Science.gov

Sample records for nanocrystalline dye-sensitized solar

  1. Dye-sensitized solar cells based on nanocrystalline titania electrodes made at various sintering temperatures.

    PubMed

    Stathatos, Elias; Lianos, Panagiotis

    2007-02-01

    Dye-sensitized solar cells were made by using nanocrystalline titania deposited on Fluorine-doped SnO2 (FTO) electrodes. Nanocrystalline titania deposition was made by the sol-gel method using reverse micelles of bis(2-ethylhexyl) sulfosuccinate sodium salt (AOT) in cyclohexane as reaction medium. This surfactant could be easily removed from the deposited nanocomposite organic-inorganic film by simple rinsing with distilled water, without affecting titania adherence on FTO electrode. These nanocrystalline titania electrodes were used to make solar cells either without sintering or after sintering at various temperatures. Sintering extensively affected short circuit current but had small effect on device open-circuit voltage. Thus satisfactory photovoltaic response could be obtained even with devices made of non-sintered (room-temperature) titania. PMID:17450794

  2. Preparation of mesoporous nanocrystalline anatase TiO2 for dye sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Jacob, K. Stanly; Abraham, P. A.; Panicker, N. Rani; Pramanik, N. C.

    2014-01-01

    Dye sensitized solar cell (DSSC) introduced by Prof.M.Gratzel is a low cost alternative to the existing silicon based solar cells. Solar light conversion efficiency of the current DSSC can be further improved by replacing the conventional anatase TiO2 having lesser surface area with mesoporous high surface area anatase TiO2. This paper describes the sol-gel synthesis of mesoporous high surface area nanocrystalline anatase TiO2 by the controlled hydrolysis and condensation of titanium isopropoxide followed by heat treatment. XRD reveals that xerogel heat treated at 500°C is phase pure anatase. Crystallite size of prepared anatase TiO2 calculated using Scherrer equation was found to be 15 nm. BET analysis of prepared anatase TiO2 exhibited relatively high specific surface area of 97 m2/g, which is found to be almost double to that of the anatase TiO2 generally used for DSSC photo anode fabrication. The pore size distribution (BJH plot) also revealed the mesoporous nature of prepared anatase TiO2 having an average pore size of 7.4 nm.

  3. Photochemical solar cells based on dye-sensitization of nanocrystalline TiO{sub 2}

    SciTech Connect

    Deb, S.K.; Ellingson, R.; Ferrere, S.; Frank, A.J.; Gregg, B.A.; Nozik, A.J.; Park, N.; Schlichthoerl, G.

    1998-09-01

    A photoelectrochemical solar cell that is based on the dye-sensitization of thin nanocrystalline films of TiO{sub 2} (anatase) nanoparticles in contact with a non-aqueous liquid electrolyte is described. The cell, fabricated at NREL, shows a conversion efficiency of {approximately} 9.2% at AM1.5, which approaches the best reported value of 10--11% by Graetzel at EPFL in Lausanne, Switzerland. The femtosecond (fs) pump-probe spectroscopy has been used to time resolve the injection of electrons into the conduction band of nanocrystalline TiO{sub 2} films under ambient conditions following photoexcitation of the adsorbed Ru(II)-complex dye. The measurement indicates an instrument-limited {minus}50 fs upper limit on the electron injection time. The authors also report the sensitization of nanocrystalline TiO{sub 2} by a novel iron-based dye, CIS-[Fe{sup II}(2,2{prime}-bipyridine-4,4,{prime}-dicarboxylic acid){sub 2}(CN){sub 2}], a chromophore with an extremely short-lived, nonemissive excited state. The dye also exhibits a unique band selective sensitization through one of its two absorption bands. The operational principle of the device has been studied through the measurement of electric field distribution within the device structure and studies on the pH dependence of dye-redox potential. The incorporation of WO{sub 3}-based electrochromic layer into this device has led to a novel photoelectrochromic device structure for smart window application.

  4. Dye Sensitized Solar Cells

    PubMed Central

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO2, ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  5. Dye sensitized solar cells.

    PubMed

    Wei, Di

    2010-01-01

    Dye sensitized solar cell (DSSC) is the only solar cell that can offer both the flexibility and transparency. Its efficiency is comparable to amorphous silicon solar cells but with a much lower cost. This review not only covers the fundamentals of DSSC but also the related cutting-edge research and its development for industrial applications. Most recent research topics on DSSC, for example, applications of nanostructured TiO(2), ZnO electrodes, ionic liquid electrolytes, carbon nanotubes, graphene and solid state DSSC have all been included and discussed. PMID:20480003

  6. Exciton annihilation in dye-sensitized nanocrystalline semiconductor films

    NASA Astrophysics Data System (ADS)

    Namekawa, Akihiro; Katoh, Ryuzi

    2016-08-01

    Exciton annihilation in dye-sensitized nanocrystalline semiconductor (Al2O3) films has been studied through laser-induced fluorescence spectroscopy. The relative quantum yield of the fluorescence decreases with increasing excitation light intensity, the indication being that exciton annihilation occurred. The rate constants of the annihilation were estimated for three dyes, N719, D149, and MK2, that are known to be sensitizing dyes for efficient dye-sensitized solar cells. The hopping time between dye molecules and the diffusion length of excitons within their lifetime were also estimated to facilitate discussion of the relevance of exciton annihilation to primary processes in dye-sensitized solar cells.

  7. Microwave-assisted synthesis of nanocrystalline TiO2 for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kuo, Ta-Chuan; Guo, Tzung-Fang; Chen, Peter

    2012-09-01

    The main purposes of this study are replacing conventional hydro-thermal method by microwave heating using water as reaction medium to rapidly synthesize TiO2.Titanium tetraisopropoxide (TTIP) was hydrolyzed in water. The solution is subsequently processed with microwave heating for crystal growth. The reaction time could be shortened into few minutes. Then we chose different acids as dispersion agents to prepare TiO2 paste for investigating the effects of dispersion on the power conversion efficiency of dye-sensitized solar cells (DSCs). The photovoltaic performance of the microwave-assisted synthesized TiO2 achieved power conversion efficiency of 6.31% under AM 1.5 G condition (100 mW/cm2). This PCE value is compatible with that of the devices made from commercial TiO2.

  8. Artificial photosynthesis based on ruthenium(II) tetrazole-dye-sensitized nanocrystalline TiO2 solar cells.

    PubMed

    Shahroosvand, Hashem; Najafi, Leyla; Khanmirzaei, Leyla; Tarighi, Sara

    2015-11-01

    We have demonstrated the optical and morphological properties of a novel TiO2 nanoparticle as photoanode in order to apply in dye sensitized solar cells. The nanoparticles were synthesized through hydrothermal method in Tri-n-octyl amine (TOA) as capping agent. From the results it is concluded that the molar ratio of TiCl4 and TOA has remarkable influence on the size and homogeneity of the nanoparticles. The optimized nanoparticles structure for photoanode incorporated into dye-sensitized solar cell was obtained via the molar ratio of 1:10 for TiCl4:TOA. It has also studied the photovoltaic properties of different synthesized TiO2 nanocrystalline (1-4) anchored to ruthenium(II) complexes. 4-(1H-tetrazole-5-yl) benzoic acid (TzBA) applied as an anchoring ligand and 2,2-bipyridine (bpy), 1,10-phenanthroline (phen) and pyridine tetrazole (pyTz) used as ancillary ligands. A solar energy to electricity conversion efficiency (η) of 1.06% was obtained for [Ru(TzBA)(bpy)(pyTz)(NCS)] (5) under the standard AM 1.5 irradiation with a Jsc of 2.29 mA cm(-2), a Voc of 0.51 V, and FF of 55% which are the highest values among Ru(TzBA) complexes. DSSC study reveals that pyTz as an auxiliary ligand exhibits improved current generating capacity than the bpy and phen, which are introduced by dye (5). PMID:26028126

  9. Characterization of screen-printed dye-sensitized nanocrystalline TiO2 solar cells

    NASA Astrophysics Data System (ADS)

    Gupta, Tapan K.; Cirignano, Leonard J.; Shah, Kanai S.; Moy, Larry P.; Kelly, David J.; Squillante, Michael R.; Entine, Gerald; Smestad, Greg P.

    1999-10-01

    Titanium dioxide (TiO2) films have been deposited on SnO2 coated glass substrates by screen-printing. Film morphology and structure have been characterized by scanning electron microscopy, x-ray diffraction and BET analysis. Dye-sensitized TiO2 photoelectrochemical cells have been assembled and characterized. Cells sensitized with anthocyanin and a ruthenium complex have been investigated. A 0.77 cm2 ruthenium dye sensitized cell with 6.1% power conversion efficiency under Air Mass (AM1.5) conditions was obtained. Results obtained with a pure anthocyanin dye and dye extracted from blackberries were compared. Finally, a natural gel was found to improve the stability of anthocyanin sensitized cells.

  10. Home-made experiment of Dye-sensitized TiO2 Nanocrystalline Solar Cells and its education evaluation

    NASA Astrophysics Data System (ADS)

    Tai, M. F.; Shieh, M. C.; Chen, T. W.

    2010-03-01

    Dyes extracted from some natural fruits including anthocyanins absorb sunlight and effectively activate electrons of anthocyanins. Thus these activated electrons are conducted between TiO2 nanocrystals and form electric potential and current between two electrodes. The dyes can be gotten from the natural fruits, such as blackberries, raspberry, pomegranate seeds and bing cherries. This principle permits making a dye sensitized TiO2 nanocrystallines solar cell (DSSC). All required materials and tools for fabricating a home- made DSSC are easy to obtain around home. The procedures are perfect hands-on experiment as well as demonstration in K-12 schools or home settings. We have designed several protocols for fabricating DSSC and have successfully demonstrated in more than 100 activities with different level students. K-12 Students were able to build their own working DSSC's within 2-3 hours sessions and learned about alternative energy sources. These experiments can inspire students and general public about the modern technology in daily life. Low cost (low than US 3 in Taiwan)and safety are also ensured in our DSSC experiments.

  11. Multifunctional alumina/titania hybrid blocking layer modified nanocrystalline titania films as efficient photoanodes in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Changlei; Yu, Zhenhua; Bu, Chenghao; Liu, Pei; Bai, Sihang; Liu, Chang; Kondamareddy, Kiran Kumar; Sun, Weiwei; Zhan, Kan; Zhang, Kun; Guo, Shishang; Zhao, Xingzhong

    2015-05-01

    A facile way of fabricating efficient blocking layer on mesoporous TiO2 film of dye-sensitized solar cells (DSSCs) is demonstrated here for the first time. Al2O3 and TiO2 are combined together to form a blocking layer. A simple spin coating technique is employed which is a versatile and low-cost method over the atomic layer deposition (ALD) technique. Multifunctional alumina/titania (Al2O3/TiO2) hybrid overlayer is prepared on traditional TiO2 nanocrystalline thin film surface, through sequential deposition of AlCl3·6H2O and TiCl4 precursor solutions followed by sintering at 500 °C for 30 min. Al2O3 effectively plays its role in retarding interfacial recombination of electrons and improving open circuit potential (Voc), while the tiny TiO2 clusters synthesized from TiCl4 treatment act as electron transporting channels to facilitate electron diffusion which leads to enhanced photocurrent (Jsc). Compared to the device without blocking layer, the DSSCs assembled with Al2O3/TiO2 hybrid blocking layer showed improvement in Jsc (from 13.09 mA/cm2 to 16.90 mA/cm2) as well as in Voc (from 0.72 V to 0.73 V) resulting a much better conversion efficiency of 8.60%.

  12. Cation control of energetics on dye-sensitized nanocrystalline TiO2 for solar cells

    NASA Astrophysics Data System (ADS)

    Stux, Arnold M.

    Regenerative solar cells based on nanocrystalline TiO2 (anatase) and the dye Ru(deeb)(bpy)2(PF6)2, where deeb is 4,4'-(CO2CH2CH3)2-2,2 '-bipyridine and bpy is 2,2'-bipyridine, have increased efficiency when in the presence of a high concentration of cations with a large charge-to-radius ratio. Concentration-dependent photoluminescence (PL) quenching and increased quantum yield for interfacial charge separation have been explored for mono- and divalent cations by absorbance, time-resolved and steady-state PL. Cation adsorption stabilizes TiO2 acceptor states resulting in energetically favorable electron transfer from the dye into the semiconductor conduction band. Quenching of the PL of excited states is reversible. A new luminescence approach for sensing alkali and alkaline earth metal cations utilizes the surface-adsorption/desorption induced energetic shifts of a semiconductor conduction band to alter the electron transfer quenching efficiency of a photoluminescent dye such as Ru(deeb)(bpy)2(PF 6)2 anchored to TiO2 nanoparticles. This approach yields intensity, lifetime, and wavelength-ratiometric calcium ion sensors that are sensitive to 5 x 10-4 M concentrations. In situ photoluminescence of a regenerative solar cell has been demonstrated as a probe of injection and efficiencies. The smaller the alkali cation, the higher the photocurrent and the more quenched the photoluminescence. The extent of quenching in 0.1 M iodide/0.01 M iodine electrolytes was 10-fold with LiI and 3-fold with NaI. A millimolar threshold concentration is observed for Li+ at which point a red shift in absorbance and photoluminescence spectra concomitant with significant static and dynamic quenching occurs. For Na+, the threshold concentration for observable red shift is more than an order of magnitude higher than for Li+. Cation adsorption was also observed on planar TiO2 surfaces in the absence of dye. The flat band potentials of single crystal TiO 2 (rutile) with cations in propylene

  13. Clean and time-effective synthesis of anatase TiO2 nanocrystalline by microwave-assisted solvothermal method for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shen, Po-Shen; Tai, Yu-Chuen; Chen, Peter; Wu, Yu-Chun

    2014-02-01

    In this article, we report a clean and time-effective solvothermal synthesis route using microwave-assisted heating method to prepare nanocrystalline anatase TiO2 with its application for dye-sensitized solar cells. With this proposed method, pure anatase TiO2 nanoparticles with size about 20 nm are successfully obtained at 220 °C for 30 min. Our method of microwave-assisted organic solvothermal route significantly reduces the elaborating process of washing and solvent exchange for the subsequent paste formation. The as-synthesized TiO2 colloidal solution is ready for particle dispersion that markedly simplified the preparation procedures. Material characterizations of the anatase TiO2 nanoparticles are performed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), respectively. The photovoltaic performances of the dye-sensitized solar cells assembled with the as-synthesized TiO2 nanocrystallines as photoanodes in various film thicknesses are examined. An excellent energy conversion efficiency of 7.8% is achieved which is comparable to the previously reported dye-sensitized solar cells made of hydrothermal microwave-synthesized TiO2.

  14. Dye-sensitized solar cells

    DOEpatents

    Skotheim, T.A.

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell is comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent. 3 figs.

  15. Dye-sensitized solar cells

    DOEpatents

    Skotheim, Terje A. [Berkeley, CA

    1980-03-04

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  16. Enhanced photovoltaic performance of dye-sensitized solar cells based on NaYF4:Yb(3+), Er(3+)-incorporated nanocrystalline TiO2 electrodes.

    PubMed

    Zhu, Guang; Wang, Hongyan; Zhang, Quanxin; Zhang, Li

    2015-08-01

    Near infrared to visible up-conversion of light by rare earth ion-doped phosphors (NaYF4:Yb(3+), Er(3+)) that convert multiple photons of lower energy to higher energy photons offer new possibilities for improved performance of photovoltaic devices. Here, up-conversion phosphor NaYF4:Yb(3+), Er(3+) doped nanocrystalline TiO2 films are designed and used as a electrode for dye-sensitized solar cells, and the photovoltaic performance of DSSCs based on composite electrodes are investigated. The results show the cell with NaYF4:Yb(3+), Er(3+) achieves a power conversion efficiency of 7.65% under one sun illumination (AM 1.5G, 100mWcm(-2)), which is an increase of 14% compared to the cell without NaYF4:Yb(3+), Er(3+) (6.71%). The performance improvement is attributed to the dual effects of enhanced light harvesting from extended light absorption range and increased light scattering, and lower electron transfer resistance. PMID:25875488

  17. Stretchable, wearable dye-sensitized solar cells.

    PubMed

    Yang, Zhibin; Deng, Jue; Sun, Xuemei; Li, Houpu; Peng, Huisheng

    2014-05-01

    A stretchable, wearable dye-sensitized solar-cell textile is developed from elastic, electrically conducting fiber as a counter electrode and spring-like titanium wire as the working electrode. Dyesensitized solar cells are demonstrated with energy-conversion efficiencies up to 7.13%. The high energy-conversion efficiencies can be well maintained under stretch by 30% and after stretch for 20 cycles. PMID:24648169

  18. Dye-sensitization of nanocrystalline semiconductor electrodes

    NASA Astrophysics Data System (ADS)

    Stipkala, Jeremy M.

    Electron transfer from excited sensitizer molecules into colloidal titanium dioxide thin film electrodes in the absence of an intimate covalent bond has been exploited to convert light into electricity. A brief review of research reported in the literature is given, which focuses on the kinetics of interfacial charge transfer events at sensitized sol-gel processed semiconductor particles. It was found that forward electron transfer from the sensitizer to the semiconductor is several orders of magnitude faster than the energy wasting recombination in the most successful systems. The novel results included here detail two new approaches to the problem of immobilizing sensitizers on the surface of the semiconductor. First, linkage ligands 4-methyl-4sp'-R-2,2sp'-bipyridine, where R = -COOH, -(CHsb2)sb3COOH, and -(CHsb2)sb3COCHsb2COOCsb2Hsb5 were synthesized. These ligands were incorporated into the sensitizer RuspII(dmb)sb2LL(PFsb6)sb2, where dmb = 4,4sp'-dimethyl-2,2sp'-bipyridine, and LL is the linkage ligand. The performance of these ruthenium sensitizers in regenerative solar cells was measured. It was found that the presence of the propylene spacer slows the recombination of the injected electron in the semiconductor with the oxidized sensitizer by a factor of 3-4. Second, electropolymerization of RuspII(vbpy) compounds, where vbpy is 4-methyl-4sp'-vinyl-2,2sp'-bipyridine, is explained. If the polymerization conditions are kept within narrow parameters, it is possible to add polymeric sensitizer to the semiconductor electrode and improve the cell performance. It was often observed, however, that the addition of polymer increased the dye surface coverage but lowered light-to-electricity conversion efficiencies. Evidence for self-quenching and iodide diffusion inhibition as mechanistic explanations for the reduced efficiencies from polymeric samples is given.

  19. Scanning photo-electrochemical microscopy as a versatile tool to investigate dye-sensitized nano-crystalline surfaces for solar cells

    NASA Astrophysics Data System (ADS)

    Figgemeier, Egbert; Kylberg, William H.; Bozic, Biljana

    2006-04-01

    Self-assembled monolayers (SAMs) of metal complexes are a central component of functional chemical systems for energy conversion like in e.g. the dye-sensitized photoelectrochemical solar cells or photocatalytic processes at semiconductor surfaces. In this context, scanning electrochemical microscopy (SECM) under illumination is a most valuable tool for the understanding of elementary processes of such systems. SECM comprises an ultra-microelectrode (UME), which is incorporated into a 3- or 4-electrode, respectively, electrochemical setup and which can be positioned with sub-micrometer resolution in 3 dimensions relative to a substrate. In our system, we used Pt-UMEs and dye-sensitized nano-structured electrodes as substrates. The substrate can be illuminated from the backside, which resembles working conditions of solar cell arrangements. The electrolyte consists of 2-methoxypropionitrile in conjunction with redox couples as they are used in dye-sensitized nano-structured solar cell. With this setup the photoelectrochemistry in close contact to the substrate surface initiated by the injection of electrons from the dye into the conduction band of the TiO II due to illumination at working conditions has been investigated. In this contribution we present the general principle of the method as well as an initial validation by relating photocurrents measured with the SECM and solar cell performances.

  20. Dye-sensitized solar cells using laser processing techniques

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Pique, Alberto; Kushto, Gary P.; Auyeung, Raymond C. Y.; Lee, S. H.; Arnold, Craig B.; Kafafi, Zakia H.

    2004-07-01

    Laser processing techniques, such as laser direct-write (LDW) and laser sintering, have been used to deposit mesoporous nanocrystalline TiO2 (nc-TiO2) films for use in dye-sensitized solar cells. LDW enables the fabrication of conformal structures containing metals, ceramics, polymers and composites on rigid and flexible substrates without the use of masks or additional patterning techniques. The transferred material maintains a porous, high surface area structure that is ideally suited for dye-sensitized solar cells. In this experiment, a pulsed UV laser (355nm) is used to forward transfer a paste of commercial TiO2 nanopowder (P25) onto transparent conducting electrodes on flexible polyethyleneterephthalate (PET) and rigid glass substrates. For the cells based on flexible PET substrates, the transferred TiO2 layers were sintered using an in-situ laser to improve electron paths without damaging PET substrates. In this paper, we demonstrate the use of laser processing techniques to produce nc-TiO2 films (~10 μm thickness) on glass for use in dye-sensitized solar cells (Voc = 690 mV, Jsc = 8.7 mA/cm2, ff = 0.67, η = 4.0 % at 100 mW/cm2). This work was supported by the Office of Naval Research.

  1. EH AND S ANALYSIS OF DYE-SENSITIZED PHOTOVOLTAIC SOLAR CELL PRODUCTION.

    SciTech Connect

    BOWERMAN,B.; FTHENAKIS,V.

    2001-10-01

    Photovoltaic solar cells based on a dye-sensitized nanocrystalline titanium dioxide photoelectrode have been researched and reported since the early 1990's. Commercial production of dye-sensitized photovoltaic solar cells has recently been reported in Australia. In this report, current manufacturing methods are described, and estimates are made of annual chemical use and emissions during production. Environmental, health and safety considerations for handling these materials are discussed. This preliminary EH and S evaluation of dye-sensitized titanium dioxide solar cells indicates that some precautions will be necessary to mitigate hazards that could result in worker exposure. Additional information required for a more complete assessment is identified.

  2. Nanowire dye-sensitized solar cells.

    PubMed

    Law, Matt; Greene, Lori E; Johnson, Justin C; Saykally, Richard; Yang, Peidong

    2005-06-01

    Excitonic solar cells-including organic, hybrid organic-inorganic and dye-sensitized cells (DSCs)-are promising devices for inexpensive, large-scale solar energy conversion. The DSC is currently the most efficient and stable excitonic photocell. Central to this device is a thick nanoparticle film that provides a large surface area for the adsorption of light-harvesting molecules. However, nanoparticle DSCs rely on trap-limited diffusion for electron transport, a slow mechanism that can limit device efficiency, especially at longer wavelengths. Here we introduce a version of the dye-sensitized cell in which the traditional nanoparticle film is replaced by a dense array of oriented, crystalline ZnO nanowires. The nanowire anode is synthesized by mild aqueous chemistry and features a surface area up to one-fifth as large as a nanoparticle cell. The direct electrical pathways provided by the nanowires ensure the rapid collection of carriers generated throughout the device, and a full Sun efficiency of 1.5% is demonstrated, limited primarily by the surface area of the nanowire array. PMID:15895100

  3. nanostructures for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rashad, M. M.; Shalan, A. E.

    2014-08-01

    Hierarchical architectures consisting of one-dimensional (1D) nanostructures are of great interest for potential use in energy and environmental applications in recent years. In this work, hierarchical tungsten oxide (WO3) has been synthesized via a facile hydrothermal route from ammonium metatungstate hydrate and implemented as photoelectrode for dye-sensitized solar cells. The urchin-like WO3 micro-patterns are constructed by self-organized nanoscale length 1D building blocks, which are single crystalline in nature, grown along (001) direction and confirm an orthorhombic crystal phase. The obtained powders were investigated by XRD, SEM, TEM and UV-Vis Spectroscopy. The photovoltaic performance of dye-sensitized solar cells based on WO3 photoanodes was investigated. With increasing the calcination temperature of the prepared nanopowders, the light-electricity conversion efficiency ( η) was increased. The results were attributed to increase the crystallinity of the particles and ease of electron movement. The DSSC based on hierarchical WO3 showed a short-circuit current, an open-circuit voltage, a fill factor, and a conversion efficiency of 4.241 mA/cm2, 0.656 V, 66.74, and 1.85 %, respectively.

  4. Improving the dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Willig, Frank

    2007-09-01

    Two dye sensitized solar cells (DSC) can be joined to form a tandem cell with two separate absorption ranges for the two different absorber materials. This can enhance the solar conversion efficiency and in particular the photovoltage of the DSC. Water splitting appears as a realistic long term target. The DSC tandem can be realized as n-n junction employing known dye molecules with optimal absorption spectra. Dye molecules with elongated shapes can be realized by covalently attaching a conducting bridge group terminated by an anchor group to a desired chromophore. Due to the long conducting bridge group separating the hole state of the dye from the surface of the semiconductor recombination is slowed down. The ordered molecular structure can be self-assembled on the recently introduced rod or cylinder shaped oxide electrodes but will not slow down recombination in the nm-cavities of the conventional TiO II Graetzel electrode.

  5. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    SciTech Connect

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  6. Dye-Sensitized Solar Cells for Space Power

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Hehemann, David G.; Duraj, Stan A.

    2003-01-01

    During the course of this grant, dye-sensitized solar cells were prepared and characterized. The solar cells were prepared using materials (dyes, electrolytes, transparent conductive oxide coated glass, nanocrystalline TiO2) entirely prepared in-house, as well as prepared using materials available commercially. Complete cells were characterized under simulated AM0 illumination. The best cell prepared at NASA had an AM0 efficiency of 1.22% for a 1.1 sq cm cell. Short circuit current (Isc), open circuit voltage (Voc) and fill factor (FF) for the cell were 6.95 mA, 618 mV and 42.8%, respectively. For comparison purposes, two commercially prepared dye-sensitized solar cells were obtained from Solaronix SA, Aubonne, Switzerland. The Solaronix cells were also characterized under simulated AM0 illumination. The best cell from Solaronix had an active area of 3.71 sq cm and measured an AM0 efficiency of 3.16%. with Isc, Voc and FF of 45.80 mA, 669.6 mV and 52.3%, respectively. Both cells from Solaronix were rapid thermal cycled between -80 C and 80 C. Thermal cycling led to a 4.6% loss of efficiency in one of the cells and led to nearly a complete failure in the second cell.

  7. One-Pot Low Temperature Synthesis and Characterization Studies of Nanocrystalline α-Fe2O3 Based Dye Sensitized Solar Cells.

    PubMed

    Manikandan, A; Saravanan, A; Antony, S Arul; Bououdina, M

    2015-06-01

    Dye-sensitized solar cell (DSSC) based α-Fe2O3 nanostructures with two different morphologies, such as nanorods (FeONRs) and nanoparticles (FeONPs), were synthesized by one-pot low temperature method. The crystal structure and phase purity of the as-prepared samples were characterized by X-ray powder diffraction (XRD) and further determined by Rietveld refinements XRD analysis. The average crystallite size was calculated using Debye Sherrer formula, and it shows the range of 9.43-26.56 nm. The morphologies of the products were studied by high resolution scanning electron microscopy (HR-SEM) and it was confirmed by high resolution transmission electron microscopy (HR-TEM). The formation of pure α-Fe2O3 samples was further confirmed by energy dispersive X-ray (EDX) analysis. The optical properties and the band gap energy (E(g)) were measured by UV-Visible diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra. The band gap energy was measured using Kubelka-Munk method, and the values are decreased from 2.36 eV to 2.21 eV as the temperature increased from 300 to 400 degrees C with increasing the crystallite size. Magnetic hysteresis (M-H) loop revealed that the as-prepared α-Fe2O3 samples displayed ferromagnetic behavior. FeONRs sample shows higher saturation magnetization (M(s)) value (40.21 emu/g) than FeONPs sample (23.06 emu/g). The dye-sensitized solar cell based on the optimized FeONRs array reaches a conversion efficiency of 0.43%, which is higher than that obtained from FeONPs (0.29%) under the light radiation of 1000 W/m2. PMID:26369049

  8. Surface modification of porous nanocrystalline TiO{sub 2} films for dye-sensitized solar cell application by various gas plasmas

    SciTech Connect

    Kim, Youngsoo; Yoon, Chang-Ho; Kim, Kang-Jin; Lee, Yeonhee

    2007-07-15

    Titanium dioxide (TiO{sub 2}) film for dye-sensitized solar cells (DSSCs) has surface defects such as oxygen vacancies created during the annealing process. The authors used a plasma treatment technique to reduce defects on TiO{sub 2} surfaces. They investigated the influence of different gas plasma treatments of TiO{sub 2} film on the photoelectric performance of DSSC. Short-circuit photocurrent density (J{sub sc}), open-circuit photovoltage (V{sub oc}), and the amount of adsorbed dye for DSSCs were measured. As a result, the solar-to-electricity conversion efficiencies of the O{sub 2}- and N{sub 2}-treated cells increased by 15%-20% compared to untreated cells. On the other hand, solar energy conversion efficiency of CF{sub 4}-plasma treated cells decreased drastically. The increased amount of adsorbed dye on the TiO{sub 2} film was measured by time-of-flight secondary ion mass spectrometry. TiO{sub 2} surfaces modified by plasma treatment were characterized using analytical instruments such as x-ray photoelectron spectroscopy and near-edge x-ray absorption fine structure.

  9. Space Environmental Testing of Dye-Sensitized Solar Cells

    NASA Technical Reports Server (NTRS)

    Harris, Jerry D.; Anglin, Emily J.; Hepp, Aloysius F.; Bailey, Sheila G.; Scheiman, David A.; Castro, Stephenie L.; Lyons, Valerie (Technical Monitor)

    2002-01-01

    Recent advances in nanocrystalline dye-sensitized solar cells has lead NASA to investigate the potential of these devices for space power generation, Reported here is the first space environment characterization of these type of photovoltaic devices. Cells containing liquid electrolytes were exposed to simulated low-earth orbit conditions and their performance evaluated. All cells were characterized under simulated air mass zero (AMO) illumination. Complete cells were exposed to pressures less than 1 x 10(exp -7) torr for over a month, with no sign of sealant failure or electrolyte leakage. Cells from Solaronix SA were rapid thermal cycled under simulated low-earth orbit conditions. The cells were cycled 100 times from -80 C to 80 C, which is equivalent to 6 days in orbit. The best cell had a 4.6% loss in efficiency as a result of the thermal cycling,

  10. Nature of photovoltaic action in dye-sensitized solar cells

    SciTech Connect

    Cahen, D.; Hodes, G.; Graetzel, M.; Guillemoles, J.F.; Riess, I.

    2000-03-09

    The authors explain the cause for the photocurrent and photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as in terms of electron energetics. On the basis of available experimental data, the basic cause for the photovoltage was confirmed as the change in the electron concentration in the nanocrystalline electron conductor that results from photoinduced charge injection from the dye. The maximum photovoltage is given by the difference in electron energies between the redox level and the bottom of the electron conductor's conduction band, rather than by any difference in electrical potential in the cell, in the dark. Charge separation occurs because of the energetic and entropic driving forces that exist at the dye/electron conductor interface, with charge transport aided by such driving forces at the electron conductor-contact interface. The mesoporosity and nanocrystallinity of the semiconductor are important not only because of the large amount of dye that can be adsorbed on the system's very large surface, but also for two additional reasons: (1) it allows the semiconductor small particles to become almost totally depleted upon immersion in the electrolyte (allowing for large photovoltages), and (2) the proximity of the electrolyte to all particles modes screening of injected electrons, and thus their transport, possible.

  11. Dye-sensitized Schottky barrier solar cells

    DOEpatents

    Skotheim, Terje A.

    1978-01-01

    A low-cost dye-sensitized Schottky barrier solar cell comprised of a substrate of semiconductor with an ohmic contact on one face, a sensitizing dye adsorbed onto the opposite face of the semiconductor, a transparent thin-film layer of a reducing agent over the dye, and a thin-film layer of metal over the reducing agent. The ohmic contact and metal layer constitute electrodes for connection to an external circuit and one or the other or both are made transparent to permit light to penetrate to the dye and be absorbed therein for generating electric current. The semiconductor material chosen to be the substrate is one having a wide bandgap and which therefore is transparent; the dye selected is one having a ground state within the bandgap of the semiconductor to generate carriers in the semiconductor, and a first excited state above the conduction band edge of the semiconductor to readily conduct electrons from the dye to the semiconductor; the reducing agent selected is one having a ground state above the ground state of the sensitizer to provide a plentiful source of electrons to the dye during current generation and thereby enhance the generation; and the metal for the thin-film layer of metal is selected to have a Fermi level in the vicinity of or above the ground state of the reducing agent to thereby amply supply electrons to the reducing agent.

  12. Photocurrent-voltage of a dye-sensitized nanocrystalline TiO2 solar cells influenced by N719 dye adsorption properties.

    PubMed

    Lee, Jae-Wook; Hwang, Kyung-Jun; Park, Dong-Won; Park, Kyung-Hee; Shim, Wang-Geun; Kim, Sang-Chai

    2007-11-01

    Titanium particles of single-phase anatase nanocrystallites were prepared by the hydrolysis of titanium tetraisopropoxide. A dye-sensitized solar cell (DSSC) was fabricated by adsorbing cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'-dicarboxylato)-ruthenium(II)bis-tetrabutylammonium dye (N719) onto TiO2 film. The samples were characterized by XRD, TEM, FE-SEM, AFM, and Brunauer-Emmett-Teller (BET) analysis. The influence of the acetic acid treatment of TiO2 electrode with different concentrations on the photovoltaic performance of DSSC was investigated. It was found that DSSC had better photoelectric performance when the TiO2 electrode was treated by acetic acid of 0.5 M. An equivalent circuit analysis using the one-diode model was used to evaluate the influences of adsorption quantity and acetic acid treatment on the energy conversion efficiency of DSSC. A nonlinear least-square optimization method was used to determine five model parameters. PMID:18047044

  13. Towards low temperature sintering methods for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Murali, Sukanya

    Access to economically viable renewable energy sources is essential for the development of a globally sustainable society. Solar energy has a large potential to satisfy the future need for renewable energy sources. Dye sensitized solar cells are a third generation of photovoltaic technologies with the potential for low cost environmentally safe energy production. Commercialization of this technology requires that dye sensitized solar cells with higher efficiencies can be fabricated on flexible substrates. The commonly used material for the anode in a Dye Sensitized Solar Cell consists of titanium dioxide nanoparticles covered with a layer of light sensitizing dye. For efficient electron transport throughout the nanoparticle network, good particle interconnections are necessary. For low temperature processing these interconnections can be achieved through a hydrothermal process. The focus of this research is to understand at a fundamental level this reaction-based sintering process. A titanium alkoxide precursor was mixed with commercial titania nanoparticles and coated on a transparent conductive oxide substrate. The product of the hydrolysis and condensation of the alkoxide served to connect the nanoparticles thus improving the electrical conduction of the titania electrode; this was confirmed by solar cell testing and electrochemical impedance spectroscopy. To further understand the formation of interconnections during reactive sintering, a model system based on inert silica particles was investigated. Titanium alkoxide precursor was mixed with commercial silica particles and reacted. Three different types of silica particles were used: each with a different morphology. The silica-titania multilayers/powders were characterized using SEM, XRD and BET. The efficiency of DSSCs is higher when larger non-porous silica particles are used and thin nanocrystalline titania is coated on this superstructure. This gave insight into the locations where the reactive liquid

  14. Rose Bengal sensitized bilayered photoanode of nano-crystalline TiO2-CeO2 for dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Sayyed, Suhail A. A. R.; Beedri, Niyamat I.; Kadam, Vishal S.; Pathan, Habib M.

    2016-08-01

    The present work deals with the study of TiO2-CeO2 bilayered photoanode with low-cost Rose Bengal (RB) dye as sensitizer for dye-sensitized solar cell application. The recombination reactions are reduced in bilayered TiO2-CeO2 photoanode as compared to the single-layered CeO2 photoanode. Once the electrons get transferred from lowest unoccupied molecular orbital level of RB dye to the conduction band (CB) of TiO2, then the possibilities of recombination of electrons with oxidized dye molecules or oxidized redox couple are reduced. This is because the CB position of CeO2 is higher than that of TiO2, which blocks the path of electrons. The electrochemical impedance spectroscopy (EIS) analysis shows negative shift in frequency for bilayered TiO2-CeO2 photoanode as compared to CeO2 photoanode. Hence, in bilayered photoanode lifetime of electrons is more than in single-layered photoanode, confirming reduction in recombination reactions. The X-ray diffraction patterns confirm both anatase TiO2 and CeO2 with crystalline size using Scherrer formula as 24 and 10 nm, respectively. The scanning electron microscopy images of photoanode show the porous structure useful for dye adsorption. The presence of Ti and Ce is confirmed by electron diffraction studies. The band gap values for TiO2 and CeO2 were calculated as 3.20 and 3.11 eV, respectively, using diffused reflectance spectroscopy. The bilayered TiO2-CeO2 photoanode showed open-circuit voltage ( V OC) ~500 mV and short-circuit photocurrent density ( J SC) ~0.29 mA/cm2 with fill factor (FF) ~62.17 %. There is increase in V OC and J SC values by 66.67 and 38.10 %, respectively, compared to RB-sensitized CeO2 photoanode.

  15. Photoelectrochemical Properties of Nanocrystalline Sb6O13, MgSb2O6, and ZnSb2O6-Based Electrodes for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Jang, Jiyeon; Kim, Seung-Joo

    2012-10-01

    Three kinds of antimony compounds - Sb6O13, MgSb2O6 and ZnSb2O6 - were prepared in the form of nanocrystalline film and their photo-electrochemical properties were investigated. The preparation of Sb6O13 was based on thermolysis of a colloidal Sb2O5·4H2O suspension. MgSb2O6 and ZnSb2O6 were prepared via low-temperature hydrothermal methods. All the compounds exhibited semiconducting properties applicable to dye-sensitized solar cell (DSSC). The energy band gaps were estimated to be 3.39 eV for Sb6O13, 3.60 eV for MgSb2O6, and 3.31 eV for ZnSb2O6, respectively. After sensitization with a conventional ruthenium-dye (N719), Sb6O13-based solar cell exhibited the highest open circuit voltage (Voc = 0.76 V) whereas the Voc values (0.44-0.46 V) of MgSb2O6 and ZnSb2O6 are relatively low. The Voc values were proven to be related to the flat band potentials of the antimony compounds. The overall solar-to-electric energy conversion efficiencies were in the range of 0.7-1.0% under AM 1.5, 100 mW/cm2 illumination.

  16. Exploiting nanocarbons in dye-sensitized solar cells.

    PubMed

    Kavan, Ladislav

    2014-01-01

    Fullerenes, carbon nanotubes, nanodiamond, and graphene find various applications in the development of solar cells, including dye sensitized solar cells. Nanocarbons can be used as (1) active light-absorbing component, (2) current collector, (3) photoanode additive, or (4) counter electrode. Graphene-based materials have attracted considerable interest for catalytic counter electrodes, particularly in state-of-the-art dye sensitized solar cells with Co-mediators. The understanding of electrochemical charge-transfer at carbon surfaces is key to optimization of these solar cells, but the electrocatalysis on carbon surfaces is still a subject of conflicting debate. Due to the rich palette of problems at the interface of nanocarbons and photovoltaics, this review is selective rather than comprehensive. Its motivation was to highlight selected prospective inputs from nanocarbon science towards the development of novel dye sensitized solar cells with improved efficiency, durability, and cost. PMID:23729170

  17. Development of Flexible Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2010-03-01

    We are developing a low cost and easy process to fabricate porous metal oxide thin films on flexible substrate for high performance dye-sensitized solar cells (DSSCs). The research addresses on the formulation of TiO2 precursor to create smooth and continuous porous thin films on large size plastic or metal foil substrates enabling excellent adhesion, robust mechanics, and chemical stability. The porous nanocrystalline TiO2 thin films are used as anode electrodes for attaching light sensitizers. The first trial is to blend a polymer to Ti alkoxide precursors at various concentrations. After depositing the mixture on the substrates, the substrates are baked, exposed to UV light, taken place wet or dry etch to remove polymers leading to a porous structure. An appropriate annealing process will be applied to TiO2 to turn it into crystalline. Alternative low temperature annealing method including steaming hydrothermal, plasma etches, and UV-ozone treatment will be tested with the annealing process controlled at low temperature.

  18. Dye-sensitized solar cells based on purple corn sensitizers

    NASA Astrophysics Data System (ADS)

    Phinjaturus, Kawin; Maiaugree, Wasan; Suriharn, Bhalang; Pimanpaeng, Samuk; Amornkitbamrung, Vittaya; Swatsitang, Ekaphan

    2016-09-01

    Natural dye extracted from husk, cob and silk of purple corn, were used for the first time as photosensitizers in dye sensitized solar cells (DSSCs). The dye sensitized solar cells fabrication process has been optimized in terms of solvent extraction. The resulting maximal efficiency of 1.06% was obtained from purple corn husk extracted by acetone. The ultraviolet-visible (UV-vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), electrochemical impedance spectroscopy (EIS) and incident photon-to-current efficiency (IPCE) were employed to characterize the natural dye and the DSSCs.

  19. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of ˜20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  20. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  1. Aerogel tempelated ZnO dye-sensitized solar cells.

    SciTech Connect

    Hamann, T. W.; Martinson , A. B. E.; Elam, J. W.; Pellin, M. J.; Hupp, J. T.; Materials Science Division; Northwestern Univ.

    2008-01-01

    Atomic layer deposition is employed to conformally coat low density, high surface area aerogel films with ZnO. The ZnO/aerogel membranes are incorporated as photoanodes in dye-sensitized solar cells, which exhibit excellent power efficiencies of up to 2.4% under 100 mW cm{sup -2} light intensity.

  2. Highly efficient photocathodes for dye-sensitized tandem solar cells.

    PubMed

    Nattestad, A; Mozer, A J; Fischer, M K R; Cheng, Y-B; Mishra, A; Bäuerle, P; Bach, U

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components. PMID:19946281

  3. Highly efficient photocathodes for dye-sensitized tandem solar cells

    NASA Astrophysics Data System (ADS)

    Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y.-B.; Mishra, A.; Bäuerle, P.; Bach, U.

    2010-01-01

    Thin-film dye-sensitized solar cells (DSCs) based on mesoporous semiconductor electrodes are low-cost alternatives to conventional silicon devices. High-efficiency DSCs typically operate as photoanodes (n-DSCs), where photocurrents result from dye-sensitized electron injection into n-type semiconductors. Dye-sensitized photocathodes (p-DSCs) operate in an inverse mode, where dye-excitation is followed by rapid electron transfer from a p-type semiconductor to the dye (dye-sensitized hole injection). Such p-DSCs and n-DSCs can be combined to construct tandem solar cells (pn-DSCs) with a theoretical efficiency limitation well beyond that of single-junction DSCs (ref. 4). Nevertheless, the efficiencies of such tandem pn-DSCs have so far been hampered by the poor performance of the available p-DSCs (refs 3, 5-15). Here we show for the first time that p-DSCs can convert absorbed photons to electrons with yields of up to 96%, resulting in a sevenfold increase in energy conversion efficiency compared with previously reported photocathodes. The donor-acceptor dyes, studied as photocathodic sensitizers, comprise a variable-length oligothiophene bridge, which provides control over the spatial separation of the photogenerated charge carriers. As a result, charge recombination is decelerated by several orders of magnitude and tandem pn-DSCs can be constructed that exceed the efficiency of their individual components.

  4. Nano-TiO2 for dye-sensitized solar cells.

    PubMed

    Baraton, Marie-Isabelle

    2012-01-01

    Photovoltaics are amongst the most popular renewable energy sources and low-cost solar cell technologies are making progress to the market. Research on dye-sensitized solar cells (DSSCs) usually based on nanocrystalline TiO2 has been extensively pursued, and the number of papers and patents published in this area has grown exponentially over the last ten years. Research efforts have largely focused on the optimization of the dye, but recently the TiO2 nanocrystalline electrode itself has attracted more attention. It has been shown that particle size and shape, crystallinity, surface morphology and chemistry of the TiO2 material are key parameters to be controlled for optimized performance of the solar cell. This article will review the most recent research activities on nanostructured TiO2 for improvement of the DSSC performance. PMID:22023080

  5. Metal oxide-encapsulated dye-sensitized photoanodes for dye-sensitized solar cells

    DOEpatents

    Hupp, Joseph T.; Son, Ho-Jin

    2016-01-12

    Dye-sensitized semiconducting metal oxide films for photoanodes, photoanodes incorporating the films and DSCs incorporating the photoanodes are provided. Also provided are methods for making the dye sensitized semiconducting metal oxide films. The methods of making the films are based on the deposition of an encapsulating layer of a semiconducting metal oxide around the molecular anchoring groups of photosensitizing dye molecules adsorbed to a porous film of the semiconducting metal oxide. The encapsulating layer of semiconducting metal oxide is formed in such a way that it is not coated over the chromophores of the adsorbed dye molecules and, therefore, allows the dye molecules to remain electrochemically addressable.

  6. Weavable dye sensitized solar cells exploiting carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Kuanyshbekova, Zharkynay; Göktepe, Özer; Göktepe, Fatma; Zakhidov, Anvar

    2013-05-01

    Weavable Dye Sensitized Solar Cells (DSSC) made with flexible yarns of conductive multiwalled carbon nanotubes (MWNTs) were produced having a power conversion efficiency above 3%. This was achieved with a specific design and careful consideration of the yarn function in the DSSC. Fermat yarns of MWNTs individually coated with mesoporous TiO2 layer were twisted together and coated with more mesoporous TiO2 to create a 3 dimensional photo electrode to overcome electron diffusion length issues. Archimedian yarns of MWNTs coated with a thin layer of platinum worked as a counter electrode to complete the architecture used in this DSSC.

  7. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells

    PubMed Central

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  8. Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.

    PubMed

    Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa

    2016-01-01

    Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761

  9. Aggregated TiO2 Based Nanotubes for Dye Sensitized Solar Cells

    SciTech Connect

    Nie, Zimin; Zhou, Xiaoyuan; Zhang, Qifeng; Cao, Guozhong; Liu, Jun

    2013-11-01

    One-dimensional (1D) semiconducting oxides have attracted great attention for dye sensitized solar cells (DSCs), but the overall performance is still quite limited as compared to TiO2 nanocrystalline DSCs. Here, we report the synthesis of aggregated TiO2 based nanotubes with controlled morphologies and crystalline structures to obtain an overall power conversion efficiency of 9.9% using conventional dye without any additional chemical treatment steps. The high efficiency is attributed to the unique aggregate structure for light harvesting, optimized high surface area, and good crystallinity of the nanotube aggregates obtained through proper thermal annealing. This study demonstrates that high efficiency DSCs can be obtained with 1D nanomaterials, and provides lessons on the importance of optimizing both the nanocrystalline structure and the overall microscale morphology.

  10. Photoconductivity of an inorganic/organic composite containing dye-sensitized nanocrystalline titanium dioxide

    NASA Astrophysics Data System (ADS)

    Kocher, M.; Däubler, T. K.; Harth, E.; Scherf, U.; Gügel, A.; Neher, D.

    1998-02-01

    The photophysical properties of solid films of an inorganic/organic composite composed of dye-sensitized nanocrystalline titanium dioxide (TiO2) particles, a conjugated polymer, and a [60] fullerene derivative have been investigated. Large charge collection efficiencies of up to 10% at a field of only 10 V/μm were observed. The photoaction spectrum of the composite is interpreted in terms of three major contributions: a weak photocurrent due to the absorption of photons by the polymer, photogeneration of charges involving the fullerene, and a broad region below the onset of the polymer absorption which involves photophysical processes in the dye-loaded TiO2 nanoparticles.

  11. Green grasses as light harvesters in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shanmugam, Vinoth; Manoharan, Subbaiah; Sharafali, A.; Anandan, Sambandam; Murugan, Ramaswamy

    2015-01-01

    Chlorophylls, the major pigments presented in plants are responsible for the process of photosynthesis. The working principle of dye sensitized solar cell (DSSC) is analogous to natural photosynthesis in light-harvesting and charge separation. In a similar way, natural dyes extracted from three types of grasses viz. Hierochloe Odorata (HO), Torulinium Odoratum (TO) and Dactyloctenium Aegyptium (DA) were used as light harvesters in dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), and liquid chromatography-mass spectrometry (LC-MS) were used to characterize the dyes. The electron transport mechanism and internal resistance of the DSSCs were investigated by the electrochemical impedance spectroscopy (EIS). The performance of the cells fabricated with the grass extract shows comparable efficiencies with the reported natural dyes. Among the three types of grasses, the DSSC fabricated with the dye extracted from Hierochloe Odorata (HO) exhibited the maximum efficiency. LC-MS investigations indicated that the dominant pigment present in HO dye was pheophytin a (Pheo a).

  12. Asymmetric Zinc Phthalocyanines as Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Tunc, Gulenay; Yavuz, Yunus; Gurek, Aysegul; Canimkurbey, Betul; Kosemen, Arif; San, Sait Eren; Ahsen, Vefa

    Dye-sensitized solar cells (DSSCs) have received increasing attention due to their high incident to photon efficiency, easy fabrication and low production cost . Tremendous research efforts have been devoted to the development of new and efficient sensitizers suitable for practical use. In TiO2-based DSSCs, efficiencies of up to 11.4% under simulated sunlight have been obtained with rutheniumepolypyridyl complexes. However, the main drawback of ruthenium complexes is the lack of absorption in the red region of the visible light and the high cost. For this reason, dyes with large and stable p-conjugated systems such as porphyrins and phthalocyanines are important classes of potential sensitizers for highly efficient DSSCs. Phthalocyanines (Pcs) have been widely used as sensitizers because of their improved light-harvesting properties in the far red- and near-IR spectral regions and their extraordinary robustness [1]. In this work, a series of asymmetric Zn(II) Pcs bearing a carboxylic acid group and six hexylthia groups either at the peripheral or non-peripheral positions have been designed and synthesized to investigate the influence of the COOH group and the positions of hexylthia groups on the dye-sensitized solar cell (DSSC) performance.

  13. Artificial evolution of coumarin dyes for dye sensitized solar cells.

    PubMed

    Venkatraman, Vishwesh; Abburu, Sailesh; Alsberg, Bjørn Kåre

    2015-11-01

    The design and discovery of novel molecular structures with optimal properties has been an ongoing effort for materials scientists. This field has in general been dominated by experiment driven trial-and-error approaches that are often expensive and time-consuming. Here, we investigate if a de novo computational design methodology can be applied to the design of coumarin-based dye sensitizers with improved properties for use in Grätzel solar cells. To address the issue of synthetic accessibility of the designed compounds, a fragment-based assembly is employed, wherein the combination of chemical motifs (derived from the existing databases of structures) is carried out with respect to user-adaptable set of rules. Rather than using computationally intensive density functional theory (DFT)/ab initio methods to screen candidate dyes, we employ quantitative structure-property relationship (QSPR) models (calibrated from empirical data) for rapid estimation of the property of interest, which in this case is the product of short circuit current (Jsc) and open circuit voltage (Voc). Since QSPR models have limited validity, pre-determined applicability domain criteria are used to prevent unacceptable extrapolation. DFT analysis of the top-ranked structures provides supporting evidence of their potential for dye sensitized solar cell applications. PMID:26428071

  14. Quasi Solid Polymer Electrolytes for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Dissanayake, M. A. K. Lakshman

    2013-07-01

    Dye-sensitized solar cell (DSSC) has been considered as an alternative to the conventional silicon solar cell because of low cost, easy fabrication and relatively high conversion efficiency. A DSSC consists of a dye-sensitized nanoparticulated TiO2 electrode, an electrolyte containing redox couple and a Pt coated counter electrode. Such solar cells based on an I-/I3- redox couple in an organic solvent usually have conversion efficiencies reaching around 11%. However, a major drawback of these solution based solar cells, originally developed by Gratzel and coworkers is the lack of long-term stability due to liquid leakage, usage of volatile liquids such as acetonitrile, electrode corrosion, and photodecomposition of the dye in the solvent medium. Therefore considerable research efforts have been made in recent years to replace the liquid electrolytes with solid polymer or quasi-solid polymer (gel) electrolytes. Among these approaches, the use of gel polymer electrolytes appears to give rise to successful results in terms of conversion efficiency. Conventional poly (ethylene oxide)(PEO)-based solid polymer electrolytes exhibit poor ionic conductivities at room temperature, which is not sufficient for practical applications. Therefore, most of the recent studies have been directed to the preparation and characterization of gel polymer electrolytes which exhibit higher ionic conductivity at ambient temperature while maintain quai-solid structure. These gel polymer electrolytes prepared by incorporating a liquid electrolyte into a matrix polymer such as polyacrylonitrile(PAN), poly(vinylidene fluoride)(PVdF), poly (methyl methacrylate) (PMMA) and PEO have been employed in quasi-solid-state DSSCs to achieve power conversion efficiencies of more than 5%. Significant improvements have been achieved in recent years by modifications of the electrolytes by optimizing the ionic salt, introducing additives such as inorganic nanofillers, organic molecules and ionic liquids in

  15. Device modeling of dye-sensitized solar cells.

    PubMed

    Bisquert, Juan; Marcus, Rudolph A

    2014-01-01

    We review the concepts and methods of modeling of the dye-sensitized solar cell, starting from fundamental electron transfer theory, and using phenomenological transport-conservation equations. The models revised here are aimed at describing the components of the current-voltage curve of the solar cell, based on small perturbation experimental methods, and to such an end, a range of phenomena occurring in the nanoparticulate electron transport materials, and at interfaces, are covered. Disorder plays a major role in the definition of kinetic parameters, and we introduce single particle as well as collective function definitions of diffusion coefficient and electron lifetime. Based on these fundamental considerations, applied tools of analysis of impedance spectroscopy are described, and we outline in detail the theory of recombination via surface states that is successful to describe the measured recombination resistance and lifetime. PMID:24085559

  16. Dye sensitized solar cells with carbon black as counter electrodes

    NASA Astrophysics Data System (ADS)

    Lin, Chi-Feng; Chou, Yu-Chen; Haung, Jhang-Fu; Chen, Pin-Hung; Han, Hsieh-Cheng; Chiu, Kuo-Yuan; Su, Yuhlong Oliver

    2016-03-01

    In this experiment, we use carbon black as counter electrodes to replace the conventional platinum electrodes in dye sensitized solar cell (DSSC). The electrical properties and device efficiency with carbon black counter electrodes with various concentrations, and under the annealing temperature from 100 to 500 °C are discussed. After the proper annealing process, the conductivity and redoxing ability of the carbon black is improved, resulted in the enhancement of the electrical characteristics, especially fill factor, of the device. The highest device efficiency was 7.28% with the JSC of 14.70 mA/cm2, VOC of 0.75 V, and fill factor of 0.67 under 1-sun AM 1.5G solar illumination.

  17. Review on Metallic and Plastic Flexible Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Yugis, A. R.; Mansa, R. F.; Sipaut, C. S.

    2015-04-01

    Dye sensitized solar cells (DSSCs) are a promising alternative for the development of a new generation of photovoltaic devices. DSSCs have promoted intense research due to their low cost and eco-friendly advantage over conventional silicon-based crystalline solar cells. In recent years, lightweight flexible types of DSSCs have attracted much intention because of drastic reduction in production cost and more extensive application. The substrate that used as electrode of the DSSCs has a dominant impact on the methods and materials that can be applied to the cell and consequently on the resulting performance of DSSCs. Furthermore, the substrates influence significantly the stability of the device. Although the power conversion efficiency still low compared to traditional glass based DSSCs, flexible DSSCs still have potential to be the most efficient and easily implemented technology.

  18. Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells

    SciTech Connect

    Park, N. G.; van de Lagemaat, J.; Frank, A. J.

    2000-01-01

    The objective of this work is to develop and optimize the new dye-sensitized solar cell technology. In view of the infancy of rutile material development for solar cells, the PV response of the dye-sensitized rutile-based solar cell is remarkably close to that of the anatase-based cell.

  19. Dye Sensitized Solar Cells for Economically Viable Photovoltaic Systems.

    PubMed

    Jung, Hyun Suk; Lee, Jung-Kun

    2013-05-16

    TiO2 nanoparticle-based dye sensitized solar cells (DSSCs) have attracted a significant level of scientific and technological interest for their potential as economically viable photovoltaic devices. While DSSCs have multiple benefits such as material abundance, a short energy payback period, constant power output, and compatibility with flexible applications, there are still several challenges that hold back large scale commercialization. Critical factors determining the future of DSSCs involve energy conversion efficiency, long-term stability, and production cost. Continuous advancement of their long-term stability suggests that state-of-the-art DSSCs will operate for over 20 years without a significant decrease in performance. Nevertheless, key questions remain in regards to energy conversion efficiency improvements and material cost reduction. In this Perspective, the present state of the field and the ongoing efforts to address the requirements of DSSCs are summarized with views on the future of DSSCs. PMID:26282979

  20. Efficiency Records in Mesoscopic Dye-Sensitized Solar Cells.

    PubMed

    Albero, Josep; Atienzar, Pedro; Corma, Avelino; Garcia, Hermenegildo

    2015-08-01

    The aim of the present review article is to show the progress achieved in the efficiency of dye-sensitized solar cells (DSSCs) by evolution in the structure and composition of the dye. After an initial brief description of DSSCs and the operating mechanism the major part of the present article is organized according to the type of dye, trying to show the logic in the variation of the dye structure in order to achieve strong binding on the surface of the layer of nanoparticulate TiO2 , efficient interfacial electron injection between the excited dye and the semiconductor, and minimization of the unwanted dark current processes. Besides metal complexes, including polypyridyls and nitrogenated macro rings, organic dyes and inorganic light harvesters such as quantum dots and perovskites have also been included in the review. The last section summarizes the current state of the art and provides an overview on future developments in the field. PMID:26183911

  1. Carbon Nanotubes for Dye-Sensitized Solar Cells.

    PubMed

    Batmunkh, Munkhbayar; Biggs, Mark J; Shapter, Joseph G

    2015-07-01

    As one type of emerging photovoltaic cell, dye-sensitized solar cells (DSSCs) are an attractive potential source of renewable energy due to their eco-friendliness, ease of fabrication, and cost effectiveness. However, in DSSCs, the rarity and high cost of some electrode materials (transparent conducting oxide and platinum) and the inefficient performance caused by slow electron transport, poor light-harvesting efficiency, and significant charge recombination are critical issues. Recent research has shown that carbon nanotubes (CNTs) are promising candidates to overcome these issues due to their unique electrical, optical, chemical, physical, as well as catalytic properties. This article provides a comprehensive review of the research that has focused on the application of CNTs and their hybrids in transparent conducting electrodes (TCEs), in semiconducting layers, and in counter electrodes of DSSCs. At the end of this review, some important research directions for the future use of CNTs in DSSCs are also provided. PMID:25864907

  2. Highly efficient monolithic dye-sensitized solar cells.

    PubMed

    Kwon, Jeong; Park, Nam-Gyu; Lee, Jun Young; Ko, Min Jae; Park, Jong Hyeok

    2013-03-01

    Monolithic dye-sensitized solar cells (M-DSSCs) provide an effective way to reduce the fabrication cost of general DSSCs since they do not require transparent conducting oxide substrates for the counter electrode. However, conventional monolithic devices have low efficiency because of the impediments resulting from counter electrode materials and spacer layers. Here, we demonstrate highly efficient M-DSSCs featuring a highly conductive polymer combined with macroporous polymer spacer layers. With M-DSSCs based on a PEDOT/polymer spacer layer, a power conversion efficiency of 7.73% was achieved, which is, to the best of our knowledge, the highest efficiency for M-DSSCs to date. Further, PEDOT/polymer spacer layers were applied to flexible DSSCs and their cell performance was investigated. PMID:23432389

  3. Halogen Bonding Promotes Higher Dye-Sensitized Solar Cell Photovoltages.

    PubMed

    Simon, Sarah J C; Parlane, Fraser G L; Swords, Wesley B; Kellett, Cameron W; Du, Chuan; Lam, Brian; Dean, Rebecca K; Hu, Ke; Meyer, Gerald J; Berlinguette, Curtis P

    2016-08-24

    We report here an enhancement in photovoltage for dye-sensitized solar cells (DSSCs) where halogen-bonding interactions exist between a nucleophilic electrolyte species (I(-)) and a photo-oxidized dye immobilized on a TiO2 surface. The triarylamine-based dyes under investigation showed larger rate constants for dye regeneration (kreg) by the nucleophilic electrolyte species when heavier halogen substituents were positioned on the dye. The open-circuit voltages (VOC) tracked these kreg values. This analysis of a homologous series of dyes that differ only in the identity of two halogen substituents provides compelling evidence that the DSSC photovoltage is sensitive to kreg. This study also provides the first direct evidence that halogen-bonding interactions between the dye and the electrolyte can bolster DSSC performance. PMID:27518595

  4. Optimizing the Performance of a Plastic Dye Sensitized Solar Cell

    SciTech Connect

    Lee, B.; Buchholz, D.; Guo, P.; Hwang, D.; Chang, R.P.H.

    2011-05-19

    This article describes that a fluorine plasma treatment can increase the nanopore filling of a plastic electrolyte in a dye-sensitized solar cell to improve its performance. The one-step fluorine treatment can be used in a controlled way to increase the size of nanopores and nanochannels in the TiO{sub 2} nanoparticle electrode and, at the same time, passivate the TiO{sub 2} nanoparticle surfaces. In combination with the fluorine treatment, a sequential electrolyte filling process has been developed that allows the overall cell conversion efficiency to be increased by as much as 25%. The plastic-based electrolyte cells are found to be much more stable compared with their counterpart, the liquid electrolyte cells. Using this new process, and in combination with a photon confinement scheme, the overall cell efficiency can reach to about 9% using a masked frame measurement technique.

  5. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2010-10-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  6. Natural dye -sensitized mesoporous ZnO solar cell

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wu, Guizhi; Li, Linyu; Cao, Meng; Gu, Feng

    2011-02-01

    Natural dye-sensitized solar cells (N-DSSCs) were assembled using chlorophyll sensitized mesoporous ZnO (based on FTO) as the photoanode and platinum plate as the cathode. The natural dyes (chlorophyll) were extracted from spinach by simple procedure. The absorption spectrum and fluorescence spectrum of chlorophyll were studied. Mesoporous ZnO (m-ZnO) applied to the N-DSSCs was synthesized through hydrothermal method. The structures and morphologies were characterized by X-ray Diffraction (XRD) and diffuse reflection. The results indicated that the samples had an average pore size of 17 nm and the m-ZnO was hexagonal wurtzite structure. The performances of the N-DSSCs were investigated under AM 1.5G illumination. The Voc of the N-DSSCs was about 480mv, and the Isc was about 470μA. The performance of the N-DSSCs could be further improved by adjusting its structure.

  7. Plasmonic nanoparticles enhanced dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Qi; Liu, Fang; Meng, Weisi; Huang, Yidong

    2013-12-01

    Here we present investigations on utilizing two kinds of plasmonic nanoparticles (NPs) to enhance the efficiency of dye sensitized solar cells (DSCs). The Au@PVP NPs is proposed and present the specialty of adhesiveness to dye molecules, which could help to localize additional dye molecules near the plasmonic NPs, hence increasing the optical absorption consequently the power conversion efficiency (PCE) of the DSCs by 30% from 3.3% to 4.3%. Meanwhile, an irregular Au-Ag alloy popcorn-shaped NPs (popcorn NPs) with plenty of fine structures is also proposed and realized to enhance the light absorption of DSC. A pronounced absorption enhancement in a broadband wavelength range is observed due to the excitation of localized surface plasmon at different wavelengths. The PCE is enhanced by 32% from 5.94% to 7.85%.

  8. Ruthenium(II) multi carboxylic acid complexes: chemistry and application in dye sensitized solar cells.

    PubMed

    Shahroosvand, Hashem; Nasouti, Fahimeh; Sousaraei, Ahmad

    2014-04-01

    Novel ruthenium multi carboxylic complexes (RMCCs) have been synthesized by using ruthenium nitrosyl nitrate, 1,2,4,5-benzenetetracarboxylic acid (H4btec) and 4,7-diphenyl-1,10-phenanthroline (BPhen) as photosensitizers for titanium dioxide semiconductor solar cells. The complexes were characterized by (1)H-NMR, FT-IR, UV-Vis, ICP and CHN analyses. The reaction details and features were then described. SEM analysis revealed that the penetration of dyes into the pores of the nanocrystalline TiO2 surface was improved by increasing the number of btec units. The solar energy to electricity conversion efficiency of complexes shows that the number of attached carboxylates on a dye has an influence on the photoelectrochemical properties of the dye-sensitized electrode. An incident photon-to-current conversion efficiency (IPCE) of 13% at 510 nm was obtained for ruthenium complexes with three btec units. PMID:24500312

  9. Progress in nanostructured photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-09-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  10. Progress in nanostructured photoanodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xueyang; Fang, Jian; Liu, Yong; Lin, Tong

    2016-05-01

    Solar cells represent a principal energy technology to convert light into electricity. Commercial solar cells are at present predominately produced by single- or multi-crystalline silicon wafers. The main drawback to silicon-based solar cells, however, is high material and manufacturing costs. Dye-sensitized solar cells (DSSCs) have attracted much attention during recent years because of the low production cost and other advantages. The photoanode (working electrode) plays a key role in determining the performance of DSSCs. In particular, nanostructured photoanodes with a large surface area, high electron transfer efficiency, and low electron recombination facilitate to prepare DSSCs with high energy conversion efficiency. In this review article, we summarize recent progress in the development of novel photoanodes for DSSCs. Effect of semiconductor material (e.g. TiO2, ZnO, SnO2, N2O5, and nano carbon), preparation, morphology and structure (e.g. nanoparticles, nanorods, nanofibers, nanotubes, fiber/particle composites, and hierarchical structure) on photovoltaic performance of DSSCs is described. The possibility of replacing silicon-based solar cells with DSSCs is discussed.

  11. Enhancement of Spectral Response of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Chang, Shuai

    Dye-Sensitized solar cell (DSSC) is a class of third-generation solar devices. A notable feature of DSSC is that it can be manufactured by solution-based approach; this non-vacuum processing renders significant reduction in manufacturing costs. Different from conventional solar cells, in a DSSC, mesoporous semiconductor film with large surface areas is utilized for anchoring dye molecules, serving as light absorbing layer. Dye sensitizers play an important role in determining the final performance in DSSCs. Since the first highly-efficient DSSC was reported in 1991 sensitized by a ruthenium-based dye, numerous researchers have been focused on the development and characterization of various kinds of dyes for the applications in DSSCs. These include mainly metal complexes dyes, organic dyes, porphyrins and phthalocyanines dyes. The first part of my thesis work is to develop and test new dyes for DSSCs and a series of phenothiazine-based organic dyes and new porphyrin dyes are reported during the process. It has been realized that extending the response of dye sensitizers to a wider range of the solar spectrum is a key step in further improving the device efficiency. Typically, there are two ways for expanding the strong spectral response of DSSCs from visible to far red/NIR region. One approach is called co-sensitization. Herein, we demonstrate a new co-sensitization concept where small molecules is used to insert the interstitial site of between the pre-adsorbed large molecules. In this case, the co-adsorbed small ones is found to improve the light response and impede the back recombination, finally leading to the power conversion efficiency over 10% in conventional DSSC devices and a record-equaling efficiency of 9.2% in quasi-solid-state devices. I also implemented graphene sheets in the anode films for better charge transfer efficiency and break the energy conversion limit of co-sensitization in DSSCs. The optimal configuration between porphyrin dyes and

  12. Vegetable-based dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Bartolotta, Antonino; Di Marco, Gaetano; Di Carlo, Aldo; Bonaccorso, Francesco

    2015-05-21

    There is currently a large effort to improve the performance of low cost renewable energy devices. Dye-sensitized solar cells (DSSCs) are emerging as one of the most promising low cost photovoltaic technologies, addressing "secure, clean and efficient solar energy conversion". Vegetable dyes, extracted from algae, flowers, fruit and leaves, can be used as sensitizers in DSSCs. Thus far, anthocyanin and betalain extracts together with selected chlorophyll derivatives are the most successful vegetable sensitizers. This review analyses recent progress in the exploitation of vegetable dyes for solar energy conversion and compares them to the properties of synthetic dyes. We provide an in-depth discussion on the main limitation of cell performance e.g. dye degradation, effective electron injection from the dye into the conduction band of semiconducting nanoparticles, such as titanium dioxide and zinc oxide, outlining future developments for the use of vegetable sensitizers in DSSCs. We also discuss the cost of vegetable dyes and how their versatility can boost the advancement of new power management solutions, especially for their integration in living environments, making the practical application of such systems economically viable. Finally, we present our view on future prospects in the development of synthetic analogues of vegetable dyes as sensitizers in DSSCs. PMID:25855097

  13. Parallel Tandems of Dye Sensitized Solar Cells with CNT Collector

    NASA Astrophysics Data System (ADS)

    Velten, Josef; Yuan, Chao-Chen; Zakhidov, Anvar

    2009-03-01

    In this presentation, we demonstrate the fabrication of monolithic parallel tandem dye sensitized solar cells using a semitransparent layer of carbon nanotubes. Each DSC sub-cell has titania photoelectrode with two different dyes: N 719 and N 749, which absorb light in different parts of solar spectrum. This layer of carbon nanotubes laminated on highly porous polymeric Millipore filter acts as both the collector of charge carrier and as the catalyst of the I/I3^- redox reaction that completes the function of the cell, overall allowing easier fabrication for tandem solar cell devices, with a potential for creating flexible devices in the future. The parallel tandem shows the total photocurrent which is nearly the sum of two Isc currents of constituent cells, and total Voc, which is average of two Voc, while conventional in-series DSC tandems show the lowest Voc and slightly increased Isc[1]. Thus the higher efficiency can be achieved in parallel DSC tandems, and we discuss the physical reasons for this effect. [1] Yanagida, et.al. J. of Photochemistry and Photobiology A: Chemistry Volume 164, Issues 1-3, 1 June 2004, Pages 33-39

  14. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Saravana Kumar, G.; Murugakoothan, P.

    2015-02-01

    A natural dye extracted from Caesalpinia sappan heartwood was used as photo sensitizer for the first time to fabricate titanium dioxide (TiO2) nanoparticles based dye sensitized solar cells. Brazilin and brazilein are the major pigments present in the natural dye and their optimized molecular structure were calculated using Density functional theory (DFT) at 6-31G (d) level. The HOMO-LUMO were performed to reveal the energy gap using optimized structure. Pure TiO2 nanoparticles in anatase phase were synthesized by sol-gel technique. The pure and natural dye sensitized TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Low cost and environment friendly dye sensitized solar cells were fabricated using natural dye sensitized TiO2 based photo anode. The solar light to electron conversion efficiency of Caesalpinia sappan heartwood extract sensitized dye sensitized solar cell is 1.1%.

  15. Transistorlike behavior in photoconductor based on dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Wang, X. Q.; Cai, C. B.; Wang, Y. F.; Zhou, W. Q.; Lu, Y. M.; Liu, Z. Y.; Hu, L. H.; Dai, S. Y.

    2009-07-01

    A photogated transistor is established based on the dye-sensitized solar cell using nanocrystalline TiO2 films. Voltage-current curves are characterized with three types of transport behaviors: linear increase, saturated plateau, and breakdownlike increase, which are actually of the typical performances for a phototransistor. Moreover, an asymmetric behavior is observed in the voltage-current loops, which is believed to be due to the difference in the effective photoconducting areas rather than the cross-section areas. The photovoltaic voltage between the common counter electrode and drain (VCE-D) is examined as well during the loop measurements, clarifying that the predominant dark process in source and the predominant photovoltaic process in drain are series connected, modifying the electric potential levels, and thus resulting in the characteristic phototransistor behaviors.

  16. Peptide-templating dye-sensitized solar cells.

    PubMed

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Kim, Sang Ouk

    2010-05-01

    A hollow TiO(2) nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO(2) layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO(2) framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO(2) nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO(2) nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO(2) nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO(2) nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO(2) electrodes via biotemplating. PMID:20378945

  17. Peptide-templating dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Han, Tae Hee; Moon, Hyoung-Seok; Hwang, Jin Ok; Seok, Sang Il; Im, Sang Hyuk; Ouk Kim, Sang

    2010-05-01

    A hollow TiO2 nanoribbon network electrode for dye-sensitized solar cells (DSSC) was fabricated by a biotemplating process combining peptide self-assembly and atomic layer deposition (ALD). An aromatic peptide of diphenylalanine was assembled into a three-dimensional network consisting of highly entangled nanoribbons. A thin TiO2 layer was deposited at the surface of the peptide template via the ALD process. After the pyrolysis of the peptide template, a highly entangled nanotubular TiO2 framework was successfully prepared. Evolution of the crystal phase and crystallite size of the TiO2 nanostructure was exploited by controlling the calcination temperature. Finally, the hollow TiO2 nanoribbon network electrode was integrated into DSSC devices and their photochemical performances were investigated. Hollow TiO2 nanoribbon-based DSSCs exhibited a power conversion efficiency of 3.8%, which is comparable to the conventional TiO2 nanoparticle-based DSSCs (3.5%). Our approach offers a novel pathway for DSSCs consisting of TiO2 electrodes via biotemplating.

  18. Influence of Ancillary Ligands in Dye-Sensitized Solar Cells.

    PubMed

    Pashaei, Babak; Shahroosvand, Hashem; Graetzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-08-24

    Dye-sensitized solar cells (DSSCs) have motivated many researchers to develop various sensitizers with tailored properties involving anchoring and ancillary ligands. Ancillary ligands carry favorable light-harvesting abilities and are therefore crucial in determining the overall power conversion efficiencies. The use of ancillary ligands having aliphatic chains and/or π-extended aromatic units decreases charge recombination and permits the collection of a large fraction of sunlight. This review aims to provide insight into the relationship between ancillary ligand structure and DSSC properties, which can further guide the function-oriented design and synthesis of different sensitizers for DSSCs. This review outlines how the new and rapidly expanding class of chelating ancillary ligands bearing 2,2'-bipyridyl, 1,10-phenanthroline, carbene, dipyridylamine, pyridyl-benzimidazole, pyridyl-azolate, and other aromatic ligands provides a conduit for potentially enhancing the performance and stability of DSSCs. Finally, these classes of Ru polypyridyl complexes have gained increasing interest for feasible large-scale commercialization of DSSCs due to their more favorable light-harvesting abilities and long-term thermal and chemical stabilities compared with other conventional sensitizers. Therefore, the main idea is to inspire readers to explore new avenues in the design of new sensitizers for DSSCs based on different ancillary ligands. PMID:27479482

  19. Metal-Free Sensitizers for Dye-Sensitized Solar Cells.

    PubMed

    Chaurasia, Sumit; Lin, Jiann T

    2016-06-01

    This review focuses on our work on metal-free sensitizers for dye-sensitized solar cells (DSSCs). Sensitizers based on D-A'-π-A architecture (D is a donor, A is an acceptor, A' is an electron-deficient entity) exhibit better light harvesting than D-π-A-type sensitizers. However, appropriate molecular design is needed to avoid excessive aggregation of negative charge at the electron-deficient entity upon photoexcitation. Rigidified aromatics, including aromatic segments comprising fused electron-excessive and -deficient units in the spacer, allow effective electronic communication, and good photoinduced charge transfer leads to excellent cell performance. Sensitizers with two anchors/acceptors, D(-π-A)2 , can more efficiently harvest light, inject electrons, and suppress dark current compared with congeners with a single anchor. Appropriate incorporation of heteroaromatic units in the spacer is beneficial to DSSC performance. High-performance, aqueous-based DSSCs can be achieved with a dual redox couple comprising imidazolium iodide and 2,2,6,6-tetramethylpiperidin-N-oxyl, and/or using dyes of improved wettability through the incorporation of a triethylene oxide methyl ether chain. PMID:27114164

  20. The application of electrospun titania nanofibers in dye-sensitized solar cells.

    PubMed

    Krysova, Hana; Zukal, Arnost; Trckova-Barakova, Jana; Chandiran, Aravind Kumar; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Kavan, Ladislav

    2013-01-01

    Titania nanofibers were fabricated using the industrial Nanospider(TM) technology. The preparative protocol was optimized by screening various precursor materials to get pure anatase nanofibers. Composite films were prepared by mixing a commercial paste of nanocrystalline anatase particles with the electrospun nanofibers, which were shortened by milling. The composite films were sensitized by Ru-bipyridine dye (coded C106) and the solar conversion efficiency was tested in a dye-sensitized solar cell filled with iodide-based electrolyte solution (coded Z960). The solar conversion efficiency of a solar cell with the optimized composite electrode (η = 7.53% at AM 1.5 irradiation) outperforms that of a solar cell with pure nanoparticle film (η = 5.44%). Still larger improvement was found for lower light intensities. At 10% sun illumination, the best composite electrode showed η = 7.04%, referenced to that of pure nanoparticle film (η = 4.69%). There are non-monotonic relations between the film's surface area, dye sorption capacity and solar performance of nanofiber-containing composite films, but the beneficial effect of the nanofiber morphology for enhancement of the solar efficiency has been demonstrated. PMID:23574954

  1. Efficient Cosensitization Strategy for Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Colonna, Daniele; Capogna, Vincenzo; Lembo, Angelo; Brown, Thomas M.; Reale, Andrea; Di Carlo, Aldo

    2012-02-01

    The challenge of increasing the photocurrent of a dye solar cell device by acting on the spectral response is approached herein. Cosensitization of nanocrystalline titania photoanodes by using two complementary dyes is investigated considering the dyeing time as an additional parameter for the optimization of the cosensitization process. We find that the characteristics of the cosensitized cell can outperform those of the cells made with each single dye. This effect is related to the reduction of the molecular stacking of one of the dyes, which quenches electron transfer to TiO2. Cosensitization results are also related to the cell transparency.

  2. To probe the equivalence and opulence of nanocrystal and nanotube based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jyoti, Divya; Mohan, Devendra

    2016-05-01

    Dye-Sensitized solar cells based on TiO2 nanocrystal and TiO2 nanotubes have been fabricated by a simple sol-gel hydrothermal process and their performances have been compared. Current density and voltage (JV) characteristics and incident photon to current conversion efficiency (IPCE) plots have been set as criterion to check which one is better as a photoanode candidate in dye-sensitized solar cell. It has been observed that although open circuit voltage values for both type of cells do not differ much still, nanotube based dye-sensitized solar cells are more successful having an efficiency value of 7.28%.

  3. Carbon coated stainless steel as counter electrode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shejale Kiran; Sharma, Rakesh K.; Roy, Mahesh S.; Kumar, Mahesh

    2014-10-01

    A new type of counter electrode for dye sensitized solar cells has been fabricated using a stainless steel sheet as substrate and graphite, graphene and multiwall carbon nanotubes as the catalytic material which applied by screen printing technique. The sheet resistances of the substrates and there influence on the dye sensitized solar cells has been studied. The fabricated counter electrodes i.e. SS-graphite, SS-graphene SS-MWCNT and SS-platinum were tested for their photovoltaic response in the form of dye sensitized solar cells.

  4. Titania nanobundle networks as dye-sensitized solar cell photoanodes

    NASA Astrophysics Data System (ADS)

    Dong, Cunku; Xiang, Wanchun; Huang, Fuzhi; Fu, Dongchuan; Huang, Wenchao; Bach, Udo; Cheng, Yi-Bing; Li, Xin; Spiccia, Leone

    2014-03-01

    Quasi-one-dimensional (1D) titania nanobundles were synthesized via a hydrothermal method and used to print random network nanostructured films. These films are shown to be ideally suited for application as photoanodes in dye-sensitized solar cells (DSCs) as they have a higher porosity compared to the traditional 1D nanostructured TiO2 materials. Devices constructed using the N719 dye and iodide/triiodide as the redox mediator in the electrolyte yielded energy conversion efficiencies (η = 6.1 +/- 0.2%), which were marginally lower than for devices made with the commonly used P25 titania films (η = 6.3 +/- 0.1%) under one sun simulated solar radiation. Application of an electrolyte based on the [Co(bpy)3]2+/3+ redox couple and the MK2 organic sensitizer resulted in higher efficiencies (η = 7.70 +/- 0.1%) than for the P25 devices (η = 6.3 +/- 0.3%). Each performance parameter (short circuit current density, open circuit voltage and fill factor) was higher for the TiO2 nanobundle devices than those for the P25-based devices. The results of electrochemical impedance spectroscopy (EIS), intensity-modulated photovoltage spectroscopy (IMVS), and dye-loading measurements indicated that the better performance of TiO2 nanobundle devices with cobalt electrolytes correlates with higher porosity, relatively fast electron transport and more efficient suppression of electron recombination. A faster rate of diffusion of the cobalt complexes through the highly porous TiO2 nanobundle network is proposed to contribute to the enhanced device efficiency.Quasi-one-dimensional (1D) titania nanobundles were synthesized via a hydrothermal method and used to print random network nanostructured films. These films are shown to be ideally suited for application as photoanodes in dye-sensitized solar cells (DSCs) as they have a higher porosity compared to the traditional 1D nanostructured TiO2 materials. Devices constructed using the N719 dye and iodide/triiodide as the redox mediator in

  5. Fundamental studies of nanoarchitectured dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yang, Zhenzhen

    2011-12-01

    Dye-sensitized solar cells (DSSCs) are a promising candidate for next-generation photovoltaic panels due to their low cost, easy fabrication processes and relatively high efficiency. Despite the considerable effort on the advancement of DSSCs, the efficiency of DSSCs has been stalled for nearly two decades due to the complex interplay among various DSSC parameters. Particularly, in a conventional DSSC, a thicker semiconductor photovoltaic (PV) layer, i.e., a dye-sensitized TiO2 nanoparticle layer, is required to accommodate more light-induced charge separation centers to enhance light harvesting efficiency. However, a thicker PV layer concurrently increases the charge transport distance in the PV layer; so the system suffers from more charge recombination, leading to significant deterioration in charge collection efficiency. The conflicting demands on the thickness of PV layer by these two critical elementary photoelectrochemical processes becomes a fundamental limitation for further advancement in DSSCs and limits the choice of redox mediators and electrode materials in DSSCs. Hence, the focus of this dissertation research work is to systematically explore a transformative way to fundamentally resolve the conflicting interplay between light harvesting and charge transport. First, our strategy is to allocate part of the roughness factor to the collecting anode instead of imparting all the roughness factors onto the semiconductor PV layer attached to the anode. As a proof of concept, we first synthesized and characterized a microscopically rough Zn collecting anode, on which ZnO nanotips are grown. For the same surface roughness factor, the length of the ZnO nanotips supported on such a rough Zn anode can be much shorter than that of the ZnO nanowires supported on a planar anode. Our Zn-microtip|ZnO-nanotip DSSCs exhibit enhanced fill factor, Voc and Jsc. The investigation of kinetics indicates that the electron collection time is much faster than the electron

  6. Charge separation in solid-state dye-sensitized heterojunction solar cells

    SciTech Connect

    Bach, U.; Tachibana, Yasuhiro; Moser, J.E.; Haque, S.A.; Durrant, J.R.; Graetzel, M.; Klug, D.R.

    1999-08-18

    Dye-sensitized nanocrystalline solar cells are presently under intensive investigation, as they offer an attractive alternative to conventional p--n junction devices. Solid-state versions have been described where the electrolyte present in the pores of the malodorous oxide film is replaced by a large band gap p-type semiconductor. In this way, a solid-state heterojunction of very large contact area is formed. Light is absorbed by the dye that is located at the interface. Upon excitation, the dye injects electrons into the conduction band of the oxide and is regenerated by hole injection into the p-type conductor. High incident photon-to-electric current conversion efficiencies have been achieved recently with a cell consisting of a dye-derivatized mesoporous TiO{sub 2} film contacted by a new organic hole conductor. The great advantage of such systems with regard to conventional p--n junctions is that only majority carriers are involved in the photoelectric conversion process. Moreover, these are generated by the dye precisely at the site of the junction where the electric field is maximal, enhancing charge separation. Photoelectric conversion by conventional solar cells involves minority carriers whose lifetime is restricted due to recombination. As they are generated throughout the semiconductor and away from the junction, expensive high-purity materials are required in order to maintain the minority carrier diffusion length at a level where current losses are avoided. While the dynamics of photoinduced redo processes in photoelectrochemical systems have been studied in great detail, little is known about the electron-transfer dynamics in solid-state sensitized junctions. Here the authors report for the first time on the direct observation of photoinduced, interfacial charge separation across a dye-sensitized solid-state heterojunction by means of picosecond transient absorption laser spectroscopy.

  7. Photo-electrochemical studies of chemically deposited nanocrystalline meso-porous n-type TiO2 thin films for dye-sensitized solar cell (DSSC) using simple synthesized azo dye

    NASA Astrophysics Data System (ADS)

    Ezema, C. G.; Nwanya, A. C.; Ezema, B. E.; Patil, B. H.; Bulakhe, R. N.; Ukoha, P. O.; Lokhande, C. D.; Maaza, Malik; Ezema, Fabian I.

    2016-04-01

    Nanocrystalline titanium dioxide (TiO2) thin films were deposited by successive ionic layer adsorption and reaction method onto fluorine doped tin oxide coated glass substrate at room temperature (300 K). Titanium trichloride and sodium hydroxide were used as cationic and anionic sources, respectively. The as-deposited and annealed films were characterized for structural, morphological, optical, electrical and wettability properties. The photoelectrochemical study of TiO2 sensitized with a laboratory synthesized organic dye (azo) was evaluated in the polyiodide electrolyte at 40 mW cm-2 light illumination intensity. The photovoltaic characteristics show a fill factor of 0.24 and solar conversion efficiency value of 0.032 % for a TiO2 thickness of 0.96 µm as compared to efficiency of 0.014 % for rose Bengal of the same thickness.

  8. Dye Sensitized Tandem Photovoltaic Cells

    SciTech Connect

    Barber, Greg D.

    2009-12-21

    This work provided a new way to look at photoelectrochemical cells and their performance. Although thought of as low efficiency, a the internal efficiency of a 9% global efficiency dye sensitized solar cell is approximately equal to an 18% efficient silicon cell when each is compared to their useful spectral range. Other work undertaken with this contract also reported the first growth oriented titania and perovskite columns on a transparent conducting oxide. Other work has shown than significant performance enhancement in the performance of dye sensitized solar cells can be obtained through the use of coupling inverse opal photonic crystals to the nanocrystalline dye sensitized solar cell. Lastly, a quick efficient method was developed to bond titanium foils to transparent conducting oxide substrates for anodization.

  9. The electronic structure engineering of organic dye sensitizers for solar cells: The case of JK derivatives.

    PubMed

    Zhang, Cai-Rong; Ma, Jin-Gang; Zhe, Jian-Wu; Jin, Neng-Zhi; Shen, Yu-Lin; Wu, You-Zhi; Chen, Yu-Hong; Liu, Zi-Jiang; Chen, Hong-Shan

    2015-11-01

    The design and development of novel dye sensitizers are effective method to improve the performance of dye-sensitized solar cells (DSSCs) because dye sensitizers have significant influence on photo-to-current conversion efficiency. In the procedure of dye sensitizer design, it is very important to understand how to tune their electronic structures and related properties through the substitution of electronic donors, acceptors, and conjugated bridges in dye sensitizers. Here, the electronic structures and excited-state properties of organic JK dye sensitizers are calculated by using density functional theory (DFT) and time dependent DFT methods. Based upon the calculated results, we investigated the role of different electronic donors, acceptors, and π-conjugated bridges in the modification of electronic structures, absorption properties, as well as the free energy variations for electron injection and dye regeneration. In terms of the analysis of transition configurations and molecular orbitals, the effective chromophores which are favorable for electron injection in DSSCs are addressed. Meanwhile, considering the absorption spectra and free energy variation, the promising electronic donors, π-conjugated bridges, and acceptors are presented to design dye sensitizers. PMID:26116996

  10. Molecular design rule of phthalocyanine dyes for highly efficient near-IR performance in dye-sensitized solar cells.

    PubMed

    Kimura, Mutsumi; Nomoto, Hirotaka; Suzuki, Hiroyuki; Ikeuchi, Takuro; Matsuzaki, Hiroyuki; Murakami, Takuro N; Furube, Akihiko; Masaki, Naruhiko; Griffith, Matthew J; Mori, Shogo

    2013-06-01

    A series of zinc-phthalocyanine sensitizers (PcS16-18) with different adsorption sites have been designed and synthesized in order to investigate the dependence of adsorption-site structures on the solar-cell performances in zinc-phthalocyanine based dye-sensitized solar cells. The change of adsorption site affected the electron injection efficiency from the photoexcited dye into the nanocrystalline TiO2 semiconductor, as monitored by picosecond time-resolved fluorescence spectroscopy. The zinc-phthalocyanine sensitizer PcS18, possessing one carboxylic acid directly attached to the ZnPc ring and six 2,6-diisopropylphenoxy units, showed a record power conversion efficiency value of 5.9 % when used as a light-harvesting dye on a TiO2 electrode under one simulated solar condition. PMID:23576330

  11. Synthesis and characterization of Allium cepa L. as photosensitizer of dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Sutikno, Afrian, Noverdi; Supriadi, Putra, Ngurah Made Dharma

    2016-04-01

    The synthesis and characterization of Allium cepa L. used as natural pigment for natural dye sensitizer of solar cell has successfully done and anthocyanin is extracted. Anthocynin is color pigment of plant which has characteristic absorption spectrum of photon and excites electrons up to pigment molecules. As the anthocyanin absorbed light increases the excited electrons increase as well. The generated current also increases and it leads to the efficiency increase. The energy conversion efficiency of the cells sensitized with dye of Allium cepa L. was 3,045 x 10-4%. A simple technique was taken to fabricate dye sensitizer solar cell is spincoating.

  12. All-solid-state dye-sensitized solar cells with high efficiency.

    PubMed

    Chung, In; Lee, Byunghong; He, Jiaqing; Chang, Robert P H; Kanatzidis, Mercouri G

    2012-05-24

    Dye-sensitized solar cells based on titanium dioxide (TiO(2)) are promising low-cost alternatives to conventional solid-state photovoltaic devices based on materials such as Si, CdTe and CuIn(1-x)Ga(x)Se(2) (refs 1, 2). Despite offering relatively high conversion efficiencies for solar energy, typical dye-sensitized solar cells suffer from durability problems that result from their use of organic liquid electrolytes containing the iodide/tri-iodide redox couple, which causes serious problems such as electrode corrosion and electrolyte leakage. Replacements for iodine-based liquid electrolytes have been extensively studied, but the efficiencies of the resulting devices remain low. Here we show that the solution-processable p-type direct bandgap semiconductor CsSnI(3) can be used for hole conduction in lieu of a liquid electrolyte. The resulting solid-state dye-sensitized solar cells consist of CsSnI(2.95)F(0.05) doped with SnF(2), nanoporous TiO(2) and the dye N719, and show conversion efficiencies of up to 10.2 per cent (8.51 per cent with a mask). With a bandgap of 1.3 electronvolts, CsSnI(3) enhances visible light absorption on the red side of the spectrum to outperform the typical dye-sensitized solar cells in this spectral region. PMID:22622574

  13. Solar energy conversion at dye sensitized nanostructured electrodes fabricated by sol-gel processing: Final report

    SciTech Connect

    Searson, P C; Meyer, G J

    1998-07-01

    The significant achievements accomplished in this program include: (1) the first demonstration of osmium polypyridyl compounds as sensitizers; (2) the first demonstration of donor-acceptor compounds as sensitizers; (3) the first utilization of alternative acac based sensitizer-semiconductor linkages; (4) the first demonstration of remote interfacial electron transfer; (5) the first application of bimetallic compounds as sensitizers; (6) the first correlation of the interfacial charge recombination rate constant with the open circuit photovoltage in sensitized materials; (7) the first demonstration of a solid state dye sensitized TiO{sub 2} cell; (8) an alternative band edge unpinning model for the nanocrystalline TiO{sub 2}/electrolyte interface at negative applied potentials; and (9) the first self-consistent model of electron transport in dye sensitized TiO{sub 2} films. In the following sections the authors summarize some of the results from this program and highlight the key findings.

  14. Triphenylamine-based indoline derivatives for dye-sensitized solar cells: a density functional theory investigation.

    PubMed

    Ren, Xue-Feng; Kang, Guo-Jun; He, Qiong-Qiong

    2016-01-01

    A new series of triphenylamine-based indoline dye sensitizers were molecularly designed and investigated for their potential use in dye-sensitized solar cells (DSSCs). Theoretical calculations revealed that modifying donor part of D149 by triphenylamine significantly altered the electronic structures, MO energies, and intramolecular charge transfer (ICT) absorption band. Key parameters associated with the light-harvesting efficiency at a given wavelength LHE(λ), the driving force ΔG inject, and the open-circuit photovoltage V oc were characterized. More importantly, these designed (dimeric) dye sensitizers were found to have similar broad absorption spectra to their corresponding monomers, indicating that modifying the donor part with triphenylamine may stop unfavorable dye aggregation. Further analyses of the dye-(TiO2)9 cluster interaction confirmed that there was strong electronic coupling at the interface. These results are expected to provide useful guidance in the molecular design of new highly efficient metal-free organic dyes. PMID:26659403

  15. On the early development of organic dyes for dye-sensitized solar cells.

    PubMed

    Kloo, Lars

    2013-07-28

    This viewpoint describes the background of the development of organic dyes for dye-sensitized solar cells, the impact of the 2006 ChemComm paper by Sun, Hagfeldt and co-workers regarding the D5 D-π-A-family of dyes, some recent developments and possible future challenges to meet. PMID:23775237

  16. A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Wenjun; Wang, Jiaxing; Zheng, Zhiwei; Hu, Yue; Jin, Jiayu; Zhang, Qiong; Hua, Jianli

    2015-02-01

    Two sensitizers with novel structure were designed and synthetized by introducing photochromic bisthienylethene (BTE) group into the conjugated system. Thanks to the photochromic effect the sensitizers have under ultraviolet and visible light, the conjugated bridge can be restructured and the resulting two photoisomers showed different behaviors in photovoltaic devices. This opens up a new research way for the dye-sensitized solar cells (DSSCs).

  17. Cylindrical dye-sensitized solar cells with high efficiency and stability over time and incident angle.

    PubMed

    Tang, Qunwei; Zhang, Lei; He, Benlin; Yu, Liangmin; Yang, Peizhi

    2016-02-28

    We present here the realization of cylindrical dye-sensitized solar cells composed of Ti wire supported TiO2 nanotube anodes and transparent metal selenide counter electrodes. The optimized device yields a high efficiency of 6.63%, good stability over time, and identical efficiency output at arbitrary incident angles. PMID:26839927

  18. Dye-sensitized solar cells based on multichromophoric supramolecular light-harvesting materials.

    PubMed

    Panda, Dillip K; Goodson, Flynt S; Ray, Shuvasree; Saha, Sourav

    2014-05-25

    Multichromophoric dye-sensitized solar cells (DSSCs) comprised of a supramolecular zinc-phthalocyanineperyleneimide (ZnPc···PMI) dyad convert light to electrical energy with much higher power conversion efficiency (PCE = 2.3%) and incident-photon-to-current-efficiency (IPCE = ca. 40%) than the devices made of individual dyes. PMID:24409457

  19. Eugenic metal-free sensitizers with double anchors for high performance dye-sensitized solar cells.

    PubMed

    Hung, Wei-I; Liao, You-Ya; Lee, Ting-Hui; Ting, Yu-Chien; Ni, Jen-Shyang; Kao, Wei-Siang; Lin, Jiann T; Wei, Tzu-Chien; Yen, Yung-Sheng

    2015-02-01

    A series of new phenothiazine-based dyes (HL5-HL7) with double acceptors/anchors have been synthesized and used as the sensitizers for highly efficient dye-sensitized solar cells (DSSCs). Among them, the HL7-based cell exhibits the best efficiency of 8.32% exceeding the N719-based cell (7.35%) by ∼13%. PMID:25555237

  20. See-through dye-sensitized solar cells: photonic reflectors for tandem and building integrated photovoltaics.

    PubMed

    Heiniger, Leo-Philipp; O'Brien, Paul G; Soheilnia, Navid; Yang, Yang; Kherani, Nazir P; Grätzel, Michael; Ozin, Geoffrey A; Tétreault, Nicolas

    2013-10-25

    See-through dye-sensitized solar cells with 1D photonic crystal Bragg reflector photoanodes show an increase in peak external quantum efficiency of 47% while still maintaining high fill factors, resulting in an almost 40% increase in power conversion efficiency. These photoanodes are ideally suited for tandem and building integrated photovoltaics. PMID:23966106

  1. A low recombination rate indolizine sensitizer for dye-sensitized solar cells.

    PubMed

    Huckaba, Aron J; Yella, Aswani; Brogdon, Phillip; Scott Murphy, J; Nazeeruddin, Mohammad Khaja; Grätzel, Michael; Delcamp, Jared H

    2016-06-28

    A sensitizer incorporating a heavily alkylated surface blocking indolizine donor exhibits excellent light absorption and diminished recombination rates in dye-sensitized solar cells (DSCs). DSC device efficiencies (up to 8%) using either I(-)/I3(-) or Co(bpy)3(2+/3+) redox shuttles were obtained, which compare favourably to the known excellent surface coverage co-sensitization dye, . PMID:27301449

  2. Bi-functional ion exchangers for enhanced performance of dye-sensitized solar cells.

    PubMed

    Kong, Eui-Hyun; Chang, Yong-June; Lim, Jongchul; Kim, Back-Hyun; Lee, Jung-Hoon; Kwon, Do-Kyun; Park, Taiho; Jang, Hyun Myung

    2013-07-28

    Ion exchange using aerosol OT (AOT) offers dye adsorption twice as fast as known methods. Moreover, it suppresses the dye-agglomeration that may cause insufficient dye-coverage on the photoelectrode surface. Consequently, its dual function of fast dye-loading and higher dye-coverage significantly improves the power conversion efficiency of dye-sensitized solar cells. PMID:23775416

  3. Natural dye sensitized TiO2 nanorods assembly of broccoli shape based solar cells.

    PubMed

    Yuvapragasam, Akila; Muthukumarasamy, N; Agilan, S; Velauthapillai, Dhayalan; Senthil, T S; Sundaram, Senthilarasu

    2015-07-01

    TiO2 nanorods based thin films with rutile phase have been synthesized using template free low temperature hydrothermal method. The scanning electron microscope images showed that the prepared TiO2 samples were made of TiO2 nanorods and the nanorods had arranged by itself to form a broccoli like shape. The X-ray diffraction studies revealed that the prepared TiO2 samples exhibit rutile phase. The grown TiO2 nanorods had been sensitized using the flowers of Sesbania (S) grandiflora, leaves of Camellia (C) sinensis and roots of Rubia (R) tinctorum. Dye sensitized solar cells had been fabricated using the natural dye sensitized TiO2 nanorods based thin film photoelectrode and the open circuit voltage and short circuit current density were found to lie in the range of 0.45-0.6 V and 5.6-6.4 mA/cm(2) respectively. The photovoltaic performance of all the fabricated natural dye sensitized TiO2 solar cells indicate that natural dyes have the potential to be used as effective sensitizer in dye sensitized solar cells. PMID:25974906

  4. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    PubMed Central

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-01-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple. PMID:27489138

  5. Highly stable tandem solar cell monolithically integrating dye-sensitized and CIGS solar cells

    NASA Astrophysics Data System (ADS)

    Chae, Sang Youn; Park, Se Jin; Joo, Oh-Shim; Jun, Yongseok; Min, Byoung Koun; Hwang, Yun Jeong

    2016-08-01

    A highly stable monolithic tandem solar cell was developed by combining the heterogeneous photovoltaic technologies of dye-sensitized solar cell (DSSC) and solution-processed CuInxGa1-xSeyS1-y (CIGS) thin film solar cells. The durability of the tandem cell was dramatically enhanced by replacing the redox couple from to [Co(bpy)3]2+ /[Co(bpy)3]3+), accompanied by a well-matched counter electrode (PEDOT:PSS) and sensitizer (Y123). A 1000 h durability test of the DSSC/CIGS tandem solar cell in ambient conditions resulted in only a 5% decrease in solar cell efficiency. Based on electrochemical impedance spectroscopy and photoelectrochemical cell measurement, the enhanced stability of the tandem cell is attributed to minimal corrosion by the cobalt-based polypyridine complex redox couple.

  6. Dye-Sensitized Solar Cells: The Future of Using Earth-Abundant Elements in Counter Electrodes for Dye-Sensitized Solar Cells (Adv. Mater. 20/2016).

    PubMed

    Briscoe, Joe; Dunn, Steve

    2016-05-01

    Sustainability is an important concept generating traction in the research community. To be really sustainable the full life cycle of a product needs to be carefully considered. A key aspect of this is using elements that are either readily recycled or accessible in the Earth's biosphere. Jigsawing these materials together in compounds to address our future energy needs represents a great opportunity for the current generation of researchers. On page 3802, S. Dunn and J. Briscoe summarize the performance of a selection of alternative materials to replace platinum in the counter electrodes of dye-sensitized solar cells. PMID:27197641

  7. Effects of cell area on the performance of dye sensitized solar cell

    SciTech Connect

    Khatani, Mehboob E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Mohamed, Norani Muti E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Hamid, Nor Hisham E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Sahmer, Ahmad Zahrin E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com Samsudin, Adel E-mail: noranimuti-mohamed@petronas.com.my E-mail: azclement@yahoo.com

    2014-10-24

    Dye sensitized solar cells (DSCs) have significant advantage over the current silicon cells by having low manufacturing cost and potentially high conversion efficiency. Therefore, DSCs are expected to be used as the next generation solar cell device that covers wide range of new applications. In order to achieve highly efficient DSCs for practical application, study on the effect of increasing the cell’s area on the performance of dye sensitized solar need to be carried out. Three different DSC cell areas namely, 1, 12.96 and 93.5 cm{sup 2} respectively were fabricated and analyzed through solar simulator and electrochemical impedance spectroscopy (EIS). From the analysis of electrochemical impedance spectroscopy (EIS), it was observed that the cell’s electron lifetime was influenced significantly by the cell’s area. Although the collection efficiency of all cells recorded to be approximately 100% but higher recombination rate with increased cell area reduced the performance of the cell.

  8. Light trapping and plasmonic enhancement in silicon, dye-sensitized and titania solar cells

    NASA Astrophysics Data System (ADS)

    Nhung Tran, Hong; Hieu Nguyen, Van; Nguyen, Bich Ha; Vu, Dinh Lam

    2016-03-01

    The efficiency of a solar cell depends on both the quality of its semiconductor active layer, as well as on the presence of other dielectric and metallic structural components which improve light trapping and exploit plasmonic enhancement. The purpose of this work is to review the results of recent research on light trapping and plasmonic enhancement in three types of solar cells: thin-film silicon solar cells, dye-sensitized solar cells and solid-state titania solar cells. The results of a study on modeling and the design of light trapping components in solar cells are also presented.

  9. Flexible Dye-Sensitized Solar Cell based on Vertical ZnO Nanowire Arrays

    SciTech Connect

    Chu, Sheng; Li, Dongdong; Chang, Pai-Chun; Lu, Jia Grace

    2010-09-26

    Flexible dye-sensitized solar cells are fabricated using vertically aligned ZnO nanowire arrays that are transferred onto ITO-coated poly(ethylene terephthalate) substrates using a simple peel-off process. The solar cells demonstrate an energy conversion efficiency of 0.44% with good bending tolerance. This technique paves a new route for building large-scale cost-effective flexible photovoltaic and optoelectronic devices.

  10. Effects of pH of Dyes on Characteristics of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Furukawa, Shoji; Iino, Hiroshi; Kukita, Koudai; Kaminosono, Kaoru

    Dye-sensitized solar cells were fabricated using natural dyes and synthesized dyes in which rear metal was not contained. Effects of pH of dyes on the characteristics of the dye-sensitized solar cells were also examined. As a result, it was found that the conversion efficiency of the dye-sensitized solar cell fabricated using red-cabbage dye with a pH of 2.5 was 0.10 point larger than that of the solar cell fabricated using red-cabbage dye with a pH of 4.0. It was also found that the conversion efficiency of the solar cell fabricated using red-perilla dye with a pH of 3.1 was 0.10 point larger than that of the solar cell fabricated using red-perilla dye with a pH of 5.8. The results are discussed on the bases of the molecular structure of mainly contained dye and the optical absorption spectra.

  11. The enhancement of photovoltaic parameters in dye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles.

    PubMed

    Aponsu, G M L P; Wijayarathna, T R C K; Perera, I K; Perera, V P S; Siriwardhana, A C P K

    2013-05-15

    In this paper, the performance of nano-porous electrodes made of a composite material of SrTiO3 and SnO2 are compared with those made of bare SnO2. When these particular devices are analyzed in a comparative mode the results confirmed the enhancement of photovoltaic parameters in the former device. The performance of respective cells were examined by several methods including I-V characteristic measurements, photocurrent action spectra, dark I-V measurements, Mott-Schottky measurements and X-ray diffraction measurements. Even though such improvements in this particular cell could be explicated by the formation of a potential energy barrier of SrTiO3 particles of comparably large width at the SrTiO3/SnO2 interface, the passivation of voids in the SnO2 film by SrTiO3 particles to a certain extent could not be totally ruled out. Besides, high energetic electrons injected by dye molecules move more credibly through mini-bands formed in the chain of nano-crystalline SnO2 particles to the back contact. The blocking of the recombination path and the shifting up of the uppermost electron occupied level of SnO2 accompanying the conduction band edge in the SrTiO3/SnO2 composite film, may have lead to the observed enhancement of the fill factor and photovoltage, respectively. PMID:23501715

  12. Electrical characterization of dye sensitized nano solar cell using natural pomegranate juice as photosensitizer

    NASA Astrophysics Data System (ADS)

    Adithi, U.; Thomas, Sara; Uma, V.; Pradeep, N.

    2013-02-01

    This paper shows Electrical characterization of Dye Sensitized Solar Cell using natural dye, extracted from the pomegranate as a photo sensitizer and ZnO nanoparticles as semiconductor. The constituents of fabricated dye sensitized solar cell were working electrode, dye, electrolyte and counter electrode. ZnO nanoparticles were synthesized and used as semiconductor in working electrode. Carbon soot was used as counter electrode. The resistance of ZnO film on ITO film was found out. There was an increase in the resistance of the film and film changes from conducting to semiconducting. Photovoltaic parameters of the fabricated cell like Short circuit current, open circuit voltage, Fill factor and Efficiency were found out. This paper shows that usage of natural dyes like pomegranate juice as sensitizer enables faster and simpler production of cheaper and environmental friendly solar cell.

  13. Applications of Metal Oxide Materials in Dye Sensitized Photoelectrosynthesis Cells for Making Solar Fuels: Let the Molecules do the Work

    SciTech Connect

    Alibabaei, Leila; Luo, Hanlin; House, Ralph L.; Hoertz, Paul G.; Lopez, Rene; Meyer, Thomas J.

    2013-01-01

    Solar fuels hold great promise as a permanent, environmentally friendly, long-term renewable energy source, that would be readily available across the globe. In this account, an approach to solar fuels is described based on Dye Sensitized Photoelectrosynthesis Cells (DSPEC) that mimic the configuration used in Dye Sensitized Solar Cells (DSSC), but with the goal of producing oxygen and a high energy solar fuel in the separate compartments of a photoelectrochemical cell rather than a photopotential and photocurrent.

  14. Solar energy conversion by dye-sensitized photovoltaic cells.

    PubMed

    Grätzel, Michael

    2005-10-01

    The quality of human life depends to a large degree on the availability of energy. This is threatened unless renewable energy resources can be developed in the near future. Chemistry is expected to make important contributions to identify environmentally friendly solutions of the energy problem. One attractive strategy discussed in this Forum Article is the development of solar cells that are based on the sensitization of mesoscopic oxide films by dyes or quantum dots. These systems have already reached conversion efficiencies exceeding 11%. The underlying fundamental processes of light harvesting by the sensitizer, heterogeneous electron transfer from the electronically excited chromophore into the conduction band of the semiconductor oxide, and percolative migration of the injected electrons through the mesoporous film to the collector electrode will be described below in detail. A number of research topics will also be discussed, and the examples for the first outdoor application of such solar cells will be provided. PMID:16180840

  15. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  16. Characteristics of nanostructure dye-sensitized solar cells using food dyes

    NASA Astrophysics Data System (ADS)

    Hosseinnezhad, M.; Rouhani, S.

    2016-01-01

    Dye-sensitized solar cells (DSSCs) were prepared using various food dyes. Food dyes are economically superior to organometallic dyes since they are nontoxic and inexpensive. The spectrophotometric evaluation of chosen food dyes in solution and on a TiO2 substrate show that the dyes form J-aggregation on the photoelectrode substrate. Oxidation of potential measurements for used food dyes ensured an energetically permissible and thermodynamically favorable charge transfer throughout the continuous cycle of a photo-electric conversion. The performance of dye-sensitized solar cells based on food dyes was studied. The results illustrate that the dye containing carboxylic acid and sulfonic acid as the acceptor group gave the maximum conversion efficiency 4.20%.

  17. Improving optical absorptivity of natural dyes for fabrication of efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hemmatzadeh, Reza; Mohammadi, Ahmad

    2013-11-01

    Efficient and cheap dye-sensitized solar cells (DSSCs) were fabricated using natural dyes from Pastinaca sativa and Beta vulgaris. Natural dyes are environmentally and economically superior to ruthenium-based dyes because they are nontoxic and cheap. However, the conversion efficiency of dye-sensitized solar cells based on natural dyes is low. One way to improve the DSSC performance is to enhance the absorptivity of extracted dyes. We investigated the influence of various factors in the extraction process, such as utilization of different extraction approaches, the acidity of extraction solvent, and different compounds of solvents on the optical absorption spectra. It was found that we could considerably enhance the optical absorptivity of dye and consequently the performance of DSSC by choosing a proper mixture of ethanol and water for extracting solvent and also the acidity of dye solution.

  18. A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    SciTech Connect

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio; Fraleoni-Morgera, Alessandro E-mail: afraleoni@units.it

    2015-01-15

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  19. A home-made system for IPCE measurement of standard and dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Palma, Giuseppina; Cozzarini, Luca; Capria, Ennio; Fraleoni-Morgera, Alessandro

    2015-01-01

    A home-made system for incident photon-to-electron conversion efficiency (IPCE) characterization, based on a double-beam UV-Vis spectrophotometer, has been set up. In addition to its low cost (compared to the commercially available apparatuses), the double-beam configuration gives the advantage to measure, autonomously and with no need for supplementary equipment, the lamp power in real time, compensating possible variations of the spectral emission intensity and quality, thus reducing measurement times. To manage the optical and electronic components of the system, a custom software has been developed. Validations carried out on a common silicon-based photodiode and on a dye-sensitized solar cell confirm the possibility to adopt this system for determining the IPCE of solar cells, including dye-sensitized ones.

  20. Printable highly catalytic Pt- and TCO-free counter electrode for dye-sensitized solar cells.

    PubMed

    He, Jian; Lee, Lawrence Tien Lin; Yang, Shihang; Li, Quan; Xiao, Xudong; Chen, Tao

    2014-02-26

    Here we show that a counter electrode based on carbon network supported Cu2ZnSnS4 nanodots on Mo-coated soda-lime glass for dye-sensitized solar cells can outperform the conventional best electrode with Pt nanoparticles on the fluorine-doped SnO2 conducting glass. In the as-developed electrode, all of the elements are of high abundance ratios with low materials cost. The fabrication is scalable because it is conducted by a screen-printing based approach. Therefore, this research lays a solid ground for the large area fabrication of high-performance dye-sensitized solar cell at reduced material cost. PMID:24467193

  1. Carbon nanotube counter electrode for high-efficient fibrous dye-sensitized solar cells

    PubMed Central

    2012-01-01

    High-efficient fibrous dye-sensitized solar cell with carbon nanotube (CNT) thin films as counter electrodes has been reported. The CNT films were fabricated by coating CNT paste or spraying CNT suspension solution on Ti wires. A fluorine tin oxide-coated CNT underlayer was used to improve the adherence of the CNT layer on Ti substrate for sprayed samples. The charge transfer catalytic behavior of fibrous CNT/Ti counter electrodes to the iodide/triiodide redox pair was carefully studied by electrochemical impedance and current-voltage measurement. The catalytic activity can be enhanced by increasing the amount of CNT loading on substrate. Both the efficiencies of fibrous dye-sensitized solar cells using paste coated and sprayed CNT films as counter electrodes are comparative to that using Pt wires, indicating the feasibility of CNT/Ti wires as fibrous counter electrode for superseding Pt wires. PMID:22507398

  2. Influence of polar solvents on photovoltaic performance of Monascusred dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Jae Wook; Kim, Tae Young; Ko, Hyun Seok; Han, Shin; Lee, Suk-Ho; Park, Kyung Hee

    Dye-sensitized solar cells (DSSCs) were assembled using natural dyes extracted from Monascus red pigment as a sensitizer. In this work, we studied the adsorption characteristics for harvesting sunlight and the electrochemical behavior for electron transfer in Monascus red DSSC using different solvents. The effect of polar aprotic and protic solvents including water, ethanol, and dimethylsulfoxide (DMSO) used in the sensitization process was investigated for the improvement in conversion efficiency of a cell. As for the Monascus red dye-sensitized electrode in DMSO solvent, the solar cell yields a short-circuit current density (Jsc) of 1.23 mA/cm2, a photovoltage (Voc) of 0.75 V, and a fill factor of 0.72, corresponding to an energy conversion efficiency (η) of 0.66%.

  3. The 2010 millennium technology grand prize: dye-sensitized solar cells.

    PubMed

    Meyer, Gerald J

    2010-08-24

    The 2010 Millennium Technology Grand Prize was awarded to Michael Gratzel for his ground-breaking research that has led to the practical application of dye-sensitized solar cells. Although Gratzel began his research well before nanotechnology had the "buzz" that it does today, the mesoscopic thin films he has developed have paved the way for generations of scientists to exploit the nanoscale for energy conversion. In addition to practical application, his research has led to a deeper understanding of photoinitiated charge-transfer processes at semiconductor interfaces. Here, the key scientific developments that guided early progress in dye-sensitized solar cells are summarized, with emphasis on fundamental advances that have enabled practical application. PMID:20731419

  4. Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells.

    PubMed

    Chua, Julianto; Mathews, Nripan; Jennings, James R; Yang, Guangwu; Wang, Qing; Mhaisalkar, Subodh G

    2011-11-21

    We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy. PMID:21989708

  5. A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells

    PubMed Central

    Wu, Wenjun; Wang, Jiaxing; Zheng, Zhiwei; Hu, Yue; Jin, Jiayu; Zhang, Qiong; Hua, Jianli

    2015-01-01

    Two sensitizers with novel structure were designed and synthetized by introducing photochromic bisthienylethene (BTE) group into the conjugated system. Thanks to the photochromic effect the sensitizers have under ultraviolet and visible light, the conjugated bridge can be restructured and the resulting two photoisomers showed different behaviors in photovoltaic devices. This opens up a new research way for the dye-sensitized solar cells (DSSCs). PMID:25716204

  6. Dye-sensitized solar cell comprising polyethyl methacrylate doped with ammonium iodide solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Vivek Kr.; Bhattacharya, B.; Shukla, S.; Singh, Pramod K.

    2014-09-01

    The aim of the present work was to develop a new solid electrolyte polyethyl methacrylate doped with ammonium iodide polymer electrolyte and its application in dye-sensitized solar cell (DSSC). The electrical, structural and photoelectrochemical properties of polymer electrolytes are presented in detail. DSSCs have been fabricated and characterized. The polymer electrolyte film with maximum ionic conductivity shows maximum efficient DSSC of efficiency 0.43 % at 1 sun condition.

  7. Dye-sensitized solar cell comprising polyethyl methacrylate doped with ammonium iodide solid polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Singh, Vivek Kr.; Bhattacharya, B.; Shukla, S.; Singh, Pramod K.

    2015-03-01

    The aim of the present work was to develop a new solid electrolyte polyethyl methacrylate doped with ammonium iodide polymer electrolyte and its application in dye-sensitized solar cell (DSSC). The electrical, structural and photoelectrochemical properties of polymer electrolytes are presented in detail. DSSCs have been fabricated and characterized. The polymer electrolyte film with maximum ionic conductivity shows maximum efficient DSSC of efficiency 0.43 % at 1 sun condition.

  8. A strategy to design novel structure photochromic sensitizers for dye-sensitized solar cells.

    PubMed

    Wu, Wenjun; Wang, Jiaxing; Zheng, Zhiwei; Hu, Yue; Jin, Jiayu; Zhang, Qiong; Hua, Jianli

    2015-01-01

    Two sensitizers with novel structure were designed and synthetized by introducing photochromic bisthienylethene (BTE) group into the conjugated system. Thanks to the photochromic effect the sensitizers have under ultraviolet and visible light, the conjugated bridge can be restructured and the resulting two photoisomers showed different behaviors in photovoltaic devices. This opens up a new research way for the dye-sensitized solar cells (DSSCs). PMID:25716204

  9. Metal complex-based electron-transfer mediators in dye-sensitized solar cells

    DOEpatents

    Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano

    2006-03-28

    This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.

  10. Monobenzoporphyrins as Sensitizers for Dye-Sensitized Solar Cells: Observation of Significant Spacer-Group Effect.

    PubMed

    Jinadasa, R G Waruna; Li, Bihong; Schmitz, Benjamin; Kumar, Siddhartha; Hu, Yi; Kerr, Lei; Wang, Hong

    2016-08-23

    A series of monobenzoporphyrins (WH1-WH4) bearing different conjugated spacer groups were designed and synthesized as sensitizers for dye-sensitized solar cells. Although a phenyl spacer only has a minimal impact on the absorption bands of the monobenzoporphyrin, an ethynylphenyl (WH3) or a vinyl (WH4) spacer redshifts and broadens the absorption bands of the dyes to result in much enhanced light-harvesting ability. Dye-sensitized solar cells based on these monobenzoporphyrin dyes displayed remarkable differences in power conversion efficiencies (PCEs). The monobenzoporphyrin bearing no spacer (WH1) resulted in a PCE of only 0.5 %; in contrast, the monobenzoporphyrin bearing vinyl spacers (WH4) achieved a PCE of 5.2 %. The high efficiency of the WH4 cell is attributed to the higher light-harvesting ability, the lesser extent of aggregation on the TiO2 surface, and the more favorable electron-density distributions of the HOMO and LUMO for electron injection and collection. This work demonstrates the exceptional tunability of benzoporphyrins as sensitizers for dye-sensitized solar cells. PMID:27469616

  11. Surface modifications of photoanodes in dye sensitized solar cells: enhanced light harvesting and reduced recombination

    NASA Astrophysics Data System (ADS)

    Saxena, Vibha; Aswal, D. K.

    2015-06-01

    In a quest to harvest solar power, dye-sensitized solar cells (DSSCs) have potential for low-cost eco-friendly photovoltaic devices. The major processes which govern the efficiency of a DSSC are photoelectron generation, injection of photo-generated electrons to the conduction band (CB) of the mesoporous nanocrystalline semiconductor (nc-SC); transport of CB electrons through nc-SC and subsequent collection of CB electrons at the counter electrode (CE) through the external circuit; and dye regeneration by redox couple or hole transport layer (HTL). Most of these processes occur at various interfaces of the photoanode. In addition, recombination losses of photo-generated electrons with either dye or redox molecules take place at the interfaces. Therefore, one of the key requirements for high efficiency is to improve light harvesting of the photoanode and to reduce the recombination losses at various interfaces. In this direction, surface modification of the photoanode is the simplest method among the various other approaches available in the literature. In this review, we present a comprehensive discussion on surface modification of the photoanode, which has been adopted in the literature for not only enhancing light harvesting but also reducing recombination. Various approaches towards surface modification of the photoanode discussed are (i) fluorine-doped tin oxide (FTO)/nc-SC interface modified via a compact layer of semiconductor material which blocks exposed sites of FTO to electrolyte (or HTL), (ii) nc-SC/dye interface modification either through acid treatment resulting in enhanced dye loading due to a positively charged surface or by depositing insulating/semiconducting blocking layer on the nc-SC surface, which acts as a tunneling barrier for recombination, (iii) nc-SC/dye interface modified by employing co-adsorbents which helps in reducing the dye aggregation and thereby recombination, and (iv) dye/electrolyte (or dye/HTL) interface modification using

  12. Electronic structures and optical properties of organic dye sensitizer NKX derivatives for solar cells: a theoretical approach.

    PubMed

    Zhang, Cai-Rong; Liu, Li; Liu, Zi-Jiang; Shen, Yu-Lin; Sun, Yi-Tong; Wu, You-Zhi; Chen, Yu-Hong; Yuan, Li-Hua; Wang, Wei; Chen, Hong-Shan

    2012-09-01

    The photon to current conversion efficiency of dye-sensitized solar cells (DSCs) can be significantly affected by dye sensitizers. The design of novel dye sensitizers with good performance in DSCs depend on the dye's information about electronic structures and optical properties. Here, the geometries, electronic structures, as well as the dipole moments and polarizabilities of organic dye sensitizers C343 and 20 kinds of NKX derivatives were calculated using density functional theory (DFT), and the computations of the time dependent DFT with different functionals were performed to explore the electronic absorption properties. Based upon the calculated results and the reported experimental work, we analyzed the role of different conjugate bridges, chromophores, and electron acceptor groups in tuning the geometries, electronic structures, optical properties of dye sensitizers, and the effects on the parameters of DSCs were also investigated. PMID:23117291

  13. Correction: Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon

    2016-03-01

    Correction for `Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles' by Md. Mahbubur Rahman et al., Nanoscale, 2016, DOI: 10.1039/c5nr08155f.

  14. Correction: Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles.

    PubMed

    Rahman, Md Mahbubur; Im, Sang Hyuk; Lee, Jae-Joon

    2016-04-14

    Correction for 'Enhanced photoresponse in dye-sensitized solar cells via localized surface plasmon resonance through highly stable nickel nanoparticles' by Md. Mahbubur Rahman et al., Nanoscale, 2016, DOI: 10.1039/c5nr08155f. PMID:26991406

  15. Functionalized graphene sheets in dye-sensitized solar cell counter electrodes

    NASA Astrophysics Data System (ADS)

    Roy-Mayhew, Joseph Dominic

    The use of thermally exfoliated graphite oxide, commonly referred to as functionalized graphene sheets (FGSs), was investigated as a catalytic counter electrode material in dye-sensitized solar cells to substitute for platinum nanoparticles traditionally used in devices. A catalyst's activity depends both on the material's intrinsic activity as well as on its surface area accessible for reaction. Thus, this work aimed i) to determine the intrinsic activity of FGSs with various chemical compositions and structures, and ii) to create high surface area networks of FGSs to use as catalytic electrodes in dye-sensitized solar cells. Monolayers of FGSs were fabricated and electrochemically tested to determine the intrinsic catalytic activity for a common dye-sensitized solar cell redox mediator, cobalt bipyridine. It was found that lattice defect rich, oxygen-site poor FGSs catalyze the reduction of the cobalt complex as well as platinum does, exhibiting a rate constant of ~ 6 x 10-3 cm/s. This rate is an order of magnitude faster than exhibited with oxygen-site rich graphene oxide, and over two orders of magnitude faster than found with the basal plane of graphite (as a surrogate for pristine graphene). FGSs are less catalytic towards the iodide/triiodide redox mediator, thus larger surface areas must be used for effective catalysis. In this work, conductive, high surface area networks of FGSs were produced by first tape casting surfactant-stabilized aqueous suspensions of FGSs and then thermolyzing the surfactant materials. Iodide/triiodide mediated dye-sensitized solar cells using these FGS electrodes exhibited power conversion efficiencies within 10% of devices using platinum nanoparticles. Furthermore, to interpret the catalytic activity of FGSs towards the reduction of triiodide, a new electrochemical impedance spectroscopy equivalent circuit was proposed that matches the observed spectra features to the appropriate phenomena. Lastly, improved catalytic performance

  16. Potential complex of rhodamine B and copper (II) for dye sensitizer on solar cell

    NASA Astrophysics Data System (ADS)

    Setyawati, Harsasi; Purwaningsih, Aning; Darmokoesoemo, Handoko; Hamami, Rochman, Faidur; Permana, Ahmadi Jaya

    2016-03-01

    A complex from copper(II) and rhodamine B as ligand was synthesized, characterized and applied as potential dye sensitizer on solar cell. A complex was synthesized from the reaction of copper(II) salts and rhodamine B with mole ratio 1:3. A complex showing Metal Ligand Charge Transfer (MLCT) phenomenon at 260 nm. Metal-ligand bonding through carbonyl (CO) groups at 617.22 cm-1 and methoxy (CH3O) groups at 339.47 cm-1. Electrical conductivity analysis confirms that the complex was ionic compound. The complex was applied as potential dye sensitizer with open circuit voltage 0.48775 V, short circuit current 0.01025 mA/cm2 and efficiency 0.0039 %.

  17. Integration of biological photonic crystals in dye-sensitized solar cells for enhanced photocurrent generation

    NASA Astrophysics Data System (ADS)

    Campbell, Jeremy; Rorrer, Greg

    2013-10-01

    Dye-sensitized solar cells (DSSCs) rely on a network of titanium dioxide nanoparticles for electron transport and must balance carrier generation and collection. Adding photonic structures may increase light capture without affecting carrier collection. Diatoms are single-celled algae that biologically fabricate silicon dioxide cell walls which resemble photonic crystal slabs. We present a simple fabrication strategy that allows for uniform and controlled placement of biosilica within DSSCs. Integration of biosilica reduces photoanode transmittance to less than 5% prior to dye sensitization at loading levels as low as 6 wt% biosilica. Increased biosilica loading (17 wt%) provides additional enhancements in photocurrent generation. Reflectance measurements suggest that the enhancement results from the combined effects of photonic resonance and Mie scattering. Overall efficiency of these devices is improved by 8% and 14%, respectively.

  18. TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Xiaodong; Gao, Caitian; Wang, Jiangtao; Lu, Bingan; Chen, Wanjun; Song, Jie; Zhang, Shanshan; Zhang, Zhenxing; Pan, Xiaojun; Xie, Erqing

    2012-09-01

    Highly transparent nanocrystalline TiO2 films have been fabricated by electrospinning (ES) technique based on a transmutation process from as-spun nanofibers with an appropriate amount of tri-ethanolamine (TEOA) added to the precursor. A possible evolution mechanism of the transparent nanocrystalline TiO2 films is proposed. It is found that the films prepared via transmutation from electrospun nanofibers possess rich bulk oxygen vacancies (BOVs, PL band at 621-640 nm) by using photoluminescence (PL) spectroscopy. Contrastively, the dominant peak in PL spectrum of the spin-coated film is the emission from surface oxygen vacancies (SOVs, PL band at 537-555 nm). The electrospun TiO2 films with rich BOVs induce large open-circuit voltage (Voc) and fill factor (FF) improvements in dye-sensitized solar cells (DSCs), and thus a large improvement of energy conversion efficiency (η). In addition, these performance advantages are maintained for a double-layer cell with a doctor-bladed ˜7 μm top layer (P25 nanometer TiO2, Degussa) and an electrospun ˜3 μm bottom layer. The double-layer cell yields a high η of 6.01%, which has increased by 14% as compared with that obtained from a 10 μm thick P25 film.

  19. Preparation of flexible TiO2 photoelectrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Wen-Ren; Wang, Hsiu-Hsuan; Lin, Chia-Feng; Su, Chaochin

    2014-09-01

    Dye-sensitized solar cells (DSSCs) based on nanocrystalline TiO2 photoelectrodes on indium tin oxide (ITO) coated polymer substrates have drawn great attention due to its lightweight, flexibility and advantages in commercial applications. However, the thermal instability of polymer substrates limits the process temperature to below 150 °C. In order to assure high and firm interparticle connection between TiO2 nanocrystals (TiO2-NC) and polymer substrates, the post-treatment of flexible TiO2 photoelectrodes (F-TiO2-PE) by mechanical compression was employed. In this work, Degussa P25 TiO2-NC was mixed with tert-butyl alcohol and DI-water to form TiO2 paste. F-TiO2-PE was then prepared by coating the TiO2 paste onto ITO coated polyethylene terephthalate (PET) substrate using doctor blade followed by low temperature sintering at 120 °C for 2 hours. To study the effect of mechanical compression, we applied 50 and 100 kg/cm2 pressure on TiO2/PET to complete the fabrication of F-TiO2-PE. The surface morphology of F-TiO2-PE was characterized using scanning electron microscopy. The resultant F-TiO2-PE sample exhibited a smooth, crack-free structure indicating the great improvement in the interparticle connection of TiO2-NC. Increase of compression pressure could lead to the increase of DSSC photoconversion efficiency. The best photoconversion efficiency of 4.19 % (open circuit voltage (Voc) = 0.79 V, short-circuit photocurrent density (Jsc) = 7.75 mA/cm2, fill factor (FF) = 0.68) was obtained for the F-TiO2-PE device, which showed great enhancement compared with the F-TiO2-PE cell without compression treatment. The effect of compression in DSSC performance was vindicated by the electrochemical impedance spectroscopy measurement.

  20. Detailed investigations of ZnO photoelectrodes preparation for dye sensitized solar cells.

    PubMed

    Marczak, Renata; Werner, Fabian; Ahmad, Rameez; Lobaz, Volodymyr; Guldi, Dirk M; Peukert, Wolfgang

    2011-04-01

    Wurtzite ZnO hexagonal nanopyramids were successfully synthesized in the liquid phase from homogeneous methanolic solutions of zinc acetate and tetramethylammonium hydroxide at an excess of zinc ions. The formation and properties of the nanocrystals were examined as a function of synthesis conditions. No significant influence of the [Zn(2+)]/[OH(-)] ratio was noticed on the final particle size, in spite of increased amounts of OH(-) ions, which tend to accelerate the particle nucleation and growth. Nevertheless, the reactant concentration ratio influences the surface properties of the ZnO nanocrystals. Mesoporous ZnO films were prepared by doctor blading ethanolic pastes containing ZnO nanoparticles and ethyl cellulose onto FTO conductive glass substrate followed by calcination. Additionally, the influence of a plasticizer (triacetin)-used during the paste preparation-on the film quality was investigated. A higher content of ZnO nanoparticles and plasticizer in the pastes improved the film quality. Four different temperatures (i.e., 400, 425, 450, and 475 °C) were used for the film calcination and their influence on the structural properties of the films was characterized. In principle, increasing the calcination temperature goes hand in hand with an increase of particle size, as well as the pore diameter and reduction of the surface area. Suitable mesoporous films were employed as photoanodes in dye sensitized solar cells (DSSCs). In order to assess the effect of the varied parameters on complete DSSC devices-using cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato) ruthenium(II)bis(tetrabutylammonium (N719) as a sensitizer-incident photon to current efficiency (IPCE) and current voltage measurements were carried out. The IPCE measurements confirmed photoinduced electron injection from the dye, reaching IPCE values up to 76%. Furthermore, current-voltage characteristics of complete cells emphasized the importance of the proper preparation methods and

  1. Dye sensitization of nanocrystalline titanium dioxide with square planar platinum(II) diimine dithiolate complexes.

    PubMed

    Islam, A; Sugihara, H; Hara, K; Singh, L P; Katoh, R; Yanagida, M; Takahashi, Y; Murata, S; Arakawa, H; Fujihashi, G

    2001-10-01

    A series of platinum-based sensitizers of the general type Pt(NN)(SS), where NN is 4,4'-dicarboxy-2,2'-bipyridine (dcbpy) or 4,7-dicarboxy-1,10-phenanthroline (dcphen) and SS is ethyl-2-cyano-3,3-dimercaptoacrylate (ecda), quinoxaline-2,3-dithiolate (qdt), 1,2-benzenedithiolate (bdt), or 3,4-toluenedithiolate (tdt), that have various ground-state oxidation potentials has been synthesized and anchored to nanocrystalline titanium dioxide electrodes for light-to-electricity conversion in regenerative photoelectrochemical cells with an I(-)/I(-)(3) acetonitrile electrolyte. The intense mixed-Pt/dithiolate-to-diimine charge-transfer absorption bands in this series could be tuned from 440 to 580 nm by choosing appropriate dithiolate ligands, and the highest occupied molecular orbitals varied by more than 500 mV. Spectrophotometric titration of the Pt(dcphen)(bdt) complex exhibits a ground-state pK(a) value of 3.2 +/- 0.1, which can be assigned to the protonation of the carboxylate group of the dcphen ligand. Binding of Pt(dcbpy)(qdt) to porous nanostructured TiO(2) films was analyzed using the Langmuir adsorption isotherm model, yielding an adsorption equilibrium constant of 4 x 10(5) M(-1). The amount of dye adsorbed at the surface of TiO(2) films was 9.5 x 10(-8) mol/cm(2), which is ca. 50% lower than the full monolayer coverage. The resulting complexes efficiently sensitized TiO(2) over a notably broad spectral range and showed an open-circuit potential of ca. 600 mV with an impressive fill factor of > 0.70, making them attractive candidates for solar energy conversion applications. The visible spectra of the 3,4-toluenedithiol-based sensitizers showed an enhanced red response, but the lower photocurrent efficiency observed for these sensitizers stems in part from a sluggish halide oxidation rate and a fast recombination of injected electrons with the oxidized dye. PMID:11578182

  2. Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons

    NASA Astrophysics Data System (ADS)

    Hägglund, Carl; Zäch, Michael; Kasemo, Bengt

    2008-01-01

    An interesting possibility to improve the conversion and cost efficiencies of photovoltaic solar cells is to exploit the large optical cross sections of localized (nanoparticle) surface plasmon resonances (LSPRs). We have investigated this prospect for dye sensitized solar cells. Photoconductivity measurements were performed on flat TiO2 films, sensitized by a combination of dye molecules and arrays of nanofabricated elliptical gold disks. An enhanced dye charge carrier generation rate was found and shown to derive from the LSPR contribution by means of the polarization dependent resonance frequency in the anisotropic, aligned gold disks.

  3. ZnO disk-like structures and their application in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Wang, J. X.; Yang, Y.; Sun, X. W.

    2016-08-01

    Hexagonal ZnO nanodisks, nanorings and porous nanodisks were synthesized by a simple hydrothermal method. The morphologies, structure and their optical properties of the various ZnO disk-like structures were characterized and their growth mechanism was investigated. The prepared ZnO disk-like nanostructures were used in the fabrication of the dye-sensitized solar cells. Improved photovoltaic properties were achieved for the porous disk solar cells due to their special geometry enabled better light harvesting and reduced recombination.

  4. The durability of the dye-sensitized solar cell with silicon resin

    NASA Astrophysics Data System (ADS)

    Ki, Hyun Chul; Kim, Seon Hoon; Kim, Doo-Gun; Kim, Tae-Un; Jung, Haeng-Yun; Yoon, Jae-Man

    2015-03-01

    Dye-Sensitized solar cell (DSSC) is expected to be one of the next-generation photovoltaics because of its environment-friendly and low-cost properties. However, commercialization of DSSC is difficult because of the electrolyte leakage. We propose a new thermal curable base on silicon resin. The resin aimed at sealing of DSSC and gives a promising resolution for sealing of practical DSSC. Furthermore, the optimized resin was fabricated into solar cells, which exhibited best durability by retaining 97% of the initial photoelectric conversion efficiency after 1,000 hours tracking test at 80°C.

  5. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts.

    PubMed

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs. PMID:18587401

  6. High-performance dye-sensitized solar cells based on solvent-free electrolytes produced from eutectic melts

    NASA Astrophysics Data System (ADS)

    Bai, Yu; Cao, Yiming; Zhang, Jing; Wang, Mingkui; Li, Renzhi; Wang, Peng; Zakeeruddin, Shaik M.; Grätzel, Michael

    2008-08-01

    Low-cost excitonic solar cells based on organic optoelectronic materials are receiving an ever-increasing amount of attention as potential alternatives to traditional inorganic photovoltaic devices. In this rapidly developing field, the dye-sensitized solar cell (DSC) has achieved so far the highest validated efficiency of 11.1% (ref. 2) and remarkable stability. However, the cells with the best performance use volatile solvents in their electrolytes, which may be prohibitive for outdoor solar panels in view of the need for robust encapsulation. Solvent-free room-temperature ionic liquids have been pursued as an attractive solution to this dilemma, and device efficiencies of over 7% were achieved by using some low-viscosity formulations containing 1-ethyl-3-methylimidazolium thiocyanate, selenocyanate, tricyanomethide or tetracyanoborate. Unfortunately, apart from tetracyanoborate, all of these low-viscosity melts proved to be unstable under prolonged thermal stress and light soaking. Here, we introduce the concept of using eutectic melts to produce solvent-free liquid redox electrolytes. Using a ternary melt in conjunction with a nanocrystalline titania film and the amphiphilic heteroleptic ruthenium complex Z907Na (ref. 10) as a sensitizer, we reach excellent stability and an unprecedented efficiency of 8.2% under air-mass 1.5 global illumination. Our results are of importance to realize large-scale outdoor applications of mesoscopic DSCs.

  7. Photocurrent enhanced by singlet fission in a dye-sensitized solar cell.

    PubMed

    Schrauben, Joel N; Zhao, Yixin; Mercado, Candy; Dron, Paul I; Ryerson, Joseph L; Michl, Josef; Zhu, Kai; Johnson, Justin C

    2015-02-01

    Investigations of singlet fission have accelerated recently because of its potential utility in solar photoconversion, although only a few reports definitively identify the role of singlet fission in a complete solar cell. Evidence of the influence of singlet fission in a dye-sensitized solar cell using 1,3-diphenylisobenzofuran (DPIBF, 1) as the sensitizer is reported here. Self-assembly of the blue-absorbing 1 with co-adsorbed oxidation products on mesoporous TiO2 yields a cell with a peak internal quantum efficiency of ∼70% and a power conversion efficiency of ∼1.1%. Introducing a ZrO2 spacer layer of thickness varying from 2 to 20 Å modulates the short-circuit photocurrent such that it is initially reduced as thickness increases but 1 with 10-15 Å of added ZrO2. This rise can be explained as being due to a reduced rate of injection of electrons from the S1 state of 1 such that singlet fission, known to occur with a 30 ps time constant in polycrystalline films, has the opportunity to proceed efficiently and produce two T1 states per absorbed photon that can subsequently inject electrons into TiO2. Transient spectroscopy and kinetic simulations confirm this novel mode of dye-sensitized solar cell operation and its potential utility for enhanced solar photoconversion. PMID:25607825

  8. Electron Injection at Dye-Sensitized Semiconductor Electrodes

    NASA Astrophysics Data System (ADS)

    Watson, David F.; Meyer, Gerald J.

    2005-05-01

    Electron injection at dye-sensitized semiconductors is reviewed. Particular emphasis is placed on theoretical and photoelectrochemical studies of dye-sensitized planar and single-crystal electrodes. The accepted mechanism of electron injection, which was derived from these classical studies, is introduced. Selected photoelectrochemical studies of dye-sensitized nanocrystalline semiconductors are reviewed; emphasis is given to factors that influence the efficiencies of electron injection and charge recombination. The development of quasi-solid-state nanocrystalline dye-sensitized solar cells is also discussed. Recent time-resolved spectroscopic studies of electron injection and charge recombination are reviewed. These studies have led to a better understanding of electron injection mechanisms, and have revealed the limitations of the classical models.

  9. Design and characterisation of bodipy sensitizers for dye-sensitized NiO solar cells.

    PubMed

    Summers, Gareth H; Lefebvre, Jean-François; Black, Fiona A; Davies, E Stephen; Gibson, Elizabeth A; Pullerits, Tönu; Wood, Christopher J; Zidek, Karel

    2016-01-14

    A series of photosensitizers for NiO-based dye-sensitized solar cells is presented. Three model compounds containing a triphenylamine donor appended to a boron dipyrromethene (bodipy) chromophore have been successfully prepared and characterised using emission spectroscopy, electrochemistry and spectroelectrochemistry, to ultimately direct the design of dyes with more complex structures. Carboxylic acid anchoring groups and thiophene spacers were appended to the model compounds to provide five dyes which were adsorbed onto NiO and integrated into dye-sensitized solar cells. Solar cells incorporating the simple Bodipy-CO₂H dye were surprisingly promising relative to the more complex dye 4. Cell performances were improved with dyes which had increased electronic communication between the donor and acceptor, achieved by incorporating a less hindered bodipy moiety. Further increases in performances were obtained from dyes which contained a thiophene spacer. Thus, the best performance was obtained for 7 which generated a very promising photocurrent density of 5.87 mA cm(-2) and an IPCE of 53%. Spectroelectrochemistry combined with time-resolved transient absorption spectroscopy were used to determine the identity and lifetime of excited state species. Short-lived (ps) transients were recorded for 4, 5 and 7 which are consistent with previous studies. Despite a longer lived (25 ns) charge-separated state for 6/NiO, there was no increase in the photocurrent generated by the corresponding solar cell. PMID:26660278

  10. Self-assembled ultra small ZnO nanocrystals for dye-sensitized solar cell application

    SciTech Connect

    Patra, Astam K.; Dutta, Arghya; Bhaumik, Asim

    2014-07-01

    We demonstrate a facile chemical approach to produce self-assembled ultra-small mesoporous zinc oxide nanocrystals using sodium salicylate (SS) as a template under hydrothermal conditions. These ZnO nanomaterials have been successfully fabricated as a photoanode for the dye-sensitized solar cell (DSSC) in the presence of N719 dye and iodine–triiodide electrolyte. The structural features, crystallinity, purity, mesophase and morphology of the nanostructure ZnO are investigated by several characterization tools. N{sub 2} sorption analysis revealed high surface areas (203 m{sup 2} g{sup −1}) and narrow pore size distributions (5.1–5.4 nm) for different samples. The mesoporous structure and strong photoluminescence facilitates the high dye loading at the mesoscopic void spaces and light harvesting in DSSC. By utilizing this ultra-small ZnO photoelectrode with film thickness of about 7 μm in the DSSC with an open-circuit voltage (V{sub OC}) of 0.74 V, short-circuit current density (J{sub SC}) of 3.83 mA cm{sup −2} and an overall power conversion efficiency of 1.12% has been achieved. - Graphical abstract: Ultra-small ZnO nanocrystals have been synthesized with sodium salicylate as a template and using it as a photoanode in a dye-sensitized solar cell 1.12% power conversion efficiency has been observed. - Highlights: • Synthesis of self-assembled ultra-small mesoporous ZnO nanocrystals by using sodium salicylate as a template. • Mesoporous ZnO materials have high BET surface areas and void space. • ZnO nanoparticles serve as a photoanode for the dye-sensitized solar cell (DSSC). • Using ZnO nanocrystals as photoelectrode power conversion efficiency of 1.12% has been achieved.

  11. Nitrogen-doped graphene as transparent counter electrode for efficient dye-sensitized solar cells

    SciTech Connect

    Wang, Guiqiang; Fang, Yanyan; Lin, Yuan; Xing, Wei; Zhuo, Shuping

    2012-12-15

    Graphical abstract: Display Omitted Highlights: ► NG sheets are prepared through a hydrothermal reduction of graphite oxide. ► The transparent NG counter electrodes of DSCs are fabricated at room temperature. ► Transparent NG electrode exhibits excellent catalytic activity for the reduction of I{sub 3}{sup −}. ► The DSC with NG electrode achieves a comparable efficiency to that of the Pt-based cell. ► The efficiency of rear illumination is about 85% that of front illumination. -- Abstract: Nitrogen-doped graphene sheets are prepared through a hydrothermal reduction of graphite oxide in the presence of ammonia and applied to fabricate the transparent counter electrode of dye-sensitized solar cells. The atomic percentage of nitrogen in doped graphene sample is about 2.5%, and the nitrogen bonds display pyridine and pyrrole-like configurations. Cyclic voltammetry studies demonstrate a much higher electrocatalytic activity toward I{sup −}/I{sub 3}{sup −} redox reaction for nitrogen-doped graphene, as compared with pristine graphene. The dye-sensitized solar cell with this transparent nitrogen-doped graphene counter electrode shows conversion efficiencies of 6.12% and 5.23% corresponding to front-side and rear-side illumination, respectively. Meanwhile, the cell with a Pt counter electrode shows a conversion efficiency of 6.97% under the same experimental condition. These promising results highlight the potential application of nitrogen-doped graphene in cost-effective, transparent dye-sensitized solar cells.

  12. Surface plasma resonant effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Meen, Teen-Hang; Tsai, Jenn-Kai; Chao, Shi-Mian; Lin, Yu-Chien; Wu, Tien-Chuan; Chang, Tang-Yun; Ji, Liang-Wen; Water, Walter; Chen, Wen-Ray; Tang, I.-Tseng; Huang, Chien-Jung

    2013-10-01

    In this study, we prepared different shapes of gold nanoparticles by seed-mediated growth method and applied them on the photoelectrodes of dye-sensitized solar cells (DSSCs) to study the surface plasma resonant (SPR) effect of gold nanoparticles on the photoelectrodes of dye-sensitized solar cells. The analyses of field emission scanning electron microscopy show that the average diameter of the spherical gold nanoparticles is 45 nm, the average length and width of the short gold nanorods were 55 and 22 nm, respectively, and the average length and width of the long gold nanorods were 55 and 14 nm, respectively. The aspect ratio of the short and long gold nanorods was about 2.5 and 4, respectively. The results of ultraviolet-visible absorption spectra show that the absorption wavelength is about 540 nm for spherical gold nanoparticles, and the absorption of the gold nanorods reveals two peaks. One is about 510 to 520 nm, and the other is about 670 and 710 nm for the short and long gold nanorods, respectively. The best conversion efficiency of the dye-sensitized solar cells with spherical gold nanoparticles and short and long gold nanorods added in is 6.77%, 7.08%, and 7.29%, respectively, and is higher than that of the cells without gold nanoparticles, which is 6.21%. This result indicates that the effect of gold nanoparticles on the photoelectrodes can increase the conductivity and reduce the recombination of charges in the photoelectrodes, resulting in the increase of conversion efficiency for DSSCs. In addition, the long gold nanorods have stronger SPR effect than the spherical gold nanoparticles and short gold nanorods at long wavelength. This may be the reason for the higher conversion efficiency of DSSCs with long gold nanorods than those of the cells with spherical gold nanoparticles and short gold nanorods.

  13. Dye-sensitized solar cell based carbon nanotube as counter electrode

    NASA Astrophysics Data System (ADS)

    Prasetio, Adi; Subagio, Agus; Purwanto, Agus; Widiyandari, Hendri

    2016-02-01

    The counter electrode using Carbon nanotube (CNT) has been successfully fabricated by the doctor blade method and their performances were investigated. We found that increasing mass of the CNT powder in binder increases electrocatalytic activity which this beneficial to conversion efficiency of the Dye-sensitized solar cell (DSSC). The photovoltaic performance of the DSSCs with 0.01, 0.02 and 0.04 gr of the CNT obtained overall conversion efficiencies of 0.32%, 0.74% and 0.91%, respectively. The results suggest that the CNT counter electrode has potential as alternative to the Pt free counter electrode for DSSC.

  14. Enhanced performance of dye-sensitized solar cells via plasmonic sandwiched structure

    NASA Astrophysics Data System (ADS)

    Lin, Su-Jien; Lee, Kuang-Che; Wu, Jyun-Lin; Wu, Jun-Yi

    2011-07-01

    The plasmonic structure of sandwiched TiO2/NPs-Ag/TiO2 electrodes was fabricated by sputter technology and sol-gel and spin coating procedure to enhance the performance of dye-sensitized solar cells. The improvement of the incident photon to photocurrent efficiency spectrum corresponding to the strong absorption and damping reflection indicated light trapping of plasmonic structure to elongate the optical pathways of photons. More light trapped close to photocurrent collecting electrode provides better charge-collection and light harvesting efficiencies. As a result of improved dye absorption, about 23% enhancement in photocurrent density has been achieved.

  15. Theoretical modeling of the series resistance effect on dye-sensitized solar cell performance

    NASA Astrophysics Data System (ADS)

    Huang, Yang; Dai, Songyuan; Chen, Shuanghong; Zhang, Changneng; Sui, Yifeng; Xiao, Shangfeng; Hu, Linhua

    2009-12-01

    Based on the continuity equations and the equivalent circuit, the conductivity of substrates and the resistances of silver grid in dye-sensitized solar cell (DSC) are investigated. The complete I-V characteristics of DSC are obtained with different internal resistances. The theoretical and experimental results show internal resistances dominate the fill factor of DSC. At the same time, DSC module is investigated by numerical simulation under parallel connection with different illumination intensities. It can be found the high resistivity of substrates and the high illumination intensity lead to a lower optimal width in the DSC module.

  16. Application of 3A molecular sieve layer in dye-sensitized solar cells

    SciTech Connect

    Yan, Yuan; Wang, Jinzhong E-mail: qingjiang.yu@hit.edu.cn; Yu, Qingjiang E-mail: qingjiang.yu@hit.edu.cn; Huang, Yuewu; Chang, Quanhong; Hao, Chunlei; Jiao, Shujie; Gao, Shiyong; Li, Hongtao; Wang, Dongbo

    2014-08-25

    3A molecular sieve layer was used as dehydration and electronic-insulation layer on the TiO{sub 2} electrode of dye-sensitized solar cells. This layer diminished the effect of water in electrolyte efficiently and enhanced the performance of cells. The conversion efficiency increased from 9.58% to 10.2%. The good moisture resistance of cells was attributed to the three-dimensional interconnecting structure of 3A molecular sieve with strong adsorption of water molecule. While the performance enhancement benefited from the suppression of the charge recombination of electronic-insulation layer and scattering effect of large particles.

  17. Conducting polymers based counter electrodes for dye-sensitized solar cells

    SciTech Connect

    Veerender, P. E-mail: veeru1009@gmail.com; Saxena, Vibha E-mail: veeru1009@gmail.com; Gusain, Abhay E-mail: veeru1009@gmail.com; Jha, P. E-mail: veeru1009@gmail.com; Koiry, S. P. E-mail: veeru1009@gmail.com; Chauhan, A. K. E-mail: veeru1009@gmail.com; Aswal, D. K. E-mail: veeru1009@gmail.com; Gupta, S. K. E-mail: veeru1009@gmail.com

    2014-04-24

    Conducting polymer films were synthesized and employed as an alternative to expensive platinum counter electrodes for dye-sensitized solar cells. poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) thin films were spin-coated and polypyrrole films were electrochemically deposited via cyclic voltammetry method on ITO substrates. The morphology of the films were imaged by SEM and AFM. These films show good catalytic activity towards triiodide reduction as compared to Pt/FTO electrodes. Finally the photovoltaic performance of DSSC fabricated using N3 dye were compared with PT/FTO, PEDOT/ITO, and e-PPy counter electrodes.

  18. Theoretical evidence of multiple dye regeneration mechanisms in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Troisi, Alessandro

    2013-05-01

    The multiple regeneration mechanisms in dye-sensitized solar cells (DSSC), with N3 (Ru(dcbpy)2(NCS)2) as dye and I-/I3- as redox shuttle, have been studied by DFT methods. Our results show that different reaction pathways are possible within the same dye and the actual mechanism is controlled by the initial geometry of the dyeI complex. By considering the rapid interconversion between different N3I geometries, the reaction mechanism where N3I dissociates into neutral dye and Irad radical is preferred to the mechanism where N3I reacts with a second iodide.

  19. Ultrafast Fabrication of Flexible Dye-Sensitized Solar Cells by Ultrasonic Spray-Coating Technology

    PubMed Central

    Han, Hyun-Gyu; Weerasinghe, Hashitha C.; Min Kim, Kwang; Soo Kim, Jeong; Cheng, Yi-Bing; Jones, David J.; Holmes, Andrew B.; Kwon, Tae-Hyuk

    2015-01-01

    This study investigates novel deposition techniques for the preparation of TiO2 electrodes for use in flexible dye-sensitized solar cells. These proposed new methods, namely pre-dye-coating and codeposition ultrasonic spraying, eliminate the conventional need for time-consuming processes such as dye soaking and high-temperature sintering. Power conversion efficiencies of over 4.0% were achieved with electrodes prepared on flexible polymer substrates using this new deposition technology and N719 dye as a sensitizer. PMID:26420466

  20. Nanographite-TiO2 photoanode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sharma, S. S.; Sharma, Khushboo; Sharma, Vinay

    2016-05-01

    Nanographite-TiO2 (NG-TiO2) composite was successfully synthesized by the hydrothermal method and its performance as the photoanode for dye-sensitized solar cells (DSSCs) was investigated. Environmental Scanning electron microscope (E-SEM) micrographs show the uniform distribution of TiO2 nanoflowers deposited over nanographite sheets. The average performance characteristics of the assembled cell in terms of short-ciruit current density (JSC), open circuit voltage (VOC), fill factor (FF) and photoelectric conversion efficiency (η) were measured.

  1. Multifunctional Interface Modification of Energy Relay Dye in Quasi-solid Dye-sensitized Solar Cells

    PubMed Central

    Gao, Rui; Cui, Yixiu; Liu, Xiaojiang; Wang, Liduo

    2014-01-01

    In this paper, 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB) has been used in interface modification of dye-sensitized solar cells (DSCs) with combined effects of retarding charge recombination and Förster resonant energy transfer (FRET). DCJTB interface modification significantly improved photovoltaic performance of DSCs. I–V curves shows the conversion efficiency increases from 4.27% to 5.64% with DCJTB coating. The application of DCJTB with combined effects is beneficial to explore more novel multi-functional interface modification materials to improve the performance of DSCs. PMID:24993900

  2. Control of Electron Transfer Pathways in a Dye-Sensitized Solar Cell

    SciTech Connect

    Brueggemann, Ben; Organero, Juan Angel; Pascher, Torbjoern; Pullerits, Tonu; Yartsev, Arkady

    2006-11-17

    Using shaped laser pulses, we increase the yield of ultrafast electron injection from the sensitizer to TiO{sub 2} nanocrystals in the core part of a dye-sensitized solar cell. The temporal structure of the optimized excitation pulse is in clear correlation with nuclear oscillations in the impulsively excited dye molecule. From DFT structure optimization and normal mode analyses we identified the modes which are responsible for the oscillations. The best pulse shape suggests Impulsive Stimulated (anti-Stokes) Raman scattering as a key process of optimization.

  3. Benzoporphyrins: Selective Co-sensitization in Dye-Sensitized Solar Cells.

    PubMed

    Lodermeyer, Fabian; Costa, Rubén D; Malig, Jenny; Jux, Norbert; Guldi, Dirk M

    2016-06-01

    A novel class of dyes, namely benzoporphyrins, was synthesized and implemented into dye-sensitized solar cells. They feature complementary absorptions compared to N719, which renders them promising candidates for co-sensitization in DSSCs. Notably, metallated benzoporphyrins reveal a TiO2 -nanoparticle attachment that is size and aggregation dependent. Therefore, unproductive energy-transfer events between the selectively attached dyes can be prevented. In light of the latter, an efficiency improvement of 39 % has been achieved upon selective adsorption of benzoporphyrins and N719 onto different layers of TiO2 photoelectrode. PMID:27105771

  4. Improved performance of dye-sensitized solar cells by tuning the properties of ruthenium complexes containing conjugated bipyridine ligands

    NASA Astrophysics Data System (ADS)

    Nguyen, Hong Minh; Nghia Nguyen, Duc; Kim, Nakjoong

    2010-06-01

    Three heteroleptic ruthenium complexes cis-[Ru(H2dcbpy)(L)(NCS)2], where H2dcbpy is 4,4'-dicarboxy-2,2'-bipyridine and L is 4-(4-(N,N-di-(p-anisyl)amino)styryl)-4'-methyl-2,2'-bipyridine (Dye-1), 4-(4-(N,N-di-(p-hexyloxyphenyl)amino)styryl)-4'-methyl-2,2'-bipyridine (Dye-2) or 4-(5-(N,N-di-(p-hexyloxyphenyl)-amino)-thiophene-2-yl-ethenyl)-4'-methyl-2,2'-bipyridine (Dye-3) have been synthesized and characterized. The influence of differently conjugated bipyridine ligands on these complexes was studied using UV-Vis spectroscopy and cyclic voltammetry. These heteroleptic complexes show appreciably broad absorption ranges and quite high extinction coefficients. These new dyes were used as photosensitizers in nanocrystalline TiO2 dye-sensitized solar cells. It was found that the difference in light-harvesting property between Dye-1, Dye-2 and Dye-3 is associated mainly with molar extinction coefficients and alignment of the HOMO–LUMO energy levels. The power conversion efficiencies of solar cells based on Dye-1 and Dye-2 are 4.21% and 4.41%, while Dye-3 delivered a lower efficiency of 2.88% under the same device fabrication and measurement conditions.

  5. Evaluation on over photocurrents measured from unmasked dye-sensitized solar cells

    SciTech Connect

    Lee, Gi-Won; Kim, Donghwan; Ko, Min Jae; Kim, Kyungkon; Park, Nam-Gyu

    2010-03-15

    We have investigated the change in photocurrent density (J{sub SC}) of dye-sensitized solar cell (DSSC) before and after covering an aperture mask on the cell, especially its dependence on solar absorption range in dye. Four different dyes having absorption threshold at 460 nm (P5), 520 nm (TA-St-CA), 680 nm (N719) and 820 nm (N749) are tested. J{sub SC} of the DSSC without mask decreases after mask, where the decreasing rate (triangle J{sub SC} = J{sub SC} (no mask) -J{sub SC} (with mask)/J{sub SC} (no mask)) becomes larger when dye absorption threshold decreases. triangle J{sub SC} at the given TiO{sub 2} film thickness of 10 {mu}m is determined to be about 20%, 15% and 13% for P5, TA-St-CA and N719-N749, respectively, which is reduced to 14% (TA-St-CA), 11.3% (N719) and 10.5% (N749) after increasing the thickness to 20 {mu}m, except for P5 dye remaining unchanged. According to the analysis based on IPCE and photon flux data, the over photocurrents observed for the unmasked dye-sensitized solar cells and their dependence on dye absorption range are found to be attributed to diffuse light leaving the dye-adsorbed TiO{sub 2} active area. (author)

  6. Ionic liquid electrolyte based on S-propyltetrahydrothiophenium iodide for dye-sensitized solar cells

    SciTech Connect

    Guo, Lei; Pan, Xu; Zhang, Changneng; Liu, Weiqing; Wang, Meng; Fang, Xiaqin; Dai, Songyuan

    2010-03-15

    A new ionic liquid S-propyltetrahydrothiophenium iodide (T{sub 3}I) was developed as the solvent and iodide ion source in electrolyte for dye-sensitized solar cells. The electrochemical behavior of the I{sub 3}{sup -}/I{sup -} redox couple and effect of additives in this ionic liquid system was tested and the results showed that this ionic liquid electrolyte revealed good conducting abilities and potential application for solar devices. The effects of LiI and dark-current inhibitors were investigated. The dye-sensitized solar cell with the electrolyte (0.1 mol L{sup -1} LiI, 0.35 mol L{sup -1} I{sub 2}, 0.5 mol L{sup -1} NMBI in pure T{sub 3}I) gave short-circuit photocurrent density (J{sub sc}) of 11.22 mA cm{sup 2}, open-circuit voltage (V{sub oc}) of 0.61 V and fill factor (FF) of 0.51, corresponding to the photoelectric conversion efficiency ({eta}) of 3.51% under one Sun (AM1.5). (author)

  7. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Khatani, Mehboob; Mohamed, Norani Muti; Hamid, Nor Hisham; Muhsan, Ali Samer; Sahmer, Ahmed Zahrin

    2015-07-01

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO2 using TiCl4 treatment was deposited prior to the deposition of the photoanode (active area of 1cm2) with the thickness of 6, 12, 18, 24, and 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO2/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.

  8. Near-infrared squaraine co-sensitizer for high-efficiency dye-sensitized solar cells.

    PubMed

    Rao, G Hanumantha; Venkateswararao, A; Giribabu, L; Han, Liyuan; Bedja, Idriss; Gupta, Ravindra Kumar; Islam, Ashraful; Singh, Surya Prakash

    2016-06-01

    A combination of squaraine-based dyes (SPSQ1 and SPSQ2) and a ruthenium-based dye (N3) were chosen as co-sensitizers to construct efficient dye-sensitized solar cells. The co-sensitization of squaraine dyes with N3 enhanced their light-harvesting properties as a result of the broad spectral coverage in the region 350-800 nm. The co-sensitized solar cells based on SPSQ2 + N3 showed the highest short circuit current density of 17.10 mA cm(-2), an open circuit voltage of 0.66 V and a fill factor of 0.73, resulting in the highest power conversion efficiency of 8.2%, which is higher than that of the dye-sensitized solar cells based on the individual SPSQ1 and SPSQ2 dyes. The high power conversion efficiency of SPSQ2 + N3 was ascribed to its good light-harvesting properties, which resulted from its broader incident photon current conversion spectrum than that of the individual dyes. The high electron life time and electron recombination, which were the main causes of the higher efficiency of the device, were successfully analysed and correlated using transient absorption spectrometry and intensity-modulated photovoltage spectrometry. PMID:27167491

  9. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.

    PubMed

    Imahori, Hiroshi; Umeyama, Tomokazu; Ito, Seigo

    2009-11-17

    Recently, dye-sensitized solar cells have attracted much attention relevant to global environmental issues. Thus far, ruthenium(II) bipyridyl complexes have proven to be the most efficient TiO(2) sensitizers in dye-sensitized solar cells. However, a gradual increment in the highest power conversion efficiency has been recognized in the past decade. More importantly, considering that ruthenium is a rare metal, novel dyes without metal or using inexpensive metal are desirable for highly efficient dye-sensitized solar cells. Large pi-aromatic molecules, such as porphyrins, phthalocyanines, and perylenes, are important classes of potential sensitizers for highly efficient dye-sensitized solar cells, owing to their photostability and high light-harvesting capabilities that can allow applications in thinner, low-cost dye-sensitized solar cells. Porphyrins possess an intense Soret band at 400 nm and moderate Q bands at 600 nm. Nevertheless, the poor light-harvesting properties relative to the ruthenium complexes have limited the cell performance of porphyrin-sensitized TiO(2) cells. Elongation of the pi conjugation and loss of symmetry in porphyrins cause broadening and a red shift of the absorption bands together with an increasing intensity of the Q bands relative to that of the Soret band. On the basis of the strategy, the cell performance of porphyrin-sensitized solar cells has been improved intensively by the enhanced light absorption. Actually, some push-pull-type porphyrins have disclosed a remarkably high power conversion efficiency (6-7%) that was close to that of the ruthenium complexes. Phthalocyanines exhibit strong absorption around 300 and 700 nm and redox features that are similar to porphyrins. Moreover, phthalocyanines are transparent over a large region of the visible spectrum, thereby enabling the possibility of using them as "photovoltaic windows". However, the cell performance was poor, owing to strong aggregation and lack of directionality in the

  10. Conformal growth of anodic nanotubes for dye-sensitized solar cells: part II. Nonplanar electrode.

    PubMed

    Sun, Lidong; Zhang, Sam; Wang, Qing

    2014-02-01

    Anodic titania nanotube array features highly ordered alignment as well as porous nature, and exhibits intriguing properties when employed in a variety of applications. All these profit from the continuous efforts on controlling the nanotube configurations. Recently, nonplanar electrodes have also been used to grow the nanotubes besides the conventional planar counterparts. As such, it is of great interest and significance to complete a picture to link the nanotubes grown on planar and various nonplanar electrodes for a comprehensive understanding of nanotube growing manners, in an attempt to boost their future applications. In the first part of this review, planar electrodes are focused with regard to nanotube growth and application in dye-sensitized solar cells. In this part, the nanotubes grown on patterned or curved surfaces are discussed first with reference to a similar structure of alumina nanopores, which are subsequently used to mirror the growth of nanotubes on cylindrical electrodes (i.e., titanium wires or meshes). The last section focuses on titanium tubular electrodes which are attractive for thermal fluids in view of the drastically reduced thermal conductivity in the presence of anodic nanotubes. As a recent hot topic, wire-shaped dye-sensitized solar cells are deliberated in terms of cell structure, efficiency calculation, merits, challenges and outlook. PMID:24749473

  11. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.

    PubMed

    Hu, Linhua; Dai, Songyuan; Weng, Jian; Xiao, Shangfeng; Sui, Yifeng; Huang, Yang; Chen, Shuanghong; Kong, Fantai; Pan, Xu; Liang, Linyun; Wang, Kongjia

    2007-01-18

    The optimization of dye-sensitized solar cells, especially the design of nanoporous TiO2 film microstructure, is an urgent problem for high efficiency and future commercial applications. However, up to now, little attention has been focused on the design of nanoporous TiO2 microstructure for a high efficiency of dye-sensitized solar cell modules. The optimization and design of TiO2 photoelectrode microstructure are discussed in this paper. TiO2 photoelectrodes with three different layers, including layers of small pore size films, larger pore size films, and light-scattering particles on the conducting glass with the desirable thickness, were designed and investigated. Moreover, the photovoltaic properties showed that the different porosities, pore size distribution, and BET surface area of each layer have a dramatic influence on short-circuit current, open-circuit voltage, and fill factor of the modules. The optimization and design of TiO2 photoelectrode microstructure contribute a high efficiency of DSC modules. The photoelectric conversion efficiency around 6% with 15 x 20 cm2 modules under illumination of simulated AM1.5 sunlight (100 mW/cm2) and 40 x 60 cm2 panels with the same performance tested outdoor have been achieved by our group. PMID:17214486

  12. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes.

    PubMed

    Abdou, E M; Hafez, H S; Bakir, E; Abdel-Mottaleb, M S A

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k=1.6, 2.1 and 1.9×10(-3)min(-1) for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100mWcm(-2), reveals highly stable DSSCs. PMID:23832227

  13. Optimizations of quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Biancardo, Matteo; West, Keld; Krebs, Frederik C.

    2005-10-01

    In this paper we report on an attempt to substitute the liquid-electrolyte in Dye Sensitized Solar Cells (LC) by quasi-solid-state constructions (SC) adopting organic/inorganic gels as well as a novel dye comprised of a conjugated polymer covalently linked to a ruthenium complex that can be bound to a TiO2 anatase electrode. Gel polymer electrolytes are prepared by incorporating liquid electrolytes into a polymer matrix such as poly methyl methacrylate (PMMA) using a gelling solvent such as propylene carbonate (PC). Dye Sensitized Solar Cell (DSSC) fabricated using the former gel electrolytes and standard sensitizing dye such as cis-bis(thiocyano) ruthenium(II)-bis-2,2'-bipyridine-4,4'-dicarboxylate (N3) exhibit an encouraging short circuit current densitie (Jsc) of 4.45 mA cm-2 with open circuit voltages (Voc) of 495 mV. In the novel dye the conjugated polymer provides light harvesting and hole conduction while the ruthenium complex binds to the anatase electrode providing efficient charge carrier separation and injection into the anatase electrode.

  14. Hydrothermally growth of novel hierarchical structures titanium dioxide for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Pengfei; Liu, Yang; Sun, Peng; Du, Sisi; Cai, Yaxin; Liu, Fengmin; Zheng, Jie; Lu, Geyu

    2014-12-01

    We report an innovative development of novel double layered photoanodes made of hierarchical TiO2 micro-corollas as the overlayer and TiO2 nanoforest as the underlayer (HTCF), for dye-sensitized solar cells (DSSCs). They are obtained by a facile hydrothermal reaction of TiO2 nanorods array with top microspheres (MS)/FTO (Fluorine-doped tin oxide) glass substrate in an alkaline solution. In this process, the microspheres and nanorods are transformed into micro-corollas and nanotrees, respectively. The photoanodes with HTCF structure can greatly improve the light scattering ability due to their novel structures. Moreover, the enhanced surface area of HTCF can lead to larger dye loading, which achieves the higher light harvesting capacity. Base on the fast electron transport of the interior nanorods, higher light scattering and harvesting capacities, this novel HTCF photoanode realizes tri-functions. The overall power conversion efficiency (PCE) of the HTCF DSSCs are 51% increase in the conversion efficiency compare with those of constructed by bare TiO2 nanorod arrays. In our work, tri-functions of photoanodes are obtained by improving the 1D TiO2 nanostructures (nanorod, nanowire, nanotube et al.). To the best of our knowledge, it is a significant fabrication technology breakthrough for the photoanode of dye-sensitized solar cells.

  15. Monitoring the dye impregnation time of nanostructured photoanodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shahzad, N.; Pugliese, D.; Lamberti, A.; Sacco, A.; Virga, A.; Gazia, R.; Bianco, S.; Shahzad, M. I.; Tresso, E.; Pirri, C. F.

    2013-06-01

    Dye-sensitized solar cells (DSSCs) are getting increasing attention as low-cost, easy-to-prepare and colored photovoltaic devices. In the current work, in view of optimizing the fabrication procedures and understanding the mechanisms of dye attachment to the semiconductor photoanode, absorbance measurements have been performed at different dye impregnation times ranging from few minutes to 24 hours using UV-Vis spectroscopy. In addition to the traditional absorbance experiments, based on diffuse and specular reflectance on dye impregnated thin films and on the desorption of dye molecules from the photoanodes by means of a basic solution, an alternative in-situ solution depletion measurement, which enables fast and continuous evaluation of dye uptake, is presented. Photoanodes have been prepared with two different nanostructured semiconducting films: mesoporous TiO2, using a commercially available paste from Solaronix, and sponge-like ZnO obtained in our laboratory from sputtering and thermal annealing. Two different dyes have been analyzed: Ruthenizer 535-bisTBA (N719), which is widely used because it gives optimal photovoltaic performances, and a new metal-free organic dye based on a hemisquaraine molecule (CT1). Dye sensitized cells were fabricated using a customized microfluidic architecture. The results of absorbance measurements are presented and discussed in relation to the obtained solar energy conversion efficiencies and the incident photon-to-electron conversion efficiencies (IPCE).

  16. Graphene assistance enhanced dye-sensitized solar cell performance of tin sulfide microspheres

    NASA Astrophysics Data System (ADS)

    Yang, Bo; Chen, Peng; Zuo, Xueqin; Zhou, Lei; Yang, Xiao; Li, Guang; Wu, Mingzai; Ma, Yongqing; Jin, Shaowei; Zhu, Kerong

    2015-10-01

    In this work, the nanosheet-assembled SnS2 microspheres were synthesized through a solvothermal method, and the catalytic activities of the microspheres were investigated by J-V and power conversion efficiency tests as counter electrodes in dye-sensitized solar cells. The cell showed an energy conversion efficiency up to 6.4%. To further improve the power conversion efficiency of the counter electrode of the microspheres, different amounts of reduced graphene were added into the microspheres by simply physical mixing. With the addition of 6 wt% reduced graphene, the short-circuit current density, open-circuit voltage and fill factor were 15.18 mA cm-2, 775 mV, and 63.4%, respectively. More important, the conversion efficiency reached 7.46%, which is approximately 17% higher than that of the cell with pure SnS2 microspheres as counter electrode. Compared to conventional materials used in dye-sensitized solar cells, SnS2 microspheres have the advantages of facile synthesis, low-cost and high efficiency with graphene assistance.

  17. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Raj, C. Clement; Prasanth, R.

    2016-06-01

    In a dye sensitized solar cell the photoanode performs a dual role of acting as a matrix for dye adsorption and as a charge transport medium for electron transport. The surface area and the electronic property of the material determine the current output of the device. So the performance of dye sensitized solar cell is significantly affected by our choice of material to be used as photoanode. High surface area, optimum carrier density, low impedance and efficient carrier transport are requirements for an efficient photoanode material in a DSSC. The goal of this review article is to highlight the fabrication methods used for the preparation of efficient nanostructured photoanodes. The application of these nanostructured photoanode materials and their impact on the device efficiency has been described in detail. The enhancement in the surface area of the material and its impact on the dye adsorption and current generation has been discussed. A detailed analysis of the role of different blocking layers used in improving the open circuit voltage of the device has been done. The outlook and future directions in improving the device performance are also discussed.

  18. Photostability of low cost dye-sensitized solar cells based on natural and synthetic dyes

    NASA Astrophysics Data System (ADS)

    Abdou, E. M.; Hafez, H. S.; Bakir, E.; Abdel-Mottaleb, M. S. A.

    2013-11-01

    This paper deals with the use of some natural pigments as well as synthetic dyes to act as sensitizers in dye-sensitized solar cells (DSSCs). Anthocyanin dye extracted from rosella (Hibiscus sabdariffa L.) flowers, the commercially available textile dye Remazole Red RB-133 (RR) and merocyanin-like dye based on 7-methyl coumarin are tested. The photostability of the three dyes is investigated under UV-Vis light exposure. The results show a relatively high stability of the three dyes. Moreover, the photostability of the solid dyes is studied over the TiO2 film electrodes. A very low decolorization rates are recorded as; rate constants k = 1.6, 2.1 and 1.9 × 10-3 min-1 for anthocyanin, RR and coumarin dyes, respectively. The stability results favor selecting anthocyanin as a promising sensitizer candidate in DSSCs based on natural products. Dyes-sensitized solar cells are fabricated and their conversion efficiency (η) is 0.27%, 0.14% and 0.001% for the anthocyanin, RR and coumarin dyes, respectively. Moreover, stability tests of the sealed cells based on anthocyanin and RR dyes are done under continuous light exposure of 100 mW cm-2, reveals highly stable DSSCs.

  19. Efficient Dye-Sensitized Solar Cells Using Red Turnip and Purple Wild Sicilian Prickly Pear Fruits

    PubMed Central

    Calogero, Giuseppe; Di Marco, Gaetano; Cazzanti, Silvia; Caramori, Stefano; Argazzi, Roberto; Di Carlo, Aldo; Bignozzi, Carlo Alberto

    2010-01-01

    Dye-sensitized solar cells (DSSCs) were assembled by using the bougainvillea flowers, red turnip and the purple wild Sicilian prickly pear fruit juice extracts as natural sensitizers of TiO2 films. The yellow orange indicaxanthin and the red purple betacyanins are the main components in the cocktail of natural dyes obtained from these natural products. The best overall solar energy conversion efficiency of 1.7% was obtained, under AM 1.5 irradiation, with the red turnip extract, that showed a remarkable current density (Jsc = 9.5 mA/cm2) and a high IPCE value (65% at λ = 470 nm). Also the purple extract of the wild Sicilian prickly pear fruit showed interesting performances, with a Jsc of 9.4 mA/cm2, corresponding to a solar to electrical power conversion of 1.26%. PMID:20162014

  20. Methods of Measuring Energy Conversion Efficiency in Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Koide, Naoki; Chiba, Yasuo; Han, Liyuan

    2005-06-01

    The current-voltage characteristics of dye-sensitized solar cells (DSCs) were measured and compared with those of crystalline silicon solar cells. It was found that the energy conversion efficiency of DSCs is dependent on voltage sweep direction and sampling delay time (Td). Measurement of the transient photocurrent revealed that this dependence is due to the longer time constant of DSCs. This dependence was also confirmed in a simulation of current-voltage curves based on an equivalent circuit model of DSCs. Analysis of the current-voltage characteristics of polymer-based bulk heterojunction solar cells (BHSCs) and simulated measurements showed that the longer time constant is due to slow movement of ions in the electrolyte. To improve accuracy, the I-V measurement should be carried out from short circuit to open circuit with Td of 100 ms or longer.

  1. The effect of TiCl4 treatment on the efficiency of dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ardakani, Seyed Esmaeil Mahdavi; Singh, Balbir Singh Mahinder; Mohammed, Norani Muti

    2014-10-01

    Dye sensitized solar cells (DSSC) are the new generation of solar cells that have their advantages such as transparency, flexibility and low cost production. This has certainly attracted researchers in the field of green technology to further develop DSSC. The focus is on the efficiency, as it is low at this point of time, as compared to silicon based solar cells. In this paper, the effect of TiCl4 treatment on the efficiency of DSSC by treating the conducting glass and TiO2 layer was studied and results showed that the TiCl4 treatment on the conducting glass and the printed TiO2 film increased the efficiency from 3.45% to 4.43%. The TiO2 layer was characterized by using FESEM and AFM and the efficiency of the DSSC was measured by using the sunlight simulator.

  2. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-11-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ~800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ~1100 nm, and a photocurrent density exceeding 30 mA cm-2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting.

  3. High-efficiency dye-sensitized solar cells using ferrocene-based electrolytes and natural photosensitizers

    NASA Astrophysics Data System (ADS)

    Sönmezoğlu, Savaş; Akyürek, Cafer; Akin, Seçkin

    2012-10-01

    A new and promising dye-sensitized solar cell (DSSC) bilayer design was developed using an Fe2+/Fe3+ (ferrocene) liquid electrolyte and natural dyes extracted from Hypericum perforatum, Rubia tinctorum L. and Reseda luteola. The photovoltaic parameters controlling the device performance were then investigated. A DSSC based on quercetin dye displayed the most efficient solar to electricity conversion efficiency compared with other dyes with a maximum η value of 2.17%. Maximum overall conversion efficiencies under simulated sunlight that was comparable to natural photosynthesis were increased by 15%. The identification of appropriate additives for improving VOC without causing dye degradation may result in further enhancement of cell performance, making the practical application of such systems more suitable for achieving economically viable solar energy devices.

  4. Transient 2D IR spectroscopy of charge injection in dye-sensitized nanocrystalline thin films.

    PubMed

    Xiong, Wei; Laaser, Jennifer E; Paoprasert, Peerasak; Franking, Ryan A; Hamers, Robert J; Gopalan, Padma; Zanni, Martin T

    2009-12-23

    We use nonlinear 2D IR spectroscopy to study TiO(2) nanocrystalline thin films sensitized with a Re dye. We find that the free electron signal, which often obscures the vibrational features in the transient absorption spectrum, is not observed in the 2D IR spectra. Its absence allows the vibrational features of the dye to be much better resolved than with the typical IR absorption probe. We observe multiple absorption bands but no cross peaks in the 2D IR spectra, which indicates that the dyes have at least three conformations. Furthermore, by using a pulse sequence in which we initiate electron transfer in the middle of the infrared pulse train, we are able to assign the excited state features by correlating them to the ground state vibrational modes and determine that the three conformations have different time scales and cross sections for electron injection. 2D IR spectroscopy is proving to be very useful in disentangling overlapping structural distributions in biological and chemical physics processes. These experiments demonstrate that nonlinear infrared probes are also a powerful new tool for studying charge transfer at interfaces. PMID:19947603

  5. Solvent dipole modulation of conduction band edge shift and charge recombination in robust dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hao, Feng; Jiao, Xingjian; Li, Jianbao; Lin, Hong

    2012-12-01

    Molecular modification is certified as a powerful strategy to adjust the energy alignment and electron transfer dynamics of dye-sensitized solar cells (DSCs). Herein, devices are assembled with three robust solvent (3-methoxypropionitrile, N,N-dimethylformamide and γ-butyrolactone) based electrolytes to elucidate the solvent dipole effects at the semiconductor-dye-electrolyte interface. Photovoltaic results demonstrate that open-circuit photovoltages of the devices vary linearly with the dipole moment of the solvents, along with an adverse dependence of the short-circuit photocurrent density under simulated irradiation. Impedance analysis reveals an apparent dipole moment-modulated conduction band edge shift of the nanocrystalline TiO2 electrodes with respect to the redox potential of the electrolyte. Furthermore, the adverse shifts of the short-circuit photocurrent are explained by a dipole dependence of the driving force for electron injection and the interfacial charge recombination, together with a notably changed charge collection efficiency. Therefore, this study draws attention to the feasibility of tuning the electron transfer dynamics and energy alignment in photoelectrochemical devices by judiciously selecting the electrolyte solvents for further efficiency improvement, especially for those alternative organic sensitizers or quantum dots with inadequate electron injection driven forces.

  6. Nanostructured TiO2 films for dye-sensitized solar cells prepared by the sol-gel method.

    PubMed

    Jin, Young Sam; Kim, Kyung Hwan; Park, Sang Joon; Yoon, Hyon Hee; Choi, Hyung Wook

    2011-12-01

    TiO2 films were prepared on glass substrates using the sol-gel process for a dye-sensitized solar cell application. The TiO2 sol was prepared using hydrolysis/polycondensation. Titanium (IV) Tetra Isopropoxide (TTIP) was used as precursor and Nitric acid (HNO3) was used as a catalyst for the peptization. The crystal structure and morphology of the prepared materials were characterized by XRD, and an SEM. The observations confirmed the nanocrystalline nature of the TiO2. The reaction parameters, such as the catalyst concentrations, the calcination time, and the calcination temperature were varied during the synthesis in order to achieve nanosize TiO2 particles. The prepared TiO2 particles were coated onto FTO glass using a screen printing technique. The prepared TiO2 films were characterized by UV-vis. The TiO2 particles calcinated at low temperatures showed an anatase phase they grew into a rutile phase when the calcination temperature increased. The size and structure of the TiO2 particles were adjusted to specific surface areas. It was found that the conversion efficiency of the DSSC was highly affected by the properties of the TiO2 particles. PMID:22409037

  7. Enhanced corrosion resistance of TiN-coated stainless steels for the application in flexible dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ouyang, Fan-Yi; Tai, Wei-Lun

    2013-07-01

    Metals foils have been increasingly used as alternative substrates for the flexible dye-sensitized solar cells (DSSCs) to overcome the limitations arising from the low sintering-temperature tolerance of the plastic substrates. However, the potential problem of metal corrosion in the iodide-based electrolytes threatens to degrade the performance and long-term stability of the metal-based DSSCs. To resolve this dilemma, we have employed unbalanced magnetron sputtering systems to prepare nanocrystalline TiN and TiN/Ti barriers, with the high packing factors of 0.7-0.8, on the metal substrates. The microstructure and properties of TiN and TiN/Ti barriers were characterized using SEM, XRD, AFM and SIMS. Their corrosion behaviors were evaluated through electrochemical impedance spectroscopy and potentiodynamic polarization in the simulated iodide-based electrolytes environment. The results show more than 78% improvement in reducing the corrosion current density by the deposition of the barrier. The charge transfer behavior occurring in the metal/electrolyte interface is also suppressed by the deposited barriers. Furthermore, because deposited barriers provide a larger surface area for dye adsorption and possess better corrosion protection, the barrier-deposited DSSCs have been demonstrated to attain 2.5 times higher energy conversion efficiency than uncoated DSSC.

  8. Efficiency enhancement in solid state dye sensitized solar cells by including inverse opals with controlled layer thicknesses

    NASA Astrophysics Data System (ADS)

    Zheng, Hanbin; Shah, Said Karim; Abbas, Mamatimin; Ly, Isabelle; Rivera, Thomas; Almeida, Rui M.; Hirsch, Lionel; Toupance, Thierry; Ravaine, Serge

    2016-09-01

    The photoconversion efficiency of dye sensitized solar cells can be enhanced by the incorporation of light management nanostructures such as photonic crystals. Here, we present a facile route to incorporate titania inverse opals into solid state dye sensitized solar cells and report photoconversion efficiency enhancements of up to 56% compared with a model system without the inverse opal. Our approach is based on the precise design of titania inverse opals with a predetermined thickness that can be controlled at the individual layer level. By choosing an inverse opal exhibiting a photonic bandgap which overlaps the absorption bands of the dye, our results show that there is an optimal thickness of the inverse opal structure for maximum efficiency enhancement of the cell. This is the first experimental proof that the thickness of a titania inverse opal plays a pivotal role in cell efficiency enhancement in solid state dye sensitized solar cells.

  9. Influence of capacitance characteristic on dye-sensitized solar cell's IPCE measurement

    NASA Astrophysics Data System (ADS)

    Tian, Hanmin; Liu, Lifei; Liu, Bin; Kui Yuan, Shi; Wang, Xiangyan; Wang, Ying; Yu, Tao; Zou, Zhigang

    2009-02-01

    It is found that the traditional monochromatic incident photon-to-electron conversion efficiency (IPCE) measurement method, such as the American Society for Testing and Materials standard (ASTM), is not suitable for measuring the IPCE of dye-sensitized solar cells (DSSCs). Experiments showed that the chopper's frequency in this method influences the measured DSSCs' IPCE value considerably, while no such impact was found in that of the Si cell. The quantitative analysis, which is based on equivalent circuits and parameter estimation, proved the existence of capacitance characteristics in DSSCs causing the fluctuation of the measured IPCE. An equivalent circuit parameter was estimated from a typical dye solar cell, which was characterized with the crystalline ingredient, the particle size and the I-V curve. The fluctuations of the measured IPCE were revealed by adjusting the chopper frequencies of one traditional IPCE measurement system. Finally, the method to obtain the real value of DSSCs' IPCE is proposed.

  10. Vanadium oxide (VO) based low cost counter electrode in dye sensitized solar cell (DSSC) applications

    SciTech Connect

    Vijayakumar, P.; Pandian, Muthu Senthil; Ramasamy, P.

    2015-06-24

    Vanadium oxide nanostars were synthesized by chemical method. The prepared Vanadium oxide nanostars are introduced into dye sensitized solar cell (DSSC) as counter electrode (CE) catalyst to replace the expensive platinum (Pt). The products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller (BET) method. The photovoltaic performance of the VO as counter electrode based DSSC was evaluated under simulated standard global AM 1.5G sunlight (100 mW/cm{sup 2}). The solar to electrical energy conversion efficiency (η) of the DSSC was found to be 0.38%.This work expands the Counter electrode catalyst, which can help to reduce the cost of DSSC and thereby encourage their fundamental research and commercial application.

  11. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoyue; Misra, Mano

    2010-03-01

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO2 nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available.

  12. Counter electrodes from conducting polymer intercalated graphene for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Ru; Tang, Qunwei; Yu, Liangmin; Yan, Xuefeng; Zhang, Zhiming; Yang, Peizhi

    2016-03-01

    Creation of cost-effective and platinum-free counter electrodes (CEs) is persistent for developing advanced dye-sensitized solar cells (DSSCs). We present here the fabrication of conducting polymers such as polyaniline (PANi), polypyrole (PPy), or poly(3,4-ethylenedioxythiophene) (PEDOT) intercalated reduced graphene oxide (rGO) CEs on flexible Ti foil or polyethylene-terephthalate substrate for liquid-junction DSSC applications. The ration architecture integrates the high electron-conducting ability of graphene and good electrocatalytic activity of a conducting polymer into a single CE material. The preliminary results demonstrate that the resultant CEs follow an order of rGO/PPy > rGO/PANi > rGO/PEDOT > rGO. A maximal cell efficiency of 6.23% is determined on the optimized solar cell device, yielding 104.9% enhancement in comparison to rGO based device.

  13. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    NASA Astrophysics Data System (ADS)

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin; Chen, Zhijian

    2015-05-01

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  14. Electrochemically Reduced Graphene Oxide Multilayer Films as Efficient Counter Electrode for Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Huang, Dekang; Cao, Kun; Wang, Mingkui; Zakeeruddin, Shaik M.; Grätzel, Michael

    2013-01-01

    We report on a new counter electrode for dye-sensitized solar cells (DSCs), which is prepared using layer-by-layer assembly of negatively charged graphene oxide and positively charged poly (diallyldimethylammonium chloride) followed by an electrochemical reduction procedure. The DSC devises using the heteroleptic Ru complex C106TBA as sensitizer and this new counter electrode reach power conversion efficiencies of 9.5% and 7.6% in conjunction with low volatility and solvent free ionic liquid electrolytes, respectively. The new counter electrode exhibits good durability (60°C for 1000 h in a solar simulator, 100 mW cm−2) during the accelerated tests when used in combination with an ionic liquid electrolyte. This work identifies a new class of electro-catalysts with potential for low cost photovoltaic devices. PMID:23508212

  15. Bifacial dye-sensitized solar cells based on vertically oriented TiO2 nanotube arrays.

    PubMed

    Liu, Zhaoyue; Misra, Mano

    2010-03-26

    In this work we describe a novel bifacial design concept for dye-sensitized solar cells (DSCs). Bifacial DSCs are fabricated with ruthenium complex chemisorbed double-sided TiO(2) nanotube arrays on a Ti metal substrate, in combination with two electron-collecting counter electrodes. Our investigation shows that the present bifacial DSCs have similar conversion efficiencies when illuminated from either their front or rear side, and a summated output power when illuminated on both sides. Furthermore, this type of bifacial DSC is also able to summate the output power of each side when working at an 'unsymmetrical' mode, in which much different output powers are generated by the front and rear sides. Therefore, this bifacial design concept exhibits a promising potential to reduce the cost of solar electricity when DSCs are operated at a location where a high albedo radiation is available. PMID:20195012

  16. Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte

    NASA Astrophysics Data System (ADS)

    Ito, Seigo; Zakeeruddin, Shaik M.; Comte, Pascal; Liska, Paul; Kuang, Daibin; Grätzel, Michael

    2008-11-01

    Solar energy is a promising solution to global energy-related problems because it is clean, inexhaustible and readily available. However, the deployment of conventional photovoltaic cells based on silicon is still limited by cost, so alternative, more cost-effective approaches are sought. Here we report a bifacial dye-sensitized solar cell structure that provides high photo-energy conversion efficiency (~6%) for incident light striking its front or rear surfaces. The design comprises a highly stable ruthenium dye (Z907Na) in combination with an ionic-liquid electrolyte and a porous TiO2 layer. The inclusion of a SiO2 layer between the electrodes to prevent generation of unwanted back current and optimization of the thickness of the TiO2 layer are responsible for the enhanced performance.

  17. Smart photovoltaics based on dye-sensitized solar cells using photochromic spiropyran derivatives as photosensitizers

    SciTech Connect

    Ma, Shengbo; Ting, Hungkit; Ma, Yingzhuang; Zheng, Lingling; Zhang, Miwei; Xiao, Lixin E-mail: lxxiao@pku.edu.cn; Chen, Zhijian E-mail: lxxiao@pku.edu.cn

    2015-05-15

    In this paper, smart photovoltaic (SPV) devices, integrating both functions of solar cells and smart windows, was fabricated based on dye-sensitized solar cells using photochromic spiropyran derivatives SIBT as photosensitizers. SPV devices have self-regulated power conversion efficiency (PCE) and light transmission responding to the incident spectra due to the photoisomerization of SIBT. SIBT isomerize from closed-ring form to open-ring form under UV illumination, accompanied with enhanced visible light absorption and electron delocalization. Therefore, increased PCE and absorption in SPV devices were observed under UV treatment and the devices can be restored gradually to the initial status when kept in dark. The SPV devices have self-regulation of PCE and sunlight transmission responding to the changing sun spectra in different times of a day, providing a proper energy usage and a better sun-shading.

  18. High Efficiency Forster Resonance Energy Transfer in Solid-State Dye Sensitized Solar Cells

    SciTech Connect

    Mor, Gopal K.; Basham, James; Paulose, Maggie; Kim, Sanghoon; Varghese, Oomman K.; Vaish, Amit; Yoriya, Sorachon; Grimes, Craig A.

    2010-07-14

    Solid-state dye-sensitized solar cells (SS-DSCs) offer the potential to make low cost solar power a reality, however their photoconversion efficiency must first be increased. The dyes used are commonly narrow band with high absorption coefficients, while conventional photovoltaic operation requires proper band edge alignment significantly limiting the dyes and charge transporting materials that can be used in combination. We demonstrate a significant enhancement in the light harvesting and photocurrent generation of SS-DSCs due to Förster resonance energy transfer (FRET). TiO{sub 2} nanotube array films are sensitized with red/near IR absorbing SQ-1 acceptor dye, subsequently intercalated with Spiro-OMeTAD blended with a visible light absorbing DCM-pyran donor dye. The calculated Förster radius is 6.1 nm. The donor molecules contribute a FRET-based maximum IPCE of 25% with a corresponding excitation transfer efficiency of approximately 67.5%.

  19. Dye-sensitized solar cells using double-oxide electrodes: a brief review

    NASA Astrophysics Data System (ADS)

    Suzuki, Yoshikazu; Okamoto, Yuji; Ishii, Natsumi

    2015-04-01

    Dye-sensitized solar cells (DSC or DSSC) have been widely investigated because of their potentially high cost performance compared with Si-based solar cells and of their fascinating appearance. DSC with photoelectric conversion efficiency of >10 % (or even 12 %) have been reported, where porous TiO2 films are generally used as semi-conductor electrodes. Such porous TiO2 films usually have high specific surface area, and thus, they adsorb plenty of dye molecules, resulting in high photocurrent density. Recently, some double oxides have been examined as alternative photoanode materials, mainly in order to improve photovoltage. Here, studies on DSC using double-oxide electrodes, i.e., perovskite, spinel, ilmenite, wolframite, scheelite and pseudobrookite-types, are briefly reviewed.

  20. Critical analysis on degradation mechanism of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohamad Shahimin, Mukhzeer; Suhaimi, Suriati; Abd Wahid, Mohd Halim; Retnasamy, Vithyacharan; Ahmad Hambali, Nor Azura Malini; Reshak, Ali Hussain

    2015-09-01

    This paper reports on a précis of degradation mechanism for dye-sensitized solar cell (DSSCs). The review indicates progress in the understanding of degradation mechanism, in particular, the large improvement in the analysis of the materials used in DSSCs. The paper discussed on the stability issues of the dye, advancement of the photoelectrode film lifetime, changes in the electrolyte components and degradation analysis of the counter electrode. The photoelectrochemical parameters were evaluated in view of the possible degradation routes via open circuit voltage (Voc), short circuit current (Isc), fill factor (FF) and overall conversion efficiency (η) from the current-voltage curve. This analysis covers several types of materials that have paved the way for better-performing solar cells and directly influenced the stability and reliability of DSSCs. The new research trend together with the previous research has been highlighted to examine the key challenges faced in developing the ultimate DSSCs.

  1. Dye-sensitized solar cells based on different nano-oxides on plastic PET substrate

    NASA Astrophysics Data System (ADS)

    Mikula, Milan; Gemeiner, Pavol; Beková, Zuzana; Dvonka, Vladimír; Búc, Dalibor

    2015-01-01

    Polyethylene-terephthalate (PET) foils and glass slides coated with thin conductive layers were used as substrates for TiO2 or ZnO based photoactive electrodes of dye-sensitized solar cells (DSSC) with organo-metallic Ru-dye, standard iodine electrolyte and Pt coated FTO/glass counterelectrode (CE). Different compositions of nanoparticle oxides in forms of alcohol pastes as well as the CE paste were applied onto the substrates by screen printing or by doctor blade techniques. Photocurrents and I-V loading characteristics were measured depending on the solar cell structure and preparation, including the oxide composition, electrode conductivity and the dye type. The influence of thin TiO2 blocking layer prepared by sol-gel technique is also discussed.

  2. Dye-sensitized solar cells with natural dyes extracted from plant seeds

    NASA Astrophysics Data System (ADS)

    El-Ghamri, Hatem S.; El-Agez, Taher M.; Taya, Sofyan A.; Abdel-Latif, Monzir S.; Batniji, Amal Y.

    2014-12-01

    The application of natural dyes extracted from plant seeds in the fabrication of dye-sensitized solar cells (DSSCs) has been explored. Ten dyes were extracted from different plant seeds and used as sensitizers for DSSCs. The dyes were characterized using UV-Vis spectrophotometry. DSSCs were prepared using TiO2 and ZnO nanostructured mesoporous films. The highest conversion efficiency of 0.875 % was obtained with an allium cepa (onion) extract-sensitized TiO2 solar cell. The process of TiO2-film sintering was studied and it was found that the sintering procedure significantly affects the response of the cell. The short circuit current of the DSSC was found to be considerably enhanced when the TiO2 semiconducting layer was sintered gradually.

  3. Gold nanoparticle decorated multi-walled carbon nanotubes as counter electrode for dye sensitized solar cells.

    PubMed

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2012-11-01

    A novel counter electrode material for dye sensitized solar cells (DSSCs) composed of nanostructured Au particles decorated on functionalized multi-walled carbon nanotubes (f-MWNTs) is demonstrated for the first time. MWNTs synthesized by catalytic chemical vapor deposition technique are purified and functionalized by treating with concentrated acids. Au nanoparticles are decorated on f-MWNTs by a rapid and facile microwave assisted polyol reduction method. The materials are characterized by X-ray diffractometry, Fourier transform infra red spectroscopy and electron microscopy. The DSSC fabricated with Au/f-MWNTs based counter electrode shows enhanced power conversion efficiency (eta) of 4.9% under AM 1.5G simulated solar radiation. In comparison, the reference DSSCs fabricated with f-MWNTs and Pt counter electrodes show eta of 2.1% and 4.5%. This high performance of Au/f-MWNTs counter electrode is investigated using electrochemical impedance spectroscopy and cyclic voltammetry studies. PMID:23421212

  4. Membrane-Inspired Acidically Stable Dye-Sensitized Photocathode for Solar Fuel Production.

    PubMed

    Click, Kevin A; Beauchamp, Damian R; Huang, Zhongjie; Chen, Weilin; Wu, Yiying

    2016-02-01

    Tandem dye-sensitized photoelectrochemical cells (DSPECs) for water splitting are a promising method for sustainable energy conversion but so far have been limited by their lack of aqueous stability and photocurrent mismatch between the cathode and anode. In nature, membrane-enabled subcellular compartmentation is a general approach to control local chemical environments in the cell. The hydrophobic tails of the lipid make the bilayer impermeable to ions and hydrophilic molecules. Herein we report the use of an organic donor-acceptor dye that prevents both dye desorption and semiconductor degradation by mimicking the hydrophobic/hydrophilic properties of lipid bilayer membranes. The dual-functional photosensitizer (denoted as BH4) allows for efficient light harvesting while also protecting the semiconductor surface from protons and water via its hydrophobic π linker. The protection afforded by this membrane-mimicking dye gives this system excellent stability in extremely acidic (pH 0) conditions. The acidic stability also allows for the use of cubane molybdenum-sulfide cluster as the hydrogen evolution reaction (HER) catalyst. This system produces a proton-reducing current of 183 ± 36 μA/cm(2) (0 V vs NHE with 300 W Xe lamp) for an unprecedented 16 h with no degradation. These results introduce a method for developing high-current, low-pH DSPECs and are a significant move toward practical dye-sensitized solar fuel production. PMID:26744766

  5. Ultrafast interfacial charge transfer dynamics in dye-sensitized and quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Ghosh, Hirendra N.

    2013-02-01

    Dye sensitized solar cell (DSSC) appeared to be one of the good discovery for the solution of energy problem. We have been involved in studying ultrafast interfacial electron transfer dynamics in DSSC using femtosecond laser spectroscopy. However it has been realized that it is very difficult to design and develop higher efficient one, due to thermodynamic limitation. Again in DSSC most of the absorbed photon energy is lost as heat within the cell, which apart from decreasing the efficiency also destabilizes the device. It has been realized that quantum dot solar cell (QDSC) are the best bet where the sensitizer dye molecules can be replaced by suitable quantum dot (QD) materials in solar cell. The quantum-confinement effect in semiconductors modifies their electronic structure, which is a very important aspect of these materials. For photovoltaic applications, a long-lived charge separation remains one of the most essential criteria. One of the problems in using QDs for photovoltaic applications is their fast charge recombination caused by nonradiative Auger processes, which occur predominantly at lower particle sizes due to an increase in the Coulomb interaction between electrons and holes. Various approaches, such as the use of metal-semiconductor composites, semiconductor-polymer composite, and semiconductor core-shell heterostructures, have been attempted to minimize the fast recombination between electrons and holes. To make higher efficient solar devices it has been realised that it is very important to understand charge carrier and electron transfer dynamics in QD and QD sensitized semiconductor nanostructured materials. In the present talk, we are going to discuss on recent works on ultrafast electron transfer dynamics in dye-sensitized TiO2 nanoparticles/film [1-12] and charge (electron/hole) transfer dynamics in quantum dot core-shell nano-structured materials [13-17].

  6. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    PubMed Central

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  7. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-07-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

  8. Interaction of Sensitizing Dyes with Nanostructured TiO2 Film in Dye-Sensitized Solar Cells Using Terahertz Spectroscopy.

    PubMed

    Ghann, William; Rahman, Aunik; Rahman, Anis; Uddin, Jamal

    2016-01-01

    The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells. PMID:27443236

  9. Influence of TiCl4 post-treatment condition on TiO2 electrode for enhancement photovoltaic efficiency of dye-sensitized solar cells.

    PubMed

    Eom, Tae Sung; Kim, Kyung Hwan; Bark, Chung Wung; Choi, Hyung Wook

    2014-10-01

    Titanium tetrachloride (TiCl4) treatment processed by chemical bath deposition is usually adopted as pre- and post-treatment for nanocrystalline titanium dioxide (TiO2) film deposition in the dye-sensitized solar cells (DSSCs) technology. TiCl4 post-treatment is a widely known method capable of improving the performance of dye-sensitized solar cells. In this work, the effect of TiCl4 post-treatment on the TiO2 electrode is proposed and compared to the untreated film. A TiO2 passivating layer was deposited on FTO glass by RF magnetron sputtering. The TiO2 sol prepared sol-gel method, nanoporous TiO2 upper layer was deposited by screen printing method on the passivating layer. TiCl4 post-treatment was deposited on the substrate by hydrolysis of TiCl4 aqueous solution. Crystalline structure was adjusted by various TiCl4 concentration and dipping time: 20 mM-150 mM and 30 min-120 min. The conversion efficiency was measured by solar simulator (100 mW/cm2). The dye-sensitized solar cell using TiCl4 post-treatment was measured the maximum conversion efficiency of 5.04% due to electron transport effectively. As a result, the DSSCs based on TiCl4 post-treatment showed better photovoltaic performance than cells made purely of TiO2 nanoparticles. The relative DSSCs devices are characterized in terms of short circuit current density, open circuit voltage, fill factor, conversion efficiency. PMID:25942852

  10. Effect of photoanode thickness on electrochemical performance of dye sensitized solar cell

    SciTech Connect

    Khatani, Mehboob Hamid, Nor Hisham Sahmer, Ahmed Zahrin; Mohamed, Norani Muti Muhsan, Ali Samer

    2015-07-22

    The thickness of photoanode is crucial as it adsorbed a large amount of dye molecules that provide electrons for generation of electricity in dye sensitized solar cell (DSC). Thus, in order to realize the practical application of DSC, study on various thickness of photoanode need to be carried out to analyze its effect on the electrochemical behavior of dye sensitized solar cell. To enhance the conversion efficiency, an additional layer of TiO{sub 2} using TiCl{sub 4} treatment was deposited prior to the deposition of the photoanode (active area of 1cm{sup 2}) with the thickness of 6, 12, 18, 24, and 30 µm on fluorine doped tin oxide (FTO) glass substrate. The resulting photoanode after the soak in N719 dye for more than 12hrs were used to be assembled in a test cell in combination with liquid electrolyte and counter electrode. The fabricated cells were characterized by solar simulator, ultraviolet-visible spectroscopy (UV-VIS), and electrochemical impedance spectroscopy (EIS). Scanning electron microscopy (SEM) was used to approximate the thickness of photoanode. An optimum power conversion efficiency of 4.54% was obtained for the cell fabricated with 18 µm photoanode thickness. This is attributed to the reduced resistance related to electron transport in the TiO{sub 2}/dye/electrolyte interface as proven by the EIS result. This led to the reduction of internal resistance, the increase in the electron life time and the improvement in the conversion efficiency.

  11. Fabrication of dye-sensitized solar cell (DSSC) using annato seeds (Bixa orellana Linn)

    SciTech Connect

    Haryanto, Ditia Allindira; Landuma, Suarni; Purwanto, Agus

    2014-02-24

    The Fabrication of dye sensitized solar cell (DSSC) using Annato seeds has been conducted in this study. Annato seeds (Bixa orellana Linn) used as a sensitizer for dye sensitized solar cell. The experimental parameter was concentration of natural dye. Annato seeds was extracted using etanol solution and the concentration was controlled by varying mass of Annato seeds. A semiconductor TiO{sub 2} was prepared by a screen printing method for coating glass use paste of TiO{sub 2}. Construction DSSC used layered systems (sandwich) consists of working electrode (TiO{sub 2} semiconductor-dye) and counter electrode (platina). Both are placed on conductive glass and electrolytes that occur electrons cycle. The characterization of thin layer of TiO{sub 2} was conducted using SEM (Scanning Electron Microscpy) analysis showed the surface morphology of TiO{sub 2} thin layer and the cross section of a thin layer of TiO{sub 2} with a thickness of 15–19 μm. Characterization of natural dye extract was determined using UV-Vis spectrometry analysis shows the wavelength range annato seeds is 328–515 nm, and the voltage (V{sub oc}) and electric current (I{sub sc}) resulted in keithley test for 30 gram, 40 gram, and 50 gram were 0,4000 V; 0,4251 V; 0,4502 V and 0,000074 A; 0,000458 A; 0,000857 A, respectively. The efficiencies of the fabricated solar cells using annato seeds as senstizer for each varying mass are 0,00799%, 0,01237%, and 0,05696%.

  12. Demonstrating Electron Transfer and Nanotechnology: A Natural Dye-Sensitized Nanocrystalline Energy Converter

    NASA Astrophysics Data System (ADS)

    Smestad, Greg P.; Gratzel, Michael

    1998-06-01

    A unique solar cell fabrication procedure has been developed using natural anthocyanin dyes extracted from berries. It can be reproduced with a minimum amount of resources in order to provide an interdisciplinary approach for lower-division undergraduate students learning the basic principles of biological extraction, physical chemistry, and spectroscopy as well as environmental science and electron transfer. Electron transfer is the basis of the energetics that drives the processes of life on Earth, occurring in both the mitochondrial membranes of living cells and in the thylakoid membranes of photosynthetic cells of green plants and algae (1). Although we depend on the petroleum and agricultural products of this electron and energy transfer, one of the greatest challenges of the 21st century is that we have yet to create devices that can be used to tap directly into the ultimate source of this energy on an economic scale. An experimental lab procedure was therefore created in order to illustrate the connections between natural and man-made solar conversion within a three-hour lab period.

  13. Triazoloisoquinoline-based dual functional dyestuff for dye-sensitized solar cells

    SciTech Connect

    Lee, Che-Lung; Lee, Wen-Hsi; Yang, Cheng-Hsien; Yang, Hao-Hsun; Chang, Jia-Yaw

    2013-01-15

    Graphical abstract: They consist of treating triazoloisoquinolines substituted tetramethyl-dioxaborolane (2) with 5-formyl-2-bromothiophene under conditions for Suzuki coupling to produce 5-(4-(3-oxo-[1,2,4]triazolo[3,4-a]isoquinolin-2(3H)-yl)phenyl) thiophene-2-carbaldehyde (3). Knoevenagel condensation of compound 3 with cyanoacrylic acid is carried out in the presence of piperidine, and after precipitation and purification with silica gel chromatography, the final dyestuff 4L is obtained as a yellow powder. This product has been characterized by spectroscopic analyses. Display Omitted Highlights: ► This new dyestuff investigated the role of triazoloisoquinoline dyestuffs as co-adsorbents and co-sensitizers with N719. ► The results show that co-adsorption of N719 sensitizer with dyestuff 5 increases the photocurrent in 1–0.25 molar ratio. ► This improved conversion efficiency is attributed to the insulating molecular layer, and the light harvesting effect at shorter-wavelength regions. -- Abstract: Triazoloisoquinoline contains electron-rich nitrogen and oxygen heteroatoms in a heterocyclic structure with high electron-donating ability. By utilizing this feature, two organic dyesutffs containing triazoloisoquinoline were synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs), overcoming the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. This method also fills the blanks of ruthenium dyestuff sensitized TiO{sub 2} film, and forms a compact insulating molecular layer due to the nature of small molecular organic dyestuffs. The incident photon-to-electron conversion efficiency of N719 at shorter wavelength regions is 35%. After addition of triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency from 4.49% to 5

  14. Implication of Blocking Layer Functioning with the Effect of Temperature in Dye-Sensitized Solar Cells.

    PubMed

    Kou, Dongxing; Chen, Shuanghong; Hu, Linhua; Wu, Sixin; Dai, Songyuan

    2016-06-01

    The properties of thin titanium dioxide blocking layers onto TCO in dye-sensitized solar cells (DSCs) have been widely reported as their intensity dependence of illumination intensity. Herein, a further investigation about their functioning with the effect of temperature is developed. The electron recombination process, photovoltage response on illumination intensity and photocurrent-voltage properties for DSCs with/without blocking layer at different temperatures are detected. It is found that the electron recombination via TCO becomes increasingly pronounced with increasing temperature and the effect of blocking layer is extremely temperature dependent. The band bending of the compact layer is more effectively to block electron losses at high temperatures, preventing large falloff of photovoltage. Hence, a resistive layer at the surface of TCO keeps comparable cell performances without falloff over a wide temperature range, while the device without blocking layer shows large decrease by over 10% at high temperature for contrast. PMID:27427620

  15. Blue-coloured highly efficient dye-sensitized solar cells by implementing the diketopyrrolopyrrole chromophore.

    PubMed

    Yum, Jun-Ho; Holcombe, Thomas W; Kim, Yongjoo; Rakstys, Kasparas; Moehl, Thomas; Teuscher, Joel; Delcamp, Jared H; Nazeeruddin, Mohammed K; Grätzel, Michael

    2013-01-01

    The paradigm shift in dye sensitized solar cells (DSCs) - towards donor- π bridge-acceptor (D-π-A) dyes - increases the performances of DSCs and challenges established design principles. Framed by this shifting landscape, a series of four diketopyrrolopyrrole (DPP)-based sensitizers utilizing the donor-chromophore-anchor (D-C-A) motif were investigated computationally, spectroscopically, and fabricated by systematic evaluation of finished photovoltaic cells. In all cases, the [Co(bpy)3](3+/2+) redox-shuttle afforded superior performance compared to I3(-)/I(-). Aesthetically, careful molecular engineering of the DPP chromophore yielded the first example of a high-performance blue DSC - a challenge unmet since the inception of this photovoltaic technology: DPP17 yields over 10% power conversion efficiency (PCE) with the [Co(bpy)3](3+/2+) electrolyte at full AM 1.5 G simulated sun light. PMID:23945746

  16. Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells.

    PubMed

    Yun, Sining; Liu, Yanfang; Zhang, Taihong; Ahmad, Shahzada

    2015-07-28

    Recently, considerable attention has been paid to dye-sensitized solar cells (DSSCs) which are based on Co(2+)/Co(3+) redox shuttles, because of their unparalleled merits including higher redox potential, reduced corrosiveness towards metallic conductors, low costs and high power conversion efficiencies (PCE) (13%). The counter electrode (CE) is an essential component in DSSCs, and plays a crucial role in catalyzing Co(3+) ion reduction in Co-based DSSCs. In this mini-review, we review recent developments in CE materials for Co-mediated DSSCs including: noble metal platinum (Pt), carbon materials, transition metal compounds (TMCs), polymers, and their corresponding hybrids, highlighting important contributions worldwide that promise low cost, efficient, and robust Co-mediated DSSC systems. Additionally, the crucial challenges associated with employing these low-cost CE catalysts for Co-based redox couples in DSSCs are stressed. PMID:26132719

  17. Cost-effective platinum alloy counter electrodes for liquid-junction dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Yanjuan; Tang, Qunwei; Yu, Liangmin; Yan, Xuefeng; Dong, Lei

    2016-02-01

    One of the challenges in developing advanced dye-sensitized solar cells (DSSCs) is the pursuit of cost-effective and robust counter electrodes (CEs). We present here the successful synthesis of binary PtxM100-x (M = Ni, Co, Fe) alloy nanostructures on Ti foil by a facile and environmental-friendly strategy for utilization as CEs in liquid-junction DSSCs. Due to the reasonable charge-transfer ability and excellent electrocatalytic activity, the resultant DSSC yields a promising power conversion efficiency (PCE) of 6.42% with binary Pt0.28Ni99.72 CE in comparison with 6.18% for pristine Pt CE based device. The easy synthesis, cost-effectiveness, and good electrocatalytic property may help the Pt0.28Ni99.72 nanostructure stand out as an alternative CE electrocatalyst in a DSSC.

  18. Growth of Comb-like ZnO Nanostructures for Dye-sensitized Solar Cells Applications

    PubMed Central

    2009-01-01

    Dye-sensitized solar cells (DSSCs) were fabricated by using well-crystallized ZnO nanocombs directly grown onto the fluorine-doped tin oxide (FTO) via noncatalytic thermal evaporation process. The thin films of as-grown ZnO nanocombs were used as photoanode materials to fabricate the DSSCs, which exhibited an overall light to electricity conversion efficiency of 0.68% with a fill factor of 34%, short-circuit current of 3.14 mA/cm2, and open-circuit voltage of 0.671 V. To the best of our knowledge, this is first report in which thin film of ZnO nanocombs was used as photoanode materials to fabricate the DSSCs. PMID:20596445

  19. Application of Eu2O3/ZnO nanoparticles in dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Kaur, Manveen; Verma, N. K.

    2013-06-01

    The synthesis of ZnO, Eu2O3 coated ZnO nanoparticles and their application in dye sensitized solar cells (DSSCs) has been reported. The synthesized samples have been characterized by XRD and the diffraction of crystal plane (222) of Eu2O3 was detected, demonstrating the existence of Eu2O3 on the surface of ZnO3, which has also been verified through EDAX. Compared to ZnO electrodes, Eu2O3 coated ZnO electrodes adsorbed more dye. Eu2O3 coating on ZnO forms an energy barrier, which suppresses the charge recombination. Consequently, the photoelectrochemical properties of the modified electrodes improved and the overall energy conversion efficiency η increased from 0.21% to 0.61% under the illumination of simulated light of 100mW/cm2.

  20. Comparative Analysis of Various Photoelectrodes for Dye-Sensitized Solar Cells.

    PubMed

    Ko, Kwan-Woo; Park, Jae-Hyoung; Song, Hye-Jin; Hong, Sungjun; Jun, Yongseok; Yoon, Soon-Gil; Hong, Young-Sik; Han, Chi-Hwan

    2015-11-01

    We prepared nanopastes containing various additives such as acetylene black (AB paste), 3,5-dinitrosalicylic acid (NSA paste) and SiC2 particles (SO paste), and these nanopastes were employed in preparation of photoelectrodes for dye sensitized solar cells (DSSCs). Photoelectrodes of AB, NSA and SO paste have characteristics of large pore size, superior interconnection among particles, and scattering due to spherical particle shape, respectively. Photovoltaic parameters of cells formed from the pastes were compared with cell formed from the paste without additive. Among the pastes, AB paste exhibited the best cell efficiency improvement of 9.647%. NSA paste also exhibited considerable cell efficiency improvement without much deleterious impact on transparency. The advantages and disadvantages of each nanopastes were analysed for the commercialization of DSSCs. PMID:26726673

  1. Dye-Sensitized Solar Cells Combining ZnO Nanotip Arrays and Nonliquid Gel Electrolytes

    NASA Astrophysics Data System (ADS)

    Chen, Hanhong; Duan, Ziqing; Lu, Yicheng; Du Pasquier, Aurelien

    2009-08-01

    We present a dye-sensitized solar cell (DSSC) using a nanostructured ZnO photoelectrode and a gel electrolyte. The photoelectrode consists of well-aligned ZnO nanotips on a Ga-doped ZnO (GZO) transparent conducting film. The GZO film (400 nm, sheet resistance ~25 Ω/sq, transmittance over 85% in the visible wavelength) and ZnO nanotips (3.2 μm length) are sequentially grown on a glass substrate using metalorganic chemical vapor deposition. The ZnO photoelectrode is sensitized with dye N719 and impregnated with N-methyl pyrolidinone (NMP) gelled with poly(vinyl-difluoroethylene-hexafluoropropylene) copolymer (PVDF-HFP). The cell exhibits an open-circuit voltage of 726 mV and a power conversion efficiency of 0.89% under one sun illumination. The aging testing shows that the cell using a gel electrolyte has better stability than its liquid electrolyte counterpart.

  2. Dye-sensitized solar cell employing zinc oxide aggregates grown in the presence of lithium

    DOEpatents

    Zhang, Qifeng; Cao, Guozhong

    2013-10-15

    Provided are a novel ZnO dye-sensitized solar cell and method of fabricating the same. In one embodiment, deliberately added lithium ions are used to mediate the growth of ZnO aggregates. The use of lithium provides ZnO aggregates that have advantageous microstructure, morphology, crystallinity, and operational characteristics. Employing lithium during aggregate synthesis results in a polydisperse collection of ZnO aggregates favorable for porosity and light scattering. The resulting nanocrystallites forming the aggregates have improved crystallinity and more favorable facets for dye molecule absorption. The lithium synthesis improves the surface stability of ZnO in acidic dyes. The procedures developed and disclosed herein also help ensure the formation of an aggregate film that has a high homogeneity of thickness, a high packing density, a high specific surface area, and good electrical contact between the film and the fluorine-doped tin oxide electrode and among the aggregate particles.

  3. The effect of ionic liquid electrolyte concentrations in dye sensitized solar cell using gel electrolyte

    NASA Astrophysics Data System (ADS)

    Pujiarti, H.; Arsyad, W. S.; Wulandari, P.; Hidayat, R.

    2014-09-01

    Dye Sensitized Solar Cells (DSSCs) have received much attention because of some advantages, such as using environment-friendly materials and requiring less high-tech equipment. Commonly DSSCs are built using conventional electrolyte solution, which is prone to electrolyte leakage and low stability. In this paper, we present the characteristics of DSSCs using gel electrolyte, which was made of ionic liquid and hybrid polymer gel, and the effect of ionic liquid concentration on their characteristics. The hybrid composite polymer was composed of siloxane and ethylene glycol polymer networks. Their working performances were investigated by the current-voltage (J-V) characterizations and small ac impedance measurements, which are correlated with the concentrations of ionic liquid electrolyte. The experimental results showed that cell working performance slightly decreased but the solution leakage problem was eliminated.

  4. Laser annealed composite titanium dioxide electrodes for dye-sensitized solar cells on glass and plastics

    NASA Astrophysics Data System (ADS)

    Pan, Heng; Ko, Seung Hwan; Misra, Nipun; Grigoropoulos, Costas P.

    2009-02-01

    We report a rapid and low temperature process for fabricating composite TiO2 electrodes for dye-sensitized solar cells on glass and plastics by in tandem spray deposition and laser annealing. A homogenized KrF excimer laser beam (248 nm) was used to layer-by-layer anneal spray deposited TiO2 nanoparticles. The produced TiO2 film is crack free and contains small particles (30 nm) mixed with different fractions of larger particles (100-200 nm) controlled by the applied laser fluence. Laser annealed double-layered structure is demonstrated for both doctor-blade deposited and spray-deposited electrodes and performance enhancement can be observed. The highest demonstrated all-laser-annealed cells utilizing ruthenium dye and liquid electrolyte showed power conversion efficiency of ˜3.8% under simulated illumination of 100 mW/cm2.

  5. Robust polyaniline-graphene complex counter electrodes for efficient dye-sensitized solar cells.

    PubMed

    He, Benlin; Tang, Qunwei; Wang, Min; Chen, Haiyan; Yuan, Shuangshuang

    2014-06-11

    With an aim of accelerating the charge transfer between polyaniline (PANi) and graphene, polyaniline-graphene (PANi-graphene) complexes are synthesized by a reflux technique and employed as counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). Because of the easy charge-transfer between PANi (N atoms) and graphene (C atoms) by a covalent bond, electrical conduction and electrocatalysis of PANi-graphene complex CEs, and therefore power conversion efficiency of their DSSCs have been elevated in comparison with that of PANi-only CE. The resultant PANi-graphene complex CEs are characterized by spectral analysis, morphology observation, and electrochemical tests. The DSSC employing PANi-8 wt ‰ graphene complex CE gives an impressive power conversion efficiency of 7.78%, which is higher than 6.24% from PANi-only and 6.52% from Pt-only CE-based DSSCs. PMID:24826943

  6. Tandem Dye-Sensitized Solar Cells Based on TCO-less Back Contact Bottom Electrodes

    NASA Astrophysics Data System (ADS)

    Baranwal, Ajay K.; Fujikawa, Naotaka; Nishimura, Terumi; Ogomi, Yuhei; Pandey, Shyam S.; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Mechanically stacked and series connected tandem dye sensitized solar cells (T-DSSCs) are fabricated in novel architectures. The architecture consist of TCO tandem DSSCs stacked with TCO-less back contact DSSCs as bottom electrodes (TCO-less tandem DSSCs). Resulting TCO-less tandem DSSCs architecture finds its usefulness in efficient photon harvesting due to improved light transmission and enhanced photons reaching to the bottom electrodes. The fabricated tandem performance was verified with visible light harvesting model dyes D131 and N719 as a proof of concept and provided the photoconversion efficiency (PCE) of 6.06% under simulated condition. Introduction of panchromatic photon harvesting by utilizing near infrared light absorbing Si-phthalocyanine dye in combination with the modified tandem DSSC architecture led to enhancement in the PCE up to 7.19%.

  7. Counter electrodes from binary ruthenium selenide alloys for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Pinjiang; Cai, Hongyuan; Tang, Qunwei; He, Benlin; Lin, Lin

    2014-12-01

    Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its merits on clean, cost-effectiveness, relatively high efficiency, and easy fabrication. However, the reduction of fabrication cost without sacrifice of power conversion efficiencies of the DSSCs is a golden rule for their commercialization. Here we design a new binary ruthenium selenide (Ru-Se) alloy counter electrodes (CEs) by a low-temperature hydrothermal reduction method. The electrochemical behaviors are evaluated by cyclic voltammogram, electrochemical impedance, and Tafel measurements, giving an optimized Ru/Se molar ratio of 1:1. The DSSC device with RuSe alloy CE achieves a power conversion efficiency of 7.15%, which is higher than 5.79% from Pt-only CE based DSSC. The new concept, easy process along with promising results provide a new approach for reducing cost but enhancing photovoltaic performances of DSSCs.

  8. Improved dye-sensitized solar cells by composite ionic liquid electrolyte incorporating layered titanium phosphate

    SciTech Connect

    Cheng, Ping; Lan, Tian; Wang, Wanjun; Wu, Haixia; Yang, Haijun; Guo, Shouwu

    2010-05-15

    We reported a composite electrolyte prepared by incorporating layered {alpha}-titanium phosphate ({alpha}-TiP) into a binary ionic liquid of 1-propyl-3-methylimidazolium iodide (PMII) and 1-ethyl-3-methylimidazolium tetrafluoroborate (EmimBF{sub 4}) (volume ratio, 13:7) electrolyte. The addition of {alpha}-TiP markedly improved the photovoltaic properties of dye-sensitized solar cells (DSSCs) compared to that without {alpha}-TiP. The enhancement was explained by improved diffusion of tri-iodide (I{sub 3}{sup -}) ions, suppressed electron recombination with I{sub 3}{sup -} in the electrolyte and increased lifetime of electrons in mesoscopic TiO{sub 2} film. (author)

  9. Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells.

    PubMed

    Tang, Qunwei; Zhang, Huihui; Meng, Yuanyuan; He, Benlin; Yu, Liangmin

    2015-09-21

    The dissolution of platinum (Pt) has been one of the heart issues in developing advanced dye-sensitized solar cells (DSSCs). We present here the experimental realization of stable counter-electrode (CE) electrocatalysts by alloying Pt with transition metals for enhanced dissolution resistance to state-of-the-art iodide/triiodide (I(-)/I3(-)) redox electrolyte. Our focus is placed on the systematic studies of dissolution engineering for PtM0.05 (M=Ni, Co, Fe, Pd, Mo, Cu, Cr, and Au) alloy CE electrocatalysts along with mechanism analysis from thermodynamical aspects, yielding more negative Gibbs free energies for the dissolution reactions of transition metals. The competitive reactions between transition metals with iodide species (I3(-), I2) could protect the Pt atoms from being dissolved by redox electrolyte and therefore remain the high catalytic activity of the Pt electrode. PMID:26220170

  10. Nanoforest Nb2O5 Photoanodes for Dye-Sensitized Solar Cells by Pulsed Laser Deposition

    SciTech Connect

    Ghosh, Rudresh; Brennaman, Kyle M.; Uher, Tim; Ok, Myoung-Ryul; Samulski, Edward T.; McNeil, L. E.; Meyer, Thomas J.; Lopez, Rene

    2011-10-26

    Vertically aligned bundles of Nb₂O₅ nanocrystals were fabricated by pulsed laser deposition (PLD) and tested as a photoanode material in dye-sensitized solar cells (DSSC). They were characterized using scanning and transmission electron microscopies, optical absorption spectroscopy (UV–vis), and incident-photon-to-current efficiency (IPCE) experiments. The background gas composition and the thickness of the films were varied to determine the influence of those parameters in the photoanode behavior. An optimal background pressure of oxygen during deposition was found to produce a photoanode structure that both achieves high dye loading and enhanced photoelectrochemical performance. For optimal structures, IPCE values up to 40% and APCE values around 90% were obtained with the N₃ dye and I₃{sup –}/I{sup –} couple in acetonitrile with open circuit voltage of 0.71 V and 2.41% power conversion efficiency.

  11. Highly transparent metal selenide counter electrodes for bifacial dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Pinjiang; Tang, Qunwei

    2016-06-01

    Creation of transparent counter electrode (CE) electrocatalysts for bifacial dye-sensitized solar cells (DSSCs) is a persistent objective for reducing cost of photovoltaic conversion. We present here the experimental realization of highly transparent CuSe CEs by a mild solution method for liquid-junction bifacial DSSCs. The resultant CuSe CEs show superior electrocatalytic activity toward I3- reduction reaction. By optimizing the pH values in synthesizing CuSe electrodes, the maximal front efficiency of 6.21% and rear efficiency of 4.72% are recorded on the corresponding bifacial DSSC. Both catalytic activity and photovoltaic performances can be further elevated by alloying CuSe with Co or Fe, yielding promising efficiencies of 7.81% and 5.38% under front and rear irradiations, respectively.

  12. Dye-sensitized solar cell counter electrodes based on carbon nanotubes.

    PubMed

    Hwang, Seunghwa; Batmunkh, Munkhbayar; Nine, Md J; Chung, Hanshik; Jeong, Hyomin

    2015-01-12

    Dye-sensitized solar cells (DSSCs) have received significant attention from the scientific community since their discovery in 1991. However, the high cost and scarcity of platinum has motivated researchers to seek other suitable materials for the counter electrode of DSSCs. Owing to their exceptional properties such as high conductivity, good electrochemical activity, and low cost, carbon nanotubes (CNTs) have been considered as promising alternatives to expensive platinum (Pt) in the counter electrode of DSSCs. Herein, we provide a Minireview of the CNTs use in the counter electrode of DSSCs. A brief overview of Pt-based counter electrodes is also discussed. Particular attention is given to the recent advances of counter electrodes with CNT-based composite structures. PMID:25367083

  13. Recovering degraded quasi-solid-state dye-sensitized solar cells by applying electrical pulses

    PubMed Central

    Zhang, Xi; Huang, Xuezhen

    2013-01-01

    We discovered a method of applying forward pulsed bias to recover the degradation of quasi-solid-state dye-sensitized solar cells (DSSCs). Up to 30.7% of the power conversion efficiency (η) of a degraded poly (vinylidene fluoride) (PVDF) based DSSC was recovered by a double-pulse. The recovered η remained higher than that before the double-pulse treatment for at least 28 days. It is deduced that the blocking of ion-transport channels in the quasi-solid-state electrolyte causes degradation of the DSSCs. This study will shed light on the efficiency enhancement and long-term stability of quasi-solid-state DSSCs. PMID:23545782

  14. Ultralong Rutile TiO2 Nanowire Arrays for Highly Efficient Dye-Sensitized Solar Cells.

    PubMed

    Li, Hailiang; Yu, Qingjiang; Huang, Yuewu; Yu, Cuiling; Li, Renzhi; Wang, Jinzhong; Guo, Fengyun; Jiao, Shujie; Gao, Shiyong; Zhang, Yong; Zhang, Xitian; Wang, Peng; Zhao, Liancheng

    2016-06-01

    Vertically aligned rutile TiO2 nanowire arrays (NWAs) with lengths of ∼44 μm have been successfully synthesized on transparent, conductive fluorine-doped tin oxide (FTO) glass by a facile one-step solvothermal method. The length and wire-to-wire distance of NWAs can be controlled by adjusting the ethanol content in the reaction solution. By employing optimized rutile TiO2 NWAs for dye-sensitized solar cells (DSCs), a remarkable power conversion efficiency (PCE) of 8.9% is achieved. Moreover, in combination with a light-scattering layer, the performance of a rutile TiO2 NWAs based DSC can be further enhanced, reaching an impressive PCE of 9.6%, which is the highest efficiency for rutile TiO2 NWA based DSCs so far. PMID:27097727

  15. Graphene-based large area dye-sensitized solar cell modules.

    PubMed

    Casaluci, Simone; Gemmi, Mauro; Pellegrini, Vittorio; Di Carlo, Aldo; Bonaccorso, Francesco

    2016-03-01

    We demonstrate spray coating of graphene ink as a viable method for large-area fabrication of graphene-based dye-sensitized solar cell (DSSC) modules. A graphene-based ink produced by liquid phase exfoliation of graphite is spray coated onto a transparent conductive oxide substrate to realize a large area (>90 cm(2)) semi-transparent (transmittance 44%) counter-electrode (CE) replacing platinum, the standard CE material. The graphene-based CE is successfully integrated in a large-area (43.2 cm(2) active area) DSSC module achieving a power conversion efficiency of 3.5%. The approach demonstrated here paves the way to all-printed, flexible, and transparent graphene-based large-area and cost-effective photovoltaic devices on arbitrary substrates. PMID:26883743

  16. Preparation and properties of low-cost graphene counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wu, Qishuang; Shen, Yue; Wang, Qiandi; Gu, Feng; Cao, Meng; Wang, Linjun

    2013-12-01

    With the advantages of excellent electrical properties, high catalytic activity and low-cost preparation, Graphene is one of the most expected carbon materials to replace the expensive Pt as counter electrodes for dye-sensitized solar cells (DSSCs). In this paper, graphene counter electrodes were obtained by simple doctor-blade coating method on fluorine tin oxides (FTOs). The samples were investigated by X-ray diffraction (XRD), Raman spectroscopy and scanning electron microscope (SEM). Then the low-cost graphene electrodes were applied in typical sandwich-type DSSCs with TiO2 or ZnO as photoanodes, and their photoelectric conversion efficiency (η) were about 4.34% and 2.28%, respectively, which were a little lower than those of Pt electrodes but much higher than those of graphite electrodes. This law was consistent with the test results of electrochemical impedance spectroscopy (EIS). Low-cost graphene electrodes can be applied in DSSCs by process optimization.

  17. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    PubMed Central

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-01-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism. PMID:27440452

  18. In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells.

    PubMed

    Tai, Qidong; Chen, Bolei; Guo, Feng; Xu, Sheng; Hu, Hao; Sebo, Bobby; Zhao, Xing-Zhong

    2011-05-24

    Highly uniform and transparent polyaniline (PANI) electrodes that can be used as counter electrodes in dye-sensitized solar cells (DSSCs) were prepared by a facile in situ polymerization method. They were used to fabricate a novel bifacially active transparent DSSC, which showed conversion efficiencies of 6.54 and 4.26% corresponding to front- and rear-side illumination, respectively. Meanwhile, the efficiency of the same photoanode employing a Pt counter electrode was 6.69%. Compared to conventional Pt-based DSSCs, the design of the bifacial DSSC fabricated in this work would help to bring down the cost of energy production due to the lower cost of the materials and the higher power-generating efficiency of such devices for their capabilities of utilizing the light from both sides. These promising results highlight the potential application of PANI in cost-effective, transparent DSSCs. PMID:21469717

  19. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency.

    PubMed

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-01

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs. PMID:25185939

  20. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture

    NASA Astrophysics Data System (ADS)

    Klein, M.; Pankiewicz, R.; Zalas, M.; Stampor, W.

    2016-07-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism.

  1. Dyes extracted from Trigonella seeds as photosensitizers for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Batniji, Amal; Abdel-Latif, Monzir S.; El-Agez, Taher M.; Taya, Sofyan A.; Ghamri, Hatem

    2016-06-01

    In this paper, the extract of Trigonella seeds was used as sensitizer for dye-sensitized solar cells (DSSCs). The natural dye was extracted from the seeds using water and alcohol as solvents for the raw material. The UV-Vis absorption spectra of Trigonella extract solution and dye adsorbed on TiO2 film were measured. DSSCs sensitized by Trigonella extracted using water as a solvent exhibited better performance with efficiency of 0.215 %. The performance of the fabricated DSSCs was attempted to enhance by acid treatment of the FTO substrates with HNO3, H3PO4, and H2SO4. Electrochemical impedance spectroscopy of the fabricated cells was also carried out.

  2. Effective solid electrolyte based on benzothiazolium for dye-sensitized solar cells.

    PubMed

    Han, Lu; Wang, Ye Feng; Zeng, Jing Hui

    2014-12-24

    Thiaozole/benzothiaozole-based dicationic conductors were synthesized and applied as solid-state electrolyte in dye-sensitized solar cells (DSSCs). X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis, steady-state voltammogram, photocurrent intensity-photovoltage test, and electrochemical impedance spectroscopy are used to characterize the materials and the mechanism of the cell performance. Compared to the traditional monocationic crystals, the dicationic crystals have a larger size and can provide more opportunities to fine-tune their physical/chemical properties. As a consequence, this solid-state electrolyte-based DSSC achieved photoelectric conversion efficiency of 7.90% under full air-mass (AM 1.5) sunlight (100 mW·cm(-2)). PMID:25469936

  3. Graphene-based large area dye-sensitized solar cell modules

    NASA Astrophysics Data System (ADS)

    Casaluci, Simone; Gemmi, Mauro; Pellegrini, Vittorio; di Carlo, Aldo; Bonaccorso, Francesco

    2016-02-01

    We demonstrate spray coating of graphene ink as a viable method for large-area fabrication of graphene-based dye-sensitized solar cell (DSSC) modules. A graphene-based ink produced by liquid phase exfoliation of graphite is spray coated onto a transparent conductive oxide substrate to realize a large area (>90 cm2) semi-transparent (transmittance 44%) counter-electrode (CE) replacing platinum, the standard CE material. The graphene-based CE is successfully integrated in a large-area (43.2 cm2 active area) DSSC module achieving a power conversion efficiency of 3.5%. The approach demonstrated here paves the way to all-printed, flexible, and transparent graphene-based large-area and cost-effective photovoltaic devices on arbitrary substrates.

  4. Oligothiophene-linked D-π-A type phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gao, Huan-Huan; Qian, Xing; Chang, Wen-Ying; Wang, Shan-Shan; Zhu, Yi-Zhou; Zheng, Jian-Yu

    2016-03-01

    Three novel phenothiazine dyes (JY31-33) featured oligothiophene π-bridge have been designed, synthesized and applied as photosensitizers for highly efficient dye-sensitized solar cells (DSSCs). The introduction of alkyl chains on oligothiophene π-bridge is found to significantly improve the open-circuit voltage of the resultant device. Phenothiazine bearing a 4-butoxyphenyl group as the secondary donor exhibits a stronger electron-donating ability and a positive acceleration on the short-circuit current density and open-circuit voltage. The dye JY33 containing a secondary donor and two alkyl chains finally gives a high efficiency of 7.48% under the 100 mW cm-2 simulated AM1.5 sunlight, with a short-circuit photocurrent density (Jsc) of 17.18 mA cm-2, an open-circuit photovoltage (Voc) of 742 mV and a fill factor (FF) of 0.59.

  5. Can aliphatic anchoring groups be utilised with dyes for p-type dye sensitized solar cells?

    PubMed

    Hao, Yan; Wood, Christopher J; Clark, Charlotte A; Calladine, James A; Horvath, Raphael; Hanson-Heine, Magnus W D; Sun, Xue-Zhong; Clark, Ian P; Towrie, Michael; George, Michael W; Yang, Xichuan; Sun, Licheng; Gibson, Elizabeth A

    2016-05-01

    A series of novel laterally anchoring tetrahydroquinoline derivatives have been synthesized and investigated for their use in NiO-based p-type dye-sensitized solar cells. The kinetics of charge injection and recombination at the NiO-dye interface for these dyes have been thoroughly investigated using picosecond transient absorption and time-resolved infrared measurements. It was revealed that despite the anchoring unit being electronically decoupled from the dye structure, charge injection occurred on a sub picosecond timescale. However, rapid recombination was also observed due to the close proximity of the electron acceptor on the dyes to the NiO surface, ultimately limiting the performance of the p-DSCs. PMID:27055102

  6. Spray deposition of electrospun TiO2 nanorods for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Fujihara, K.; Kumar, A.; Jose, R.; Ramakrishna, S.; Uchida, S.

    2007-09-01

    A simple technique was developed to fabricate a large-area TiO2 electrode layer using electrospun nanorods for dye-sensitized solar cells (DSSCs). Using this technique, we assembled DSSCs of area ~1 cm2 consisting of a thin TiO2 nanoparticle layer and a thick TiO2 nanorod layer as electrode. The TiO2 nanorods were obtained by mechanically grinding electrospun TiO2 nanofibers. A titania sol was first spin-coated on a conductive glass plate and a TiO2 nanorod layer was next spray dried on it to fabricate TiO2 nanoparticle/nanorod layers. These layers were subsequently sintered. The best-performing DSSC evaluated under AM1.5G (1 sun) condition gave current density ~13.6 mA cm-2, open circuit voltage ~0.8 V, fill factor ~51% and energy conversion efficiency ~5.8%.

  7. Effect of polymer electrolyte on the performance of natural dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Adel, R.; Abdallah, T.; Moustafa, Y. M.; Al-sabagh, A. M.; Talaat, H.

    2015-10-01

    Polymer electrolyte based on polyacrylonitrile (PAN), Ethylene Carbonate (EC) and Acetonitrile (ACN) mixed with Potassium Iodide and Iodine in liquid and thin film forms were employed in natural dye sensitized solar cells (NDSSCs). Three natural dyes; black berry, hibiscus and rose are used as the sensitizing dye. The NDSSCs used, follow the configuration: FTO/TiO2/Natural Dye/Electrolyte/ Carbon/FTO. The liquid form polymer electrolyte with black berry natural dye gives an increase of 111% in short circuit photocurrent density (Jsc), 17.5% to open circuit voltage (Voc), fill factor of 0.57 ± 0.05 and three times increase in the conversion efficiency of 0.242 ± 0.012% compared to the iodine electrolyte.

  8. Synthesis and Characterization of Zinc Oxide Nanosheets for Dye-Sensitized Solar Cells.

    PubMed

    Al-Heniti, S; Umar, Ahmad; Zaki, H M

    2015-12-01

    Zinc oxide (ZnO) nanosheets were synthesized by a simple and facile hydrothermal process and characterized in terms of their morphological, structural, compositional, optical and photovoltaic properties. The detailed characterization revealed that the synthesized ZnO material possess nanosheet morphologies which are grown in very high density, possessing well-crystallinity with wurtzite hexagonal phase and exhibiting good optical properties. Further, the synthesized ZnO nanosheets were used as photoanode material to fabricate efficient dye-sensitized solar cell (DSSC). The fabricated DSSC shows an overall light-to-electricity conversion efficiency of -1.57%, open-circuit voltage (V(OC)) of 0.552 V, short-circuit currents (J(SC)) of -7.2 mA/cm2 and fill factors (FF) of 0.40. PMID:26682439

  9. Multistep electrochemical deposition of hierarchical platinum alloy counter electrodes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Junjun; Ma, Mingming; Tang, Qunwei; Yu, Liangmin

    2016-01-01

    The preferred platinum counter electrode (CE) has been a burden for commercialization of dye-sensitized solar cell (DSSC) due to high expense and chemical corrosion by liquid electrolyte. In the current study, we have successfully realized the multistep deposition of platinum alloy CEs including PtNi, PtFe, and PtCo for liquid-junction DSSC applications. The preliminary results demonstrate that the enhanced electrochemical activities are attributable to high charge-transfer ability and matching work functions of the PtM (M = Ni, Fe, Co) alloy CEs to redox potential of I-/I3- electrolyte. The resultant DSSCs yield impressive power conversion efficiencies of 8.65%, 7.48%, and 7.08% with PtNi, PtFe, and PtCo CEs, respectively. On behalf of the competitive reactions between transition metals with liquid electrolyte, the PtM alloy CEs display enhanced long-term stability.

  10. A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Li, Meixia; Wu, Lei; Sun, Yongyuan; Zhu, Ligen; Gu, Shaojin; Liu, Li; Bai, Zikui; Fang, Dong; Xu, Weilin

    2014-07-01

    The current dye-sensitized solar cell (DSSC) technology is mostly based on fluorine doped tin oxide (FTO) coated glass substrate. The main problem with the FTO glass substrate is its rigidity, heavyweight and high cost. DSSCs with a fabric as substrate not only offer the advantages of flexibility, stretchability and light mass, but also provide the opportunities for easy implantation to wearable electronics. Herein, a novel fabric counter electrode (CE) for DSSCs has been reported employing a daily-used cotton fabric as substrate and polypyrrole (PPy) as catalytic material. Nickel (Ni) is deposited on the cotton fabric as metal contact by a simple electroless plating method to replace the expensive FTO. PPy is synthesized by in situ polymerization of pyrrole monomer on the Ni-coated fabric. The fabric CE shows sufficient catalytic activity towards the reduction of I3-. The DSSC fabricated using the fabric CE exhibits power conversion efficiency of ∼3.30% under AM 1.5.

  11. Fabrication of carbon-coated silicon nanowires and their application in dye-sensitized solar cells.

    PubMed

    Kim, Junhee; Lim, Jeongmin; Kim, Minsoo; Lee, Hae-Seok; Jun, Yongseok; Kim, Donghwan

    2014-11-12

    We report the fabrication of silicon/carbon core/shell nanowire arrays using a two-step process, involving electroless metal deposition and chemical vapor deposition. In general, foreign shell materials that sheath core materials change the inherent characteristics of the core materials. The carbon coating functionalized the silicon nanowire arrays, which subsequently showed electrocatalytic activities for the reduction of iodide/triiodide. This was verified by cyclic voltammetry and electrochemical impedance spectroscopy. We employed the carbon-coated silicon nanowire arrays in dye-sensitized solar cells as counter electrodes. We optimized the carbon shells to maximize the photovoltaic performance of the resulting devices, and subsequently, a peak power conversion efficiency of 9.22% was achieved. PMID:25319204

  12. Materials, Interfaces, and Photon Confiement in Dye-Sensitized Solar Cells

    SciTech Connect

    Lee, B.; Hwang, D.; Guo, P. J.; Ho, S. T.; Buchholtz, D. B.; Wang, C. Y.; Chang, R.P.H.

    2010-11-18

    A series of experiments have been carried out to study the effects of materials quality, surface and interfacial modification, and photon confinement on standard dye-sensitized solar cells. For these studies, both physical and optical characterization of the materials has been performed in detail. In addition, DC and AC impedance measurements along with kinetic charge-transport modeling of experimental results have yielded information on how to systematically optimize the cell efficiency. The same kinetic model has been used to interpret the results of a series of experiments on interfacial modification studies using fluorine etching in combination with TiCl{sub 4} surface treatment. By using specially designed photonic crystals to confine the photons in the cells, it is shown that the best cell efficiency can be further increased by about 13%.

  13. Magnetic field effects in dye-sensitized solar cells controlled by different cell architecture.

    PubMed

    Klein, M; Pankiewicz, R; Zalas, M; Stampor, W

    2016-01-01

    The charge recombination and exciton dissociation are generally recognized as the basic electronic processes limiting the efficiency of photovoltaic devices. In this work, we propose a detailed mechanism of photocurrent generation in dye-sensitized solar cells (DSSCs) examined by magnetic field effect (MFE) technique. Here we demonstrate that the magnitude of the MFE on photocurrent in DSSCs can be controlled by the radius and spin coherence time of electron-hole (e-h) pairs which are experimentally modified by the photoanode morphology (TiO2 nanoparticles or nanotubes) and the electronic orbital structure of various dye molecules (ruthenium N719, dinuclear ruthenium B1 and fully organic squaraine SQ2 dyes). The observed MFE is attributed to magnetic-field-induced spin-mixing of (e-h) pairs according to the Δg mechanism. PMID:27440452

  14. Efficient p-type dye-sensitized solar cells based on disulfide/thiolate electrolytes

    NASA Astrophysics Data System (ADS)

    Xu, Xiaobao; Zhang, Bingyan; Cui, Jin; Xiong, Dehua; Shen, Yan; Chen, Wei; Sun, Licheng; Cheng, Yibing; Wang, Mingkui

    2013-08-01

    Herein, an organic redox couple 1-methy-1H-tetrazole-5-thiolate (T-) and its disulfide dimer (T2) redox shuttle, as an electrolyte, is introduced in a p-type dye-sensitized solar cell (DSC) on the basis of an organic dye (P1) sensitizer and nanocrystal CuCrO2 electrode. Using this iodide-free transparent redox electrolyte in conjunction with the sensitized heterojunction, we achieve a high open-circuit voltage of over 300 mV. An optimal efficiency of 0.23% is obtained using a CoS counter electrode and an optimized electrolyte composition under AM 1.5 G 100 mW cm-2 light illumination which, to the best of our knowledge, represents the highest efficiency that has so far been reported for p-type DSCs using organic redox couples.Herein, an organic redox couple 1-methy-1H-tetrazole-5-thiolate (T-) and its disulfide dimer (T2) redox shuttle, as an electrolyte, is introduced in a p-type dye-sensitized solar cell (DSC) on the basis of an organic dye (P1) sensitizer and nanocrystal CuCrO2 electrode. Using this iodide-free transparent redox electrolyte in conjunction with the sensitized heterojunction, we achieve a high open-circuit voltage of over 300 mV. An optimal efficiency of 0.23% is obtained using a CoS counter electrode and an optimized electrolyte composition under AM 1.5 G 100 mW cm-2 light illumination which, to the best of our knowledge, represents the highest efficiency that has so far been reported for p-type DSCs using organic redox couples. Electronic supplementary information (ESI) available: Optimization of electrolyte concentration and the solvent used in the experiment, and the effects of different redox couples and the counter electrode on the dark current. See DOI: 10.1039/c3nr02169f

  15. Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-10-01

    In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I-/I3- redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I-/I3- redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs. Electronic supplementary information (ESI) available: Schematic diagram, repeated J-V curves, CV curves of Ni0.85Se electrode at various scan rates, relationship between peak current density and square root of scan rates. See DOI: 10.1039/c4nr03900a

  16. Two-electron photo-oxidation of betanin on titanium dioxide and potential for improved dye-sensitized solar energy conversion

    NASA Astrophysics Data System (ADS)

    Knorr, Fritz J.; Malamen, Deborah J.; McHale, Jeanne L.; Marchioro, Arianna; Moser, Jacques E.

    2014-09-01

    The plant pigment betanin is investigated as a dye-sensitizer on TiO2 with regard to its potential to undergo twoelectron oxidation following one-photon excitation. Electrochemical, spectroelectrochemical and transient absorption measurements provide evidence for two-electron proton-coupled photo-oxidation leading to a quinone methide intermediate which rearranges to 2-decarboxy-2,3-dehydrobetanin. Time-resolved spectroscopy measurements of betanin on nanocrystalline TiO2 and ZrO2 films were performed on femtosecond and nanosecond time-scales and provide evidence for transient species with absorption bands in the blue and the red. The results shed light on previous reports of high quantum efficiencies for electron injection and point the way to improved solar conversion efficiency of organic dyesensitized solar cells.

  17. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    PubMed Central

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; kim, Han Seong; Lee, Dong Y.

    2015-01-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration. PMID:26087134

  18. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process

    NASA Astrophysics Data System (ADS)

    Yun, Min Ju; Cha, Seung I.; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y.

    2015-06-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration.

  19. Insertion of Dye-Sensitized Solar Cells in Textiles using a Conventional Weaving Process.

    PubMed

    Yun, Min Ju; Cha, Seung I; Seo, Seon Hee; Kim, Han Seong; Lee, Dong Y

    2015-01-01

    Increasing demands for wearable energy sources and highly flexible, lightweight photovoltaic devices have stimulated the development of textile-structured solar cells. However, the former approach of wire-type solar cell fabrication, followed by weaving of these devices, has had limited success, due to device failure caused by high friction forces and tension forces during the weaving process. To overcome this limitation, we present a new approach for textile solar cell fabrication, in which dye-sensitized solar cell (DSSC) electrodes are incorporated into the textile during the weaving process, using the textile warp as a spacer to maintain the DSSC structure. Porous, dye-loaded TiO2-coated holed metal ribbon and Pt nanoparticle-loaded carbon yarn were used as the photoanode and counterelectrode, respectively. The highly flexible textile-based solar cell was fabricated using a common weaving process with a loom. The inserted DSSCs in the textile demonstrated an energy conversion efficiency of 2.63% (at 1 sun, 1.5 A.M.). Our results revealed that additional performance enhancement was possible by considering other electrode materials and textile structures, as well as where and how the DSSC electrodes are inserted. In addition, we demonstrated that the inserted DSSCs could be electrically connected using a parallel configuration. PMID:26087134

  20. Hierarchically Structured ZnO Film for Dye-Sensitized Solar Cells with Enhanced Energy Conversion Efficiency

    SciTech Connect

    Chou, Tammy P.; Zhang, Qifeng; Fryxell, Glen E.; Cao, Guozhong

    2007-09-17

    The interest in dye-sensitized solar cells has increased due to reduced energy sources and higher energy production costs. For the most part, titania (TiO2) has been the material of choice for dye-sensitized solar cells and so far have shown to exhibit the highest overall light conversion efficiency ~ 11%.[1] However, zinc oxide (ZnO) has recently been explored as an alternative material in dye-sensitized solar cells with great potential.[2] The main reasons for this increase in research surrounding ZnO material include: 1) ZnO having a band gap similar to that for TiO2 at 3.2 eV,[3] and 2) ZnO having a much higher electron mobility ~ 115-155 cm2/Vs[4] than that for anatase titania (TiO2), which is reported to be ~ 10-5 cm2/Vs.[5] In addition, ZnO has a few advantages as the semiconductor electrode when compared to TiO2, including 1) simpler tailoring of the nanostructure as compared to TiO2, and 2) easier modification of the surface structure. These advantages[6] are thought to provide a promising means for improving the solar cell performance of the working electrode in dye-sensitized solar cells.

  1. Ultrafast and slow charge recombination dynamics of diketopyrrolopyrrole-NiO dye sensitized solar cells.

    PubMed

    Zhang, Lei; Favereau, Ludovic; Farré, Yoann; Mijangos, Edgar; Pellegrin, Yann; Blart, Errol; Odobel, Fabrice; Hammarström, Leif

    2016-07-21

    In a photophysical study, two diketopyrrolopyrrole (DPP)-based sensitizers functionalized with 4-thiophenecarboxylic acid as an anchoring group and a bromo (DPPBr) or dicyanovinyl (DPPCN2) group, and a dyad consisting of a DPP unit linked to a naphthalenediimide group (DPP-NDI), were investigated both in solution and grafted on mesoporous NiO films. Femtosecond transient absorption measurements indicate that ultrafast hole injection occurred predominantly on a timescale of ∼200 fs, whereas the subsequent charge recombination occurred on a surprisingly wide range of timescales, from tens of ps to tens of μs; this kinetic heterogeneity is much greater than is typically observed for dye-sensitized TiO2 or ZnO. Also, in contrast to what is typically observed for dye-sensitized TiO2, there was no significant dependence on the excitation power of the recombination kinetics, which can be explained by the hole density being comparatively higher near the valence band of NiO before excitation. The additional acceptor group in DPP-NDI provided a rapid electron shift and stabilized charge separation up to the μs timescale. This enabled efficient (∼95%) regeneration of NDI by a Co(III)(dtb)3 electrolyte (dtb = 4,4'-di-tert-butyl-2,2'-bipyridine), according to transient absorption measurements. The regeneration of DPPBr and DPPCN2 by Co(III)(dtb)3 was instead inefficient, as most recombination for these dyes occurred on the sub-ns timescale. The transient spectroscopy data thus corroborated the trend of the published photovoltaic properties of dye-sensitized solar cells (DSSCs) based on these dyes on mesoporous NiO, and show the potential of a design strategy with a secondary acceptor bound to the dye. The study identifies rapid initial recombination between the dye and NiO as the main obstacle to obtaining high efficiencies in NiO-based DSSCs; these recombination components may be overlooked when studies are conducted using only methods with ns resolution or slower. PMID

  2. Stabilized Conversion Efficiency and Dye-Sensitized Solar Cells from Beta vulgaris Pigment

    PubMed Central

    Hernández-Martínez, Angel Ramon; Estévez, Miriam; Vargas, Susana; Rodríguez, Rogelio

    2013-01-01

    Dye-Sensitized Solar Cells (DSSCs), based on TiO2 and assembled using a dye from Beta vulgaris extract (BVE) with Tetraethylorthosilicate (TEOS), are reported. The dye BVE/TEOS increased its UV resistance, rendering an increase in the cell lifetime; the performance of these solar cells was compared to those prepared with BVE without TEOS. The efficiency η for the solar energy conversion was, for BVE and BVE/TEOS, of 0.89% ± 0.006% and 0.68% ± 0.006% with a current density Jsc of 2.71 ± 0.003 mA/cm2 and 2.08 ± 0.003 mA/cm2, respectively, using in both cases an irradiation of 100 mW/cm2 at 25 °C. The efficiency of the BVE solar cell dropped from 0.9 ± 0.006 to 0.85 ± 0.006 after 72 h of operation, whereas for the BVE/TEOS, the efficiency remained practically constant in the same period of time. PMID:23429194

  3. Indoor Light Performance of Coil Type Cylindrical Dye Sensitized Solar Cells.

    PubMed

    Kapil, Gaurav; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    A very good performance under low/diffused light intensities is one of the application areas in which dye-sensitized solar cells (DSSCs) can be utilized effectively compared to their inorganic silicon solar cell counterparts. In this article, we have investigated the 1 SUN and low intensity fluorescent light performance of Titanium (Ti)-coil based cylindrical DSSC (C-DSSC) using ruthenium based N719 dye and organic dyes such as D205 and Y123. Electrochemical impedance spectroscopic results were analyzed for variable solar cell performances. Reflecting mirror with parabolic geometry as concentrator was also utilized to tap diffused light for indoor applications. Fluorescent light at relatively lower illumination intensities (0.2 mW/cm2 to 0.5 mW/cm2) were used for the investigation of TCO-less C-DSSC performance with and without reflector geometry. Furthermore, the DSSC performances were analyzed and compared with the commercially available amorphous silicon based solar cell for indoor applications. PMID:27451601

  4. Pigments from UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells.

    PubMed

    Órdenes-Aenishanslins, N; Anziani-Ostuni, G; Vargas-Reyes, M; Alarcón, J; Tello, A; Pérez-Donoso, J M

    2016-09-01

    Here we report the use of pigments produced by UV-resistant Antarctic bacteria as photosensitizers in Dye Sensitized Solar Cells (DSSCs). Pigments were obtained from red and yellow colored psychrotolerant bacteria isolated from soils of King George Island, Antarctica. Based on metabolic characteristics and 16s DNA sequence, pigmented bacteria were identified as Hymenobacter sp. (red) and Chryseobacterium sp. (yellow). Pigments produced by these microorganisms were extracted and classified as carotenoids based on their spectroscopic and structural characteristics, determined by UV-Vis spectrophotometry and infrared spectroscopy (FTIR), respectively. With the purpose of develop green solar cells based on bacterial pigments, the photostability and capacity of these molecules as light harvesters in DSSCs were determined. Absorbance decay assays determined that bacterial carotenoids present high photostability. In addition, solar cells based on these photosensitizers exhibit an open circuit voltage (VOC) of 435.0 [mV] and a short circuit current density (ISC) of 0.2 [mA·cm(-2)] for the red pigment, and a VOC of 548.8 [mV] and a ISC of 0.13 [mA·cm(-2)] for the yellow pigment. This work constitutes the first approximation of the use of pigments produced by non-photosynthetic bacteria as photosensitizers in DSSCs. Determined photochemical characteristics of bacterial pigments, summed to their easy obtention and low costs, validates its application as photosensitizers in next-generation biological solar cells. PMID:27508881

  5. Improvement of Thiolate/Disulfide Mediated Dye-Sensitized Solar Cells through Supramolecular Lithium Cation Assembling of Crown Ether

    PubMed Central

    Liu, Linfeng; Li, Xiong; Chen, Jiangzhao; Rong, Yaoguang; Ku, Zhiliang; Han, Hongwei

    2013-01-01

    A supramolecular lithium cation assemblies of crown ether, [Li⊂12-crown-4]+, has been used to replace conventional tetraalkylammonium counterion in thiolate/disulfide (ET−/BET) mediated dye-sensitized solar cells (DSCs), which exhibit high stability and efficiency of 6.61% under 100 mW·cm−2 simulated sunlight illumination. PMID:23933601

  6. Novel near-infrared carboxylated 1,3-indandione sensitizers for highly efficient flexible dye-sensitized solar cells.

    PubMed

    Shibayama, Naoyuki; Inoue, Yukiko; Abe, Masahiro; Kajiyama, Shingo; Ozawa, Hironobu; Miura, Hidetoshi; Arakawa, Hironori

    2015-08-18

    Three novel metal-free organic dyes (DN458, DN475 and DN484) were designed for use in plastic-substrate dye-sensitized solar cells (PDSCs). The photoelectric conversion region of DN475 was successfully expanded into the near-infrared region. As a result, an energy conversion efficiency of 5.76% was achieved. PMID:26166712

  7. Circle chain embracing donor-acceptor organic dye: simultaneous improvement of photocurrent and photovoltage for dye-sensitized solar cells.

    PubMed

    Liu, Jian; Numata, Youhei; Qin, Chuanjiang; Islam, Ashraful; Yang, Xudong; Han, Liyuan

    2013-09-01

    We demonstrate for the first time that employing a circle chain embracing π-conjugated backbone is a promising strategy to construct superior organic sensitizers for dye-sensitized solar cells (DSCs), with simultaneous improvement of photocurrent and photovoltage. A DSC based on one circle chain embracing dye produced a high conversion efficiency of 8.34%. PMID:23604204

  8. Enhanced photovoltaic performance of dye-sensitized solar cell using composite photoanode on 3D electrode

    NASA Astrophysics Data System (ADS)

    Lim, Chiew Keat; Huang, Hui; Tse, Man Siu; Tan, Ooi Kiang

    2013-12-01

    For dye-sensitized solar cell (DSSC), an efficient transport of electron from the dye sensitizer through the mesoporous oxide layer and to be collected by electrode is crucial for high photovoltaic conversion efficiency. In this work, two novel approaches were developed in DSSC fabrication to improve the overall photovoltaic performance. The concurrent improvement in the charge transport property and light harvesting efficiency was achieved by incorporating N-doped TiO2 in the mesoporous TiO2 layer of the photoanode. These N-doped TiO2 (TiNxOy) was formed by using the single step thermal oxidation of Titanium Nitride (TiN) nanomaterials. At the same time, the 3D electrode with SnO2 nanorods grown on the FTO glass using plasma enhanced chemical vapor deposition (PECVD) system was used to enhance the charge collection efficiency. By combining these two approaches simultaneously, the DSSC with composite TiNxOy-TiO2 photoanode on SnO2 nanorods 3D electrode was successfully fabricated and characterized. As compared to the standard DSSC, an overall increment of 28 % in the conversion efficiency was achieved. Higher incident photon-current conversion efficiency (IPCE) values were also obtained, specifically for the region 400 - 500 nm due to the cosensitization effect of N-doped TiO2. Efficient transfer of electron due to the decrease in charge transfer resistance at the mesoporous oxide/dye/electrolyte interface was observed from electrochemical impedance spectroscopy (EIS) measurement. With the use of SnO2 nanorods, the adhesion between the mesoporous TiO2/FTO was enhanced and the transit time of a photogenerated electron through the mesoporous layer before being collected at the FTO electrode was significantly reduced by 50 %.

  9. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology.

    PubMed

    Reddy, K Govardhan; Deepak, T G; Anjusree, G S; Thomas, Sara; Vadukumpully, Sajini; Subramanian, K R V; Nair, Shantikumar V; Nair, A Sreekumaran

    2014-04-21

    One of the major problems that humanity has to face in the next 50 years is the energy crisis. The rising population, rapidly changing life styles of people, heavy industrialization and changing landscape of cities have increased energy demands, enormously. The present annual worldwide electricity consumption is 12 TW and is expected to become 24 TW by 2050, leaving a challenging deficit of 12 TW. The present energy scenario of using fossil fuels to meet the energy demand is unable to meet the increase in demand effectively, as these fossil fuel resources are non-renewable and limited. Also, they cause significant environmental hazards, like global warming and the associated climatic issues. Hence, there is an urgent necessity to adopt renewable sources of energy, which are eco-friendly and not extinguishable. Of the various renewable sources available, such as wind, tidal, geothermal, biomass, solar, etc., solar serves as the most dependable option. Solar energy is freely and abundantly available. Once installed, the maintenance cost is very low. It is eco-friendly, safely fitting into our society without any disturbance. Producing electricity from the Sun requires the installation of solar panels, which incurs a huge initial cost and requires large areas of lands for installation. This is where nanotechnology comes into the picture and serves the purpose of increasing the efficiency to higher levels, thus bringing down the overall cost for energy production. Also, emerging low-cost solar cell technologies, e.g. thin film technologies and dye-sensitized solar cells (DSCs) help to replace the use of silicon, which is expensive. Again, nanotechnological implications can be applied in these solar cells, to achieve higher efficiencies. This paper vividly deals with the various available solar cells, choosing DSCs as the most appropriate ones. The nanotechnological implications which help to improve their performance are dealt with, in detail. Additionally, the

  10. Improved solar efficiency by introducing graphene oxide in purple cabbage dye sensitized TiO2 based solar cell

    NASA Astrophysics Data System (ADS)

    Al-Ghamdi, Ahmed A.; Gupta, R. K.; Kahol, P. K.; Wageh, S.; Al-Turki, Y. A.; El Shirbeeny, W.; Yakuphanoglu, F.

    2014-04-01

    Natural dye extracted from purple cabbage was used for fabrication of TiO2 dye-sensitized solar cells (DSSCs). The effect of light intensity on the solar efficiency of the device was investigated. It was observed that the efficiency of the DSSC increases with increasing the light intensity e.g. the efficiency of the solar cell increases from 0.013±0.002% to 0.150±0.020% by increase in light intensity from 30 to 100 mW/cm2, respectively. The solar efficiency of the natural dye used in this research was compared with commercial dye (N 719) under similar experimental conditions and observed that the natural (purple cabbage) dye has higher efficiency (0.150±0.020%) than N 719 (0.078±0.002%). It was further evaluated that the efficiency of the fabricated solar cell could improve by incorporating graphene oxide. The efficiency of the TiO2 dye-sensitized solar cell was found to increase from 0.150±0.020% to 0.361±0.009% by incorporating graphene oxide into purple cabbage dye.

  11. Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Bajpai, Reeti; Roy, Soumyendu; Kulshrestha, Neha; Rafiee, Javad; Koratkar, Nikhil; Misra, D. S.

    2012-01-01

    A platinum free counter electrode for dye sensitized solar cells was developed using graphene platelets (GP) supported nickel nanoparticles (NPs) as the active catalyst. Few layered GP were prepared by chemical oxidation of graphite powders followed by thermal exfoliation and reduction. The nanoparticles of nickel were deposited directly onto the platelets by pulsed laser ablation. The composite electrodes of GP and Ni nanoparticles (GP-Ni) thus obtained showed better performance compared to conventional Pt thin film electrodes (Std Pt) and unsupported Ni NPs. The efficiencies of the cells fabricated using GP-Ni, Std Pt and Ni NP CEs were 2.19%, 2% and 1.62%, respectively. The GP-Ni composite solar cell operated with an open circuit voltage of 0.7 V and a fill factor of 0.6. Electrochemical impedance spectroscopy using the I3-/I- redox couple confirms lower values of charge transfer resistance for the composite electrodes, 4.67 Ω cm2 as opposed to 7.73 Ω cm2 of Std Pt. The better catalytic capability of these composite materials is also reflected in the stronger I3- reduction peaks in cyclic voltammetry scans.A platinum free counter electrode for dye sensitized solar cells was developed using graphene platelets (GP) supported nickel nanoparticles (NPs) as the active catalyst. Few layered GP were prepared by chemical oxidation of graphite powders followed by thermal exfoliation and reduction. The nanoparticles of nickel were deposited directly onto the platelets by pulsed laser ablation. The composite electrodes of GP and Ni nanoparticles (GP-Ni) thus obtained showed better performance compared to conventional Pt thin film electrodes (Std Pt) and unsupported Ni NPs. The efficiencies of the cells fabricated using GP-Ni, Std Pt and Ni NP CEs were 2.19%, 2% and 1.62%, respectively. The GP-Ni composite solar cell operated with an open circuit voltage of 0.7 V and a fill factor of 0.6. Electrochemical impedance spectroscopy using the I3-/I- redox couple confirms lower

  12. Bifacial dye-sensitized solar cells with enhanced rear efficiency and power output

    NASA Astrophysics Data System (ADS)

    Cai, Hongyuan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-11-01

    Pursuing a high power conversion efficiency with no sacrifice of cost-effectiveness has been a persistent objective for dye-sensitized solar cells (DSSCs). One promising solution to this impasse is increased light harvesting. Previous efforts in light harvesting have been made on setting blocking layers or reflecting layers, or adding a light harvester, resulting in tedious procedures without reducing the expenses. We present a mild solution strategy for synthesizing transparent Ru-Se alloy counter electrodes (CEs) for bifacial DSSC applications, displaying optimal front and rear efficiencies of 8.76% and 5.90%, respectively. In comparison with pristine Pt-based solar cells, the maximum power output has also been markedly enhanced. Moreover, fast start-up, high multiple start capability, and good stability are observed in the bifacial DSSCs with transparent Ru-Se binary alloy electrodes. The impressive efficiencies along with simple preparation of the cost-effective Ru-Se alloy CEs demonstrates their potential application in robust DSSCs.Pursuing a high power conversion efficiency with no sacrifice of cost-effectiveness has been a persistent objective for dye-sensitized solar cells (DSSCs). One promising solution to this impasse is increased light harvesting. Previous efforts in light harvesting have been made on setting blocking layers or reflecting layers, or adding a light harvester, resulting in tedious procedures without reducing the expenses. We present a mild solution strategy for synthesizing transparent Ru-Se alloy counter electrodes (CEs) for bifacial DSSC applications, displaying optimal front and rear efficiencies of 8.76% and 5.90%, respectively. In comparison with pristine Pt-based solar cells, the maximum power output has also been markedly enhanced. Moreover, fast start-up, high multiple start capability, and good stability are observed in the bifacial DSSCs with transparent Ru-Se binary alloy electrodes. The impressive efficiencies along with

  13. Photoelectrochemical characteristics of dye-sensitized solar cells incorporating innovative and inexpensive materials

    NASA Astrophysics Data System (ADS)

    Harlow, Lisa Jean

    The use of energy is going to continue to increase rapidly due to population and economic advances occurring throughout the world. The most widely used energies produce carbon dioxide during their combustion and have finite limits on how much of these resources are available. A strong push to utilizing renewable energy is necessary to keep up with the demand. The only renewable energy that has unlimited supply is solar. Our goal is to find cost-effective alternatives to historically the most extensively used materials in dye-sensitized solar cells. In order to rely on efficiency changes coinciding with the introduction of a new component, a standard baseline of performance is necessary to establish. A reproducible fabrication procedure composed of standard materials was instituted; the efficiency parameters exhibited a less than 10% standard deviation for any set of solar cells. Any modifications to the cell components would be apparent in the change in efficiency. Our cell modifications focused on economical alternatives to the electrolyte, the counter electrode and the chromophore. Solution-based electrolytes were replaced with a non-volatile ionic liquid, 1-methyl-3-propylimidazolium iodide, and then a poly(imidazole-functionalized) silica nanoparticle. Solid-state electrolytes reduce or prevent leakage and could ease manufacturing in large-scale devices. Platinum has been the counter electrode catalyst primarily used with the iodide/triiodide redox couple, but is a rare metal making it rather costly. We reduce platinum loading by introducing a novel counter electrode that employs platinum nanoparticles embedded on a graphene nanoplatelet paper. The highly conductive carbon base also negates the use of the expensive conductive substrate necessary for the platinum catalyst, further reducing cost. We also study the differences in transitioning from ruthenium polypyridyls to iron-based chromophores in dye-sensitized solar cells. Iron introduces low-lying ligand

  14. Effect of Anatase Synthesis on the Performance of Dye-Sensitized Solar Cells.

    PubMed

    Sánchez-García, Mario Alberto; Bokhimi, Xim; Maldonado-Álvarez, Arturo; Jiménez-González, Antonio Esteban

    2015-12-01

    Anatase nanoparticles were synthesized from a titanium isopropoxide solution using a hydrothermal process at different pressures in an autoclave system while keeping the volume of the solution constant. As the autoclave pressure was increased from 1 to 71 atm (23 to 210 °C), the crystal size in the nanoparticles increased from 9 to 13.8 nm. The anatase nanoparticles were used to build dye-sensitized solar cells (DSSC). Mesoporous films of this oxide were deposited over conducting SnO2:F substrates using the screen-printing technique and then annealed at 530 °C at 1 atm of air pressure. The morphology of the mesoporous film surface of anatase, studied using scanning electron microscopy, revealed that the crystal size and pore distribution were functions of the pressure conditions. The energy band gap of the films as a function of the crystal size exhibited quantum effects below 11.8 nm. The effects of the anatase synthesis conditions and properties of the mesoporous film on the DSSC-type solar cell parameters, η%, V OC, J SC, and FF, were also investigated: the mesoporous anatase films prepared at 200 °C (54 atm of pressure in the autoclave) and annealed at 530 °C in air generated the best solar cell, having the highest conversion efficiency. PMID:26220107

  15. Effect of Anatase Synthesis on the Performance of Dye-Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Sánchez-García, Mario Alberto; Bokhimi, Xim; Maldonado-Álvarez, Arturo; Jiménez-González, Antonio Esteban

    2015-07-01

    Anatase nanoparticles were synthesized from a titanium isopropoxide solution using a hydrothermal process at different pressures in an autoclave system while keeping the volume of the solution constant. As the autoclave pressure was increased from 1 to 71 atm (23 to 210 °C), the crystal size in the nanoparticles increased from 9 to 13.8 nm. The anatase nanoparticles were used to build dye-sensitized solar cells (DSSC). Mesoporous films of this oxide were deposited over conducting SnO2:F substrates using the screen-printing technique and then annealed at 530 °C at 1 atm of air pressure. The morphology of the mesoporous film surface of anatase, studied using scanning electron microscopy, revealed that the crystal size and pore distribution were functions of the pressure conditions. The energy band gap of the films as a function of the crystal size exhibited quantum effects below 11.8 nm. The effects of the anatase synthesis conditions and properties of the mesoporous film on the DSSC-type solar cell parameters, η%, V OC, J SC, and FF, were also investigated: the mesoporous anatase films prepared at 200 °C (54 atm of pressure in the autoclave) and annealed at 530 °C in air generated the best solar cell, having the highest conversion efficiency.

  16. Spectral splitting photovoltaics using perovskite and wideband dye-sensitized solar cells

    PubMed Central

    Kinoshita, Takumi; Nonomura, Kazuteru; Joong Jeon, Nam; Giordano, Fabrizio; Abate, Antonio; Uchida, Satoshi; Kubo, Takaya; Seok, Sang Il; Nazeeruddin, Mohammad Khaja; Hagfeldt, Anders; Grätzel, Michael; Segawa, Hiroshi

    2015-01-01

    The extension of the light absorption of photovoltaics into the near-infrared region is important to increase the energy conversion efficiency. Although the progress of the lead halide perovskite solar cells is remarkable, and high conversion efficiency of >20% has been reached, their absorption limit on the long-wavelength side is ∼800 nm. To further enhance the conversion efficiency of perovskite-based photovoltaics, a hybridized system with near-infrared photovoltaics is a useful approach. Here we report a panchromatic sensitizer, coded DX3, that exhibits a broad response into the near-infrared, up to ∼1100 nm, and a photocurrent density exceeding 30 mA cm−2 in simulated air mass 1.5 standard solar radiation. Using the DX3-based dye-sensitized solar cell in conjunction with a perovskite cell that harvests visible light, the hybridized mesoscopic photovoltaics achieved a conversion efficiency of 21.5% using a system of spectral splitting. PMID:26538097

  17. Enhanced power conversion efficiency of dye-sensitized solar cells assisted with phosphor materials

    NASA Astrophysics Data System (ADS)

    Lee, Yong-Min; Kim, Dong In; Hwang, Ki-Hwan; Nam, Sang Hun; Boo, Jin-Hyo

    2016-07-01

    Theoretically dye-sensitized solar cells (DSSCs) are high efficiency solar cells. However, DSSCs have lower power conversion efficiency (PCE) than silicon based solar cells. In this study, we use scattering layer and phosphor materials, such as ZrO2 and Zn2SiO4:Mn (Green), to enhance the PCE of DSSCs. The scattering layer and phosphor materials were prepared and used as an effective scattering layer on the transparent TiO2 photoelectrode through the doctor blade method. We confirmed that the scattering layer improves the PCE and J sc due to the enhancement of light harvesting by increasing the scattering and absorbance in the visible range. Under sun illumination AM 1.5 conditions, the PCE of the mesoporous TiO2 based DSSCs was 5.18%. The PCE of the DSSCs with ZrO2 scattering layer was 5.61% and Zn2SiO4:Mn as the scattering layer was enhanced to 5.72%. In order to compare the change in optical properties, DSSCs were measured by EQE, reflectance and PCE. At the same time, FE-SEM and XRD were used to confirm the structural changes in each layer. [Figure not available: see fulltext.

  18. Correlating Titania Morphology and Chemical Composition with Dye-sensitized Solar Cell Performance

    SciTech Connect

    Santulli, A.C.; Wong, S.; Koenigsmann, C.; Tiano, A.L., DeRosa, D.

    2011-04-20

    We have investigated the use of various morphologies, including nanoparticles, nanowires, and sea-urchins of TiO{sub 2} as the semiconducting material used as components of dye-sensitized solar cells (DSSCs). Analysis of the solar cells under AM 1.5 solar irradiation reveals the superior performance of hydrothermally derived nanoparticles, by comparison with two readily available commercial nanoparticle materials, within the DSSC architecture. The sub-structural morphology of films of these nanostructured materials has been directly characterized using SEM and indirectly probed using dye desorption. Furthermore, the surfaces of these nanomaterials were studied using TEM in order to visualize their structure, prior to their application within DSSCs. Surface areas of the materials have been quantitatively analyzed by collecting BET adsorption and dye desorption data. Additional investigation using open circuit voltage decay measurements reveals the efficiency of electron conduction through each TiO{sub 2} material. Moreover, the utilization of various chemically distinctive titanate materials within the DSSCs has also been investigated, demonstrating the deficiencies of using these particular chemical compositions within traditional DSSCs.

  19. Higher Efficiency for Quasi-Solid State Dye Sensitized Solar Cells Under Low Light Irradiance

    NASA Astrophysics Data System (ADS)

    Desilva, Ajith; Bandara, T. M. W. J.; Fernado, H. D. N. S.; Fernando, P. S. L.; Dissanayake, M. A. K. L.; Jayasundara, W. J. M. J. S. R.; Furlani, M.; Mellander, B.-E.

    2014-03-01

    Dye-sensitized solar cells (DSSCs), lower cost solar energy conversion devices are alternative green energy source. The liquid based electrolyte DSSCs have higher efficiencies with many practical issues while the quasi-solid-state DSSCs resolve the key problems but efficiencies are relatively low. Polyacrylonitrile (PAN) based gel polymer electrolytes were fabricated as DSSCs by incorporating ethylene carbonate and propylene carbonate plasticizers and tetrapropylammonium iodide salt. A thin layer of electrolyte was sandwiched between the TiO2 anode (sensitized with N719 dye) and the Pt counter electrode. The electrolyte had an ionic conductivity of 2.6 mS/cm at 25 degrees of Celsius. DSSCs incorporating this gel electrolyte revealed Vsc circuit, Jsc, fill factor (FF) and efficiency values of 0.71 V, 11.8 mA, 51 percent and 4.2 percent respectively under 1 sun irradiation. The efficiency of the cell increased with decreasing solar irradiance achieving up to 10 percent efficiency and 80 percent FF at low irradiance values. This work uncovers that quasi-solid state DSSCs can reach efficiencies close to that of liquid electrolytes based cells.

  20. Performance Enhancement of Dye-Sensitized Solar Cells Based on TiO₂ Thick Mesoporous Photoanodes by Morphological Manipulation.

    PubMed

    Keshavarzi, Reza; Mirkhani, Valiollah; Moghadam, Majid; Tangestaninejad, Shahram; Mohammadpoor-Baltork, Iraj

    2015-10-27

    This study is an attempt to give an account of the preparation of mesoporous TiO2 thick templated films of nonsimilar pore architecture and their use in dye-sensitized solar cells (DSSCs). Highly crystallized mesoporous titania thick templated films with four different morphologies including hexagonal, wormlike, cubic, and gridlike mesostructure, have been successfully synthesized through an evaporation-induced self-assembly (EISA) route followed by layer-by-layer deposition. Stabilization, followed by each coating, and calcinations, carried out after every five layers, were used to produce crack-free thick films. These mesoporous templated titanium dioxide samples were characterized by TEM, XRD, SEM, BET, and UV-vis measurements and used as a photoelectrode material in DSSCs. The mesostructured films with a thickness of about 7 μm demonstrated better performance in comparison to nanocrystalline TiO2 films (NC-TiO2) at a film thickness of 13 μm as the most typical films utilized in DSSCs. The findings reveal that a surfactant/Ti ratio change undergone for developing cubic mesostructures can enhance the crystallinity and roughness factor and therefore increase the energy conversion efficiency of DSSC. The cell performances derived from these mesofilms were enhanced compared to the efficiencies reported thus far. The best photovoltaic performance of 8.73% came from DSSC using the cubic mesoporous TiO2 photoelectrode with the following properties: open circuit voltage of 743 mV, short circuit photocurrent density of 16.35 mA/cm(2), and fill factor of 0.72. PMID:26421504

  1. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak

    2014-07-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%).

  2. Mesoporous TiO2 Bragg Stack Templated by Graft Copolymer for Dye-sensitized Solar Cells

    PubMed Central

    Park, Jung Tae; Chi, Won Seok; Kim, Sang Jin; Lee, Daeyeon; Kim, Jong Hak

    2014-01-01

    Organized mesoporous TiO2 Bragg stacks (om-TiO2 BS) consisting of alternating high and low refractive index organized mesoporous TiO2 (om-TiO2) films were prepared to enhance dye loading, light harvesting, electron transport, and electrolyte pore-infiltration in dye-sensitized solar cells (DSSCs). The om-TiO2 films were synthesized via a sol-gel reaction using amphiphilic graft copolymers consisting of poly(vinyl chloride) backbones and poly(oxyethylene methacrylate) side chains, i.e., PVC-g-POEM as templates. To generate high and low index films, the refractive index of om-TiO2 film was tuned by controlling the grafting ratio of PVC-g-POEM via atomic transfer radical polymerization (ATRP). A polymerized ionic liquid (PIL)-based DSSC fabricated with a 1.2-μm-thick om-TiO2 BS-based photoanode exhibited an efficiency of 4.3%, which is much higher than that of conventional DSSCs with a nanocrystalline TiO2 layer (nc-TiO2 layer) (1.7%). A PIL-based DSSC with a heterostructured photoanode consisting of 400-nm-thick organized mesoporous TiO2 interfacial (om-TiO2 IF) layer, 7-μm-thick nc-TiO2, and 1.2-μm-thick om-TiO2 BS as the bottom, middle and top layers, respectively, exhibited an excellent efficiency of 7.5%, which is much higher than that of nanocrystaline TiO2 photoanode (3.5%). PMID:24980936

  3. Mesoporous inverse opal TiO2 film as light scattering layer for dye-sensitized solar cell.

    PubMed

    Jin, Mingshi; Kim, Sung Soo; Yoon, Minyoung; Li, Zhenghua; Lee, Yoon Yun; Kim, Ji Man

    2012-01-01

    The light harvesting efficiency of dye-sensitized solar cells was enhanced by using a scattering layer. Such as sphere type TiO2, inverse photonic crystal TiO2, hollow spherical TiO2. Among these materials, the TiO2 with inverse photonic crystal (IPC) structure, synthesized by self-assembly using spherical templates, has attracted much attention due to their photonic crystal characteristics and light scattering effects. However, when applied in the DSSCs, the surface area of IPC is very low that caused insufficient adsorption amount of dye molecules. In the present work, a scattering layer with mesoporous inverse photonic crystal (MIPC) TiO2 film was fabricated by the sol-gel reactions with surfactant-assisted sol-gel method using poly(methyl methacrylate) as the template and titanium (IV) isopropoxide as the TiO2 precursor. After removing the PMMA and surfactant, a highly ordered macroporous structure with mesopores were successfully obtained. The surface area and total pore volume of the MIPC were 82 m2/g and 0.31 cm3/g, respectively, which is much larger than those of the IPC. The DSSCs with the scattering layer of MIPC film exhibited 18 and 10% higher photo-conversion efficiency than those of cells only with a nano-crystalline TiO2 film and with scattering layer of IPC film. From UV-visible spectra of dye solutions, the MIPC film showed a higher amount of absorbed dye molecules than those of the reference and IPC films. Accordingly, an increase in the photo-current density through abundant adsorption of the dye, coupled with inherent light scattering ability can improve overall photo-conversion efficiency. PMID:22524063

  4. Plasmonic-resonance-based ternary composite complementary enhancement of the performance of dye-sensitized solar cells.

    PubMed

    Bai, Lihua; Li, Meiya; Liu, Xiaolian; Luoshan, Mengdai; Zhang, Feng; Guo, Kaimo; Zhu, Yongdan; Sun, Beilei; Zhao, Xingzhong

    2016-10-14

    Graphene (G), TiO2 fusiform nanorods (TiO2NRs) adsorbed with Au nanoparticles (AuNPs) are prepared and blended as multifunctional materials into TiO2 nanocrystalline film to form a novel ternary (G-TiO2NRs-Au) composite photoanode in dye-sensitized solar cells (DSSCs). The effects of G-TiO2NRs-Au on the properties of the photoanode and DSSC are investigated. Results show that, by blending G-TiO2NRs-Au, the light absorption and scattering of the photoanode are obviously improved, and the charge transfer resistance R2 and electron recombination are decreased, resulting in a significant enhancement in the short-circuit current density (J sc) and the photoelectric conversion efficiency (PCE) of the DSSCs. The maximum J sc of 17.66 mA cm(-2) and PCE of 8.56% are obtained in the optimal G-TiO2NRs-Au-based DSSC, about 33.6% and 35.0% higher than that obtained in the conventional TiO2-based DSSC. This significant improvement in the performance of the DSSC can be attributed to the ternary composite complementary effects of multi-functions from the surface plasmon resonance of AuNPs, light scattering of TiO2NRs, and the improved dye loading and fast electron transmission channel from graphene. This study provides an effective way of ternary composite complementary enhancement of the J sc and PCE of the DSSCs. PMID:27595326

  5. Investigation of the influence of coadsorbent dye upon the interfacial structure of dye-sensitized solar cells

    SciTech Connect

    Honda, M. Miyano, K.; Yanagida, M.; Han, L.

    2014-11-07

    The interface between Ru(tcterpy)(NCS){sub 3}TBA{sub 2} [black dye (BD); tcterpy = 4,4{sup ′},4{sup ″}-tricarboxy-2,2{sup ′}:6{sup ′},2{sup ″}-terpyridine, NCS = thiocyanato, TBA = tetrabutylammonium cation] and nanocrystalline TiO{sub 2}, as found in dye-sensitized solar cells, is investigated by soft-X-ray synchrotron radiation and compared with the adsorption structure of cis-Ru(Hdcbpy){sub 2}(NCS){sub 2}TBA{sub 2} (N719; dcbpy = 4,4{sup ′}-dicarboxy-2,2{sup ′}-bipyridine) on TiO{sub 2} to elucidate the relationship between the adsorption mode of BD and the photocurrent with and without coadsorbed indoline dye D131. The depth profile is characterized with X-ray photoelectron spectroscopy and S K-edge X-ray absorption fine structure using synchrotron radiation. Both datasets indicate that one of the isothiocyanate groups of BD interacts with TiO{sub 2} via its S atom when the dye is adsorbed from a single-component solution. In contrast, the interaction is slightly suppressed when D131 is coadsorbed, indicated by the fact that the presence of D131 changes the adsorption mode of BD. Based upon these results, the number of BD dye molecules interacting with the substrate is shown to decrease by 10% when D131 is coadsorbed, and the dissociation is shown to be related to the short-circuit photocurrent in the 600–800 nm region. The design of a procedure to promote the preferential adsorption of D131 therefore leads to an improvement of the short-circuit current and conversion efficiency.

  6. Absorption spectra and photovoltaic characterization of chlorophyllins as sensitizers for dye-sensitized solar cells.

    PubMed

    Calogero, Giuseppe; Citro, Ilaria; Crupi, Cristina; Di Marco, Gaetano

    2014-11-11

    Dye-sensitized solar cells (DSSCs) based on Chlorine-e6 (Chl-e6), a Chlorophyll a derivative, and Chl-e6 containing Cu, have been investigated by carrying out incident photon to current efficiency (IPCE) and current-voltage (I-V) measurements. The effect of the metallic ion and the influence of the solvent polarity on the dye aggregation and their absorption bands have been analysed by performing electronic absorption measurements. The dependence of the photoelectrochemical parameters of these DSSCs on the electrolyte by the addition of pyrimidine and/or pyrrole has been discussed in details. For the first time I-V curves for a DSSC based on copper Chl-e6 dye have been shown and compared with Zn based chlorophyllin. Furthermore, the performance of a Cu-Chl-e6 based DSSC has been deeply improved by a progressive optimization of the TiO2 multilayer photoanode overcoming the best data reported in literature so far for this dye. It's worth to emphasize that, the analysis reported in this paper supplies very useful information which paves the way to further detailed studies turned to the employment of natural pigments as sensitizers for solar cells. PMID:24892526

  7. Pt-free counter electrode for dye-sensitized solar cells with high efficiency.

    PubMed

    Yun, Sining; Hagfeldt, Anders; Ma, Tingli

    2014-09-01

    Dye-sensitized solar cells (DSSCs) have attracted widespread attention in recent years as potential cost-effective alternatives to silicon-based and thin-film solar cells. Within typical DSSCs, the counter electrode (CE) is vital to collect electrons from the external circuit and catalyze the I3- reduction in the electrolyte. Careful design of the CEs can improve the catalytic activity and chemical stability associated with the liquid redox electrolyte used in most cells. In this Progress Report, advances made by our groups in the development of CEs for DSSCs are reviewed, highlighting important contributions that promise low-cost, efficient, and robust DSSC systems. Specifically, we focus on the design of novel Pt-free CE catalytic materials, including design ideas, fabrication approaches, characterization techniques, first-principle density functional theory (DFT) calculations, ab-initio Car-Parrinello molecular dynamics (CPMD) simulations, and stability evaluations, that serve as practical alternatives to conventional noble metal Pt electrodes. We stress the merits and demerits of well-designed Pt-free CEs, such as carbon materials, conductive polymers, transition metal compounds (TMCs) and their corresponding hybrids. Also, the prospects and challenges of alternative Pt catalysts for their applications in new-type DSSCs and other catalytic fields are discussed. PMID:25080873

  8. Transparent metal selenide alloy counter electrodes for high-efficiency bifacial dye-sensitized solar cells.

    PubMed

    Duan, Yanyan; Tang, Qunwei; Liu, Juan; He, Benlin; Yu, Liangmin

    2014-12-22

    The exploration of cost-effective and transparent counter electrodes (CEs) is a persistent objective in the development of bifacial dye-sensitized solar cells (DSSCs). Transparent counter electrodes based on binary-alloy metal selenides (M-Se; M=Co, Ni, Cu, Fe, Ru) are now obtained by a mild, solution-based method and employed in efficient bifacial DSSCs. Owing to superior charge-transfer ability for the I(-) /I3 (-) redox couple, electrocatalytic activity toward I3 (-) reduction, and optical transparency, the bifacial DSSCs with CEs consisting of a metal selenide alloy yield front and rear efficiencies of 8.30 % and 4.63 % for Co0.85 Se, 7.85 % and 4.37 % for Ni0.85 Se, 6.43 % and 4.24 % for Cu0.50 Se, 7.64 % and 5.05 % for FeSe, and 9.22 % and 5.90 % for Ru0.33 Se in comparison with 6.18 % and 3.56 % for a cell with an electrode based on pristine platinum, respectively. Moreover, fast activity onset, high multiple start/stop capability, and relatively good stability demonstrate that these new electrodes should find applications in solar panels. PMID:25358619

  9. Incorporating hierarchical nanostructured carbon counter electrode into metal-free organic dye-sensitized solar cell.

    PubMed

    Fang, Baizeng; Fan, Sheng-Qiang; Kim, Jung Ho; Kim, Min-Sik; Kim, Minwoo; Chaudhari, Nitin K; Ko, Jaejung; Yu, Jong-Sung

    2010-07-01

    Hierarchical nanostructured carbon with a hollow macroporous core of ca. 60 nm in diameter in combination with mesoporous shell of ca. 30 nm in thickness has been explored as counter electrode in metal-free organic dye-sensitized solar cell. Compared with other porous carbon counterparts such as activated carbon and ordered mesoporous carbon CMK-3 and Pt counter electrode, the superior structural characteristics including large specific surface area and mesoporous volume and particularly the unique hierarchical core/shell nanostructure along with 3D large interconnected interstitial volume guarantee fast mass transport in hollow macroporous core/mesoporous shell carbon (HCMSC), and enable HCMSC to have highly enhanced catalytic activity toward the reduction of I(3)(-), and accordingly considerably improved photovoltaic performance. HCMSC exhibits a V(oc) of 0.74 V, which is 20 mV higher than that (i.e., 0.72 V) of Pt. In addition, it also demonstrates a fill factor of 0.67 and an energy conversion efficiency of 7.56%, which are markedly higher than those of its carbon counterparts and comparable to that of Pt (i.e., fill factor of 0.70 and conversion efficiency of 7.79%). Furthermore, HCMSC possesses excellent chemical stability in the liquid electrolyte containing I(-)/I(3)(-) redox couples, namely, after 60 days of aging, ca. 87% of its initial efficiency is still achieved by the solar cell based on HCMSC counter electrode. PMID:20334406

  10. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer.

    PubMed

    Yang, Lijun; Leung, Wallace Woon-Fong; Wang, Jingchuan

    2013-08-21

    Dye sensitized solar cells (DSSCs) offer the potential of being low-cost, high-efficiency photovoltaic devices. However, the power conversion efficiency is limited as they cannot utilize all photons of the visible solar spectrum. A novel design of a core-shell photoanode is presented herein where a thin shell of infrared dye is deposited over the core of a sensitized TiO2 nanofiber. Specifically, a ruthenium based dye (N719) sensitized TiO2 nanofiber is wrapped by a thin shell of copper phthalocyanine (CuPc). In addition to broadening the absorption spectrum, this core-shell configuration further suppresses the electron-hole recombination process. Instead of adopting the typical Förster resonance energy transfer, upon photons being absorbed by the infrared dye, electrons are transferred efficiently through a cascade process from the CuPc to the N719 dye, the conduction band of TiO2, the FTO electrode and finally the external circuit. Concurrently, photons are also absorbed by the N719 dye with electrons being transferred in the cell. These additive effects result in a high power conversion efficiency of 9.48% for the device. The proposed strategy provides an alternative method for enhancing the performance of DSSCs for low-cost renewable energy in the future. PMID:23831867

  11. Mesoporous TiO2 Nanowire Film for Dye-Sensitized Solar Cell.

    PubMed

    Xiao, Li; Xu, Jia; Liu, Xiu; Zhang, Yongzhe; Zhang, Bing; Yao, Jianxi; Dai, Songyuan; Tan, Zhanao; Pan, Xu

    2016-06-01

    In this work, TiO2 nanowire arrays were grown on fluorine-doped tin oxide (FTO) glass substrate, and then were converted into mesoporous nanowires (MNWs). The TiO2 MNWs are about 5 μm in length and 30-200 nm in diameter, with mesopores size of 5-30 nm randomly distributed on the NW surface. X-ray diffraction pattern reports show that the NWs are single crystallized rutile TiO2 and oriented grown along [001]. Through further characterization of FT-IR and TG-DSC, we proposed a reasonable explanation for pore existence. After dye-sensitized solar cells (DSSCs) assembly, the photoelectric conversion efficiency (PCE) of MNWs based DSSC achieved 3.2%. It means tenfold enhancement of photoelectric property compare with the as-grown NWs. Furthermore, dye absorb capacity of MNWs can reach up to 4.11 x 10(-8) mol/cm2. However, such MNWs can not only provide quick and efficient electron transmission channel, but also owns big specific surface area to absorb abundant dyes, thus conducive to fabricate solar cell with a high PCE. PMID:27427603

  12. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  13. Computational study of diketopyrrolopyrrole-based organic dyes for dye sensitized solar cell applications.

    PubMed

    Fan, Wenjie; Tan, Dazhi; Zhang, Qijian; Wang, Huaxing

    2015-04-01

    Four diketopyrrolopyrrole (DPP)-based organic dyes utilizing the donor-π-acceptor motif were investigated by density functional theory (DFT) and time-dependent DFT (TDDFT) approaches. The four dyes were composed of different donor groups, i.e. indoline, carbazole, triphenylamine, and coumarin. We investigated the effects of the DPP unit and different donors on the spectra and electrochemical properties of the dyes, respectively. In comparison with the model dye which adopts a phenylene unit as the π-spacer, the DPP dyes all display remarkably enhanced spectral responses in the visible region of the solar spectrum. The key to this increase was the incorporation of electron-deficient DPP moieties to the molecular core, which significantly lowers LUMO levels and therefore reduces the band gap. The dye/(TiO2)46 anatase nanoparticle systems were also simulated to show the electronic structures at the interface. We studied some key properties including absorption spectra, light-harvesting efficiency, molecular orbital distributions, and injection time of electrons from the excited state of dye to the conduction band of TiO2. The dye DPP-I with indoline moiety as the electron donor demonstrates desirable energetic, electronic, and spectroscopic parameters for dye sensitized solar cells (DSSCs) applications. Our theoretical study is expected to provide valuable insights into the molecular design of novel DPP-based organic dyes for the optimizations of DSSCs. PMID:25662565

  14. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Hsi-Hsin; Peng, Jia-De; Suryanarayanan, V.; Velayutham, D.; Ho, Kuo-Chuan

    2016-04-01

    In this work, eight new ionic liquids (ILs) based on triethylammonium (TEA) or n-methylpiperidinium (NMP) cations and perfluoro carboxylate (PFC) anions having different carbon chain lengths are synthesized and their physico-chemical properties such as density, decomposition temperature, viscosity and conductivity are determined. Photovoltaic characteristics of dye-sensitized solar cells (DSSCs) with binary ionic liquids electrolytes, containing the mixture of the synthesized ILs and 1-methyl-3-propyl imidazolium iodide (PMII) (v/v = 35/65), are evaluated. Among the different ILs, solar cells containing NMP based ILs show higher VOC than that of TEA, whereas, higher JSC is noted for the DSSCs incorporated with the latter when compared to the former. Further, the photo-current of the DSSCs decreases with the increase of the carbon chain length of perfluoro carboxylate anionic group of ILs. The cell performance of the DSSC containing ternary ionic liquids-based electrolytes compose of NMP-2C/TEA-2C/PMII (v/v/v = 28/7/65) exhibits a JSC of 12.99 mA cm-2, a VOC of 639.0 mV, a FF of 0.72, and a cell efficiency of 6.01%. The extraordinary durability of the DSSC containing the above combination of electrolytes stored in dark at 50 °C is proved to be unfailing up to 1200 h.

  15. Graphene supported nickel nanoparticle as a viable replacement for platinum in dye sensitized solar cells.

    PubMed

    Bajpai, Reeti; Roy, Soumyendu; kulshrestha, Neha; Rafiee, Javad; Koratkar, Nikhil; Misra, D S

    2012-02-01

    A platinum free counter electrode for dye sensitized solar cells was developed using graphene platelets (GP) supported nickel nanoparticles (NPs) as the active catalyst. Few layered GP were prepared by chemical oxidation of graphite powders followed by thermal exfoliation and reduction. The nanoparticles of nickel were deposited directly onto the platelets by pulsed laser ablation. The composite electrodes of GP and Ni nanoparticles (GP-Ni) thus obtained showed better performance compared to conventional Pt thin film electrodes (Std Pt) and unsupported Ni NPs. The efficiencies of the cells fabricated using GP-Ni, Std Pt and Ni NP CEs were 2.19%, 2% and 1.62%, respectively. The GP-Ni composite solar cell operated with an open circuit voltage of 0.7 V and a fill factor of 0.6. Electrochemical impedance spectroscopy using the I(3)(-)/I(-) redox couple confirms lower values of charge transfer resistance for the composite electrodes, 4.67 Ω cm(2) as opposed to 7.73 Ω cm(2) of Std Pt. The better catalytic capability of these composite materials is also reflected in the stronger I(3)(-) reduction peaks in cyclic voltammetry scans. PMID:22193832

  16. Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes

    NASA Astrophysics Data System (ADS)

    Duan, Yanyan; Tang, Qunwei; He, Benlin; Zhao, Zhiyuan; Zhu, Ling; Yu, Liangmin

    2015-06-01

    High power conversion efficiency and cost-effectiveness are two persistent objectives for dye-sensitized solar cell (DSSC). Electricity generation from either front or rear side of a bifacial DSSC has been considered as a facile avenue of bringing down the cost of solar-to-electric conversion. Therefore, the fabrication of a transparent counter electrode (CE) with a high electrocatalytic activity is a prerequisite to realize this goal. We present here the feasibility of utilizing transparent cobalt selenide (Co-Se) binary alloy counter electrode for bifacial DSSC application, in which binary Co-Se alloy electrode is synthesized by a mild solution strategy and the cell device is irradiated by either front or rear side. Due to the high optical transparency, charge-transfer ability, and electrocatalytic activity, maximum front and rear efficiencies of 8.30% and 4.63% are recorded under simulated air mass 1.5 (AM1.5) irradiation, respectively. The impressive efficiency along with fast start-up, multiple start capability, and simple preparation highlights the potential application of cost-effective and transparent Co-Se alloy CE in robust bifacial DSSCs.

  17. Bifacial dye-sensitized solar cells with enhanced rear efficiency and power output.

    PubMed

    Cai, Hongyuan; Tang, Qunwei; He, Benlin; Li, Ru; Yu, Liangmin

    2014-12-21

    Pursuing a high power conversion efficiency with no sacrifice of cost-effectiveness has been a persistent objective for dye-sensitized solar cells (DSSCs). One promising solution to this impasse is increased light harvesting. Previous efforts in light harvesting have been made on setting blocking layers or reflecting layers, or adding a light harvester, resulting in tedious procedures without reducing the expenses. We present a mild solution strategy for synthesizing transparent Ru-Se alloy counter electrodes (CEs) for bifacial DSSC applications, displaying optimal front and rear efficiencies of 8.76% and 5.90%, respectively. In comparison with pristine Pt-based solar cells, the maximum power output has also been markedly enhanced. Moreover, fast start-up, high multiple start capability, and good stability are observed in the bifacial DSSCs with transparent Ru-Se binary alloy electrodes. The impressive efficiencies along with simple preparation of the cost-effective Ru-Se alloy CEs demonstrates their potential application in robust DSSCs. PMID:25371997

  18. π-Spacer effect in dithiafulvenyl-π-phenothiazine dyes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofeng; Gou, Faliang; Zhao, Dongning; Shi, Jian; Gao, Hong; Zhu, Zhenping; Jing, Huanwang

    2016-08-01

    New dithiafulvenyl-π-phenothiazine dyes have been devised and prepared for dye-sensitized solar cells. Various π-spacers have been successfully introduced into the skeleton of dithiafulvenyl and phenothiazine unit to generate novel D-π-D-A dyes (DPP-1 ∼ 4). All dyes have been characterized with NMR, HRMS, UV-vis and fluorescence spectra, and taken into cyclic voltammetry measurements. The devices of new dyes have been determined by photoelectrochemical experiments (IV, IPCE and EIS), in which, solar cell of DPP-4 with biphenyl ring π-spacer enhances obviously its photoelectric conversion efficiency to 7.66% reaching 94% of N719-based standard cell and displays good long-term stability with quasi-solid-state electrolyte. Density functional theory (DFT) calculations of new dyes provide further insight into the molecular geometries and the impacts of the torsion angles on their photovoltaic performance. Large dihedral angles in DPP dyes induce good charge separation for efficient unidirectional flow of electron from donor to acceptor.

  19. Optical, electrical and electrochemical evaluation of sputtered platinum counter electrodes for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Moraes, R. S.; Saito, E.; Leite, D. M. G.; Massi, M.; da Silva Sobrinho, A. S.

    2016-02-01

    Since Grätzel and O'Regan started in 1991, dye-sensitized solar cells (DSSC) have been extensively studied around the world. In addition to increasing efficiency, their characteristics such as low cost materials and inexpensive manufacturing processes are attractive for organic solar cells. Several parts of DSSC devices are being researched such as semiconductor engineering, low cost counter electrodes, electrolytes, and dyes. In this work, platinum (Pt) thin films were deposited by sputtering technique to produce counter electrodes for DSSC. The films were characterized by profilometry, elipsometry, four-point probe sheet resistance, spectrophotometry, and electrochemical impedance spectroscopy. The electrode response was also compared to that built from a commercial platinum solution. The results allow us to determine the minimum Pt film thickness necessary to achieve a relevant reduction of the sheet resistance and charge transfer resistance, which preserve a significant electrode transparency. The 22 nm and 24.8 nm thick films combined low charge transfer resistance and good transparency. The 122 nm Pt film presented the lowest charge transfer resistance.

  20. Pyridinium molten salts as co-adsorbents in dye-sensitized solar cells

    SciTech Connect

    Chang, Jui-Cheng; Sun, I-Wen; Yang, Cheng-Hsien; Yang, Hao-Hsun; Hsueh, Mao-Lin; Ho, Wen-Yueh; Chang, Jia-Yaw

    2011-01-15

    The influence of using pyridinium molten salts as co-adsorbents to modify the monolayer of a TiO{sub 2} semiconductor on the performance of a dye-sensitized solar cell is studied. The current-voltage characteristics are measured under AM 1.5 (100 mW cm{sup -2}). The pyridinium molten salts significantly enhance the open-circuit photovoltage (V{sub oc}), the short circuit photocurrent density (J{sub sc}) as well as the solar energy conversion efficiency ({eta}). 1-Ethyl-3-carboxypyridinium iodide ([ECP][I]) is applied successfully to prepare an insulating molecular layer with N719, and achieve high energy conversion efficiency as high as 4.49% at 100 mW cm{sup -2} and AM 1.5. The resulting efficiency is 20% higher than that of a non-additive device. This enhancement of conversion efficiency is attributed to the negative shift of the conduction band (CB) edge and the abundant concentration of I{sup -} on the surface of the electrode when using [ECP][I] as the co-adsorbent. (author)

  1. Improving Performance of Dye-Sensitized Solar Cell by Multi-Emission Effect of Phosphors.

    PubMed

    Kim, Young Moon; Kim, Chang Seob; Choi, Hyung Wook

    2015-10-01

    Generally, the N-719 dye, used in dye-sensitized solar cells (DSSCs), only absorbs visible light in the wavelength range from 400 to 700 nm. Consequently, most of the ultraviolet and infrared rays from the sun are not utilized by this dye. However, ultraviolet and infrared rays can be converted to visible light by upconversion luminescence. Such visible light can then be reabsorbed by the dye, allowing for a larger range of solar irradiation to be utilized in DSSCs. Phosphor (ZnGa2O4, Y2O3:Er(3+)), acting as a luminescence medium, was added to the TiO2 electrode of DSSCs, and owing to the effect of upconversion, it increased their photocurrent density and efficiency. Phosphor (ZnGa2O4, Y2O3:Er(3+)) co-doped TiO2 electrode cells showed better performance than phosphor-free cells. In fact, the highest efficiency observed for a DSSC containing five phosphor layers was 7.03% with a short-circuit current density (Jsc) of 15.62 mA/cm2, an open circuit voltage (Voc) of 0.661 V, and a fill factor (FF) of 68.17%. PMID:26726482

  2. Graphene nanosheets inserted by silver nanoparticles as zero-dimensional nanospacers for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chang, Quanhong; Wang, Zhenping; Wang, Jinzhong; Yan, Yuan; Ma, Zhoujing; Zhu, Jianxiao; Shi, Wangzhou; Chen, Qi; Yu, Qingjiang; Huang, Lei

    2014-04-01

    Three-dimensional Ag nanoparticle/GNs (Ag/GNs) hybrids as highly efficient counter electrode (CE) materials for dye sensitized solar cells (DSSCs) is described, highlighting the Ag nanoparticles as zero-dimensional nanospacers inserting into GNs to lift the interspacing layer between individual GNs. It is demonstrated that, when the hybrids are used as CE materials for DSSCs, compared to their pure GNs, Ag/GNs hybrids without agglomerates have a significant improvement in their electrochemical properties such as high current density, narrow peak-to-peak separation (Epp) and low charge transfer resistance (RCT). The enhancement of electrochemical performance can be attributed to the increased electrode conductivity, an extended interlayer distance and the reduction of the restacking of graphene sheets due to the insertion of metallic Ag nanoparticles into GNs. The DSSC with this hybrid CE exhibited an energy conversion efficiency (η) of 7.72% with an open circuit voltage (VOC), short circuit photocurrent density (JSC), and fill factor (FF) of 732 mV, 14.67 mA cm-2, and 71.8%, respectively.Three-dimensional Ag nanoparticle/GNs (Ag/GNs) hybrids as highly efficient counter electrode (CE) materials for dye sensitized solar cells (DSSCs) is described, highlighting the Ag nanoparticles as zero-dimensional nanospacers inserting into GNs to lift the interspacing layer between individual GNs. It is demonstrated that, when the hybrids are used as CE materials for DSSCs, compared to their pure GNs, Ag/GNs hybrids without agglomerates have a significant improvement in their electrochemical properties such as high current density, narrow peak-to-peak separation (Epp) and low charge transfer resistance (RCT). The enhancement of electrochemical performance can be attributed to the increased electrode conductivity, an extended interlayer distance and the reduction of the restacking of graphene sheets due to the insertion of metallic Ag nanoparticles into GNs. The DSSC with this

  3. Novel energy relay dyes for high efficiency dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Mahbubur; Ko, Min Jae; Lee, Jae-Joon

    2015-02-01

    4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively.4',6-Diamidino-2-phenylindole (DAPI) and Hoechst 33342 (H33342) were used as novel energy relay dyes (ERDs) for an efficient energy transfer to the N719 dye in I-/I3- based liquid-junction dye-sensitized solar cells (DSSCs). The introduction of the ERDs, either as an additive in the electrolyte or as a co-adsorbent, greatly enhanced the power conversion efficiencies (PCEs), mainly because of an increase in short-circuit current density (Jsc). This was attributed to the effects of non-radiative Förster-type excitation energy transfer as well as the radiative (emission)-type fluorescent energy transfer to the sensitizers. The net PCEs for the N719-sensitized DSSCs with DAPI and H33342 were 10.65% and 10.57%, and showed an improvement of 12.2% and 11.4% over control devices, respectively. Electronic supplementary information (ESI) available: Details of the materials and instrumentation, device fabrication, measurement and calculations of the quantum yield (Qd), calculations of the Förster radius (R0), optimization of the ERDs mixed with electrolyte according to Type-A strategy; normalized absorption profiles of the N3, Ru505, and Z907 dyes and the emission profiles of DAPI and H33342

  4. Metal-organic frameworks derived carbon as a high-efficiency counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sun, Xun; Li, Yafeng; Dou, Jie; Shen, Deli; Wei, Mingdeng

    2016-08-01

    Metal-organic frameworks, ZIF-8, derived carbon materials are firstly applied as a counter electrode of dye-sensitized solar cells due to their easy fabrication, large specific surface area and high catalytic activities towards the reduction of I3- ions. An efficiency of 7.32% is achieved under the illumination of 1 sun (AM 1.5, 100 mW/cm2), which is comparable to that of the solar cell based on Pt electrode.

  5. Facile and quick preparation of carbon nanohorn-based counter electrodes for efficient dye-sensitized solar cells.

    PubMed

    Lodermeyer, F; Prato, M; Costa, R D; Guldi, D M

    2016-03-31

    For the first time, Pt-free counter electrodes based on carbon nanohorns for highly efficient dye-sensitized solar cells were assembled by a facile and fast drop cast technique. These novel electrodes feature an effective catalytic behavior towards the reduction of I3(-) and, as such, afford even higher short-circuit current densities compared to Pt-based references. In a final device, solar cells with 7.7% efficiency were achieved. PMID:26984581

  6. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste

    PubMed Central

    Maiaugree, Wasan; Lowpa, Seksan; Towannang, Madsakorn; Rutphonsan, Phikun; Tangtrakarn, Apishok; Pimanpang, Samuk; Maiaugree, Prapen; Ratchapolthavisin, Nattawat; Sang-aroon, Wichien; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2015-01-01

    Mangosteen peel is an inedible portion of a fruit. We are interested in using these residues as components of a dye sensitized solar cell (DSSC). Carbonized mangosteen peel was used with mangosteen peel dye as a natural counter electrode and a natural photosensitizer, respectively. A distinctive mesoporous honeycomb-like carbon structure with a rough nanoscale surface was found in carbonized mangosteen peels. The efficiency of a dye sensitized solar cell using carbonized mangosteen peel was compared to that of DSSCs with Pt and PEDOT-PSS counter electrodes. The highest solar conversion efficiency (2.63%) was obtained when using carbonized mangosteen peel and an organic disulfide/thiolate (T2/T−) electrolyte. PMID:26458745

  7. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste

    NASA Astrophysics Data System (ADS)

    Maiaugree, Wasan; Lowpa, Seksan; Towannang, Madsakorn; Rutphonsan, Phikun; Tangtrakarn, Apishok; Pimanpang, Samuk; Maiaugree, Prapen; Ratchapolthavisin, Nattawat; Sang-Aroon, Wichien; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2015-10-01

    Mangosteen peel is an inedible portion of a fruit. We are interested in using these residues as components of a dye sensitized solar cell (DSSC). Carbonized mangosteen peel was used with mangosteen peel dye as a natural counter electrode and a natural photosensitizer, respectively. A distinctive mesoporous honeycomb-like carbon structure with a rough nanoscale surface was found in carbonized mangosteen peels. The efficiency of a dye sensitized solar cell using carbonized mangosteen peel was compared to that of DSSCs with Pt and PEDOT-PSS counter electrodes. The highest solar conversion efficiency (2.63%) was obtained when using carbonized mangosteen peel and an organic disulfide/thiolate (T2/T-) electrolyte.

  8. A dye sensitized solar cell using natural counter electrode and natural dye derived from mangosteen peel waste.

    PubMed

    Maiaugree, Wasan; Lowpa, Seksan; Towannang, Madsakorn; Rutphonsan, Phikun; Tangtrakarn, Apishok; Pimanpang, Samuk; Maiaugree, Prapen; Ratchapolthavisin, Nattawat; Sang-Aroon, Wichien; Jarernboon, Wirat; Amornkitbamrung, Vittaya

    2015-01-01

    Mangosteen peel is an inedible portion of a fruit. We are interested in using these residues as components of a dye sensitized solar cell (DSSC). Carbonized mangosteen peel was used with mangosteen peel dye as a natural counter electrode and a natural photosensitizer, respectively. A distinctive mesoporous honeycomb-like carbon structure with a rough nanoscale surface was found in carbonized mangosteen peels. The efficiency of a dye sensitized solar cell using carbonized mangosteen peel was compared to that of DSSCs with Pt and PEDOT-PSS counter electrodes. The highest solar conversion efficiency (2.63%) was obtained when using carbonized mangosteen peel and an organic disulfide/thiolate (T2/T(-)) electrolyte. PMID:26458745

  9. Ligand Engineering for the Efficient Dye-Sensitized Solar Cells with Ruthenium Sensitizers and Cobalt Electrolytes.

    PubMed

    Aghazada, Sadig; Gao, Peng; Yella, Aswani; Marotta, Gabriele; Moehl, Thomas; Teuscher, Joël; Moser, Jacques-E; De Angelis, Filippo; Grätzel, Michael; Nazeeruddin, Mohammad Khaja

    2016-07-01

    Over the past 20 years, ruthenium(II)-based dyes have played a pivotal role in turning dye-sensitized solar cells (DSCs) into a mature technology for the third generation of photovoltaics. However, the classic I3(-)/I(-) redox couple limits the performance and application of this technique. Simply replacing the iodine-based redox couple by new types like cobalt(3+/2+) complexes was not successful because of the poor compatibility between the ruthenium(II) sensitizer and the cobalt redox species. To address this problem and achieve higher power conversion efficiencies (PCEs), we introduce here six new cyclometalated ruthenium(II)-based dyes developed through ligand engineering. We tested DSCs employing these ruthenium(II) complexes and achieved PCEs of up to 9.4% using cobalt(3+/2+)-based electrolytes, which is the record efficiency to date featuring a ruthenium-based dye. In view of the complicated liquid DSC system, the disagreement found between different characterizations enlightens us about the importance of the sensitizer loading on TiO2, which is a subtle but equally important factor in the electronic properties of the sensitizers. PMID:27322854

  10. Investigation the cause of plasma treatment for low temperature annealed dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zen, Shungo; Komatsu, Yuta; Ono, Ryo

    2015-09-01

    Dye-sensitized solar cells (DSSCs) require annealing of TiO2photoelectrodes at 450 C to 550 C. However, such high-temperature annealing is unfavorable because it limits the use of materials that cannot withstand high temperatures, such as plastic substrates. In our previous paper, a low temperature annealing technique of TiO2 photoelectrodes using ultraviolet light and dielectric barrier discharge treatments was proposed to reduce the annealing temperature from 450 C to 150 C for a TiO2 paste containing an organic binder. Here, we investigated the cause of plasma treatment via the Nyquist diagram (Cole-Cole plot) of DSSCs. The Nyquist diagram was masured with a frequency response analyzer (NF Corporation, FRA5022) under 100 mW/cm2 illumination of a calibrated xenon lamp (Hamamatsu L2274, 150W). The lifetime of the electrons, the effective electron diffusion coefficient, and the electron diffusion length of TiO2 photoelectrodes were determined by analyzing the Nyquist diagrams. As a result of analyzing the Nyquist diagrams, it was shown that plasma treatment can reduce the electron transport resistance and promote the necking of Hot UV annealed TiO2 nanoparticles. This work was supported by Grant-in-Aid for JSPS Fellows.

  11. Effects of Ethyl Cellulose on Performance of Titania Photoanode for Dye-sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Liu, Ting-Chien; Wu, Chih-Chung; Huang, Chih-Hsiang; Chen, Chih-Ming

    2016-06-01

    Ethyl cellulose (EC) was added to a titania (TiO2) paste from 2 wt.% to 18 wt.% as a binder/dispersant, and its effects on the photovoltaic performance of dye-sensitized solar cells (DSSCs) were investigated. The TiO2 mesoporous film constructed on the photoanode exhibited a dense and network structure composed of well-interconnected TiO2 nanoparticles when using a proper amount of EC (10 wt.%). Excessive and deficient addition of EC resulted in aggregation of TiO2 nanoparticles and formation of pores, respectively, in the TiO2 film. The power conversion efficiency (PCE) of DSSC showed a strong dependence on the EC content and the highest PCE of 7.53% with the highest short-circuit current density (J SC) of 12.7 mA/cm2 was achieved when the content of EC was 10 wt.%. The incident photon-to-current conversion efficiency (IPCE) results indicated that the TiO2 mesoporous film fabricated using a proper EC addition was beneficial for electron generation (also confirmed by dye desorption experiments) and electron transport, and, therefore, improved the photovoltaic performance of DSSCs.

  12. Charge transport through split photoelectrodes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Fakharuddin, Azhar; Ahmed, Irfan; Khalidin, Zulkeflee; Yusoff, Mashitah M.; Jose, Rajan

    2014-04-01

    Charge transport and recombination are relatively ignored parameters while upscaling dye-sensitized solar cells (DSCs). Enhanced photovoltaic parameters are anticipated by merely widening the devices physical dimensions, viz., thickness and area as evident from the device design adopted in reported large area DSCs. These strip designs lead to ≤50% loss in photocurrent compared to the high efficiency lab scale devices. Herein, we report that the key to achieving higher current density (JSC) is optimized diffusion volume rather than the increased photoelectrode area because kinetics of the devices is strongly influenced by the varied choices of diffusion pathways upon increasing the electrode area. For a given electrode area and thickness, we altered the photoelectrode design by splitting the electrode into multiple fractions to restrict the electron diffusion pathways. We observed a correlation between the device physical dimensions and its charge collection efficiency via current-voltage and impedance spectroscopy measurements. The modified electrode designs showed >50% increased JSC due to shorter transport time, higher recombination resistance and enhanced charge collection efficiency compared to the conventional ones despite their similar active volume (˜3.36 × 10-4 cm3). A detailed charge transport characteristic of the split devices and their comparison with single electrode configuration is described in this article.

  13. Photovoltaic properties of high efficiency plastic dye-sensitized solar cells employing interparticle binding agent ``nanoglue''

    NASA Astrophysics Data System (ADS)

    Li, Yuelong; Yoo, Kicheon; Lee, Doh-Kwon; Kim, Jin Young; Kim, Honggon; Kim, Bongsoo; Ko, Min Jae

    2013-05-01

    An interparticle binding agent, or nanoglue, was synthesized by a sol-gel process, which facilitated the preparation of well-interconnected TiO2 electrodes at low-temperatures for plastic dye-sensitized solar cells. The viscosity of the nanoglue-based pastes was seven times higher than that obtained in pastes without any nanoglue. The increased viscosity was sufficiently high enough for coating thick films to fabricate TiO2 electrodes. The structural and photovoltaic properties of the films were extensively investigated by varying the amounts of nanoglue. A reduced pore size and greatly enhanced surface area were observed in the nanoglue-based films. Improved interparticle connectivity, resulting in faster electron transport, was confirmed by photocurrent transient spectroscopy and electrochemical impedance measurements of the nanoglue-based films. The electron diffusion length and charge collection efficiency were also enhanced in these nanoglue-based films. A maximum conversion efficiency of 5.43% was achieved in films containing 20 wt% nanoglue fabricated on a plastic substrate under one-sun illumination, even without any additional treatment.

  14. TiO2 hierarchical nanostructures: Hydrothermal fabrication and application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jia; Zhang, Gengmin; Yang, Jin; Sun, Wentao; Shi, Mingji

    2015-01-01

    Arrays of TiO2 hierarchical nanostructures that consisted of rutile nanorods and anatase branches were hydrothermally fabricated and employed as photoanodes in dye-sensitized solar cells (DSSCs). Each hierarchical nanostructure array was attained in two steps. First, a primary nanorod array was synthesized in aqueous solutions of hydrochloric acid (HCl) and tetrabutyl titanate (C16H36O4Ti); subsequently, secondary branches were grown on the nanorods in aqueous solutions of ammonium hexafluorotitanate ((NH4)2TiF6) and boric acid (H3BO3). The secondary anatase branches filled part of the space among the primary rutile nanorods and gave rise to a larger surface area. Light-harvesting capability of the DSSCs with TiO2 hierarchical nanostructures as photoanodes was appreciably improved because more dye molecules could be loaded on the photoanodes and more light could be scattered inside the DSSCs. Therefore, the conversion efficiencies of the DSSCs were doubled by replacing the photoanode of primary TiO2 nanorod array with the photoanodes of TiO2 hierarchical nanostructure arrays. Furthermore, in order to reach a compromise between the photoanode surface area and the inter-nanorod space volume, the growth time of the secondary TiO2 anatase branches was optimized.

  15. Charge recombination mechanism to explain the negative capacitance in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lie-Feng, Feng; Kun, Zhao; Hai-Tao, Dai; Shu-Guo, Wang; Xiao-Wei, Sun

    2016-03-01

    Negative capacitance (NC) in dye-sensitized solar cells (DSCs) has been confirmed experimentally. In this work, the recombination behavior of carriers in DSC with semiconductor interface as a carrier’s transport layer is explored theoretically in detail. Analytical results indicate that the recombination behavior of carriers could contribute to the NC of DSCs under small signal perturbation. Using this recombination capacitance we propose a novel equivalent circuit to completely explain the negative terminal capacitance. Further analysis based on the recombination complex impedance show that the NC is inversely proportional to frequency. In addition, analytical recombination resistance is composed by the alternating current (AC) recombination resistance (Rrac) and the direct current (DC) recombination resistance (Rrdc), which are caused by small-signal perturbation and the DC bias voltage, respectively. Both of two parts will decrease with increasing bias voltage. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204209 and 60876035) and the Natural Science Foundation of Tianjin City, China (Grant No. 13JCZDJC32800).

  16. Optimization of the dye-sensitized solar cell performance by mechanical compression

    NASA Astrophysics Data System (ADS)

    Meen, Teen Hang; Tsai, Jenn Kai; Tu, Yu Shin; Wu, Tian Chiuan; Hsu, Wen Dung; Chang, Shoou-Jinn

    2014-09-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV-vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized.

  17. Ni Mg Mixed Metal Oxides for p-Type Dye-Sensitized Solar Cells.

    PubMed

    Zannotti, Marco; Wood, Christopher J; Summers, Gareth H; Stevens, Lee A; Hall, Matthew R; Snape, Colin E; Giovannetti, Rita; Giovanetti, Rita; Gibson, Elizabeth A

    2015-11-11

    Mg Ni mixed metal oxide photocathodes have been prepared by a mixed NiCl2/MgCl2 sol-gel process. The MgO/NiO electrodes have been extensively characterized using physical and electrochemical methods. Dye-sensitized solar cells have been prepared from these films, and the higher concentrations of MgO improved the photovoltage of these devices; however, there was a notable drop in photocurrent with increasing Mg(2+). Charge extraction and XPS experiments revealed that the cause of this was a positive shift in the energy of the valence band, which decreased the driving force for electron transfer from the NiO film to the dye and, therefore, the photocurrent. In addition, increasing concentrations of MgO increases the volume of pores between 0.500 and 0.050 μm, while reducing pore volumes in the mesopore range (less than 0.050 μm) and lowering BET surface area from approximately 41 down to 30 m(2) g(-1). A MgO concentration of 5% was found to strike a balance between the increased photovoltage and decreased photocurrent, possessing a BET surface area of 35 m(2) g(-1) and a large pore volume in both the meso- and macropore range, which lead to a higher overall power conversion efficiency than NiO alone. PMID:26468918

  18. Photoinduced Interfacial Electron Injection Dynamics in Dye-Sensitized Solar Cells under Photovoltaic Operating Conditions.

    PubMed

    Teuscher, Joël; Décoppet, Jean-David; Punzi, Angela; Zakeeruddin, Shaik M; Moser, Jacques-E; Grätzel, Michael

    2012-12-20

    We report a pump-probe spectroscopy study of electron injection rates in dye-sensitized solar cell (DSSC) devices. We examine the case of working devices employing an N719 ruthenium sensitizer and an iodide electrolyte. Electron injection is found to occur mainly on a sub-100 fs time scale, followed by a slower component with a lifetime of 26.9 ps, in accordance with previous reports on model samples. The amplitude of this latter component varies with electrolyte composition from 25 to 9%. The appearance of slower components in the electron injection dynamics may be attributed to an aggregated or weakly bound state of the surface-adsorbed N719 sensitizer. Further measurements are reported varying the cell light bias and load conditions, revealing no influence on electron injection dynamics. No other electron injection event is found to occur up to 1 ns. These results show no evidence for a slowdown of electron injection under working conditions compared to model systems for the electrolytes examined in this study. PMID:26291112

  19. Dynamic Characteristics of Aggregation Effects of Organic Dyes in Dye-Sensitized Solar Cells.

    PubMed

    Feng, Shuai; Li, Quan-Song; Sun, Ping-Ping; Niehaus, Thomas A; Li, Ze-Sheng

    2015-10-14

    Two organic dyes (LS-1 and IQ4) containing identical electron donor and acceptor units but distinct π units result in significantly different power conversion efficiency of the corresponding dye-sensitized solar cells (DSSCs): LS-1, 4.4%, and IQ4, 9.2%. Herein, we combine first-principle calculations and molecular dynamics to explore the aggregation effects of LS-1 and IQ4 by comparing their optical properties and intermolecular electronic couplings. The calculated absorption spectra are in good agreement with the experimental observations and reveal them to be evidently affected by the dimerization. Furthermore, molecular dynamics simulations show that steric hindrance induced by the diphenylquinoxaline unit in IQ4 can elongate the distances between intermolecular π units or electron donors, which are responsible for the fact that the intermolecular electronic coupling of LS-1 is about 10 times larger than that of IQ4. More importantly, the aggregated IQ4 remains almost perpendicular to the TiO2 surface, whereas LS-1 gradually tilts during the dynamic simulation, impacting electron injection and recombination in several ways, which clarifies why IQ4 leads to larger photocurrent and higher conversion efficiency. The deep understanding of the dye aggregation effects sheds new light on the complex factors determining DSSC function and paves the way for rational design of high-efficiency self-anti-aggregation sensitizers. PMID:26391331

  20. Efficient Counter Electrode Manufactured from Ag2 S Nanocrystal Ink for Dye-Sensitized Solar Cells.

    PubMed

    He, Qingquan; Huang, Shoushuang; Zai, Jiantao; Tang, Nianqi; Li, Bo; Qiao, Qiquan; Qian, Xuefeng

    2015-10-19

    It is generally believed that silver or silver-based compounds are not suitable counter electrode (CE) materials for dye-sensitized solar cells (DSSCs) due to the corrosion of the I(-) /I3 (-) redox couple in electrolytes. However, Ag2 S has potential applications in DSSCs for catalyzing I3 (-) reduction reactions because of its high carrier concentration and tiny solubility product constant. In the present work, CE manufactured from Ag2 S nanocrystals ink exhibited efficient electrocatalytic activity in the reduction of I3 (-) to I(-) in DSSCs. The DSSC consisting of Ag2 S CE displayed a higher power conversion efficiency of 8.40 % than that of Pt CE (8.11 %). Moreover, the devices also showed the characteristics of fast activity onset, high multiple start/stop capability and good irradiated stability. The simple composition, easy preparation, stable chemical property, and good catalytic performance make the developed Ag2 S CE as a promising alternative to Pt CE in DSSCs. PMID:26338374

  1. Printable electrolytes based on polyacrylonitrile and gamma-butyrolactone for dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Venkatesan, Shanmugam; Su, Song-Chuan; Hung, Wei-Ning; Liu, I.-Ping; Teng, Hsisheng; Lee, Yuh-Lang

    2015-12-01

    Printable electrolytes for dye-sensitized solar cells (DSSCs) are prepared using a low volatile solvent, gamma-butyrolactone (gBL). Various polymers including polyvinyl acetate (PVA), polyacrylonotrile (PAN), and poly(acrylonitrile-co-vinylacetate) (PAN-VA) are used to regulate the viscosity of the electrolytes. The results show that PAN is the best polymer interms of viscosity, conductivity, and performance of the DSSCs. Increasing the concentration of PAN increases the viscosity of the electrolyte paste, which is advantageous to the operation of a printing process but decreases the electrolyte conductivity and cell performance. This drawback can be compensated by introducing of TiO2 or TiC nanofillers. The quasi-solid-state DSSC prepared using a printing process achieves a conversion efficiency (7.85%) similar to that of the corresponding liquid cell (7.87%). The stability test shows that the presence of TiO2 nanofillers triggers a gradual desorption of dye, decreasing DSSC performance. However, this problem does not appear for the electrolyte using TiC nanofillers, with cell efficiency retaining 96% of its initial value after a 500 h test.

  2. A novel hierarchical Pt- and FTO-free counter electrode for dye-sensitized solar cell

    PubMed Central

    2014-01-01

    A novel hierarchical Pt- and FTO-free counter electrode (CE) for the dye-sensitized solar cell (DSSC) was prepared by spin coating the mixture of TiO2 nanoparticles and poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) solution onto the glass substrate. Compared with traditional Pt/FTO CE, the cost of the new CE is dramatically reduced by the application of bilayer TiO2-PEDOT:PSS/PEDOT:PSS film and the glass substrate. The sheet resistance of this composite film is 35 Ω sq−1 and is low enough to be used as an electrode. The surface morphologies of TiO2-PEDOT:PSS layer and modified PEDOT:PSS layer were characterized by scanning electron microscope, which shows that the former had larger surface areas than the latter. Electrochemical impedance spectra and Tafel polarization curves prove that the catalytic activity of TiO2-PEDOT:PSS/PEDOT:PSS/glass CE is higher than that of PEDOT:PSS/FTO CE and is similar to Pt/FTO CE's. This new fabricated device with TiO2-PEDOT:PSS/PEDOT:PSS/glass CE achieves a high power conversion efficiency (PCE) of 4.67%, reaching 91.39% of DSSC with Pt/FTO CE (5.11%). PMID:24808802

  3. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    SciTech Connect

    Sanchez-de-Armas, Rocio; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez.

    2012-05-21

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH{sub 2}, and -OCH{sub 3}) and two different substituents with steric effect: -CH{sub 2}-CH{sub 2}-CH{sub 2}- and -CH{sub 2}-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH{sub 2} group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH{sub 2}-CH{sub 2}-CH{sub 2}- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH{sub 2}-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  4. Optimization of the dye-sensitized solar cell performance by mechanical compression

    PubMed Central

    2014-01-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV–vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm2, the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm2, and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized. PMID:25276109

  5. Comparative study of TiO2 nanoparticles applied to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yacoubi, Besma; Bennaceur, Jamila; Ben Taieb, S.; Chtourou, Rathowan

    2014-02-01

    Microcrystalline titanium oxide (TiO2) particles of anatase crystal phase were prepared by the sol-gel route, varying thermal treatment conditions (400 °C and 600 °C), for a comparison purpose with commercial TiO2 (P25). Structural, optical and electrical properties were investigated for dye-sensitized solar cells (DSSCs) application. Both microcrystalline TiO2 particles, synthesized by the sol-gel method and obtained from the P25 powder were used to prepare a light scattering layer of the working electrode. The obtained electrodes were then immersed in a solution of N-719 (ruthenium) dye, at the ambient temperature, during 24 h. Finally, the DSSCs were assembled, the short circuit photocurrent, the open circuit photovoltage, and the power conversion efficiency were measured using an I-V measurement system. The overall conversion efficiencies for all elaborated DSSCs were proximate. A maximum efficiency of 2.3% was achieved for the sol-gel TiO2 thin film annealed at 400 °C, under one sun irradiation, with an open circuit voltage of 0.61 V and a current density of 6.54 mA/cm2. The higher efficiency value of the sol-gel TiO2 sample, annealed at 400 °C, was attributed to the uniformity of the prepared titanium oxide substrate, which provides a better surface for the dye absorption.

  6. Rapid double-dye-layer coating for dye-sensitized solar cells using a new method.

    PubMed

    Jung, Cho-long; Han, Chi-Hwan; Moon, Doo Kyung; Jun, Yongseok

    2014-10-01

    Intensive research with the specific aim of developing inexpensive renewable energy sources is currently being undertaken. In dye-sensitized solar cell (DSSC) production, the most time-consuming process is coating the dye on working electrodes: absorption of ruthenium-based dyes [e.g., N719=bis(trtrabutylammonium)-cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine) ruthenium(II)] on a photoanode takes a long time. We report a simple dye-coating method using a mixed solvent of ethylene glycol (EG) and glycerol (Gly). According to our experiments, dye-coating time can be reduced to 5 min from several hours. Maximum performance was obtained with an EG/Gly ratio of 1:1. This mixture of solvents gave a performance of 9.1%. Furthermore, the viscous solvent system could control coating depth; positioning dye coatings to a specific depth was rapid and facile. A cell containing two different dyes (N719+black dye) had an efficiency of 9.4%. PMID:25154611

  7. A hybrid electron donor comprising cyclopentadithiophene and dithiafulvenyl for dye-sensitized solar cells

    PubMed Central

    Sorohhov, Gleb; Yi, Chenyi; Grätzel, Michael; Decurtins, Silvio

    2015-01-01

    Summary Two new photosensitizers featured with a cyanoacrylic acid electron acceptor (A) and a hybrid electron donor (D) of cyclopentadithiophene and dithiafulvenyl, either directly linked or separated by a phenyl ring, were synthesized and characterized. Both of them undergo two reversible oxidations and strongly absorb in the visible spectral region due to a photo-induced intramolecular charge-transfer (ICT) transition. To a great extent, the electronic interaction between the D and A units is affected by the presence of a phenyl spacer. Without a phenyl ring, the D unit appears more difficult to oxidize due to a strong electron-withdrawing effect of the A moiety. In sharp contrast, the insertion of the phenyl ring between the D and A units leads to a broken π-conjugation and therefore, the oxidation potentials remain almost unchanged compared to those of an analogue without the A group, suggesting that the electronic coupling between D and A units is relatively weak. As a consequence, the lowest-energy absorption band shows a slight hypsochromic shift upon the addition of the phenyl spacer, indicative of an increased HOMO–LUMO gap. In turn, the direct linkage of D and A units leads to an effective π-conjugation, thus substantially lowering the HOMO–LUMO gap. Moreover, the application in dye-sensitized solar cells was investigated, showing that the power conversion efficiency increases by the insertion of the phenyl unit. PMID:26199660

  8. Doped In₂O₃ inverse opals as photoanode for dye sensitized solar cells.

    PubMed

    Kong, Lingxin; Dai, Qilin; Miao, Chuang; Xu, Lin; Song, Hongwei

    2015-07-15

    One promising way to improve the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs), which have attracted great interest due to their low cost, is modifying the working electrode. In this work, Tm and Yb doped as well as undoped In2O3 inverse opals (IOs) were synthesized by the sol-gel method. DSSCs based on In2O3, In2O3:Tm and In2O3:Yb IOs as photoanodes were fabricated and studied. It is observed that the device performance including open-circuit voltage (V(oc)) and short-circuit current (J(sc)) increased largely with the increasing pore size of the IOs and the introduction of Tm and Yb elements in the In2O3 lattices. The PCE of the DSSC was increased from 0.33% to 0.96% when the ln2O3 IOs photoanode was substituted by ln2O3:Yb IOs. The electrochemical impedance spectroscopy (EIS) measurements indicate that the modification of band gap in the Tm and Yb doped In2O3 IOs is significant for the improved performance, which can effectively suppress the charge transfer recombination and improve the electron lifetime. PMID:25823724

  9. Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes.

    PubMed

    Zhang, Sen; Ji, Chunyan; Bian, Zhuqiang; Liu, Runhua; Xia, Xinyuan; Yun, Daqin; Zhang, Luhui; Huang, Chunhui; Cao, Anyuan

    2011-08-10

    Conventional fiber-shaped polymeric or dye-sensitized solar cells (DSSCs) are usually made into a double-wire structure, in which a secondary electrode wire (e.g., Pt) was twisted along the primary core wire consisting of active layers. Here, we report highly flexible DSSCs based on a single wire, by wrapping a carbon nanotube film around Ti wire-supported TiO(2) tube arrays as the transparent electrode. Unlike a twisted Pt electrode, the CNT film ensures full contact with the underlying active layer, as well as uniform illumination along circumference through the entire DSSC. The single-wire DSSC shows a power conversion efficiency of 1.6% under standard illumination (AM 1.5, 100 mW/cm(2)), which is further improved to more than 2.6% assisted by a second conventional metal wire (Ag or Cu). Our DSSC wires are stable and can be bent to large angles up to 90° reversibly without performance degradation. PMID:21766836

  10. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    PubMed Central

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4′-(2,2-dicyanovinyl)-[1,1′-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  11. Polyiodides formation in solvent based Dye Sensitized Solar Cells under reverse bias stress

    NASA Astrophysics Data System (ADS)

    Agresti, Antonio; Pescetelli, Sara; Gatto, Emanuela; Venanzi, Mariano; Di Carlo, Aldo

    2015-08-01

    In this work we investigate electrolyte degradation mechanisms in a Dye Sensitized Solar Cell (DSSC), when stressed under forced reverse bias (RB) conditions. During the stress test, we observe a gradual and visually evident cluster shaped browning of platinised counter-electrode in contact with electrolyte solution; Raman spectroscopy confirms that the observed phenomena is due to formation of polyiodide ions and reveals an arose marked fluorescence background, stemming from new chemical species induced by RB stress test. Raman and fluorescence measurements on RB stressed model electrolyte solutions reveal that photoluminescence emission is mainly related to degradation mechanisms involving the I-/I3- redox couple. In fact, due to the RB stress, the redox couple is unbalanced and the formation of various associated structures between 1-methyl-3-propyl imidazolium iodide (PMII) ions is favored. This can be detected by observing the Red Edge Effect (REE) in fluorescence emission spectra of stressed solutions. Thus, polyiodides formation in RB stressed DSSCs could be added to the several depletion channels of triiodide anions and should be taken into account in designing new stable and efficient electrolytes.

  12. Recent Advances of Cobalt(II/III) Redox Couples for Dye-Sensitized Solar Cell Applications.

    PubMed

    Giribabu, Lingamallu; Bolligarla, Ramababu; Panigrahi, Mallika

    2015-08-01

    In recent years dye-sensitized solar cells (DSSCs) have emerged as one of the alternatives for the global energy crisis. DSSCs have achieved a certified efficiency of >11% by using the I(-) /I3 (-) redox couple. In order to commercialize the technology almost all components of the device have to be improved. Among the various components of DSSCs, the redox couple that regenerates the oxidized sensitizer plays a crucial role in achieving high efficiency and durability of the cell. However, the I(-) /I3 (-) redox couple has certain limitations such as the absorption of triiodide up to 430 nm and the volatile nature of iodine, which also corrodes the silver-based current collectors. These limitations are obstructing the commercialization of this technology. For this reason, one has to identify alternative redox couples. In this regard, the Co(II/III) redox couple is found to be the best alternative to the existing I(-) /I3 (-) redox couple. Recently, DSSC test cell efficiency has risen up to 13% by using the cobalt redox couple. This review emphasizes the recent development of Co(II/III) redox couples for DSSC applications. PMID:26081939

  13. Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots.

    PubMed

    Narayanan, Remya; Deepa, Melepurath; Srivastava, Avanish Kumar; Shivaprasad, Sonnada Math

    2014-04-14

    A simple strategy to improve the efficiency of a ZnO-nanorod-based dye-sensitized solar cell (DSSC) by use of Au-encapsulated carbon dots (Au@C-dots) in the photoanode is presented. The localized surface plasmonic resonance of Au in the 500-550 nm range coupled with the ability of C-dots to undergo charge separation increase the energy-harvesting efficiency of the DSSC with ZnO/N719/Au@C-dots photoanodes. Charge transfer from N719 dye to Au@C-dots is confirmed by fluorescence and lifetime enhancements of Au@C-dots. Forster resonance energy transfer (FRET) from the gap states of ZnO nanorods to N719 dye is also ratified and the energy transfer rate is 4.4×10(8) s(-1) and the Forster radius is 1.89 nm. The overall power conversion efficiency of the plasmonic and FRET-enabled DSSC with ZnO/N719/Au@C-dots as the photoanode, I2/I(-) as the electrolyte and multiwalled carbon nanotubes as the counter electrode is 4.1%, greater by 29% compared to a traditional ZnO/N719 cell. PMID:24677662

  14. Mondo Grass Berry Pigment for Visible to Near Infrared Absorption in Dye Sensitized Solar Cell

    NASA Astrophysics Data System (ADS)

    Desilva, L. A. A.; Pitigala, P. K. D. D. P.; Perera, A. G. U.

    2013-03-01

    The development of dye sensitized solar cells (DSSC) is an exciting field in the low cost renewable energy production. Two major draw backs in the DSSCs are the narrow spectral response and the short term stability. Synthesis of artificial dyes with broad response is important in developing an efficient DSSC. Artificial dyes can add up to the cost of the device; therefore, it is important to identify natural dyes with broad abortion and required energy levels. Work presented here shows a broad spectral response with a natural dye extracted from a Mondo Grass berry (Ophiopogonjaponicus).The dye is extracted by crushing the berries and filtering to remove the pulp. A DSSC sensitized with Mondo Grass dye, and with TiO2 film screen printed on a Florien doped Tin Oxide (FTO) glass and baked for 30 minutes at 450 degree C as the working electrode and Iodine/triiodide red-ox electrolyte as the hole collector was tested for its performance. An open circuit photovoltage of 495 mV and a short circuit photocurrent of 0.6 mA/cm2 were observed under a simulated lamp equivalent to 1 sun illumination and have a broad spectral response extending from 400 nm to 750 nm. This work is supported by COSM at UWG.

  15. Improving Light Harvesting in Dye-Sensitized Solar Cells Using Hybrid Bimetallic Nanostructures

    DOE PAGESBeta

    Zarick, Holly F.; Erwin, William R.; Boulesbaa, Abdelaziz; Hurd, Olivia K.; Webb, Joseph A.; Puretzky, Alexander A.; Geohegan, David B.; Bardhan, Rizia

    2016-01-25

    In this paper, we demonstrate improved light trapping in dye-sensitized solar cells (DSSCs) with hybrid bimetallic gold core/silver shell nanostructures. Silica-coated bimetallic nanostructures (Au/Ag/SiO2 NSs) integrated in the active layer of DSSCs resulted in 7.51% power conversion efficiency relative to 5.97% for reference DSSCs, giving rise to 26% enhancement in device performance. DSSC efficiencies were governed by the particle density of Au/Ag/SiO2 NSs with best performing devices utilizing only 0.44 wt % of nanostructures. We performed transient absorption spectroscopy of DSSCs with variable concentrations of Au/Ag/SiO2 NSs and observed an increase in amplitude and decrease in lifetime with increasing particlemore » density relative to reference. Finally, we attributed this trend to plasmon resonant energy transfer and population of the singlet excited states of the sensitizer molecules at the optimum concentration of NSs promoting enhanced exciton generation and rapid charge transfer into TiO2.« less

  16. Molecular modification of coumarin dyes for more efficient dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sánchez-de-Armas, Rocío; San-Miguel, Miguel A.; Oviedo, Jaime; Sanz, Javier Fdez.

    2012-05-01

    In this work, new coumarin based dyes for dye sensitized solar cells (DSSC) have been designed by introducing several substituent groups in different positions of the NKX-2311 structure. Two types of substitutions have been considered: the introduction of three electron-donating groups (-OH, -NH2, and -OCH3) and two different substituents with steric effect: -CH2-CH2-CH2- and -CH2-HC=CH-. The electronic absorption spectra (position and width of the first band and absorption threshold) and the position of the LUMO level related to the conduction band have been used as theoretical criteria to evaluate the efficiency of the new dyes. The introduction of a -NH2 group produces a redshift of the absorption maximum position and the absorption threshold, which could improve the cell efficiency. In contrast, the introduction of -CH2-CH2-CH2- does not modify significantly the electronic structure of NKX-2311, but it might prevent aggregation. Finally, -CH2-HC=CH- produces important changes both in the electronic spectrum and in the electronic structure of the dye, and it would be expected as an improvement of cell efficiency for these dyes.

  17. Light collection optimization for composite photoanode in dye-sensitized solar cells: Towards higher efficiency

    SciTech Connect

    Guo, X. Z.; Shen, W. Z.

    2015-06-14

    Composite photoanode comprising nanoparticles and one-dimensional (1D) nanostructure is a promising alternative to conventional photoanode for dye-sensitized solar cells (DSCs). Besides fast electron transport channels, the 1D nanostructure also plays as light scattering centers. Here, we theoretically investigate the light scattering properties of capsule-shaped 1D nanostructure and their influence on the light collection of DSCs. It is found that the far-field light scattering of a single capsule depends on its volume, shape, and orientation: capsules with bigger equivalent spherical diameter, smaller aspect ratio, and horizontal orientation demonstrate stronger light scattering especially at large scattering angle. Using Monte Carlo approach, we simulated and optimized the light harvesting efficiency of the cell. Two multilayer composite photoanodes containing orderly or randomly oriented capsules are proposed. DSCs composed of these two photoanodes are promising for higher efficiencies because of their efficient light collection and superior electron collection. These results will provide practical guidance to the design and optimization of the photoanodes for DSCs.

  18. Graphite nanoplatelet assemblies for transparent and catalytic electrodes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Aderhold, Patrick

    Dye sensitized solar cells (DSSCs) are a class of photovoltaic devices that have the potential to provide high conversion efficiency at low production cost. Research to improve performance in the individual components is active, but attention must be paid to methods that improve scalability and production cost as well. Graphite nanoplatelets (GNP), thin stacks of graphene sheets with nanometer-scale thickness and micron-scale lateral dimensions, provide a unique opportunity for creating DSSC electrodes with simple manufacturing techniques and low-energy processing. For the counterelectrode, a composite paper, made by cofiltration and pressing of GNP and polypropylene (PP), yields a highly electrical conductive surface that is mechanically robust and chemically stable in electrolyte. Decoration of this surface with platinum nanoparticles (PtNPs) by a rapid microwave heating process produces a catalytic surface that rivals the current "thermalized" platinum standard counterelectrode. The GNP/PP/PtNP system, however, requires lower processing temperature and requires a fraction of the Pt loading. For the transparent electrode, thin sheets of GNP can be deposited on glass surfaces to create highly transparent coatings for use in photoanode construction. Substrate interactions and post treatments are examined and techniques for optimization are outlined. Overall GNP is shown to be a versatile and effective starting material for DSSC electrode construction and demonstrates its potential as a building-block in next-generation photovoltaic devices.

  19. Carbon nanotube/graphene nanocomposite as efficient counter electrodes in dye-sensitized solar cells.

    PubMed

    Velten, Josef; Mozer, Attila J; Li, Dan; Officer, David; Wallace, Gordon; Baughman, Ray; Zakhidov, Anvar

    2012-03-01

    We demonstrated the replacement of the Pt catalyst normally used in the counter electrode of a dye-sensitized solar cell (DSSC) by a nanocomposite of dry spun carbon multi-walled nanotube (MWNT) sheets with graphene flakes (Gr-F). The effectiveness of this counter electrode on the reduction of the triiodide in the iodide/triiodide redox (I(-)/I(3)(-)) redox reaction was studied in parallel with the use of the dry spun carbon MWNT sheets alone and graphene flakes used independent of each other. This nanocomposite deposited onto fluorinated tin-oxide-coated glass showed improved catalytic behavior and power conversion efficiency (7.55%) beyond the use of the MWNTs alone (6.62%) or graphene alone (4.65%) for the triiodide reduction reaction in DSSC. We also compare the use of the carbon MWNT/Gr-F composite counter electrode with a DSSC using the standard Pt counter electrode (8.8%). The details of increased performance of graphene/MWNT composite electrodes as studied are discussed in terms of increased catalytic activity permitted by sharp atomic edges that arise from the structure of graphene flakes or the defect sites in the carbon MWNT and increased electrical conductivity between the carbon MWNT bundles by the graphene flakes. PMID:22293392

  20. Thermally exfoliated graphene based counter electrode for low cost dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kaniyoor, Adarsh; Ramaprabhu, Sundara

    2011-06-01

    Graphene obtained from thermal exfoliation of graphite oxide are highly wrinkled and have large surface area. Their wrinkled nature is expected to give them excellent catalytic activity. Herein, we demonstrate the use of thermally exfoliated graphene (TEG) as cost effective electrocatalyst for the tri-iodide reduction in dye sensitized solar cells (DSSCs). X-ray diffraction, Raman and Infra red spectroscopy and electron microscopy studies confirm the defective and wrinkled nature of TEG. BET surface area measurement show a large surface area of ˜ 470 m2/g. The counter electrode was fabricated by drop casting a slurry of TEG dispersed in a Nafion:Ethanol solution on fluorine doped tin oxide (FTO) substrates. The use of Nafion prevented film "peel off," thus ensuring a good substrate adhesion. Electrochemical impedance spectroscopy reveals that TEG had a catalytic performance comparable to that of Pt, suggesting its use as counter electrode material. As expected, the DSSC fabricated with Nafion solubilized TEG/FTO as counter electrode shows an efficiency of about 2.8%, comparable to Pt counter electrode based DSSC which has an efficiency of about 3.4%.

  1. Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice?

    NASA Astrophysics Data System (ADS)

    Bella, Federico; Sacco, Adriano; Pugliese, Diego; Laurenti, Marco; Bianco, Stefano

    2014-10-01

    A multivariate chemometric approach is proposed for the first time for performance optimization of I-/I3- liquid electrolytes for dye-sensitized solar cells (DSSCs). Over the years the system composed by iodide/triiodide redox shuttle dissolved in organic solvent has been enriched with the addition of different specific cations and chemical compounds to improve the photoelectrochemical behavior of the cell. However, usually such additives act favorably with respect to some of the cell parameters and negatively to others. Moreover, the combined action of different compounds often yields contradictory results, and from the literature it is not possible to identify an optimal recipe. We report here a systematic work, based on a multivariate experimental design, to statistically and quantitatively evaluate the effect of different additives on the photovoltaic performances of the device. The effect of cation size in iodine salts, the iodine/iodide ratio in the electrolyte and the effect of type and concentration of additives are mutually evaluated by means of a Design of Experiment (DoE) approach. Through this statistical method, the optimization of the overall parameters is demonstrated with a limited number of experimental trials. A 25% improvement on the photovoltaic conversion efficiency compared with that obtained with a commercial electrolyte is demonstrated.

  2. Near Field Enhanced Photocurrent Generation in P-type Dye-Sensitized Solar Cells

    PubMed Central

    Xu, Xiaobao; Cui, Jin; Han, Junbo; Zhang, Junpei; Zhang, Yibo; Luan, Lin; Alemu, Getachew; Wang, Zhong; Shen, Yan; Xiong, Dehua; Chen, Wei; Wei, Zhanhua; Yang, Shihe; Hu, Bin; Cheng, Yibing; Wang, Mingkui

    2014-01-01

    Over the past few decades, the field of p-type dye-sensitized solar cell (p-DSSC) devices has undergone tremendous advances, in which Cu-based delafossite nanocrystal is of prime interest. This paper presents an augment of about 87% improvement in photocurrent observed in a particular configuration of organic dye P1 sensitized CuCrO2 delafossite nanocrystal electrode coupled with organic redox shuttle, 1-methy-1H- tetrazole-5-thiolate and its disulfide dimer when Au nanoparticles (NPs, with diameter of about 20 nm) is added into the photocathode, achieving a power convert efficiency of 0.31% (measured under standard AM 1.5 G test conditions). Detailed investigation shows that the local electrical-magnetic field effect, induced by Au NPs among the mesoporous CuCrO2 film, can improve the charge injection efficiency at dye/semiconductor interface, which is responsible for the bulk of the gain in photocurrent. PMID:24492539

  3. Characteristics of thermally reduced graphene oxide and applied for dye-sensitized solar cell counter electrode

    NASA Astrophysics Data System (ADS)

    Ho, Ching-Yuan; Wang, Hong-Wen

    2015-12-01

    Graphene oxide (GO) was synthesized from a flake-type of graphite powder, which was then reduced to a few layers of graphene sheets using the thermal reduction method. The surface morphology, phase crystallization, and defect states of the reduced graphene were determined from an electron microscope equipped with an energy dispersion spectrometer, X-ray diffraction, Raman spectroscopy, and infrared spectra. After graphene formation, the intercalated defects that existed in the GO were removed, and it became crystalline by observing impurity changes and d-spacing. Dye-sensitized solar cells, using reduced graphene as the counter electrode, were fabricated to evaluate the electrolyte activity and charge transport performance. The electrochemical impedance spectra showed that increasing the thermal reduction temperature could achieve faster electron transport and longer electron lifetime, and result in an energy conversion efficiency of approximately 3.4%. Compared to the Pt counter electrode, the low cost of the thermal reduction method suggests that graphene will enjoy a wide range of potential applications in the field of electronic devices.

  4. The role of printing techniques for large-area dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mariani, Paolo; Vesce, Luigi; Di Carlo, Aldo

    2015-10-01

    The versatility of printing technologies and their intrinsic ability to outperform other techniques in large-area deposition gives scope to revolutionize the photovoltaic (PV) manufacturing field. Printing methods are commonly used in conventional silicon-based PVs to cover part of the production process. Screen printing techniques, for example, are applied to deposit electrical contacts on the silicon wafer. However, it is with the advent of third generation PVs that printing/coating techniques have been extensively used in almost all of the manufacturing processes. Among all the third generation PVs, dye sensitized solar cell (DSSC) technology has been developed up to commercialization levels. DSSCs and modules can be fabricated by adopting all of the main printing techniques on both rigid and flexible substrates. This allows an easy tuning of cell/module characteristics to the desired application. Transparency, colour, shape, layout and other DSSC’s features can be easily varied by changing the printing parameters and paste/ink formulations used in the printing process. This review focuses on large-area printing/coating technologies for the fabrication of DSSCs devices. The most used and promising techniques are presented underlining the process parameters and applications.

  5. Solution processable titanium dioxide precursor and nanoparticulated ink: application in Dye Sensitized Solar Cells.

    PubMed

    Bosch-Jimenez, Pau; Yu, Youhai; Lira-Cantu, Mónica; Domingo, Concepción; Ayllón, José A

    2014-02-15

    Colloidal TiO2 anatase nanoparticles of 4-8 nm diameter capped with 3,6,9-trioxadecanoic acid (TODA) were synthesized at low temperature using water and ethanol as the solvents. ATR-FTIR and (1)H NMR characterization showed the capping acid capability of stabilizing the TiO2 nanoparticles through labile hydrogen bonds. The presence of the capping ligand permitted the further preparation of homogeneous and stable colloidal dispersions of the TiO2 powder in aqueous media. Moreover, after solvent evaporation, the ligand could be easily eliminated by soft treatments, such as UV irradiation or low-temperature thermal annealing. These properties have been used in this work to fabricate mesoporous TiO2 electrodes, which can be applied as photoanodes in Dye Sensitized Solar Cells (DSSCs). For the preparation of the electrodes, the as-synthesized mesoporous TiO2 nanoparticles were mixed with commercial TiO2 (Degussa P25) and deposited on FTO substrates by using the doctor blade technique. A mixture of water and ethanol was used as the solvent. A soft thermal treatment at 140 °C for 2h eliminated the organic compound and produced a sintered mesoporous layer of 6 μm thickness. The photovoltaic performance of the DSSCs applying these electrodes sensitized with the N3 dye resulted in 5.6% power conversion efficiency. PMID:24326146

  6. Enhanced charge collection in dye-sensitized solar cells utilizing collector-shell electrodes

    NASA Astrophysics Data System (ADS)

    Xiao, Manda; Huang, Fuzhi; Xiang, Wanchun; Cheng, Yi-Bing; Spiccia, Leone

    2015-03-01

    Nanostructured porous tin-doped indium oxide (ITO) films were prepared by screen printing of an ITO nanoparticle paste onto conducting fluorine-doped tin oxide (FTO) substrates. The ITO films were subsequently coated with thin layers of TiO2 by the hydrolysis of TiCl4 to form the collector-shell photoelectrodes. The morphology of films was analysed by scanning electron microscope (SEM). It was found that a uniform coating of TiO2 was achieved when three or more deposition cycles were applied. Dye-sensitized solar cells were constructed with the collector-shell photoelectrodes using an electrolyte containing the [Co(bpy)3]2+/3+ (bpy = 2,2‧-bipyridine) redox couple and MK-2, an organic sensitizer and efficiencies of 3.3% achieved. Charge transport in cells utilizing the collector-shell electrodes was found to be 2-6 times faster than those utilizing P25-based TiO2 electrodes.

  7. Full-ionic liquid gel electrolytes: Enhanced photovoltaic performances in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Li, Qinghua; Tang, Qunwei; He, Benlin; Yang, Peizhi

    2014-10-01

    Liquid electrolytes containing redox species have been widely used in dye-sensitized solar cells (DSSCs), whereas the volatility of organic solvents has been a tremendous obstacle for their commercial application. To assemble durable DSSCs, here we report the synthesis of full-ionic liquid electrolyte, in which 1-butyl-3-methylimidazolium nitrate is employed as solvent and 1-methyl-3-propylimidazolium iodide is iodide source. Using the imbibition performance of amphiphilic poly(acrylic acid/gelatin) [poly(AA/GR)] and poly(acrylic acid/cetyltrimethyl ammonium bromide) [poly(AA/CTAB)] matrices, full-ionic liquid electrolytes are imbibed into three-dimensional framework of poly(AA/GR) or poly(AA/CTAB) to form stable gel electrolytes. Room-temperature ionic conductivities as high as 17.82 and 18.44 mS cm-1 are recorded from full-ionic liquid imbibed poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. Promising power conversion efficiencies of 7.19% and 7.15% are determined from their DSSC devices in comparison with 6.55% and 6.12% from traditional acetonitrile-based poly(AA/GR) and poly(AA/CTAB) gel electrolytes, respectively. The new concept along with easy fabrication demonstrates the full-ionic liquid electrolytes to be good alternatives for robust gel electrolytes in quasi-solid-state DSSCs.

  8. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells.

    PubMed

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R

    2016-01-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4'-(2,2-dicyanovinyl)-[1,1'-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up. PMID:27196877

  9. Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Tang, Bo; Hu, Guoxin

    2012-12-01

    Two kinds of graphene modified TiO2 composites are synthesized by hydrothermal method and layer-by-layer self-assembly technology. Graphene/titanate nanotubes (GTNTs) films have great light-harvesting efficiencies, and the amount of graphene does not obviously influence their optical performance. Alternating graphene/TiO2 (prepared by supercritical treatment, GSCT) multilayer films possess superior electron transport ability, and the number of bi-layers plays as a central role for their electrical property. The outstanding light scattering and carrier transport properties of these promising films promote the performance of dye-sensitized solar cells (DSSCs). The power conversion efficiencies (η) of the DSSCs reach 6.46% and 7.54% under AM-1.5G by using GSCT-P25 (10 μm) and P25-GTNTs (15 μm) photoanodes, and the increases are 33.8% and 20.6% compared with that of by using a P25 photoanode with same thickness. The η reaches 8.67% when a preliminarily optimized GSCT-P25-GTNTs (15 μm) photoanode is adopted, which is far better than employing a pure P25 photoanode (6.25%).

  10. Dye-sensitized solar cells using natural dyes as sensitizers from Malaysia local fruit `Buah Mertajam'

    NASA Astrophysics Data System (ADS)

    Hambali, N. A. M. Ahmad; Roshidah, N.; Hashim, M. Norhafiz; Mohamad, I. S.; Saad, N. Hidayah; Norizan, M. N.

    2015-05-01

    We experimentally demonstrate the high conversion efficiency, low cost, green technology and easy to fabricate dye-sensitized solar cells (DSSCs) using natural anthocyanin dyes as sensitizers. The DSSCs was fabricated by using natural anthocyanin dyes which were extracted from different parts of the plants inclusive `Buah Mertajam', `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. The natural anthocyanin dyes that found in flower, leaves and fruits were extracted by the simple procedures. This anthocyanin dye is used to replace the expensive chemical synthetic dyes due to its ability to effectively attach into the surface of Titanium dioxide (TiO2). A natural anthocyanin dyes molecule adsorbs to each particle of the TiO2 and acts as the absorber of the visible light. A natural anthocyanin dye from Buah Mertajam shows the best performance with the conversion efficiency of 5.948% and fill factor of 0.708 followed by natural anthocyanin dyes from `Buah Keriang Dot', `Bunga Geti', Hibiscus, Red Spinach and Henna. Buah Mertajam or scientifically known as eriglossum rubiginosum is a local Malaysia fruit.

  11. Energy Storage via Polyvinylidene Fluoride Dielectric on the Counterelectrode of Dye-Sensitized Solar Cells

    PubMed Central

    Huang, Xuezhen; Zhang, Xi

    2013-01-01

    To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I−/I3− redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency (η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g−1. Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density. PMID:24327797

  12. Realizing omnidirectional light harvesting by employing hierarchical architecture for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Hsieh, Ming-Yang; Lai, Fang-I.; Chen, Wei-Chun; Hsieh, Min-Chi; Hu, Hsiang-Yi; Yu, Peichen; Kuo, Hao-Chung; Kuo, Shou-Yi

    2016-03-01

    To improve the omnidirectional light-harvesting in dye-sensitized solar cells (DSSCs), here we present a dandelion-like structure composed of ZnO hemispherical shells and nanorods. Uniformly distributed hemispherical shells effectively suppress the reflection over the broadband region at incident angles up to 60°, greatly improving the optical absorption of the DSSCs. In addition, modulating the length of the ZnO nanorods controls the omnidirectional characteristics of DSSCs. This phenomenon is attributed to the degree of periodicity of the ZnO dandelion-like structures. Cells with shorter rods exhibit a high degree of periodicity, thus the conversion efficiencies of the cells show specific angle-independent features. On the other hand, the cells with longer lengths reveal angle-dependent photovoltaic performance. Along with the simulation, the cells with dandelion-like ZnO structures can couple incident photons efficiently to achieve excellent broadband and omnidirectional light-harvesting performances experimentally, and the DSSCs enhanced the conversion efficiency by 48% at large incident angles. All these findings not only provide further insight into the light-trapping mechanism in these complex three-dimensional nanostructures but also offer efficient omnidirectional and broadband nanostructured photovoltaics for advanced applications.

  13. Interface Engineering through Atomic Layer Deposition towards Highly Improved Performance of Dye-Sensitized Solar Cells

    PubMed Central

    Lu, Hao; Tian, Wei; Guo, Jun; Li, Liang

    2015-01-01

    A composite photoanode comprising ultralong ZnO nanobelts and TiO2 nanoparticles was prepared and its performance in dye-sensitized solar cells (DSSCs) was optimized and compared to the photoanode consisting of conventional TiO2 nanoparticles. The ultralong ZnO nanobelts were synthesized in high yield by a facile solution approach at 90 oC followed by annealing at 500 oC. The effect of the ratio of ZnO nanobelts to TiO2 nanoparticles on the light scattering, specific surface area, and interface recombination were investigated. An optimum amount of ZnO nanobelts enhanced the photon-conversion efficiency by 61.4% compared to that of the conventional TiO2 nanoparticles. To further reduce the recombination rate and increase the carrier lifetime, Atomic Layer Deposition (ALD) technique was utilized to coat a continuous TiO2 film surrounding the ZnO nanobelts and TiO2 nanoparticles, functioning as a barrier-free access of all electrons to conductive electrodes. This ALD treatment improved the interface contact within the whole photoanode system, finally leading to significant enhancement (137%) in the conversion efficiency of DSSCs. PMID:26238737

  14. Performance and stability improvements for dye-sensitized solar cells in the presence of luminescent coatings

    NASA Astrophysics Data System (ADS)

    Bella, Federico; Griffini, Gianmarco; Gerosa, Matteo; Turri, Stefano; Bongiovanni, Roberta

    2015-06-01

    Here we present how the sunlight radiation incident on a dye-sensitized solar cell (DSSC) can be shifted of a few tens of nanometers by means of an economical, easy to prepare and multifunctional photocurable fluoropolymeric light-shifting (LS) coating, to achieve both improved efficiency and device stability. By the introduction of a very small amount of a luminescent agent in the LS coating, the down-shifting of near-UV photons to higher wavelengths easily harvestable by the organic dye of a DSSC is successfully demonstrated. This optical effect not only results in an over 60% improvement of the power conversion efficiency of DSSC devices, but the UV light filtering action promoted by the luminescent agent also provides protection to the photosensitive DSSC components. This aspect, combined with a potential thermal shielding effect and the easy-cleaning behavior imparted to the coating by its fluorinated nature, leads to excellent device stability as evidenced from an aging test performed outdoors under real operating conditions for more than 2000 h. Our study demonstrates that the use of light-cured multifunctional coatings with light management characteristics at the nanometer scale represents a new promising strategy to simultaneously increase the performance and durability of DSSC devices.

  15. Realizing omnidirectional light harvesting by employing hierarchical architecture for dye sensitized solar cells.

    PubMed

    Hsieh, Ming-Yang; Lai, Fang-I; Chen, Wei-Chun; Hsieh, Min-Chi; Hu, Hsiang-Yi; Yu, Peichen; Kuo, Hao-Chung; Kuo, Shou-Yi

    2016-03-14

    To improve the omnidirectional light-harvesting in dye-sensitized solar cells (DSSCs), here we present a dandelion-like structure composed of ZnO hemispherical shells and nanorods. Uniformly distributed hemispherical shells effectively suppress the reflection over the broadband region at incident angles up to 60°, greatly improving the optical absorption of the DSSCs. In addition, modulating the length of the ZnO nanorods controls the omnidirectional characteristics of DSSCs. This phenomenon is attributed to the degree of periodicity of the ZnO dandelion-like structures. Cells with shorter rods exhibit a high degree of periodicity, thus the conversion efficiencies of the cells show specific angle-independent features. On the other hand, the cells with longer lengths reveal angle-dependent photovoltaic performance. Along with the simulation, the cells with dandelion-like ZnO structures can couple incident photons efficiently to achieve excellent broadband and omnidirectional light-harvesting performances experimentally, and the DSSCs enhanced the conversion efficiency by 48% at large incident angles. All these findings not only provide further insight into the light-trapping mechanism in these complex three-dimensional nanostructures but also offer efficient omnidirectional and broadband nanostructured photovoltaics for advanced applications. PMID:26899775

  16. Impact of isoelectric points of nanopowders in electrolytes on electrochemical characteristics of dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohanty, Shyama Prasad; Bhargava, Parag

    2012-11-01

    Nanoparticle loaded quasi solid electrolytes are important from the view point of developing electrolytes for dye sensitized solar cells (DSSCs) having long term stability. The present work shows the influence of isoelectric point of nanopowders in electrolyte on the photoelectrochemical characteristics of DSSCs. Electrolytes with nanopowders of silica, alumina and magnesia which have widely differing isoelectric points are used in the study. Adsorption of ions from the electrolyte on the nanopowder surface, characterized by zeta potential measurement, show that cations get adsorbed on silica, alumina surface while anions get adsorbed on magnesia surface. The electrochemical characteristics of nanoparticulate loaded electrolytes are examined through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). DSSCs fabricated using liquid, silica or alumina loaded electrolytes exhibit almost similar performance. But interestingly, the magnesia loaded electrolyte-based cell show lower short circuit current density (JSC) and much higher open circuit voltage (VOC), which is attributed to adsorption of anions. Such anionic adsorption prevents the dark reaction in magnesia loaded electrolyte-based cell and thus, enhances the VOC by almost 100 mV as compared to liquid electrolyte based cell. Also, higher electron life time at the titania/electrolyte interface is observed in magnesia loaded electrolyte-based cell as compared to others.

  17. Aggregates of plasmonic nanoparticles for broadband light trapping in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sharifi, Nafiseh; Dabirian, Ali; Danaei, Davood; Taghavinia, Nima

    2016-01-01

    Metallic nanoparticles (NPs) have not been effective in improving the overall performance of the cells with micrometer-thick absorbing layers mainly due to the parasitic optical dissipation in the metal. Here, using both experiment and theory, we demonstrate that aggregates of metallic NPs enhance the light absorption of dye-sensitized solar cells of a few micrometer-thick light absorbing layers. The composite electrode containing the optimal concentration of 5 wt% Au@SiO2 aggregates shows the enhancement of 80% and 52% in external quantum efficiency and photocurrent density, respectively. The superior performance of the aggregates relative to NP is attributed to their larger scattering efficiency using full-wave optical simulations. This is further confirmed by optical spectroscopic measurements showing that a large fraction of the incident light couples into the diffused components because of the presence of these metallic aggregates. The optical absorption enhancement is broadband and it is particularly strong at wavelengths larger than 680 nm where the optical absorption of dye molecules is weak.

  18. Activated graphene nanoplatelets as a counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gong, Jiawei; Zhou, Zhengping; Sumathy, K.; Yang, Huojun; Qiao, Qiquan

    2016-04-01

    Activated graphene nanoplatelets (aGNPs) prepared by a hydrothermal method using KOH as activating agent were used as counter electrode for high efficiency dye-sensitized solar cells (DSSCs). After the KOH activation, the scanning electron microscopy image shows that aGNPs demonstrate a more curled, rough, and porous morphology which could contain both micro- and mesopores. The KOH activation changed the stacked layers of GNPs to a more crumpled and curved morphology. The microstructure of large pores significantly increased the electrode surface area and roughness, leading to the high electrocatalytic activity for triiodide reduction at the counter electrode. The DSSCs fabricated using aGNP as counter electrodes were tested under standard AM 1.5 illumination with an intensity of 91.5 mW/cm2. The device achieved an overall power conversion efficiency of 7.7%, which is comparable to the conventional platinum counter electrode (8%). Therefore, the low cost and high performance aGNP based counter electrode is a promising alternative to conventional Pt counter electrode in DSSCs.

  19. Cationic cetylpyridinium micelle as a novel electrolyte system for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Thanacharoenchumrut, Sakon; Angboonpong, Natee; Pakawatpanurut, Pasit

    2016-03-01

    The charge transfer process within the electrolyte system is an active area for further improving the conversion efficiency of the dye-sensitized solar cell (DSSC). In this work, micelle formed by cationic surfactant cetylpyridinium (CP) chloride was used in the electrolyte to enhance the ion transport of the redox couple. Using a mixed solvent of ethylene glycol and acetonitrile at 1:9 volume ratio and 0.50 M CP, an 83% improvement in DSSC efficiency was observed. Because of a strong correlation between the efficiency and the current density as a function of the CP concentration, the presence of CP micelle likely caused a favorable shift in the ion transport within the electrolyte. According to the cyclic voltammetry, such improved ion transport can be attributed to a faster diffusion of the redox couple, particularly the I3- diffusion. In addition, the impedance analysis also revealed a short electron lifetime for the diffusion process in the presence of the CP micelle. From these results, it is plausible that the CP micelle in the electrolyte provides an extensive network of positively-charged interfaces, which facilitates the diffusion of the redox couple and enhances the overall performance of the DSSC.

  20. Efficient synthesis of triarylamine-based dyes for p-type dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Griebel, Jan; Hajduk, Anna; Friedrich, Dirk; Stark, Annegret; Abel, Bernd; Siefermann, Katrin R.

    2016-05-01

    The class of triarylamine-based dyes has proven great potential as efficient light absorbers in inverse (p-type) dye sensitized solar cells (DSSCs). However, detailed investigation and further improvement of p-type DSSCs is strongly hindered by the fact that available synthesis routes of triarylamine-based dyes are inefficient and particularly demanding with regard to time and costs. Here, we report on an efficient synthesis strategy for triarylamine-based dyes for p-type DSSCs. A protocol for the synthesis of the dye-precursor (4-(bis(4-bromophenyl)amino)benzoic acid) is presented along with its X-ray crystal structure. The dye precursor is obtained from the commercially available 4(diphenylamino)benzaldehyde in a yield of 87% and serves as a starting point for the synthesis of various triarylamine-based dyes. Starting from the precursor we further describe a synthesis protocol for the dye 4-{bis[4‧-(2,2-dicyanovinyl)-[1,1‧-biphenyl]-4-yl]amino}benzoic acid (also known as dye P4) in a yield of 74%. All synthesis steps are characterized by high yields and high purities without the need for laborious purification steps and thus fulfill essential requirements for scale-up.

  1. Influence of electrolyte co-additives on the performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Stergiopoulos, Thomas; Rozi, Evangelia; Karagianni, Chaido-Stefania; Falaras, Polycarpos

    2011-12-01

    The presence of specific chemical additives in the redox electrolyte results in an efficient increase of the photovoltaic performance of dye-sensitized solar cells (DSCs). The most effective additives are 4- tert-butylpyridine (TBP), N-methylbenzimidazole (NMBI) and guanidinium thiocyanate (GuNCS) that are adsorbed onto the photoelectrode/electrolyte interface, thus shifting the semiconductor's conduction band edge and preventing recombination with triiodides. In a comparative work, we investigated in detail the action of TBP and NMBI additives in ionic liquid-based redox electrolytes with varying iodine concentrations, in order to extract the optimum additive/I2 ratio for each system. Different optimum additive/I2 ratios were determined for TBP and NMBI, despite the fact that both generally work in a similar way. Further addition of GuNCS in the optimized electrolytic media causes significant synergistic effects, the action of GuNCS being strongly influenced by the nature of the corresponding co-additive. Under the best operation conditions, power conversion efficiencies as high as 8% were obtained.

  2. Properties of Dye-Sensitized Solar Cells Using Carbon Nanowall Counter Electrodes.

    PubMed

    Jung, Y H; Jang, J H; Kang, H; Choi, W S; Choi, Y K; Song, W C; Song, B S; Lee, J H; Hong, B

    2016-05-01

    This research investigates plasma-treated and metal-coated carbon nanowalls (CNWs) for use as counter electrodes of dye-sensitized solar cells (DSSCs). The CNWs were synthesized on a fluorine-tin-oxide (FTO) glass substrate using the microwave plasma-enhanced chemical vapor deposition (PECVD) system with methane (CH4) gas. The post-plasma treatment was performed on the CNWs with hydrogen (H2) plasma using PECVD, and the CNWs were sputter-coated with metal films using the RF magnetron sputtering system with a four-inch tungsten (W) target. Then the post-plasma-treated and metal-coated CNWs were used as counter electrodes for the fabrication of the DSSCs. Field-emission scanning electron microscopy (FE-SEM) was performed to obtain cross-sectional and planar images of the grown CNWs. The energy conversion efficiencies of the DSSCs manufactured using the post-plasma-treated and metal-layer-coated CNWs as the counter electrodes were measured. PMID:27483920

  3. Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process

    NASA Astrophysics Data System (ADS)

    Chiang, Yi-Fang; Chen, Ruei-Tang; Shen, Po-Shen; Chen, Peter; Guo, Tzung-Fang

    2013-03-01

    In this study, we propose a novel concept of extending the lifetime of dye-sensitized solar cells (DSCs) and reducing the costs of re-conditioning DSCs by recycling the FTO/TiO2 substrates. The photovoltaic performances of DSCs using substrates with various cycles of dye uptake and rinse off history are tested. The results show that dye adsorption and Voc are significantly increased under multiple dye adsorption/desorption process and resulted in the improvement of power conversion efficiency. Moreover, the dyeing kinetics is faster after multiple recycling processes, which is favorable for the industrial application. With surface analysis and charge transport characteristics, we also demonstrate the optimal functionality of TiO2/dye interface for the improved Voc and efficiency. The results confirm that the improved performances are due to increased dye loading and dense packing of dye molecules. Our results are beneficial for the understanding on the extension of DSCs lifetime after long-term operation in the application of DSC modules. This approach may also be applied in the replacement of newly synthesized photosensitizes to the active cells.

  4. Optimization of the dye-sensitized solar cell performance by mechanical compression.

    PubMed

    Meen, Teen Hang; Tsai, Jenn Kai; Tu, Yu Shin; Wu, Tian Chiuan; Hsu, Wen Dung; Chang, Shoou-Jinn

    2014-01-01

    In this study, the P25 titanium dioxide (TiO2) nanoparticle (NP) thin film was coated on the fluorine-doped tin oxide (FTO) glass substrate by a doctor blade method. The film then compressed mechanically to be the photoanode of dye-sensitized solar cells (DSSCs). Various compression pressures on TiO2 NP film were tested to optimize the performance of DSSCs. The mechanical compression reduces TiO2 inter-particle distance improving the electron transport efficiency. The UV-vis spectrophotometer and electrochemical impedance spectroscopy (EIS) were employed to quantify the light-harvesting efficiency and the charge transport impedance at various interfaces in DSSC, respectively. The incident photon-to-current conversion efficiency was also monitored. The results show that when the DSSC fabricated by the TiO2 NP thin film compressed at pressure of 279 kg/cm(2), the minimum resistance of 9.38 Ω at dye/TiO2 NP/electrolyte interfaces, the maximum short-circuit photocurrent density of 15.11 mA/cm(2), and the photoelectric conversion efficiency of 5.94% were observed. Compared to the DSSC fabricated by the non-compression of TiO2 NP thin film, the overall conversion efficiency is improved over 19.5%. The study proves that under suitable compression pressure the performance of DSSC can be optimized. PMID:25276109

  5. Theoretica Study of Asymmetric Double D-π-A Organic Sensitizers for Efficient Dye-Sensitized Solar Cells.

    PubMed

    Kwon, Dong Yuel; Lee, Gun Hyung; Kim, Young Sik

    2015-03-01

    Three novel dye sensitizers that were based on asymmetric double D-π-A chains with phenoxazine (POZ) and diphenylamine (DPA) as electron donors and cyanoacetic acid (CA) and 2-(1,1- dicyanomethylene) rhodanine (RD) as electron acceptors (DCPR, DRPC, DRPR) were designed, theoretically investigated, and compared with the reference dye based on asymmetric double D-π-A chains (DCPC). Using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations, we gained insight into the factors responsible for the photovoltaic properties of the dye sensitizers. Due to the different HOMO levels of each donor and the different LUMO levels of each acceptor, the absorption spectrum of each dye showed different shapes. Among the dyes, DRPR showed a broader and more bathochromically shifted absorption band than the other dies. It also showed a higher molar extinction coefficient than that of the reference dye (DCPC). This work suggests optimizing the chain of electron donors and acceptors in dye sensitizers based on asymmetric double D-π-A chains would produce good photovoltaic properties for dye-sensitized solar cells (DSSCs). PMID:26413690

  6. A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials

    PubMed Central

    Yum, Jun-Ho; Baranoff, Etienne; Kessler, Florian; Moehl, Thomas; Ahmad, Shahzada; Bessho, Takeru; Marchioro, Arianna; Ghadiri, Elham; Moser, Jacques-E.; Yi, Chenyi; Nazeeruddin, Md. K.; Grätzel, Michael

    2012-01-01

    Dye-sensitized solar cells are a promising alternative to traditional inorganic semiconductor-based solar cells. Here we report an open-circuit voltage of over 1,000 mV in mesoscopic dye-sensitized solar cells incorporating a molecularly engineered cobalt complex as redox mediator. Cobalt complexes have negligible absorption in the visible region of the solar spectrum, and their redox properties can be tuned in a controlled fashion by selecting suitable donor/acceptor substituents on the ligand. This approach offers an attractive alternate to the traditional I3−/I− redox shuttle used in dye-sensitized solar cells. A cobalt complex using tridendate ligands [Co(bpy-pz)2]3+/2+(PF6)3/2 as redox mediator in combination with a cyclopentadithiophene-bridged donor-acceptor dye (Y123), adsorbed on TiO2, yielded a power conversion efficiency of over 10% at 100 mW cm−2. This result indicates that the molecularly engineered cobalt redox shuttle is a legitimate alternative to the commonly used I3−/I− redox shuttle. PMID:22252555

  7. Role of temperature in the recombination reaction on dye-sensitized solar cells.

    PubMed

    Maçaira, J; Mesquita, I; Andrade, L; Mendes, A

    2015-09-21

    The performance of photovoltaic (PV) devices as a function of temperature is crucial for technical development and for accurate commercial information. Along with solar irradiance, temperature is the most important operating factor of the PV device performance. Normally, it is widely accepted that dye sensitized solar cells (DSC) show minimal energy efficiency dependence with temperature (20-60 °C). The energy efficiency in DSCs depends on the light absorption, charge transport (ohmic resistances) and recombination rates. In this study, the recombination reaction kinetics was studied within a wide temperature range. A unique laser assisted sealing technique that allows studying the temperature effect between -5 °C and 105 °C without electrolyte leakage or external contamination was used. To the best of our knowledge, this is the highest operating temperature ever considered in kinetic studies of liquid state DSCs. The electrochemical reaction between electrons and triiodide/iodide ions was shown to be the most important factor for determining the energy efficiency of DSCs as a function of temperature. It was concluded that the activation energy of the recombination reactions depends on the interface where it happens - TiO2/electrolyte and SnO2-F/electrolyte - and on the temperature. It was found that in addition to temperature having a deep influence on the recombination reaction rate, the energy of the injecting electron is also critical. These conclusions should provide solid ground for further developments in the DSCs and perovskite solar cells, and allow a better comparison of the energy efficiency of different PV technologies over a range of operating temperatures. PMID:26256850

  8. Growth of Multipod ZnO Architectures Made by Accumulation of Hexagonal Nanorods for Dye Sensitized Solar Cell (DSSC) Application.

    PubMed

    Umar, Ahmad

    2015-09-01

    Well-crystalline multipod ZnO architectures made by accumulation of hexagonal nanorods were synthesized, characterized and used as efficient anode material for the fabrication of dye-sensitized solar cell (DSSC). The multipod ZnO architectures were synthesized by simple and facile hydrothermal process and characterized by several techniques to examine the structural, morphological, optical and photovoltaic properties. The morphological characterizations revealed that the synthesized multipod ZnO architectures were made of several hexagonal shaped ZnO nanorods which are originated from a single centre. The structural and compositional properties revealed that the nanorods are pure ZnO and possessing well crystallinity and wurtzite hexagonal phase. The assynthesized multipods ZnO architectures were utilized as potential anode materials for the fabrication of dye-sensitized solar cell (DSSC). The dye sensitized solar cells fabricated with multipods ZnO architectures photoanode attained a reasonable solar to electricity energy conversion efficiency of -1.9% with a photocurrent density i.e., short circuit current (J(sc)) of 4.59 mA/cm2. PMID:26716247

  9. Excellent anti-fogging dye-sensitized solar cells based on superhydrophilic nanoparticle coatings

    NASA Astrophysics Data System (ADS)

    Park, Jung Tae; Kim, Jong Hak; Lee, Daeyeon

    2014-06-01

    We present a facile method for producing anti-fogging (AF) and anti-reflection (AR) coating functionalized photoanodes via one-step SiO2 nanoparticle coating for high performance solid state dye-sensitized solar cells (ssDSSCs). The AF and AR coating functionalized photoanodes are prepared by spin-coating of partially aggregated SiO2 colloidal solution. Poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII), prepared via free radical polymerization, is used as a solid electrolyte in I2-free ssDSSCs. We systematically investigate the enhanced light harvesting characteristics of AF and AR coating functionalized photoanode-based ssDSSCs by measuring UV-visible spectroscopy, incident photon-to-electron conversion efficiency (IPCE) curves under fogging conditions. Compared with conventional photoanode based ssDSSCs, the AF and AR coating functionalized photoanodes substantially suppress fogging and reduce reflection, leading to significantly enhanced light harvesting, especially under fogging conditions. ssDSSCs made of AF and AR coating functionalized photoanodes exhibit an improved photovoltaic efficiency of 6.0% and 5.9% under non-fogging and fogging conditions, respectively, and retain their device efficiencies for at least 20 days, which is a significant improvement of ssDSSCs with conventional photoanodes (4.7% and 1.9% under non-fogging and fogging conditions, respectively). We believe that AF and AR functionalization via one-step SiO2 colloidal coating is a promising method for enhancing light harvesting properties in various solar energy conversion applications.We present a facile method for producing anti-fogging (AF) and anti-reflection (AR) coating functionalized photoanodes via one-step SiO2 nanoparticle coating for high performance solid state dye-sensitized solar cells (ssDSSCs). The AF and AR coating functionalized photoanodes are prepared by spin-coating of partially aggregated SiO2 colloidal solution. Poly((1-(4-ethenylphenyl)methyl)-3

  10. Effect of TiO2 rutile nanorods on the photoelectrodes of dye-sensitized solar cells

    PubMed Central

    2013-01-01

    In order to enhance the electron transport on the photoelectrodes of dye-sensitized solar cells, one-dimensional rutile nanorods were prepared using electrospun TiO2 nanofibers. The grain size of the nanorods increased with increasing temperature. Electrochemical impedance spectroscopy measurements revealed reduced interface resistance of the cells with the one-dimensional rutile nanorods due to the improved electron transport and the enhanced electrolyte penetration. Intensity-modulated photocurrent/photovoltage spectroscopy showed that the one-dimensional rutile nanorods provided the electrons with a moving pathway and suppressed the recombination of photogenerated electrons. However, an excessive quantity of rutile nanorods created an obstacle to the electrons moving in the TiO2 thin film. The photoelectrode with 7 wt.% rutile nanorods optimized the performance of the dye-sensitized solar cells. PMID:23331863

  11. Ag nanoparticle-deposited TiO2 nanotube arrays for electrodes of Dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kawamura, Go; Ohmi, Hayato; Tan, Wai Kian; Lockman, Zainovia; Muto, Hiroyuki; Matsuda, Atsunori

    2015-05-01

    Dye-sensitized solar cells composed of a photoanode of Ag nanoparticle (NP)-deposited TiO2 nanotube (TNT) arrays were fabricated. The TNT arrays were prepared by anodizing Ti films on fluorine-doped tin oxide (FTO)-coated glass substrates. Efficient charge transportation through the ordered nanostructure of TNT arrays should be carried out compared to conventional particulate TiO2 electrodes. However, it has been a big challenge to grow TNT arrays on FTO glass substrates with the lengths needed for sufficient light-harvesting (tens of micrometers). In this work, we deposited Ag nanoparticles (NPs) on the wall of TNT arrays to enhance light-harvesting property. Dye-sensitized solar cells with these Ag NP-deposited TNT arrays yielded a higher power conversion efficiency (2.03 %) than those without Ag NPs (1.39 %).

  12. Pre dye treated titanium dioxide nanoparticles synthesized by modified sol-gel method for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2015-06-01

    Pure and pre dye treated titanium dioxide nanoparticles were prepared by sol-gel and modified sol-gel methods, respectively. The pre dye treatment has improved the properties of TiO2, such as uniform dye adsorption, reduced agglomeration, improved morphology and less dye aggregation. The brazilein pigment-rich Caesalpinia sappan heartwood extract was used as natural dye sensitizer for pure and pre dye treated TiO2 nanoparticles. Low cost and environment friendly dye-sensitized solar cells (DSSC) fabricated using pure and pre dye treated TiO2 nanoparticles sensitized by natural dye showed solar light to electron conversion efficiencies of 1.09 and 1.65 %, respectively. The pre dye treated TiO2-based DSSC showed 51 % improvement in efficiency when compared to that of conventionally prepared DSSC.

  13. Evaluation of microwave plasma sintering for the fabrication of dye sensitized solar cell (DSSC) electrodes.

    PubMed

    Dembele, A; Rahman, M; MacElroy, J M D; Dowling, D P

    2012-06-01

    Dye-sensitized solar cells (DSSCs) have demonstrated considerable potential due to their solar energy conversion efficiency and their fabrication from relatively low cost materials. Titanium dioxide (TiO2) nanoparticles are widely used in the fabrication of the DSSC electrodes. There is a considerable energy requirement however required for the sintering of the TiO2 particles during the fabrication of the mesoporous electrodes. This study investigates the use of microwave (MW) plasma treatments as a rapid, energy efficient processing technique for the sintering of the metal oxide particles. A comparison is made with conventional furnace treatments for the sintering of TiO2 nanoparticles (Degussa P25), deposited onto fluorine doped tin oxide (FTO) coated glass substrates. Subsequent to the TiO2 sintering, ruthenium based dye (N719) adsorption studies were carried out for coatings heated using both sintering techniques. Based on UV/Vis absorption spectra measurements of 5 mins plasma and 30 mins furnace sintering, it was observed that both sintering techniques exhibited similar levels of dye adsorption. A decrease in the level of dye adsorption was observed for the TiO2 coatings sintered for longer periods (up to 10 mins in this study). This change with longer plasma treatment times was associated with rutile grain growth and a decrease in surface roughness, possibly due to a densification of the mesoporous structure. The effect of TiO2 coating plasma treatment times on the conversion efficiency of the dye sensitised electrodes was also evaluated. Plasma treatments of 5 mins were found to yield the highest conversion efficiency of 6.4%. PMID:22905529

  14. High performance low temperature carbon composite catalysts for flexible dye sensitized solar cells.

    PubMed

    Hashmi, Syed Ghufran; Halme, Janne; Saukkonen, Tapio; Rautama, Eeva-Leena; Lund, Peter

    2013-10-28

    Roll-to-roll manufacturing of dye sensitized solar cells (DSSCs) requires efficient and low cost materials that adhere well on the flexible substrates used. In this regard, different low temperature carbon composite counter electrode (CE) catalyst ink formulations for flexible DSSCs were developed that can be simply and quickly coated on plastic substrates and dried below 150 °C. The CEs were investigated in terms of photovoltaic performance in DSSCs by current-voltage measurements, mechanical adhesion properties by bending and tape tests, electro-catalytic performance by electrochemical impedance spectroscopy and microstructure by electron microscopy. In the bending and tape tests, PEDOT-carbon composite catalyst layers exhibited higher elasticity and better adhesion on all the studied substrates (ITO-PET and ITO-PEN plastic, and FTO-glass), compared to a binder free carbon composite and a TiO2 binder enriched carbon composite, and showed lower charge transfer resistance (1.5-3 Ω cm(2)) than the traditional thermally platinized CE (5 Ω cm(2)), demonstrating better catalytic performance for the tri-iodide reduction reaction. Also the TiO2 binder enriched carbon composite showed good catalytic characteristics and relatively good adhesion on ITO-PET, but on ITO-PEN its adhesion was poor. A DSSC with the TiO2 binder enriched catalyst layer reached 85% of the solar energy conversion efficiency of the reference DSSC based on the traditional thermally platinized CE. Based on the aforementioned characteristics, these carbon composites are promising candidates for replacing the platinum catalyst in a high volume roll-to-roll manufacturing process of DSSCs. PMID:24042582

  15. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    PubMed Central

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  16. Enhanced Electron Lifetimes in Dye-Sensitized Solar Cells Using a Dichromophoric Porphyrin: The Utility of Intermolecular Forces.

    PubMed

    Zhao, Long; Wagner, Pawel; van der Salm, Holly; Gordon, Keith C; Mori, Shogo; Mozer, Attila J

    2015-10-01

    Electron lifetimes in dye-sensitized solar cells employing a porphyrin dye, an organic dye, a 1:1 mixture of the two dyes, and a dichromophoric dye design consisting of the two dyes using a nonconjugated linker were measured, suggesting that the dispersion force of the organic dyes has a significant detrimental effect on the electron lifetime and that the dichromophoric design can be utilized to control the effect of the dispersion force. PMID:26375165

  17. Two carboxyethyltin functionalized polyoxometalates for assembly on carbon nanotubes as efficient counter electrode materials in dye-sensitized solar cells.

    PubMed

    Sang, Xiao-Jing; Li, Jian-Sheng; Zhang, Lan-Cui; Zhu, Zai-Ming; Chen, Wei-Lin; Li, Yang-Guang; Su, Zhong-Min; Wang, En-Bo

    2014-12-01

    Two novel open-chain carboxyethyltin decorated sandwich-type germanotungstates have been successfully synthesized. They could markedly increase the electrocatalytic activity of single-walled carbon nanotubes toward triiodide reduction when assembled into composite electrodes, which have shown a conversion efficiency of 6.32% that is comparable to that of Pt electrodes (6.29%) when used as counter electrodes in dye-sensitized solar cells. PMID:25317838

  18. Nitrogen-doped carbon nanotubes with metal nanoparticles as counter electrode materials for dye-sensitized solar cells.

    PubMed

    Xing, Yedi; Zheng, Xiaojia; Wu, Yihui; Li, Mingrun; Zhang, Wen-Hua; Li, Can

    2015-05-11

    Nitrogen-doped carbon nanotubes decorated with Co and Ni metal nanoparticles were assessed as counter electrodes (CEs) of dye-sensitized solar cells (DSSCs). These composites show good electrocatalytic activity toward the counter electrode reduction reaction (I3(-)→ I(-)) in DSSCs. The resulting devices using these composites as CEs display photovoltaic performance as good as, or even better than Pt-based devices, indicating their potential for application in DSSCs. PMID:25873228

  19. Nb doping of TiO2 nanotubes for an enhanced efficiency of dye-sensitized solar cells.

    PubMed

    Yang, Min; Kim, Doohun; Jha, Himendra; Lee, Kiyoung; Paul, Jonathan; Schmuki, Patrik

    2011-02-21

    Nb-doped TiO(2) nanotube (with C(Nb) < 1 wt%) layers were successfully fabricated by self-ordered electrochemical anodization of Ti-Nb alloys. When used in dye-sensitized solar cells the efficiency enhanced by up to 30% compared to non-doped TiO(2) nanotubes. IMVS measurements indicate the beneficial effect to be due to lower recombination losses. PMID:21184009

  20. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kong, Jun; Zhou, Zheng-Ji; Li, Mei; Zhou, Wen-Hui; Yuan, Sheng-Jie; Yao, Rong-Yue; Zhao, Yang; Wu, Si-Xin

    2013-11-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs.

  1. Wurtzite copper-zinc-tin sulfide as a superior counter electrode material for dye-sensitized solar cells.

    PubMed

    Kong, Jun; Zhou, Zheng-Ji; Li, Mei; Zhou, Wen-Hui; Yuan, Sheng-Jie; Yao, Rong-Yue; Zhao, Yang; Wu, Si-Xin

    2013-01-01

    Wurtzite and kesterite Cu2ZnSnS4 (CZTS) nanocrystals were employed as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Compared to kesterite CZTS, the wurtzite CZTS exhibited higher electrocatalytic activity for catalyzing reduction of iodide electrolyte and better conductivity. Accordingly, the DSSC with wurtzite CZTS CE generated higher power conversion efficiency (6.89%) than that of Pt (6.23%) and kesterite CZTS (4.89%) CEs. PMID:24191954

  2. Improve photovoltaic performance of titanium dioxide nanorods based dye-sensitized solar cells by Ca-doping

    SciTech Connect

    Li, Weixin; Yang, Junyou Zhang, Jiaqi; Gao, Sheng; Luo, Yubo; Liu, Ming

    2014-09-15

    Highlights: • TiO{sub 2} nanorods doped with Ca ions were synthesized by one-step hydrothermal method. • The flat band edge of rutile TiO{sub 2} shifted positively via Ca-doping. • The photoelectric conversion efficiency of dye-sensitized solar cells (DSSCs) based on TiO{sub 2} electrode was much enhanced by Ca-doping. • A relatively high open circuit voltage was obtained by adopting Ca-doped TiO{sub 2} nanorods electrode. - Abstract: Ca-doped TiO{sub 2} nanorod arrays were prepared via the one-step hydrothermal method successfully, and the effect of Ca ions content on the photovoltaic conversion efficiency of dye-sensitized solar cells has been fully discussed in the paper. Although no obvious change on the microstructure and morphology was observed by field emission scanning electron microscope and transmission electron microscope for the Ca-doped samples, the results of X-ray diffraction and X-ray photoelectron spectroscopy confirmed that Ti{sup 4+} was substituted with Ca{sup 2+} successfully. UV–vis spectroscopy results revealed that the flat band edge shifted positively by Ca ions doping. The photovoltaic conversion efficiency of the dye-sensitized solar cells based on the 2 mol% Ca-doped TiO{sub 2} electrode was 43% higher than that of the undoped one due to the less recombination possibility.

  3. Catalytic Improvement on Counter Electrode of Dye-Sensitized Solar Cells Using Electrospun Pt Nano-Fibers.

    PubMed

    Seol, Hyunwoong; Shiratani, Masaharu; Seneekatima, Kannanut; Pornprasertsuk, Rojana

    2016-04-01

    A dye-sensitized solar cell is one of cost-competitive photovoltaic devices. For higher performance, all components have been actively studied and improved. However, Pt is still a dominant catalyst since first development although some catalytic materials were studied so far. Catalytic materials of counter electrode play an important role in the performance because it supplies electrons from counter electrode to electrolyte. Therefore, the catalytic activation of counter electrode is closely connected with the performance enhancement. In this work, Pt nano-fiber was fabricated by electrospinning and applied for the counter electrode. Its wide surface area is advantageous for good conductivity and catalytic activation. Morphological characteristics of nano-fibers were analyzed according to electrospinning conditions. Photovoltaic properties, cyclic voltammetry, impedance analysis verified the catalytic activation. Consequently, dye-sensitized solar cell with Pt nano-fiber electrospun at 5.0 kV of applied voltage had higher performance than conventional dye-sensitized solar cell with Pt thin film. This work is significant for related researches because all nano-fibers counter electrode material proposed so far never exceeded the performance of conventional Pt counter electrode. PMID:27451627

  4. Fabrication, characterization of two nano-composite CuO-ZnO working electrodes for dye-sensitized solar cell.

    PubMed

    Habibi, Mohammad Hossein; Karimi, Bahareh; Zendehdel, Mahmoud; Habibi, Mehdi

    2013-12-01

    Two kind of CuO-ZnO nanocomposite working electrodes were synthesized by sol-gel technology and applied in dye-sensitized solar cells (DSSCs). Their characteristics were studied by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectrum (DRS). CuO-ZnO nanocomposite thin films were prepared doctor blade technique on the fluorine-doped tin oxide (FTO) and used as working electrodes in dye sensitized solar cells (DSSC). Their photovoltaic behavior were compared with standard using D35 dye and an electrolyte containing [Co(bpy)3](PF6)2, [Co(pby)3](PF6)3, LiClO4, and 4-tert-butylpyridine (TBP). The ranges of short-circuit current (JSC) from 0.18 to 0.21 (mA/cm(2)), open-circuit voltage (VOC) from 0.24 to 0.55V, and fill factor from 0.34 to 0.39 were obtained for the DSSCs made using the working electrodes. The efficiency of the working electrodes after the addition of TBL was more than doubled. The light scattering and carrier transport properties of these composites promote the performance of dye-sensitized solar cells (DSSCs). PMID:23973582

  5. Preparation and surface modification of hierarchical nanosheets-based ZnO microstructures for dye-sensitized solar cells

    SciTech Connect

    Meng, Yongming; Lin, Yu Lin, Yibing; Yang, Jiyuan

    2014-02-15

    This paper reports a simple one-step hydrothermal route for the preparation of hierarchical nanosheets-based ZnO microstructures and their application to dye-sensitized solar cells. The morphologies of the products were controlled by the dosage of the reactants. Their physical characteristics were detected by X-ray diffraction, a field-emission scanning electron microscope and a surface analyzer. It is proved that the sample of ZnO microspheres with larger surface area and stronger light-trapping capacity since the superiority of their entirely spherical structures exhibits better photoelectrochemical properties than the mixtures of ZnO microspheres and ZnO microflowers. A dye-sensitized solar cell assembled by the ZnO microspheres as photoanode shows an energy conversion efficiency of 2.94% after surface modification by tetrabutyl titanate solution at 90 {sup °}C. This result is over 1.6 times higher than the non-modified cell fabricated by the ZnO microspheres on the basis of the external improvement and the stability enhancement for the dye-sensitized ZnO photoanode. - Graphical abstract: Influences on energy conversion efficiency of the dye-sensitized solar cells assembled by decorating hierarchical nanosheets-based ZnO microstructures with tetrabutyl titanate solution at different temperatures. Display Omitted - Highlights: • Hierarchical nanosheets-based ZnO microstructures were controllably synthesized. • The ZnO microspheres show good optical and electrochemical properties. • The ZnO microspheres were modified by C{sub 16}H{sub 36}O{sub 4}Ti solution. • Remarkable increase of conversion efficiency is observed after surface modification.

  6. Development of carbon nanotube paste for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Tsuji, Masaya; Sugiyama, Seiichi; Oya, Takahide

    2012-09-01

    We propose a new type of dye-sensitized solar cell (DSC) using carbon nanotubes (CNTs). Recently, global warming due to CO2 generated from power plants, cars, and so on has received much attention. Therefore, clean power, e.g., solar power, is gaining in importance. In this study, we focused on a DSC that uses CNTs. Generally, sensitized dyes on semiconducting and metallic electrodes are used for constructing DSCs. In contrast, CNTs have many excellent properties. In particular, they have metallic and semiconducting properties that are used for the electrodes of DSCs. Therefore, we applied CNTs for fabricating a new "painting-type" DSC with semiconducting and metallic electrodes. CNTs are dispersed in water with surfactant to prepare CNT-paste for painting. This resulting CNT-paste has the same properties as a normal CNT. A DSC is comprised of two electrodes. One is a semiconducting electrode with a sensitized dye and another is a metallic one, as mentioned above. We fabricated the two electrodes by painting the CNT-paste onto substrates. Thus, this type of DSC can be applied to various objects, for example, the wall and car and housetop. An electrolyte is required and must be put between the electrodes. The method for fabricating a painting type DSC is very simple. First, two versions of the paste are used. One is a semiconducting CNT-paste that adsorbs a dye and the other is a CNT-paste without a dye. Second, we paint each paste onto two substrates. Finally, the two substrates are stacked. We drip about 10μl of an electrolyte onto the stacked substrates and irradiate them with solar light (1300 W/m2). An electromotive force (EMF) is generated by excited electrons from the dye, which are adsorbed on the semiconducting electrode. The maximum EMF reached about 250 mV and the current reached about 10 μA. These results indicate that the proposed painting-type DSC can be used a new type of solar cell.

  7. ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells

    PubMed Central

    Milan, R.; Selopal, G. S.; Epifani, M.; Natile, M. M.; Sberveglieri, G.; Vomiero, A.; Concina, I.

    2015-01-01

    Layered multi-oxide concept was applied for fabrication of photoanodes for dye-sensitized solar cells based on ZnO and SnO2, capitalizing on the beneficial properties of each oxide. The effect of different combinations of ZnO@SnO2 layers was investigated, aimed at exploiting the high carrier mobility provided by the ZnO and the higher stability under UV irradiation pledged by SnO2. Bi-oxide photoanodes performed much better in terms of photoconversion efficiency (PCE) (4.96%) compared to bare SnO2 (1.20%) and ZnO (1.03%). Synergistic cooperation is effective for both open circuit voltage and photocurrent density: enhanced values were indeed recorded for the layered photoanode as compared with bare oxides (Voc enhanced from 0.39 V in case of bare SnO2 to 0.60 V and Jsc improved from 2.58 mA/cm2 pertaining to single ZnO to 14.8 mA/cm2). Improved functional performances of the layered network were ascribable to the optimization of both high chemical capacitance (provided by the SnO2) and low recombination resistance (guaranteed by ZnO) and inhibition of back electron transfer from the SnO2 conduction band to the oxidized species of the electrolyte. Compared with previously reported results, this study testifies how a simple electrode design is powerful in enhancing the functional performances of the final device. PMID:26419618

  8. Bragg stack-functionalized counter electrode for solid-state dye-sensitized solar cells.

    PubMed

    Park, Jung Tae; Prosser, Jacob H; Kim, Dong Jun; Kim, Jong Hak; Lee, Daeyeon

    2013-05-01

    A highly reflective counter electrode is prepared through the deposition of alternating layers of organized mesoporous TiO(2) (om-TiO(2)) and colloidal SiO(2) (col-SiO(2)) nanoparticles. We present the effects of introducing this counter electrode into dye-sensitized solar cells (DSSCs) for maximizing light harvesting properties. The om-TiO(2) layers with a high refractive index are prepared by using an atomic transfer radical polymerization and a sol-gel process, in which a polyvinyl chloride-g-poly(oxyethylene) methacrylate graft copolymer is used as a structure-directing agent. The col-SiO(2) layers with a low refractive index are prepared by spin-coating commercially available silica nanoparticles. The properties of the Bragg stack (BS)-functionalized counter electrode in DSSCs are analyzed by using a variety of techniques, including spectroscopic ellipsometry, SEM, UV/Vis spectroscopy, incident photon-to-electron conversion efficiency, electrochemical impedance spectroscopy, and intensity modulated photocurrent/voltage spectroscopy measurements, to understand the critical factors contributing to the cell performance. When incorporated into DSSCs that are used in conjunction with a polymerized ionic liquid as the solid electrolyte, the energy conversion efficiency of this solid-state DSSC (ssDSSC) approaches 6.6 %, which is one of the highest of the reported N719 dye-based ssDSSCs. Detailed optical and electrochemical analyses of the device performance show that this assembly yields enhanced light harvesting without the negative effects of charge recombination or electrolyte penetration, which thus, presents new possibilities for effective light management. PMID:23576320

  9. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye

    NASA Astrophysics Data System (ADS)

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it.

  10. Efficiency enhancement of cubic perovskite BaSnO3 nanostructures based dye sensitized solar cells.

    PubMed

    Rajamanickam, N; Soundarrajan, P; Vendra, Venkat K; Jasinski, Jacek B; Sunkara, Mahendra K; Ramachandran, K

    2016-03-28

    Cubic perovskite BaSnO3 (BSO) is an important photoelectron transporting material due to its electronic structure that competes with TiO2 in dye-sensitized solar cells (DSCs). Separately, BSO/TiCl4 treated and BSO/scattering layer photoelectrodes have been used in DSCs that effectively increase the photoexcited charge carriers collection resulting in superior photovoltaic performance. In the present work, the different TiCl4 treatment time (1, 3 and 5 min), different scattering layer (tetragonal anatase TiO2 and hexagonal wurtzite ZnO) and different combinations thereof are successfully used on BSO nanocuboids/nanoparticle morphological structure photoelectrodes, and then we systematically inspected their performance in DSCs. Under the optimized conditions, a power conversion efficiency (PCE) of 3.88% is obtained by a BSO/TiCl4 treated photoanode. Furthermore, the BSO photoanodes made using a scattering layer such as anatase TiO2 and hexagonal ZnO i.e., BSO/anatase TiO2 and BSO/hexagonal ZnO, exhibited PCEs of 1.14% and 1.25% respectively. In the end, one of the highest PCEs (5.68%) was achieved using BSO/TiCl4 treated/TiO2 scattering layer photoanode. Another photoelectrode such as BSO/TiCl4 treated/ZnO scattering layer exhibited a PCE of 4.28% that is also higher than the BSO/TiCl4 treated/BSO scattering layer photoanodes. Electron lifetime versus current density studies illustrate the stability of the BSO photoelectrode in DSCs. From the observed results, it is realized that BSO is one of the most important future technological materials. PMID:26935818

  11. Hydrothermal growth and characterization of titanium dioxide nanostructures for use in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sorge, Judith D.

    As the world's energy needs continue to grow, next generation photovoltaic cells are in high demand because they offer the possibility of an inexpensive alternative to current energy production techniques. Dye sensitized solar cells (DSSC's), utilize common materials and low cost commercialization techniques, which make them a compelling choice for research in this area. This research focuses on the titanium dioxide coating, which transfers electrons from the photoactive dye to the electrode. 3-4% efficient DSSC's using doctor bladed titanium dioxide coatings with a specific surface area of 55-60m2/g have been demonstrated in our laboratory. To enhance the efficiency of these cells, both the surface area and the electron conduction of the titania layer must be optimized. This has been done by utilizing high aspect ratio nanoparticles of titania instead of mesoporous layers formed with spherical particles. Anodization of titanium metal or anodic alumina membrane templating are common ways to produce nanorods, but involve complex processes leading toward expensive commercialization. This research instead focuses on the hydrothermal growth of nanofibrous titania on a titanium metal substrate, removing the need for dispersion and deposition procedures as well as using a low temperature processing method. Depending upon the formulation utilized, a variety of structures can be produced, from thick carpets of nanofiber strands to large platelets. The composition and morphology of the products have been characterized with respect to the growth conditions using electron microscopy, energy dispersive spectroscopy and x-ray diffraction. The compositional analysis is used to investigate the complicated reaction mechanisms in the system. Coatings of titania nanotubes were then tested in the DSSC's, as were those with the titanium metal substrate acting as the photo anode. Modeling the geometric parameters of the different pore structures of the coatings helps us to understand

  12. Porphyrin Dye-Sensitized Zinc Oxide Aggregated Anodes for Use in Solar Cells.

    PubMed

    Syu, Yu-Kai; Tingare, Yogesh; Lin, Shou-Yen; Yeh, Chen-Yu; Wu, Jih-Jen

    2016-01-01

    Porphyrin YD2-o-C8-based dyes were employed to sensitize room-temperature (RT) chemical-assembled ZnO aggregated anodes for use in dye-sensitized solar cells (DSSCs). To reduce the acidity of the YD2-o-C8 dye solution, the proton in the carboxyl group of a porphyrin dye was replaced with tetrabuthyl ammonium (TBA⁺) in this work. The short-circuit current density (Jsc) of the YD2-o-C8-TBA-sensitized ZnO DSSCs is higher than that of the YD2-o-C8-sensitized cells, resulting in the improvement of the efficiency of the YD2-o-C8-based ZnO DSSCs. With an appropriate incorporation of chenodeoxycholic acid (CDCA) as coadsorbate, the Jsc and efficiency of the YD2-o-C8-TBA-sensitized ZnO DSSC are enhanced due to the improvement of the incident-photon-to-current efficiency (IPCE) values in the wavelength range of 400-450 nm. Moreover, a considerable increase in Jsc is achieved by the addition of a light scattering layer in the YD2-o-C8-TBA-sensitized ZnO photoanodes. Significant IPCE enhancement in the range 475-600 nm is not attainable by tuning the YD2-o-C8-TBA sensitization processes for the anodes without light scattering layers. Using the RT chemical-assembled ZnO aggregated anode with a light scattering layer, an efficiency of 3.43% was achieved in the YD2-o-C8-TBA-sensitized ZnO DSSC. PMID:27527136

  13. Highly efficient dye-sensitized solar cell with GNS/MWCNT/PANI as a counter electrode

    SciTech Connect

    Al-bahrani, Majid Raissan; Xu, Xiaobao; Ahmad, Waqar; Ren, Xiaoliang; Su, Jun; Cheng, Ze; Gao, Yihua

    2014-11-15

    Highlights: • High-performance PANI/MWCNT-CE was incorporated in a Pt-CE in DSSCs. • GNS/MWCNT/PANI-CE exhibits a high power conversion efficiency (PCE) of 7.52%. • GNS/MWCNT/PANI composite has a high catalytic activity for the reduction of I{sub 3}{sup −}. • GNS/MWCNT/PANI composite has a low R{sub CT} on the electrolyte/CE interface. - Abstract: A graphene-based nanosheet composite/multiwalled carbon nanotube/polyaniline (GNS/MWCNT/PANI) was synthesized via an in situ polymerization technique and applied by the spin-coating method as a counter electrode (CE) in dye-sensitized solar cells (DSSCs). The combination of the high catalytic activity of PANI and outstanding conductivity of GNS/MWCNT improved the photovoltaic performance of the hybrid CE. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the GNS/MWCNT/PANI composite has high catalytic activity for the reduction of triiodide to iodide and low charge-transfer resistance at the electrolyte/electrode interface. Transmission electron microscopy (TEM) images showed that the GNS/MWCNT/PANI-CE has a rough and porous structure and X-ray diffraction analysis confirmed the formation of PANI coating on the surface of the GNS/CNT. In particular, current–voltage measurements showed the superior power conversion efficiency (PCE) of 7.52% of the DSSC based on GNS/MWCNT/PANI-CE compared to the PCE of 6.69% of the DSSC based on Pt-CE.

  14. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  15. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.

    PubMed

    Suyitno, Suyitno; Saputra, Trisma Jaya; Supriyanto, Agus; Arifin, Zainal

    2015-09-01

    The present article reports on the enhancement of the performance and stability of natural dye-based dye-sensitized solar cells (DSSCs). Natural dyes extracted from papaya leaves (PL) were investigated as sensitizers in TiO2-based DSSCs and evaluated in comparison with N719 dye. The acidity of the papaya-leaf extract dyes was tuned by adding benzoic acid. The TiO2 film-coated fluorine-doped tin oxide glass substrates were prepared using the doctor-blade method, followed by sintering at 450 °C. The counter electrode was coated by chemically deposited catalytic platinum. The working electrodes were immersed in N719 dye and papaya dye solutions with concentrations of 8 g/100 mL. The absorbance spectra of the dyes were obtained by ultra-violet-visible spectroscopy. The energy levels of the dyes were measured by the method of cyclic voltammetry. In addition, Fourier transform infrared spectroscopy was used to determine the characteristic functionalities of the dye molecules. The DSSC based on the N719 dye displayed a highest efficiency of 0.87% whereas those based on papaya-leaf dye achieved 0.28% at pH 3.5. The observed improved efficiency of the latter was attributed to the increased current density value. Furthermore, the DSSCs based on papaya-leaf dye with pH 3.5-4 exhibited better stability than those based on N719 dye. However, further studies are required to improve the current density and stability of natural dye-based DSSCs, including the investigation of alternative dye extraction routes, such as isolating the pure chlorophyll from papaya leaves and stabilizing it. PMID:25875031

  16. Third row metal complexes as an alternative dye in dye sensitized solar cell system

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Badriyah, I.; Kristy, I. O.; Dewi, N. S.; Rahardjo, S. B.

    2013-10-01

    Copper(II), Cobalt (II) and Iron (II) complexes as photosensitizer on Dye Sensitized Solar Cell (DSSC) had been investigated. The aim of this research is to find out the respond addition of those dyes on FTO/TiO2 (FTO = fluorine Tin Oxide) thin film to visible light and the effect of various third row complexes to DSSC performance. Slip casting method was used to fabricate FTO/TiO2 and FTO/carbon thin film. The result from FTO/TiO2 UV-Vis spectra show no absorption on visible light. Dye solution was synthesized from free metal ions of Cu(II), Co(II), and Fe(II) in methanol with diphenylamine (dpa), 2,2,bypiridine (bpy), 1,10, phenathroline (phen), 4,4'-dicarboxylic acid-2,2'-bipyridine (dcbq), and anthocyanin (ant) ligands, respectively. UV-Vis spectrophotometry was used to identify FTO/TiO2/dye with various sensitizer dyes. The performance of DSSC was determined by I (current) - V (voltage) curve using Keithley 2602 A System Source. In this research, DSSCs are able to convert photon energy become electrical energy. Dye used in DSSC is greatly effect in photon to current efficiency (IPCE). The greater absorption in visible region of alternative dye used gains higher IPCE spectra. TiO2 character can help spread the absorption in whole visible region. The nanosize mesoporous TiO2 of TiO2/SiPA/CoII-PAR (SiPA = silylpropilamine) have greater value than P25 TiO2/SiPA-CoII-PAR. The SiPA/FeII-PAR and SiPA/CoII-PAR dyes are better dye than tpa.

  17. Improving Performance via Blocking Layers in Dye-Sensitized Solar Cells Based on Nanowire Photoanodes.

    PubMed

    Li, Luping; Xu, Cheng; Zhao, Yang; Chen, Shikai; Ziegler, Kirk J

    2015-06-17

    Electron recombination in dye-sensitized solar cells (DSSCs) results in significant electron loss and performance degradation. However, the reduction of electron recombination via blocking layers in nanowire-based DSSCs has rarely been investigated. In this study, HfO2 or TiO2 blocking layers are deposited on nanowire surfaces via atomic layer deposition (ALD) to reduce electron recombination in nanowire-based DSSCs. The control cell consisting of ITO nanowires coated with a porous shell of TiO2 by TiCl4 treatment yields an efficiency of 2.82%. The efficiency increases dramatically to 5.38% upon the insertion of a 1.3 nm TiO2 compact layer between the nanowire surface and porous TiO2 shell. This efficiency enhancement implies that porous sol-gel coatings on nanowires (e.g., via TiCl4 treatment) result in significant electron recombination in nanowire-based DSSCs, while compact coatings formed by ALD are more advantageous because of their ability to act as a blocking layer. By comparing nanowire-based DSSCs with their nanoparticle-based counterparts, we find that the nanowire-based DSSCs suffer more severe electron recombination from ITO due to the much higher surface area exposed to the electrolyte. While the insertion of a high band gap compact layer of HfO2 between the interface of the conductive nanowire and TiO2 shell improves performance, a comparison of the cell performance between TiO2 and HfO2 compact layers indicates that charge collection is suppressed by the difference in energy states. Consequently, the use of high band gap materials at the interface of conductive nanowires and TiO2 is not recommended. PMID:26010178

  18. Preparation and characterization of TiO2 barrier layers for dye-sensitized solar cells.

    PubMed

    Zheng, Yichen; Klankowski, Steven; Yang, Yiqun; Li, Jun

    2014-07-01

    A TiO2 barrier layer is critical in enhancing the performance of dye-sensitized solar cells (DSSCs). Two methods to prepare the TiO2 barrier layer on fluorine-doped tin dioxide (FTO) surface were systematically studied in order to minimize electron-hole recombination and electron backflow during photovoltaic processes of DSSCs. The film structure and materials properties were correlated with the photovoltaic characteristics and electrochemical properties. In the first approach, a porous TiO2 layer was deposited by wet chemical treatment of the sample with TiCl4 solution for time periods varying from 0 to 60 min. The N719 dye molecules were found to be able to insert into the porous barrier layers. The 20 min treatment formed a nonuniform but intact TiO2 layer of ∼100-300 nm in thickness, which gave the highest open-circuit voltage VOC, short-circuit photocurrent density JSC, and energy conversion efficiency. But thicker TiO2 barrier layers by this method caused a decrease in JSC, possibly limited by lower electrical conductance. In the second approach, a compact TiO2 barrier layer was created by sputter-coating 0-15 nm Ti metal films on FTO/glass and then oxidizing them into TiO2 with thermal treatment at 500 °C in the air for 30 min. The dye molecules were found to only attach at the outer surface of the barrier layer and slightly increased with the layer thickness. These two kinds of barrier layer showed different characteristics and may be tailored for different DSSC studies. PMID:24927111

  19. Improved properties of dye-sensitized solar cells by multifunctional scattering layer of yolk-shell-like TiO2 microspheres

    NASA Astrophysics Data System (ADS)

    Guo, Kaimo; Li, Meiya; Fang, Xiaoli; Bai, Lihua; Luoshan, Mengdai; Zhang, Fuping; Zhao, Xingzhong

    2014-10-01

    Novel yolk-shell-like TiO2 hierarchical microspheres (YSTHSs) were synthesized by a facile one-pot hydrothermal method. These YSTHSs exhibited excellent light scattering ability and high specific surface area for more dye adsorption. A YSTHSs multifunctional scattering layer was fabricated on top of a conventional TiO2 nanocrystalline layer (T) to form a heterostructure bilayer photoanode (T-YSTHS). The influences of the YSTHSs on the properties of the photoanode and dye-sensitized solar cell (DSSC) were investigated. Studies indicated that by introducing the YSTHSs, the light scattering, dye loading, electron mobility and lifetime of this bilayer photoanode were remarkably increased, resulting in the great enhancement in the short-circuit current density (Jsc) and thus the photoelectric conversion efficiency (PCE) of the DSSCs. This T-YSTHS based DSSC exhibited the maximum Jsc of 16.35 mA cm-2 and PCE of 6.01%, remarkably higher than those of the conventional TiO2 nanocrystalline (2T)-based DSSC by 27.1% and 20.4%, respectively. The remarkable enhancement in Jsc and PCE for the T-YSTHS-based DSSC compared to the 2T-based DSSCs are mainly attributed to the significant enhancement in light scattering and the increase in the specific surface area for dye adsorption due to the unique yolk-shell hierarchical microsphere structure of the YSTHSs.

  20. Combination of optical and electrical loss analyses for a Si-phthalocyanine dye-sensitized solar cell.

    PubMed

    Lin, Keng-Chu; Wang, Lili; Doane, Tennyson; Kovalsky, Anton; Pejic, Sandra; Burda, Clemens

    2014-12-11

    In order to promote the development of solar cells with varying types of sensitizers including dyes and quantum dots, it is crucial to establish a general experimental analysis that accounts for all important optical and electrical losses resulting from interfacial phenomena. All of these varying types of solar cells share common features where a mesoporous scaffold is used as a sensitizer loading support as well as an electron transport material, which may result in light scattering. The loss of efficiency at interfaces of the sensitizer, the mesoporous TiO2 nanoparticle films, the FTO conductive layer, and the supportive glass substrate should be considered in addition to the photoinduced electron transport properties within a cell. On the basis of optical parameters, one can obtain the internal quantum efficiency (IQE) of a solar cell, an important parameter that cannot be directly measured but must be derived from several key experiments. By integrating an optical loss model with an electrical loss model, many solar cell parameters could be characterized from electro-optical observables including reflectance, transmittance, and absorptance of the dye sensitizer, the electron injection efficiency, and the charge collection efficiency. In this work, an integrated electro-optical approach has been applied to SiPc (Pc 61) dye-sensitized solar cells for evaluating the parameters affecting the overall power conversion efficiency. The absorptance results of the Pc 61 dye-sensitized solar cell provide evidence that the adsorbed Pc 61 forms noninjection layers on TiO2 surfaces when the dye immersion time exceeds 120 min, resulting in shading light from the active layer rather than an increase in photoelectric current efficiency. PMID:24922464

  1. Optoelectronic and Photovoltaic Performances of Pyridine Based Monomer and Polymer Capped ZnO Dye-Sensitized Solar Cells.

    PubMed

    Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet

    2016-06-01

    The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations. PMID:27427659

  2. DFT and TD-DFT study on geometries, electronic structures and electronic absorption of some metal free dye sensitizers for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mohr, T.; Aroulmoji, V.; Ravindran, R. Samson; Müller, M.; Ranjitha, S.; Rajarajan, G.; Anbarasan, P. M.

    2015-01-01

    The geometries, electronic structures, polarizabilities and hyperpolarizabilities of 2-hydroxynaphthalene-1,4-dione (henna1), 3-(5-((1E)-2-(1,4-dihydro-1,4-dioxonaphthalen-3-yloxy) vinyl) thiophen-2-yl)-2-isocyanoacrylic acid (henna2) and anthocyanin dye sensitizers were studied based on density functional theory (DFT) using the hybrid functional B3LYP. The Ultraviolet-Visible (UV-Vis) spectrum was investigated by using a hybrid method which combines the properties and dynamics of many-body in the presence of time-dependent (TD) potentials, i.e. TDSCF-DFT (B3LYP). Features of the electronic absorption spectrum in the visible and near-UV regions were plotted and assigned based on TD-DFT calculations. Due to the absorption, bands of the metal-organic compound are n → π* present. The calculated results suggest that the three lowest energy excited states of the investigated dye sensitizers are due to photoinduced electron transfer processes. The interfacial electron transfer between semiconductor TiO2 electrode and dye sensitizer is owing to an electron injection process from excited dye to the semiconductor's conduction band. The role of linking the henna1 dye with a carboxylic acid via a thiophene bridge was analyzed. The results are that using a stronger π-conjugate bridge as well as a strong donator and acceptor group enhances the efficiency.

  3. Polymer electrolyte system based on carrageenan-poly(3,4- ethylenedioxythiophene) (PEDOT) composite for dye sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Ng, C. A.; Camacho, D. H.

    2015-06-01

    Poly(3,4-ethylenedioxythiophene) (PEDOT)-κ-carregeenan polymer electrolyte blend was prepared and incorporated as the electrolyte system in dye-sensitized solar cells (DSSC). Polymer blends prepared with different κ-carrageenan concentrations and molecular weights were investigated. It was found that the conductivity of the polymer blend increases with higher κ-carrageenan concentration, and lowers with degraded κ-carregeenan. The polymer blend was incorporated in a DSSC and yielded a solar cell with efficiency (η) of 0.421%.

  4. Toward rational design of organic dye sensitized solar cells (DSSCs): an application to the TA-St-CA dye.

    PubMed

    Mohammadi, Narges; Mahon, Peter J; Wang, Feng

    2013-03-01

    A computer aided rational design has been performed on TA-St-CA dye sensitizer in order to improve the desirable properties for new organic dye sensitized solar cell (DSSC). A number of electron-donating (ED) and electron-withdrawing (EW) units based on Dewar's rules are substituted into the π-conjugated oligo-phenylenevinylene bridge of the reference TA-St-CA dye. The effects of these alternations on the molecular structures and the electron absorption spectra are calculated using time-dependant density functional theory (TDDFT). It is found that chemical modifications using electron donating (ED) substitutions exhibit advantages over the electron withdrawing (EW) substitutes to reduce the HOMO-LUMO energy gap as well as the electron distribution of the frontier orbitals of the new dyes. Dewar's rule is a useful guideline for rational design of new dye sensitizers with desired HOMO-LUMO gap. The impact on the optical spectra of new dyes are, however, less significant. PMID:23353583

  5. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application.

    PubMed

    Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph P; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong

    2016-01-21

    Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm(-2) and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance

  6. Dye sensitized photovoltaic miniaturized solar cells, used as optical sensors for line of sight detection

    NASA Astrophysics Data System (ADS)

    Cesar, Cortes Torres Carlos; Sampei, Kota; Miho, Ogawa; Masataka, Ozawa; Norihisa, Miki

    2014-11-01

    Dye sensitized photovoltaic devices have been studied as transparent and low-cost solar cells. Our group have miniaturized the cells and used them as transparent optical sensors. This paper reports the design and fabrication of the cells and avoids the cross talk among cells, which was found recently and such effect provokes hardware instability. We use these optical sensors as an eye tracking device. The sensor array detects the difference in the intensity of light reflected from the pupil and the sclera and then determines the pupil position. Each sensor consists of two electrodes and electrolyte; hence our device conformed by only four semi-circular shaped sensors on eyeglasses can detect the view angle in both horizontal and vertical directions. Manufacturing process gives us freedom to easily re-arrange, add or remove sensors. In our prior work we had good performance in stand-alone configuration. We used specialized equipment from National Instruments for our measurements. However we found that: A cell is not 100% independent from the others, is affected by the absence or presence of light at the neighbour cells. When our device is connected to other electronic devices (for data processing), all cells have the same voltage among them; therefore, all cells behave the same way when any of them is affected by light. The root cause is, due to all sensors were interconnected via a micro channel and filled with electrolyte, due to its conductive properties, electrolyte does neither need electrodes nor physical paths to conduct electricity, so it creates a liquid wire between sensors, hence the gap between them become inexistent, consequently when our device is connected to other electronic devices, due to this unique channel and by sharing a common electronic ground, this connection provokes the voltage to be the same among all sensors in the array. Our device becomes four separate voltage lines in a parallel circuit. The device was also in short circuit provoked

  7. Dye sensitized solar cells based on nanowire sculptured thin film titanium dioxide photoanodes

    NASA Astrophysics Data System (ADS)

    Pursel, Sean M.

    Energy harvested from the sun using photovoltaics (PVs) is a renewable resource in high demand. Photovoltaics convert photons into electron-hole pairs which are then separated and used for electrical power. 75 TW of energy arrives from the sun every year onto US soil. Harvesting it all would provide enough energy to power the entire world for more than five years. It is this abundance of energy that makes PVs an attractive alternative to fossil fuels. PVs currently produce 0.15% of the energy consumed in the US. Production needs to grow as the worldwide demand for energy is projected to almost double by 2050. Fundamental and device based PV research have made steady efficiency gains in silicon based devices and thin film devices have started to become commercially viable. However, less expensive devices with suitable efficiency have not been fully developed. Dye sensitized solar cells (DSSCs) are one such device which has been optimized using standard components. However, device efficiency has not increased significantly since DSSCs were first conceived in 1991. Interestingly, none of the standard components are optimized, but act in a synergistic way in the most efficient devices. This research, along with other parallel research, attempts to optimize a single component of DSSCs with the goal of combining efforts to produce a device with increased efficiency. This research attempts to optimize the TiO2 photoanode used in DSSCs in terms of electron collection, dye coverage, light harvesting, and novel electrolyte infiltration by replacing the standard colloidal structure with nanowires deposited using physical vapor deposition at an oblique angle to form sculptured thin films. The results are quantified through standard photovoltaic testing, electrochemical impedance spectroscopy, UV-Vis-NIR spectroscopy, and general materials characterization techniques. The nanowire photoanodes are engineered during deposition using reactive evaporation, substrate heating

  8. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells

    SciTech Connect

    Chang, Ho; Lo, Yu-Jen

    2010-10-15

    This study employs chlorophyll extract from pomegranate leaf and anthocyanin extract from mulberry fruit as the natural dyes for a dye-sensitized solar cell (DSSC). A self-developed nanofluid synthesis system is employed to prepare TiO{sub 2} nanofluid with an average particle size of 25 nm. Electrophoresis deposition was performed to deposit TiO{sub 2} nanoparticles on the indium tin oxide (ITO) conductive glass, forming a TiO{sub 2} thin film with the thickness of 11 {mu}m. Furthermore, this TiO{sub 2} thin film was sintered at 450 C to enhance the thin film compactness. Sputtering was used to prepare counter electrode by depositing Pt thin film on FTO glass at a thickness of 20 nm. The electrodes, electrolyte (I{sub 3}{sup -}), and dyes were assembled into a cell module and illuminated by a light source simulating AM 1.5 with a light strength of 100 mW/cm{sup 2} to measure the photoelectric conversion efficiency of the prepared DSSCs. According to experimental results, the conversion efficiency of the DSSCs prepared by chlorophyll dyes from pomegranate leaf extract is 0.597%, with open-circuit voltage (V{sub OC}) of 0.56 V, short-circuit current density (J{sub SC}) of 2.05 mA/cm{sup 2}, and fill factor (FF) of 0.52. The conversion efficiency of the DSSCs prepared by anthocyanin dyes from mulberry extract is 0.548%, with V{sub OC} of 0.555 V and J{sub SC} of 1.89 mA/cm{sup 2} and FF of 0.53. The conversion efficiency is 0.722% for chlorophyll and anthocyanin as the dye mixture, with V{sub OC} of 0.53 V, J{sub SC} of 2.8 mA/cm{sup 2}, and FF of 0.49. (author)

  9. Spectroscopic and photoelectrochemical studies of metal-free dyes for applications in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Mulhern, Kacie Ryan

    In this dissertation, we present a series of novel chalcogenorhodamine dyes bearing phosphonic acids and carboxylic acids for sensitizers of nanocrystalline TiO2 in dye-sensitized solar cells (DSCs). We studied the effect of surface-attachment functionality and aggregation on the persistence, electron transfer reactivity, and overall photoelectrochemical performance of the dyes on TiO2 for DSCs. The dyes were constructed around a 3,6-bis(dimethylamino)chalcogenoxanthylium core and varied in the 9-substituent: 5-carboxythien-2-yl in dyes 1-E (E = O, Se), 2-carboxythien-3-yl in dyes 2-E (E = Se), 5-phosphonothien-2-yl in dyes 3-E (E = O, Se), 4-carboxyphenyl in dyes 4-E (E = O, S), and 4-phosphonophenyl in dyes 5-E (E = O, Se). Monolayers of 1-E, 3-E, 4-E, and 5-E on nanocrystalline TiO2 films consisted of both H-aggregated and non-aggregated dyes, whereas 2-E underwent little or no aggregation upon adsorption. With the exception of 2-E, surface coverages of dyes and the extent of H-aggregation varied minimally with surface-attachment functionality, structure of the 9-aryl group, and identity of the chalcogen heteroatom. Carboxylic acid-functionalized dyes 1-E and 4-E desorbed rapidly and completely from TiO2 into acidified CH3CN, but phosphonic acid-functionalized dyes 3-E and 5-E persisted on TiO2 for days. We used transient absorption spectroscopy to characterize excited-state electron injection from a 1-Se, 2-Se, and 3-Se to TiO2. Injection of electrons from photoexcited dyes into TiO2 yielded the dication radical (1-Se +, 2-Se+, and 3-Se +) and an associated transient absorption at wavelengths shorter than 540 nm, the amplitude of which was proportional to the quantum yield of electron injection (Qinj). Our data reveal the Qinj for H-aggregated 1-Se was approximately 2-fold greater than Q inj for non-aggregated 1-Se and approximately 3-fold greater than Qinj for non-aggregated 2-Se. Additionally, the Qinj from H-aggregated 3-Se was (2.0 +/- 1.3)-fold greater

  10. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes

    NASA Astrophysics Data System (ADS)

    Paulose, Maggie; Shankar, Karthik; Varghese, Oomman K.; Mor, Gopal K.; Hardin, Brian; Grimes, Craig A.

    2006-03-01

    Backside illuminated solar cells based on 6 µm long highly-ordered nanotube-array films sensitized by a self-assembled monolayer of bis(tetrabutylammonium)-cis-(dithiocyanato)- N,N'-bis(4-carboxylato-4'-carboxylic acid-2, 2'-bipyridine)ruthenium(II) (commonly called 'N719') show a short-circuit current density of 8.79 mA cm-2, 841 mV open circuit potential and a 0.57 fill factor yielding a power conversion efficiency of 4.24% under AM 1.5 sun. The solvent used to infiltrate the dye into the nanotube arrays, made by potentiostatic anodization of a titanium foil, was found to significantly influence the electrical characteristics of the resulting solar cell. A superior photoresponse was obtained with acetonitrile as the dye solvent. This is attributed to the improved wetting characteristics of the dye solution in acetonitrile enabling self-assembled monolayers with higher surface coverage to be formed inside the nanotubes. In comparison to nanocrystalline films, the nanotube-array films consistently exhibit larger open circuit photovoltage values; the origins of this enhancement are discussed.

  11. Plasmonic gold nanoparticles for ZnO-nanotube photoanodes in dye-sensitized solar cell application

    NASA Astrophysics Data System (ADS)

    Abd-Ellah, Marwa; Moghimi, Nafiseh; Zhang, Lei; Thomas, Joseph. P.; McGillivray, Donald; Srivastava, Saurabh; Leung, Kam Tong

    2016-01-01

    Surface modification of nanostructured metal oxides with metal nanoparticles has been extensively used to enhance their nanoscale properties. The unique properties of metal nanoparticles associated with their controllable dimensions allow these metal nanoparticles to be precisely engineered for many applications, particularly for renewable energy. Here, a simple electrodeposition method to synthesize gold nanoparticles (GNPs) on electrochemically grown ZnO nanotubes (NTs) is reported. The size distribution and areal density of the GNPs can be easily controlled by manipulating the concentration of AuCl3 electrolyte solution, and the deposition time, respectively. An excellent enhancement in the optical properties of ZnO NTs surface-decorated with GNPs (GNP/ZnO-NT), especially in the visible region, is attributed to their surface plasmon resonance. The plasmonic effects of GNPs, together with the large specific surface area of ZnO NTs, can be used to significantly enhance the dye-sensitized solar cell (DSSC) properties. Furthermore, the Schottky barrier at the Au/ZnO interface could prevent electron back transfer from the conduction band of ZnO to the redox electrolyte and thus could substantially increase electron injection in the ZnO conduction band, which would further improve the overall performance of the constructed DSSCs. The GNP/ZnO-NT photoanode has been found to increase the efficiency of the DSSC significantly to 6.0% from 4.7% of the pristine ZnO-NT photoanode, together with corresponding enhancements in short-circuit current density from 10.4 to 13.1 mA cm-2 and in fill factor from 0.60 to 0.75, while the open-circuit voltage remain effectively unchanged (from 0.60 to 0.61 V). Surface decoration with GNPs therefore provides an effective approach to creating not only a high specific surface area for superior loading of dye molecules, but also higher absorbance capability due to their plasmonic effect, all of which lead to excellent performance enhancement

  12. Effects of benzo-annelation of asymmetric phthalocyanine on the photovoltaic performance of dye-sensitized solar cells.

    PubMed

    Yu, Lijuan; Shi, Wenye; Lin, Li; Liu, Yuwen; Li, Renjie; Peng, Tianyou; Li, Xingguo

    2014-06-14

    Novel highly asymmetric zinc tetraazaporphyrin (TAP) derivatives (Zn-tri-TAPNc and Zn-tri-PcNc) with one carboxyl and three tert-butyl peripheral substituent groups were synthesized. A highly asymmetric zinc phthalocyanine (ZnPc) derivative (Zn-tri-PcNc) has a benzo-annelated ring which contains tribenzonaphtho-condensed tetraazaporphyrin with the same peripheral substituents as Zn-tri-TAPNc. As a sensitizer for the TiO2-based dye-sensitized solar cell, Zn-tri-PcNc derived from the benzo-annelation of the TAP macrocycle showed improved light harvesting and electron injection efficiency, which can retard the charge recombination, resulting in a great improvement in the incident photon-to-current conversion efficiency (IPCE). The Zn-tri-PcNc-sensitized solar cell exhibited a higher conversion efficiency (2.89%) than the Zn-tri-TAPNc-sensitized one (1.20%) under AM 1.5G solar irradiation. The present results on the TAP macrocycle's benzo-annelation demonstrate that optimization of molecular structure via changing the peripheral substituent group's "push-pull" effect and enlarging the conjugated π-system is an effective approach to improve the performance of the tetraazaporphyrin-based dye-sensitized solar cell. PMID:24740460

  13. Self-ordering anodized nanotubes: Enhancing the performance by surface plasmon for dye-sensitized solar cell

    SciTech Connect

    Agarwala, S.; Ho, G.W.

    2012-05-15

    In the present work, electrochemical anodization has been used to prepare uniform TiO{sub 2} nanotube array photoelectrode. The average internal diameter, tube length and wall thickness of the optimized morphology is {approx}180 nm, 14 {mu}m and 10 nm, respectively. It was found that the tube diameter increases with the anodization voltage. Diffraction data reveals that the nanotubes consist solely of anatase phase. Back illuminated geometry of dye-sensitized solar cell (DSSC), with nanotubes grown at 60 V for 2 h, gave a cell performance of 4.5%. TiO{sub 2} nanotubes are loaded with silver (Ag) nanoparticles synthesized by a hydrothermal route. The Ag particle size is controlled resulting in solar conversion efficiency to increase by 22%. The DSSC based on TiO{sub 2} nanotube with Ag nanoparticles shows power conversion efficiency of 5.5%. Detailed characterization are performed, presented and discussed. - Graphical abstract: Enhanced solar conversion efficiency of dye-sensitized solar cells by decorating TiO{sub 2} nanotube array with Ag nanoparticles. Highlights: Black-Right-Pointing-Pointer Uniform array of TiO{sub 2} nanotubes synthesized via electrochemical anodization. Black-Right-Pointing-Pointer Back illuminated DSSC gave a cell performance of 4.5%. Black-Right-Pointing-Pointer TiO{sub 2} nanotubes are loaded with Ag nanoparticles, which increased the power conversion efficiency to 5.5%.

  14. Facile and quick preparation of carbon nanohorn-based counter electrodes for efficient dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lodermeyer, F.; Prato, M.; Costa, R. D.; Guldi, D. M.

    2016-03-01

    For the first time, Pt-free counter electrodes based on carbon nanohorns for highly efficient dye-sensitized solar cells were assembled by a facile and fast drop cast technique. These novel electrodes feature an effective catalytic behavior towards the reduction of I3- and, as such, afford even higher short-circuit current densities compared to Pt-based references. In a final device, solar cells with 7.7% efficiency were achieved.For the first time, Pt-free counter electrodes based on carbon nanohorns for highly efficient dye-sensitized solar cells were assembled by a facile and fast drop cast technique. These novel electrodes feature an effective catalytic behavior towards the reduction of I3- and, as such, afford even higher short-circuit current densities compared to Pt-based references. In a final device, solar cells with 7.7% efficiency were achieved. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00629a

  15. Self-assembled monolayer of graphene/Pt as counter electrode for efficient dye-sensitized solar cell.

    PubMed

    Gong, Feng; Wang, Hong; Wang, Zhong-Sheng

    2011-10-21

    Monolayer of PDDA/graphene/PDDA/H(2)PtCl(6) is fabricated on conductive glass using electrostatic layer-by-layer self-assembly technique, which is then converted to graphene/Pt monolayer for use as counter electrode in dye-sensitized solar cell (DSSC). As compared to the sputtered Pt counter electrode, the self-assembled monolayer reduces the Pt amount by about 1000-fold but exhibits comparable photovoltaic performance. This finding provides a new route to fabrication of cheap and efficient counter electrodes for flow-line production of DSSCs. PMID:21909512

  16. Dysprosium, holmium and erbium ions doped indium oxide nanotubes as photoanodes for dye sensitized solar cells and improved device performance.

    PubMed

    Miao, Chuang; Chen, Cong; Dai, Qilin; Xu, Lin; Song, Hongwei

    2015-02-15

    In this work, rare earth (RE) ion RE(3+) (RE(3+)=Dy(3+), Ho(3+) and Er(3+)) doped and undoped In2O3 nanotubes are synthesized by the electrospinning method and the band gap of In2O3 is systemically controlled, depending on the order of doped elements. Dye-sensitized solar cells (DSSCs) based on In2O3:RE(3+) nanotubes are also fabricated, and significantly improved performance of In2O3-DSSC is observed due to the modulation of the band gap, larger recombination charge transfer resistance and longer electron lifetime. PMID:25460702

  17. Flexible and compressible Goretex-PEDOT membrane electrodes for solid-state dye-sensitized solar cells.

    PubMed

    Mozer, Attila J; Panda, Dillip Kumar; Gambhir, Sanjeev; Romeo, Tony C; Winther-Jensen, Bjorn; Wallace, Gordon G

    2010-02-01

    A porous, flexible electrode based on a PTFE (Teflon) membrane (Goretex) coated with a metallic current collector and a conducting polymer (poly(3,4-ethylenedioxythiophene), PEDOT) has been developed for applications in solid-state dye-sensitized solar cells. Its low sheet resistance and compressibility make it an ideal electrode on uneven TiO(2) surfaces with high efficiency and reproducibility. The porous nature of the electrode enables the feed-through of reactants and treatment agents, which opens up exciting opportunities to interface these photoelectrochemical devices with electrocatalytic, energy conversion, and storage systems. Postfabrication bonding of the photoanode and the Goretex-Au-PEDOT electrode is demonstrated. PMID:19902936

  18. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    NASA Astrophysics Data System (ADS)

    Fakharuddin, Azhar; Ahmed, Irfan; Khalidin, Zulkeflee; Yusoff, Mashitah M.; Jose, Rajan

    2014-02-01

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (˜14 μm) and show lower current density (JSC) compared with their single cells. We found out that the key to achieving higher JSC in large area devices is optimized photoelectrode volume (VD), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased JSC and ˜60% increment in photoelectric conversion efficiency in photoelectrodes of similar VD (˜3.36 × 10-4 cm3) without using any metallic grid or a special interconnections.

  19. Pyrimidine-2-carboxylic Acid as an Electron-Accepting and Anchoring Group for Dye-Sensitized Solar Cells.

    PubMed

    Wu, Zhifang; Li, Xin; Ågren, Hans; Hua, Jianli; Tian, He

    2015-12-01

    We report a new dye (INPA) adopting pyrimidine-2-carboxylic acid as an electron-accepting and anchoring group to be used in dye-sensitized solar cells. IR spectral analysis indicates that the anchoring group may form two coordination bonds with TiO2 and so facilitate the interaction between the anchoring group and TiO2. The INPA-based cell exhibits an overall conversion efficiency of 5.45%, which is considerably higher than that obtained with cyanoacrylic acid commonly used as the electron acceptor. PMID:26581583

  20. Fluorine doped tin oxide film with high haze and transmittance prepared for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Otsuka, Rena; Endo, Takeshi; Takano, Takafumi; Takemura, Shuichiro; Murakami, Ryo; Muramoto, Ryosuke; Madarász, János; Okuya, Masayuki

    2015-08-01

    Fluorine doped tin oxide (FTO) transparent conductive oxide (TCO) film for dye-sensitized solar cell (DSSC) was investigated. Haze of the incident light through TCO film was easily tuned by controlling the surface morphology of FTO deposited on tin doped indium oxide (ITO) nano-particle seed layer pre-coated on a glass substrate, and the light harvest within the cell was effectively enhanced with high haze TCO film. The conversion efficiency of DSSC fabricated with TCO film with the haze of 30.1% reached as high as 7.7%, attributing to the consequence of the effective light harvest with the scattering within the cell.

  1. A branching NiCuPt alloy counter electrode for high-efficiency dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Yang, Peizhi; Tang, Qunwei

    2016-01-01

    A rising objective for high-efficiency dye-sensitized solar cells (DSSCs) is to create extraordinary and cost-effective counter electrode (CE) electrocatalysts. We present here a branching NiCuPt alloy CE synthesized by electrodepositing Ni on ZnO microrod templates and subsequently growing branched Cu as well as suffering from a galvanic displacement for Pt uptake. The resultant NiCuPt alloy CE displays a promising electrocatalytic activity toward redox electrolyte having I-/I3- couples. An impressive power conversion efficiency of 9.66% is yielded for the liquid-junction DSSC platform.

  2. Enhanced efficiency of the dye-sensitized solar cells by excimer laser irradiated carbon nanotube network counter electrode

    SciTech Connect

    Chien, Yun-San Fu, Wei-En; Yang, Po-Yu; Lee, I-Che; Chu, Chih-Chieh; Chou, Chia-Hsin; Cheng, Huang-Chung

    2014-02-03

    The carbon nanotube network decorated with Pt nanoparticles (PtCNT) irradiated by excimer laser as counter electrode (CE) of dye-sensitized solar cells (DSSCs) has been systematically demonstrated. The conversion efficiency would be improved from 7.12% to 9.28% with respect to conventional Pt-film one. It was attributed to the enhanced catalytic surface from Pt nanoparticles and the improved conductivity due to the adjoining phenomenon of PtCNTs irradiated by laser. Moreover, the laser annealing could also promote the interface contact between CE and conductive glass. Therefore, such a simple laser-irradiated PtCNT network is promising for the future flexible DSSCs applications.

  3. Does the Donor-π-Acceptor Character of Dyes Improve the Efficiency of Dye-Sensitized Solar Cells?

    PubMed

    Ip, Chung Man; Troisi, Alessandro

    2016-08-01

    We quantified the donor-π-acceptor (D-π-A) character of a large number of dyes (116) used in dye-sensitized solar cells (DSSCs) and correlated them with the power conversion efficiency of the corresponding cell. The result indicates that there is no correlation between different measures of D-π-A strength and efficiency; that is, the effect of the D-π-A character is completely washed out by other effects. We propose that other design rules should be identified by statistically testing them against the now rich set of experimentally available data. PMID:27434300

  4. Self-assembled molecular p/n junctions for applications in dye-sensitized solar energy conversion.

    PubMed

    Farnum, Byron H; Wee, Kyung-Ryang; Meyer, Thomas J

    2016-09-01

    The achievement of long-lived photoinduced redox separation lifetimes has long been a central goal of molecular-based solar energy conversion strategies. The longer the redox-separation lifetime, the more time available for useful work to be extracted from the absorbed photon energy. Here we describe a novel strategy for dye-sensitized solar energy applications in which redox-separated lifetimes on the order of milliseconds to seconds can be achieved based on a simple toolkit of molecular components. Specifically, molecular chromophores (C), electron acceptors (A) and electron donors (D) were self-assembled on the surfaces of mesoporous, transparent conducting indium tin oxide nanoparticle (nanoITO) electrodes to prepare both photoanode (nanoITO|-A-C-D) and photocathode (nanoITO|-D-C-A) assemblies. Nanosecond transient-absorption and steady-state photolysis measurements show that the electrodes function microscopically as molecular analogues of semiconductor p/n junctions. These results point to a new chemical strategy for dye-sensitized solar energy conversion based on molecular excited states and electron acceptors/donors on the surfaces of transparent conducting oxide nanoparticle electrodes. PMID:27554411

  5. Improved conversion efficiency of dye sensitized solar cell using Zn doped TiO2-ZrO2 nanocomposite

    NASA Astrophysics Data System (ADS)

    Tomar, Laxmi J.; Bhatt, Piyush J.; Desai, Rahul K.; Chakrabarty, B. S.; Panchal, C. J.

    2016-05-01

    TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were prepared by hydrothermal method for dye sensitized solar cell (DSSC) application. The structural and optical properties were investigated by X -ray diffraction (XRD) and UV-Visible spectroscopy respectively. XRD results revealed the formation of material in nano size. The average crystallite size is 22.32 nm, 17.41 nm and 6.31 nm for TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites respectively. The optical bandgap varies from 2.04 eV to 3.75 eV. Dye sensitized solar cells were fabricated using the prepared material. Pomegranate juice was used as a sensitizer and graphite coated conducting glass plate was used as counter electrode. The I - V characteristics were recorded to measure photo response of DSSC. Photovoltaic parameter like open circuit voltage, power conversion efficiency, and fill factor were evaluated for fabricated solar cell. The power conversion efficiency of DSSC fabricated with TiO2, TiO2-ZrO2 and Zn doped TiO2-ZrO2 nanocomposites were found 0.71%, 1.97% and 4.58% respectively.

  6. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ananth, S.; Vivek, P.; Arumanayagam, T.; Murugakoothan, P.

    2014-07-01

    Natural dye extract of lawsonia inermis seed were used as photo sensitizer to fabricate titanium dioxide nanoparticles based dye sensitized solar cells. Pure titanium dioxide (TiO2) nanoparticles in anatase phase were synthesized by sol-gel technique and pre dye treated TiO2 nanoparticles were synthesized using modified sol-gel technique by mixing lawsone pigment rich natural dye during the synthesis itself. This pre dye treatment with natural dye has yielded colored TiO2 nanoparticles with uniform adsorption of natural dye, reduced agglomeration, less dye aggregation and improved morphology. The pure and pre dye treated TiO2 nanoparticles were subjected to structural, optical, spectral and morphological studies. Dye sensitized solar cells (DSSC) fabricated using the pre dye treated and pure TiO2 nanoparticles sensitized by natural dye extract of lawsonia inermis seed showed a promising solar light to electron conversion efficiency of 1.47% and 1% respectively. The pre dye treated TiO2 based DSSC showed an improved efficiency of 47% when compared to that of conventional DSSC.

  7. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    PubMed Central

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  8. Retarded hydrolysis-condensing reactivity of tetrabutyl titanate by acetylacetone and the application in dye-sensitized solar cells

    SciTech Connect

    Zhou, Conghua Ouyang, Jun; Yang, Bingchu

    2013-10-15

    Graphical abstract: - Highlights: • Effect of acetone acetyl on coarsening rate of TiO{sub 2} nanocrystallites was studied. • Hydrolysis reactivity of alkoxide was retarded with addition of acetone acetyl. • Coarsening rate of TiO{sub 2} nanocrystallites is retarded with addition of acetone acetyl. • The synthesized TiO{sub 2} sols were utilized in dye sensitized solar cells. • Small particles formed by Ti-complexes were beneficial for device performance. - Abstract: TiO{sub 2} nanocrystallites have been synthesized by hydrothermal reaction using tetrabutyl titanate as source material. Acetylacetone was utilized to modify hydrolysis-condensation behavior of the alkoxide and thus coarsening dynamics of TiO{sub 2} nanocrystallites in the reaction. With assistance of Fourier transformation infrared spectrum, transmission electron microscopy, selected area electron diffraction and X-ray diffraction, interaction between acetylacetone and tetrabutyltitanate was explored, crystallographic and morphological properties of TiO{sub 2} nanocrystallites were monitored. Less hydrolysable complex was formed by “method of chelating” as tetrabutyltitanate was mixed with acetylacetone, leading to retarded coarsening rate of nanocrystallites. The obtained TiO{sub 2} nanocrystallites were applied to fabricate nanoporous photoanode of dye sensitized solar cells. Improvement of 18% has been achieved for photo-to-electric energy conversion efficiency of the devices due to both upgraded open circuit voltage and photocurrent density.

  9. Properties of dye-sensitized solar cells with TiO2 passivating layers prepared by electron-beam evaporation.

    PubMed

    Jin, Young Sam; Choi, Hyung Wook

    2012-01-01

    The aim of this work is to prevent back transfer of electrons due to direct contact between the electrolyte and the FTO glass substrate using a TiO2 passivating layer. The TiO2 passivating layer was deposited on FTO glass by e-beam evaporation. The TiO2 film was prepared with different deposition rates. The specific surface area was reduced with increasing deposition rate. The nanoporous TiO2 upper layer was coated by screen-printing on the TiO2 passivating layer prepared by e-beam evaporation. The optical transmittance and absorbance of the TiO2 films depend on the morphology of the TiO2 passivating layer. The dye-sensitized solar cells influenced the surface morphology of the TiO2 passivating layer. The dye-sensitized solar cell using the TiO2 passivating layer recorded a maximum conversion efficiency of 4.93% due to effective prevention of the electron recombination to the electrolyte. PMID:22524036

  10. Theoretical insight on novel donor-acceptor exTTF-based dyes for dye-sensitized solar cells.

    PubMed

    Calbo, Joaquín; Viruela, Pedro M; Ortí, Enrique

    2014-04-01

    A thorough density functional theory study is performed for the three carboxyl-based derivatives of the exTTF-TCF chromophore, where the π-extended tetrathiafulvalene (exTTF) electron-donor is linked to the tricyanofuran (TCF) electron-acceptor through an ethylene bridge, as dyes for dye-sensitized solar cells. Calculations predict that the carboxyl group in the acceptor moiety adopts an adequate orientation for an efficient anchoring on the semiconductor TiO₂ surface. The carboxylic acid group holds a negative charge twice larger than the cyano moiety that favors the electron injection to the semiconductor. Time-dependent calculations allow for the assignment of the absorption bands in the UV-vis spectrum of exTTF-TCF and confirm the presence of two low-lying charge-transfer electronic transitions that account for the moderately-intense absorption in the 450-800 nm range. The striking optical absorption properties of exTTF-TCF are preserved for the carboxylic analogues. Finally, periodic calculations show relevant topological differences between the carboxylic derivatives anchored on the TiO₂ surface, which would notably influence in the power conversion efficiency of a dye-sensitized solar cell. PMID:24643466

  11. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    NASA Astrophysics Data System (ADS)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  12. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages.

    PubMed

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J

    2016-01-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs. PMID:27404912

  13. Enhancing the efficiency of flexible dye-sensitized solar cells utilizing natural dye extracted from Azadirachta indica

    NASA Astrophysics Data System (ADS)

    Sahare, Sanjay; Veldurthi, Naresh; Singh, Ranbir; Swarnkar, A. K.; Salunkhe, Manauti; Bhave, Tejashree

    2015-10-01

    The natural dye extracted from Azadirechta indica (neem) was used as a sensitizer in flexible dye-sensitized solar cells (DSSCs). The fabricated DSSC exhibited open circuit voltage of 0.538 V with 2.81% power conversion efficiency (η) in back-illuminated mode which is higher than that reported in the literature. In order to understand the characteristics of DSSC, systematic study of solar cell component materials was carried out. Anatase TiO2 (30-40 nm) nanoparticles were synthesized by DC arc plasma method and deposited electrophoretically on a flexible titanium (Ti) substrate. A platinum-coated polyethylene terephthalate (PET) substrate was used as a counter electrode to construct flexible DSSC. The structural and optical behavior of neem-dye sensitized TiO2 thin film has been studied using x-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and UV-visible spectroscopy. We have observed that the neem dye gives a very good sensitization effect. In addition, the dye has good prospects as a low-cost and environmental friendly alternative to ruthenium-based sensitizers which are normally used in DSSCs.

  14. Quasi-solid electrolyte with polyamidoamine dendron modified-talc applied to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Andrade, Marcos A. S.; Nogueira, Ana F.; Miettunen, Kati; Tiihonen, Armi; Lund, Peter D.; Pastore, Heloise O.

    2016-09-01

    A sequence of generations of polyamidoamine dendron modified-talc, PAMAM-talc-Gn (n = 1, 3, 5 and 7), is proposed as additive in a composite gel electrolyte for dye-sensitized solar cells. Polyiodides are intercalated into the organotalc interlamellar space by adsorption of iodine vapor, producing triiodide and polyiodides. We investigate the effect of organotalc content on the charge transport in the electrolyte and solar cell performance and optimize the organotalc content. Without the previous adsorption of iodine molecules, the organotalcs appear to remove iodine from the electrolyte solution decreasing device's performance significantly. Instead, the samples with additional iodide had higher Jsc and efficiency approaching the values of the reference cells containing liquid, which suggests that this kind of gelling method would be suitable for dye solar cells. Charge transport in the gel electrolyte is investigated with electrochemical impedance spectroscopy and cyclic voltammetry analyses using symmetrical CE-CE electrochemical cells.

  15. Surfactant free most probable TiO2 nanostructures via hydrothermal and its dye sensitized solar cell properties

    PubMed Central

    Mali, Sawanta S.; Kim, Hyungjin; Shim, Chang Su; Patil, Pramod S.; Kim, Jin Hyeok; Hong, Chang Kook

    2013-01-01

    Tailoring the nano-morphology and nano-architecture of titanium dioxide (TiO2) is the most important task in the third generation solar cells (Dye sensitized solar cells/Quantum dot sensitized solar cells) (DSSCs/QDSSCs). In this article we present complete study of surfactant free synthesis of TiO2 nanostructures by a simple and promising hydrothermal route. The plethora of nanostructures like nanoparticles clusters, 1D tetragonal nanorods, 3D dendrites containing nanorods having <30 nm diameter and 3D hollow urchin like have been synthesized. These nanostructures possess effective large surface area and thus useful in DSSCs. In the present work, 7.16% power conversion efficiency has been demonstrated for 3D dendritic hollow urchin like morphology. Our synthetic strategy provides an effective solution for surfactant free synthesis of efficient TiO2 nanoarchitectures. PMID:24141599

  16. Novel Ru (II) complex with TPA derivatives as a donor for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kwon, Dong Yuel; Chang, Dong Min; Kim, Young Sik

    2015-01-01

    Novel heteroleptic ruthenium(II) complex [Ru(CF3-ppyd-TPA)(tctpy)]+ (ppyd = 2-phenyl-6-(pyridin-2-yl)pyridine, TPA = triphenylamine, and tctpy = 4,4',4″-tricarboxy-2,2':6',2″-terpyridine) was designed and investigated to increase its molar absorptivity compared to [Ru(ppd)(tctpy)]+ (ppd = 2-(3-(pyridin-2-yl)phenyl)pyridine). Density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations were performed to gain insight into the factors responsible for the photovoltaic properties of a dye sensitizer. [Ru(CF3-ppyd-TPA)(tctpy)]+ showed a broad absorption spectrum and enhanced the molar extinction coefficient. Significant improvements to light absorption were exhibited by enhancing the metal-to-ligand charge transfer (MLCT) characteristics through the addition of the electron-withdrawing group-CF3 para to the organometallic bond and by increasing the transition dipole moment through the addition of TPA as an electron-donating group compared to the [Ru(ppd)(tctpy)]+. This study suggests that a ruthenium-based dye sensitizer would show improved photovoltaic performance in conversion efficiency for DSSCs by adding electron-donating and electron-withdrawing groups.

  17. Worm-like mesoporous TiO2 thin films templated using comb copolymer for dye-sensitized solar cells with polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Lee, Jae Hun; Park, Cheol Hun; Jung, Jung Pyo; Kim, Jong Hak

    2015-12-01

    A comb copolymer consisting of hydrophobic poly(2-[3-(2H-benzotriazol-2-yl)-4-hydroxyphenyl] ethyl methacrylate) (PBEM) and hydrophilic poly(oxyethylene methacrylate) (POEM) is synthesized via one-pot free radical polymerization. The PBEM-POEM comb copolymer is used as an agent to direct the structure toward one consisting of worm-like mesoporous TiO2 (WM-TiO2) films. The selective, preferential interaction between the titania precursor and the hydrophilic POEM chains is responsible for the formation of a well-organized worm-like mesostructure. The morphology of the WM-TiO2 films is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In particular, the effects of film thickness on the optical and electrochemical properties are systematically investigated. The introduction of the WM-TiO2 layer between the nanocrystalline TiO2 (NC-TiO2) layer and fluorine-doped tin oxide (FTO) glass results in increased transmittance of visible light due to an antireflective property, decreased interfacial resistance and suppressed charge recombination at the interfaces of NC-TiO2/FTO glass. As a result, the photovoltaic conversion efficiency of the dye-sensitized solar cell (DSSC) with a polymer electrolyte is improved from 5.3% to 6.6% at an optimum film thickness (310 nm). The obtained efficiency represents a higher efficiency for the N719-based DSSC with a solvent-free, polymer electrolyte.

  18. One-step process for the synthesis and deposition of anatase, two-dimensional, disk-shaped TiO₂ for dye-sensitized solar cells.

    PubMed

    Lee, Chang Soo; Kim, Jin Kyu; Lim, Jung Yup; Kim, Jong Hak

    2014-12-10

    We report a one-step process for the synthesis and deposition of anatase, two-dimensional (2D), disk-shaped TiO2 (DS-TiO2) using titanium isopropoxide (TTIP), ethyl cellulose (EC), and solvents. The planar structure of EC plays a pivotal role as the sacrificing template to generate the 2D disk-shaped structure with a thickness of 1.5-3.5 μm, while a disk-like structure was well developed in the tetrahydrofuran (THF)/toluene mixed solvent. The quasi-solid-state dye-sensitized solar cells (qssDSSCs), fabricated with a nanogel electrolyte and a DS-TiO2 layer on a nanocrystalline (NC)-TiO2 photoanode, showed an energy conversion efficiency of 5.0% without any TiCl4 post-treatment, which is higher than that fabricated without DS-TiO2 (4.2%). When utilizing a poly((1-(4-ethenylphenyl)methyl)-3-butyl-imidazolium iodide) (PEBII) as the solid electrolyte, a high efficiency of 6.6% was achieved due to the combination of high mobility PEBII and a bifunctional DS-TiO2 layer with a 2D structure and anatase phase. The bifunctionality of the DS-TiO2 layer allows greater light scattering back into the device and provides additional surface area for improved dye adsorption, resulting in short circuit current density (Jsc). PMID:25397581

  19. Synthesis, characterization and application of sol-gel derived mesoporous TiO{sub 2} nanoparticles for dye-sensitized solar cells

    SciTech Connect

    Khan, M. Alam; Shaheer Akhtar, M.; Yang, O-Bong

    2010-12-15

    Nanocrystalline mesoporous titania of anatase crystal phase were prepared by sol-gel route by varying calcination (400 C and 600 C) conditions, and the photo-electrochemical properties were investigated for dye-sensitized solar cell applications. The TTIP precursor in n-heptane solvent with ratio of water to TTIP (5:1) was found to be effective substrate for the working electrodes. The overall conversion efficiency of 7.59% was achieved under 1 sun irradiation with open circuit voltage of 0.77 V, current density of 17.00 mA/cm{sup 2} and FF of 51.12. The high efficiency of the 400 C calcined sample were attributed to its mesopores, high BET surface area (80.1 m{sup 2}/g) and large pore volume of prepared titania substrate which provide better surface for the absorption of dye, improves light harvesting efficiency and better charge injection. The prepared samples were characterized by XRD, small angle XRD, FE-SEM, TEM, IPCE, I-V curve, BET surface area and BJH plot techniques. (author)

  20. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kılıç, Bayram; Telli, Hakan; Tüzemen, Sebahattin; Başaran, Ali; Pirge, Gursev

    2015-04-01

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO2 structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO2 nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO2 owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO2 structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO2, and TiO2/ZnO hybrid structures are compared. The VA TiO2/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO2 is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO2/ZnO hybrid photoanode prepared with 15.8 wt. % TiO2 showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO2, pure TiO2, and pure ZnO photoanodes, respectively.

  1. Design of hybrid nanoheterostructure systems for enhanced quantum and solar conversion efficiencies in dye-sensitized solar cells

    SciTech Connect

    Kılıç, Bayram E-mail: kbayramkilic@gmail.com; Telli, Hakan; Başaran, Ali; Pirge, Gursev; Tüzemen, Sebahattin

    2015-04-07

    Dye sensitized solar cells (DSSCs) with an innovative design involving controlled-morphology vertically aligned (VA) ZnO nanowires within mesoporous TiO{sub 2} structures with ultrahigh surface area for implementation as photoanodes are herein reported. Although TiO{sub 2} nanostructures exhibit excellent power conversion efficiency, the electron transport rate is low owing to low electron mobility. To overcome this, ZnO nanowires with high electron mobility have been investigated as potential candidates for photoanodes. However, the power conversion efficiency of ZnO nanowires is still lower than that of TiO{sub 2} owing to their low internal surface area. Consequently, in this work, vertical growth of ZnO nanowires within mesoporous TiO{sub 2} structures is carried out to increase their solar power conversion efficiency. The photovoltaic performance of solar cells using ZnO nanowires, mesoporous TiO{sub 2}, and TiO{sub 2}/ZnO hybrid structures are compared. The VA TiO{sub 2}/ZnO hybrid structures are found to provide direct electron transfer compared with the tortuous pathway of zero-dimensional nanostructures, resulting in an increased conversion efficiency. It is demonstrated that the light scattering of the photoanode film is increased and electron recombination is decreased when an appropriate amount of mesoporous TiO{sub 2} is used as a substrate for ZnO nanowires. The DSSC fabricated with the TiO{sub 2}/ZnO hybrid photoanode prepared with 15.8 wt. % TiO{sub 2} showed the highest conversion efficiency of 7.30%, approximately 5%, 18%, and 40% higher than that of DSSCs fabricated with 3.99 wt. % TiO{sub 2}, pure TiO{sub 2}, and pure ZnO photoanodes, respectively.

  2. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.

    PubMed

    Kouhnavard, Mojgan; Ludin, Norasikin Ahmad; Ghaffari, Babak V; Sopian, Kamarozzaman; Ikeda, Shoichiro

    2015-05-11

    Dye-sensitized solar cells (DSSCs) serve as low-costing alternatives to silicon solar cells because of their low material and fabrication costs. Usually, they utilize Pt as the counter electrode (CE) to catalyze the iodine redox couple and to complete the electric circuit. Given that Pt is a rare and expensive metal, various carbon materials have been intensively investigated because of their low costs, high surface areas, excellent electrochemical stabilities, reasonable electrochemical activities, and high corrosion resistances. In this feature article, we provide an overview of recent studies on the electrochemical properties and photovoltaic performances of carbon-based CEs (e.g., activated carbon, nanosized carbon, carbon black, graphene, graphite, carbon nanotubes, and composite carbon). We focus on scientific challenges associated with each material and highlight recent advances achieved in overcoming these obstacles. Finally, we discuss possible future directions for this field of research aimed at obtaining highly efficient DSSCs. PMID:25925421

  3. Facial synthesis of SnO2 nanoparticle film for efficient fiber-shaped dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Peng, Ming; Cai, Xin; Fu, Yongping; Yu, Xiao; Liu, Suqi; Deng, Bing; Hany, Kafafy; Zou, Dechun

    2014-02-01

    SnO2 nanoparticle film is directly prepared by in situ thermal calcining isopropanol solution of tin tetraisopropoxide, and is used to construct the SnO2-TiO2 junction on titanium wire substrate. The titanium wire supported SnO2-TiO2 junction is further applied to fiber-shaped dye-sensitized solar cells (FDSCs). High efficiency of 5.8% (Normal Model) and 12.4% (Diffuse Model) are achieved. Our results indicate that Jsc enhancement derived by SnO2-TiO2 junction and the recombination shielding effect of the compact TiO2 film could synergistically contribute to high efficiencies. This study offers a novel and alternative strategy for achieving efficient SnO2-TiO2 junction based solar cells in a facile, scalable and cost-effective way.

  4. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Jiang, Hongrui

    2015-03-01

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.

  5. Dye-sensitized solar cell with natural gel polymer electrolytes and f-MWCNT as counter-electrode

    NASA Astrophysics Data System (ADS)

    Nwanya, A. C.; Amaechi, C. I.; Ekwealor, A. B. C.; Osuji, R. U.; Maaza, M.; Ezema, F. I.

    2015-05-01

    Samples of DSSCs were made with gel polymer electrolytes using agar, gelatin and DNA as the polymer hosts. Anthocyanine dye from Hildegardia barteri flower is used to sensitize the TiO2 electrode, and the spectrum of the dye indicates strong absorptions in the blue region of the solar spectrum. The XRD pattern of the TiO2 shows that the adsorption of the dye did not affect the crystallinity of the electrode. The f-MWCNT indicates graphite structure of the MWCNTs were acid oxidized without significant damage. Efficiencies of 3.38 and 0.1% were obtained using gelatin and DNA gel polymer electrolytes, respectively, for the fabricated dye-sensitized solar cells.

  6. Preparation of Nanoporous TiO2 for Dye-Sensitized Solar Cell (DSSC) Using Various Dyes

    NASA Astrophysics Data System (ADS)

    Yuliarto, Brian; Fanani, Fahiem; Fuadi, M. Kasyful; Nugraha

    2010-10-01

    This article reports the development of organic dyes as an attempt to reduce material costs of Dye-Sensitized Solar Cell (DSSC). Indonesia, a country with variety and considerable number of botanical resources, is suitable to perform the research. Indonesian black rice, curcuma, papaya leaf, and the combination were chosen as organic dyes source. Dyes were extracted using organic solvent and adsorbed on mesoporous Titanium Dioxide (TiO2) which has been optimized in our laboratory. The best dyes light absorbance and performance obtained from papaya leaf as chlorophyll dyes that gives two peaks at 432 nm and 664 nm from UV-Vis Spectrophotometry and performance under 100 mW/cm2 Xenon light solar simulator gives VOC = 0.566 Volt, JSC = 0.24 mA/cm2, Fill Factor = 0.33, and efficiency of energy conversion 0,045%.

  7. Characteristics of SnO2 nanofiber/TiO2 nanoparticle composite for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Gong, Jiawei; Qiao, Hui; Sigdel, Sudhan; Elbohy, Hytham; Adhikari, Nirmal; Zhou, Zhengping; Sumathy, K.; Wei, Qufu; Qiao, Qiquan

    2015-06-01

    SnO2 nanofibers and their composites based photoanodes were fabricated and investigated in the application of dye-sensitized solar cells. The photoanode made of SnO2/TiO2 composites yielded an over 2-fold improvement in overall conversion efficiency. The microstructure of SnO2 nanofibers was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). A compact morphology of composites was observed using scanning electron microscopy (SEM). A long charge diffusion length (62.42 μm) in the composites was derived from time constant in transient photovoltage and photocurrent analysis. These experimental results demonstrate that one-dimensional nanostructured SnO2/TiO2 composites have a great potential for application in solar cells.

  8. Optical description of solid-state dye-sensitized solar cells. I. Measurement of layer optical properties

    SciTech Connect

    Moule, Adam J.; Snaith, Henry J.; Kaiser, Markus; Klesper, Heike; Meerholz, Klaus; Huang, David M.; Graetzel, Michael

    2009-10-01

    The efficiency of a photovoltaic device is limited by the portion of solar energy that can be captured. We discuss how to measure the optical properties of the various layers in solid-state dye-sensitized solar cells (SDSC). We use spectroscopic ellipsometry to determine the complex refractive index of each of the various layers in a SDSC. Each of the ellipsometry fits is used to calculate a transmission spectrum that is compared to a measured transmission spectrum. The complexities of pore filling on the fitting of the ellipsometric data are discussed. Scanning electron microscopy and energy dispersive x-ray spectroscopy is shown to be an effective method for determining pore filling in SDSC layers. Accurate effective medium optical constants for each layer are presented and the material limits under which these optical constants can be used are discussed.

  9. Titanium dioxide/calcium fluoride nanocrystallite for efficient dye-sensitized solar cell. A strategy of enhancing light harvest

    NASA Astrophysics Data System (ADS)

    Wang, Zubin; Tang, Qunwei; He, Benlin; Chen, Xiaoxu; Chen, Haiyan; Yu, Liangmin

    2015-02-01

    Enhancement of light harvest for dye excitation is a persistent objective in dye-sensitized solar cell (DSSC). We present here the fabrication of titanium dioxide/calcium fluoride (TiO2/CaF2) photoanodes for efficient DSSC applications. Owing to the interference effect of incident light beams reflected from TiO2/CaF2 and CaF2/electrolyte interfaces, the light intensity and therefore dye excitation have been markedly enhanced. The crystal structure and therefore photovoltaic performance are optimized by adjusting CaF2 dosage. A maximum power conversion efficiency of 7.66% is measured from the DSSC employing TiO2/0.5 wt% CaF2 nanocrystallite in comparison with 6.02% for the solar cell with pristine TiO2 anode.

  10. Cost-effective, transparent iron selenide nanoporous alloy counter electrode for bifacial dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Tang, Qunwei; He, Benlin; Yu, Liangmin

    2015-05-01

    Pursuit of cost-effective and efficient counter electrodes (CEs) is a persistent objective for dye-sensitized solar cells (DSSCs). We present here the design of transparent Fe-Se nanoporous alloy CEs for bifacial DSSC applications. Due to the superior charge-transfer ability for I-/I3- redox couples, electrocatalytic reduction toward I3- species, and optical transparency in visible-light region, the bifacial DSSC with FeSe alloy electrode yields maximum front and rear efficiencies of 9.16% and 5.38%, respectively. A fast start-up, high multiple start capability, and good stability of the FeSe alloy CE demonstrate the potential applications in driving solar panels. The impressive efficiency along with simple preparation of the cost-effective Fe-Se nanoporous alloy CEs highlights their potential application in robust bifacial DSSCs.

  11. Photovoltaic performance of dye-sensitized solar cells using TiO2 nanotubes aggregates produced by hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Chen, Qiufan; Sun, Xiaonan; Liu, Anping; Zhang, Qifeng; Cao, Guozhong; Zhou, Xiaoyuan

    2015-09-01

    This paper reports the synthesis, detailed structural characterization of aggregated TiO2 nanotubes and the application of such aggregated TiO2 nanotubes as photoelectrodes in solar cells (dye sensitized DSCs). A maximum overall conversion efficiency of 7.9% has been achieved, which use conventional dyes without any additional chemical treatments under circumstances of an open-circuit voltage of 710 mV, a short-circuit current density of 16.8mA/cm2, and a fill factor of 66%. This impressive performance is believed to attribute to the micron-sized aggregate structure which may be favorable for light harvesting, the desired high specific surface area and pure anatase phase for dye absorption. This significant improvement in the conversion efficiency indicates that DSCs based on aggregated TiO2 nanotubes are a promising alternative to semiconductor-based solar cells.

  12. Scattering-layer-induced energy storage function in polymer-based quasi-solid-state dye-sensitized solar cells

    PubMed Central

    Zhang, Xi; Jiang, Hongrui

    2015-01-01

    Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices. PMID:25829547

  13. Improving scattering layer through mixture of nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells

    PubMed Central

    2014-01-01

    A scattering layer is utilized by mixing nanoporous spheres and nanoparticles in ZnO-based dye-sensitized solar cells. Hundred-nanometer-sized ZnO spheres consisting of approximately 35-nm-sized nanoparticles provide not only effective light scattering but also a large surface area. Furthermore, ZnO nanoparticles are added to the scattering layer to facilitate charge transport and increase the surface area as filling up large voids. The mixed scattering layer of nanoparticles and nanoporous spheres on top of the nanoparticle-based electrode (bilayer geometry) improves solar cell efficiency by enhancing both the short-circuit current (Jsc) and fill factor (FF), compared to the layer consisting of only nanoparticles or nanoporous spheres. PMID:24982606

  14. Fabrication and Characterization of Sansevieria trifasciata, Pandanus amaryllifolius and Cassia angustifolia as Photosensitizer for Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Cari; Supriyanto, Agus; Mahfudli Fadli, Ulfa; Bayu Prasada, Ashari

    2016-04-01

    Dye sensitized Solar Cells (DSSC) is one of the electric cells photochemical consisting of photoelectrode, dye, counter electrode, and electrolyte. The aims of the research to determine of the optical and electrical characteristic of the extract Sansevieria trifasciata, Pandanus amaryllifolius, and Cassia angustifolia. The study is also aimed to determine the effect of natural dyes extract to increase the efficiency of solar cells based DSSC. Sandwich structures formed in the sample consisted of working electrode pair Titanium dioxide (TiO2) and the counter electrode platinum (Pt). Dye extraction process is performed by stirring for 1 hour and then allowed to stand for 24 hours. Absorbance test is measure by using UV-Vis spectrophotometer Lambda 25, conductivity test by using a two-point probes Elkahfi 100, and characterization of current and voltage (I-V) by using a Keithley 2602A. The results showed that the greatest efficiency of 0.160% at Dye Pandanus amaryllifolius.

  15. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor–π–acceptor (D–π–A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 – BUCT30 dyes show smaller HOMO–LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices.

  16. Screening π-conjugated bridges of organic dyes for dye-sensitized solar cells with panchromatic visible light harvesting.

    PubMed

    Yang, Zhenqing; Liu, Chunmeng; Shao, Changjin; Zeng, Xiaofei; Cao, Dapeng

    2016-07-01

    Developing highly efficient organic dyes with panchromatic visible light harvesting for dye-sensitized solar cells (DSSCs) is still one of the most important scientific challenges. Here, we design a series of phenothiazine derivative organic dyes with donor-π-acceptor (D-π-A) structure using density functional theory (DFT) and time-dependent DFT (TDDFT) based on experimentally synthesized typical SH-6 organic dyes. Results indicate that the newly designed BUCT13 - BUCT30 dyes show smaller HOMO-LUMO energy gaps, higher molar extinction coefficients and obvious redshifts compared to the SH-6 dye, and the maximum absorption peaks of eight dyes are greater than 650 nm among the newly designed dyes. In particular, BUCT27 exhibits a 234 nm redshift and the maximum molar extinction coefficient with an increment of about 80% compared to the SH-6 dye. BUCT19 exhibits not only a 269 nm redshift and higher molar extinction coefficient with an increment of about 50% compared to the SH-6 dye, but the extremely broad absorption spectrum covering the entire visible range up to the near-IR region of 1200 nm. It is expected that this work can provide a new strategy and guidance for the investigation of these dye-sensitized devices. PMID:27188528

  17. Plasmon-induced efficiency enhancement on dye-sensitized solar cell by a 3D TNW-AuNP layer.

    PubMed

    Yen, Yin-Cheng; Chen, Po-Hung; Chen, Jing-Zhi; Chen, Jau-An; Lin, Kuan-Jiuh

    2015-01-28

    A new 3D TNW-AuNP plasmonic electrode consists of antireflective (AR) TiO2 nanowires (TNWs) (∼600 nm thickness) serving as light-harvesting antennae coupling with Au nanoparticles (NPs). A huge red-shift of 55 nm is observed in surface plasmon spectra for the Au (11 nm) plasmonic electrode that has 11 nm size Au NPs, whereby (111) lattice planes have a specific bonding with the TiO2 (101) planes. Remarkable red-shift is mainly attributed to the localized electric field improvement resulting from the plasmonic coupling effect between the Au NPs and the Au-TiO2 hybrids. After TiCl4 treatment, this favorable Au (11 nm) nanostructure takes advantage of harvesting photons to increase the conversion efficiency of dye-sensitized solar cells (DSSCs) from 6.25% to 9.73%. PMID:25548958

  18. Effect of TiO2 blocking layer on TiO2 nanorod arrays based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Sivakumar, R.; Paulraj, M.

    2016-05-01

    Highly ordered rutile titanium dioxide nanorod (TNR) arrays (1.2 to 6.2 μm thickness) were grown on TiO2 blocking layer chemically deposited on fluorine doped tin oxide (FTO) substrate and were used as photo-electrodes to fabricate dye sensitized solar cells (DSSC's). Homogeneous layer of TiO2 on FTO was achieved by using aqueous peroxo- titanium complex (PTC) solutions via chemical bath deposition. Structural and morphological properties of the prepared samples were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) measurements. TNR arrays (6.2 μm) with TiO2 blocking layer showed higher energy conversion efficiency (1.46%) than that without TiO2 blocking layer. The reason can be ascertained to the suppression of electron-hole recombination at the semiconductor/electrolyte interface by the effect of TiO2 blocking layer.

  19. In situ Poly(methyl methacrylate)/Graphene Composite Gel Electrolytes for Highly Stable Dye-Sensitized Solar Cells.

    PubMed

    Kang, Yu-il; Moon, Jun Hyuk

    2015-11-01

    Dye-sensitized solar cells (DSCs) with long-term stability are produced using polymer-gel electrolytes (PGEs). In this study, we introduce the formation of PGEs using in situ gelation with poly(methyl methacrylate) (PMMA) particles and graphene fillers that are pre-deposited on the counter electrodes. We obtain a high concentration PMMA-based PGEs (i.e., over 10 wt%). A DSC composed of a PMMA/graphene composite PGEs exhibits an 8.49% photon-to-electric conversion efficiency, which is comparable to conventional liquid electrolyte DSCs. This finding is attributed to increased ion diffusivity and conductivity of the PMMA-based PGEs resulting from the incorporation of graphene nanofillers. The PMMA-based PGE DSCs exhibit highly stable long-term efficiencies, maintaining up to 90% of their initial efficiency during thermal soaking, whereas the efficiencies of liquid electrolyte cells decrease significantly, by up to 60%. PMID:26471468

  20. Mesoporous titania-vertical nanorod films with interfacial engineering for high performance dye-sensitized solar cells.

    PubMed

    Ahmed, Irfan; Fakharuddin, Azhar; Wali, Qamar; Bin Zainun, Ayib Rosdi; Ismail, Jamil; Jose, Rajan

    2015-03-13

    Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ∼93% in electrode films of thickness ∼7 ± 0.5 μm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed. PMID:25687409

  1. Holographic modification of TiO2 nanostructure for enhanced charge transport in dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Lee, Jinsoo; Yoon, Junghwan; Jin, Minhea; Lee, Myeongkyu

    2012-08-01

    We show that the photocurrent and energy conversion efficiency of dye-sensitized solar cells can be greatly enhanced with holographic modification to the morphology of TiO2 electrode. The nanoporous electrode coated onto conducting glass was irradiated by three interfering laser beams at 1064 nm incident from the backside of the substrate. This generated two-dimensional periodic pillars of higher density in the electrode, through which the photoexcited electrons could be extracted more effectively. The cells fabricated with modified electrodes exhibited average photocurrent and efficiency of 17.14 mA/cm2 and 9.03%, while 14.91 mA/cm2 and 7.83% were obtained from the reference cells. It was attributed to the enhanced charge transport accompanied by the reduction of internal resistance of the electrode.

  2. Ionic gel electrolytes composite with SiO2 nanoparticles for quasi-solid-state dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Jin, Liguo; Liu, Taiyang; Wang, Chao

    2016-06-01

    Composite ionic gel electrolytes were facilely prepared by mixing ionic gel electrolytes with SiO2 nanoparticles. The dye-sensitized solar cells (DSSCs) assembled with the composite ionic gel electrolytes exhibit the higher photovoltaic performance and better durability compared to the original DSSCs based on pure ionic gel electrolytes. In particular, the DSSC assembled with the electrolytes containing 0.15 g of SiO2 shows superior J SC (14.4 mA cm-2), V OC (0.67 V), fill factor (0.69) and power conversion efficiency (6.71 %) (measured at AM 1.5, light intensity of 100 mW/cm2). The electrochemical impedance spectra, SEM and conductivity were used to characterize the composite ionic gel electrolytes.

  3. The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Wei; Hu, Lin-Hua; Luo, Xiang-Dong; Liu, Pei-Sheng; Dai, Song-Yuan

    2012-01-01

    Based on the optimization of dye-sensitized solar cell (DSC) photoelectrodes pretreated with different methods such as electrodeposition, spin-coating and TiCl4 pretreatment, theoretical calculations are carried out to interpret the internal electric mechanism. The numerical values, including the series resistance Rs and the shunt resistance Rsh corresponding to the equivalent circuit model, are well evaluated and confirm that the DSC has good performance with a high Rsh and a low Rs due to good electrical contact and a low charge recombination after the different modifications. The I-V curves are fitted in the case without series resistance, and account for the role of Rs in the output characteristics. It is found that when Rs tends to the infinitesimal, the short-circuit current Isc, the open-circuit voltage Voc and the fill factor can be improved by almost 0.8-1.4, 2.9 and 2.1-6.8%, respectively.

  4. Enhanced performance of supported HfO2 counter electrodes for redox couples used in dye-sensitized solar cells.

    PubMed

    Yun, Sining; Pu, Haihui; Chen, Junhong; Hagfeldt, Anders; Ma, Tingli

    2014-02-01

    Mesoporous-graphitic-carbon-supported HfO2 (HfO2 -MGC) nanohybrids were synthesized by using a soft-template route. Characterization and a systematic investigation of the catalytic properties, stability, and catalytic mechanism were performed for HfO2 -MGC counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). The new HfO2 -MGC as a CE in DSSCs showed a surprisingly high efficiency of 7.75 % for the triiodide/iodide redox couple and 3.69 % for the disulfide/thiolate redox couple, greater than the Pt electrode in the corresponding electrolyte system, which opens up a possibility for its practical application. PMID:24399514

  5. Improvement in performance of dye-sensitized solar cells with porous TiO2 electrodes using squid ink particles

    NASA Astrophysics Data System (ADS)

    Matsuura, Toshihiko; Nagai, Sakura; Ogasawara, Kou; Minato, Ken-ichi; Sakai, Mitsuo; Ueno, Takashi

    2016-06-01

    A potentially appealing alternative to the traditional fabrication process of TiO2 film electrodes for dye-sensitized solar cells (DSSCs) was presented by utilizing water-soluble TiO2 composite pastes containing size-controlled ink particles (SIPs) isolated from the squid. The mixture ratios of SIPs in the paste formulations affected the photoelectric conversion efficiency (PCE). The highest PCE was achieved when the mixture ratio of SIPs was 20%. The process is highly reproducible and leads to a 35% increase in PCE compared with that in the DSSC without SIP addition. The utilization of SIPs in the fabrication of TiO2 film electrodes enhanced the performance of DSSCs.

  6. Synthesis of nanostructured CuInS2 thin films and their application in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Zhao, Yu; Luo, Fazhi; Zhuang, Mixue; Liu, Zhen; Wei, Aixiang; Liu, Jun

    2016-03-01

    CuInS2 (CIS) nanostructure thin films were successfully synthesized on FTO conductive glass substrates by solvothermal method. It is found that the surface morphology and microstructure of CIS thin films can be tailored by simply adjusting the concentration of oxalic acid. CIS nanostructure films with texture of "nanosheet array" and "flower-like microsphere" were obtained and used as Pt-free counter electrode for dye-sensitized solar cells (DSSCs). The nanosheet array CIS was found to have a better electrocatalytic activity than the flower-like microsphere one. DSSCs based on nanosheet array CIS thin film counter electrode show conversion efficiency of 3.33 %, which is comparable to the Pt-catalyzed DSSCs. The easy synthesis, low cost, morphology tunable and excellent electrocatalytic property may make the CuInS2 nanostructure competitive as counter electrode in DSSCs.

  7. Electropolymerization of Uniform Polyaniline Nanorod Arrays on Conducting Oxides as Counter Electrodes in Dye-Sensitized Solar Cells.

    PubMed

    He, Ziming; Liu, Jing; Khoo, Si Yun; Tan, Timothy Thatt Yang

    2016-01-01

    Conventional techniques for the synthesis of oriented polyaniline (PANI) nanostructures are often complex or time consuming. Through an innovative reduced graphene oxide (rGO) modified FTO and a low-potential electropolymerization strategy, the rapid and template-free growth of a highly ordered PANI nanorod array on the FTO substrate is realized. The highly ordered nanostructure of the PANI array leads to a high electrocatalytic activity and chemical stability. The importance of the polymerization potential and rGO surface modification to achieve this nanostructure is revealed. Compared to platinum, the PANI nanorod array exhibits an enhanced performance and stability as counter electrodes in dye-sensitized solar cells, with a 17.6 % enhancement in power conversion efficiency. PMID:26732134

  8. Chemisorption of a thiol-functionalized ruthenium dye on zinc oxide nanoparticles: Implications for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Singh, Jagdeep; Im, Jisun; Whitten, James E.; Soares, Jason W.; Steeves, Diane M.

    2010-09-01

    ZnO is an alternative to TiO 2-based dye-sensitized solar cells (DSSCs). Adsorption of cis-ruthenium-bis[2,2'-bipyridine]-bis[4-thiopyridine] onto ZnO nanorods has been studied using X-ray and ultraviolet photoelectron spectroscopies (XPS and UPS). XPS indicates chemisorption with a surface density of ca. 1 × 10 15 molecules/cm 2, confirming the possibility of using thiol-terminated dyes for ZnO-based DSSC devices. The energy level diagram, based on UPS and absorbance spectroscopy, indicates that the LUMO of this dye is lower in energy than the ZnO conduction band edge, providing minimal enthalpic driving force for photovoltaic electron injection. However, optimization of thiol-functionalized Ru dyes could result in competitive ZnO-based DSSCs.

  9. Ruthenium phthalocyanine-bipyridyl dyads as sensitizers for dye-sensitized solar cells: dye coverage versus molecular efficiency.

    PubMed

    Rawling, Tristan; Austin, Christine; Buchholz, Florian; Colbran, Stephen B; McDonagh, Andrew M

    2009-04-01

    The application of ruthenium phthalocyanine complexes as sensitizing dyes in dye-sensitized solar cells (DSCs) is explored. Four monomeric complexes are reported which vary in peripheral substitution and axial ligand anchoring groups. Sensitizing dyes containing two ruthenium centers are also presented. These dyads, which contain ruthenium phthalocyanine and bipyridyl chromophores, were prepared using a protection/deprotection strategy that allows for convenient purification. DSCs fabricated using the phthalocyanine complexes and dyads were less efficient than those incorporating a standard DSC dye. However, on the basis of the number of molecules bound to the TiO(2) electrode surfaces, several of the new complexes were more efficient at photocurrent generation. The results highlight the importance of molecular size, and thus the dye coverage of the electrode surface in the design of new sensitizing dyes. PMID:19278209

  10. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.

    PubMed

    Inoue, Ippei; Watanabe, Kiyoshi; Yamauchi, Hirofumi; Ishikawa, Yasuaki; Yasueda, Hisashi; Uraoka, Yukiharu; Yamashita, Ichiro

    2014-10-01

    We designed and mass-produced a versatile protein supramolecule that can be used to manufacture a highly efficient dye-sensitized solar cell (DSSC). Twelve single-walled carbon-nanotube (SWNT)-binding and titanium-mineralizing peptides were genetically integrated on a cage-shaped dodecamer protein (CDT1). A process involving simple mixing of highly conductive SWNTs with CDT1 followed by TiO2 biomineralization produces a high surface-area/weight TiO2 -(anatase)-coated intact SWNT nanocomposite under environmentally friendly conditions. A DSSC with a TiO2 photoelectrode containing 0.2 wt % of the SWNT-TiO2 nanocomposite shows a current density improvement by 80% and a doubling of the photoelectric conversion efficiency. The SWNT-TiO2 nanocomposite transfers photon-generated electrons from dye molecules adsorbed on the TiO2 to the anode electrode swiftly. PMID:25111295

  11. Mixed metal oxides for dye-sensitized solar cell using zinc titanium layered double hydroxide as precursor

    NASA Astrophysics Data System (ADS)

    Liu, Jianqiang; Qin, Yaowei; Zhang, Liangji; Xiao, Hongdi; Song, Jianye; Liu, Dehe; Leng, Mingzhe; Hou, Wanguo; Du, Na

    2013-12-01

    Mixed metal oxides (MMO) are always obtained from layered double hydroxide (LDH) by thermal decomposition. In the present work, a zinc titanium LDH with the zinc titanium molar ratio of 4.25 was prepared by urea method and ZnO-based mixed oxides were obtained by calcining at or over 500°C. The MMO was used as electrodes for dye sensitized solar cell (DSSC). The cells constructed by films of prepared composite materials using a N719 as dye were prepared. The efficiency values of these cells are 0.691%, 0.572% and 0.302% with MMO prepared at 500, 600 and 700°C, respectively.

  12. Modeling of the dye loading time influence on the electrical impedance of a dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Pugliese, D.; Shahzad, N.; Sacco, A.; Tresso, E.; Alexe-Ionescu, A. L.

    2013-09-01

    A hemisquaraine dye molecule (CT1) was used as TiO2 sensitizer. The influence of the dye-adsorption time on the electrical impedance of a CT1-based dye-sensitized solar cell (DSC) was analyzed. Differently from what we observed with commercial Ru dye-based DSC, a non-monotonic effect of the impregnation time on the impedance has been found and the dye loading time is much reduced, a desirable outcome in economic grounds. This feature is analyzed in terms of the dye molecules tendency to aggregate close to the TiO2/electrolyte interface. A physical model that fits well the experimental data is proposed, which also takes into account a correction related to the difference between the illuminated area of the cell and the total area available in the electrical measurements.

  13. Enhanced performance of dye-sensitized solar cells based on P25/Ta2O5 composite films

    NASA Astrophysics Data System (ADS)

    Jiang, Qingsong; Gao, Jian; Yi, Lin; Hu, Guang; Zhang, Jun

    2016-04-01

    In this paper, novel titanium dioxide/tantalum pentoxide (P25/Ta2O5) composite films have been successfully fabricated and applied to dye-sensitized solar cells (DSSCs). Ta2O5 nanoparticles are synthesized by a simple low-temperature solvothermal method. The influence of Ta2O5 nanoparticles on photovoltaic performance of DSSCs is systematically investigated. As a result, the DSSC based on 10 wt% Ta2O5 incorporated P25 film exhibits excellent photovoltaic performance with a power conversion efficiency (PCE) as high as 5.85 %. Compared to a reference DSSC based on the pure P25 film (4.93 %), the PCE of DSSCs has been remarkably enhanced by 19 %. Such enhancement can be mainly attributed to the higher electron collection efficiency in P25/Ta2O5 composite films, which result from the suppression of the electron recombination at the photoanode/electrolyte interface.

  14. One-step femtosecond laser patterning of light-trapping structure on dye-sensitized solar cell photoelectrodes†

    PubMed Central

    Zhang, Xi; Liu, Hewei; Huang, Xuezhen; Jiang, Hongrui

    2015-01-01

    Light-trapping patterns were constructed in TiO2 photoelectrodes for dye-sensitized solar cells (DSSCs) by a one-step femtosecond laser structuring method that utilized ablation to create patterns at the surface of nanostructured TiO2 films. As a result, much more light was trapped in the photoelectrodes. Grating and orthogonal-grid patterns were studied, and the light trapping performance was optimized through the adjustment of pattern spacing, which was easily realized in the laser ablation process. With a 5-μm-spacing orthogonal-grid pattern, DSSCs showed a highest photon-to-electron conversion efficiency of 9.32% under AM 1.5G, a 13.5% improvement compared to the same cell without laser ablation. This simple and universal laser ablation method could be used to process many kinds of nanomaterials, and could be applied for various devices with nanostructures. PMID:26113977

  15. Wrinkled silica/titania nanoparticles with tunable interwrinkle distances for efficient utilization of photons in dye-sensitized solar cells.

    PubMed

    Kang, Jin Soo; Lim, Joohyun; Rho, Won-Yeop; Kim, Jin; Moon, Doo-Sik; Jeong, Juwon; Jung, Dongwook; Choi, Jung-Woo; Lee, Jin-Kyu; Sung, Yung-Eun

    2016-01-01

    Efficient light harvesting is essential for the realization of high energy conversion efficiency in dye-sensitized solar cells (DSCs). State-of-the-art mesoporous TiO2 photoanodes fall short for collection of long-wavelength visible light photons, and thus there have been efforts on introduction of scattering nanoparticles. Herein, we report the synthesis of wrinkled silica/titania nanoparticles with tunable interwrinkle distances as scattering materials for enhanced light harvesting in DSCs. These particles with more than 20 times larger specific surface area (>400 m(2)/g) compared to the spherical scattering particles (<20 m(2)/g) of the similar sizes gave rise to the dye-loading amounts, causing significant improvements in photocurrent density and efficiency. Moreover, dependence of spectral scattering properties of wrinkled particles on interwrinkle distances, which was originated from difference in overall refractive indices, was observed. PMID:27488465

  16. Ytterbium oxide nanodots via block copolymer self-assembly and their efficacy to dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Won; Ahn, Sungwoo; Lim, Sung-Hwan; Jin, Ming Hao; Song, Jeemin; Yun, Seung-Young; Kim, Hyeon Mo; Kim, Gi Jeong; Ok, Kang Min; Hong, Jongin

    2016-02-01

    In this study, we develop a novel phosphor, Yb2O3, to be used as the spectral converter in dye-sensitized solar cells (DSSCs) for the efficient capture of ultraviolet light via down-conversion. These zero-dimensional nanodots with a high refractive index also allow more light to be trapped and can prevent charge recombination at the interfaces in the DSSCs. Compared to DSSCs without the nanodots, the DSSCs fabricated with the Yb2O3 nanodots exhibits higher power-conversion efficiencies for both the N719 (10.5%) and CSD-01 (20.5%) dyes. The multifunctionality of the Yb2O3 nanodots provides a new route for improving the performance of DSSCs.

  17. Ordered mesoporous carbon/graphene nano-sheets composites as counter electrodes in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shao, Leng-Leng; Chen, Ming; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-01-01

    The composites of ordered mesoporous carbon (OMC) and graphene nano-sheets (GNS) are prepared by mixing OMC with different weight ratios of GNS, and utilized as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). Electrochemical impedance spectroscopy, Tafel polarization, and cyclic voltammetry measurements demonstrate that the OMC/GNS CEs display the enhanced electron transport property and fast reduction rate of I3- in comparison with those of the individual OMC and GNS CEs, due to the combination of superior electrical conductivity of GNS and good catalytic activity of OMC. Under AM 1.5 irradiation (100 mW cm-2), the DSSCs based on the OMC/GNS CEs show a maximum power conversion efficiency of 6.82%, which is comparable to 7.08% of the cell with the conventional Pt CE at the same experimental conditions, suggesting that the OMC/GNS composites are one of advanced CE materials for low-cost DSSCs.

  18. Impedance spectroscopy on dye-sensitized solar cells with a poly(ethylenedioxythiophene):poly(styrenesulfonate) counter electrolyte

    NASA Astrophysics Data System (ADS)

    Kim, Young-Keun; Park, Sung-Hae; Hwang, Won-Pill; Seo, Min-Hye; Park, Hyun-Woo; Jang, Young-Wook; Kim, Mi-Ra; Lee, Jin-Kook

    2012-06-01

    We have successfully fabricated the dye-sensitized solar cell (DSSC) devices using ruthenium complex dye, polymer electrolytes, and poly(ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT: PSS) as a counter electrode. The overall power conversion efficiencies of the devices using polyethylene oxide (PEO), polyethylene glycol (PEG), polymethylmethacrylate (PMMA), and polyvinyl acetate (PVAc) as polymer electrolytes were 4.08%, 3.87%, 0.49%, and 0.20%, respectively, while the efficiencies of DSSC devices using Pt counter electrodes showed similar values of 5.7 ± 0.1%. The differences in the efficiencies and the charge transfer resistances (R CT ) of the DSSCs with various polymer electrolytes and counter electrodes were measured by using an electrochemical impedance analyzer (EIS) and are discussed.

  19. Efficient Dye-Sensitized Solar Cells Made from High Catalytic Ability of Polypyrrole@Platinum Counter Electrode

    NASA Astrophysics Data System (ADS)

    Ma, Xingping; Yue, Gentian; Wu, Jihuai; Lan, Zhang

    2015-08-01

    Polypyrrole@platinum (PPy@Pt) composite film was successfully synthesized by using a one-step electrochemical method and served as counter electrode (CE) for efficient dye-sensitized solar cells (DSSCs). The PPy@Pt CE with one-dimensional structure exhibited excellent electrocatalytic activity and superior charge transfer resistance for I-/I3 - electrolyte after being the cyclic voltammetry and electrochemical impedance spectroscopy tested. The photocurrent-photovoltage curves were further used to calculate the theoretical photoelectric performance parameters of the DSSCs. The DSSC based on the PPy@Pt CE achieved a remarkable power conversion efficiency of 7.35 %, higher about 19.9 % than that of conventional Pt CE (6.13 %). This strategy provides a new opportunity for fabricating low-cost and highly efficient DSSCs.

  20. Cobalt oxide and nitride particles supported on mesoporous carbons as composite electrocatalysts for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Shao, Leng-Leng; Gao, Ze-Min; Ren, Tie-Zhen; Yuan, Zhong-Yong

    2015-07-01

    The composite electrocatalysts of cobalt oxide/mesoporous carbon and cobalt nitride/mesoporous carbon are synthesized via a convenient oxidation and subsequent ammonia nitridation of cobalt particles-incorporated mesoporous carbon, respectively. The cobalt oxide and nitride particles are uniformly imbedded in mesoporous carbon matrix, forming the unique composites with high surface area and mesopore architecture, and the resultant composites are evaluated as counter electrode materials, exhibiting good catalytic activity for the reduction of triiodide. The composites of cobalt nitride and mesoporous carbon are superior to the counterparts of cobalt oxide and mesoporous carbon in catalyzing the triiodide reduction, and the dye-sensitized solar cell with the composites achieves an optimum power conversion efficiency of 5.26%, which is comparable to the one based on the conventional Pt counter electrode (4.88%).

  1. Production of core-shell type conducting FTO/TiO2 photoanode for dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Icli, Kerem Cagatay; Yavuz, Halil Ibrahim; Ozenbas, Macit

    2014-02-01

    Core-shell type photoanode composed of electrically conducting fluorine doped tin dioxide (FTO) matrix and TiO2 shell layer was prepared and applied in dye sensitized solar cells. Effects of fluorine doping on tin dioxide based cells and precursor material on shell layer were investigated. Fluorine doped tin dioxide nanoparticles were synthesized under hydrothermal conditions and resistivity value down to 17 Ω cm was achieved. Cells constructed from FTO nanoparticles show enhanced performance compared to intrinsic SnO2. Deposition of thin blocking TiO2 layers was conducted using ammonium hexafluorotitanate and titanium tetrachloride aqueous solutions for different dipping durations which yielded significant deviations in the layer morphology and affected cell parameters. Best results were obtained with titanium tetrachloride treated cells giving 11.51 mA/cm2 photocurrent density and they were comparable with that of pure TiO2 based cells prepared under identical conditions.

  2. A dye-sensitized solar cell having polyaniline species in each component with 3.1%-efficiency

    NASA Astrophysics Data System (ADS)

    Duan, Yanyan; Chen, Yuran; Tang, Qunwei; Zhao, Zhiyuan; Hou, Mengjin; Li, Ru; He, Benlin; Yu, Liangmin; Yang, Peizhi; Zhang, Zhiming

    2015-06-01

    Pursuit of technological implementation with no sacrifice of photovoltaic performances has been a persistent objective for dye-sensitized solar cells (DSSCs). We launch here the experimental realization of a class of DSSCs consisting of polyaniline (PANi) incorporated TiO2 anodes, PANi counter electrodes (CEs), and iodide doped PANi solid-state electrolytes. The PANi filled in photoanode can inject electrons for dye recovery, whereas the PANi CE fulfills the function of reducing triiodide into iodide ions. In particular, the solid PANi electrolyte has an ability of catalyzing triiodide species, shortening charge diffusion path length, and recovering dye molecules at anode/electrolyte interface. The photovoltaic performances are optimized by adjusting assembly process and lithium iodide dosage, yielding a maximum efficiency as high as 3.1% in the resultant DSSC device accompanied with fast start-up, multiple start/stop cycling, and good stability under persistent irradiation.

  3. Influence of VB group doped TiO2 on photovoltaic performance of dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Duan, Yandong; Zhou, Xiaowen; Lin, Yuan

    2013-07-01

    Dye-sensitized solar cell with VB group (vanadium (V), niobium (Nb) and tantalum (Ta)) doped TiO2 prepared by hydrothermal method shows a higher photovoltaic efficiency compared with the undoped TiO2. All the VB doping shift the flat band potential positively and increase the doping density which is investigated by Mott-Schottky plot. The positive shift of flat band potential improves the driving force of injecting electron from the LUMO of dye to the conduction band of TiO2 and the photocurrent. On the other hand, the increase of doping density accelerates transfer rate of electrons in TiO2 than the un-doped, which is confirmed by intensity-modulated photocurrent. V-, Nb-, Ta-doped TiO2 exhibited photovoltaic performance with 7.80%, 8.33%, 8.18%, respectively, compared with that of the cells based on pure TiO2 (7.42%).

  4. Robust High-performance Dye-sensitized Solar Cells Based on Ionic Liquid-sulfolane Composite Electrolytes.

    PubMed

    Lau, Genevieve P S; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M; Grätzel, Michael; Dyson, Paul J

    2015-01-01

    Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability. PMID:26670595

  5. Hydrothermal Fabrication of Hierarchically Anatase TiO2 Nanowire arrays on FTO Glass for Dye-sensitized Solar Cells

    PubMed Central

    Wu, Wu-Qiang; Lei, Bing-Xin; Rao, Hua-Shang; Xu, Yang-Fan; Wang, Yu-Fen; Su, Cheng-Yong; Kuang, Dai-Bin

    2013-01-01

    Hierarchical anatase TiO2 nano-architecture arrays consisting of long TiO2 nanowire trunk and numerous short TiO2 nanorod branches on transparent conductive fluorine-doped tin oxide glass are successfully synthesized for the first time through a facile one-step hydrothermal route without any surfactant and template. Dye-sensitized solar cells based on the hierarchical anatase TiO2 nano-architecture array photoelectrode of 18 μm in length shows a power conversion efficiency of 7.34% because of its higher specific surface area for adsorbing more dye molecules and superior light scattering capacity for boosting the light-harvesting efficiency. The present photovoltaic performance is the highest value for the reported TiO2 nanowires array photoelectrode. PMID:23443301

  6. Conducting glasses recovered from thin film transistor liquid crystal display wastes for dye-sensitized solar cell cathodes.

    PubMed

    Chen, C-C; Chang, F-C; Peng, C Y; Wang, H Paul

    2015-01-01

    Transparent conductive glasses such as thin film transistor (TFT) array and colour filter glasses were recovered from the TFT-liquid crystal display panel wastes by dismantling and sonic cleaning. Noble metals (i.e. platinum (Pt)) and indium tin oxide (ITO) are generally used in the cathode of a dye-sensitized solar cell (DSSC). To reduce the DSSC cost, Pt was replaced with nano nickel-encapsulated carbon-shell (Ni@C) nanoparticles, which were prepared by carbonization of Ni²⁺-β-cyclodextrin at 673 K for 2 h. The recovered conductive glasses were used in the DSSC electrodes in the substitution of relatively expensive ITO. Interestingly, the efficiency of the DSSC having the Ni@C-coated cathode is as high as 2.54%. Moreover, the cost of the DSSC using the recovered materials can be reduced by at least 24%. PMID:25399759

  7. Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells

    PubMed Central

    Zhang, Bo; Wang, Dong; Hou, Yu; Yang, Shuang; Yang, Xiao Hua; Zhong, Ju Hua; Liu, Jian; Wang, Hai Feng; Hu, P.; Zhao, Hui Jun; Yang, Hua Gui

    2013-01-01

    Platinum (Pt) nanocrystals have demonstrated to be an effective catalyst in many heterogeneous catalytic processes. However, pioneer facets with highest activity have been reported differently for various reaction systems. Although Pt has been the most important counter electrode material for dye-sensitized solar cells (DSCs), suitable atomic arrangement on the exposed crystal facet of Pt for triiodide reduction is still inexplicable. Using density functional theory, we have investigated the catalytic reaction processes of triiodide reduction over {100}, {111} and {411} facets, indicating that the activity follows the order of Pt(111) > Pt(411) > Pt(100). Further, Pt nanocrystals mainly bounded by {100}, {111} and {411} facets were synthesized and used as counter electrode materials for DSCs. The highest photovoltaic conversion efficiency of Pt(111) in DSCs confirms the predictions of the theoretical study. These findings have deepened the understanding of the mechanism of triiodide reduction at Pt surfaces and further screened the best facet for DSCs successfully. PMID:23670438

  8. Bifacial dye-sensitized solar cells from covalent-bonded polyaniline-multiwalled carbon nanotube complex counter electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Huihui; He, Benlin; Tang, Qunwei; Yu, Liangmin

    2015-02-01

    Exploration of cost-effective counter electrodes (CEs) and enhancement of power conversion efficiency have been two persistent objectives for dye-sensitized solar cells (DSSCs). In the current work, polyaniline-multiwalled carbon nanotube (PANi-MWCNT) complexes are synthesized by a reflux method and employed as CE materials for bifacial DSSCs. Owing to the high optical transparency of PANi-MWCNT complex CE, the incident light from rear side can compensate for the incident light from TiO2 anode. The charge-transfer ability and electrochemical behaviors demonstrate the potential utilization of PANi-MWCNT complex CEs in robust bifacial DSSCs. The electrochemical properties as well as photovoltaic performances are optimized by adjusting MWCNT dosages. A maximum power conversion efficiency of 9.24% is recorded from the bifacial DSSC employing PANi-8 wt‰ MWCNT complex CE for both irradiation, which is better than 8.08% from pure PANi CE.

  9. Highly transparent carbon counter electrode prepared via an in situ carbonization method for bifacial dye-sensitized solar cells.

    PubMed

    Bu, Chenghao; Liu, Yumin; Yu, Zhenhua; You, Sujian; Huang, Niu; Liang, Liangliang; Zhao, Xing-Zhong

    2013-08-14

    A facile in situ carbonization method was demonstrated to prepare the highly transparent carbon counter electrode (CE) with good mechanical stability for bifacial dye-sensitized solar cells (DSCs). The optical and electrochemical properties of carbon CEs were dramatically affected by the composition and concentration of the precursor. The well-optimized carbon CE exhibited high transparency and sufficient catalytic activity for I3(-) reduction. The bifacial DSC with obtained carbon CE achieved a high power conversion efficiency (PCE) of 5.04% under rear-side illumination, which approaches 85% that of front-side illumination (6.07%). Moreover, the device shows excellent stability as confirmed by the aging test. These promising results reveal the enormous potential of this transparent carbon CE in scaling up and commercialization of low cost and effective bifacial DSCs. PMID:23806279

  10. Channeling of electron transport to improve collection efficiency in mesoporous titanium dioxide dye sensitized solar cell stacks

    SciTech Connect

    Fakharuddin, Azhar; Ahmed, Irfan; Yusoff, Mashitah M.; Jose, Rajan E-mail: joserajan@gmail.com; Khalidin, Zulkeflee

    2014-02-03

    Dye-sensitized solar cell (DSC) modules are generally made by interconnecting large photoelectrode strips with optimized thickness (∼14 μm) and show lower current density (J{sub SC}) compared with their single cells. We found out that the key to achieving higher J{sub SC} in large area devices is optimized photoelectrode volume (V{sub D}), viz., thickness and area which facilitate the electron channeling towards working electrode. By imposing constraints on electronic path in a DSC stack, we achieved >50% increased J{sub SC} and ∼60% increment in photoelectric conversion efficiency in photoelectrodes of similar V{sub D} (∼3.36 × 10{sup −4} cm{sup 3}) without using any metallic grid or a special interconnections.

  11. Effect of incorporation of reduced graphene oxide on ZnO-based dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Wang, Xiu

    2016-07-01

    Here, we demonstrate a facile method to improve the cell performance of ZnO-based dye sensitized solar cell by incorporating different amount of reduced graphene oxide (rGO). Overall photo-to-current conversion-efficiency (PCE) of the device 3 with 0.75 mL rGO exhibits a 1.3 times improvement compared to bare ZnO. The electrochemical impedance spectroscopy (EIS) measurements show that the enhancement could be attributed to the improvement of electron transport/injection and the decrease of the charge recombination in the device, which arise from the formation of rGO-based Schottky junction in ZnO-photoanode.

  12. Holographic modification of TiO{sub 2} nanostructure for enhanced charge transport in dye-sensitized solar cell

    SciTech Connect

    Lee, Jinsoo; Yoon, Junghwan; Jin, Minhea; Lee, Myeongkyu

    2012-08-15

    We show that the photocurrent and energy conversion efficiency of dye-sensitized solar cells can be greatly enhanced with holographic modification to the morphology of TiO{sub 2} electrode. The nanoporous electrode coated onto conducting glass was irradiated by three interfering laser beams at 1064 nm incident from the backside of the substrate. This generated two-dimensional periodic pillars of higher density in the electrode, through which the photoexcited electrons could be extracted more effectively. The cells fabricated with modified electrodes exhibited average photocurrent and efficiency of 17.14 mA/cm{sup 2} and 9.03%, while 14.91 mA/cm{sup 2} and 7.83% were obtained from the reference cells. It was attributed to the enhanced charge transport accompanied by the reduction of internal resistance of the electrode.

  13. Role of functionalized acceptors in heteroleptic bipyridyl Cu(I) complexes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lu, Xiaoqing; Shao, Yang; Li, Ke; Zhao, Zigang; Wei, Shuxian; Guo, Wenyue

    2016-07-01

    The intrinsic optoelectronic properties of heteroleptic bipyridyl Cu(I) complexes bearing functionalized acceptor subunits have been investigated by density functional theory and time-dependent DFT. The Cu(I) complexes exhibit distorted trigonal-pyramidal geometries and typical metal-to-ligand electron transfer characteristics at the long wavelength region. Replacing carboxylic acid with cyanoacrylic acid in acceptor subunits stabilizes the LUMO levels, thus lowering the HOMOLUMO energy gaps and facilitating favorable donor-to-acceptor intramolecular electron transfer and charge separation. Introduction of heteroaromatic groups and cyanoacrylic acid significantly improves the light-harvesting capability of the complexes. Our results highlight the effect of functionalized acceptors on the optoelectronic properties of bipyridyl Cu(I) complexes and provide a fresh perspective on screening of efficient sensitizers for dye-sensitized solar cells.

  14. Wrinkled silica/titania nanoparticles with tunable interwrinkle distances for efficient utilization of photons in dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Kang, Jin Soo; Lim, Joohyun; Rho, Won-Yeop; Kim, Jin; Moon, Doo-Sik; Jeong, Juwon; Jung, Dongwook; Choi, Jung-Woo; Lee, Jin-Kyu; Sung, Yung-Eun

    2016-08-01

    Efficient light harvesting is essential for the realization of high energy conversion efficiency in dye-sensitized solar cells (DSCs). State-of-the-art mesoporous TiO2 photoanodes fall short for collection of long-wavelength visible light photons, and thus there have been efforts on introduction of scattering nanoparticles. Herein, we report the synthesis of wrinkled silica/titania nanoparticles with tunable interwrinkle distances as scattering materials for enhanced light harvesting in DSCs. These particles with more than 20 times larger specific surface area (>400 m2/g) compared to the spherical scattering particles (<20 m2/g) of the similar sizes gave rise to the dye-loading amounts, causing significant improvements in photocurrent density and efficiency. Moreover, dependence of spectral scattering properties of wrinkled particles on interwrinkle distances, which was originated from difference in overall refractive indices, was observed.

  15. A versatile chemical conversion synthesis of Cu2S nanotubes and the photovoltaic activities for dye-sensitized solar cell

    PubMed Central

    2014-01-01

    A versatile, low-temperature, and low-cost chemical conversion synthesis has been developed to prepare copper sulfide (Cu2S) nanotubes. The successful chemical conversion from ZnS nanotubes to Cu2S ones profits by the large difference in solubility between ZnS and Cu2S. The morphology, structure, and composition of the yielded products have been examined by field-emission scanning electron microscopy, transmission electron microscopy, and X-ray diffraction measurements. We have further successfully employed the obtained Cu2S nanotubes as counter electrodes in dye-sensitized solar cells. The light-to-electricity conversion results show that the Cu2S nanostructures exhibit high photovoltaic conversion efficiency due to the increased surface area and the good electrocatalytical activity of Cu2S. The present chemical route provides a simple way to synthesize Cu2S nanotubes with a high surface area for nanodevice applications. PMID:25246878

  16. Efficient Dye-Sensitized Solar Cells Made from High Catalytic Ability of Polypyrrole@Platinum Counter Electrode.

    PubMed

    Ma, Xingping; Yue, Gentian; Wu, Jihuai; Lan, Zhang

    2015-12-01

    Polypyrrole@platinum (PPy@Pt) composite film was successfully synthesized by using a one-step electrochemical method and served as counter electrode (CE) for efficient dye-sensitized solar cells (DSSCs). The PPy@Pt CE with one-dimensional structure exhibited excellent electrocatalytic activity and superior charge transfer resistance for I(-)/I3 (-) electrolyte after being the cyclic voltammetry and electrochemical impedance spectroscopy tested. The photocurrent-photovoltage curves were further used to calculate the theoretical photoelectric performance parameters of the DSSCs. The DSSC based on the PPy@Pt CE achieved a remarkable power conversion efficiency of 7.35 %, higher about 19.9 % than that of conventional Pt CE (6.13 %). This strategy provides a new opportunity for fabricating low-cost and highly efficient DSSCs. PMID:26272804

  17. a High Efficiency Dye-Sensitized Solar Cell with NANO-TiO2 Secondary Structure in the Photoanode

    NASA Astrophysics Data System (ADS)

    Lan, Zhang; Wu, Jihuai; Lin, Jianming; Huang, Miaoliang

    2013-04-01

    A high efficiency dye-sensitized solar cell (DSC) with nanocrystallite TiO2 (nano-TiO2) secondary structure in the photoanode was successfully fabricated via a simple one step doctor blade printing method with a special nano-TiO2 paste containing micro-sized nano-TiO2 aggregates formed in situ. The special secondary structure in the photoanode shows improved optical absorption, increased light scattering ability, and enhanced electron transport and collection efficiency, resulting in high power conversion efficiency of 7.30% with 6 μm thin nano-TiO2 film in the photoanode, and the highest value of 9.28% by increasing the thickness of the nano-TiO2 film to 11 μm.

  18. Effects of TiCl4 Post-Treatment on the Efficiency of Dye-Sensitized Solar Cells.

    PubMed

    Nath, Narayan Chandra Deb; Subramanian, Alagesan; Hu, Rui Yuan; Lim, Beong Ou; Lee, Jae-Joon

    2015-11-01

    The effects of compact TiO2 overlayers, deposited on TiO2 photoelectrodes through the hydrolysis of TiCl4, on the overall performance of dye-sensitized solar cells (DSSCs) were investigated. A thermal treatment at high-enough temperature was required for a more effective and higher dye-loading of the compact TiO2 overlayers. This led to improvements in the crystallinity and porosity of the layer, which contributed to higher power conversion efficiencies (PCE) of DSSCs compared with the electrodes prepared at relatively lower temperatures. Moreover, the existence of an additional secondary overlayer led to an increase in the net PCE of the cells by increasing the amount of dye-loading, even though this layer itself, in the absence of a first overlayer formed under high thermal treatment, did not enhance cell efficiency, because of the higher charge transport resistance over the layers and an increase in surface states. PMID:26726609

  19. Parametric Optimization of Experimental Conditions for Dye-Sensitized Solar Cells based on Far-red Sensitive Squaraine Dye

    NASA Astrophysics Data System (ADS)

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2016-04-01

    A far-red sensitive unsymmetrical squaraine dye SQ-41 has been synthesized and subjected to the fabrication of dye-sensitized solar cells by varying the various parameters in order attain optimum photoconversion efficiency (η). It has been demonstrated that an optimum ratio of dye to coadsorber, thickness of mesoporous TiO2 layer, redox electrolyte and surface treatment are necessary to enhance overall external η. In the case of surface treatment, it has been shown to exhibit pronounced device performance when both of the FTO as well mesoporous TiO2 surfaces were treated with aqueous TiCl4. In spite of very high molar extinction coefficient of dye SQ-41, 10-12 µm thickness of mesoporous TiO2 was found to be necessary to attain the maximum η.

  20. Novel Photoanode for Dye-Sensitized Solar Cells with Enhanced Light-Harvesting and Electron-Collection Efficiency.

    PubMed

    Song, Weixing; Gong, Yudong; Tian, Jianjun; Cao, Guozhong; Zhao, Huabo; Sun, Chunwen

    2016-06-01

    A novel photoanode structure modified by porous flowerlike CeO2 microspheres as a scattering layer with a thin TiO2 film deposited by atomic layer deposition (ALD) is prepared to achieve a significantly enhanced performance of dye-sensitized solar cells (DSSCs). The light scattering capability of the photoanode with the porous CeO2 microsphere layer is considerably improved. The interconnection of particles and electrical contact between bilayer and conducting substrate is further enhanced by an ALD-deposited TiO2 film, which effectively reduces the electron recombination and facilitates electron transport and thus enhances the charge collection efficiency of DSSCs. As a result, the overall efficiency of the obtained TiO2-CeO2-based cells reaches 9.86%, which is 31% higher than that of the DSSCs with a conventional TiO2 photoanode. PMID:27169327