plan) to achieve... Information Technology Plan.'' This plan will meet one of the performance goals agreed to under the 2007...

  8. Revisiting lab-on-a-chip technology for drug discovery.

    PubMed

    Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas

    2012-08-01

    The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.

  9. Thermal and Mechanical Properties of Natural Rubber Composites Reinforced with Cellulose Nanocrystals from Southern Pine

    Treesearch

    Chunmei Zhang; Yi Dan; Jun Peng; Lih-Sheng Turng; Ronald Sabo; Craig Clemons

    2014-01-01

    There is currently a considerable interest in developing bio-based and green nanocomposites in industrial and technological areas owing to their biodegradability, biocompatibility, and environmental friendliness. In this study, a bio-based nanosized material, cellulose nanocrystals (CNC), extracted from southern pine pulp was employed as a reinforcing agent in a...

  10. Ligand Exchange Governs the Crystal Structures in Binary Nanocrystal Superlattices.

    PubMed

    Wei, Jingjing; Schaeffer, Nicolas; Pileni, Marie-Paule

    2015-11-25

    The surface chemistry in colloidal nanocrystals on the final crystalline structure of binary superlattices produced by self-assembly of two sets of nanocrystals is hereby demonstrated. By mixing nanocrystals having two different sizes and the same coating agent, oleylamine (OAM), the binary nanocrystal superlattices that are produced, such as NaCl, AlB2, NaZn13, and MgZn2, are well in agreement with the crystalline structures predicted by the hard-sphere model, their formation being purely driven by entropic forces. By opposition, when large and small nanocrystals are coated with two different ligands [OAM and dodecanethiol (DDT), respectively] while keeping all other experimental conditions unchanged, the final binary structures markedly change and various structures with lower packing densities, such as Cu3Au, CaB6, and quasicrystals, are observed. This effect of the nanocrystals' coating agents could also be extended to other binary systems, such as Ag-Au and CoFe2O4-Ag supracrystalline binary lattices. In order to understand this effect, a mechanism based on ligand exchange process is proposed. Ligand exchange mechanism is believed to affect the thermodynamics in the formation of binary systems composed of two sets of nanocrystals with different sizes and bearing two different coating agents. Hence, the formation of binary superlattices with lower packing densities may be favored kinetically because the required energetic penalty is smaller than that of a denser structure.

  11. Band gap and composition engineering on a nanocrystal (BCEN) in solution.

    PubMed

    Peng, Xiaogang

    2010-11-16

    Colloidal nanocrystals with "artificial" composition and electron band structure promise to expand the fields of nanomaterials and inorganic chemistry. Despite their promise as functional materials, the fundamental science associated with the synthesis, characterization, and properties of colloidal nanocrystals is still in its infancy and deserves systematic study. Furthermore, such studies are important for our basic understanding of crystallization, surface science, and solid state chemistry. "Band gap and composition engineering on a nanocrystal" (BCEN) refers to the synthesis of a colloidal nanocrystal with composition and/or electron energy band structure that are not found in natural bulk crystals. The BCEN nanostructure shown in the Figure includes a magnetic domain for the separation and recycling of the complex nanostructure, a photoactivated catalytic center, and an additional chemical catalytic center. A thin but porous film (such as a silicate) might be coated onto the nanocrystal, both to provide chemical stability and to isolate the reaction processes from the bulk solution. This example is a catalytic complex analogous to an enzyme that facilitates two sequential reactions in a microenvironment different from bulk solution. The synthesis of colloidal nanocrystals has advanced by a quantum leap in the past two decades. The field now seems ready to extend colloidal nanocrystal synthesis into the BCEN regime. Although BCEN is a very new branch of synthetic chemistry, this Account describes advances in related synthetic and characterization techniques that can serve as a useful starting point for this new area of investigation. To put these ideas into context, this Account compares this new field with organic synthesis, the most developed branch in synthetic chemistry. The structural and functional diversity of organic compounds results from extending design and synthesis beyond the construction of natural organic compounds. If this idea also holds true

  12. Systems and methods of detecting force and stress using tetrapod nanocrystal

    DOEpatents

    Choi, Charina L.; Koski, Kristie J.; Sivasankar, Sanjeevi; Alivisatos, A. Paul

    2013-08-20

    Systems and methods of detecting force on the nanoscale including methods for detecting force using a tetrapod nanocrystal by exposing the tetrapod nanocrystal to light, which produces a luminescent response by the tetrapod nanocrystal. The method continues with detecting a difference in the luminescent response by the tetrapod nanocrystal relative to a base luminescent response that indicates a force between a first and second medium or stresses or strains experienced within a material. Such systems and methods find use with biological systems to measure forces in biological events or interactions.

  13. Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways

    NASA Astrophysics Data System (ADS)

    Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra; Arias, T. A.; Hennig, Richard G.

    2014-02-01

    Solid-liquid interfaces are at the heart of many modern-day technologies and provide a challenge to many materials simulation methods. A realistic first-principles computational study of such systems entails the inclusion of solvent effects. In this work, we implement an implicit solvation model that has a firm theoretical foundation into the widely used density-functional code Vienna ab initio Software Package. The implicit solvation model follows the framework of joint density functional theory. We describe the framework, our algorithm and implementation, and benchmarks for small molecular systems. We apply the solvation model to study the surface energies of different facets of semiconducting and metallic nanocrystals and the SN2 reaction pathway. We find that solvation reduces the surface energies of the nanocrystals, especially for the semiconducting ones and increases the energy barrier of the SN2 reaction.

  14. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  15. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  16. Metal Sulfide Nanocrystals inside Ferritin with Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Hansen, Kameron; Peterson, J. Ryan; Olsen, Cameron; Hogg, Heather; Colton, John; Watt, Richard; Colton Team

    Ferritin is a spherical protein shell used universally by organisms to store iron. Due to a number of ferritin's properties (a conductive shell, ability to be arranged in ordered arrays, and high stability), recent theoretical work has proposed that non-native semiconductor nanocrystals inside ferritin can be used for high-efficiency solar energy conversion. We present research on the synthesis of a variety of these nanocrystals (PbS, CuS, Mo2S, ZnS, and PbSe) inside ferritin's hollow interior and band gap energies of the resulting ferritin-nanocrystal constructs. We also report preliminary solar cell results for dye sensitized solar cells with PbS-ferritin as the dye.

  17. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  18. Hierarchial Junction Solar Cells Based on Hyper-Branched Semiconductor Nanocrystals

    DTIC Science & Technology

    2009-06-30

    Hyper-Branched Semiconductor Nanocrystals 4 2. Cu2S- CdS all-inorganic nanocrystal solar cells. We demonstrated the rational synthesis of... Hydrothermal Synthesis of Single Phase Pyrite FeS2 Nanocrystals. We demonstrated a single-source molecular precursor that can be used for the synthesis ... CdS Semiconductor Nanostructures,” Advanced Materials, (2008), 20(22), 4306. Y. Wu, C. Wadia, W. Ma, B. Sadtler, A. P. Alivisatos, “ Synthesis of

  19. Synthesis, characterization and design of a nanocrystal based photovoltaic device

    NASA Astrophysics Data System (ADS)

    Erwin, Mary Margaret

    Nanocomposites have shown promise as the active layer for photovoltaic energy conversion. Devices consisting of CdSe nanocrystals and semiconducting polymer, and devices consisting of C60 and semiconducting polymer have been recently investigated. This work will present the rational design, synthesis, fabrication and characterization of a nanocomposite photovoltaic device-containing Poly 3-hexylthiophene (P3HT), Cadmium Selenium (CdSe) nanocrystals, and C60. The use of these three components allows for a dedicated light harvester, CdSe nanocrystals, a dedicated hole transporter, P3HT, and a dedicated electron transporter, C60. Two primary premises were investigated in this work; first what effect the size of the nanocrystal would have on the efficiency of the devices and second would the addition of C 60 to a CdSe nanocrystal/semiconducting polymer device increase the efficiency of the devices. Three sizes of CdSe nanocrystals (30A, 45A, and 72A) were used in the photoactive layer. Five different composites were used for the photoactive layer ranging from 20% CdSe or C60 to 80% CdSe or C60 of each size of CdSe nanocrystal, while the percentage of P3HT was held constant at 20%. All of the composites were tested at 514 nm at 5 W/m2 and at the industry standard of AM 1.5 at 1000 W/m2 (1 sun). After all the results were analyzed, it was seen that with the addition of C60 only a small percentage of CdSe nanocrystals would be required to make an efficient device, thus making this device cost effective and with more research a viable new source of photovoltaic energy.

  20. Synthesis and spectroscopic properties of silica-dye-semiconductor nanocrystal hybrid particles.

    PubMed

    Ren, Ting; Erker, Wolfgang; Basché, Thomas; Schärtl, Wolfgang

    2010-12-07

    We prepared silica-dye-nanocrystal hybrid particles and studied the energy transfer from semiconductor nanocrystals (= donor) to organic dye molecules (= acceptor). Multishell CdSe/CdS/ZnS semiconductor nanocrystals were adsorbed onto monodisperse Stöber silica particles with an outer silica shell of thickness 2-23 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the energy transfer efficiency, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of nanocrystals with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with numerically calculated FRET efficiencies and by control experiments confirming attractive interaction between the nanocrystals and Texas Red freely dissolved in solution.

  1. Emission efficiency limit of Si nanocrystals

    PubMed Central

    Limpens, Rens; Luxembourg, Stefan L.; Weeber, Arthur W.; Gregorkiewicz, Tom

    2016-01-01

    One of the important obstacles on the way to application of Si nanocrystals for development of practical devices is their typically low emissivity. In this study we explore the limits of external quantum yield of photoluminescence of solid-state dispersions of Si nanocrystals in SiO2. By making use of a low-temperature hydrogen passivation treatment we demonstrate a maximum emission quantum efficiency of approximately 35%. This is the highest value ever reported for this type of material. By cross-correlating PL lifetime with EQE values, we obtain a comprehensive understanding of the efficiency limiting processes induced by Pb-defects. We establish that the observed record efficiency corresponds to an interface density of Pb-centers of 1.3 × 1012 cm12, which is 2 orders of magnitude higher than for the best Si/SiO2 interface. This result implies that Si nanocrystals with up to 100% emission efficiency are feasible. PMID:26786062

  2. Deep level transient spectroscopy (DLTS) on colloidal-synthesized nanocrystal solids.

    PubMed

    Bozyigit, Deniz; Jakob, Michael; Yarema, Olesya; Wood, Vanessa

    2013-04-24

    We demonstrate current-based, deep level transient spectroscopy (DLTS) on semiconductor nanocrystal solids to obtain quantitative information on deep-lying trap states, which play an important role in the electronic transport properties of these novel solids and impact optoelectronic device performance. Here, we apply this purely electrical measurement to an ethanedithiol-treated, PbS nanocrystal solid and find a deep trap with an activation energy of 0.40 eV and a density of NT = 1.7 × 10(17) cm(-3). We use these findings to draw and interpret band structure models to gain insight into charge transport in PbS nanocrystal solids and the operation of PbS nanocrystal-based solar cells.

  3. Protein unfolding versus β-sheet separation in spider silk nanocrystals

    NASA Astrophysics Data System (ADS)

    Alam, Parvez

    2014-03-01

    In this communication a mechanism for spider silk strain hardening is proposed. Shear failure of β-sheet nanocrystals is the first failure mode that gives rise to the creation of smaller nanocrystals, which are of higher strength and stiffness. β-sheet unfolding requires more energy than nanocrystal separation in a shear mode of failure. As a result, unfolding occurs after the nanocrystals separate in shear. β-sheet unfolding yields a secondary strain hardening effect once the β-sheet conformation is geometrically stable and acts like a unidirectional fibre in a fibre reinforced composite. The mechanism suggested herein is based on molecular dynamics calculations of residual inter-β-sheet separation strengths against residual intra-β-sheet unfolding strengths.

  4. Nanocrystal assembly for bottom-up plasmonic materials

    NASA Astrophysics Data System (ADS)

    Tao, Andrea Rae

    2007-12-01

    Plasmonic materials are emerging as key platforms for applications that rely on the manipulation of light at small length scales. Materials that possess sub-wavelength metallic features support either localized or propagating surface plasmons that can induce huge local electromagnetic fields at the metal surface, facilitating a host of extraordinary optical phenomena. For many of the breakthrough photonic, spectroscopic, and optoelectronic applications of plasmonics, the bottom-up fabrication of these materials from low-dimensional structures has yet to be explored. Because colloidal metal nanostructures can be readily synthesized with controlled shapes and sizes, and because these structures also generate plasmon-mediated evanescent fields near their surfaces when irradiated with light, Ag nanocrystals and nanowires are ideal building blocks for rationally designed plasmonic materials. This dissertation addresses three major challenges: (1) the synthesis of Ag polyhedral nanocrystals and nanowires, (2) the bottom-up organization of these nanostructures into one-, two-, and three-dimensional assemblies, and (3) the application of these assemblies as spectroscopic sensing platforms. Faceted Ag colloids were synthesized in high yield and with remarkable monodispersity using the polyol process, where Ag+ is reduced in the presence of a polymer capping agent that serves to regulate nucleation and crystallographic growth direction. The resulting nanocrystals and nanowires are bound exclusively by {100} and {111} crystal planes, where nanowires possess pentagonal cross-sections and nanocrystals possess octahedral symmetry. Because allowed plasmon modes are explicitly dictated by geometric considerations, each shape exhibits a unique scattering spectrum in the optical wavelengths. These shaped colloidal building blocks were assembled into ordered groupings and superlattices to achieve controlled electromagnetic coupling between individual nanostructures. Of particular

  5. Modeling and simulation of floating gate nanocrystal FET devices and circuits

    NASA Astrophysics Data System (ADS)

    Hasaneen, El-Sayed A. M.

    The nonvolatile memory market has been growing very fast during the last decade, especially for mobile communication systems. The Semiconductor Industry Association International Technology Roadmap for Semiconductors states that the difficult challenge for nonvolatile semiconductor memories is to achieve reliable, low power, low voltage performance and high-speed write/erase. This can be achieved by aggressive scaling of the nonvolatile memory cells. Unfortunately, scaling down of conventional nonvolatile memory will further degrade the retention time due to the charge loss between the floating gate and drain/source contacts and substrate which makes conventional nonvolatile memory unattractive. Using nanocrystals as charge storage sites reduces dramatically the charge leakage through oxide defects and drain/source contacts. Floating gate nanocrystal nonvolatile memory, FG-NCNVM, is a candidate for future memory because it is advantageous in terms of high-speed write/erase, small size, good scalability, low-voltage, low-power applications, and the capability to store multiple bits per cell. Many studies regarding FG-NCNVMs have been published. Most of them have dealt with fabrication improvements of the devices and device characterizations. Due to the promising FG-NCNVM applications in integrated circuits, there is a need for circuit a simulation model to simulate the electrical characteristics of the floating gate devices. In this thesis, a FG-NCNVM circuit simulation model has been proposed. It is based on the SPICE BSIM simulation model. This model simulates the cell behavior during normal operation. Model validation results have been presented. The SPICE model shows good agreement with experimental results. Current-voltage characteristics, transconductance and unity gain frequency (fT) have been studied showing the effect of the threshold voltage shift (DeltaVth) due to nanocrystal charge on the device characteristics. The threshold voltage shift due to

  6. Crystallization processes in pharmaceutical technology and drug delivery design

    NASA Astrophysics Data System (ADS)

    Shekunov, B. Yu; York, P.

    2000-04-01

    Crystallization is a major technological process for particle formation in pharmaceutical industry and, in addition, plays an important role in defining the stability and drug release properties of the final dosage forms. Industrial and regulatory aspects of crystallization are briefly reviewed with reference to solid-state properties of pharmaceuticals. Crystallization, incorporating wider definition to include precipitation and solid-state transitions, is considered in terms of preparation of materials for direct compression, formation of amorphous, solvated and polymorphic forms, chiral separation of drugs, production of materials for inhalation drug delivery and injections. Finally, recent developments in supercritical fluid particle technology is considered in relationship to the areas discussed.

  7. General method for the synthesis of hierarchical nanocrystal-based mesoporous materials.

    PubMed

    Rauda, Iris E; Buonsanti, Raffaella; Saldarriaga-Lopez, Laura C; Benjauthrit, Kanokraj; Schelhas, Laura T; Stefik, Morgan; Augustyn, Veronica; Ko, Jesse; Dunn, Bruce; Wiesner, Ulrich; Milliron, Delia J; Tolbert, Sarah H

    2012-07-24

    Block copolymer templating of inorganic materials is a robust method for the production of nanoporous materials. The method is limited, however, by the fact that the molecular inorganic precursors commonly used generally form amorphous porous materials that often cannot be crystallized with retention of porosity. To overcome this issue, here we present a general method for the production of templated mesoporous materials from preformed nanocrystal building blocks. The work takes advantage of recent synthetic advances that allow organic ligands to be stripped off of the surface of nanocrystals to produce soluble, charge-stabilized colloids. Nanocrystals then undergo evaporation-induced co-assembly with amphiphilic diblock copolymers to form a nanostructured inorganic/organic composite. Thermal degradation of the polymer template results in nanocrystal-based mesoporous materials. Here, we show that this method can be applied to nanocrystals with a broad range of compositions and sizes, and that assembly of nanocrystals can be carried out using a broad family of polymer templates. The resultant materials show disordered but homogeneous mesoporosity that can be tuned through the choice of template. The materials also show significant microporosity, formed by the agglomerated nanocrystals, and this porosity can be tuned by the nanocrystal size. We demonstrate through careful selection of the synthetic components that specifically designed nanostructured materials can be constructed. Because of the combination of open and interconnected porosity, high surface area, and compositional tunability, these materials are likely to find uses in a broad range of applications. For example, enhanced charge storage kinetics in nanoporous Mn(3)O(4) is demonstrated here.

  8. The aggregation and characteristics of radiation-induced defects in lithium fluoride nanocrystals

    NASA Astrophysics Data System (ADS)

    Voitovich, A. P.; Kalinov, V. S.; Korzhik, M. V.; Martynovich, E. F.; Runets, L. P.; Stupak, A. P.

    2013-02-01

    It has been established that diffusion activation energies for anion vacancies and centres ? in lithium fluoride nanocrystals are higher than those in bulk crystals. In nanocrystals, ? centres migrating in the range of the temperature close to room temperature is not observed and these centres remain stable. The ratio of centres ? and F 2 concentrations in nanocrystals is higher than in bulk crystals. A new type of colour centres, which is absent in bulk crystals, is discovered in nanocrystals.

  9. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  10. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOEpatents

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  11. Development of surface stabilized candesartan cilexetil nanocrystals with enhanced dissolution rate, permeation rate across CaCo-2, and oral bioavailability.

    PubMed

    Jain, Sanyog; Reddy, Venkata Appa; Arora, Sumit; Patel, Kamlesh

    2016-10-01

    Candesartan cilexetil (CC), an ester prodrug of candesartan, is BCS class II drug with extremely low aqueous solubility limiting its oral bioavailability. The present research aimed to develop a nanocrystalline formulation of CC with improved saturation solubility in gastrointestinal fluids and thereby, exhibiting enhanced oral bioavailability. CC nanocrystals were prepared using a low energy antisolvent precipitation methodology. A combination of hydroxypropyl methylcellulose (HPMC) and Pluronic® F 127 (50:50 w/w) was found to be optimum for the preparation of CC nanocrystals. The particle size, polydispersity index (PDI), and zeta potential of optimized formulation was found to be 159 ± 8.1 nm, 0.177 ± 0.043, and -23.7 ± 1.02 mV, respectively. Optimized formulation was found to possess irregular, plate-like morphology as evaluated by scanning electron microscopy and crystalline as evaluated by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD). A significant increase in saturation solubility and dissolution rate of the optimized nanosuspension was observed at all the tested pH conditions. Optimized CC nanocrystals exhibited a storage stability of more than 3 months when stored under cold and room temperature conditions. In vitro Caco-2 permeability further revealed that CC nanocrystals exhibited nearly 4-fold increase in permeation rate compared to the free CC. In vivo oral bioavailability studies of optimized CC nanocrystals in murine model revealed 3.8-fold increase in the oral bioavailability and twice the C max as compared with the free CC when administered orally. In conclusion, this study has established a crystalline nanosuspension formulation of CC with improved oral bioavailability in murine model. Graphical Abstract Antisolvent precipitation methodology for the preparation of Candesartan Cilexetil nanocrystals for enhanced solubility and oral bioavailability.

  12. Syntheses and applications of manganese-doped II-VI semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, Heesun

    Syntheses, characterizations, and applications of two different Mn-doped semiconductor nanocrystals, ZnS:Mn and CdS:Mn/ZnS core/shell, were investigated. ZnS:Mn nanocrystals with sizes between 3 and 4 nm were synthesized via a competitive reaction chemistry. A direct current (dc) electroluminescent (EL) device having a hybrid organic/inorganic multilayer structure of an indium tin oxide (ITO) transparent conducting electrode, a (poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT-PSS) and a poly(N-vinylcarbazole) (PVK) bilayer hole transport film, a ZnS:Mn nanocrystal layer, and Al dot contacts was demonstrated to emit blue (˜445 and ˜495 nm) from PVK and yellow (˜600 nm) light from Mn activator in ZnS. The EL emission spectrum was dependent upon both the voltage and Mn concentration, showing a decreasing nanocrystal to PVK emission ratio from 10 at 20 V to 4 at 28 V, and an increasing ratio from 1.3 at 0.40 mol % to 4.3 at 2.14 mol %. Mn-doped CdS core nanocrystals were produced ranging from 1.5 to 2.3 nm in diameter with a ZnS shell via a reverse micelle process. In contrast to CdS:Mn nanocrystals passivated by n-dodecanethiol, ZnS-passivated CdS:Mn (CdS:Mn/ZnS core/shell) nanocrystals were efficient and photostable. CdS:Mn/ZnS core/shell nanocrystals exhibited a quantum yield of ˜18%, and the photoluminescence (PL) intensity increased by 40% after 400 nm UV irradiation in air. X-ray photoelectron spectroscopy (XPS) data showed that UV irradiation of CdS:Mn/ZnS nanocrystals induces the photooxidation of the ZnS shell surface to ZnSO4. This photooxidation product is presumably responsible for the increased PL emission by serving as a passivating surface layer. Luminescent lifetime data from the core/shell nanocrystals could be fit with two exponential functions, with a time constant of ˜170 nsec for the defect-related centers and of ˜1 msec for the Mn centers. The CdS:Mn/ZnS nanocrystals with a core crystal diameter of 2.3 nm and a 0.4 nm thick Zn

  13. CO2 controlled flocculation of microalgae using pH responsive cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Eyley, Samuel; Vandamme, Dries; Lama, Sanjaya; van den Mooter, Guy; Muylaert, Koenraad; Thielemans, Wim

    2015-08-01

    Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L-1 dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems. Electronic supplementary information (ESI) available: Spectra for all products. See DOI: 10.1039/C5NR03853G

  14. Technology assessment and the drug use process.

    PubMed

    Solomon, D K; Gourley, D R; Brown, J R; Gourley, G A; Humma, L M

    1999-02-01

    This activity is designed for pharmacists, physicians, physician assistants, nurses, and other healthcare team members, payers for health services, and healthcare executives. Upon completion of this activity, the participant should be able to: 1. Describe the rationale behind, the development of, and the advantages arising from the formulary process, and discuss the health professionals involved in the creation of formularies. 2. Describe the impact of new drug development and technology on the drug use process. 3. Discuss the functions of the pharmacy and therapeutics committee. 4. Describe the impact of consumers on the drug use process.

  15. Structure and performance of dielectric films based on self-assembled nanocrystals with a high dielectric constant.

    PubMed

    Huang, Limin; Liu, Shuangyi; Van Tassell, Barry J; Liu, Xiaohua; Byro, Andrew; Zhang, Henan; Leland, Eli S; Akins, Daniel L; Steingart, Daniel A; Li, Jackie; O'Brien, Stephen

    2013-10-18

    Self-assembled films built from nanoparticles with a high dielectric constant are attractive as a foundation for new dielectric media with increased efficiency and range of operation, due to the ability to exploit nanofabrication techniques and emergent electrical properties originating from the nanoscale. However, because the building block is a discrete one-dimensional unit, it becomes a challenge to capture potential enhancements in dielectric performance in two or three dimensions, frequently due to surface effects or the presence of discontinuities. This is a recurring theme in nanoparticle film technology when applied to the realm of thin film semiconductor and device electronics. We present the use of chemically synthesized (Ba,Sr)TiO3 nanocrystals, and a novel deposition-polymerization technique, as a means to fabricate the dielectric layer. The effective dielectric constant of the film is tunable according to nanoparticle size, and effective film dielectric constants of up to 34 are enabled. Wide area and multilayer dielectrics of up to 8 cm(2) and 190 nF are reported, for which the building block is an 8 nm nanocrystal. We describe models for assessing dielectric performance, and distinct methods for improving the dielectric constant of a nanocrystal thin film. The approach relies on evaporatively driven assembly of perovskite nanocrystals with uniform size distributions in a tunable 7-30 nm size range, coupled with the use of low molecular weight monomer/polymer precursor chemistry that can infiltrate the porous nanocrystal thin film network post assembly. The intercrystal void space (low k dielectric volume fraction) is minimized, while simultaneously promoting intercrystal connectivity and maximizing volume fraction of the high k dielectric component. Furfuryl alcohol, which has good affinity to the surface of (Ba,Sr)TiO3 nanocrystals and miscibility with a range of solvents, is demonstrated to be ideal for the production of nanocomposites. The

  16. Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging

    PubMed Central

    Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.

    2011-01-01

    We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646

  17. Cellulose nanocrystals in nanocomposite approach: Green and high-performance materials for industrial, biomedical and agricultural applications

    NASA Astrophysics Data System (ADS)

    Fortunati, E.; Torre, L.

    2016-05-01

    The need to both avoid wastes and find new renewable resources has led to a new and promising research based on the possibility to revalorize the biomass producing sustainable chemicals and/or materials which may play a major role in replacing systems traditionally obtained from non-renewable sources. Most of the low-value biomass is termed lignocellulosic, referring to its main constituent biopolymers: cellulose, hemicelluloses and lignin. In this context, nanocellulose, and in particular cellulose nanocrystals (CNC), have gain considerable attention as nanoreinforcement for polymer matrices, mainly biodegradable. Derived from the most abundant polymeric resource in nature and with inherent biodegradability, nanocellulose is an interesting nanofiller for the development of nanocomposites for industrial, biomedical and agricultural applications. Due to the high amount of hydroxyl groups on their surface, cellulose nanocrystals are easy to functionalize. Well dispersed CNC are able, in fact, to enhance several properties of polymers, i.e.: thermal, mechanical, barrier, surface wettability, controlled of active compound and/or drug release. The main objective here is to give a general overview of CNC applications, summarizing our recent developments of bio-based nanocomposite formulations reinforced with cellulose nanocrystals extracted from different natural sources and/or wastes for food packaging, medical and agricultural sectors.

  18. Spindly cobalt ferrite nanocrystals: preparation, characterization and magnetic properties.

    PubMed

    Cao, Xuebo; Gu, Li

    2005-02-01

    In this paper we describe the preparation of homogeneously needle-shaped cobalt ferrite (CoFe(2)O(4)) nanocrystals on a large scale through the smooth decomposition of urea and the resulting co-precipitation of Co(2+) and Fe(3+) in oleic acid micelles. Furthermore, we found that other ferrite nanocrystals with a needle-like shape, such as zinc ferrite (ZnFe(2)O(4)) and nickel ferrite (NiFe(2)O(4)), can be prepared by the same process. Needle-shaped CoFe(2)O(4) nanocrystals dispersed in an aqueous solution containing oleic acid exhibit excellent stability and the formed colloid does not produce any precipitations after two months, which is of prime importance if these materials are applied in magnetic fluids. X-ray diffraction (XRD) measurements were used to characterize the phase and component of the co-precipitation products, and demonstrate that they are spinel ferrite with a cubic symmetry. Transmission electron microscopy (TEM) observation showed that all the nanocrystals present a needle-like shape with a 22 nm short axis and an aspect ratio of around 6. Varying the concentration of oleic acid did not bring about any obvious influence on the size distribution and shapes of CoFe(2)O(4). The magnetic properties of the needle-shaped CoFe(2)O(4) nanocrystals were evaluated by using a vibrating sample magnetometer (VSM), electron paramagnetic resonance (EPR), and a Mössbauer spectrometer, and the results all demonstrated that CoFe(2)O(4) nanocrystals were superparamagnetic at room temperature.

  19. High-purity Cu nanocrystal synthesis by a dynamic decomposition method.

    PubMed

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  20. High-purity Cu nanocrystal synthesis by a dynamic decomposition method

    NASA Astrophysics Data System (ADS)

    Jian, Xian; Cao, Yu; Chen, Guozhang; Wang, Chao; Tang, Hui; Yin, Liangjun; Luan, Chunhong; Liang, Yinglin; Jiang, Jing; Wu, Sixin; Zeng, Qing; Wang, Fei; Zhang, Chengui

    2014-12-01

    Cu nanocrystals are applied extensively in several fields, particularly in the microelectron, sensor, and catalysis. The catalytic behavior of Cu nanocrystals depends mainly on the structure and particle size. In this work, formation of high-purity Cu nanocrystals is studied using a common chemical vapor deposition precursor of cupric tartrate. This process is investigated through a combined experimental and computational approach. The decomposition kinetics is researched via differential scanning calorimetry and thermogravimetric analysis using Flynn-Wall-Ozawa, Kissinger, and Starink methods. The growth was found to be influenced by the factors of reaction temperature, protective gas, and time. And microstructural and thermal characterizations were performed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry. Decomposition of cupric tartrate at different temperatures was simulated by density functional theory calculations under the generalized gradient approximation. High crystalline Cu nanocrystals without floccules were obtained from thermal decomposition of cupric tartrate at 271°C for 8 h under Ar. This general approach paves a way to controllable synthesis of Cu nanocrystals with high purity.

  1. Exciton-Delocalizing Ligands Can Speed Up Energy Migration in Nanocrystal Solids.

    PubMed

    Azzaro, Michael S; Dodin, Amro; Zhang, Diana Y; Willard, Adam P; Roberts, Sean T

    2018-05-09

    Researchers have long sought to use surface ligands to enhance energy migration in nanocrystal solids by decreasing the physical separation between nanocrystals and strengthening their electronic coupling. Exciton-delocalizing ligands, which possess frontier molecular orbitals that strongly mix with nanocrystal band-edge states, are well-suited for this role because they can facilitate carrier-wave function extension beyond the nanocrystal core, reducing barriers for energy transfer. This report details the use of the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) to tune the transport rate and diffusion length of excitons in CdSe nanocrystal solids. A film composed of oleate-terminated CdSe nanocrystals is subjected to a solid-state ligand exchange to replace oleate with PDTC. Exciton migration in the films is subsequently investigated by femtosecond transient absorption. Our experiments indicate that the treatment of nanocrystal films with PDTC leads to rapid (∼400 fs) downhill energy migration (∼80 meV), while no such migration occurs in oleate-capped films. Kinetic Monte Carlo simulations allow us to extract both rates and length scales for exciton diffusion in PDTC-treated films. These simulations reproduce dynamics observed in transient absorption measurements over a range of temperatures and confirm excitons hop via a Miller-Abrahams mechanism. Importantly, our experiments and simulations show PDTC treatment increases the exciton hopping rate to 200 fs, an improvement of 5 orders of magnitude relative to oleate-capped films. This exciton hopping rate stands as one of the fastest determined for CdSe solids. The facile, room-temperature processing and improved transport properties offered by the solid-state exchange of exciton-delocalizing ligands show they offer promise for the construction of strongly coupled nanocrystal arrays.

  2. Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.

    We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less

  3. Building Materials from Colloidal Nanocrystal Assemblies: Molecular Control of Solid/Solid Interfaces in Nanostructured Tetragonal ZrO 2

    DOE PAGES

    Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.; ...

    2017-08-28

    We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less

  4. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  5. Drug delivery technologies for autoimmune disease.

    PubMed

    Phillips, Brett E; Giannoukakis, Nick

    2010-11-01

    Targeting autoimmune disease poses two main challenges. The first is to identify unique targets to suppress directly or indirectly autoreactive cells exclusively. The second is to penetrate target tissues to deliver specifically drugs to desired cells that can achieve a therapeutic outcome. Herein, the range of drug delivery methods available and under development and how they can be useful to treat autoimmune diseases are discussed. Polymer delivery methods, as well as biological methods that include fusion proteins, targeted antibodies, recombinant viruses and cell products are compared. Readers will gain insight into the progression of clinical trials for different technologies and drug delivery methods useful for targeting and modulating the function of autoreactive immune cells. Several tissue-specific polymer-based and biologic drug delivery systems are now in Phase II/III clinical trials. Although these trials are focused mainly on cancer treatment, lessons from these trials can guide the use of the same agents for autoimmunity therapeutics.

  6. Supercritical fluid technology: a promising approach in pharmaceutical research.

    PubMed

    Girotra, Priti; Singh, Shailendra Kumar; Nagpal, Kalpana

    2013-02-01

    Supercritical fluids possess the unique properties of behaving like liquids and gases, above their critical point. Supercritical fluid technology has recently emerged as a green and novel technique for various processes such as solubility enhancement of poorly soluble drugs, plasticization of polymers, surface modification, nanosizing and nanocrystal modification, and chromatographic extraction. Research interest in this area has been fuelled because of the numerous advantages that the technology offers over the conventional methods. This work aims to review the merits, demerits, and various processes such as rapid expansion of supercritical solutions (RESS), particles from gas saturated solutions (PGSS), gas antisolvent process (GAS), supercritical antisolvent process (SAS) and polymerization induced phase separation (PIPS), that have enabled this technology to considerably raise the interest of researchers over the past two decades. An insight has been given into the numerous applications of this technology in pharmaceutical industry and the future challenges which must be appropriately dealt with to make it effective on a commercial scale.

  7. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement.

    PubMed

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates.

  8. Synthesis and applications of heterostructured semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Khon, Elena

    Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their

  9. Critical gases for critical issues: CO2 technologies for oral drug delivery.

    PubMed

    Danan, Hana; Esposito, Pierandrea

    2014-02-01

    In recent years, CO2-based technologies have gained considerable interest in the pharmaceutical industry for their potential applications in drug formulation and drug delivery. The exploitation of peculiar properties of gases under supercritical conditions has been studied in the last 20 years with mixed results. Promising drug-delivery technologies, based on supercritical CO2, have mostly failed when facing challenges of industrial scaleability and economical viability. Nevertheless, a 'second generation' of processes, based on CO2 around and below critical point has been developed, possibly offering technology-based solutions to some of the current issues of pharmaceutical development. In this review, we highlight the most recent advancements in this field, with a particular focus on the potential of CO2-based technologies in addressing critical issues in oral delivery, and briefly discuss the future perspectives of dense CO2-assisted processes as enabling technologies in drug delivery.

  10. The surface structure of silver-coated gold nanocrystals and its influence on shape control

    DOE PAGES

    Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; ...

    2015-07-08

    Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less

  11. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salini, K.; Mathew, Vincent, E-mail: vincent@cukerala.ac.in; Mathew, Thomas

    2016-05-06

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantlymore » alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.« less

  12. Single step synthesis of high-purity CoO nanocrystals.

    PubMed

    Yang, Huaming; Ouyang, Jing; Tang, Aidong

    2007-07-19

    Both octahedral and slice-shaped cubic cobalt monoxide (CoO) nanocrystals with narrow size distributions have been successfully synthesized by a simple solvothermal route. It was found that conditions of the solvothermal treatment showed obvious effects on the formation and purity of the as-synthesized CoO nanocrystals, only when cobalt acetate was used as the cobalt source and when temperature reached 190 degrees C could CoO be produced; also, freeze-drying was necessary for obtaining pure CoO. Size of the CoO nanocrystals varied from 30 to 130 nm. Morphology of the products could be controlled by simply changing the type of surfactant in solvent, and the octahedral CoO nanocrystals showed rounded turns. Purity of the products was detected by intensive X-ray photoelectron spectroscopy (XPS) investigation and Fourier transform infrared spectroscopy (FTIR) combined with differential scanning calorimetry/thermal gravity (DSC/TG). The results indicated an absence of unexpected trivalence cobalt series on surface of the samples, thanks to the protection of the surface by trace amount of carbonate ions, adsorbed hydroxylation, and surfactant with a maximum thickness of 2 nm, which were proved by high-resolution transmission electron microscopy (HRTEM). The as-synthesized CoO nanoparticles were added into positive electrode of Ni/MH batteries, and discharge/charge cycling tests were performed under different rates from 0.1C to 5.0C. The results indicated that the specific capacities of batteries with addition of 5% octahedral or slice CoO nanocrystals at 0.1C were 393.3 and 318.1 mAh/g, respectively, which were higher than that without CoO (269.2mAh/g). Specific capacity of battery with addition of 5% octahedral CoO nanocrystals was 40% higher than that without CoO at 5.0C. Octahedral CoO nanocrystals show better electrochemical activity than slice CoO and indicate interesting potential in the field of electrochemical application.

  13. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  14. Nanocrystals: The preparation, precise control, and application toward the pharmaceutics and foods industry.

    PubMed

    Wu, Cao; Chen, Zhou; Hu, Ya; Rao, Zhiyuan; Wu, Wangping; Yang, Zhaogang

    2018-05-15

    Crystallization is a significant process employed to produce a wide variety of materials in pharmaceutical and food area. The control of crystal dimension, crystallinity, and shape is very important because they will affect the subsequent filtration, drying and grinding performance as well as the physical and chemical properties of the material. This review summarizes the special features of crystallization technology and the preparation methods of nanocrystals, and discusses analytical technology which is used to control crystal quality and performance. The crystallization technology applications in pharmaceutics and foods are also outlined. These illustrated examples further help us to gain a better understanding of the crystallization technology for pharmaceutics and foods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  16. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul A.

    2016-12-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with onemore » or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.« less

  17. Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria.

    PubMed

    Prozorov, Tanya; Palo, Pierre; Wang, Lijun; Nilsen-Hamilton, Marit; Jones, DeAnna; Orr, Daniel; Mallapragada, Surya K; Narasimhan, Balaji; Canfield, Paul C; Prozorov, Ruslan

    2007-10-01

    Magnetotactic bacteria produce exquisitely ordered chains of uniform magnetite (Fe(3)O(4)) nanocrystals, and the use of the bacterial mms6 protein allows for the shape-selective synthesis of Fe(3)O(4) nanocrystals. Cobalt ferrite (CoFe(2)O(4)) nanoparticles, on the other hand, are not known to occur in living organisms. Here we report on the use of the recombinant mms6 protein in a templated synthesis of CoFe(2)O(4) nanocrystals in vitro. We have covalently attached the full-length mms6 protein and a synthetic C-terminal domain of mms6 protein to self-assembling polymers in order to template hierarchical CoFe(2)O(4) nanostructures. This new synthesis pathway enables facile room-temperature shape-specific synthesis of complex magnetic crystalline nanomaterials with particle sizes in the range of 40-100 nm that are difficult to produce using conventional techniques.

  18. A dual-colored bio-marker made of doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.

    2008-08-01

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  19. A wearable multiplexed silicon nonvolatile memory array using nanocrystal charge confinement

    PubMed Central

    Kim, Jaemin; Son, Donghee; Lee, Mincheol; Song, Changyeong; Song, Jun-Kyul; Koo, Ja Hoon; Lee, Dong Jun; Shim, Hyung Joon; Kim, Ji Hoon; Lee, Minbaek; Hyeon, Taeghwan; Kim, Dae-Hyeong

    2016-01-01

    Strategies for efficient charge confinement in nanocrystal floating gates to realize high-performance memory devices have been investigated intensively. However, few studies have reported nanoscale experimental validations of charge confinement in closely packed uniform nanocrystals and related device performance characterization. Furthermore, the system-level integration of the resulting devices with wearable silicon electronics has not yet been realized. We introduce a wearable, fully multiplexed silicon nonvolatile memory array with nanocrystal floating gates. The nanocrystal monolayer is assembled over a large area using the Langmuir-Blodgett method. Efficient particle-level charge confinement is verified with the modified atomic force microscopy technique. Uniform nanocrystal charge traps evidently improve the memory window margin and retention performance. Furthermore, the multiplexing of memory devices in conjunction with the amplification of sensor signals based on ultrathin silicon nanomembrane circuits in stretchable layouts enables wearable healthcare applications such as long-term data storage of monitored heart rates. PMID:26763827

  20. Hypervalent surface interactions for colloidal stability and doping of silicon nanocrystals

    PubMed Central

    Wheeler, Lance M.; Neale, Nathan R.; Chen, Ting; Kortshagen, Uwe R.

    2013-01-01

    Colloidal semiconductor nanocrystals have attracted attention for cost-effective, solution-based deposition of quantum-confined thin films for optoelectronics. However, two significant challenges must be addressed before practical nanocrystal-based devices can be realized. The first is coping with the ligands that terminate the nanocrystal surfaces. Though ligands provide the colloidal stability needed to cast thin films from solution, these ligands dramatically hinder charge carrier transport in the resulting film. Second, after a conductive film is achieved, doping has proven difficult for further control of the optoelectronic properties of the film. Here we report the ability to confront both of these challenges by exploiting the ability of silicon to engage in hypervalent interactions with hard donor molecules. For the first time, we demonstrate the significant potential of applying the interaction to the nanocrystal surface. In this study, hypervalent interactions are shown to provide colloidal stability as well as doping of silicon nanocrystals. PMID:23893292

  1. Structure refinement for tantalum nitrides nanocrystals with various morphologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai

    2012-07-15

    Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less

  2. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  3. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, Jesse H.; Surendranath, Yogesh; Alivisatos, Paul

    Semiconductor nanocrystal solids are attractive materials for active layers in next-generation optoelectronic devices; however, their efficient implementation has been impeded by the lack of precise control over dopant concentrations. Herein we demonstrate a chemical strategy for the controlled doping of nanocrystal solids under equilibrium conditions. Exposing lead selenide nanocrystal thin films to solutions containing varying proportions of decamethylferrocene and decamethylferrocenium incrementally and reversibly increased the carrier concentration in the solid by 2 orders of magnitude from their native values. This application of redox buffers for controlled doping provides a new method for the precise control of the majority carrier concentrationmore » in porous semiconductor thin films.« less

  4. Supramolecular Assembly of Single-Source Metal-Chalcogenide Nanocrystal Precursors.

    PubMed

    Smith, Stephanie C; Bryks, Whitney; Tao, Andrea R

    2018-05-28

    In this Feature Article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.

  5. Cloning nanocrystal morphology with soft templates

    NASA Astrophysics Data System (ADS)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  6. Electron tomography and 3D molecular simulations of platinum nanocrystals

    NASA Astrophysics Data System (ADS)

    Florea, Ileana; Demortière, Arnaud; Petit, Christophe; Bulou, Hervé; Hirlimann, Charles; Ersen, Ovidiu

    2012-07-01

    This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface.This work reports on the morphology of individual platinum nanocrystals with sizes of about 5 nm. By using the electron tomography technique that gives 3D spatial selectivity, access to quantitative information in the real space was obtained. The morphology of individual nanoparticles was characterized using HAADF-STEM tomography and it was shown to be close to a truncated octahedron. Using molecular dynamics simulations, this geometrical shape was found to be the one minimizing the nanocrystal energy. Starting from the tomographic reconstruction, 3D crystallographic representations of the studied Pt nanocrystals were obtained at the nanometer scale, allowing the quantification of the relative amount of the crystallographic facets present on the particle surface. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30990d

  7. Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites.

    PubMed

    Rajisha, K R; Maria, H J; Pothan, L A; Ahmad, Zakiah; Thomas, S

    2014-06-01

    Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Joseph B.; Dandu, Naveen; Velizhanin, Kirill A.

    2015-10-27

    Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respectmore » to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from “bright” nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.« less

  9. Capping Ligand Vortices as "Atomic Orbitals" in Nanocrystal Self-Assembly.

    PubMed

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-11-28

    We present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation. We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.

  10. Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam

    2014-11-14

    Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.

  11. Nano-sized crystalline drug production by milling technology.

    PubMed

    Moribe, Kunikazu; Ueda, Keisuke; Limwikrant, Waree; Higashi, Kenjirou; Yamamoto, Keiji

    2013-01-01

    Nano-formulation of poorly water-soluble drugs has been developed to enhance drug dissolution. In this review, we introduce nano-milling technology described in recently published papers. Factors affecting the size of drug crystals are compared based on the preparation methods and drug and excipient types. A top-down approach using the comminution process is a method conventionally used to prepare crystalline drug nanoparticles. Wet milling using media is well studied and several wet-milled drug formulations are now on the market. Several trials on drug nanosuspension preparation using different apparatuses, materials, and conditions have been reported. Wet milling using a high-pressure homogenizer is another alternative to preparing production-scale drug nanosuspensions. Dry milling is a simple method of preparing a solid-state drug nano-formulation. The effect of size on the dissolution of a drug from nanoparticles is an area of fundamental research, but it is sometimes incorrectly evaluated. Here, we discuss evaluation procedures and the associated problems. Lastly, the importance of quality control, process optimization, and physicochemical characterization are briefly discussed.

  12. A Radiation-Tolerant, Low-Power Non-Volatile Memory Based on Silicon Nanocrystal Quantum Dots

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Boer, E. A.; Ostraat, M. L.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.; deBlauwe, J.; Green, M. L.

    2001-01-01

    Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO2 is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few- or single-electron storage in a small number of nanocrystal elements. In addition, the nanocrystal layer fabrication technique should be simple, 8-inch wafer compatible and well controlled in program/erase threshold voltage swing was seen during 100,000 program and erase cycles. Additional near-term goals for this project include extensive testing for radiation hardness and the development of artificial layered tunnel barrier heterostructures which have the potential for large speed enhancements for read/write of nanocrystal memory elements, compared with conventional flash devices. Additional information is contained in the original extended abstract.

  13. Fundamental absorption edge of NiO nanocrystals

    NASA Astrophysics Data System (ADS)

    Sokolov, V. I.; Druzhinin, A. V.; Kim, G. A.; Gruzdev, N. B.; Yermakov, A. Ye.; Uimin, M. A.; Byzov, I. V.; Shchegoleva, N. N.; Vykhodets, V. B.; Kurennykh, T. E.

    2013-12-01

    NiO nanocrystals with the average size of 5, 10 and 25 nm were synthesized by gas-condensation method. The well-defined increase of the optical density D near the fundamental absorption edge of NiO nanocrystals in the range of 3.5-4.0 eV observed after the annealing in air is caused by the oxygen content growth. It is the direct experimental evidence of the fact that p-d charge transfer transitions form the fundamental absorption edge.

  14. Technologies for Detecting Falsified and Substandard Drugs in Low and Middle-Income Countries

    PubMed Central

    Kovacs, Stephanie; Hawes, Stephen E.; Maley, Stephen N.; Mosites, Emily; Wong, Ling; Stergachis, Andy

    2014-01-01

    Falsified and substandard drugs are a global health problem, particularly in low- and middle-income countries (LMIC) that have weak pharmacovigilance and drug regulatory systems. Poor quality medicines have important health consequences, including the potential for treatment failure, development of antimicrobial resistance, and serious adverse drug reactions, increasing healthcare costs and undermining the public's confidence in healthcare systems. This article presents a review of the methods employed for the analysis of pharmaceutical formulations. Technologies for detecting substandard and falsified drugs were identified primarily through literature reviews. Key-informant interviews with experts augmented our methods when warranted. In order to aid comparisons, technologies were assigned a suitability score for use in LMIC ranging from 0–8. Scores measured the need for electricity, need for sample preparation, need for reagents, portability, level of training required, and speed of analysis. Technologies with higher scores were deemed the most feasible in LMICs. We categorized technologies that cost $10,000 USD or less as low cost, $10,000–100,000 USD as medium cost and those greater than $100,000 USD as high cost technologies (all prices are 2013 USD). This search strategy yielded information on 42 unique technologies. Five technologies were deemed both low cost and had feasibility scores between 6–8, and an additional four technologies had medium cost and high feasibility. Twelve technologies were deemed portable and therefore could be used in the field. Many technologies can aid in the detection of substandard and falsified drugs that vary from the simplest of checklists for packaging to the most complex mass spectrometry analyses. Although there is no single technology that can serve all the requirements of detecting falsified and substandard drugs, there is an opportunity to bifurcate the technologies into specific niches to address specific sections

  15. Surface states in the photoionization of high-quality CdSe core/shell nanocrystals.

    PubMed

    Li, Shu; Steigerwald, Michael L; Brus, Louis E

    2009-05-26

    We use electric force microscopy (EFM) to study single nanocrystal photoionization in two classes of high-quality nanocrystals whose exciton luminescence quantum yields approach unity in solution. The CdSe/CdS/ZnS core/shell nanocrystals do not photoionize, while the CdSe/CdS nanocrystals do show substantial photoionization. This verifies the theoretical prediction that the ZnS shell confines the excited electron within the nanocrystal. Despite the high luminescence quantum yield, photoionization varies substantially among the CdSe/CdS nanocrystals. We have studied the nanocrystal photoionization with both UV (396 nm) and green (532 nm) light, and we have found that the magnitude of the charge due to photoionization per absorbed photon is greater for UV excitation than for green excitation. A fraction of the photoionization occurs directly via a "hot electron" process, using trap states that are either on the particle surface, within the ligand sphere, or within the silicon oxide layer. This must occur without relaxation to the thermalized, lowest-energy, emitting exciton. We discuss the occurrence of hot carrier processes that are common to photoionization, luminescence blinking, and the fast transient optical absorption that is associated with multiple exciton generation MEG studies.

  16. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balitskii, O.A., E-mail: balitskii@electronics.wups.lviv.ua; Demchenko, P.Yu.; Mijowska, E.

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuningmore » their spectral characteristics to higher energy solar photons.« less

  17. Colloidal Magnetic Heterostructured Nanocrystals with Asymmetric Topologies: Seeded-Growth Synthetic Routes and Formation Mechanisms

    NASA Astrophysics Data System (ADS)

    Scarfiello, Riccardo; Nobile, Concetta; Cozzoli, P. Davide

    2016-12-01

    Colloidal inorganic nanocrystals, free-standing crystalline nanostructures generated and processed in solution phase, represent an important class of advanced nanoscale materials owing to the flexibility with which their physical-chemical properties can be controlled through synthetic tailoring of their compositional, structural and geometric features and the versatility with which they can be integrated in technological fields as diverse as optoelectronics, energy storage/ conversion/production, catalysis and biomedicine. In recent years, building upon mechanistic knowledge acquired on the thermodynamic and kinetic processes that underlie nanocrystal evolution in liquid media, synthetic nanochemistry research has made impressive advances, opening new possibilities for the design, creation and mastering of increasingly complex “colloidal molecules”, in which nanocrystal modules of different materials are clustered together via solid-state bonding interfaces into free-standing, easily processable multifunctional nanocomposite systems. This Review will provide a glimpse into this fast-growing research field by illustrating progress achieved in the wet-chemical development of last-generation breeds of all-inorganic heterostructured nanocrystals (HNCs) in asymmetric non-onionlike geometries, inorganic analogues of polyfunctional organic molecules, in which distinct nanoscale crystalline modules are interconnected in hetero-dimer, hetero-oligomer and anisotropic multidomain architectures via epitaxial heterointerfaces of limited extension. The focus will be on modular HNCs entailing at least one magnetic material component combined with semiconductors and/or metals, which hold potential for generating enhanced or unconventional magnetic properties, while offering diversified or even new chemical-physical properties and functional capabilities. The available toolkit of synthetic strategies, all based on the manipulation of seeded-growth techniques, will be described

  18. Structural phase transitions in niobium oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Yuvakkumar, R.; Hong, Sun Ig

    2015-09-01

    Niobium oxide nanocrystals were successfully synthesized employing the green synthesis method. Phase formation, microstructure and compositional properties of 1, 4 and 7 days incubation treated samples after calcinations at 450 °C were examined using X-ray diffraction, Raman, photoluminescence (PL), infrared, X-ray photoelectron spectra and transmission electron microscopic characterizations. It was observed that phase formation of Nb2O5 nanocrystals was dependent upon the incubation period required to form stable metal oxides. The characteristic results clearly revealed that with increasing incubation and aging, the transformation of cubic, orthorhombic and monoclinic phases were observed. The uniform heating at room temperature (32 °C) and the ligation of niobium atoms due to higher phenolic constituents of utilized rambutan during aging processing plays a vital role in structural phase transitions in niobium oxide nanocrystals. The defects over a period of incubation and the intensities of the PL spectra changing over a period of aging were related to the amount of the defects induced by the phase transition.

  19. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity

    NASA Astrophysics Data System (ADS)

    Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon

    2015-12-01

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of

  20. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  1. Charge injection and discharging of Si nanocrystals and arrays by atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.

    2000-01-01

    Charge injection and storage in dense arrays of silicon nanocrystals in SiO(sub 2) is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few-or single- electron storage in a small number of nanocrystal elements.

  2. Towards microfluidic technology-based MALDI-MS platforms for drug discovery: a review.

    PubMed

    Winkle, Richard F; Nagy, Judit M; Cass, Anthony Eg; Sharma, Sanjiv

    2008-11-01

    Microfluidic methods have found applications in various disciplines. It has been predicted that the microfluidic technology would be useful in performing routine steps in drug discovery ranging from target identification to lead optimisation in which the number of compounds evaluated in this regard determines the success of combinatorial screening. The sheer size of the parameter space that can be explored often poses an enormous challenge. We set out to find how close we are towards the use of integrated matrix-assisted laser desorption/ionisation mass spectrometry (MALDI-MS) microfluidic systems for drug discovery. In this article we review the latest applications of microfluidic technology in the area of MALDI-MS and drug discovery. Our literature survey revealed microfluidic technologies-based approaches for various stages of drug discovery; however, they are in still in developmental stages. Furthermore, we speculate on how these technologies could be used in the future.

  3. The interplay of shape and crystalline anisotropies in plasmonic semiconductor nanocrystals

    DOE PAGES

    Kim, Jongwook; Agrawal, Ankit; Krieg, Franziska; ...

    2016-05-16

    Doped semiconductor nanocrystals are an emerging class of materials hosting localized surface plasmon resonance (LSPR) over a wide optical range. Studies so far have focused on tuning LSPR frequency by controlling the dopant and carrier concentrations in diverse semiconductor materials. However, the influence of anisotropic nanocrystal shape and of intrinsic crystal structure on LSPR remain poorly explored. Here, we illustrate how these two factors collaborate to determine LSPR characteristics in hexagonal cesium-doped tungsten oxide nanocrystals. The effect of shape anisotropy is systematically analyzed via synthetic control of nanocrystal aspect ratio (AR), from disks to nanorods. We demonstrate the dominant influencemore » of crystalline anisotropy, which uniquely causes strong LSPR band-splitting into two distinct peaks with comparable intensities. Modeling typically used to rationalize particle shape effects is refined by taking into account the anisotropic dielectric function due to crystalline anisotropy, thus fully accounting for the AR-dependent evolution of multiband LSPR spectra. Furthermore, this new insight into LSPR of semiconductor nanocrystals provides a novel strategy for an exquisite tuning of LSPR line shape.« less

  4. Structural diversity in binary superlattices self-assembled from polymer-grafted nanocrystals

    DOE PAGES

    Ye, Xingchen; Zhu, Chenhui; Ercius, Peter; ...

    2015-12-02

    Multicomponent nanocrystal superlattices represent an interesting class of material that derives emergent properties from mesoscale structure, yet their programmability can be limited by the alkyl-chain-based ligands decorating the surfaces of the constituent nanocrystals. Polymeric ligands offer distinct advantages, as they allow for more precise tuning of the effective size and ‘interaction softness’ through changes to the polymer’s molecular weight, chemical nature, architecture, persistence length and surrounding solvent. Here we show the formation of 10 different binary nanocrystal superlattices (BNSLs) with both two- and three-dimensional order through independent adjustment of the core size of spherical nanocrystals and the molecular weight ofmore » densely grafted polystyrene ligands. These polymer-brush-based ligands introduce new energetic contributions to the interparticle potential that stabilizes various BNSL phases across a range of length scales and interparticle spacings. In conclusion, our study opens the door for nanocrystals to become modular elements in the design of functional particle brush solids with controlled nanoscale interfaces and mesostructures.« less

  5. In situ bioinspired synthesis of silver chloride nanocrystals on silk fibroin fibers

    NASA Astrophysics Data System (ADS)

    Su, Huilan; Han, Jie; Dong, Qun; Xu, Jia; Chen, Ying; Gu, Yu; Song, Weiqiang; Zhang, Di

    2011-02-01

    Silver chloride (AgCl) nanocrystals were formed and grown on silk fibroin fibers (SFFs) by a room-temperature process. Practically, the degummed SFFs were immersed into silver nitrate solution and sodium chloride solution in turn. The amino acids on the SFF surface were negatively charged in alkaline impregnant, providing locations to immobilize silver ions and form silver chloride seeds. AgCl nanocrystals can further grow into cubic AgCl nanocrystals with an edge of about 100 nm. The morphologies of the AgCl nanocrystals were mostly influenced by the concentration of sodium chloride solution and the special configurations of the SFFs. The target AgCl/SFF nanocomposites constructed by AgCl nanocrystals and substrate SFFs could be used as photocatalysts in water splitting and antibacterial agents. This work provides an important example in the introduction of natural biofibers to the synthesis of functional hybrid nanocomposites by a green and mild technique.

  6. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    PubMed

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  7. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    PubMed

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  8. Photoelectron spectroscopy of color centers in negatively charged cesium iodide nanocrystals

    NASA Astrophysics Data System (ADS)

    Sarkas, Harry W.; Kidder, Linda H.; Bowen, Kit H.

    1995-01-01

    We present the photoelectron spectra of negatively charged cesium iodide nanocrystals recorded using 2.540 eV photons. The species examined were produced using an inert gas condensation cluster ion source, and they ranged in size from (CsI)-n=13 to nanocrystal anions comprised of 330 atoms. Nanocrystals showing two distinct types of photoemission behavior were observed. For (CsI)-n=13 and (CsI)-n=36-165, a plot of cluster anion photodetachment threshold energies vs n-1/3 gives a straight line extrapolating (at n-1/3=0, i.e., n=∞) to 2.2 eV, the photoelectric threshold energy for F centers in bulk cesium iodide. The linear extrapolation of the cluster anion data to the corresponding bulk property implies that the electron localization in these gas-phase nanocrystals is qualitatively similar to that of F centers in extended alkali halide crystals. These negatively charged cesium iodide nanocrystals are thus shown to support embryonic forms of F centers, which mature with increasing cluster size toward condensed phase impurity centers. Under an alternative set of source conditions, nanocrystals were produced which showed significantly lower photodetachment thresholds than the aforementioned F-center cluster anions. For these species, containing 83-131 atoms, a plot of their cluster anion photodetachment threshold energies versus n-1/3 gives a straight line which extrapolates to 1.4 eV. This value is in accord with the expected photoelectric threshold energy for F' centers in bulk cesium iodide, i.e., color centers with two excess electrons in a single defect site. These nanocrystals are interpreted to be the embryonic F'-center containing species, Cs(CsI)-n=41-65.

  9. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.

    PubMed

    Oh, Soong Ju; Berry, Nathaniel E; Choi, Ji-Hyuk; Gaulding, E Ashley; Paik, Taejong; Hong, Sung-Hoon; Murray, Christopher B; Kagan, Cherie R

    2013-03-26

    We investigate the effects of stoichiometric imbalance on the electronic properties of lead chalcogenide nanocrystal films by introducing excess lead (Pb) or selenium (Se) through thermal evaporation. Hall-effect and capacitance-voltage measurements show that the carrier type, concentration, and Fermi level in nanocrystal solids may be precisely controlled through their stoichiometry. By manipulating only the stoichiometry of the nanocrystal solids, we engineer the characteristics of electronic and optoelectronic devices. Lead chalcogenide nanocrystal field-effect transistors (FETs) are fabricated at room temperature to form ambipolar, unipolar n-type, and unipolar p-type semiconducting channels as-prepared and with excess Pb and Se, respectively. Introducing excess Pb forms nanocrystal FETs with electron mobilities of 10 cm(2)/(V s), which is an order of magnitude higher than previously reported in lead chalcogenide nanocrystal devices. Adding excess Se to semiconductor nanocrystal solids in PbSe Schottky solar cells enhances the power conversion efficiency.

  10. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  11. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed.

  12. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  13. Adsorption of vitamin E on mesoporous titania nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, C.J., E-mail: cjshih@kmu.edu.tw; Lin, C.T.; Wu, S.M.

    2010-07-15

    Tri-block nonionic surfactant and titanium chloride were used as starting materials for the synthesis of mesoporous titania nanocrystallite powders. The main objective of the present study was to examine the synthesis of mesoporous titania nanocrystals and the adsorption of vitamin E on those nanocrystals using X-ray diffraction (XRD), transmission electron microscopy, and nitrogen adsorption and desorption isotherms. When the calcination temperature was increased to 300 {sup o}C, the reflection peaks in the XRD pattern indicated the presence of an anatase phase. The crystallinity of the nanocrystallites increased from 80% to 98.6% with increasing calcination temperature from 465 {sup o}C tomore » 500 {sup o}C. The N{sub 2} adsorption data and XRD data taken after vitamin E adsorption revealed that the vitamin E molecules were adsorbed in the mesopores of the titania nanocrystals.« less

  14. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    NASA Astrophysics Data System (ADS)

    Zhao, Tiancong; Nguyen, Nam-Trung; Xie, Yang; Sun, Xiaofei; Li, Qin; Li, Xiaomin

    2017-12-01

    Mesoporous SiO2 nanoparticles (MSNs) are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2) on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.

  15. Nanocrystal synthesis in microfluidic reactors: where next?

    PubMed

    Phillips, Thomas W; Lignos, Ioannis G; Maceiczyk, Richard M; deMello, Andrew J; deMello, John C

    2014-09-07

    The past decade has seen a steady rise in the use of microfluidic reactors for nanocrystal synthesis, with numerous studies reporting improved reaction control relative to conventional batch chemistry. However, flow synthesis procedures continue to lag behind batch methods in terms of chemical sophistication and the range of accessible materials, with most reports having involved simple one- or two-step chemical procedures directly adapted from proven batch protocols. Here we examine the current status of microscale methods for nanocrystal synthesis, and consider what role microreactors might ultimately play in laboratory-scale research and industrial production.

  16. From Artificial Atoms to Nanocrystal Molecules: Preparation and Properties of More Complex Nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Charina L; Alivisatos, A Paul

    2009-10-20

    Quantum dots, which have found widespread use in fields such as biomedicine, photovoltaics, and electronics, are often called artificial atoms due to their size-dependent physical properties. Here this analogy is extended to consider artificial nanocrystal molecules, formed from well-defined groupings of plasmonically or electronically coupled single nanocrystals. Just as a hydrogen molecule has properties distinct from two uncoupled hydrogen atoms, a key feature of nanocrystal molecules is that they exhibit properties altered from those of the component nanoparticles due to coupling. The nature of the coupling between nanocrystal atoms and its response to vibrations and deformations of the nanocrystal moleculemore » bonds are of particular interest. We discuss synthetic approaches, predicted and observed physical properties, and prospects and challenges toward this new class of materials.« less

  17. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  18. Intrinsic behavior of face-centered-cubic supra-crystals of nanocrystals self-organized on mesoscopic scale

    NASA Astrophysics Data System (ADS)

    Pileni, M. P.

    2005-12-01

    We describe intrinsic behavior due to the high ordering of nanocrystals at the mesoscopic scale. The first example shows well-defined columns in the formation of cobalt nanocrystals when an applied magnetic field is applied during the evaporation process. Collective breathing properties between nanocrystals are demonstrated. In both cases, these features are observed when the nanocrystals are highly ordered in fcc supra-crystals.

  19. Quantitative tunneling spectroscopy of nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]).more » Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics« less

  20. Low-frequency (1/f) noise in nanocrystal field-effect transistors.

    PubMed

    Lai, Yuming; Li, Haipeng; Kim, David K; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2014-09-23

    We investigate the origins and magnitude of low-frequency noise in high-mobility nanocrystal field-effect transistors and show the noise is of 1/f-type. Sub-band gap states, in particular, those introduced by nanocrystal surfaces, have a significant influence on the 1/f noise. By engineering the device geometry and passivating nanocrystal surfaces, we show that in the linear and saturation regimes the 1/f noise obeys Hooge's model of mobility fluctuations, consistent with transport of a high density of accumulated carriers in extended electronic states of the NC thin films. In the subthreshold regime, the Fermi energy moves deeper into the mobility gap and sub-band gap trap states give rise to a transition to noise dominated by carrier number fluctuations as described in McWhorter's model. CdSe nanocrystal field-effect transistors have a Hooge parameter of 3 × 10(-2), comparable to other solution-deposited, thin-film devices, promising high-performance, low-cost, low-noise integrated circuitry.

  1. In situ microscopy of the self-assembly of branched nanocrystals in solution

    DOE PAGES

    Sutter, Eli; Tkachenko, Alexei V.; Sutter, Peter; ...

    2016-04-04

    Here, solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifiesmore » the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.« less

  2. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.

    PubMed

    Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand

    2016-08-24

    Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior.

  3. In situ microscopy of the self-assembly of branched nanocrystals in solution

    NASA Astrophysics Data System (ADS)

    Sutter, Eli; Sutter, Peter; Tkachenko, Alexei V.; Krahne, Roman; de Graaf, Joost; Arciniegas, Milena; Manna, Liberato

    2016-04-01

    Solution-phase self-assembly of nanocrystals into mesoscale structures is a promising strategy for constructing functional materials from nanoscale components. Liquid environments are key to self-assembly since they allow suspended nanocrystals to diffuse and interact freely, but they also complicate experiments. Real-time observations with single-particle resolution could have transformative impact on our understanding of nanocrystal self-assembly. Here we use real-time in situ imaging by liquid-cell electron microscopy to elucidate the nucleation and growth mechanism and properties of linear chains of octapod-shaped nanocrystals in their native solution environment. Statistical mechanics modelling based on these observations and using the measured chain-length distribution clarifies the relative importance of dipolar and entropic forces in the assembly process and gives direct access to the interparticle interaction. Our results suggest that monomer-resolved in situ imaging combined with modelling can provide unprecedented quantitative insight into the microscopic processes and interactions that govern nanocrystal self-assembly in solution.

  4. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals

    PubMed Central

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-01-01

    Hot-carrier solar cells can overcome the Shockley-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells. PMID:28176882

  5. Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals.

    PubMed

    Li, Mingjie; Bhaumik, Saikat; Goh, Teck Wee; Kumar, Muduli Subas; Yantara, Natalia; Grätzel, Michael; Mhaisalkar, Subodh; Mathews, Nripan; Sum, Tze Chien

    2017-02-08

    Hot-carrier solar cells can overcome the Schottky-Queisser limit by harvesting excess energy from hot carriers. Inorganic semiconductor nanocrystals are considered prime candidates. However, hot-carrier harvesting is compromised by competitive relaxation pathways (for example, intraband Auger process and defects) that overwhelm their phonon bottlenecks. Here we show colloidal halide perovskite nanocrystals transcend these limitations and exhibit around two orders slower hot-carrier cooling times and around four times larger hot-carrier temperatures than their bulk-film counterparts. Under low pump excitation, hot-carrier cooling mediated by a phonon bottleneck is surprisingly slower in smaller nanocrystals (contrasting with conventional nanocrystals). At high pump fluence, Auger heating dominates hot-carrier cooling, which is slower in larger nanocrystals (hitherto unobserved in conventional nanocrystals). Importantly, we demonstrate efficient room temperature hot-electrons extraction (up to ∼83%) by an energy-selective electron acceptor layer within 1 ps from surface-treated perovskite NCs thin films. These insights enable fresh approaches for extremely thin absorber and concentrator-type hot-carrier solar cells.

  6. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics

    NASA Astrophysics Data System (ADS)

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C.; Korgel, Brian; Nagpal, Prashant

    2014-11-01

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in

  7. [Chapter 2. Transitions in drug-discovery technology and drug-development in Japan (1980-2010)].

    PubMed

    Sakakibara, Noriko; Yoshioka, Ryuzo; Matsumoto, Kazuo

    2014-01-01

    In 1970s, the material patent system was introduced in Japan. Since then, many Japanese pharmaceutical companies have endeavored to create original in-house products. From 1980s, many of the innovative products were small molecular drugs and were developed using powerful medicinal-chemical technologies. Among them were antibiotics and effective remedies for the digestive organs and circulatory organs. During this period, Japanese companies were able to launch some blockbuster drugs. At the same time, the pharmaceutical market, which had grown rapidly for two decades, was beginning to level off. From the late 1990s, drug development was slowing down due to the lack of expertise in biotechnology such as genetic engineering. In response to the circumstances, the research and development on biotechnology-based drugs such as antibody drugs have become more dynamic and popular at companies than small molecule drugs. In this paper, the writers reviewed in detail the transitions in drug discovery and development between 1980 and 2010.

  8. Dermal miconazole nitrate nanocrystals - formulation development, increased antifungal efficacy & skin penetration.

    PubMed

    Pyo, Sung Min; Hespeler, David; Keck, Cornelia M; Müller, Rainer H

    2017-10-05

    Miconazole nitrate nanosuspension was developed to increase its antifungal activity and dermal penetration. In addition, the nanosuspension was combined with the synergistic additive chlorhexidine digluconate. The production was performed by wet bead milling and both production and formulation parameters were optimized. A stabilizer screening revealed poloxamer 407 and Tween 80 both at 0.15% as the most effective stabilizers for miconazole nanosuspensions at 1.0%. The nanocrystals were incorporated into a hydroxypropyl cellulose gel base. Short-term stability (3months) of the nanocrystal bulk population could be shown at room temperature and fridge. Besides the stable bulk nanocrystals, some longitudinal crystal growth to needle like crystals occurred. The addition of ionic compounds as the chlorhexidine digluconate often destabilizes suspensions. Surprisingly here, the addition minimized the crystal growth. An underlying mechanism is proposed. An inhibition zone assay was performed using Candida albicans (ATCC ® 10231™). When comparing the nanocrystals in suspension and in gel to μm-sized miconazole nitrate formulations and two market products, the increase in inhibition zone diameter for the nanosuspension formulations was most pronounced in the chlorhexidine digluconate free formulations. These nanocrystal formulations were closely or similarly effective as the microsuspensions and the market products containing the synergistic chlorhexidine digluconate, showing the potential of the nanosuspension formulation. Nanosuspension performance was even further increased when chlorhexidine digluconate was added. Ex-vivo skin penetration studies on porcine ears revealed distinctly less remaining miconazole nitrate on the skin surface for nanocrystals (e.g., 76-86%) compared to market products (e.g. 94%). Also, penetration was increased e.g. in skin depth of 5-10μm from <1.0/1.7% to e.g. 3.3-6.2% for nanocrystals. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Singlet Oxygen Generation Mediated By Silicon Nanocrystal Assemblies

    DTIC Science & Technology

    2011-01-01

    Lattice fringes in Fig.3 d correspond to the (111) atomic planes of Si nanocrystals. Length scales are indicated. Downscaling of the stain etched PSi...intensity of 1W/cm2 in a time scale of a few hours a monolayer of oxygen is formed on the surface of Si nanocrystals. Fig. 8. Infrared absorption...solution. Fig. 10. PL intensity as a function of continuously prolonged etching of Si powder. Inset: PL suppression level (can be scaled as singlet

  10. Doped and codoped silicon nanocrystals: The role of surfaces and interfaces

    NASA Astrophysics Data System (ADS)

    Marri, Ivan; Degoli, Elena; Ossicini, Stefano

    2017-12-01

    Si nanocrystals have been extensively studied because of their novel properties and their potential applications in electronic, optoelectronic, photovoltaic, thermoelectric and biological devices. These new properties are achieved through the combination of the quantum confinement of carriers and the strong influence of surface chemistry. As in the case of bulk Si the tuning of the electronic, optical and transport properties is related to the possibility of doping, in a controlled way, the nanocrystals. This is a big challenge since several studies have revealed that doping in Si nanocrystals differs from the one of the bulk. Theory and experiments have underlined that doping and codoping are influenced by a large number of parameters such as size, shape, passivation and chemical environment of the silicon nanocrystals. However, the connection between these parameters and dopant localization as well as the occurrence of self-purification effects are still not clear. In this review we summarize the latest progress in this fascinating research field considering free-standing and matrix-embedded Si nanocrystals both from the theoretical and experimental point of view, with special attention given to the results obtained by ab-initio calculations and to size-, surface- and interface-induced effects.

  11. Magnesium ferrite nanocrystal clusters for magnetorheological fluid with enhanced sedimentation stability

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Li, Meixia; Cui, Guohua; Che, Hongwei; Mu, Jingbo; Zhang, Xiaoliang; Tong, Yu; Dong, Xufeng

    2017-01-01

    In this study, magnesium ferrite (MgFe2O4) nanocrystal clusters were synthesized using an ascorbic acid-assistant solvothermal method and evaluated as a candidate for magnetorheological (MR) fluid. The morphology, microstructure and magnetic properties of the MgFe2O4 nanocrystal clusters were investigated in detail by field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), thermogravimetric analyzer (TGA), X-ray diffraction (XRD) and superconducting quantum interference device (SQUID). The MgFe2O4 nanocrystal clusters were suspended in silicone oil to prepare MR fluid and the MR properties were tested using a Physica MCR301 rheometer fitted with a magneto-rheological module. The prepared MR fluid showed typical Bingham plastic behavior, changing from a liquid-like to a solid-like structure under an external magnetic field. Compared with the conventional carbonyl iron particles, MgFe2O4 nanocrystal clusters-based MR fluid demonstrated enhanced sedimentation stability due to the reduced mismatch in density between the particles and the carrier medium. In summary, the as-prepared MgFe2O4 nanocrystal clusters are regarded as a promising candidate for MR fluid with enhanced sedimentation stability.

  12. Light-Harvesting Organic Nanocrystals Capable of Photon Upconversion.

    PubMed

    Li, Li; Zeng, Yi; Yu, Tianjun; Chen, Jinping; Yang, Guoqiang; Li, Yi

    2017-11-23

    Harvesting and converting low energy photons into higher ones through upconversion have great potential in solar energy conversion. A light-harvesting nanocrystal assembled from 9,10-distyrylanthracene and palladium(II) meso-tetraphenyltetrabenzoporphyrin as the acceptor and the sensitizer, respectively effects red-to-green upconversion under incoherent excitation of low power density. An upconversion quantum yield of 0.29±0.02 % is obtained upon excitation with 640 nm laser of 120 mW cm -2 . The well-organized packing of acceptor molecules with aggregation-induced emission in the nanocrystals dramatically reduces the nonradiative decay of the excited acceptor, benefits the triplet-triplet annihilation (TTA) upconversion and guides the consequent upconverted emission. This work provides a straightforward strategy to develop light-harvesting nanocrystals based on TTA upconversion, which is attractive for energy conversion and photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis and characterization of colloidal CdTe nanocrystals

    NASA Astrophysics Data System (ADS)

    Semendy, Fred; Jaganathan, Gomatam; Dhar, Nibir; Trivedi, Sudhir; Bhat, Ishwara; Chen, Yuanping

    2008-08-01

    We synthesized CdTe nano crystals (NCs) in uniform sizes and in good quality as characterized by photoluminescence (PL), AFM, and X-ray diffraction. In this growth procedure, CdTe nano-crystal band gap is strongly dependent on the growth time and not on the injection temperature or organic ligand concentration. This is very attractive because of nano-crystal size can be easily controlled by the growth time only and is very attractive for large scale synthesis. The color of the solution changes from greenish yellow to light orange then to deep orange and finally grayish black to black over a period of one hour. This is a clear indication of the gradual growth of different size (and different band gap) of CdTe nano-crystals as a function of the growth time. In other words, the size of the nano-crystal and its band gap can be controlled by adjusting the growth time after injection of the tellurium. The prepared CdTe NCs were characterized by absorption spectra, photoluminescence (PL), AFM and X-ray diffraction. Measured absorption maxima are at 521, 560, 600 and 603 nm corresponding to band gaps of 2.38, 2.21,2,07 and 2.04 eV respectively for growth times of 15, 30, 45 and 60 minutes. From the absorption data nano-crystal growth size saturates out after 45 minutes. AFM scanning of these materials indicate that the size of these particles is between 4 - 10 nm in diameter for growth time of 45 minutes. XD-ray diffraction indicates that these nano crystals are of cubic zinc blende phase. This paper will present growth and characterization data on CdTe nano crystals for various growth times.

  14. Photochemical versus Thermal Synthesis of Cobalt Oxyhydroxide Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.

    2012-04-18

    Photochemical methods facilitate the generation, isolation, and study of metastable nanomaterials having unusual size, composition, and morphology. These harder-to-isolate and highly reactive phases, inaccessible using conventional high-temperature pyrolysis, are likely to possess enhanced and unprecedented chemical, electromagnetic, and catalytic properties. We report a fast, low-temperature and scalable photochemical route to synthesize very small (3 nm) monodisperse cobalt oxyhydroxide (Co(O)OH) nanocrystals. This method uses readily and commercially available pentaamminechlorocobalt(III) chloride, [Co(NH3)5Cl]Cl2, under acidic or neutral pH and proceeds under either near-UV (350 nm) or Vis (575 nm) illumination. Control experiments showed that the reaction proceeds at competent rates only in themore » presence of light, does not involve a free radical mechanism, is insensitive to O2, and proceeds in two steps: (1) Aquation of [Co(NH3)5Cl]2+ to yield [Co(NH3)5(H2O)]3+, followed by (2) slow photoinduced release of NH3 from the aqua complex. This reaction is slow enough for Co(O)OH to form but fast enough so that nanocrystals are small (ca. 3 nm). The alternative dark thermal reaction proceeds much more slowly and produces much larger (250 nm) polydisperse Co(O)OH aggregates. UV–Vis absorption measurements and ab initio calculations yield a Co(O)OH band gap of 1.7 eV. Fast thermal annealing of Co(O)OH nanocrystals leads to Co3O4 nanocrystals with overall retention of nanoparticle size and morphology. Thermogravimetric analysis shows that oxyhydroxide to mixed-oxide phase transition occurs at significantly lower temperatures (up to ΔT = 64 °C) for small nanocrystals compared with the bulk.« less

  15. Electron Irradiation Effects on Nanocrystal Quantum Dots Used in Bio-Sensing Applications

    NASA Technical Reports Server (NTRS)

    Leon, R.; Nadeau, J.; Evans, K.; Paskova, T.; Monemar, B.

    2004-01-01

    Effects of electron irradiation on some of the optical properties in organic CdSe nanocrystals coated in trioctylphosphine oxide (TOPO) and biologically compatible CdSe nanocrystals coated in mercaptoacetic acid, as CdSe as CdSe nanocrystals conjugated with the protein are investigated using the technique of cathodoluminescence. Effects of varying the beam energy and temperatures were examined and faster degradation at cryogenic temperatures and higher beam energies was found under some conditions.

  16. Nanocrystal Core Lipoprotein Biomimetics for Imaging of Lipoproteins and Associated Diseases.

    PubMed

    Fay, Francois; Sanchez-Gaytan, Brenda L; Cormode, David P; Skajaa, Torjus; Fisher, Edward A; Fayad, Zahi A; Mulder, Willem J M

    2013-02-01

    Lipoproteins are natural nanoparticles composed of phospholipids and apolipoproteins that transport lipids throughout the body. As key effectors of lipid homeostasis, the functions of lipoproteins have been demonstrated to be crucial during the development of cardiovascular diseases. Therefore various strategies have been used to study their biology and detect them in vivo. A recent approach has been the production of lipoprotein biomimetic particles loaded with diagnostically active nanocrystals in their core. These include, but are not limited to: quantum dots, iron oxide or gold nanocrystals. Inclusion of these nanocrystals enables the utilization of lipoproteins as probes for a variety of imaging modalities (computed tomography, magnetic resonance imaging, fluorescence) while preserving their biological activity. Furthermore as some lipoproteins naturally accumulate in atherosclerotic plaque or specific tumor tissues, nanocrystal core lipoprotein biomimetics have been developed as contrast agents for early diagnosis of these diseases.

  17. Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance.

    PubMed

    Xiao, Chong; Xu, Jie; Li, Kun; Feng, Jun; Yang, Jinlong; Xie, Yi

    2012-03-07

    Thermoelectric has long been recognized as a potentially transformative energy conversion technology due to its ability to convert heat directly into electricity. However, how to optimize the three interdependent thermoelectric parameters (i.e., electrical conductivity σ, Seebeck coefficient S, and thermal conductivity κ) for improving thermoelectric properties is still challenging. Here, we put forward for the first time the semiconductor-superionic conductor phase transition as a new and effective way to selectively optimize the thermoelectric power factor based on the modulation of the electric transport property across the phase transition. Ultra low value of thermal conductivity was successfully retained over the whole investigated temperature range through the reduction of grain size. As a result, taking monodisperse Ag(2)Se nanocrystals for an example, the maximized ZT value can be achieved around the temperature of phase transition. Furthermore, along with the effective scattering of short-wavelength phonons by atomic defects created by alloying, the alloyed ternary silver chalcogenide compounds, monodisperse Ag(4)SeS nanocrystals, show better ZT value around phase transition temperature, which is cooperatively contributed by superionic phase transition and alloying at nanoscale. © 2012 American Chemical Society

  18. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals

    NASA Astrophysics Data System (ADS)

    Thompson, Nicholas J.; Wilson, Mark W. B.; Congreve, Daniel N.; Brown, Patrick R.; Scherer, Jennifer M.; Bischof, Thomas S.; Wu, Mengfei; Geva, Nadav; Welborn, Matthew; Voorhis, Troy Van; Bulović, Vladimir; Bawendi, Moungi G.; Baldo, Marc A.

    2014-11-01

    Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron-hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from ‘dark’ triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to ‘brighten’ low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells.

  19. Copper indium gallium selenide (CIGS) photovoltaic devices made using multistep selenization of nanocrystal films.

    PubMed

    Harvey, Taylor B; Mori, Isao; Stolle, C Jackson; Bogart, Timothy D; Ostrowski, David P; Glaz, Micah S; Du, Jiang; Pernik, Douglas R; Akhavan, Vahid A; Kesrouani, Hady; Vanden Bout, David A; Korgel, Brian A

    2013-09-25

    The power conversion efficiency of photovoltaic devices made with ink-deposited Cu(InxGa1-x)Se2 (CIGS) nanocrystal layers can be enhanced by sintering the nanocrystals with a high temperature selenization process. This process, however, can be challenging to control. Here, we report that ink deposition followed by annealing under inert gas and then selenization can provide better control over CIGS nanocrystal sintering and yield generally improved device efficiency. Annealing under argon at 525 °C removes organic ligands and diffuses sodium from the underlying soda lime glass into the Mo back contact to improve the rate and quality of nanocrystal sintering during selenization at 500 °C. Shorter selenization time alleviates excessive MoSe2 formation at the Mo back contact that leads to film delamination, which in turn enables multiple cycles of nanocrystal deposition and selenization to create thicker, more uniform absorber films. Devices with power conversion efficiency greater than 7% are fabricated using the multiple step nanocrystal deposition and sintering process.

  20. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials.

    PubMed

    Robles, Eduardo; Salaberria, Asier M; Herrera, Rene; Fernandes, Susana C M; Labidi, Jalel

    2016-06-25

    Cellulose nanofibers and chitin nanocrystals, two main components of agricultural and aquacultural by-products, were obtained from blue agave and yellow squat lobster industrial residues. Cellulose nanofibers were obtained using high pressure homogenization, while chitin nanocrystals were obtained by hydrolysis in acid medium. Cellulose nanofibers and chitin nanocrystals were characterized by X-ray diffraction, Atomic Force Microscopy and Infrared spectroscopy. Self-bonded composite films with different composition were fabricated by hot pressing and their properties were evaluated. Antifungal activity of chitin nanocrystals was studied using a Cellometer(®) cell count device, mechanical properties at tension were measured with a universal testing machine, water vapor permeability was evaluated with a thermohygrometer and surface tension with sessile drop contact angle method. The addition of chitin nanocrystals reduced slightly the mechanical properties of the composite. Presence of chitin nanocrystals influenced the growth of Aspergillus sp fungus in the surface of the composites as expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Stem cell technology for drug discovery and development.

    PubMed

    Hook, Lilian A

    2012-04-01

    Stem cells have enormous potential to revolutionise the drug discovery process at all stages, from target identification through to toxicology studies. Their ability to generate physiologically relevant cells in limitless supply makes them an attractive alternative to currently used recombinant cell lines or primary cells. However, realisation of the full potential of stem cells is currently hampered by the difficulty in routinely directing stem cell differentiation to reproducibly and cost effectively generate pure populations of specific cell types. In this article we discuss how stem cells have already been used in the drug discovery process and how novel technologies, particularly in relation to stem cell differentiation, can be applied to attain widespread adoption of stem cell technology by the pharmaceutical industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Development of novel drug delivery systems using phage display technology for clinical application of protein drugs.

    PubMed

    Nagano, Kazuya; Tsutsumi, Yasuo

    2016-01-01

    Attempts are being made to develop therapeutic proteins for cancer, hepatitis, and autoimmune conditions, but their clinical applications are limited, except in the cases of drugs based on erythropoietin, granulocyte colony-stimulating factor, interferon-alpha, and antibodies, owing to problems with fundamental technologies for protein drug discovery. It is difficult to identify proteins useful as therapeutic seeds or targets. Another problem in using bioactive proteins is pleiotropic actions through receptors, making it hard to elicit desired effects without side effects. Additionally, bioactive proteins have poor therapeutic effects owing to degradation by proteases and rapid excretion from the circulatory system. Therefore, it is essential to establish a series of novel drug delivery systems (DDS) to overcome these problems. Here, we review original technologies in DDS. First, we introduce antibody proteomics technology for effective selection of proteins useful as therapeutic seeds or targets and identification of various kinds of proteins, such as cancer-specific proteins, cancer metastasis-related proteins, and a cisplatin resistance-related protein. Especially Ephrin receptor A10 is expressed in breast tumor tissues but not in normal tissues and is a promising drug target potentially useful for breast cancer treatment. Moreover, we have developed a system for rapidly creating functional mutant proteins to optimize the seeds for therapeutic applications and used this system to generate various kinds of functional cytokine muteins. Among them, R1antTNF is a TNFR1-selective antagonistic mutant of TNF and is the first mutein converted from agonist to antagonist. We also review a novel polymer-conjugation system to improve the in vivo stability of bioactive proteins. Site-specific PEGylated R1antTNF is uniform at the molecular level, and its bioactivity is similar to that of unmodified R1antTNF. In the future, we hope that many innovative protein drugs will be

  3. Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shou, Wan; Pan, Heng, E-mail: hp5c7@mst.edu

    2016-05-23

    We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (10{sup 11}–10{sup 12} W/cm{sup 2}) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainlymore » consists of Cd{sub x}O.« less

  4. Electromagnetic and microwave-absorbing properties of magnetic nickel ferrite nanocrystals.

    PubMed

    Zhu, Weimo; Wang, Lei; Zhao, Rui; Ren, Jiawen; Lu, Guanzhong; Wang, Yanqin

    2011-07-01

    The electromagnetic and microwave absorbing properties of nickel ferrite nanocrystals were investigated for the first time. There were two frequencies corresponding to the maximum reflection loss in a wide thickness range from 3.0 to 5.0 mm, which may be bought by the nanosize effect and the good crystallization of the nanocrystals.

  5. Acceptors in ZnO nanocrystals: A reinterpretation

    NASA Astrophysics Data System (ADS)

    Gehlhoff, W.; Hoffmann, A.

    2012-12-01

    In a recent article, Teklemichael et al. reported on the identification of an uncompensated acceptor in ZnO nanocrystals using infrared spectroscopy and electron paramagnetic resonance (EPR) in the dark and under illumination. Most of their conclusions, interpretations, and suggestions turned out to be erroneous. The observed EPR signals were interpreted to originate from axial and nonaxial VZn-H defects. We show that the given interpretation of the EPR results is based on misinterpretations of EPR spectra arising from defects in nanocrystals. The explanation of the infrared absorption lines is in conflict with recent results of valence band ordering and valence band splitting.

  6. Dense Ge nanocrystals embedded in TiO2 with exponentially increased photoconduction by field effect.

    PubMed

    Lepadatu, A-M; Slav, A; Palade, C; Dascalescu, I; Enculescu, M; Iftimie, S; Lazanu, S; Teodorescu, V S; Ciurea, M L; Stoica, T

    2018-03-20

    Si and Ge nanocrystals in oxides are of a large interest for photo-effect applications due to the fine-tuning of the optical bandgap by quantum confinement in nanocrystals. In this work, dense Ge nanocrystals suitable for enhanced photoconduction were fabricated from 60% Ge in TiO 2 amorphous layers by low temperature rapid thermal annealing at 550 °C. An exponential increase of the photocurrent with the applied voltage was observed in coplanar structure of Ge nanocrystals composite films deposited on oxidized Si wafers. The behaviour was explained by field effect control of the Fermi level at the Ge nanocrystals-TiO 2 layer/substrate interfaces. The blue-shift of the absorption gap from bulk Ge value to 1.14 eV was evidenced in both photocurrent spectra and optical reflection-transmission experiments, in good agreement with quantum confinement induced bandgap broadening in Ge nanocrystal with sizes of about 5 nm as found from HRTEM and XRD investigations. A nonmonotonic spectral dependence of the refractive index is associated to the Ge nanocrystals formation. The nanocrystal morphology is also in good agreement with the Coulomb gap hopping mechanism of T -1/2 -type explaining the temperature dependence of the dark conduction.

  7. Nanomagnetism study of highly-ordered iron oxide nanocrystal assemblies fabricated by the Langmuir-Blodgett technique.

    PubMed

    Zhang, HaiTao; Bao, NiNa; Yuan, Du; Ding, Jun

    2013-09-21

    Iron oxide nanocrystals are ideal building blocks for the construction of flexible nanodevices whose performance can be modulated by controlling the morphology of isolated particles and their organizational form. This work demonstrates the fabrication of high quality Langmuir-Blodgett (LB) nanocrystal assemblies with limited overlapping and higher coverage by systemically and combinatorially optimizing the parameters of compression pressure and quantity of spread nanocrystals. Monodispersed iron oxide nanocrystals with a diameter of 11.8 nm were synthesized by thermal decomposition of Fe(CO)5 in trioctylamine with the presence of oleic acid. Multilayer nanocrystal assemblies were obtained through a layer-by-layer (LBL) process by repeating the transfer procedure after their hydrophilicity had been improved via treatment in a UV-ozone oven. The quality of nanocrystal assemblies was investigated by UV-vis spectrometry and scanning electron microscopy. The nanomagnetism for the nanostructures of different combination manners was studied systemically by a superconducting quantum interference device (SQUID). A lower superparamagnetic blocking temperature was found in the monolayer Fe3O4 nanocrystal assembly. The superparamagnetic blocking temperature in magnetic nanocrystal assemblies could be tuned through modifying the interparticle interactions among the interlayer and intralayers by controlling the layer number of the assemblies.

  8. Nanocrystals in compression: unexpected structural phase transition and amorphization due to surface impurities.

    PubMed

    Liu, Gang; Kong, Lingping; Yan, Jinyuan; Liu, Zhenxian; Zhang, Hengzhong; Lei, Pei; Xu, Tao; Mao, Ho-Kwang; Chen, Bin

    2016-06-09

    We report an unprecedented surface doping-driven anomaly in the compression behaviors of nanocrystals demonstrating that the change of surface chemistry can lead to an interior bulk structure change in nanoparticles. In the synchrotron-based X-ray diffraction experiments, titania nanocrystals with low concentration yttrium dopants at the surface are found to be less compressible than undoped titania nanocrystals. More surprisingly, an unexpected TiO2(ii) phase (α-PbO2 type) is induced and obvious anisotropy is observed in the compression of yttrium-doped TiO2, in sharp contrast to the compression behavior of undoped TiO2. In addition, the undoped brookite nanocrystals remain with the same structure up to 30 GPa, whereas the yttrium-doped brookite amorphizes above 20 GPa. The abnormal structural evolution observed in yttrium-doped TiO2 does not agree with the reported phase stability of nano titania polymorphs, thus suggesting that the physical properties of the interior of nanocrystals can be controlled by the surface, providing an unconventional and new degree of freedom in search for nanocrystals with novel tunable properties that can trigger applications in multiple areas of industry and provoke more related basic science research.

  9. Ferromagnetic cobalt nanocrystals achieved by soft annealing approach—From individual behavior to mesoscopic organized properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Wang, Z. L.; Pileni, M. P.

    2007-05-01

    By gentle annealing, 7 nm cobalt nanoparticles synthesized by soft chemistry, are transformed to hard magnetic hexagonal close packed (HCP) cobalt nanocrystals without changing the size, size distribution and passivating layer. This method permits to recover the nanocrystals isolated in solution after the annealing process and then to study the magnetic properties of the HCP cobalt nanocrystals at isolated status or in a self-organized film. Monolayer self-assembly of the HCP cobalt nanocrystals is obtained, and due to the dipolar interaction, ferromagnetic behavior close to room temperature has been observed. The magnetic properties differ significantly due to the influence of the substrate on the annealing process. This different approach of the annealing process of nanocrystals is compared to the classical approach of annealing in which the nanocrystals are first deposited on a substrate and then annealed.

  10. Biological effect on restenosis and vascular healing of encapsulated paclitaxel nanocrystals delivered via coated balloon technology in the familial hypercholesterolaemic swine model of in-stent restenosis.

    PubMed

    Cheng, Yanping; Shibuya, Masahiko; McGregor, Jenn; Conditt, Gerard B; Yi, Geng-Hua; Kaluza, Greg L; Gray, William; Doshi, Manish; Sojitra, Prakash; Granada, Juan F

    2016-10-20

    The aim of this study was to evaluate the biological efficacy of a novel lower-dose (2.5 µg/mm2) encapsulated paclitaxel nanocrystal-coated balloon (Nano-PCB) in the familial hypercholesterolaemic swine (FHS) model of iliofemoral in-stent restenosis. Nano-PCB pharmacokinetics were assessed in 20 femoral arteries (domestic swine). Biological efficacy was evaluated in ten FHS: 14 days following bare metal stent implantation each stent segment was randomised to a clinically available PCB (IN.PACT, n=14), the Nano-PCB (n=14) or an uncoated balloon (n=12). Angiographic, optical coherence tomography and histological evaluation was performed at 28 days after treatment. Arterial paclitaxel concentration was 120.7 ng/mg at one hour and 7.65 ng/mg of tissue at 28 days with the Nano-PCB. Compared to the control uncoated group, both PCBs significantly reduced percent area stenosis (Nano-PCB: 36.0±14.2%, IN.PACT: 29.3±9.2% vs control: 67.9±15.1%, p<0.001). Neointimal distribution in the entire stent length was more homogenous in the Nano-PCB. Histological evaluation showed comparable degrees of neointimal proliferation in both PCBs; however, the Nano-PCB showed slightly higher levels of neointimal maturity and endothelialisation. Lower-dose encapsulated paclitaxel nanocrystals delivered via a coated balloon displayed comparable biological efficacy with superior healing features compared to a clinically validated PCB technology.

  11. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2006-09-05

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  12. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon [Pinole, CA; Bruchez, Jr., Marcel; Alivisatos, Paul [Oakland, CA

    2004-03-02

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  13. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2005-08-09

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  14. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2002-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  15. Utilizing boron nitride sheets as thin supports for high resolution imaging of nanocrystals.

    PubMed

    Wu, Yimin A; Kirkland, Angus I; Schäffel, Franziska; Porfyrakis, Kyriakos; Young, Neil P; Briggs, G Andrew D; Warner, Jamie H

    2011-05-13

    We demonstrate the use of thin BN sheets as supports for imaging nanocrystals using low voltage (80 kV) aberration-corrected high resolution transmission electron microscopy. This provides an alternative to the previously utilized 2D crystal supports of graphene and graphene oxide. A simple chemical exfoliation method is applied to get few layer boron nitride (BN) sheets with micrometer-sized dimensions. This generic approach of using BN sheets as supports is shown by depositing Mn doped ZnSe nanocrystals directly onto the BN sheets and resolving the atomic structure from both the ZnSe nanocrystals and the BN support. Phase contrast images reveal moiré patterns of interference between the beams diffracted by the nanocrystals and the BN substrate that are used to determine the relative orientation of the nanocrystals with respect to the BN sheets and interference lattice planes. Double diffraction is observed and has been analyzed.

  16. Donor ionization in size controlled silicon nanocrystals: The transition from defect passivation to free electron generation

    NASA Astrophysics Data System (ADS)

    Crowe, I. F.; Papachristodoulou, N.; Halsall, M. P.; Hylton, N. P.; Hulko, O.; Knights, A. P.; Yang, P.; Gwilliam, R. M.; Shah, M.; Kenyon, A. J.

    2013-01-01

    We studied the photoluminescence spectra of silicon and phosphorus co-implanted silica thin films on (100) silicon substrates as a function of isothermal annealing time. The rapid phase segregation, formation, and growth dynamics of intrinsic silicon nanocrystals are observed, in the first 600 s of rapid thermal processing, using dark field mode X-TEM. For short annealing times, when the nanocrystal size distribution exhibits a relatively small mean diameter, formation in the presence of phosphorus yields an increase in the luminescence intensity and a blue shift in the emission peak compared with intrinsic nanocrystals. As the mean size increases with annealing time, this enhancement rapidly diminishes and the peak energy shifts further to the red than the intrinsic nanocrystals. These results indicate the existence of competing pathways for the donor electron, which depends strongly on the nanocrystal size. In samples containing a large density of relatively small nanocrystals, the tendency of phosphorus to accumulate at the nanocrystal-oxide interface means that ionization results in a passivation of dangling bond (Pb-centre) type defects, through a charge compensation mechanism. As the size distribution evolves with isothermal annealing, the density of large nanocrystals increases at the expense of smaller nanocrystals, through an Ostwald ripening mechanism, and the majority of phosphorus atoms occupy substitutional lattice sites within the nanocrystals. As a consequence of the smaller band-gap, ionization of phosphorus donors at these sites increases the free carrier concentration and opens up an efficient, non-radiative de-excitation route for photo-generated electrons via Auger recombination. This effect is exacerbated by an enhanced diffusion in phosphorus doped glasses, which accelerates silicon nanocrystal growth.

  17. Magnetic/NIR-thermally responsive hybrid nanogels for optical temperature sensing, tumor cell imaging and triggered drug release

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Yi, Jinhui; Mukherjee, Sumit; Banerjee, Probal; Zhou, Shuiqin

    2014-10-01

    The paper demonstrates a class of multifunctional core-shell hybrid nanogels with fluorescent and magnetic properties, which have been successfully developed for simultaneous optical temperature sensing, tumor cell imaging and magnetic/NIR-thermally responsive drug carriers. The as-synthesized hybrid nanogels were designed by coating bifunctional nanoparticles (BFNPs, fluorescent carbon dots embedded in the porous carbon shell and superparamagnetic iron oxide nanocrystals clustered in the core) with a thermo-responsive poly(N-isopropylacrylamide-co-acrylamide) [poly(NIPAM-AAm)]-based hydrogel as the shell. The BFNPs in hybrid nanogels not only demonstrate excellent photoluminescence (PL) and photostability due to the fluorescent carbon dots embedded in the porous carbon shell, but also has targeted drug accumulation potential and a magnetic-thermal conversion ability due to the superparamagnetic iron oxide nanocrystals clustered in the core. The thermo-responsive poly(NIPAM-AAm)-based gel shell can not only modify the physicochemical environment of the BFNPs core to manipulate the fluorescence intensity for sensing the variation of the environmental temperature, but also regulate the release rate of the loaded anticancer drug (curcumin) by varying the local temperature of environmental media. In addition, the carbon layer of BFNPs can adsorb and convert the NIR light to heat, leading to a promoted drug release under NIR irradiation and improving the therapeutic efficacy of drug-loaded hybrid nanogels. Furthermore, the superparamagnetic iron oxide nanocrystals in the core of BFNPs can trigger localized heating using an alternating magnetic field, leading to a phase change in the polymer gel to trigger the release of loaded drugs. Finally, the multifunctional hybrid nanogels can overcome cellular barriers to enter the intracellular region and light up the mouse melanoma B16F10 cells. The demonstrated hybrid nanogels would be an ideal system for the biomedical

  18. Nanocrystal Core Lipoprotein Biomimetics for Imaging of Lipoproteins and Associated Diseases

    PubMed Central

    Fay, Francois; Sanchez-Gaytan, Brenda L.; Cormode, David P.; Skajaa, Torjus; Fisher, Edward A.; Fayad, Zahi A.

    2013-01-01

    Lipoproteins are natural nanoparticles composed of phospholipids and apolipoproteins that transport lipids throughout the body. As key effectors of lipid homeostasis, the functions of lipoproteins have been demonstrated to be crucial during the development of cardiovascular diseases. Therefore various strategies have been used to study their biology and detect them in vivo. A recent approach has been the production of lipoprotein biomimetic particles loaded with diagnostically active nanocrystals in their core. These include, but are not limited to: quantum dots, iron oxide or gold nanocrystals. Inclusion of these nanocrystals enables the utilization of lipoproteins as probes for a variety of imaging modalities (computed tomography, magnetic resonance imaging, fluorescence) while preserving their biological activity. Furthermore as some lipoproteins naturally accumulate in atherosclerotic plaque or specific tumor tissues, nanocrystal core lipoprotein biomimetics have been developed as contrast agents for early diagnosis of these diseases. PMID:23687557

  19. Capping Ligand Vortices as “Atomic Orbitals” in Nanocrystal Self-Assembly

    DOE PAGES

    Waltmann, Curt; Horst, Nathan; Travesset, Alex

    2017-10-27

    In this work, we present a detailed analysis of the interaction between two nanocrystals capped with ligands consisting of hydrocarbon chains by united atom molecular dynamics simulations. We show that the bonding of two nanocrystals is characterized by ligand textures in the form of vortices. These results are generalized to nanocrystals of different types (differing core and ligand sizes) where the structure of the vortices depends on the softness asymmetry. We provide rigorous calculations for the binding free energy, show that these energies are independent of the chemical composition of the cores, and derive analytical formulas for the equilibrium separation.more » We discuss the implications of our results for the self-assembly of single-component and binary nanoparticle superlattices. Overall, our results show that the structure of the ligands completely determines the bonding of nanocrystals, fully supporting the predictions of the recently proposed Orbifold topological model.« less

  20. Chalcogenide and pnictide nanocrystals from the silylative deoxygenation of metal oxides

    DOE PAGES

    Lin, Chia-Cheng; Tan, Shannon J.; Vela, Javier

    2017-09-11

    Transition metal chalcogenide and pnictide nanocrystals are of interest for optoelectronic and catalytic applications. In this paper, we present a generalized route to the synthesis of these materials from the silylative deoxygenation of metal oxides with trimethylsilyl reagents. Specific nanophases produced in this way include Ni 3S 2, Ni 5Se 5, Ni 2P, Co 9S 8, Co 3Se 4, CoP, Co 2P, and heterobimetallic (Ni/Co) 9S 8. The resulting chalcogenide nanocrystals are hollow, likely due to differential rates of ion diffusion during the interfacial phase transformation reaction (Kirkendall-type effect). In contrast, the phosphide nanocrystals are solid, likely because they formmore » at higher reaction temperatures. Finally, in all cases, simultaneous partial decomposition of the deoxygenating silyl reagent produces a coating of amorphous silica around the newly formed nanocrystals, which could impact their stability and recyclability.« less

  1. Reaction chemistry and ligand exchange at cadmium selenide nanocrystal surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owen, Jonathan; Park, Jungwon; Trudeau, Paul-Emile

    Chemical modification of nanocrystal surfaces is fundamentally important to their assembly, their implementation in biology and medicine, and greatly impacts their electrical and optical properties. However, it remains a major challenge owing to a lack of analytical tools to directly determine nanoparticle surface structure. Early nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) studies of CdSe nanocrystals prepared in tri-n-octylphosphine oxide (1) and tri-n-octylphosphine (2), suggested these coordinating solvents are datively bound to the particle surface. However, assigning the broad NMR resonances of surface-bound ligands is complicated by significant concentrations of phosphorus-containing impurities in commercial sources of 1, andmore » XPS provides only limited information about the nature of the phosphorus containing molecules in the sample. More recent reports have shown the surface ligands of CdSe nanocrystals prepared in technical grade 1, and in the presence of alkylphosphonic acids, include phosphonic and phosphinic acids. These studies do not, however, distinguish whether these ligands are bound datively, as neutral, L-type ligands, or by X-type interaction of an anionic phosphonate/phosphinate moiety with a surface Cd{sup 2+} ion. Answering this question would help clarify why ligand exchange with such particles does not proceed generally as expected based on a L-type ligand model. By using reagents with reactive silicon-chalcogen and silicon-chlorine bonds to cleave the ligands from the nanocrystal surface, we show that our CdSe and CdSe/ZnS core-shell nanocrystal surfaces are likely terminated by X-type binding of alkylphosphonate ligands to a layer of Cd{sup 2+}/Zn{sup 2+} ions, rather than by dative interactions. Further, we provide spectroscopic evidence that 1 and 2 are not coordinated to our purified nanocrystals.« less

  2. Recent progress in cellulose nanocrystals: sources and production.

    PubMed

    Trache, Djalal; Hussin, M Hazwan; Haafiz, M K Mohamad; Thakur, Vijay Kumar

    2017-02-02

    Cellulose nanocrystals, a class of fascinating bio-based nanoscale materials, have received a tremendous amount of interest both in industry and academia owing to its unique structural features and impressive physicochemical properties such as biocompatibility, biodegradability, renewability, low density, adaptable surface chemistry, optical transparency, and improved mechanical properties. This nanomaterial is a promising candidate for applications in fields such as biomedical, pharmaceuticals, electronics, barrier films, nanocomposites, membranes, supercapacitors, etc. New resources, new extraction procedures, and new treatments are currently under development to satisfy the increasing demand of manufacturing new types of cellulose nanocrystals-based materials on an industrial scale. Therefore, this review addresses the recent progress in the production methodologies of cellulose nanocrystals, covering principal cellulose resources and the main processes used for its isolation. A critical and analytical examination of the shortcomings of various approaches employed so far is made. Additionally, structural organization of cellulose and nomenclature of cellulose nanomaterials have also been discussed for beginners in this field.

  3. Williamson-Hall analysis and optical properties of small sized ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kalita, Amarjyoti; Kalita, Manos P. C.

    2017-08-01

    We apply Williamson-Hall (WH) method of X-ray diffraction (XRD) line profile analysis for lattice strain estimation of small sized ZnO nanocrystals (crystallite size≈4 nm). The ZnO nanocrystals are synthesized by room temperature chemical co-precipitation followed by heating at 40 °C. Zinc acetate, sodium hydroxide and 2-mercaptoethanol (ME) are used for the synthesis of the nanocrystals. {100}, {002}, {101} and {200}, {112}, {201} line profiles in the XRD pattern are significantly merged, therefore determination of the full width at half maximum values and peak positions of the line profiles required for WH analysis has been carried out by executing Rietveld refinement of the XRD pattern. Lattice strain of the 4 nm sized ZnO nanocrystals is found to be 5.8×10-3 which is significantly higher as compared to the literature reported values for larger ones (crystallite size≈17-47 nm). Role of ME as capping agent is confirmed by Fourier transform infrared spectroscopy. The band gap of the nanocrystals is determined from the UV-Visible absorption spectrum and is found to be 3.68 eV. The photoluminescence spectrum exhibits emissions in the visible (408 nm-violet, 467 nm-blue and 538 nm-green) regions showing presence of zinc interstitial and oxygen vacancy in the ZnO nanocrystals.

  4. Germanium–Tin/Cadmium Sulfide Core/Shell Nanocrystals with Enhanced Near-Infrared Photoluminescence

    DOE PAGES

    Boote, Brett W.; Men, Long; Andaraarachchi, Himashi P.; ...

    2017-06-27

    Ge 1–xSn x alloy nanocrystals and Ge 1–xSn x/CdS core/shell nanocrystals were prepared via solution phase synthesis, and their size, composition, and optical properties were characterized. We found that the diameter of the nanocrystal samples ranged from 6 to 13 nm. Furthermore, the crystal structure of the Ge 1–xSn x materials was consistent with a cubic diamond phase, while the CdS shell was consistent with the zinc blende polytype. Inclusion of Sn alone does not result in enhanced photoluminescence intensity; however, adding an epitaxial CdS shell onto the Ge 1–xSn x nanocrystals does enhance the photoluminescence up to 15-fold versusmore » that of Ge/CdS nanocrystals with a pure Ge core. There is more effective passivation of surface defects, and a consequent decrease in the level of surface oxidation, by the CdS shell as a result of improved epitaxy (smaller lattice mismatch) is the most likely explanation for the increased photoluminescence observed for the Ge 1–xSn x/CdS materials. With enhanced photoluminescence in the near-infrared region, Ge 1–xSn x core/shell nanocrystals might be useful alternatives to other materials for energy capture and conversion applications and as imaging probes.« less

  5. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

    PubMed

    Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  6. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, L. W.; Zhang, Y. Y.; Li, J. J.; Li, Y.; Zhong, J. X.; Chu, Paul K.

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln = Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X = 0.352, CIE-Y = 0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4nanocrystals. The multifunctional Ln3+ doped KGdF4nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging.

  7. Photosensitivity enhancement with TiO2 in semitransparent light-sensitive skins of nanocrystal monolayers.

    PubMed

    Akhavan, Shahab; Yeltik, Aydan; Demir, Hilmi Volkan

    2014-06-25

    We propose and demonstrate light-sensitive nanocrystal skins that exhibit broadband sensitivity enhancement based on electron transfer to a thin TiO2 film grown by atomic layer deposition. In these photosensors, which operate with no external bias, photogenerated electrons remain trapped inside the nanocrystals. These electrons generally recombine with the photogenerated holes that accumulate at the top interfacing contact, which leads to lower photovoltage buildup. Because favorable conduction band offset aids in transferring photoelectrons from CdTe nanocrystals to the TiO2 layer, which decreases the exciton recombination probability, TiO2 has been utilized as the electron-accepting material in these light-sensitive nanocrystal skins. A controlled interface thickness between the TiO2 layer and the monolayer of CdTe nanocrystals enables a photovoltage buildup enhancement in the proposed nanostructure platform. With TiO2 serving as the electron acceptor, we observed broadband sensitivity improvement across 350-475 nm, with an approximately 22% enhancement. Furthermore, time-resolved fluorescence measurements verified the electron transfer from the CdTe nanocrystals to the TiO2 layer in light-sensitive skins. These results could pave the way for engineering nanocrystal-based light-sensing platforms, such as smart transparent windows, light-sensitive walls, and large-area optical detection systems.

  8. Health technology reassessment of non-drug technologies: current practices.

    PubMed

    Leggett, Laura; Noseworthy, Tom W; Zarrabi, Mahmood; Lorenzetti, Diane; Sutherland, Lloyd R; Clement, Fiona M

    2012-07-01

    Obsolescence is a natural phase of the lifecycle of health technologies. Given increasing cost of health expenditures worldwide, health organizations have little choice but to engage in health technology reassessment (HTR); a structured, evidence-based assessment of the medical, social, ethical, and economic effects of a technology, currently used within the healthcare system, to inform optimal use of that technology in comparison to its alternatives. This research was completed to identify and summarize international HTR initiatives for non-drug technologies. A systematic review was performed using the terms disinvestment, obsolescence, obsolete technology, ineffective, reassessment, reinvestment, reallocation, program budgeting, and marginal analysis to search PubMED, MEDLINE, EMBASE, and CINAHL until November 2011. Websites of organizations listed as members of INAHTA and HTAi were hand-searched for gray literature. Documents were excluded if they were unavailable in English, if the title/abstract was irrelevant to HTR, and/or if the document made no mention of current practices. All citations were screened in duplicate with disagreements resolved by consensus. Sixty full-text documents were reviewed and forty were included. One model for reassessment was identified; however, it has never been put into practice. Eight countries have some evidence of past or current work related to reassessment; seven have shown evidence of continued work in HTR. There is negligible focus on monitoring and implementation. HTR is in its infancy. Although health technology reassessments are being conducted, there is no standardized approach. Future work should focus on developing and piloting a comprehensive methodology for completing HTR.

  9. Enhancement of photoluminescence intensity of erbium doped silica containing Ge nanocrystals: distance dependent interactions

    NASA Astrophysics Data System (ADS)

    Manna, S.; Aluguri, R.; Bar, R.; Das, S.; Prtljaga, N.; Pavesi, L.; Ray, S. K.

    2015-01-01

    Photo-physical processes in Er-doped silica glass matrix containing Ge nanocrystals prepared by the sol-gel method are presented in this article. Strong photoluminescence at 1.54 μm, important for fiber optics telecommunication systems, is observed from the different sol-gel derived glasses at room temperature. We demonstrate that Ge nanocrystals act as strong sensitizers for Er3+ ions emission and the effective Er excitation cross section increases by almost four orders of magnitude with respect to the one without Ge nanocrystals. Rate equations are considered to demonstrate the sensitization of erbium luminescence by Ge nanocrystals. Analyzing the erbium effective excitation cross section, extracted from the flux dependent rise and decay times, a Dexter type of short range energy transfer from a Ge nanocrystal to erbium ion is established.

  10. Characterization of memory and measurement history in photoconductivity of nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Fairfield, Jessamyn A.; Dadosh, Tali; Drndic, Marija

    2010-10-01

    Photoconductivity in nanocrystal films has been previously characterized, but memory effects have received little attention despite their importance for device applications. We show that the magnitude and temperature dependence of the photocurrent in CdSe/ZnS core-shell nanocrystal arrays depends on the illumination and electric field history. Changes in photoconductivity occur on a few-hour timescale, and subband gap illumination of nanocrystals prior to measurements modifies the photocurrent more than band gap illumination. The observed effects can be explained by charge traps within the band gap that are filled or emptied, which may alter nonradiative recombination processes and affect photocurrent.

  11. Controlled synthesis of bright and compatible lanthanide-doped upconverting nanocrystals

    DOEpatents

    Cohen, Bruce E.; Ostrowski, Alexis D.; Chan, Emory M.; Gargas, Daniel J.; Katz, Elan M.; Schuck, P. James; Milliron, Delia J.

    2017-01-31

    Certain nanocrystals possess exceptional optical properties that may make them valuable probes for biological imaging, but rendering these nanoparticles biocompatible requires that they be small enough not to perturb cellular systems. This invention describes a phosphorescent upconverting sub-10 nm nanoparticle comprising a lanthanide-doped hexagonal .beta.-phase NaYF.sub.4 nanocrystal and methods for making the same.

  12. In vivo investigation of hybrid Paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics.

    PubMed

    Hollis, Christin P; Weiss, Heidi L; Evers, B Mark; Gemeinhart, Richard A; Li, Tonglei

    2014-06-01

    To develop novel hybrid paclitaxel (PTX) nanocrystals, in which bioactivatable (MMPSense® 750 FAST) and near infrared (Flamma Fluor® FPR-648) fluorophores are physically incorporated, and to evaluate their anticancer efficacy and diagnostic properties in breast cancer xenograft murine model. The pure and hybrid paclitaxel nanocrystals were prepared by an anti-solvent method, and their physical properties were characterized. The tumor volume change and body weight change were evaluated to assess the treatment efficacy and toxicity. Bioimaging of treated mice was obtained non-invasively in vivo. The released MMPSense molecules from the hybrid nanocrystals were activated by matrix metalloproteinases (MMPs) in vivo, similarly to the free MMPSense, demonstrating its ability to monitor cancer progression. Concurrently, the entrapped FPR-648 was imaged at a different wavelength. Furthermore, when administered at 20 mg/kg, the nanocrystal formulations exerted comparable efficacy as Taxol®, but with decreased toxicity. Hybrid nanocrystals that physically integrated two fluorophores were successfully prepared from solution. Hybrid nanocrystals were shown not only exerting antitumor activity, but also demonstrating the potential of multi-modular bioimaging for diagnostics.

  13. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monteforte, Marianne; Estandarte, Ana K.; Chen, Bo

    2016-06-23

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100?nm size regimes ? a size routinely achievable by chemical synthesis ? despite the spatial resolution of the BCDI technique being 20?30?nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction datamore » sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20?nm and AuPd nanocrystals in the size range 60?65?nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.« less

  14. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging.

    PubMed

    Monteforte, Marianne; Estandarte, Ana K; Chen, Bo; Harder, Ross; Huang, Michael H; Robinson, Ian K

    2016-07-01

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100 nm size regimes - a size routinely achievable by chemical synthesis - despite the spatial resolution of the BCDI technique being 20-30 nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20 nm and AuPd nanocrystals in the size range 60-65 nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.

  15. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery.

    PubMed

    Jaji, Alhaji Zubair; Bakar, Md Zuki Bin Abu; Mahmud, Rozi; Loqman, Mohamad Yusof; Hezmee, Mohamad Noor Mohamad; Isa, Tijani; Wenliang, Fu; Hammadi, Nahidah Ibrahim

    2017-01-01

    Calcium carbonate is a porous inorganic nanomaterial with huge potential in biomedical applications and controlled drug delivery. This study aimed at evaluating the physicochemical properties and in vitro efficacy and safety of cockle shell aragonite calcium carbonate nanocrystals (ANC) as a potential therapeutic and hormonal delivery vehicle for osteoporosis management. Free and human recombinant parathyroid hormone 1-34 (PTH 1-34)-loaded cockle shell aragonite calcium carbonate nanocrystals (PTH-ANC) were synthesized and evaluated using standard procedures. Transmission electron microscopy and field emission scanning electron microscopy results demonstrated highly homogenized spherical-shaped aragonite nanocrystals of 30±5 nm diameter. PTH-ANC had a zeta potential of -27.6±8.9 mV. The encapsulation efficiency of the formulation was found to be directly proportional to the concentrations of the drug fed. The X-ray diffraction patterns revealed strong crystallizations with no positional change of peaks before and after PTH-ANC synthesis. Fourier transform infrared spectroscopy demonstrated no detectable interactions between micron-sized aragonite and surfactant at molecular level. PTH-ANC formulation was stabilized at pH 7.5, enabling sustained slow release of PTH 1-34 for 168 h (1 week). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytocompatibility assay in Human Foetal Osteoblast Cell Line hFOB 1.19 showed that ANC can safely support osteoblast proliferation up to 48 h whereas PTH-ANC can safely support the proliferation at 72 h and beyond due to the sustained slow release of PTH 1-34. It was concluded that due to its biogenic nature, ANC is a cytocompatible antiosteoporotic agent. It doubles as a nanocarrier for the enhancement of efficacy and safety of the bone anabolic PTH 1-34. ANC is expected to reduce the cost, dosage, and dose frequency associated with the use of PTH 1-34 management of primary and secondary forms of osteoporosis.

  16. Synthesis, characterization, and cytocompatibility of potential cockle shell aragonite nanocrystals for osteoporosis therapy and hormonal delivery

    PubMed Central

    Jaji, Alhaji Zubair; Bakar, Md Zuki Bin Abu; Mahmud, Rozi; Loqman, Mohamad Yusof; Hezmee, Mohamad Noor Mohamad; Isa, Tijani; Wenliang, Fu; Hammadi, Nahidah Ibrahim

    2017-01-01

    Calcium carbonate is a porous inorganic nanomaterial with huge potential in biomedical applications and controlled drug delivery. This study aimed at evaluating the physicochemical properties and in vitro efficacy and safety of cockle shell aragonite calcium carbonate nanocrystals (ANC) as a potential therapeutic and hormonal delivery vehicle for osteoporosis management. Free and human recombinant parathyroid hormone 1-34 (PTH 1-34)-loaded cockle shell aragonite calcium carbonate nanocrystals (PTH-ANC) were synthesized and evaluated using standard procedures. Transmission electron microscopy and field emission scanning electron microscopy results demonstrated highly homogenized spherical-shaped aragonite nanocrystals of 30±5 nm diameter. PTH-ANC had a zeta potential of −27.6±8.9 mV. The encapsulation efficiency of the formulation was found to be directly proportional to the concentrations of the drug fed. The X-ray diffraction patterns revealed strong crystallizations with no positional change of peaks before and after PTH-ANC synthesis. Fourier transform infrared spectroscopy demonstrated no detectable interactions between micron-sized aragonite and surfactant at molecular level. PTH-ANC formulation was stabilized at pH 7.5, enabling sustained slow release of PTH 1-34 for 168 h (1 week). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide cytocompatibility assay in Human Foetal Osteoblast Cell Line hFOB 1.19 showed that ANC can safely support osteoblast proliferation up to 48 h whereas PTH-ANC can safely support the proliferation at 72 h and beyond due to the sustained slow release of PTH 1-34. It was concluded that due to its biogenic nature, ANC is a cytocompatible antiosteoporotic agent. It doubles as a nanocarrier for the enhancement of efficacy and safety of the bone anabolic PTH 1-34. ANC is expected to reduce the cost, dosage, and dose frequency associated with the use of PTH 1-34 management of primary and secondary forms of osteoporosis

  17. Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy.

    PubMed

    de Kergommeaux, Antoine; Faure-Vincent, Jérôme; Pron, Adam; de Bettignies, Rémi; Malaman, Bernard; Reiss, Peter

    2012-07-18

    Narrow band gap tin(II) chalcogenide (SnS, SnSe, SnTe) nanocrystals are of high interest for optoelectronic applications such as thin film solar cells or photodetectors. However, charge transfer and charge transport processes strongly depend on nanocrystals' surface quality. Using (119)Sn-Mössbauer spectroscopy, which is the most sensitive tool for probing the Sn oxidation state, we show that SnS nanocrystals exhibit a Sn((IV))/Sn((II)) ratio of around 20:80 before and 40:60 after five minutes exposure to air. Regardless of the tin or sulfur precursors used, similar results are obtained using six different synthesis protocols. The Sn((IV)) content before air exposure arises from surface related SnS(2) and Sn(2)S(3) species as well as from surface Sn atoms bound to oleic acid ligands. The increase of the Sn((IV)) content upon air exposure results from surface oxidation. Full oxidation of the SnS nanocrystals without size change is achieved by annealing at 500 °C in air. With the goal to prevent surface oxidation, SnS nanocrystals are capped with a cadmium-phosphonate complex. A broad photoluminescence signal centered at 600 nm indicates successful capping, which however does not reduce the air sensitivity. Finally we demonstrate that SnSe nanocrystals exhibit a very similar behavior with a Sn((IV))/Sn((II)) ratio of 43:57 after air exposure. In the case of SnTe nanocrystals, the ratio of 55:45 is evidence of a more pronounced tendency for oxidation. These results demonstrate that prior to their use in optoelectronics further surface engineering of tin chalcogenide nanocrystals is required, which otherwise have to be stored and processed under inert atmosphere.

  18. Low capping group surface density on zinc oxide nanocrystals.

    PubMed

    Valdez, Carolyn N; Schimpf, Alina M; Gamelin, Daniel R; Mayer, James M

    2014-09-23

    The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.

  19. Ensemble brightening and enhanced quantum yield in size-purified silicon nanocrystals

    DOE PAGES

    Miller, Joseph B.; Van Sickle, Austin R.; Anthony, Rebecca J.; ...

    2012-07-18

    Here, we report on the quantum yield, photoluminescence (PL) lifetime and ensemble photoluminescent stability of highly monodisperse plasma-synthesized silicon nanocrystals (SiNCs) prepared though density-gradient ultracentrifugation in mixed organic solvents. Improved size uniformity leads to a reduction in PL line width and the emergence of entropic order in dry nanocrystal films. We find excellent agreement with the anticipated trends of quantum confinement in nanocrystalline silicon, with a solution quantum yield that is independent of nanocrystal size for the larger fractions but decreases dramatically with size for the smaller fractions. We also find a significant PL enhancement in films assembled from themore » fractions, and we use a combination of measurement, simulation and modeling to link this ‘brightening’ to a temporally enhanced quantum yield arising from SiNC interactions in ordered ensembles of monodisperse nanocrystals. Using an appropriate excitation scheme, we exploit this enhancement to achieve photostable emission.« less

  20. Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.

    Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the poremore » surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.« less

  1. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    NASA Astrophysics Data System (ADS)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  2. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption.

    PubMed

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2014-07-09

    Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.

  3. Fragmentation, rings and coarsening: structure and transformations of nanocrystal aggregate networks on a liquid surface

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Scheidtmann, Jens; Mayer, Joachim; Wuttig, Matthias; Michely, Thomas

    2002-01-01

    Deposition of Ag on a silicon oil surface leads to the formation of nm-sized Ag crystals floating on the oil surface. These nanocrystals mutually attract each other, forming strongly branched nanocrystal aggregates and continuous aggregate networks. Transformation processes of such nanocrystal aggregate networks are imaged in situ by optical microscopy. The observations are explained on the basis of a simple model involving diffusion of nanocrystals along aggregate edges and the rupture of branches resulting from branch width fluctuations due to edge diffusion.

  4. Mesoporous Colloidal Superparticles of Platinum-Group Nanocrystals with Surfactant-Free Surfaces and Enhanced Heterogeneous Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Yongxing; Liu, Yuzi; Sun, Yugang

    2015-01-23

    Synthesis of colloidal superparticles (CSPs) of nanocrystals, a class of assembled nanocrystals in the form of colloidal particles, has been emerging as a new frontier in the field of nanotechnology because of their potential novel properties originated from coupling of individual nanocrystals in CSPs. Here, a facile approach is reported for the controlled synthesis of mesoporous CSPs made of various platinum-group nanocrystals that exhibit high colloidal stability and ligand-free surfaces to significantly benefit their applications in solution-phase heterogeneous catalysis. The synthesis relies on self-limiting growth of composite particles through coprecipitation of both Pt-group nanocrystals (or their precursor compounds) and silvermore » halides on sacrificial substrates of colloidal silver particles. The intermediate silver halides in the composite particles play the critical role in limiting the continuous growth (and/or coalescence) of individual Pt-group nanocrystals and they can be selectively dissolved to create nanoscale pores in the resulting CSPs.« less

  5. Improving polymer/nanocrystal hybrid solar cell performance via tuning ligand orientation at CdSe quantum dot surface.

    PubMed

    Fu, Weifei; Wang, Ling; Zhang, Yanfang; Ma, Ruisong; Zuo, Lijian; Mai, Jiangquan; Lau, Tsz-Ki; Du, Shixuan; Lu, Xinhui; Shi, Minmin; Li, Hanying; Chen, Hongzheng

    2014-11-12

    Achieving superior solar cell performance based on the colloidal nanocrystals remains challenging due to their complex surface composition. Much attention has been devoted to the development of effective surface modification strategies to enhance electronic coupling between the nanocrystals to promote charge carrier transport. Herein, we aim to attach benzenedithiol ligands onto the surface of CdSe nanocrystals in the "face-on" geometry to minimize the nanocrystal-nanocrystal or polymer-nanocrystal distance. Furthermore, the "electroactive" π-orbitals of the benzenedithiol are expected to further enhance the electronic coupling, which facilitates charge carrier dissociation and transport. The electron mobility of CdSe QD films was improved 20 times by tuning the ligand orientation, and high performance poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT):CdSe nanocrystal hybrid solar cells were also achieved, showing a highest power conversion efficiency of 4.18%. This research could open up a new pathway to improve further the performance of colloidal nanocrystal based solar cells.

  6. A Safer, Easier, Faster Synthesis for CdSe Quantum Dot Nanocrystals

    ERIC Educational Resources Information Center

    Boatman, Elizabeth M.; Lisensky, George C.; Nordell, Karen J.

    2005-01-01

    The synthesis for CdSe quantum dot nanocrystals that vary in color and are a visually engaging way to demonstrate quantum effects in chemistry is presented. CdSe nanocrystals are synthesized from CdO and elemental Se using a kinetic growth method where particle size depends on reaction time.

  7. Hydroxyapatite nanocrystals functionalized with alendronate as bioactive components for bone implant coatings to decrease osteoclastic activity

    NASA Astrophysics Data System (ADS)

    Bosco, Ruggero; Iafisco, Michele; Tampieri, Anna; Jansen, John A.; Leeuwenburgh, Sander C. G.; van den Beucken, Jeroen J. J. P.

    2015-02-01

    The integration of bone implants within native bone tissue depends on periprosthetic bone quality, which is severely decreased in osteoporotic patients. In this work, we have synthesized bone-like hydroxyapatite nanocrystals (nHA) using an acid-base neutralization reaction and analysed their physicochemical properties. Subsequently, we have functionalized the nHA with alendronate (nHAALE), a well-known bisphosphonate drug used for the treatment of osteoporosis. An in vitro osteoclastogenesis test was carried out to evaluate the effect of nHAALE on the formation of osteoclast-like cells from monocytic precursor cells (i.e. RAW264.7 cell line) showing that nHAALE significantly promoted apoptosis of osteoclast-like cells. Subsequently, nHA and nHAALE were deposited on titanium disks using electrospray deposition (ESD), for which characterisation of the deposited coatings confirmed the presence of alendronate in nHAALE coatings with nanoscale thickness of about 700 nm. These results indicate that alendronate linked to hydroxyapatite nanocrystals has therapeutic potential and nHAALE can be considered as an appealing coating constituent material for orthopaedic and oral implants for application in osteoporotic patients.

  8. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue

    2014-10-28

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu 1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ~8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less

  9. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Caldwell, Andrew H.; Ha, Don-Hyung; Ding, Xiaoyue; Robinson, Richard D.

    2014-10-01

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu1.81S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ˜8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.

  10. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D., E-mail: rdr82@cornell.edu

    2014-10-28

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tunedmore » from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.« less

  11. Preparation of plasmonic vesicles from amphiphilic gold nanocrystals grafted with polymer brushes

    PubMed Central

    Song, Jibin; Huang, Peng; Chen, Xiaoyuan

    2016-01-01

    Gold nanovesicles contain multiple nanocrystals within a polymeric coating. The strong plasmonic coupling between adjacent nanoparticles in their vesicular shell makes ultrasensitive biosensing and bioimaging possible. In our laboratory, multifunctional plasmonic vesicles are assembled from amphiphilic gold nanocrystals (such as gold nanoparticles and gold nanorods) coated with mixed hydrophilic and hydrophobic polymer brushes or amphiphilic diblock co-polymer brushes. To fulfill the different requirements of biomedical applications, different polymers that are either pH=responsive, photoactive or biodegradable can be used to form the hydrophobic brush, while the hydrophilicity is maintained by polyethylene glycol (PEG). This protocol covers the preparation, surface functionalization and self-assembly of amphiphilic gold nanocrystals grafted covalently with polymer brushes. The protocol can be completed within 2 d. The preparation of amphiphilic gold nanocrystals, coated with amphiphilic diblock polymer brushes using a ‘grafting to’ method or mixed hydrophilic and hydrophobic polymer brushes using tandem ‘grafting to’ and ‘grafting from’ methods, is described. We also provide detailed procedures for the preparation and characterization of pH-responsive plasmonic gold nanovesicles from amphiphilic gold nanocrystals using a film-rehydration method that can be completed within ~3 d. PMID:27763624

  12. Pseudo-direct bandgap transitions in silicon nanocrystals: effects on optoelectronics and thermoelectrics.

    PubMed

    Singh, Vivek; Yu, Yixuan; Sun, Qi-C; Korgel, Brian; Nagpal, Prashant

    2014-12-21

    While silicon nanostructures are extensively used in electronics, the indirect bandgap of silicon poses challenges for optoelectronic applications like photovoltaics and light emitting diodes (LEDs). Here, we show that size-dependent pseudo-direct bandgap transitions in silicon nanocrystals dominate the interactions between (photoexcited) charge carriers and phonons, and hence the optoelectronic properties of silicon nanocrystals. Direct measurements of the electronic density of states (DOS) for different sized silicon nanocrystals reveal that these pseudo-direct transitions, likely arising from the nanocrystal surface, can couple with the quantum-confined silicon states. Moreover, we demonstrate that since these transitions determine the interactions of charge carriers with phonons, they change the light emission, absorption, charge carrier diffusion and phonon drag (Seebeck coefficient) in nanoscaled silicon semiconductors. Therefore, these results can have important implications for the design of optoelectronics and thermoelectric devices based on nanostructured silicon.

  13. White light emission and optical gains from a Si nanocrystal thin film

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-01

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.

  14. Screening applications in drug discovery based on microfluidic technology

    PubMed Central

    Eribol, P.; Uguz, A. K.; Ulgen, K. O.

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays. PMID:26865904

  15. Screening applications in drug discovery based on microfluidic technology.

    PubMed

    Eribol, P; Uguz, A K; Ulgen, K O

    2016-01-01

    Microfluidics has been the focus of interest for the last two decades for all the advantages such as low chemical consumption, reduced analysis time, high throughput, better control of mass and heat transfer, downsizing a bench-top laboratory to a chip, i.e., lab-on-a-chip, and many others it has offered. Microfluidic technology quickly found applications in the pharmaceutical industry, which demands working with leading edge scientific and technological breakthroughs, as drug screening and commercialization are very long and expensive processes and require many tests due to unpredictable results. This review paper is on drug candidate screening methods with microfluidic technology and focuses specifically on fabrication techniques and materials for the microchip, types of flow such as continuous or discrete and their advantages, determination of kinetic parameters and their comparison with conventional systems, assessment of toxicities and cytotoxicities, concentration generations for high throughput, and the computational methods that were employed. An important conclusion of this review is that even though microfluidic technology has been in this field for around 20 years there is still room for research and development, as this cutting edge technology requires ingenuity to design and find solutions for each individual case. Recent extensions of these microsystems are microengineered organs-on-chips and organ arrays.

  16. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  17. Using technology to assess and intervene with illicit drug-using persons at risk for HIV.

    PubMed

    Horvath, Keith J; Lammert, Sara; LeGrand, Sara; Muessig, Kathryn E; Bauermeister, José A

    2017-09-01

    This review describes recent literature on novel ways technology is used for assessment of illicit drug use and HIV risk behaviours, suggestions for optimizing intervention acceptability, and recently completed and ongoing technology-based interventions for drug-using persons at risk for HIV and others with high rates of drug use and HIV risk behaviour. Among studies (n = 5) comparing technology-based to traditional assessment methods, those using Ecological Momentary Assessment (EMA) had high rates of reported drug use and high concordance with traditional assessment methods. The two recent studies assessing the acceptability of mHealth approaches overall demonstrate high interest in these approaches. Current or in-progress technology-based interventions (n = 8) are delivered using mobile apps (n = 5), text messaging (n = 2) and computers (n = 1). Most intervention studies are in progress or do not report intervention outcomes; the results from one efficacy trial showed significantly higher HIV testing rates among persons in need of drug treatment. Studies are needed to continually assess technology adoption and intervention preferences among drug-using populations to ensure that interventions are appropriately matched to users. Large-scale technology-based intervention trials to assess the efficacy of these approaches, as well as the impact of individual intervention components, on drug use and other high-risk behaviours are recommended.

  18. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  19. In-situ second harmonic generation by cancer cell targeting ZnO nanocrystals to effect photodynamic action in subcellular space.

    PubMed

    Gu, Bobo; Pliss, Artem; Kuzmin, Andrey N; Baev, Alexander; Ohulchanskyy, Tymish Y; Damasco, Jossana A; Yong, Ken-Tye; Wen, Shuangchun; Prasad, Paras N

    2016-10-01

    This paper introduces the concept of in-situ upconversion of deep penetrating near infrared light via second harmonic generation from ZnO nanocrystals delivered into cells to effect photo activated therapies, such as photodynamic therapy, which usually require activation by visible light with limited penetration through biological tissues. We demonstrated this concept by subcellular activation of a photodynamic therapy drug, Chlorin e6, excited within its strong absorption Soret band by the second harmonic (SH) light, generated at 409 nm by ZnO nanocrystals, which were targeted to cancer cells and internalized through the folate-receptor mediated endocytosis. By a combination of theoretical modeling and experimental measurements, we show that SH light, generated in-situ by ZnO nanocrystals significantly contributes to activation of photosensitizer, leading to cell death through both apoptotic and necrotic pathways initiated in the cytoplasm. This targeted photodynamic action was studied using label-free Coherent Anti-Stokes Raman Scattering imaging of the treated cells to monitor changes in the distribution of native cellular proteins and lipids. We found that initiation of photodynamic therapy with upconverted light led to global reduction in the intracellular concentration of macromolecules, likely due to suppression of proteins and lipids synthesis, which could be considered as a real-time indicator of cellular damage from photodynamic treatment. In prospective applications this in-situ photon upconversion could be further extended using ZnO nanocrystals surface functionalized with a specific organelle targeting group, provided a powerful approach to identify and consequently maximize a cellular response to phototherapy, selectively initiated in a specific cellular organelle. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A.

    2016-10-01

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  1. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  2. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  3. Synthesis of germanium nanocrystals in high temperature supercritical CO2

    NASA Astrophysics Data System (ADS)

    Lu, Xianmao; Korgel, Brian A.; Johnston, Keith P.

    2005-07-01

    Germanium nanocrystals were synthesized in supercritical (sc) CO2 by thermolysis of diphenylgermane (DPG) or tetraethylgermane (TEG) with octanol as a capping ligand at 500 °C and 27.6 MPa. The Ge nanocrystals were characterized with high resolution transmission electron microscopy (HRTEM), energy-dispersive x-ray spectroscopy (EDS), and x-ray diffraction (XRD). On the basis of TEM, the mean diameters of the nanocrystals made from DPG and TEG were 10.1 and 5.6 nm, respectively. The synthesis in sc-CO2 produced much less organic contamination compared with similar reactions in organic supercritical fluids. When the same reaction of DPG with octanol was performed in the gas phase without CO2 present, bulk Ge crystals were formed instead of nanocrystals. Thus, the solvation of the hydrocarbon ligands by CO2 was sufficient to provide steric stabilization. The presence of steric stabilization in CO2 at a reduced temperature of 2.5, with a reduced solvent density of only 0.4, may be attributed to a reduction in the differences between ligand-ligand interactions and ligand-CO2 interactions relative to thermal energy.

  4. Stability study of PbSe semiconductor nanocrystals over concentration, size, atmosphere, and light exposure.

    PubMed

    Dai, Quanqin; Wang, Yingnan; Zhang, Yu; Li, Xinbi; Li, Ruowang; Zou, Bo; Seo, JaeTae; Wang, Yiding; Liu, Manhong; Yu, William W

    2009-10-20

    Infrared-emitting PbSe nanocrystals are of increasing interest in both fundamental research and technical application. However, the practical applications are greatly limited by their poor stability. In this work, absorption and photoluminescence spectra of PbSe nanocrystals were utilized to observe the stability of PbSe nanocrystals over several conventional factors, that is, particle concentration, particle size, temperature, light exposure, contacting atmosphere, and storage forms (solution or solid powder). Both absorption and luminescence spectra of PbSe nanocrystals exposed to air showed dependence on particle concentration, size, and light exposure, which caused large and quick blue-shifts in the optical spectra. This air-contacted instability arising from the destructive oxidation and subsequent collision-induced decomposition was kinetically dominated and differed from the traditional thought that smaller particles with lower concentrations shrank fast. The photoluminescence emission intensity of the PbSe nanocrystal solution under ultraviolet (UV) exposure in air increased first and then decreased slowly; without UV irradiation, the emission intensity monotonously decreased over time. However, if stored under nitrogen, no obvious changes in absorption and photoluminescence spectra of the PbSe nanocrystals were observed even under UV exposure or upon being heated up to 100 degrees C.

  5. Fabrication of multilayered Ge nanocrystals embedded in SiO xGeN y films

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Green, Martin A.; Conibeer, Gavin; Cho, Eun-Chel; Huang, Yidan; Perez-Wurfl, Ivan; Flynn, Chris

    2008-09-01

    Multilayered Ge nanocrystals embedded in SiO xGeN y films have been fabricated on Si substrate by a (Ge + SiO 2)/SiO xGeN y superlattice approach, using a rf magnetron sputtering technique with a Ge + SiO 2 composite target and subsequent thermal annealing in N 2 ambient at 750 °C for 30 min. X-ray diffraction (XRD) measurement indicated the formation of Ge nanocrystals with an average size estimated to be 5.4 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode downward shifted to 299.4 cm -1, which was caused by quantum confinement of phonons in the Ge nanocrystals. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (Ge + SiO 2) layers. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction.

  6. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites

    DOE PAGES

    Yao, En -Ping; Yang, Zhanlue; Meng, Lei; ...

    2017-04-10

    Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈ 470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Forster or Dexter energy transfer ismore » analyzed through time resolved photoluminescence. In conclusion, by tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).« less

  7. High-Brightness Blue and White LEDs based on Inorganic Perovskite Nanocrystals and their Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, En -Ping; Yang, Zhanlue; Meng, Lei

    Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈ 470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Forster or Dexter energy transfer ismore » analyzed through time resolved photoluminescence. In conclusion, by tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).« less

  8. Simple citric acid-catalyzed surface esterification of cellulose nanocrystals.

    PubMed

    Ávila Ramírez, Jhon Alejandro; Fortunati, Elena; Kenny, José María; Torre, Luigi; Foresti, María Laura

    2017-02-10

    A simple straightforward route for the surface esterification of cellulose nanocrystals (CNC) is herein proposed. CNC obtained from microcrystalline cellulose were acetylated using as catalyst citric acid, a α-hydroxy acid present in citrus fruits and industrially produced by certain molds in sucrose or glucose-containing medium. No additional solvent was added to the system; instead, the acylant (acetic anhydride) was used in sufficient excess to allow CNC dispersion and proper suspension agitation. By tuning the catalyst load, CNC with two different degree of substitution (i.e. DS=0.18 and 0.34) were obtained. Acetylated cellulose nanocrystals were characterized in terms of chemical structure, crystallinity, morphology, thermal decomposition and dispersion in a non-polar solvent. Results illustrated for the first time the suitability of the protocol proposed for the simple surface acetylation of cellulose nanocrystals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Multicolor tuning of manganese-doped ZnS colloidal nanocrystals.

    PubMed

    Quan, Zewei; Yang, Dongmei; Li, Chunxia; Kong, Deyan; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2009-09-01

    In this paper, we report a facile route which is based on tuning doping concentration of Mn(2+) ions in ZnS nanocrystals, to achieve deliberate color modulation from blue to orange-yellow under single-wavelength excitation. X-ray diffraction (XRD), transmission electron microscopy (TEM), as well as photoluminescence (PL) spectra were employed to characterize the obtained samples. In this process, the relative emission intensities of both ZnS host (blue) and Mn(2+) dopant (orange-yellow) are sensitive to the Mn(2+) doping concentration, due to the energy transfer from ZnS host to Mn(2+) dopant. As a result of fine-tuning of these two emission components, white emission can be realized for Mn(2+)-doped ZnS nanocrystals. Furthermore, the as-synthesized doped nanocrystals possess extremely narrow size distribution and can be readily transferred into aqueous solution for the next potential applications.

  10. Preparation and optical characteristics of ZnSe nanocrystals doped glass by sol gel in situ crystallization method

    NASA Astrophysics Data System (ADS)

    Hao, Haiyan; Yao, Xi; Wang, Minqiang

    2007-01-01

    Homogeneous ZnSe nanocrystals doped SiO 2 glass was successfully prepared by sol-gel in situ crystallization method. The structure of the doped ZnSe nanocrystals was studied by X-ray diffraction (XRD). ZnSe nanocrystals in silica were about 4-10 nm analysed by transmission electron microscopy (TEM), which was consistent with the results of XRD estimated using Scherrer's formular. The quantum size effect in ZnSe nanocrystals was evidenced from the blue-shifts of the optical absorption edge, and the average size of ZnSe nanocrystals was estimated by the magnitude of blue shift according to the L.E. Brus' effective mass model. The size of ZnSe nanocrystals depending on annealing time and temperature was further discussed using XRF.

  11. Expansion and melting of Xe nanocrystals in Si

    NASA Astrophysics Data System (ADS)

    Faraci, Giuseppe; Pennisi, Agata R.; Zontone, Federico; Li, Boquan; Petrov, Ivan

    2006-12-01

    Xe agglomerates confined in a Si matrix by ion implantation were synthesized with different size depending on the implantation process and/or the thermal treatment. At low temperature Xe nanocrystals are formed, whose expansion and melting were studied in the range 15- 300K . Previous high resolution x-ray diffraction spectra were corroborated with complementary techniques such as two-dimensional imaging plate patterns and transmission electron microscopy. We detected fcc Xe nanocrystals whose properties were size dependent. The experiments showed that in annealed samples epitaxial condensation of small Xe clusters, on the cavities of the Si matrix, gave in fact expanded and oriented Xe, suggesting a possible preferential growth of Xe(311) planes oriented orthogonally to the Si[02-2] direction. On the contrary, small Xe clusters in an amorphous Si matrix have a fcc lattice contracted as a consequence of surface tension. Furthermore, a solid-to-liquid phase transition size dependent was found. Expansion of fcc Xe lattice was accurately determined as a function of the temperature. Overpressurized nanocrystals and/or binary size distributions were disproved.

  12. Single and couple doping ZnO nanocrystals characterized by positron techniques

    NASA Astrophysics Data System (ADS)

    Pasang, Tenzin; Namratha, Keerthiraj; Guagliardo, Paul; Byrappa, Kullaiah; Ranganathaiah, Chikkakuntappa; Samarin, S.; Williams, J. F.

    2015-04-01

    Zinc oxide (ZnO) nanocrystals have been synthesized using a mild hydrothermal process using low temperatures and pressures with the advantages of free growth catalyst, low cost and alternative technology. Positron annihilation lifetime spectroscopy and coincidence Doppler broadening (CDB) spectroscopic methods have been used to investigate the roles of single- and co-dopants and native defects of the ZnO nanocrystals controlled by the synthesis process. It is shown that single Ag1+ and Pd2+ dopants occupy interstitial sites of the ZnO lattice and single Ru3+ doping replaces Zn vacancies substitutionally with a significant effect on the CDB momentum ratio curves when compared using ZnO as the reference spectrum. The co-doping of the ZnO lattice with (Sn4+ + Co2+) shows similar CDB ratios as Ru3+ single-doping. Also co-doping with (Ag1+ + Pd2+) or (Ag1+ + W6+) shows significant decreases in the band gap energy up to about 12.6% compared to single doping. The momentum ratio curves, referenced to undoped ZnO, indicate dopants in interstitial and substitutional sites. The presence of transition metal ions interstitially will trap electrons which resist the recombination of electrons and in turn affect the conductivity of the material.

  13. Size-Tunable Photothermal Germanium Nanocrystals.

    PubMed

    Sun, Wei; Zhong, Grace; Kübel, Christian; Jelle, Abdinoor A; Qian, Chenxi; Wang, Lu; Ebrahimi, Manuchehr; Reyes, Laura M; Helmy, Amr S; Ozin, Geoffrey A

    2017-05-22

    Germanium nanocrystals (ncGe) have not received as much attention as silicon nanocrystals (ncSi). However, Ge has demonstrated superiority over Si nanomaterials in some applications. Examples include, high charge-discharge rate lithium-ion batteries, small band-gap opto-electronic devices, and photo-therapeutics. When stabilized in an oxide matrix (ncGe/GeO x ), its high charge-retention has enabled non-volatile memories. It has also found utility as a high-capacity anode material for Li-ion batteries with impressive stability. Herein, we report an organic-free synthesis of size-controlled ncGe in a GeO x matrix as well as freestanding ncGe, via the thermal disproportionation of GeO prepared from thermally induced dehydration of Ge(OH) 2 . The photothermal effect of ncGe, quantified by Raman spectroscopy, is found to be size dependent and superior to ncSi. This advance suggests applications of ncGe in photothermal therapy, desalination, and catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices

    PubMed Central

    2015-01-01

    Dodecanethiol-capped gold (Au) nanocrystal superlattices can undergo a surprisingly diverse series of ordered structure transitions when heated (Goodfellow, B. W.; Rasch, M. R.; Hessel, C. M.; Patel, R. N.; Smilgies, D.-M.; Korgel, B. A. Nano Lett.2013, 13, 5710–5714). These are the result of highly uniform changes in nanocrystal size, which subsequently force a spontaneous rearrangement of superlattice structure. Here, we show that halide-containing surfactants play an essential role in these transitions. In the absence of any halide-containing surfactant, superlattices of dodecanethiol-capped (1.9-nm-diameter) Au nanocrystals do not change size until reaching about 190–205 °C, at which point the gold cores coalesce. In the presence of halide-containing surfactant, such as tetraoctylphosphonium bromide (TOPB) or tetraoctylammounium bromide (TOAB), the nanocrystals ripen at much lower temperature and superlattices undergo various ordered structure transitions upon heating. Chloride- and iodide-containing surfactants induce similar behavior, destabilizing the Au–thiol bond and reducing the thermal stability of the nanocrystals. PMID:26013597

  15. Laser refrigeration of hydrothermal nanocrystals in physiological media.

    PubMed

    Roder, Paden B; Smith, Bennett E; Zhou, Xuezhe; Crane, Matthew J; Pauzauskie, Peter J

    2015-12-08

    Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose-Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm(2). Heat is transported out of the crystal lattice (across the solid-liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb(3+) electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices.

  16. Laser refrigeration of hydrothermal nanocrystals in physiological media

    PubMed Central

    Roder, Paden B.; Smith, Bennett E.; Zhou, Xuezhe; Crane, Matthew J.; Pauzauskie, Peter J.

    2015-01-01

    Coherent laser radiation has enabled many scientific and technological breakthroughs including Bose–Einstein condensates, ultrafast spectroscopy, superresolution optical microscopy, photothermal therapy, and long-distance telecommunications. However, it has remained a challenge to refrigerate liquid media (including physiological buffers) during laser illumination due to significant background solvent absorption and the rapid (∼ps) nonradiative vibrational relaxation of molecular electronic excited states. Here we demonstrate that single-beam laser trapping can be used to induce and quantify the local refrigeration of physiological media by >10 °C following the emission of photoluminescence from upconverting yttrium lithium fluoride (YLF) nanocrystals. A simple, low-cost hydrothermal approach is used to synthesize polycrystalline particles with sizes ranging from <200 nm to >1 μm. A tunable, near-infrared continuous-wave laser is used to optically trap individual YLF crystals with an irradiance on the order of 1 MW/cm2. Heat is transported out of the crystal lattice (across the solid–liquid interface) by anti-Stokes (blue-shifted) photons following upconversion of Yb3+ electronic excited states mediated by the absorption of optical phonons. Temperatures are quantified through analysis of the cold Brownian dynamics of individual nanocrystals in an inhomogeneous temperature field via forward light scattering in the back focal plane. The cold Brownian motion (CBM) analysis of individual YLF crystals indicates local cooling by >21 °C below ambient conditions in D2O, suggesting a range of potential future applications including single-molecule biophysics and integrated photonic, electronic, and microfluidic devices. PMID:26589813

  17. Size and ligand effects on the electrochemical and spectroelectrochemical responses of CdSe nanocrystals.

    PubMed

    Querner, Claudia; Reiss, Peter; Sadki, Said; Zagorska, Malgorzata; Pron, Adam

    2005-09-07

    The electrochemical properties of CdSe quantum dots with electrochemically inactive surface ligands (TOPO) have been investigated in comparison with the analogous nanocrystals containing electrochemically active oligoaniline ligands. The TOPO-capped nanocrystals have been studied in a wide size range (from 3 to 6.5 nm) with the goal to amplify the influence of the quantum confinement effect on the electrochemical response. The determined HOMO and LUMO levels have been found in good agreement with the ones obtained from photoluminescence studies and those predicted theoretically. Ligand exchange with aniline tetramer significantly influences the voltammetric peaks associated with the HOMO oxidation and the LUMO reduction of the quantum dots, which are shifted to higher and lower potentials, respectively. These shifts are interpreted in terms of the positive ligand charging which precedes the oxidation of the nanocrystals and the insulating nature of the ligand in the case of the nanocrystal reduction. The ligand-nanocrystal interactions have also been studied by UV-Vis-NIR and Raman spectroelectrochemistry in comparison with a specially prepared model compound which, apart from the anchoring function is identical to the grafted oligoaniline ligand. Both spectroelectrochemical techniques clearly indicate the same nature of the oxidation/reduction pathway for both the model compound and the grafted ligand. The influence of the grafting is manifested by a shift in the onset of the ligand oxidation as compared to the case of the "free" model compound. Since both components (ligands and nanocrystals) mutually influence their electrochemical and spectroelectrochemical properties, the newly developed system can be considered as a true molecular hybrid. Such hybrids are of interest because the potential zone of the ligand electroactivity is well separated from that of the nanocrystals and, as a result, the organic part can be electrochemically switched between the

  18. Cellulose nanocrystals the next big nano-thing?

    NASA Astrophysics Data System (ADS)

    Postek, Michael T.; Vladar, Andras; Dagata, John; Farkas, Natalia; Ming, Bin; Sabo, Ronald; Wegner, Theodore H.; Beecher, James

    2008-08-01

    Biomass surrounds us from the smallest alga to the largest redwood tree. Even the largest trees owe their strength to a newly-appreciated class of nanomaterials known as cellulose nanocrystals (CNC). Cellulose, the world's most abundant natural, renewable, biodegradable polymer, occurs as whisker like microfibrils that are biosynthesized and deposited in plant material in a continuous fashion. Therefore, the basic raw materials for a future of new nanomaterials breakthroughs already abound in the environment and are available to be utilized in an array of future materials once the manufacturing processes and nanometrology are fully developed. This presentation will discuss some of the instrumentation, metrology and standards issues associated with nanomanufacturing of cellulose nanocrystals. The use of lignocellulosic fibers derived from sustainable, annually renewable resources as a reinforcing phase in polymeric matrix composites provides positive environmental benefits with respect to ultimate disposability and raw material use. Today we lack the essential metrology infrastructure that would enable the manufacture of nanotechnology-based products based on CNCs (or other new nanomaterial) to significantly impact the U.S. economy. The basic processes common to manufacturing - qualification of raw materials, continuous synthesis methods, process monitoring and control, in-line and off-line characterization of product for quality control purposes, validation by standard reference materials - are not generally in place for nanotechnology based products, and thus are barriers to innovation. One advantage presented by the study of CNCs is that, unlike other nanomaterials, at least, cellulose nanocrystal manufacturing is already a sustainable and viable bulk process. Literally tons of cellulose nanocrystals can be generated each day, producing other viable byproducts such as glucose (for alternative fuel) and gypsum (for buildings).There is an immediate need for the

  19. Quantitative Analysis of Charge Injection and Discharging of Si Nanocrystals and Arrays by Electrostatic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.

    2000-01-01

    NASA requirements for computing and memory for microspacecraft emphasize high density, low power, small size, and radiation hardness. The distributed nature of storage elements in nanocrystal floating-gate memories leads to intrinsic fault tolerance and radiation hardness. Conventional floating-gate non-volatile memories are more susceptible to radiation damage. Nanocrystal-based memories also offer the possibility of faster, lower power operation. In the pursuit of filling these requirements, the following tasks have been accomplished: (1) Si nanocrystal charging has been accomplished with conducting-tip AFM; (2) Both individual nanocrystals on an oxide surface and nanocrystals formed by implantation have been charged; (3) Discharging is consistent with tunneling through a field-lowered oxide barrier; (4) Modeling of the response of the AFM to trapped charge has allowed estimation of the quantity of trapped charge; and (5) Initial attempts to fabricate competitive nanocrystal non-volatile memories have been extremely successful.

  20. Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

    PubMed Central

    2014-01-01

    Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the near-infrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine nanowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants. PMID:25253644

  1. Magnetic Cobalt Ferrite Nanocrystals For an Energy Storage Concentration Cell.

    PubMed

    Dai, Qilin; Patel, Ketan; Donatelli, Greg; Ren, Shenqiang

    2016-08-22

    Energy-storage concentration cells are based on the concentration gradient of redox-active reactants; the increased entropy is transformed into electric energy as the concentration gradient reaches equilibrium between two half cells. A recyclable and flow-controlled magnetic electrolyte concentration cell is now presented. The hybrid inorganic-organic nanocrystal-based electrolyte, consisting of molecular redox-active ligands adsorbed on the surface of magnetic nanocrystals, leads to a magnetic-field-driven concentration gradient of redox molecules. The energy storage performance of concentration cells is dictated by magnetic characteristics of cobalt ferrite nanocrystal carriers. The enhanced conductivity and kinetics of redox-active electrolytes could further induce a sharp concentration gradient to improve the energy density and voltage switching of magnetic electrolyte concentration cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organo Luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOEpatents

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    1999-01-01

    A luminescent semiconductor nanocrystal compound is described which is capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation (luminescing) in a narrow wavelength band and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The luminescent semiconductor nanocrystal compound is linked to an affinity molecule to form an organo luminescent semiconductor nanocrystal probe capable of bonding with a detectable substance in a material being analyzed, and capable of emitting electromagnetic radiation in a narrow wavelength band and/or absorbing, scattering, or diffracting energy when excited by an electromagnetic radiation source (of narrow or broad bandwidth) or a particle beam. The probe is stable to repeated exposure to light in the presence of oxygen and/or other radicals. Further described is a process for making the luminescent semiconductor nanocrystal compound and for making the organo luminescent semiconductor nanocrystal probe comprising the luminescent semiconductor nanocrystal compound linked to an affinity molecule capable of bonding to a detectable substance. A process is also described for using the probe to determine the presence of a detectable substance in a material.

  3. Visualization of nanocrystal breathing modes at extreme strains

    NASA Astrophysics Data System (ADS)

    Szilagyi, Erzsi; Wittenberg, Joshua S.; Miller, Timothy A.; Lutker, Katie; Quirin, Florian; Lemke, Henrik; Zhu, Diling; Chollet, Matthieu; Robinson, Joseph; Wen, Haidan; Sokolowski-Tinten, Klaus; Lindenberg, Aaron M.

    2015-03-01

    Nanoscale dimensions in materials lead to unique electronic and structural properties with applications ranging from site-specific drug delivery to anodes for lithium-ion batteries. These functional properties often involve large-amplitude strains and structural modifications, and thus require an understanding of the dynamics of these processes. Here we use femtosecond X-ray scattering techniques to visualize, in real time and with atomic-scale resolution, light-induced anisotropic strains in nanocrystal spheres and rods. Strains at the percent level are observed in CdS and CdSe samples, associated with a rapid expansion followed by contraction along the nanosphere or nanorod radial direction driven by a transient carrier-induced stress. These morphological changes occur simultaneously with the first steps in the melting transition on hundreds of femtosecond timescales. This work represents the first direct real-time probe of the dynamics of these large-amplitude strains and shape changes in few-nanometre-scale particles.

  4. Controllable synthesis of nickel bicarbonate nanocrystals with high homogeneity for a high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Gu, Jianmin; Liu, Xin; Wang, Zhuang; Bian, Zhenpan; Jin, Cuihong; Sun, Xiao; Yin, Baipeng; Wu, Tianhui; Wang, Lin; Tang, Shoufeng; Wang, Hongchao; Gao, Faming

    2017-08-01

    The electrochemical performance of supercapacitors might be associated with the homogeneous structure of the electrode materials. However, the relationship between the degree of uniformity for the electrode materials and the electrochemical performance of the supercapacitor is not clear. Herein, we synthesize two types of nickel bicarbonate nanocrystals with different degrees of uniformity to investigate this relationship. As the electroactive material, the nickel bicarbonate nanocrystals with a homogeneous structure could provide a larger space and offer more exposed atoms for the electrochemical reaction than the nanocrystals with a heterogeneous structure. The homogeneous nickel bicarbonate nanocrystals exhibit better electrochemical performance and show excellent specific capacitance (1596 F g-1 at 2 A g-1 and 1260 F g-1 at 30 A g-1), which is approximately twice that of the heterogeneous nickel bicarbonate nanocrystals. The cycling stability for the homogeneity (˜80%) is higher than the inhomogeneity (˜61%) at a high current density of 5 A g-1.

  5. Nanocrystal grain growth and device architectures for high-efficiency CdTe ink-based photovoltaics.

    PubMed

    Crisp, Ryan W; Panthani, Matthew G; Rance, William L; Duenow, Joel N; Parilla, Philip A; Callahan, Rebecca; Dabney, Matthew S; Berry, Joseph J; Talapin, Dmitri V; Luther, Joseph M

    2014-09-23

    We study the use of cadmium telluride (CdTe) nanocrystal colloids as a solution-processable "ink" for large-grain CdTe absorber layers in solar cells. The resulting grain structure and solar cell performance depend on the initial nanocrystal size, shape, and crystal structure. We find that inks of predominantly wurtzite tetrapod-shaped nanocrystals with arms ∼5.6 nm in diameter exhibit better device performance compared to inks composed of smaller tetrapods, irregular faceted nanocrystals, or spherical zincblende nanocrystals despite the fact that the final sintered film has a zincblende crystal structure. Five different working device architectures were investigated. The indium tin oxide (ITO)/CdTe/zinc oxide structure leads to our best performing device architecture (with efficiency >11%) compared to others including two structures with a cadmium sulfide (CdS) n-type layer typically used in high efficiency sublimation-grown CdTe solar cells. Moreover, devices without CdS have improved response at short wavelengths.

  6. Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Shirazi, R.; Kopylov, O.; Kovacs, A.; Kardynał, B. E.

    2012-08-01

    In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence of bright and dark exciton states, as well as defect states. Two different types of defect are present: one located at the core-shell interface and the other on the surface of the nanocrystal. Based on the temperature dependent contributions of all four states to the total photoluminescence signal, we estimate that the four states are distributed within a 20 meV energy band in nanocrystals that emit at 1.82 eV.

  7. Microwave and continuous flow technologies in drug discovery.

    PubMed

    Sadler, Sara; Moeller, Alexander R; Jones, Graham B

    2012-12-01

    Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.

  8. Photoluminescence studies on Cd(1-x)Zn(x)S:Mn2+ nanocrystals.

    PubMed

    Sethi, Ruchi; Kumar, Lokendra; Pandey, A C

    2009-09-01

    Highly monodispersed, undoped and doped with Mn2+, binary and ternary (CdS, ZnS, Cd(1-x)Zn(x)S) compound semiconductor nanocrystals have been synthesized by co-precipitation method using citric acid as a stabilizer. As prepared sample are characterized by X-ray diffraction, Small angle X-ray scattering, Transmission electron microscope, Optical absorption and Photoluminescence spectroscopy, for their optical and structural properties. X-ray diffraction, Small angle X-ray scattering and Transmission electron microscope results confirm the preparation of monodispersed nanocrystals. Photoluminescence studies show a significant blue shift in the wavelength with an increasing concentration of Zn in alloy nanocrystals.

  9. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays*1

    NASA Astrophysics Data System (ADS)

    Eah, Sang-Kee; Jaeger, Heinrich M.; Scherer, Norbert F.; Lin, Xiao-Min; Wiederrecht, Gary P.

    2004-03-01

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  10. Simple eco-friendly synthesis of the surfactant free SnS nanocrystal toward the photoelectrochemical cell application.

    PubMed

    Huang, Xiaoguang; Woo, Heechul; Wu, Peinian; Hong, Hyo Jin; Jung, Wan Gil; Kim, Bong-Joong; Vanel, Jean-Charles; Choi, Jin Woo

    2017-11-28

    A simple, low cost, non-toxic and eco-friendly pathway for synthesizing efficient sunlight-driven tin sulfide photocatalyst was studied. SnS nanocrystals were prepared by using mechanical method. The bulk SnS was obtained by evaporation of SnS nanocrystal solution. The synthesized samples were characterized by using XRD, SEM, TEM, UV-vis, and Raman analyses. Well crystallized SnS nanocrystals were verified and the electrochemical characterization was also performed under visible light irradiation. The SnS nanocrystals have shown remarkable photocurrent density of 7.6 mA cm -2 under 100 mW cm -2 which is about 10 times larger than that of the bulk SnS under notably stable operation conditions. Furthermore, the SnS nanocrystals presented higher stability than the bulk form. The IPCE(Incident photon to current conversion efficiency) of 9.3% at 420 nm was obtained for SnS nanocrystal photoanode which is strikingly higher than that of bulk SnS, 0.78%. This work suggests that the enhancement of reacting area by using SnS nanocrystal absorbers could give rise to the improvement of photoelectrochemical cell efficiency.

  11. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.

    PubMed

    Swisher, Sarah L; Volkman, Steven K; Subramanian, Vivek

    2015-05-20

    Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solution-processed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nanocrystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 × 10(6). These results outperform previous air-stable nanocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics.

  12. [Current applications of high-throughput DNA sequencing technology in antibody drug research].

    PubMed

    Yu, Xin; Liu, Qi-Gang; Wang, Ming-Rong

    2012-03-01

    Since the publication of a high-throughput DNA sequencing technology based on PCR reaction was carried out in oil emulsions in 2005, high-throughput DNA sequencing platforms have been evolved to a robust technology in sequencing genomes and diverse DNA libraries. Antibody libraries with vast numbers of members currently serve as a foundation of discovering novel antibody drugs, and high-throughput DNA sequencing technology makes it possible to rapidly identify functional antibody variants with desired properties. Herein we present a review of current applications of high-throughput DNA sequencing technology in the analysis of antibody library diversity, sequencing of CDR3 regions, identification of potent antibodies based on sequence frequency, discovery of functional genes, and combination with various display technologies, so as to provide an alternative approach of discovery and development of antibody drugs.

  13. Electronic Properties of Free-Standing Surfactant-Capped Lead Halide Perovskite Nanocrystals Isolated in Vacuo.

    PubMed

    Milosavljevic, Aleksandar R; Bozanic, Dusan; Sadhu, Subha; Vukmirovic, Nenad; Dojcilovic, Radovan; Sapkota, Pitambar; Huang, Weixin; Bozek, John D; Nicolas, Christophe; Nahon, Laurent; Ptasinska, Sylwia

    2018-06-14

    We report an investigation of lead halide perovskite CH3NH3PbBr3 nanocrystals and associated ligand molecules, by combining several different state-of-the-art experimental techniques, including synchrotron radiation based XPS and VUV PES of free-standing nanocrystals isolated in vacuum. By using this novel approach for perovskite materials we could directly obtain a complete band alignment to vacuum of both CH3NH3PbBr3 nanocrystals and the ligands widely used in their preparation. We discuss possible influence of the ligand molecules to apparent perovskite properties, and we compare the electronic properties of nanocrystals to that of bulk material. The experimental results were supported by DFT calculations.

  14. Microstructure, thermal properties and crystallinity of amadumbe starch nanocrystals.

    PubMed

    Mukurumbira, Agnes; Mariano, Marcos; Dufresne, Alain; Mellem, John J; Amonsou, Eric O

    2017-09-01

    Amadumbe (Colocasia esculenta), commonly known as taro is a tropical tuber that produces starch-rich underground corms. In this study, the physicochemical properties of starch nanocrystals (SNC) prepared by acid hydrolysis of amadumbe starches were investigated. Two varieties of amadumbe corms were used for starch extraction. Amadumbe starches produced substantially high yield (25%) of SNC's. These nanocrystals appeared as aggregated and individual particles and possessed square-like platelet morphology with size: 50-100nm. FTIR revealed high peak intensities corresponding to OH stretch, CH stretch and H 2 O bending vibrations for SNCs compared to their native starch counterparts. Both the native starch and SNC exhibited the A-type crystalline pattern. However, amadumbe SNCs showed higher degree of crystallinity and slightly reduced melting temperatures than their native starches. Amadumbe SNCs presented similar thermal decomposition property as their native starches. Amadumbe starch nanocrystals may have potential application in biocomposite films due to their square-like platelet morphology. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Volumetric flame synthesis of well-defined molybdenum oxide nanocrystals.

    PubMed

    Merchan-Merchan, Wilson; Saveliev, Alexei V; Desai, Milind

    2009-11-25

    Well-defined faceted inorganic Mo oxide nanocrystals are synthesized in the gas phase using a solid-fed-precursor flame synthesis method. The solid crystals have rectangular cross-section with characteristic size of 10-20 nm and with lengths ranging from 50 nm to a few hundred nanometres. A 1 mm diameter high purity Mo probe introduced in the oxygen-rich part of the flame serves as the material source. A combination of the strong temperature gradient and varying chemical species concentrations within the flame volume provides the ideal conditions for the rapid and direct formation of these unique nanocrystals. Oxidation and evaporation of MoO3 in the oxygen-rich zone are followed by reduction to MoO2 in the lower temperature, more fuel-rich zone. The MoO3 vapours formed are pushed in the direction of the gas flow and transformed into mature well-defined convex polyhedron nanocrystals bounded with six faces resembling rectangular parallelepipeds.

  16. Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyakov, S. A.; Zhigunov, D. M.; Marinins, A.

    Here, we report on the results of theoretical and experimental studies of photoluminescense of silicon nanocrystals in the proximity to plasmonic modes of different types. In the studied samples, the type of plasmonic mode is determined by the filling ratio of a one-dimensional array of gold stripes which covers the thin film with silicon nanocrystals on a quartz substrate. We analyze the extinction, photoluminesce spectra and decay kinetics of silicon nanocrystals and show that the incident and emitted light is coupled to the corresponding plasmonic mode. We demonstrate the modification of the extinction and photoluminesce spectra under the transition frommore » wide to narrow gold stripes. The experimental extinction and photoluminescense spectra are in good agreement with theoretical calculations performed by the rigorous coupled wave analysis. Finally, we study the contribution of individual silicon nanocrystals to the overall photoluminescense intensity, depending on their spacial position inside the structure.« less

  17. Off-Resonance Photosensitization of a Photorefractive Polymer Composite Using PbS Nanocrystals

    DOE PAGES

    Moon, Jong-Sik; Liang, Yichen; Stevens, Tyler E.; ...

    2015-05-26

    The photosensitization of photorefractive polymeric composites for operation at 633 nm is accomplished through the inclusion of narrow band gap semiconductor nanocrystals composed of PbS. Unlike previous studies involving photosensitization of photorefractive polymer composites with inorganic nanocrystals, we employ an off-resonance approach where the first excitonic transition associated with the PbS nanocrystals lies at ~1220 nm and not the wavelength of operation. Using this methodology, internal diffraction efficiencies exceeding 82%, two-beam-coupling gain coefficients of 211 cm –1, and response times of 34 ms have been observed, representing some of the best figures of merit reported for this class of materials.more » Furthermore, these data demonstrate the ability of semiconductor nanocrystals to compete effectively with traditional organic photosensitizers. In addition to superior performance, this approach also offers an inexpensive and easy means by which to photosensitize composite materials. Additionally, the photoconductive characteristics of the composites used for this study will also be considered.« less

  18. Plasmon induced modification of silicon nanocrystals photoluminescence in presence of gold nanostripes

    DOE PAGES

    Dyakov, S. A.; Zhigunov, D. M.; Marinins, A.; ...

    2018-03-20

    Here, we report on the results of theoretical and experimental studies of photoluminescense of silicon nanocrystals in the proximity to plasmonic modes of different types. In the studied samples, the type of plasmonic mode is determined by the filling ratio of a one-dimensional array of gold stripes which covers the thin film with silicon nanocrystals on a quartz substrate. We analyze the extinction, photoluminesce spectra and decay kinetics of silicon nanocrystals and show that the incident and emitted light is coupled to the corresponding plasmonic mode. We demonstrate the modification of the extinction and photoluminesce spectra under the transition frommore » wide to narrow gold stripes. The experimental extinction and photoluminescense spectra are in good agreement with theoretical calculations performed by the rigorous coupled wave analysis. Finally, we study the contribution of individual silicon nanocrystals to the overall photoluminescense intensity, depending on their spacial position inside the structure.« less

  19. Exciton Energy Transfer from Halide Terminated Nanocrystals to Graphene in Solar Photovoltaics

    NASA Astrophysics Data System (ADS)

    Ajayi, Obafunso; Abramson, Justin; Anderson, Nicholas; Owen, Jonathan; Zhao, Yue; Kim, Phillip; Gesuele, Felice; Wong, Chee Wei

    2011-03-01

    Graphene, a zero-gap semiconductor, has been identified as an ideal electrode for nanocrystal solar cell photovoltaic applications due to its high carrier mobility. Further advances in efficient current extraction are required towards this end. We investigate the resonant energy transfer dynamics between photoexcited nanocrystals and graphene, where the energy transfer rate is characterized by the fluorescent quenching of the quantum dots in the presence of graphene. Energy transfer has been shown to have a d -4 dependence on the nanocrystal distance from the graphene surface, with a correction due to blinking statistics. We investigate this relationship with single and few layer graphene. We study halide-terminated CdSe quantum dots; where the absence of the insulating outershell improves the electronic coupling of the donor-acceptor system leads to improved electron transfer. We observe quenching of the halide terminated nanocrystals on graphene, with the quenching factor ρ defined as IQ /IG (the relative intensities on quartz and graphene).

  20. Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis.

    PubMed

    Chaudhary, Sushant; Garg, Tarun; Rath, Goutam; Murthy, Rs Rayasa; Goyal, Amit K

    2016-05-01

    The method based on integrating the principles of solid dispersion and nanocrystal techniques was developed to prepare polymer crystals (PCs) of mebendazole (MBZ) and polyethylene glycol (PEG). Powder X-Ray diffraction (PXRD) of the PC crystals shows the required integrated crystalline and amorphous regions. The in vitro solubility studies showed a 32-fold increase in the solubility of the drug. Tests of dissolution of the PCs showed that the crystals have an enhanced dissolution rate in comparison to those in the MF. The results of the pharmacokinetic study showed a 2.12-fold increase in the bioavailability of the drug. Thus, the present study has proved the potential in enhancing solubility, dissolution, and bioavailability of the drug.

  1. Designing lanthanide-doped nanocrystals with both up- and down-conversion luminescence for anti-counterfeiting

    NASA Astrophysics Data System (ADS)

    Liu, Yanlan; Ai, Kelong; Lu, Lehui

    2011-11-01

    The widespread forgery in all kinds of paper documents and certificates has become a real threat to society. Traditional fluorescent anti-counterfeiting materials generally exhibit unicolor display and suffer greatly from substitution, thus leading to a poor anti-counterfeiting effect. In this work, unseen but significant enhanced blue down-conversion emission from oleic acid-stabilized lanthanide-doped fluoride nanocrystals is first present and the mechanism is proposed and validated. This not only endows these nanocrystals with dual-mode fluorescence, but also offers a simplified synthesis approach for dual-mode fluorescent nanocrystals involving no further complicated assembly or coating procedures, unlike the traditional methods. Furthermore, by changing the host/dopant combination or the content of dopant, these nanocrystals can exhibit simultaneously multicolor up-conversion emission under excitation at near-infrared light and unalterable blue down-conversion emission under ultraviolet light. A preliminary investigation of their anti-counterfeiting performance has been made, and the results indicate that this color tuning capability and high concealment makes these nanocrystals behave in a similar way to chameleons and can provide a strengthened and more reliable anti-counterfeiting effect.The widespread forgery in all kinds of paper documents and certificates has become a real threat to society. Traditional fluorescent anti-counterfeiting materials generally exhibit unicolor display and suffer greatly from substitution, thus leading to a poor anti-counterfeiting effect. In this work, unseen but significant enhanced blue down-conversion emission from oleic acid-stabilized lanthanide-doped fluoride nanocrystals is first present and the mechanism is proposed and validated. This not only endows these nanocrystals with dual-mode fluorescence, but also offers a simplified synthesis approach for dual-mode fluorescent nanocrystals involving no further complicated

  2. Mechanisms of oriented attachment of TiO2 nanocrystals in vacuum and humid environments: reactive molecular dynamics.

    PubMed

    Raju, Muralikrishna; van Duin, Adri C T; Fichthorn, Kristen A

    2014-01-01

    Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. We perform molecular dynamics simulations using a recently developed ReaxFF reactive force field to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. In vacuum, the nanocrystals merge along their direction of approach, resulting in a polycrystalline material. By contrast, in the presence of water vapor the nanocrystals reorient themselves and aggregate via the OA mechanism to form a single or twinned crystal. They accomplish this by creating a dynamic network of hydrogen bonds between surface hydroxyls and surface oxygens of aggregating nanocrystals. We determine that OA is dominant on surfaces that have the greatest propensity to dissociate water. Our results are consistent with experiment, are likely to be general for aqueous oxide systems, and demonstrate the critical role of solvent in nanocrystal aggregation. This work opens up new possibilities for directing nanocrystal growth to fabricate nanomaterials with desired shapes and sizes.

  3. The development of high-content screening (HCS) technology and its importance to drug discovery.

    PubMed

    Fraietta, Ivan; Gasparri, Fabio

    2016-01-01

    High-content screening (HCS) was introduced about twenty years ago as a promising analytical approach to facilitate some critical aspects of drug discovery. Its application has spread progressively within the pharmaceutical industry and academia to the point that it today represents a fundamental tool in supporting drug discovery and development. Here, the authors review some of significant progress in the HCS field in terms of biological models and assay readouts. They highlight the importance of high-content screening in drug discovery, as testified by its numerous applications in a variety of therapeutic areas: oncology, infective diseases, cardiovascular and neurodegenerative diseases. They also dissect the role of HCS technology in different phases of the drug discovery pipeline: target identification, primary compound screening, secondary assays, mechanism of action studies and in vitro toxicology. Recent advances in cellular assay technologies, such as the introduction of three-dimensional (3D) cultures, induced pluripotent stem cells (iPSCs) and genome editing technologies (e.g., CRISPR/Cas9), have tremendously expanded the potential of high-content assays to contribute to the drug discovery process. Increasingly predictive cellular models and readouts, together with the development of more sophisticated and affordable HCS readers, will further consolidate the role of HCS technology in drug discovery.

  4. New crystal structures in hexagonal CuInS2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Shen, Xiao; Hernández-Pagan, Emil A.; Zhou, Wu; Puzyrev, Yevgeniy S.; Idrobo, Juan C.; MacDonald, Janet E.; Pennycook, Stephen J.; Pantelides, Sokrates T.

    2013-03-01

    CuInS2 is one of the best candidate materials for solar energy harvesting. Its nanocrystals with a hexagonal lattice structure that is different from the bulk chalcopyrite phase have been synthesized by many groups. The structure of these CuInS2 nanocrystals has been previously identified as the wurtzite structure in which the copper and indium atoms randomly occupy the cation sites. Using first-principles total energy and electronic structure calculations based on density functional theory, UV-vis absorption spectroscopy, X-ray diffraction, and atomic resolution Z-contrast images obtained in an aberration-corrected scanning transmission electron microscope, we show that CuInS2 nanocrystals do not form random wurtzite structure. Instead, the CuInS2 nanocrystals consist of several wurtzite- related crystal structures with ordered cation sublattices, some of which are reported for the first time here. This work is supported by the NSF TN-SCORE (JEM), by NSF (WZ), by ORNL's Shared Research Equipment User Program (JCI) sponsored by DOE BES, by DOE BES Materials Sciences and Engineering Division (SJP, STP), and used resources of the National Energy Research Scientific Computing Center, supported by the DOE Office of Science under Contract No. DE-AC02-05CH11231.

  5. Large Transient Optical Modulation of Epsilon-Near-Zero Colloidal Nanocrystals

    DOE PAGES

    Diroll, Benjamin T.; Guo, Peijun; Chang, Robert P. H.; ...

    2016-10-18

    Here, epsilon-near-zero materials may be synthesized as colloidal nanocrystals which display large magnitude subpicosecond switching of infrared localized surface plasmon resonances. Such nanocrystals offer a solution-processable, scalable source of tunable metamaterials compatible with arbitrary substrates. Under intraband excitation, these nanocrystals display a red-shift of the plasmon feature arising from the low electron heat capacities and conduction band nonparabolicity of the oxide. Under interband pumping, they show in an ultrafast blueshift of the plasmon resonance due to transient increases in the carrier density. Combined with their high-quality factor, large changes in relative transmittance (+86%) and index of refraction (+85%) at modestmore » control fluences (<5 mJ/cm 2) suggest that these materials offer great promise for all-optical switching, wavefront engineering, and beam steering operating at terahertz switching frequencies.« less

  6. Visualizing Current Flow at the Mesoscale in Disordered Assemblies of Touching Semiconductor Nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Qinyi; Guest, Jeffrey R.; Thimsen, Elijah

    2017-07-12

    The transport of electrons through assemblies of nanocrystals is important to performance in optoelectronic applications for these materials. Previous work has primarily focused on single nanocrystals or transitions between pairs of nanocrystals. There is a gap in knowledge of how large numbers of nanocrystals in an assembly behave collectively, and how this collective behavior manifests at the mesoscale. In this work, the variable range hopping (VRH) transport of electrons in disordered assemblies of touching, heavily doped ZnO nanocrystals was visualized at the mesoscale as a function of temperature both theoretically, using the model of Skinner, Chen and Shklovskii (SCS), andmore » experimentally, with conductive atomic force microscopy on ultrathin films only a few particle layers thick. Agreement was obtained between the model and experiments, with a few notable exceptions. The SCS model predicts that a single network within the nanocrystal assembly, comprised of sites connected by small resistances, dominates conduction - namely the optimum band from variable range hopping theory. However, our experiments revealed that in addition to the optimum band, there are subnetworks that appear as additional peaks in the resistance histogram of conductive atomic force microscopy (CAFM) maps. Furthermore, the connections of these subnetworks to the optimum band change in time, such that some subnetworks become connected to the optimum band while others become disconnected and isolated from the optimum band; this observation appears to be an experimental manifestation of the ‘blinking’ phenomenon in our images of mesoscale transport.« less

  7. Nonvolatile memory with Co-SiO2 core-shell nanocrystals as charge storage nodes in floating gate

    NASA Astrophysics Data System (ADS)

    Liu, Hai; Ferrer, Domingo A.; Ferdousi, Fahmida; Banerjee, Sanjay K.

    2009-11-01

    In this letter, we reported nanocrystal floating gate memory with Co-SiO2 core-shell nanocrystal charge storage nodes. By using a water-in-oil microemulsion scheme, Co-SiO2 core-shell nanocrystals were synthesized and closely packed to achieve high density matrix in the floating gate without aggregation. The insulator shell also can help to increase the thermal stability of the nanocrystal metal core during the fabrication process to improve memory performance.

  8. Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: In vitro and in vivo evaluation.

    PubMed

    Liu, Tingting; Han, Meihua; Tian, Fang; Cun, Dongmei; Rantanen, Jukka; Yang, Mingshi

    2018-02-01

    Most inhaled pharmaceutical formulations on the market are intended to exert immediate pharmacological action, even although inhaled sustained-release formulations can be needed to reduce the frequency of dosing. The purpose of this study was to investigate the pulmonary retention and pharmacokinetics of a poorly water-soluble drug after loading its nanocrystal form into inhalable mucoadhesive microparticles composed of hyaluronic acid. It was intended to prolong the pharmacological effect without compromising the dissolution rate of the poorly water-soluble drug. In this study, budesonide, a corticosteroid anti-inflammatory drug, was used as a model poorly water-soluble drug. Submicron budesonide particles were prepared by wet ball milling, and subsequently loaded into hyaluronic acid microparticles by the spray drying process. The ball-milled budesonide particles and the spray-dried microparticles were characterized using dynamic light scattering (DLS), laser diffraction, Scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC). Selected formulations were evaluated in terms of their dissolution/release rate, aerosol performance, muco-adhesion and pharmacokinetics in rats. As shown by XRD and DSC analysis, the nanonized budesonide particles in this study were mainly in crystalline form. The dissolution/release study showed that the in vitro release of budesonide from the microparticles was not significantly sustained compared with the dissolution rate of budesonide nanocrystals (BUD-NC). However, the budesonide in the microparticles exhibited prolonged retention on the surface of porcine tracheal tube owing to the muco-adhesion ability of hyaluronic acid. After intratracheal administration to rats, the BUD-NC exhibited a similar pharmacokinetic profile to that of budesonide solution via i.v. injection. In contrast, budesonide loaded in the mucoadhesive microparticles exhibited a significantly prolonged T max

  9. Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines.

    PubMed

    Law, Matt; Luther, Joseph M; Song, Qing; Hughes, Barbara K; Perkins, Craig L; Nozik, Arthur J

    2008-05-07

    We describe the structural, optical, and electrical properties of films of spin-cast, oleate-capped PbSe nanocrystals that are treated thermally or chemically in solutions of hydrazine, methylamine, or pyridine to produce electronically coupled nanocrystal solids. Postdeposition heat treatments trigger nanocrystal sintering at approximately 200 degrees C, before a substantial fraction of the oleate capping group evaporates or pyrolyzes. The sintered nanocrystal films have a large hole density and are highly conductive. Most of the amine treatments preserve the size of the nanocrystals and remove much of the oleate, decreasing the separation between nanocrystals and yielding conductive films. X-ray scattering, X-ray photoelectron and optical spectroscopy, electron microscopy, and field-effect transistor electrical measurements are used to compare the impact of these chemical treatments. We find that the concentration of amines adsorbed to the NC films is very low in all cases. Treatments in hydrazine in acetonitrile remove only 2-7% of the oleate yet result in high-mobility n-type transistors. In contrast, ethanol-based hydrazine treatments remove 85-90% of the original oleate load. Treatments in pure ethanol strip 20% of the oleate and create conductive p-type transistors. Methylamine- and pyridine-treated films are also p-type. These chemically treated films oxidize rapidly in air to yield, after short air exposures, highly conductive p-type nanocrystal solids. Our results aid in the rational development of solar cells based on colloidal nanocrystal films.

  10. 14N NQR lineshape in nanocrystals: An ab initio investigation of urea

    PubMed Central

    Gregorovič, Alan

    2017-01-01

    14N nuclear quadrupole resonance (NQR) lineshapes mostly contain information of low interest, although in nanocrystals they may display some unexpected behaviour. In this work, we present an ab initio computational study of the 14N NQR lineshapes in urea nanocrystals as a function of the nanocrystal size and geometry, focusing on the surface induced broadening of the lineshapes. The lineshapes were obtained through a calculation of the electric field gradient for each nitrogen site in the nanocrystal separately, taking into account the individual crystal field by embedding the molecule of interest in a suitable lattice of point multipoles representing other urea molecules in the nanocrystal. The small influence of distant molecules is found with a series expansion, using the in-crystal Sternheimer shieldings which we also calculated ab initio. We have considered nanocrystals with two geometries: a sphere and a cube, with characteristic sizes between 5 and 100 nm. Our calculations suggest that there is a dramatic difference between the linewidths for the two geometries. For spheres, we find a steep drop in linewidths at ∼10 nm; at 5 nm the linewidth is ∼11 kHz, whereas for sizes above 20 nm the linewidth is practically negligible (<100 Hz). For cubes, on the other hand, we find a steady 1/size decrease, from 12 kHz at 10 nm to 1.2 kHz at 100 nm. This analysis is important for 14N NQR spectroscopy of crystalline pharmaceuticals, where nanoparticles are increasingly more often embedded in some sort of matrix. Although this is only a theoretical analysis, we believe that this work can serve as a guidance for the forthcoming experimental analysis. PMID:28527464

  11. A room-temperature-operated Si LED with β-FeSi2 nanocrystals in the active layer: μW emission power at 1.5 μm

    NASA Astrophysics Data System (ADS)

    Shevlyagin, A. V.; Goroshko, D. L.; Chusovitin, E. A.; Balagan, S. A.; Dotsenko, S. A.; Galkin, K. N.; Galkin, N. G.; Shamirzaev, T. S.; Gutakovskii, A. K.; Latyshev, A. V.; Iinuma, M.; Terai, Y.

    2017-03-01

    This article describes the development of an Si-based light-emitting diode with β-FeSi2 nanocrystals embedded in the active layer. Favorable epitaxial conditions allow us to obtain a direct band gap type-I band alignment Si/β-FeSi2 nanocrystals/Si heterostructure with optical transition at a wavelength range of 1500-1550 nm at room temperature. Transmission electron microscopy data reveal strained, defect-free β-FeSi2 nanocrystals of diameter 6 and 25 nm embedded in the Si matrix. Intense electroluminescence was observed at a pumping current density as low as 0.7 A/cm2. The device reached an optical emission power of up to 25 μW at 9 A/cm2 with an external quantum efficiency of 0.009%. Watt-Ampere characteristic linearity suggests that the optical power margin of the light-emitting diode has not been exhausted. Band structure calculations explain the luminescence as being mainly due to radiative recombination in the large β-FeSi2 nanocrystals resulting from the realization of an indirect-to-direct band gap electronic configuration transformation arising from a favorable deformation of nanocrystals. The direct band gap structure and the measured short decay time of the luminescence of several tens of ns give rise to a fast operation speed for the device. Thus a method for developing a silicon-based photonic integrated circuit, combining complementary metal-oxide-semiconductor technology functionality and near-infrared light emission, is reported here.

  12. Paramagnetic behavior of Co doped TiO{sub 2} nanocrystals controlled by self-purification mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anitha, B.; Khadar, M. Abdul, E-mail: mabdulkhadar@rediffmail.com; Banerjee, Alok

    Doping in nanocrystals is a challenging process because of the self- purification mechanism which tends to segregate out the dopants resulting in a greater dopant concentration near the surface than at the interior of nanocrystals. In the present work nanocrystals of TiO{sub 2} doped with different atom % of Co were synthesized by peroxide gel method. XRD analysis confirmed the tetragonal anatase structure and HRTEM images showed the rod-like morphology of the samples. Raman modes of anatase phase of TiO{sub 2} along with weak intensity peaks of Co{sub 3}O{sub 4} for higher Co dopant concentrations were observed for the samples.more » EPR measurements revealed the presence of cobalt in +2 oxidation state in the TiO{sub 2} matrix. SQUID measurements indicated paramagnetic behavior of the Co doped TiO{sub 2} nanocrystals. The paramagnetic behavior is attributed to an increased concentration of Co{sup 2+} ions and an increased presence of Co{sub 3}O{sub 4} phase near the surface of the TiO{sub 2} nanocrystals due to self-purification mechanism. - Graphical abstract: Variation of the intensity ratios of XRD peaks as a function of atomic ratio of Co. Inset: variation of structure factor for (101) reflection as a function of atomic ratio of Co. Display Omitted - Highlights: • Co doped TiO{sub 2} nanocrystals were synthesized by peroxide gel method. • HRTEM images showed Co doped TiO{sub 2} nanocrystals to be rod-like. • EPR spectra showed +2 oxidation states for Co in the samples. • Co doped TiO{sub 2} nanocrystals showed paramagnetic behavior.« less

  13. Silver nanocrystal-decorated polyoxometalate single-walled nanotubes as nanoreactors for desulfurization catalysis at room temperature.

    PubMed

    Zhang, Hao; Xu, Xiaobin; Lin, Haifeng; Ud Din, Muhammad Aizaz; Wang, Haiqing; Wang, Xun

    2017-09-14

    Ultrathin nanocrystals generally provide a remarkable catalytic performance due to their high specific surface area and exposure of certain active sites. However, deactivation caused by growth and gathering limits the catalytic application of ultrathin nanocrystals. Here we report Ag nanocrystal-decorated polyoxometalate (Ag-POM) single-walled nanotubes assembled via a concise, surfactant-free soaking method as a new kind of well-defined core-sheath nanoreactor. The diameter of Ag nanocrystals inside polyoxometalate nanotubes can be controlled via simply adjusting the reactant concentration. Ag-POM provided outstanding oxidative desulfurization (ODS) catalytic performance for aromatic sulfocompounds at room temperature. It was suggested that Ag nanocrystals decorated on the inner surface played a key role in adjusting the electronic distribution and enhancing the catalytic activity. The as-prepared Ag-POM nanotubes are promising candidate catalysts with enhanced performance for practical catalytic applications in the gasoline desulfurization industry.

  14. In situ functionalization and PEO coating of iron oxide nanocrystals using seeded emulsion polymerization.

    PubMed

    Kloust, Hauke; Schmidtke, Christian; Feld, Artur; Schotten, Theo; Eggers, Robin; Fittschen, Ursula E A; Schulz, Florian; Pöselt, Elmar; Ostermann, Johannes; Bastús, Neus G; Weller, Horst

    2013-04-16

    Herein we demonstrate that seeded emulsion polymerization is a powerful tool to produce multiply functionalized PEO coated iron oxide nanocrystals. Advantageously, by simple addition of functional surfactants, functional monomers, or functional polymerizable linkers-solely or in combinations thereof-during the seeded emulsion polymerization process, a broad range of in situ functionalized polymer-coated iron oxide nanocrystals were obtained. This was demonstrated by purposeful modulation of the zeta potential of encapsulated iron oxide nanocrystals and conjugation of a dyestuff. Successful functionalization was unequivocally proven by TXRF. Furthermore, the spatial position of the functional groups can be controlled by choosing the appropriate spacers. In conclusion, this methodology is highly amenable for combinatorial strategies and will spur rapid expedited synthesis and purposeful optimization of a broad scope of nanocrystals.

  15. Automated microfluidic platform for systematic studies of colloidal perovskite nanocrystals: towards continuous nano-manufacturing.

    PubMed

    Epps, Robert W; Felton, Kobi C; Coley, Connor W; Abolhasani, Milad

    2017-11-21

    Colloidal organic/inorganic metal-halide perovskite nanocrystals have recently emerged as a potential low-cost replacement for the semiconductor materials in commercial photovoltaics and light emitting diodes. However, unlike III-V and IV-VI semiconductor nanocrystals, studies of colloidal perovskite nanocrystals have yet to develop a fundamental and comprehensive understanding of nucleation and growth kinetics. Here, we introduce a modular and automated microfluidic platform for the systematic studies of room-temperature synthesized cesium-lead halide perovskite nanocrystals. With abundant data collection across the entirety of four orders of magnitude reaction time span, we comprehensively characterize nanocrystal growth within a modular microfluidic reactor. The developed high-throughput screening platform features a custom-designed three-port flow cell with translational capability for in situ spectral characterization of the in-flow synthesized perovskite nanocrystals along a tubular microreactor with an adjustable length, ranging from 3 cm to 196 cm. The translational flow cell allows for sampling of twenty unique residence times at a single equilibrated flow rate. The developed technique requires an average total liquid consumption of 20 μL per spectra and as little as 2 μL at the time of sampling. It may continuously sample up to 30 000 unique spectra per day in both single and multi-phase flow formats. Using the developed plug-and-play microfluidic platform, we study the growth of cesium lead trihalide perovskite nanocrystals through in situ monitoring of their absorption and emission band-gaps at residence times ranging from 100 ms to 17 min. The automated microfluidic platform enables a systematic study of the effect of mixing enhancement on the quality of the synthesized nanocrystals through a direct comparison between single- and multi-phase flow systems at similar reaction time scales. The improved mixing characteristics of the multi-phase flow

  16. Transition‐Metal‐Doped NIR‐Emitting Silicon Nanocrystals

    PubMed Central

    Chandra, Sourov; Masuda, Yoshitake

    2017-01-01

    Abstract Impurity‐doping in nanocrystals significantly affects their electronic properties and diversifies their applications. Herein, we report the synthesis of transition metal (Mn, Ni, Co, Cu)‐doped oleophilic silicon nanocrystals (SiNCs) through hydrolysis/polymerization of triethoxysilane with acidic aqueous metal salt solutions, followed by thermal disproportionation of the resulting gel into a doped‐Si/SiO2 composite that, upon HF etching and hydrosilylation with 1‐n‐octadecene, produces free‐standing octadecyl‐capped doped SiNCs (diameter≈3 to 8 nm; dopant <0.2 atom %). Metal‐doping triggers a red‐shift of the SiNC photoluminescence (PL) of up to 270 nm, while maintaining high PL quantum yield (26 % for Co doping). PMID:28374522

  17. Single-particle mapping of nonequilibrium nanocrystal transformations

    DOE PAGES

    Ye, Xingchen; Jones, Matthew R.; Frechette, Layne B.; ...

    2016-11-18

    Chemists have developed mechanistic insight into numerous chemical reactions by thoroughly characterizing nonequilibrium species. Although methods to probe these processes are well established for molecules, analogous techniques for understanding intermediate structures in nanomaterials have been lacking. For this study, we monitor the shape evolution of individual anisotropic gold nanostructures as they are oxidatively etched in a graphene liquid cell with a controlled redox environment. Short-lived, nonequilibrium nanocrystals are observed, structurally analyzed, and rationalized through Monte Carlo simulations. Understanding these reaction trajectories provides important fundamental insight connecting high-energy nanocrystal morphologies to the development of kinetically stabilized surface features and demonstrates themore » importance of developing tools capable of probing short-lived nanoscale species at the single-particle level.« less

  18. A feasible strategy to balance the crystallinity and specific surface area of metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Q. P.; Xu, X. N.; Liu, Y. T.; Xu, M.; Deng, S. H.; Chen, Y.; Yuan, H.; Yu, F.; Huang, Y.; Zhao, K.; Xu, S.; Xiong, G.

    2017-04-01

    Practical, efficient synthesis of metal oxide nanocrystals with good crystallinity and high specific surface area by a modified polymer-network gel method is demonstrated, taking ZnO nanocrystals as an example. A novel stepwise heat treatment yields significant improvement in crystal quality. Such nanophase materials can effectively degrade common organic dyes under solar radiation and can perform very well in photo-assisted detection of NO2 gas. Other typical metal oxide nanocrystals with good crystallinity and high specific surface area were also synthesized successfully under similar conditions. This work provides a general strategy for the synthesis of metal oxide nanocrystals, balancing the crystallinity and specific surface area.

  19. Flexible, Photopatterned, Colloidal CdSe Semiconductor Nanocrystal Integrated Circuits

    NASA Astrophysics Data System (ADS)

    Stinner, F. Scott

    As semiconductor manufacturing pushes towards smaller and faster transistors, a parallel goal exists to create transistors which are not nearly as small. These transistors are not intended to match the performance of traditional crystalline semiconductors; they are designed to be significantly lower in cost and manufactured using methods that can make them physically flexible for applications where form is more important than speed. One of the developing technologies for this application is semiconductor nanocrystals. We first explore methods to develop CdSe nanocrystal semiconducting "inks" into large-scale, high-speed integrated circuits. We demonstrate photopatterned transistors with mobilities of 10 cm2/Vs on Kapton substrates. We develop new methods for vertical interconnect access holes to demonstrate multi-device integrated circuits including inverting amplifiers with 7 kHz bandwidths, ring oscillators with <10 micros stage delays, and NAND and NOR logic gates. In order to produce higher performance and more consistent transistors, we develop a new hybrid procedure for processing the CdSe nanocrystals. This procedure produces transistors with repeatable performance exceeding 40 cm2/Vs when fabricated on silicon wafers and 16 cm 2/vs when fabricated as part of photopatterned integrated circuits on Kapton substrates. In order to demonstrate the full potential of these transistors, methods to create high-frequency oscillators were developed. These methods allow for transistors to operate at higher voltages as well as provide a means for wirebonding to the Kapton substrate, both of which are required for operating and probing high-frequency oscillators. Simulations of this system show the potential for operation at MHz frequencies. Demonstration of these transistors in this frequency range would open the door for development of CdSe integrated circuits for high-performance sensor, display, and audio applications. To develop further applications of electronics on

  20. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R

    2018-05-09

    Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.

  1. In Situ Preparation of Metal Halide Perovskite Nanocrystal Thin Films for Improved Light-Emitting Devices.

    PubMed

    Zhao, Lianfeng; Yeh, Yao-Wen; Tran, Nhu L; Wu, Fan; Xiao, Zhengguo; Kerner, Ross A; Lin, YunHui L; Scholes, Gregory D; Yao, Nan; Rand, Barry P

    2017-04-25

    Hybrid organic-inorganic halide perovskite semiconductors are attractive candidates for optoelectronic applications, such as photovoltaics, light-emitting diodes, and lasers. Perovskite nanocrystals are of particular interest, where electrons and holes can be confined spatially, promoting radiative recombination. However, nanocrystalline films based on traditional colloidal nanocrystal synthesis strategies suffer from the use of long insulating ligands, low colloidal nanocrystal concentration, and significant aggregation during film formation. Here, we demonstrate a facile method for preparing perovskite nanocrystal films in situ and that the electroluminescence of light-emitting devices can be enhanced up to 40-fold through this nanocrystal film formation strategy. Briefly, the method involves the use of bulky organoammonium halides as additives to confine crystal growth of perovskites during film formation, achieving CH 3 NH 3 PbI 3 and CH 3 NH 3 PbBr 3 perovskite nanocrystals with an average crystal size of 5.4 ± 0.8 nm and 6.4 ± 1.3 nm, respectively, as confirmed through transmission electron microscopy measurements. Additive-confined perovskite nanocrystals show significantly improved photoluminescence quantum yield and decay lifetime. Finally, we demonstrate highly efficient CH 3 NH 3 PbI 3 red/near-infrared LEDs and CH 3 NH 3 PbBr 3 green LEDs based on this strategy, achieving an external quantum efficiency of 7.9% and 7.0%, respectively, which represent a 40-fold and 23-fold improvement over control devices fabricated without the additives.

  2. Optical properties and ensemble characteristics of size purified Silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Miller, Joseph Bradley

    Nanotechnology is at the forefront of current scientific research and nanocrystals are being hailed as the 'artificial' atoms of the 21st century. Semiconducting silicon nanocrystals (SiNCs) are prime candidates for potential commercial applications because of silicon's already ubiquitous presence in the semiconductor industry, nontoxicity and abundance in nature. For realization of these potential applications, the properties and behavior of SiNCs need to be understood and enhanced. In this report, some of the main SiNC synthesis schemes are discussed, including those we are currently experimenting with to create our own SiNCs and the one utilized to create the SiNCs used in this study. The underlying physics that governs the unique behavior of SiNCs is then presented. The properties of the as-produced SiNCs are determined to depend strongly on surface passivation and environment. Size purification, an important aspect of nanomaterial utilization, was successfully performed on our SiNCs though density gradient ultracentrifugation. We demonstrate that the size-purified fractions exhibit an enhanced ability for colloidal self-assembly, with better aligned nanocrystal energy levels which promotes greater photostability in close-packed films and produces a slight increase in photoluminescence (PL) quantum yield. The qualities displayed by the fractions are exploited to form SiNC clusters that exhibit photostable PL. An analysis of SiNC cluster (from individual nanocrystals to collections of more than one thousand) blinking and PL shows an improvement in their PL emitting 'on' times. Pure SiNC films and SiNC-polymer nanocomposites are created and the dependence of their PL on temperature is measured. For such nanocomposites, the coupling between the 'coffee-ring' effect and liquid-liquid phase separation is also examined for ternary mixtures of solvent, polymer and semiconducting nanocrystal. We discover that with the right SiNC-polymer concentration and polymer

  3. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, Emory Ming-Yue

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystalmore » diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag 2Se nanocrystal cation exchange reaction are measured insitu with micro

  4. Light-induced changes in silicon nanocrystal based solar cells: Modification of silicon-hydrogen bonding on silicon nanocrystal surface under illumination

    NASA Astrophysics Data System (ADS)

    Kim, Ka-Hyun; Johnson, Erik V.; Cabarrocas, Pere Roca i.

    2016-07-01

    Hydrogenated polymorphous silicon (pm-Si:H) is a material consisting of a small volume fraction of nanocrystals embedded in an amorphous matrix. pm-Si:H solar cells demonstrate interesting initial degradation behaviors such as rapid initial change in photovoltaic parameters and self-healing after degradation during light-soaking. The precise dynamics of the light-induced degradation was studied in a series of light-soaking experiments under various illumination conditions such as AM1.5G and filtered 570 nm yellow light. Hydrogen effusion experiment before and after light-soaking further revealed that the initial degradation of pm-Si:H solar cells originate from the modification of silicon-hydrogen bonding on the surface of silicon nanocrystals in pm-Si:H.

  5. Bionanocomposite films based on plasticized PLA-PHB/cellulose nanocrystal blends.

    PubMed

    Arrieta, M P; Fortunati, E; Dominici, F; López, J; Kenny, J M

    2015-05-05

    Optically transparent plasticized poly(lactic acid) (PLA) based bionanocomposite films intended for food packaging were prepared by melt blending. Materials were plasticized with 15wt% of acetyl(tributyl citrate) (ATBC) to improve the material processability and to obtain flexibile films. Poly(hydroxybutyrate) (PHB) was used to increase PLA crystallinity. The thermal stability of the PLA-PHB blends was improved by the addition of 5 wt% of cellulose nanocrystals (CNC) or modified cellulose nanocrystals (CNCs) synthesized from microcrystalline cellulose. The combination of ATBC and cellulose nanocrystals, mainly the better dispersed CNCs, improved the interaction between PLA and PHB. Thus, an improvement on the oxygen barrier and stretchability was achieved in PLA-PHB-CNCs-ATBC which also displayed somewhat UV light blocking effect. All bionanocomposite films presented appropriate disintegration in compost suggesting their possible applications as biodegradable packaging materials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Nanocrystals-Related Synthesis, Assembly, and Energy Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Bo; Yu, Williams; Seo, Jaetae

    2012-01-01

    During the past decades, nanocrystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nanomaterials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nanomaterials is still an important goal in modern materials physics and chemistry. Especially, the world s demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate changemore » due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nanocrystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nanomaterials to provide the authors with a platform and readers with the latest achievements of nanocrystals-related synthesis, assembly, and energy applications.« less

  7. Technology assessment and the Food and Drug Administration

    NASA Technical Reports Server (NTRS)

    Kaplan, A. H.; Becker, R. H.

    1972-01-01

    The statutory standards underlying the activities of the FDA, and the problems the Agency faces in decision making are discussed from a legal point of view. The premarketing clearance of new drugs and of food additives, the two most publicized and criticized areas of FDA activity, are used as illustrations. The importance of statutory standards in technology assessment in a regulatory setting is developed. The difficulties inherent in the formulation of meaningful standards are recognized. For foods, the words of the statute are inadequate, and for drugs, a statutory recognition of the various other objectives would be useful to the regulator and the regulated.

  8. Radiation damage and nanocrystal formation in uranium-niobium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Wang, S. X.; Wang, L. M.; Ewing, R. C.

    2001-07-01

    Two uranium-niobium titanates, U 2.25Nb 1.90Ti 0.32O 9.8 and Nb 2.75U 1.20Ti 0.36O 10, formed during the synthesis of brannnerite (UTi 2O 6), a minor phase in titanate-based ceramics investigated for plutonium immobilization. These uranium titanates were subjected to 800 keV Kr 2+ irradiation from 30 to 973 K. The critical amorphization dose of the U-rich and Nb-rich titanates at room temperature were 4.72×10 17 and 5×10 17 ions/ m2, respectively. At elevated temperature, the critical amorphization dose increases due to dynamic thermal annealing. The critical amorphization temperature for both Nb-rich and U-rich titanates is ˜933 K under a 800 keV Kr 2+ irradiation. Above the critical amorphization temperature, nanocrystals with an average size of ˜15 nm were observed. The formation of nanocrystals is due to epitaxial recrystallization. At higher temperatures, an ion irradiation-induced nucleation-growth mechanism also contributes to the formation of nanocrystals.

  9. Prospects of nanoscience with nanocrystals

    DOE PAGES

    Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu; ...

    2015-01-22

    Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very fewmore » semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. In addition, new phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less

  10. Prospects of nanoscience with nanocrystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu

    Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today’s strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. The performance of inorganic NC-based photovoltaic and light-emitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very fewmore » semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. In addition, new phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In this Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less

  11. Health Technology Assessment and Its Use in Drug Policies in China.

    PubMed

    Zhen, Xuemei; Sun, Xueshan; Dong, Hengjin

    2018-05-02

    To review drug policies, health technology assessment (HTA), and HTA's use in drug policies in China, to further improve the quality and efficiency of drugs. This study draws on multiple methods. A systematic review of the literature, review of Chinese government documents and statistical handbooks, and authors' experiences in drug policies and HTA in China were combined to achieve the objective. Of 571 studies identified in the initial search, 14 eligible articles (6 English, 8 Chinese) were finally included. On the Web site of the National Health and Family Planning Commission, the National Development and Reform Commission, and the Ministry of Human Resources and Social Security, we found that HTA or pharmacoeconomics evaluation is mentioned in recent years and its frequency has been increasing; however, there was not one hit about HTA or PE on the Web site of China Food and Drug Administration. The decision makers have realized the importance and value of HTA and have tried to integrate HTA into drug policies and regulations. However, the application of HTA findings to drug policymaking is not yet widespread and there are a number of challenges in using HTA in China. Therefore, it is necessary to establish a national HTA commission and develop pharmacoeconomics guidelines to support the use of HTA in decision making. Moreover, the most important steps are to encourage technology innovation, groom more HTA experts, and build reliable databases in China. Copyright © 2018. Published by Elsevier Inc.

  12. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand

    PubMed Central

    Park, Jeung Hun; Steingart, Daniel A.; Kodambaka, Suneel; Ross, Frances M.

    2017-01-01

    We develop a solution-based nanoscale patterning technique for site-specific deposition and dissolution of metallic nanocrystals. Nanocrystals are grown at desired locations by electron beam–induced reduction of metal ions in solution, with the ions supplied by dissolution of a nearby electrode via an applied potential. The nanocrystals can be “erased” by choice of beam conditions and regrown repeatably. We demonstrate these processes via in situ transmission electron microscopy using Au as the model material and extend to other metals. We anticipate that this approach can be used to deposit multicomponent alloys and core-shell nanostructures with nanoscale spatial and compositional resolutions for a variety of possible applications. PMID:28706992

  13. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A.P.; Colvin, V.L.

    1998-05-12

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed. 10 figs.

  14. Semiconductor nanocrystals covalently bound to solid inorganic surfaces using self-assembled monolayers

    DOEpatents

    Alivisatos, A. Paul; Colvin, Vicki L.

    1998-01-01

    Methods are described for attaching semiconductor nanocrystals to solid inorganic surfaces, using self-assembled bifunctional organic monolayers as bridge compounds. Two different techniques are presented. One relies on the formation of self-assembled monolayers on these surfaces. When exposed to solutions of nanocrystals, these bridge compounds bind the crystals and anchor them to the surface. The second technique attaches nanocrystals already coated with bridge compounds to the surfaces. Analyses indicate the presence of quantum confined clusters on the surfaces at the nanolayer level. These materials allow electron spectroscopies to be completed on condensed phase clusters, and represent a first step towards synthesis of an organized assembly of clusters. These new products are also disclosed.

  15. Shape-Controlled Synthesis of Isotopic Yttrium-90-Labeled Rare Earth Fluoride Nanocrystals for Multimodal Imaging.

    PubMed

    Paik, Taejong; Chacko, Ann-Marie; Mikitsh, John L; Friedberg, Joseph S; Pryma, Daniel A; Murray, Christopher B

    2015-09-22

    Isotopically labeled nanomaterials have recently attracted much attention in biomedical research, environmental health studies, and clinical medicine because radioactive probes allow the elucidation of in vitro and in vivo cellular transport mechanisms, as well as the unambiguous distribution and localization of nanomaterials in vivo. In addition, nanocrystal-based inorganic materials have a unique capability of customizing size, shape, and composition; with the potential to be designed as multimodal imaging probes. Size and shape of nanocrystals can directly influence interactions with biological systems, hence it is important to develop synthetic methods to design radiolabeled nanocrystals with precise control of size and shape. Here, we report size- and shape-controlled synthesis of rare earth fluoride nanocrystals doped with the β-emitting radioisotope yttrium-90 ((90)Y). Size and shape of nanocrystals are tailored via tight control of reaction parameters and the type of rare earth hosts (e.g., Gd or Y) employed. Radiolabeled nanocrystals are synthesized in high radiochemical yield and purity as well as excellent radiolabel stability in the face of surface modification with different polymeric ligands. We demonstrate the Cerenkov radioluminescence imaging and magnetic resonance imaging capabilities of (90)Y-doped GdF3 nanoplates, which offer unique opportunities as a promising platform for multimodal imaging and targeted therapy.

  16. Information technology-based approaches to reducing repeat drug exposure in patients with known drug allergies.

    PubMed

    Cresswell, Kathrin M; Sheikh, Aziz

    2008-05-01

    There is increasing interest internationally in ways of reducing the high disease burden resulting from errors in medicine management. Repeat exposure to drugs to which patients have a known allergy has been a repeatedly identified error, often with disastrous consequences. Drug allergies are immunologically mediated reactions that are characterized by specificity and recurrence on reexposure. These repeat reactions should therefore be preventable. We argue that there is insufficient attention being paid to studying and implementing system-based approaches to reducing the risk of such accidental reexposure. Drawing on recent and ongoing research, we discuss a number of information technology-based interventions that can be used to reduce the risk of recurrent exposure. Proven to be effective in this respect are interventions that provide real-time clinical decision support; also promising are interventions aiming to enhance patient recognition, such as bar coding, radiofrequency identification, and biometric technologies.

  17. Au/ZnS core/shell nanocrystals as an efficient anode photocatalyst in direct methanol fuel cells.

    PubMed

    Chen, Wei-Ta; Lin, Yin-Kai; Yang, Ting-Ting; Pu, Ying-Chih; Hsu, Yung-Jung

    2013-10-04

    Au/ZnS core/shell nanocrystals with controllable shell thicknesses were synthesized using a cysteine-assisted hydrothermal method. Incorporating Au/ZnS nanocrystals into the traditional Pt-catalyzed half-cell reaction led to a 43.3% increase in methanol oxidation current under light illumination, demonstrating their promising potential for metal/semiconductor hybrid nanocrystals as the anode photocatalyst in direct methanol fuel cells.

  18. High symmetric 18-facet polyhedron nanocrystals of Cu7S4 with a hollow nanocage.

    PubMed

    Cao, Hongliang; Qian, Xuefeng; Wang, Cheng; Ma, Xiaodong; Yin, Jie; Zhu, Zikang

    2005-11-23

    On the basis of Kirkendall Effect, high symmetric 18-facet polyhedral nanocrystals of Cu7S4 with a hollow nanocage could be converted from cubic nanocrystals of Cu2O in an aqueous media. The presence of organic additives makes the surface energy of {110} smaller than those of {100} and {111}. The growth of nanocrystals along the normal direction of highest energy surface {100} leads to the formation of a 18-facet polyhedron.

  19. Synthesis, Deposition, and Microstructure Development of Thin Films Formed by Sulfidation and Selenization of Copper Zinc Tin Sulfide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Chernomordik, Boris David

    Significant reduction in greenhouse gas emission and pollution associated with the global power demand can be accomplished by supplying tens-of-terawatts of power with solar cell technologies. No one solar cell material currently on the market is poised to meet this challenge due to issues such as manufacturing cost, material shortage, or material toxicity. For this reason, there is increasing interest in efficient light-absorbing materials that are comprised of abundant and non-toxic elements for thin film solar cell. Among these materials are copper zinc tin sulfide (Cu2ZnSnS4, or CZTS), copper zinc tin selenide (Cu2ZnSnSe4, or CZTSe), and copper zinc tin sulfoselenide alloys [Cu2ZnSn(SxSe1-x )4, or CZTSSe]. Laboratory power conversion efficiencies of CZTSSe-based solar cells have risen to almost 13% in less than three decades of research. Meeting the terawatt challenge will also require low cost fabrication. CZTSSe thin films from annealed colloidal nanocrystal coatings is an example of solution-based methods that can reduce manufacturing costs through advantages such as high throughput, high material utilization, and low capital expenses. The film microstructure and grain size affects the solar cell performance. To realize low cost commercial production and high efficiencies of CZTSSe-based solar cells, it is necessary to understand the fundamental factors that affect crystal growth and microstructure evolution during CZTSSe annealing. Cu2ZnSnS4 (CZTS) nanocrystals were synthesized via thermolysis of single-source cation and sulfur precursors copper, zinc and tin diethyldithiocarbamates. The average nanocrystal size could be tuned between 2 nm and 40 nm, by varying the synthesis temperature between 150 °C and 340 °C. The synthesis is rapid and is completed in less than 10 minutes. Characterization by X-ray diffraction, Raman spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy confirm that the nanocrystals are nominally

  20. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers.

    PubMed

    Janas, Christine; Mast, Marc-Phillip; Kirsamer, Li; Angioni, Carlo; Gao, Fiona; Mäntele, Werner; Dressman, Jennifer; Wacker, Matthias G

    2017-06-01

    The dispersion releaser (DR) is a dialysis-based setup for the analysis of the drug release from nanosized drug carriers. It is mounted into dissolution apparatus2 of the United States Pharmacopoeia. The present study evaluated the DR technique investigating the drug release of the model compound flurbiprofen from drug solution and from nanoformulations composed of the drug and the polymer materials poly (lactic acid), poly (lactic-co-glycolic acid) or Eudragit®RSPO. The drug loaded nanocarriers ranged in size between 185.9 and 273.6nm and were characterized by a monomodal size distribution (PDI<0.1). The membrane permeability constants of flurbiprofen were calculated and mathematical modeling was applied to obtain the normalized drug release profiles. For comparing the sensitivities of the DR and the dialysis bag technique, the differences in the membrane permeation rates were calculated. Finally, different formulation designs of flurbiprofen were sensitively discriminated using the DR technology. The mechanism of drug release from the nanosized carriers was analyzed by applying two mathematical models described previously, the reciprocal powered time model and the three parameter model. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Phase Stability and Transformations in Vanadium Oxide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Bergerud, Amy Jo

    Vanadium oxides are both fascinating and complex, due in part to the many compounds and phases that can be stabilized as well as the phase transformations which occur between them. The metal to insulator transitions (MITs) that take place in vanadium oxides are particularly interesting for both fundamental and applied study as they can be induced by a variety of stimuli ( i.e., temperature, pressure, doping) and utilized in many applications (i.e., smart windows, sensors, phase change memory). Nanocrystals also tend to demonstrate interesting phase behavior, due in part to the enhanced influence of surface energy on material thermodynamics. Vanadium oxide nanocrystals are thus expected to demonstrate very interesting properties in regard to phase stability and phase transformations, although synthesizing vanadium oxides in nanocrystal form remains a challenge. Vanadium sesquioxide (V2O3) is an example of a material that undergoes a MIT. For decades, the low temperature monoclinic phase and high temperature corundum phase were the only known crystal structures of V2O3. However, in 2011, a new metastable polymorph of V2O3 was reported with a cubic, bixbyite crystal structure. In Chapter 2, a colloidal route to bixbyite V2O 3 nanocrystals is presented. In addition to being one of the first reported observations of the bixbyite phase in V2O3, it is also one of the first successful colloidal syntheses of any of the vanadium oxides. The nanocrystals possess a flower-like morphology, the size and shape of which are dependent on synthesis time and temperature, respectively. An aminolysis reaction mechanism is determined from Fourier transform infrared spectroscopy data and the bixbyite crystal structure is confirmed by Rietveld refinement of X-ray diffraction (XRD) data. Phase stability is assessed in both air and inert environments, confirming the metastable nature of the material. Upon heating in an inert atmosphere above 700°C, the nanocrystals irreversibly transform

  2. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals

    DOE PAGES

    Johns, Robert W.; Bechtel, Hans A.; Runnerstrom, Evan L.; ...

    2016-05-13

    Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light-matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sammore » ple heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm -1 in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres.« less

  3. Transparent 'solution' of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films.

    PubMed

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Wu, Xi; Zeng, Xiao-Fei; Zhang, Cong; Zou, Hai-Kui; Chen, Jian-Feng

    2015-05-15

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1-2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells.

  4. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    PubMed Central

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371

  5. Cellulose nanocrystal from pomelo (C. Grandis osbeck) albedo: Chemical, morphology and crystallinity evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zain, Nor Fazelin Mat; Yusop, Salma Mohamad; Ahmad, Ishak

    Citrus peel is one of the under-utilized waste materials that have potential in producing a valuable fibre, which are cellulose and cellulose nanocrystal. Cellulose was first isolated from pomelo (C. Grandis Osbeck) albedo by combination of alkali treatment and bleaching process, followed by acid hydrolysis (65% H{sub 2}SO{sub 4}, 45 °C, 45min) to produce cellulose nanocrystal. The crystalline, structural, morphological and chemical properties of both materials were studied. Result reveals the crystallinity index obtained from X-ray diffraction for cellulose nanocrystal was found higher than extracted cellulose with the value of 60.27% and 57.47%, respectively. Fourier transform infrared showed that themore » chemical treatments removed most of the hemicellulose and lignin from the pomelo albedo fibre. This has been confirmed further by SEM and TEM for their morphological studies. These results showed that cellulose and cellulose nanocrystal were successfully obtained from pomelo albedo and might be potentially used in producing functional fibres for food application.« less

  6. The application of ink-jet technology for the coating and loading of drug-eluting stents.

    PubMed

    Tarcha, Peter J; Verlee, Donald; Hui, Ho Wah; Setesak, Jeff; Antohe, Bogdan; Radulescu, Delia; Wallace, David

    2007-10-01

    The combination of drugs with devices, where locally delivered drugs elute from the device, has demonstrated distinct advantages over therapies involving systemic or local drugs and devices administered separately. Drug-eluting stents are most notable. Ink jet technology offers unique advantages for the coating of very small medical devices with drugs and drug-coating combinations, especially in cases where the active pharmaceutical agent is very expensive to produce and wastage is to be minimized. For medical devices such as drug-containing stents, the advantages of ink-jet technology result from the controllable and reproducible nature of the droplets in the jet stream and the ability to direct the stream to exact locations on the device surfaces. Programmed target deliveries of 100 microg drug, a typical dose for a small stent, into cuvettes gave a standard deviation (SD) of dose of 0.6 microg. Jetting on coated, uncut stent tubes exhibited 100% capture efficiency with a 1.8 microg SD for a 137 microg dose. In preliminary studies, continuous jetting on stents can yield efficiencies up to 91% and coefficients of variation as low as 2%. These results indicate that ink-jet technology may provide significant improvement in drug loading efficiency over conventional coating methods.

  7. The hemocompatibility of oxidized diamond nanocrystals for biomedical applications.

    PubMed

    Li, Hung-Cheng; Hsieh, Feng-Jen; Chen, Ching-Pin; Chang, Ming-Yao; Hsieh, Patrick C H; Chen, Chia-Chun; Hung, Shain-Un; Wu, Che-Chih; Chang, Huan-Cheng

    2013-10-25

    Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities. Cell viability assays with human primary endothelial cells suggested that the oxidized HPHT-NDs (dimensions of 35-500 nm) are non-cytotoxic. No significant elevation of the inflammatory cytokine levels of IL-1β and IL-6 was detected in mice after intravenous injection of the nanocrystals in vivo. Using a hindlimb-ischemia mouse model, we demonstrated that 35-nm NDs after covalent conjugation with polyarginine are useful as a drug delivery vehicle of heparin for prolonged anticoagulation treatment. The present study lays a solid foundation for further therapeutic applications of NDs in biomedicine.

  8. Safety assessments of subcutaneous doses of aragonite calcium carbonate nanocrystals in rats

    NASA Astrophysics Data System (ADS)

    Jaji, Alhaji Zubair; Zakaria, Zuki Abu Bakar; Mahmud, Rozi; Loqman, Mohamad Yusof; Hezmee, Mohamad Noor Mohamad; Abba, Yusuf; Isa, Tijani; Mahmood, Saffanah Khuder

    2017-05-01

    Calcium carbonate nanoparticles have shown promising potentials in the delivery of drugs and metabolites. There is however, a paucity of information on the safety of their intentional or accidental over exposures to biological systems and general health safety. To this end, this study aims at documenting information on the safety of subcutaneous doses of biogenic nanocrystals of aragonite polymorph of calcium carbonate derived from cockle shells (ANC) in Sprague-Dawley (SD) rats. ANC was synthesized using the top-down method, characterized using the transmission electron microscopy and field emission scanning electron microscope and its acute and repeated dose 28-day trial toxicities were evaluated in SD rats. The results showed that the homogenous 30 ± 5 nm-sized spherical pure aragonite nanocrystals were not associated with mortality in the rats. Severe clinical signs and gross and histopathological lesions, indicating organ toxicities, were recorded in the acute toxicity (29,500 mg/m2) group and the high dose (5900 mg/m2) group of the repeated dose 28-day trial. However, the medium- (590 mg/m2 body weight) and low (59 mg/m2)-dose groups showed moderate to mild lesions. The relatively mild lesions observed in the low toxicity dosage group marked the safety margin of ANC in SD rats. It was concluded from this study that the toxicity of CaCO3 was dependent on the particulate size (30 ± 5 nm) and concentration and the route of administration used.

  9. Hybrid nanocomposites of CdSe nanocrystals distributed in complexing thiophene-based copolymers.

    PubMed

    Aldakov, Dmitry; Jiu, Tonggang; Zagorska, Malgorzata; de Bettignies, Rémi; Jouneau, Pierre-Henri; Pron, Adam; Chandezon, Frédéric

    2010-07-21

    Two types of conjugated polymers were prepared with the goal to blend them with rod-like CdSe nanocrystals. The polymers of the first type were synthesized through copolymerization of 3-octylthiophene and 3-methylene-ethylcarboxylate-thiophene to give polythiophene with solubilizing alkyl groups and methylene ester functional groups (PE series). Post-polymerization hydrolysis of the ester type polymers yielded acid-type ones (PA series). Photoluminescence (PL) quenching in these polymers induced by their titration with nanocrystals solution was chosen as a measure of the polymer-nanocrystal interactions. PL of polyacids turned out to be more efficiently quenched as compared to the case of polymers with ester groups which was interpreted as an indication of better electronic communication between the hybrid components. Infrared (IR) spectroscopy confirmed efficient coordination of the carboxylic groups to CdSe. Voltammetric studies combined with UV-vis spectroelectrochemistry enabled the determination of energy levels alignment of the molecular composite components which turned out to be of staggered type-appropriate for photovoltaic applications. The obtained blends of polyacids with CdSe nanocrystals, when studied by transmission electron microscopy (TEM), revealed the presence of an interpenetrating network in which nanorods were homogeneously distributed within the polymer matrix without any indication of agglomerates formation both on the film surface and in the cross-section. Blends with polymers containing ester groups were less homogeneous which could be explained by weaker polymer-nanocrystals interactions. Photovoltaic cells based on these hybrid materials are also discussed.

  10. A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Ostrowski, Andrzej; Malinowska, Karolina; Herbich, Jerzy; Golec, Barbara; Wielgus, Ireneusz; Pron, Adam

    2014-05-19

    A convenient method of the preparation of alloyed quaternary Ag-In-Zn-S nanocrystals is elaborated, in which a multicomponent mixture of simple and commercially available precursors, namely, silver nitrate, indium(III) chloride, zinc stearate, 1-dodecanethiol, and sulfur, is used with 1-octadecene as a solvent. The formation of quaternary nanocrystals necessitates the use of an auxiliary sulfur precursor, namely, elemental sulfur dissolved in oleylamine, in addition to 1-dodecanethiol. Without this additional precursor binary ZnS nanocrystals are formed. The optimum reaction temperature of 180 °C was also established. In these conditions shape, size, and composition of the resulting nanocrystals can be adjusted in a controlled manner by changing the molar ratio of the precursors in the reaction mixture. For low zinc stearate contents anisotropic rodlike (ca.3 nm x 10 nm) and In-rich nanocrystals are obtained. This is caused by a significantly higher reactivity of the indium precursor as compared to the zinc one. With increasing zinc precursor content the reactivities of both precursors become more balanced, and the resulting nanocrystals are smaller (1.5-4.0 nm) and become Zn-rich as evidenced by transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometry investigations. Simultaneous increases in the zinc and sulfur precursor content result in an enlargement of nanocrystals (2.5 to 5.0 nm) and further increase in the molar ZnS content (up to 0.76). The prepared nanoparticles show stable photoluminescence with the quantum yield up to 37% for In and Zn-rich nanocrystals. Their hydrodynamic diameter in toluene dispersion, determined by dynamic light scattering, is roughly twice larger than the diameter of their inorganic core.

  11. Chronotherapeutically Modulated Pulsatile System of Valsartan Nanocrystals-an In Vitro and In Vivo Evaluation.

    PubMed

    Biswas, Nikhil; Kuotsu, Ketousetuo

    2017-02-01

    The objective was to improve the dissolution of valsartan by developing valsartan nanocrystals and design a pulsed release system for the chronotherapy of hypertension. Valsartan nanocrystals were prepared by sonication-anti-solvent precipitation method and lyophilized to obtain dry powder. Nanocrystals were directly compressed to minitablets and coated to achieve pulsatile valsartan release. Pharmacokinetic profiles of optimized and commercial formulations were compared in rabbit model. The mean particle size and PDI of the optimized nanocrystal batch V4 was reported as 211 nm and 0.117, respectively. DSC and PXRD analysis confirmed the crystalline nature of valsartan in nanocrystals. The dissolution extent of valsartan was markedly enhanced with both nanocrystals and minitablets as compared to pure valsartan irrespective of pH of the medium. Core minitablet V4F containing 5% w/w polyplasdone XL showed quickest release of valsartan, over 90% within 15 min. Coated formulation CV4F showed two spikes in release profile after successive lag times of 235 and 390 min. The pharmacokinetic study revealed that the bioavailability of optimized formulation (72.90%) was significantly higher than the commercial Diovan tablet (30.18%). The accelerated stability studies showed no significant changes in physicochemical properties, release behavior, and bioavialability of CV4F formulation. The formulation was successfully designed to achieve enhanced bioavailability and dual pulsatile release. Bedtime dosing will more efficiently control the circadian spikes of hypertension in the morning.

  12. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.

    PubMed

    Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D

    2008-05-01

    The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.

  13. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals.

    PubMed

    Lounis, Sebastien D; Runnerstrom, Evan L; Llordés, Anna; Milliron, Delia J

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  14. Spectral Selectivity of Plasmonic Interactions between Individual Up-Converting Nanocrystals and Spherical Gold Nanoparticles.

    PubMed

    Piątkowski, Dawid; Schmidt, Mikołaj K; Twardowska, Magdalena; Nyk, Marcin; Aizpurua, Javier; Maćkowski, Sebastian

    2017-08-04

    We experimentally demonstrate strong spectral selectivity of plasmonic interaction that occurs between α-NaYF₄:Er 3+ /Yb 3+ nanocrystals, which feature two emission bands, and spherical gold nanoparticles, with plasmon frequency resonant with one of the emission bands. Spatially-resolved luminescence intensity maps acquired for individual nanocrystals, together with microsecond luminescence lifetime images, show two qualitatively different effects that result from the coupling between plasmon excitations in metallic nanoparticles and emitting states of the nanocrystals. On the one hand, we observe nanocrystals, whose emission intensity is strongly enhanced for both resonant and non-resonant bands with respect to the plasmon resonance. Importantly, this increase is accompanied with shortening of luminescence decays times. In contrast, a significant number of nanocrystals exhibits almost complete quenching of the emission resonant with the plasmon resonance of gold nanoparticles. Theoretical analysis indicates that such an effect can occur for emitters placed at distances of about 5 nm from gold nanoparticles. While under these conditions, both transitions experience significant increases of the radiative emission rates due to the Purcell effect, the non-radiative energy transfer between resonant bands results in strong quenching, which in that situation nullifies the enhancement.

  15. Solvent-like ligand-coated ultrasmall cadmium selenide nanocrystals: strong electronic coupling in a self-organized assembly.

    PubMed

    Lawrence, Katie N; Johnson, Merrell A; Dolai, Sukanta; Kumbhar, Amar; Sardar, Rajesh

    2015-07-21

    Strong inter-nanocrystal electronic coupling is a prerequisite for delocalization of exciton wave functions and high conductivity. We report 170 meV electronic coupling energy of short chain poly(ethylene glycol) thiolate-coated ultrasmall (<2.5 nm in diameter) CdSe semiconductor nanocrystals (SNCs) in solution. Cryo-transmission electron microscopy analysis showed the formation of a pearl-necklace assembly of nanocrystals in solution with regular inter-nanocrystal spacing. The electronic coupling was studied as a function of CdSe nanocrystal size where the smallest nanocrystals exhibited the largest coupling energy. The electronic coupling in spin-cast thin-film (<200 nm in thickness) of poly(ethylene glycol) thiolate-coated CdSe SNCs was studied as a function of annealing temperature, where an unprecedentedly large, ∼400 meV coupling energy was observed for 1.6 nm diameter SNCs, which were coated with a thin layer of poly(ethylene glycol) thiolates. Small-angle X-ray scattering measurements showed that CdSe SNCs maintained an order array inside the films. The strong electronic coupling of SNCs in a self-organized film could facilitate the large-scale production of highly efficient electronic materials for advanced optoelectronic device application.

  16. Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals

    DOE PAGES

    Gu, X. Wendy; Ye, Xingchen; Koshy, David M.; ...

    2017-02-27

    Large, freestanding membranes with remarkably high elastic modulus ( > 10 GPa) have been fabricated through the self-Assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures,which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-Assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. We used thin-film buckling and nanoindentation tomore » evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ~6-19 GPa, and hardness of ~120-170 MPa. We also found that rapidly self-Assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.« less

  17. Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals

    NASA Astrophysics Data System (ADS)

    Gu, X. Wendy; Ye, Xingchen; Koshy, David M.; Vachhani, Shraddha; Hosemann, Peter; Alivisatos, A. Paul

    2017-03-01

    Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures, which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. Thin-film buckling and nanoindentation are used to evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ˜6-19 GPa, and hardness of ˜120-170 MPa. We find that rapidly self-assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.

  18. Novel green synthetic strategy to prepare ZnO nanocrystals using rambutan (Nephelium lappaceum L.) peel extract and its antibacterial applications.

    PubMed

    Yuvakkumar, R; Suresh, J; Nathanael, A Joseph; Sundrarajan, M; Hong, S I

    2014-08-01

    In the present investigation, we report a sustainable novel green synthetic strategy to synthesis zinc oxide nanocrystals. This is the first report on sustainable biosynthesis of zinc oxide nanocrystals employing Nephelium lappaceum L., peel extract as a natural ligation agent. Green synthesis of zinc oxide nanocrystals was carried out via zinc-ellagate complex formation using rambutan peel wastes. The successful formation of zinc oxide nanocrystals was confirmed employing standard characterisation studies. A possible mechanism for the formation of ZnO nanocrystals with rambutan peel extract was also proposed. The prepared ZnO nanocrystals were coated on the cotton fabric and their antibacterial activity were analyzed. ZnO nanocrystals coated cotton showed good antibacterial activity towards Escherichia coli (E. coli), gram negative bacteria and Staphylococcus aureus (S. aureus), gram positive bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Size and shape dependence of electronic and optical excitations in TiO2 nanocrystals

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol; Ogut, Serdar

    2013-03-01

    We present results for the electronic structures, quasi-particle gaps, and the absorption spectra of TiO2 nanocrystals of both rutile and anatase phases with various shapes, sizes, and surfaces exposed. We study the size and shape dependences of these electronic and optical properties, computed both within time-dependent density functional theory and many-body perturbation methods such as the GW-BSE, using appropriately passivated nanocrystals to mimic bulk termination. Surface effects are examined by using nanocrystals of various sizes with particular surfaces, such as (110) in rutile and (101) in anatase phases, exposed. We interpret the resulting optical absorption spectra of these nanocrystals in terms of the bulk spectra and compare them with predictions from classical Mie-Gans theory. This work was supported by the DOE Grant No. DE-FG02-09ER16072.

  20. Composition-Dependent Energy Splitting between Bright and Dark Excitons in Lead Halide Perovskite Nanocrystals.

    PubMed

    Chen, Lan; Li, Bin; Zhang, Chunfeng; Huang, Xinyu; Wang, Xiaoyong; Xiao, Min

    2018-03-14

    Perovskite semiconductor nanocrystals with different compositions have shown promise for applications in light-emitting devices. Dark excitonic states may suppress light emission from such nanocrystals by providing an additional nonradiative recombination channel. Here, we study the composition dependence of dark exciton dynamics in nanocrystals of lead halides by time-resolved photoluminescence spectroscopy at cryogenic temperatures. The presence of a spin-related dark state is revealed by magneto-optical spectroscopy. The energy splitting between bright and dark states is found to be highly sensitive to both halide elements and organic cations, which is explained by considering the effects of size confinement and charge screening, respectively, on the exchange interaction. These findings suggest the possibility of manipulating dark exciton dynamics in perovskite semiconductor nanocrystals by composition engineering, which will be instrumental in the design of highly efficient light-emitting devices.