Sample records for nanocrystalline ni3al-based alloy

  1. Ni3Al-based alloys for die and tool application

    DOEpatents

    Liu, Chain T.; Bloom, Everett E.

    2001-01-01

    A novel Ni.sub.3 Al-based alloy exhibits strengths and hardness in excess of the standard base alloy IC-221M at temperatures of up to about 1000.degree. C. The alloy is useful in tool and die applications requiring such temperatures, and for structural elements in engineering systems exposed to such temperatures.

  2. Rare-earth metals in nickel aluminide-based alloys: III. Structure and properties of multicomponent Ni3Al-based alloys

    NASA Astrophysics Data System (ADS)

    Bazyleva, O. A.; Povarova, K. B.; Kazanskaya, N. K.; Drozdov, A. A.

    2009-04-01

    The possibility of increasing the life of heterophase cast light Ni3Al-based superalloys at temperatures higher than 0.8 T m of Ni3Al is studied when their directional structure is additionally stabilized by nanoprecipitates, which form upon additional alloying of these alloys by refractory and active metals, and using special methods for preparing and melting of an alloy charge. The effect of the method of introducing the main components and refractory reaction-active and surface-active alloying elements into Ni3Al-based cast superalloys, which are thermally stable natural composite materials of the eutectic type, on the structure-phase state and the life of these alloys is studied. When these alloys are melted, it is necessary to perform a set of measures to form particles of refractory oxide cores covered with the β-NiAl phase and, then, γ'prim-Ni3Al phase precipitates during solidification. The latter phase forms the outer shell of grain nuclei, which provides high thermal stability and hot strength of an intermetallic compound-based alloy. As a result, a modified structure that is stabilized by the nanoprecipitates of nickel and aluminum lanthanides and the nanoprecipitates of phases containing refractory metals is formed. This structure enhances the life of the alloy at 1000 °C by a factor of 1.8-2.5.

  3. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO 3 Fe 3Al, Co 3Al, and Ni 3Al based intermetallic phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO 3 Fe 3Al, Co 3Al and Ni 3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO 3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe 3Al and Co 3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  4. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO 3 Fe 3Al, Co 3Al, and Ni 3Al based intermetallic phases

    DOE PAGES

    Samolyuk, G. D.; Újfalussy, B.; Stocks, G. M.

    2014-11-07

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co and Ti within the AlNi-based matrix phase. In our paper we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO 3 Fe 3Al, Co 3Al and Ni 3Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which corresponds to experimental situation, Ti and Fe are found to occupy the sites, while Co and Ni prefer the sites of the DO 3 lattice. Finally, an important finding is that the magnetic moments of transition metals in Fe 3Al and Co 3Al are ordered ferromagnetically, whereas the Ni3Al were found to be nonmagnetic unless the Fe or Co are added as a ternary element.« less

  5. Stability of nanocrystalline Ni-based alloys: coupling Monte Carlo and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Waseda, O.; Goldenstein, H.; Silva, G. F. B. Lenz e.; Neiva, A.; Chantrenne, P.; Morthomas, J.; Perez, M.; Becquart, C. S.; Veiga, R. G. A.

    2017-10-01

    The thermal stability of nanocrystalline Ni due to small additions of Mo or W (up to 1 at%) was investigated in computer simulations by means of a combined Monte Carlo (MC)/molecular dynamics (MD) two-steps approach. In the first step, energy-biased on-lattice MC revealed segregation of the alloying elements to grain boundaries. However, the condition for the thermodynamic stability of these nanocrystalline Ni alloys (zero grain boundary energy) was not fulfilled. Subsequently, MD simulations were carried out for up to 0.5 μs at 1000 K. At this temperature, grain growth was hindered for minimum global concentrations of 0.5 at% W and 0.7 at% Mo, thus preserving most of the nanocrystalline structure. This is in clear contrast to a pure Ni model system, for which the transformation into a monocrystal was observed in MD simulations within 0.2 μs at the same temperature. These results suggest that grain boundary segregation of low-soluble alloying elements in low-alloyed systems can produce high-temperature metastable nanocrystalline materials. MD simulations carried out at 1200 K for 1 at% Mo/W showed significant grain boundary migration accompanied by some degree of solute diffusion, thus providing additional evidence that solute drag mostly contributed to the nanostructure stability observed at lower temperature.

  6. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  7. The distribution alloying elements in alnico 8 and 9 magnets: Site preference of ternary Ti, Fe, Co, and Ni additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al based intermetallic phases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, G. D.; Stocks, G. M.; Újfalussy, B.

    Recently, interest in alnico magnetic alloys has been rekindled due to their potential to substitute for rare-earth based permanent magnets provided modest improvements in their coercivity can be achieved without loss of saturation magnetization. Recent experimental studies have indicated that atomic and magnetic structure of the two phases (one AlNi-based, the other FeCo-based) that comprise these spinodally decomposed alloy is not as simple as previously thought. A key issue that arises is the distribution of Fe, Co, and Ti within the AlNi-based matrix phase. In this paper, we report the results of first-principles calculations of the site preference of ternarymore » alloying additions in DO{sub 3} Fe{sub 3}Al, Co{sub 3}Al, and Ni{sub 3}Al alloys, as models for the aluminide phase. For compound compositions that are Al rich, which correspond to experimental situation, Ti and Fe are found to occupy the α sites, while Co and Ni prefer the γ sites of the DO{sub 3} lattice. An important finding is that the magnetic moments of transition metals in Fe{sub 3}Al and Co{sub 3}Al are ordered ferromagnetically, whereas the Ni{sub 3}Al were found to be nonmagnetic unless the Fe or Co is added as a ternary element.« less

  8. Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.

    1993-01-01

    Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.

  9. On improving the fracture toughness of a NiAl-based alloy by mechanical alloying

    NASA Technical Reports Server (NTRS)

    Kostrubanic, J.; Koss, D. A.; Locci, I. E.; Nathal, M.

    1991-01-01

    Mechanical alloying (MA) has been used to process the NiAl-based alloy Ni-35Al-20Fe, such that a fine-grain (about 2 microns) microstructure is obtained through the addition of 2 vol pct Y2O3 particles. When compared to a conventionally processed, coarse-grained (about 28 microns) Ni-35-20 alloy without the Y2O3 particles, the MA alloy exhibits two to three times higher fracture toughness values, despite a 50-percent increase in yield strength. Room-temperature K(O) values as high as 34 MPa sq rt m are observed, accompanied by a yield strength in excess of 1100 MPa. Fractography confirms a change in fracture characteristics of the fine-grained MA alloy.

  10. Growth of Ni-Al alloys on Ni(1 1 1), from Al deposits of various thicknesses: (II) Formation of NiAl over a Ni 3Al interfacial layer

    NASA Astrophysics Data System (ADS)

    Le Pévédic, S.; Schmaus, D.; Cohen, C.

    2007-01-01

    This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni 3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 10 15 Al/cm 2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 10 15 Al/cm 2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni 3Al "interfacial" layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni 3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L1 2 Ni 3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni 3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the

  11. The 1200 C cyclic oxidation behavior of two nickel-aluminum alloys (Ni3AL and NiAl) with additions of chromium, silicon, and titanium

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Santoro, G. J.

    1972-01-01

    The alloys Ni3Al and NiAl with and without 1 and 3 atomic percent chromium, silicon, and titanium replacing the aluminum were cyclically oxidized at 1200 C for times to 200 hours, and the results were compared with those obtained with the alloy B-1900 subjected to the same oxidation process. The evaluation was based on metal recession, specific weight change, metallography, electron microprobe analysis, and X-ray diffraction. The oxidation resistance of Ni3Al was improved by Si, unaffected by Ti, and degraded by Cr. The oxidation resistance of NiAl was slightly improved by Ti, unaffected by Si, and degraded by Cr. The oxidation resistance of Ni3Al with 1 atomic percent Si was nearly equal to that of NiAl. Alloy B-1900 exhibited oxidation resistance comparable to that of Ni3Al + Cr compositions.

  12. Phase Composition and Hardening of Castable Al - Ca - Ni - Sc Alloys Containing 0.3% Sc

    NASA Astrophysics Data System (ADS)

    Belov, N. A.; Naumova, E. A.; Bazlova, T. A.; Doroshenko, V. V.

    2017-05-01

    The phase composition of aluminum alloys of the Al - Ca - Ni - Sc system containing 0.3 wt.% Sc is studied. It is shown that the aluminum solid solution may be in equilibrium not only with binary phases (Al4Ca, Al3Sc and Al3Ni) but also with a ternary Al9NiCa compound. The temperature of attainment of maximum hardening due to precipitation of nanoparticles of phase Al3Sc is determined for all the alloys studied. Principal possibility of creation of castable alloys based on an (Al) + Al4Ca + Al9NiCa eutectic, the hardening heat treatment of which does not require quenching, is substantiated.

  13. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  14. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher Jonathan

    The development of nanocrystalline materials has been increasingly pursued over the last few decades. They have been shown to exhibit superior properties compared to their coarse-grain counterparts, and thus present a tremendous opportunity to revolutionize the performance of nanoscale devices or bulk structural materials. However, nanocrystalline materials are highly prone to grain growth, and if the nanocrystalline grains coarsen, the beneficial properties are lost. There is a strong effort to determine the most effective thermal stability mechanisms to avoid grain growth, but the physical nature of nanocrystalline grain growth is still unclear due to a lack of detailed understanding of nanocrystalline microstructures. Furthermore, the influence of contamination has scarcely been explored with advanced transmission electron microscopy techniques, nor has there been a direct comparison of alloys fabricated with different bulk processes. Therefore, this research has applied aberration-corrected scanning transmission electron microscopy to characterize nanocrystalline Ni-W on the atomic scale and elucidate the physical grain growth behavior. Three primary objectives were pursued: (1) explore the thermal stability mechanisms of nanocrystalline Ni-W, (2) evaluate the phase stability of Ni-W and link any findings to grain growth behavior, and (3) compare the influences of bulk fabrication processing, including electrodeposition, DC magnetron sputtering, and mechanical alloying, on the thermal stability and phase stability of Ni-W. Several thermal stability mechanisms were identified throughout the course of this research. First and foremost, W-segregation was scarcely observed to grain boundaries, and it is unclear if W-segregation improves thermal stability contrary to most reports in the 2 literature. Long-range Ni4W chemical ordering was observed in alloys with more than 20 at.% W, and it is likely Ni4W domains reduce grain boundary mobility. In addition, lattice

  15. Nanocrystallization of Zr-Cu-Ni-Al-Au glassy alloys during severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Yamada, Masahiro; Kamisato, Ryo; Yamasaki, Tohru; Adachi, Hiroki; Tsuchiya, Koichi; Yokoyama, Yoshihiko

    2014-08-01

    A study has been carried out into the formation of nanocrystalline grains during high-pressure torsion (HPT) deformation of Zr65Cu17Ni5Al10Au3 bulk alloys prepared using tilt casting. As a preliminary to this, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses were carried out on as-cast Zr65+xCu17-xNi5Al10Au3 (x=0~5 at.%) and Zr65Cu20Ni5Al10Au3 alloys, in order to determine the effect on the microstructure of the excess Zr content x and the presence of Au. From the XRD patterns, it was determined that all of the alloys had a metallic glassy nature. For Zr65Cu17Ni5Al10Au3, the DSC results indicated the presence of a wide supercooled liquid region between the glass transition temperature (Tg) of 644 K and the crystallization temperature of 763 K, where the stable body-centered tetragonal Zr2Cu phase was formed. In contrast, for the Zr65+xCu17-xNi5Al10Au3 alloys, precipitation of an icosahedral quasicrystalline phase (I-phase) was observed in the supercooled liquid region at about 715 K. HPT deformation of the Zr65Cu17Ni5Al10Au3 alloys was carried out under a high pressure of 5 GPa. Both as-cast specimens and those annealed at Tg-50 K for 90 min were used. Following a single HPT rotation (N=1), transmission electron microscopy identified the presence of face- centered cubic Zr2Ni precipitates in the as-cast alloy, with a size of about 50 nm. For the annealed alloy, a high density of I-phase precipitates with sizes of less than 10 nm was observed following HPT with N=10, indicating that the combination of severe plastic deformation and annealing is effective at producing extremely small grains.

  16. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy.

    PubMed

    Gong, Xuebo; Duan, Zhenxin; Pei, Wen; Chen, Hua

    2017-09-19

    In this paper, the equiaxed superfine/nanocrystalline duplex PM-TiAl-based alloy with (γ + α₂) microstructure, Ti-45Al-5Nb (at %), has been synthesized by high-energy ball milling and vacuum hot pressing sintering. Superplastic deformation behavior has been investigated at 1000 °C and 1050 °C with strain rates from 5 × 10 -5 s -1 to 1 × 10 -3 s -1 . The effects of deformation on the microstructure and mechanical behaviors of high Nb containing TiAl alloy have been characterized and analyzed. The results showed that, the ultimate tensile strength of the alloy was 58.7 MPa at 1000 °C and 10.5 MPa at 1050 °C with a strain rate of 5 × 10 -5 s -1 , while the elongation was 121% and 233%, respectively. The alloy exhibited superplastic elongation at 1000 and 1050 °C with an exponent (m) of 0.48 and 0.45. The main softening mechanism was dynamic recrystallization of γ grains; the dislocation slip and γ/γ interface twinning were responsible for superplastic deformation. The orientation relationship of γ/γ interface twinning obeyed the classical one: (001) γ //(110) γ .

  17. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  18. Some TEM observations of Al2O3 scales formed on NiCrAl alloys

    NASA Technical Reports Server (NTRS)

    Smialek, J.; Gibala, R.

    1979-01-01

    The microstructural development of Al2O3 scales on NiCrAl alloys has been examined by transmission electron microscopy. Voids were observed within grains in scales formed on a pure NiCrAl alloy. Both voids and oxide grains grew measurably with oxidation time at 1100 C. The size and amount of porosity decreased towards the oxide-metal growth interface. The voids resulted from an excess number of oxygen vacancies near the oxidemetal interface. Short-circuit diffusion paths were discussed in reference to current growth stress models for oxide scales. Transient oxidation of pure, Y-doped, and Zr-doped NiCrAl was also examined. Oriented alpha-(Al, Cr)2O3 and Ni(Al, Cr)2O4 scales often coexisted in layered structures on all three alloys. Close-packed oxygen planes and directions in the corundum and spinel layers were parallel. The close relationship between oxide layers provided a gradual transition from initial transient scales to steady state Al2O3 growth.

  19. Superplastic Deformation Mechanisms of Superfine/Nanocrystalline Duplex PM-TiAl-Based Alloy

    PubMed Central

    Gong, Xuebo; Duan, Zhenxin; Pei, Wen; Chen, Hua

    2017-01-01

    In this paper, the equiaxed superfine/nanocrystalline duplex PM-TiAl-based alloy with (γ + α2) microstructure, Ti-45Al-5Nb (at %), has been synthesized by high-energy ball milling and vacuum hot pressing sintering. Superplastic deformation behavior has been investigated at 1000 °C and 1050 °C with strain rates from 5 × 10−5 s−1 to 1 × 10−3 s−1. The effects of deformation on the microstructure and mechanical behaviors of high Nb containing TiAl alloy have been characterized and analyzed. The results showed that, the ultimate tensile strength of the alloy was 58.7 MPa at 1000 °C and 10.5 MPa at 1050 °C with a strain rate of 5 × 10−5 s−1, while the elongation was 121% and 233%, respectively. The alloy exhibited superplastic elongation at 1000 and 1050 °C with an exponent (m) of 0.48 and 0.45. The main softening mechanism was dynamic recrystallization of γ grains; the dislocation slip and γ/γ interface twinning were responsible for superplastic deformation. The orientation relationship of γ/γ interface twinning obeyed the classical one: (001)γ//(110)γ. PMID:28925971

  20. Atomistic Modeling of RuAl and (RuNi) Al Alloys

    NASA Technical Reports Server (NTRS)

    Gargano, Pablo; Mosca, Hugo; Bozzolo, Guillermo; Noebe, Ronald D.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Atomistic modeling of RuAl and RuAlNi alloys, using the BFS (Bozzolo-Ferrante-Smith) method for alloys is performed. The lattice parameter and energy of formation of B2 RuAl as a function of stoichiometry and the lattice parameter of (Ru(sub 50-x)Ni(sub x)Al(sub 50)) alloys as a function of Ni concentration are computed. BFS based Monte Carlo simulations indicate that compositions close to Ru25Ni25Al50 are single phase with no obvious evidence of a miscibility gap and separation of the individual B2 phases.

  1. Enhanced Hydrogen Storage Kinetics of Nanocrystalline and Amorphous Mg₂Ni-type Alloy by Melt Spinning.

    PubMed

    Zhang, Yang-Huan; Li, Bao-Wei; Ren, Hui-Ping; Li, Xia; Qi, Yan; Zhao, Dong-Liang

    2011-01-18

    Mg₂Ni-type Mg₂Ni 1-x Co x (x = 0, 0.1, 0.2, 0.3, 0.4) alloys were fabricated by melt spinning technique. The structures of the as-spun alloys were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The hydrogen absorption and desorption kinetics of the alloys were measured by an automatically controlled Sieverts apparatus. The electrochemical hydrogen storage kinetics of the as-spun alloys was tested by an automatic galvanostatic system. The results show that the as-spun (x = 0.1) alloy exhibits a typical nanocrystalline structure, while the as-spun (x = 0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Co for Ni notably intensifies the glass forming ability of the Mg₂Ni-type alloy. The melt spinning treatment notably improves the hydriding and dehydriding kinetics as well as the high rate discharge ability (HRD) of the alloys. With an increase in the spinning rate from 0 (as-cast is defined as spinning rate of 0 m/s) to 30 m/s, the hydrogen absorption saturation ratio () of the (x = 0.4) alloy increases from 77.1 to 93.5%, the hydrogen desorption ratio () from 54.5 to 70.2%, the hydrogen diffusion coefficient (D) from 0.75 × 10 - 11 to 3.88 × 10 - 11 cm²/s and the limiting current density I L from 150.9 to 887.4 mA/g.

  2. High Temperature Oxidation Behavior of gamma-Ni+gamma'-Ni3Al Alloys and Coatings Modified with Pt and Reactive Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Nan

    2007-12-01

    Materials for high-pressure turbine blades must be able to operate in the high-temperature gases (above 1000 C) emerging from the combustion chamber. Accordingly, the development of nickel-based superalloys has been constantly motivated by the need to have improved engine efficiency, reliability and service lifetime under the harsh conditions imposed by the turbine environment. However, the melting point of nickel (1455 C) provides a natural ceiling for the temperature capability of nickel-based superalloys. Thus, surface-engineered turbine components with modified diffusion coatings and overlay coatings are used. Theses coatings are capable of forming a compact and adherent oxide scale, which greatly impedesmore » the further transport of reactants between the high-temperature gases and the underlying metal and thus reducing attack by the atmosphere. Typically, these coatings contain β-NiAl as a principal constituent phase in order to have sufficient aluminum content to form an Al 2O 3 scale at elevated temperatures. The drawbacks to the currently-used {beta}-based coatings, such as phase instabilities, associated stresses induced by such phase instabilities, and extensive coating/substrate interdiffusion, are major motivations in this study to seek next-generation coatings. The high-temperature oxidation resistance of novel Pt + Hf-modified γ-Ni + γ-Ni 3Al-based alloys and coatings were investigated in this study. Both early-stage and 4-days isothermal oxidation behavior of single-phase γ-Ni and γ'-Ni 3Al alloys were assessed by examining the weight changes, oxide-scale structures, and elemental concentration profiles through the scales and subsurface alloy regions. It was found that Pt promotes Al 2O 3 formation by suppressing the NiO growth on both γ-Ni and γ'Ni 3Al single-phase alloys. This effect increases with increasing Pt content. Moreover, Pt exhibits this effect even at lower temperatures (~970 C) in the very early stage of oxidation. It was

  3. Effect of Al and Y2O3 on Mechanical Properties in Mechanically Alloyed Nanograin Ni-Based Alloys.

    PubMed

    Kim, Chung Seok; Kim, Il-Ho

    2015-08-01

    The effects of aluminum and Y2O3 on the mechanical properties in nano grain Ni-based alloys have been investigated. The test specimens are prepared by mechanical alloying at an Ar atmosphere. The addition of Y2O3 and Al may cause an increase in the tensile strength at room temperature, 400 °C and 600 °C. However, it was confirmed that the increase of tensile strength at room temperature and 400 °C was predominantly caused by addition of Y2O3, while that at 600 °C was mainly due to addition of Al. These results can be attributed to the dispersion strengthening of Y2O3, preventing the formation of Cr2O3 and the change of fracture mode at 600 °C by the addition of Al.

  4. Structure and properties of electrodeposited nanocrystalline Ni and Ni-Fe alloy continuous foils

    NASA Astrophysics Data System (ADS)

    Giallonardo, Jason Derek

    This research work presents the first comprehensive study on nanocrystalline materials produced in bulk quantities using a novel continuous electrodeposition process. A series of nanocrystalline Ni and Ni-Fe alloy continuous foils were produced and an intensive investigation into their structure and various properties was carried out. High-resolution transmission electron microscopy (HR-TEM) revealed the presence of local strain at high and low angle, and twin boundaries. The cause for these local strains was explained based on the interpretation of non-equilibrium grain boundary structures that result when conditions of compatibility are not satisfied. HR-TEM also revealed the presence of twin faults of the growth type, or "growth faults", which increased in density with the addition of Fe. This observation was found to be consistent with a corresponding increase in the growth fault probabilities determined quantitatively using X-ray diffraction (XRD) pattern analysis. Hardness and Young's modulus were measured by nanoindentation. Hardness followed the regular Hall-Petch behaviour down to a grain size of 20 nm after which an inverse trend was observed. Young's modulus was slightly reduced at grain sizes less than 20 nm and found to be affected by texture. Microstrain based on XRD line broadening was measured for these materials and found to increase primarily with a decrease in grain size or an increase in intercrystal defect density (i.e., grain boundaries and triple junctions). This microstrain is associated with the local strains observed at grain boundaries in the HR-TEM image analysis. A contribution to microstrain from the presence of growth faults in the nanocrystalline Ni-Fe alloys was also noted. The macrostresses for these materials were determined from strain measurements using a two-dimensional XRD technique. At grain sizes less than 20 nm, there was a sharp increase in compressive macrostresses which was also owed to the corresponding increase in

  5. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H2S and CO2

    PubMed Central

    Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin

    2017-01-01

    The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H2S/CO2 environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H2S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni3S2, NiS, or Ni3S4, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate. PMID:28772995

  6. Effects of grain size on the properties of bulk nanocrystalline Co-Ni alloys

    NASA Astrophysics Data System (ADS)

    Qiao, Gui-Ying; Xiao, Fu-Ren

    2017-08-01

    Bulk nanocrystalline Co78Ni22 alloys with grain size ranging from 5 nm to 35 nm were prepared by high-speed jet electrodeposition (HSJED) and annealing. Microhardness and magnetic properties of these alloys were investigated by microhardness tester and vibrating sample magnetometer. Effects of grain size on these characteristics were also discussed. Results show that the microhardness of nanocrystalline Co78Ni22 alloys increases following a d -1/2-power law with decreasing grain size d. This phenomenon fits the Hall-Petch law when the grain size ranges from 5 nm to 35 nm. However, coercivity H c increases following a 1/d-power law with increasing grain size when the grain size ranges from 5 nm to 15.9 nm. Coercivity H c decreases again for grain sizes above 16.6 nm according to the d 6-power law.

  7. Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liao, Weibing; Lan, Si; Gao, Libo

    High-entropy CoCrFeNiAl0.3 alloy thin films were prepared by magnetron sputtering technique. The thin film surface was very smooth and homogeneous. The synchrotron X-ray experiment confirmed that (111) type of texture existed in the thin film, and the structure was face-centered cubic nanocrystals with a minor content of ordered NiAl-type body-centered cubic structures. Interestingly, the elastic modulus of the thin film was nearly the same to the bulk single-crystal counterpart, however, the nanohardness is about four times of the bulk single-crystal counterpart. It was found that the high hardness was due to the formation of nanocrystal structure inside the thin filmsmore » and the preferred growth orientation, which could be promising for applications in micro fabrication and advanced coating technologies.« less

  8. Plasma sprayed ceramic thermal barrier coating for NiAl-based intermetallic alloys

    NASA Technical Reports Server (NTRS)

    Miller, Robert A. (Inventor); Doychak, Joseph (Inventor)

    1994-01-01

    A thermal barrier coating system consists of two layers of a zirconia-yttria ceramic. The first layer is applied by low pressure plasma spraying. The second layer is applied by conventional atmospheric pressure plasma spraying. This facilitates the attachment of a durable thermally insulating ceramic coating directly to the surface of a highly oxidation resistant NiAl-based intermetallic alloy after the alloy has been preoxidized to promote the formation of a desirable Al2O3 scale.

  9. Progress in the Modeling of NiAl-Based Alloys Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita

    1997-01-01

    The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.

  10. Directionally Solidified NiAl-Based Alloys Studied for Improved Elevated-Temperature Strength and Room-Temperature Fracture Toughness

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2000-01-01

    Research Center at Lewis Field was undertaken to study the effect of the directional solidification growth rate on the microstructure, room temperature fracture toughness, and strength at 1027 C of a Ni-33Al-31Cr-3Mo eutectic alloy. The directionally solidified rates varied between 7.6 and 508 millimeters per hour Essentially fault-free, alternating (Cr, Mo)/NiAl lamellar plate microstructures (left photograph) were formed during growth at and below 12.7 mm/hr, whereas cellular microstructures (right photograph) with the (Cr, Mo) phase in a radial spokelike pattern were developed at faster growth rates. The compressive strength at 1027 C continuously increased with increasing growth rate and did not indicate a maxima as was reported for directionally solidified Ni-33Al-34Cr. Surprisingly, samples with the lamellar plate microstructure (left photograph) possessed a room-temperature fracture toughness of approximately 12 MPa(sup square root of m), whereas all the alloys with a cellular microstructure had a toughness of about 17 MPa(sup square root of m). These results are significant since they clearly demonstrate that Ni-33Al-31Cr-3Mo can be directionally solidified at much faster growth rates without any observable deterioration in its mechanical properties. Thus, the potential to produce strong, tough NiAl-based eutectics at commercially acceptable growth rates exists. Additional testing and alloy optimization studies are underway.

  11. High-temperature site preference and atomic short-range ordering characteristics of ternary alloying elements in γ'-Ni3Al intermetallics

    NASA Astrophysics Data System (ADS)

    Eriş, Rasim; Mekhrabov, Amdulla O.; Akdeniz, M. Vedat

    2017-10-01

    Remarkable high-temperature mechanical properties of nickel-based superalloys are correlated with the arrangement of ternary alloying elements in L12-type-ordered γ‧-Ni3Al intermetallics. In the current study, therefore, high-temperature site occupancy preference and energetic-structural characteristics of atomic short-range ordering (SRO) of ternary alloying X elements (X = Mo, W, Ta, Hf, Re, Ru, Pt or Co) in Ni75Al21.875X3.125 alloy systems have been studied by combining the statistico-thermodynamical theory of ordering and electronic theory of alloys in the pseudopotential approximation. Temperature dependence of site occupancy tendencies of alloying X element atoms has been predicted by calculating partial ordering energies and SRO parameters of Ni-Al, Ni-X and Al-X atomic pairs. It is shown that, all ternary alloying element atoms (except Pt) tend to occupy Al, whereas Pt atoms prefer to substitute for Ni sub-lattice sites of Ni3Al intermetallics. However, in contrast to other X elements, sub-lattice site occupancy characteristics of Re atoms appear to be both temperature- and composition-dependent. Theoretical calculations reveal that site occupancy preference of Re atoms switches from Al to both Ni and Al sites at critical temperatures, Tc, for Re > 2.35 at%. Distribution of Re atoms at both Ni and Al sub-lattice sites above Tc may lead to localised supersaturation of the parent Ni3Al phase and makes possible the formation of topologically close-packed (TCP) phases. The results of the current theoretical and simulation study are consistent with other theoretical and experimental investigations published in the literature.

  12. Dendrite segregation in Ni3Al-based intermetallic single crystals alloyed with Cr, Mo, W, Ti, Co, and Re

    NASA Astrophysics Data System (ADS)

    Drozdov, A. A.; Povarova, K. B.; Morozov, A. E.; Antonova, A. V.; Bulakhtina, M. A.; Alad'ev, N. A.

    2015-07-01

    The character of dendrite segregation in Ni3Al-based intermetallic VKNA-type alloy single crystals with a dendritic-cellular structure is studied. Distribution coefficient k d of an alloying element (AE) in the alloy during solidification k d = c d.a.I/ c 0 ( c 0 is the AE content in the alloy (liquid phase composition), c d.a.I is the AE content in primary dendrite arms of the alloy (in the solid phase)) and segregation coefficient k s = c d.a.I/ c i.d ( c i.d is the AE content in the interdendritic space) have been found. A comparative study of the dendrite segregation parameters in VKNA-nype Ni3Al-based intermetallic alloys and the well-known ZhS36-type nickel superalloy shows that the intermetallic alloys satisfy to the rule deduced for two- and three-component nickel-based superalloys: if an introduced AE increases the melting temperature of the basic metal, we have k d > 1 (Co, W, Re); if it decreases the melting temperature, we have k d < 1 (Al, Ti, Cr, Mo). Dendrite segregation coefficients k s are dependent on the proportion of the AE contents in the alloys. In nickel superalloys, the dendrite segregation of aluminum, tungsten, and rhenium is higher than that in the intermetallic alloys. The dendrite segregation coefficients of tungsten and rhenium is higher by a factor of 1.5-2 than that in the VKNA-type intermetallic alloys with a low content of refractory metals. This can be due to the retardation of diffusion of refractory metals in the solid phase of a nickel superalloy highly alloyed with these elements.

  13. Atomistic simulations of shock-induced alloying reactions in Ni /Al nanolaminates

    NASA Astrophysics Data System (ADS)

    Zhao, Shijin; Germann, Timothy C.; Strachan, Alejandro

    2006-10-01

    We employ molecular dynamics simulations with a first principles-based many body potential to characterize the exothermic alloying reactions of nanostructured Ni /Al multilayers induced by shock loading. We introduce a novel technique that captures both the initial shock transit as well as the subsequent longer-time-scale Ni3Al alloy formation. Initially, the softer Al layers are shock heated to a higher temperature than the harder Ni layers as a result of a series of shock reflections from the impedance-mismatched interfaces. Once initiated, the highly exothermic alloying reactions can propagate in a self-sustained manner by mass and thermal diffusion. We also characterize the role of voids on the initiation of alloying. The interaction of the shock wave with the voids leads not only to significant local heating (hot spots) but also directly aids the intermixing between Al and Ni; both of these phenomena contribute to a significant acceleration of the alloying reactions.

  14. A sulfur segregation study of PWA 1480, NiCrAl, and NiAl alloys

    NASA Technical Reports Server (NTRS)

    Jayne, D. T.; Smialek, J. L.

    1993-01-01

    Some nickel based superalloys show reduced oxidation resistance from the lack of an adherent oxide layer during high temperature cyclic oxidation. The segregation of sulfur to the oxide-metal interface is believed to effect oxide adhesion, since low sulfur alloys exhibit enhanced adhesion. X ray Photoelectron Spectroscopy (XPS) was combined with an in situ sample heater to measure sulfur segregation in NiCrAl, PWA 1480, and NiAl alloys. The polished samples with a 1.5 to 2.5 nm (native) oxide were heated from 650 to 1100 C with hold times up to 6 hr. The sulfur concentration was plotted as a function of temperature versus time at temperature. One NiCrAl sulfur study was performed on the same casting used by Browning to establish a base line between previous Auger Electron Spectroscopy (AES) results and the XPS results of this study. Sulfur surface segregation was similar for PWA 1480 and NiCrAl and reached a maximum of 30 at% at 800 to 850 C. Above 900 C the sulfur surface concentration decreased to about 3 at% at 1100 C. These results are contrasted to the minimal segregation observed for low sulfur hydrogen annealed materials which exhibit improved scale adhesion.

  15. Diffusional transport and predicting oxidative failure during cyclic oxidation of beta-NiAl alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Vinarcik, E. J.; Barrett, C. A.; Doychak, J.

    1992-01-01

    Nickel aluminides (NiAl) containing 40-50 at. percent Al and up to 0.1 at. percent Zr have been studied following cyclic oxidation at 1200, 1300, 1350 and 1400 C. The selective oxidation of aluminum resulted in the formation of protective Al2O3 scales on each alloy composition at each temperature. However, repeated cycling eventually resulted in the gradual formation of less protective NiAl2O4. The appearance of the NiAl2O4, signaling the end of the protective scale-forming capability of the alloy, was related to the presence of gamma-prime-(Ni3Al) which formed as a result of the loss of aluminum from the sample. A simple methodology is presented to predict the protective life of beta-NiAl alloys. This method predicts the oxidative lifetime due to aluminum depletion when the aluminum concentration decreases to a critical concentration. The time interval preceding NiAl2O4 formation (i.e., the lifetime based on protective Al2O3 formation) and predicted lifetimes are compared and discussed. Use of the method to predict the maximum use temperature for NiAl-Zr alloys is also discussed.

  16. Stability of an Electrodeposited Nanocrystalline Ni-Based Alloy Coating in Oil and Gas Wells with the Coexistence of H₂S and CO₂.

    PubMed

    Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin

    2017-06-09

    The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H₂S/CO₂ environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H₂S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni₃S₂, NiS, or Ni₃S₄, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.

  17. Electrode characteristics of nanocrystalline AB{sub 5} compounds prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Chen, Z.; Zhou, D.

    1998-10-01

    Nanocrystalline LaNi{sub 5} and LaNi{sub 4.5}Si{sub 0.5} synthesized by mechanical alloying were used as negative materials for Ni-MH batteries. It was found that the electrodes prepared with the nanocrystalline powders had similar discharge capacities, better activation behaviors, and longer cycle lifetimes, compared with the negative electrode prepared with polycrystalline coarse-grained LaNi{sub 5} alloy. The properties of the electrodes prepared with these nanocrystalline materials were attributed to the structural characteristics of the compounds caused by mechanical alloying.

  18. Kinetics of Static Strain Aging in Polycrystalline NiAl-based Alloys

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The kinetics of yield point return have been studied in two NiAl-based alloys as a function of aging time at temperatures between 300 and 700 K. The results indicate that the upper yield stress increment, Delta sigma(sub u) (i.e., stress difference between the upper yield point and the final flow stress achieved during prestraining), in conventional purity (CP-NiAl) and in high purity carbon-doped (NiAl-C) material first increased with a t(exp 2/3) relationship before reaching a plateau. This behavior suggests that a Cottrell locking mechanism is the cause for yield points in NiAl. In addition, positive y-axis intercepts were observed in plots of Delta sigma(sub u) versus t(exp 2/3) suggesting the operation of a Snoek mechanism. Analysis according to the Cottrell Bilby model of atmosphere formation around dislocations yields an activation energy for yield point return in the range 70 to 76 kJ/mol which is comparable to the activation energy for diffusion of interstitial impurities in bcc metals. It is, thus, concluded that the kinetics of static strain aging in NiAl are controlled by the locking of dislocations by Cottrell atmospheres of carbon atoms around dislocations.

  19. The effects of alloying elements Al and In on Ni-Mn-Ga shape memory alloys, from first principles.

    PubMed

    Chen, Jie; Li, Yan; Shang, Jia-Xiang; Xu, Hui-Bin

    2009-01-28

    The electronic structures and formation energies of the Ni(9)Mn(4)Ga(3-x)Al(x) and Ni(9)Mn(4)Ga(3-x)In(x) alloys have been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The results show that both the austenite and martensite phases of Ni(9)Mn(4)Ga(3) alloy are stabilized by Al alloying, while they become unstable with In alloying. According to the partial density of states and structural energy analysis, different effects of Al and In alloying on the phase stability are mainly attributed to their chemical effects. The formation energy difference between the austenite and martensite phases decreases with Al or In alloying, correlating with the experimentally reported changes in martensitic transformation temperature. The shape factor plays an important role in the decrease of the formation energy difference.

  20. Evolution of rapidly solidified NiAlCu(B) alloy microstructure.

    PubMed

    Czeppe, Tomasz; Ochin, Patrick

    2006-10-01

    This study concerned phase transformations observed after rapid solidification and annealing at 500, 700 and 800 degrees C in 56.3 Ni-39.9 Al-3.8 Cu-0.06 B (E1) and 59.8 Ni-36.0 Al-4.3 Cu-0.06 B (E2) alloys (composition in at.%). Injection casting led to a homogeneous structure of very small, one-phase grains (2-4 microm in size). In both alloys, the phase observed at room temperature was martensite of L1(0) structure. The process of the formation of the Ni(5)Al(3) phase by atomic reordering proceeded at 285-394 degrees C in the case of E1 alloy and 450-550 degrees C in the case of E2 alloy. Further decomposition into NiAl (beta) and Ni(3)Al (gamma') phases, the microstructure and crystallography of the phases depended on the path of transformations, proceeding in the investigated case through the transformation of martensite crystallographic variants. This preserved precise crystallographic orientation between the subsequent phases, very stable plate-like morphology and very small beta + gamma' grains after annealing at 800 degrees C.

  1. Transition-metal alloying of γ'-Ni3Al : Effects on the ideal uniaxial compressive strength from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Minru; Wang, Chong-Yu

    2018-01-01

    The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.

  2. Ni.sub.3 Al-based intermetallic alloys having improved strength above 850.degree. C.

    DOEpatents

    Liu, Chain T.

    2000-01-01

    Intermetallic alloys composed essentially of: 15.5% to 17.0% Al, 3.5% to 5.5% Mo, 4% to 8% Cr, 0.04% to 0.2% Zr, 0.04% to 1.5% B, balance Ni, are characterized by melting points above 1200.degree. C. and superior strengths at temperatures above 1000.degree. C.

  3. Fabrication and characterization of nano-Y2O3 and Al2O3 dispersed W-Ni alloys by mechanical alloying and pressureless conventional sintering

    NASA Astrophysics Data System (ADS)

    Talekar, V. R.; Patra, A.; Karak, S. K.

    2018-03-01

    Nano Y2O3 and Al2O3 dispersed W-Ni alloys with nominal composition of W89Ni10 (Y2O3)1 (alloy A), W89Ni10 (Al2O3)1 (alloy B) were mechanically alloyed for 10 h followed by compaction at 0.5 GPa pressure with 5 min of dwell time and conventional sintering at 1400°C with 2 h soaking time in Ar atmosphere with Ar flow rate of 100 ml/min. The microstructure of milled and sintered alloy was investigated using X-ray Diffraction (XRD), Scanning electron Microscopy (SEM), Energy dispersive spectroscopy (EDS) and Elemental mapping. Minimum crystallite size of 31.9 nm and maximum lattice strain, dislocation density of 0.23%, 9.12(1016/m2) respectively was found in alloy A at 10 h of milling. Uneven and coarse particles at 0 h of milling converted to elongated flake shape at 10 h of milling. Bimodal (fine and coarse) particle size distribution is revealed in both the alloys and minimum particle size of 0.69 μm is achieved in 10 h milled alloy A. Evidences of formation of intermetallic phases like Y2WO6, Y6WO12 and Y10W2O21 in sintered alloy A and Al2(WO4)3, NiAl10O16, NiAl2O4 and AlWO4 in sintered alloy B were revealed by XRD pattern and SEM micrograph. Minimum grain size of 1.50 μm was recorded in sintered alloy A. Both faceted and spherical W matrix is evident in both the alloys which suggests occurrence of both solid phase and liquid phase sintering. Maximum % relative sintered density and hardness of 85.29% and 5.13 GPa respectively was found in alloy A. Wear study at 20N force at 25 rpm for 15 min on ball on plate wear tester revealed that minimum wear depth (48.99 μm) and wear track width (272 μm) was found for alloy A as compared to alloy B.

  4. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-12-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  5. Recoil-free Fraction in Amorphous and Nanocrystalline Aluminium Based Alloys

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef

    2008-10-01

    Aluminium based rapidly quenched alloys of nominal composition Al90Fe7Nb3 and Al94Fe2V4 were studied by Mössbauer spectroscopy. We have measured the recoil-free fraction and thermal shift at room and liquid nitrogen temperature. The frequency modes of atomic vibrations were determined and consequently the characteristic Debye temperature was derived. Characteristic temperature calculated from f-factor was lower than those fitted from second order Doppler shift. This indicates the presence of different frequency modes for amorphous and nanocrystalline states.

  6. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE PAGES

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.; ...

    2017-01-07

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  7. Microstructural evolution of single Ni 2TiAl or hierarchical NiAl/Ni 2 TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Gian; Sun, Zhiqian; Poplawsky, Jonathan D.

    Precipitate features, such as the size, morphology, and distribution, are important parameters determining the mechanical properties of semi- or fully-coherent precipitatehardened alloys at elevated temperatures. In this study, the microstructural formation and evolution of recently-developed Fe-Ni-Al-Cr-Ti alloys with superior creep resistance have been systematically investigated using transmission-electron microscopy (TEM), scanning-electron microscopy (SEM), and atom-probe tomography (APT). These alloys were designed by adding 2 or 4 weight percent (wt. %) Ti into a NiAl-hardened ferritic alloy with a nominal composition of Fe-6.5Al-10Cr-10Ni-3.4Mo-0.25Zr-0.005B in wt. %. These alloys were, then, subjected to a homogenization treatment at 1,473 K for 0.5 hour, followedmore » by aging treatments at 973 K for 1 ~ 500 hours. In the homogenization-treated case, both alloys contain a primary L21-type Ni 2TiAl precipitate, but with the distinct size and morphology of the precipitates and precipitate/matrix interface structures. In the subsequent aging treatments, the 2 wt. % Ti alloy establishes a hierarchical-precipitate structure consisting of a fine network of a B2-type NiAl phase within the parent L2 1-type Ni2TiAl precipitate, while the 4 wt. % Ti alloy retains the single Ni 2TiAl precipitate. It was found that the hierarchical structure is more effective in remaining the coherent interface during the growth/coarsening of the precipitate. The formation of the different types of the precipitates, and their effects on the microstructural evolution are discussed, and the driving forces for these features are identified from the competition between the interface energy and elastic interactions due to the lattice misfit and misfit dislocations.« less

  8. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  9. An important factor powerfully influencing the Al Ni-based alloys' glass-forming ability

    NASA Astrophysics Data System (ADS)

    Bo, Zhang; Xiufang, Bian; Chunxia, Fu; Na, Han; Jiankun, Zhou; Weimin, Wang

    2005-12-01

    In order to get better glass-forming abilities (GFAs), Ni atoms are partially replaced by Cu and Co atoms in Al84Ni12Zr4 alloys. Thermal analysis shows that the reduced crystallization temperature Trx has no direct correlation with the GFA of the alloys. However, it is notable that prepeaks have been found in the total structure factors of the amorphous Al84Ni(12-x)Zr4Cux and Al84Ni(12-x)Zr4Cox alloys. In addition, the results prove that the intensity of the prepeaks influences the GFA powerfully. The amorphous alloys with larger intensity of the prepeak show better GFA. The influence of prepeaks on the GFA can be explained by the atomic configuration difference among the liquid, crystal and glass states.

  10. Vacuum brazing of electroless Ni-P alloy-coated SiCp/Al composites using aluminum-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Niu, Jitai

    2016-12-01

    Using rapidly cooled (Al-10Si-20Cu-0.05Ce)-1Ti (wt%) foil as filler metal, the research obtained high-performance joints of electroless Ni-P alloy-coated aluminum matrix composites with high SiC particle content (60 vol%, SiCp/Al-MMCs). The effect of brazing process on joint properties and the formation of Al-Ni and Al-Cu-Ni intermetallic compounds were investigated, respectively. Due to the presence of Ni-P alloy coating, the wettability of liquid filler metal on the composites was improved obviously and its contact angle was only 21°. The formation of Al3Ni2 and Al3(CuNi)2 intermetallic compounds indicated that well metallurgical bonding occurred along the 6063Al matrix alloy/Ni-P alloy layer/filler metal foil interfaces by mutual diffusion and dissolution. And the joint shear strength increased with increasing the brazing temperature from 838 to 843 K or prolonging the soaking time from 15 to 35 min, while it decreased a lot because of corrosion occurring in the 6063Al matrix at high brazing temperature of 848 K. Sound joints with maximum shear strength of 112.5 MPa were obtained at 843 K for soaking time of 35 min. In this research, the beneficial effect of surface metallization by Ni-P alloy deposits on improving wettability on SiCp/Al-MMCs was demonstrated, and capable welding parameters were broadened as well.

  11. Preparation, deformation, and failure of functional Al-Sn and Al-Sn-Pb nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Noskova, N. I.; Vil'Danova, N. F.; Filippov, Yu. I.; Churbaev, R. V.; Pereturina, I. A.; Korshunov, L. G.; Korznikov, A. V.

    2006-12-01

    Changes in the structure, hardness, mechanical properties, and friction coefficient of Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb (wt %) alloys subjected to severe plastic deformation by equal-channel angular pressing (with a force of 40 tonne) and by shear at a pressure of 5 GPa have been studied. The transition into the nanocrystalline state was shown to occur at different degrees of plastic deformation. The hardness exhibits nonmonotonic variations, namely, first it increases and subsequently decreases. The friction coefficient of the Al-30% Sn, Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys quenched from the melt was found to be 0.33; the friction coefficients of these alloys in the submicrocrystalline state (after equal-channel angular pressing) equal 0.24, 0.32, and 0.35, respectively. The effect of disintegration into nano-sized powders was found to occur in the Al-15% Sn-25% Pb, and Al-5% Sn-35% Pb alloys after severe plastic deformation to ɛ = 6.4 and subsequent short-time holding.

  12. Processing, physical metallurgy and creep of NiAl + Ta and NiAl + Nb alloys. Ph.D. Thesis. Final Contractor Report

    NASA Technical Reports Server (NTRS)

    Pathare, Viren M.

    1988-01-01

    Powder processed NiAl + Ta alloys containing 1, 2, and 4.5 at percent tantalum and NiAl + Nb alloys containing 1 and 2 at percent niobium were developed for improved creep properties. In addition, a cast alloy with 5 at percent tantalum was also studied. Hot extrusion parameters for processing alloys with 1 and 2 at percent of tantalum or niobium were designed. The NiAl + 4.5 at percent Ta alloy could be vacuum hot pressed successfully, even though it could not be extruded. All the phases in the multiphase alloys were identified and the phase transformations studied. The Ni2AlTa in NiAl + 4.5 at percent Ta alloy transforms into a liquid phase above 1700 K. Solutionizing and annealing below this temperature gives rise to a uniform distribution of fine second phase precipitates. Compressive creep properties were evaluated at 1300 K using constant load and constant velocity tests. In the higher strain rate region single phase NiAl + 1 at percent Ta and NiAl + 1 at percent Nb alloys exhibit a stress exponent of 5 characteristic of climb controlled dislocation creep. In slower strain rate regime diffusional creep becomes important. The two phase alloys containing 2 to 5 at percent Ta and 2 at percent Nb show considerable improvement over binary NiAl and single phase alloys. Loose dislocation networks and tangles stabilized by the precipitates were found in the as crept microstructure. The cast alloy which has larger grains and a distribution of fine precipitates shows the maximum improvement over binary NiAl.

  13. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound

    NASA Astrophysics Data System (ADS)

    Majchrzycki, W.; Jurczyk, M.

    The electrochemical properties of nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 alloy, which has the hexagonal C14 type structure, have been investigated. This material has been prepared using mechanical alloying (MA) followed by annealing. The amorphous phase forms directly from the starting mixture of the elements, without other phase formation. Heating the MA samples at 1070 K for 0.5 h resulted in the creation of ordered alloy. This alloy was used as negative electrode for Ni-MH x battery. The electrochemical results show very little difference between the nanocrystalline and polycrystalline powders, as compared with the substantial difference between these and the amorphous powder. In the annealed nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 powders discharging capacities up to 150 mA h g -1 (at 160 mA g -1 discharging current) have been measured. The properties of nanocrystalline electrode were attributed to the structural characteristics of the compound caused by mechanical alloying.

  14. Amorphous and nanocrystalline phase formation in highly-driven Al-based binary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalay, Yunus Eren

    2009-01-01

    . This deviation indicates an adiabatic type solidification path where heat of fusion is reabsorbed. It is interesting that this particle size range is also consistent with the appearance of a microcellular growth. While no glass formation is observed within this system, the smallest size powders appear to consist of a mixture of nanocrystalline Si and Al. Al-Sm alloys have been investigated within a composition range of 34 to 42 wt% Sm. Gas atomized powders of Al-Sm are investigated to explore the morphological and structural hierarchy that correlates with different degrees of departure from full equilibrium conditions. The resultant powders show a variety of structural selection with respect to amount of undercooling, with an amorphous structure appearing at the highest cooling rates. Because of the chaotic nature of gas atomization, Cu-block melt-spinning is used to produce a homogeneous amorphous structure. The as-quenched structure within Al-34 to 42 wt% Sm consists of nanocrystalline fcc-Al (on the order of 5 nm) embedded in an amorphous matrix. The nucleation density of fcc-Al after initial crystallization is on the order of 10 22-10 23m -3, which is 10 5-10 6 orders of magnitude higher than what classical nucleation theory predicts. Detailed analysis of liquid and as-quenched structures using high energy synchrotron X-ray diffraction, high energy transmission electron microscopy, and atom probe tomography techniques revealed an Al-Sm network similar in appearance to a medium range order (MRO) structure. A model whereby these MRO clusters promote the observed high nucleation density of fcc-Al nanocrystals is proposed. The devitrification path was identified using high temperature, in-situ, high energy synchrotron X-ray diffraction techniques and the crystallization kinetics were described using an analytical Johnson-Mehl-Avrami (JMA) approach.« less

  15. Long-term high-velocity oxidation and hot corrosion testing of several NiCrAl and FeCrAl base oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.; Deadmore, D. L.; Whittenberger, J. D.

    1982-01-01

    Several oxide dispersion strengthened (ODS) alloys have been tested for cyclic, long-term, high gas-velocity resistance to oxidation at 1100 C and hot corrosion at 900 C. Both nominally Ni-16Cr-4Al and Fe-20Cr-4.5Al ODS alloys were subjected up to about 2500 cycles, where each cycle consisted of 1 hr in a hot, Mach 0.3 combusted gas stream followed by a 3-min quench in an ambient temperature, Mach 0.3 air blast. For comparison to existing technology, a coated superalloy was simultaneously tested. The ODS iron alloy exhibited clearly superior behavior, surviving 3800 oxidation and 2300 hot corrosion cycles essentially unscathed. While the ODS nickel alloys exhibited adequate oxidation resistance, the long-term hot corrosion resistance could be marginal, since the best life for such alloys under these conditions was only about 1100 cycles. However, the hot corrosion resistance of the ODS Ni-base alloys is excellent in comparison to that of traditional superalloys.

  16. Solidification and Microstructure of Ni-Containing Al-Si-Cu Alloy

    NASA Astrophysics Data System (ADS)

    Fang, Li; Ren, Luyang; Geng, Xinyu; Hu, Henry; Nie, Xueyuan; Tjong, Jimi

    2018-01-01

    2 wt. % nickel (Ni) addition was introduced into a conventional cast aluminum alloy A380. The influence of transition alloying element nickel on the solidification behavior of cast aluminum alloy A380 was investigated via thermal analyses based on temperature measurements recorded on cooling curves. The corresponding first and second derivatives of the cooling curves were derived to reveal the details of phase changes during solidification. The nucleation of the primary α-Al phase and eutectic phases were analyzed. The microstructure analyses by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS) indicate that different types and amount of eutectic phases are present in the tested two alloys. The introduction of Ni forms the complex Ni-containing intermetallic phases with Cu and Al.

  17. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    NASA Technical Reports Server (NTRS)

    Carro, G.; Flanagan, W. F.

    1992-01-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3.

  18. Effects of Microalloying on the Microstructures and Mechanical Properties of Directionally Solidified Ni-33(at.%)Al-31Cr-3Mo Eutectic Alloys Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, Sai V.; Locci, Ivan E.; Salem, Jonathan A.

    2002-01-01

    Despite nickel aluminide (NiAl) alloys' attractive combination of oxidation and thermophysical properties, their development as replacements for superalloy airfoils in gas turbine engines has been largely limited by difficulties in developing alloys with an optimum combination of elevated-temperature creep resistance and room-temperature fracture toughness. Alternatively, research has focused on developing directionally solidified NiAl-based in situ eutectic composites composed of NiAl and (Cr,Mo) phases in order to obtain a desirable combination of properties a systematic investigation was undertaken at the NASA Glenn Research Center to examine the effects of small additions of 11 alloying elements (Co, Cu, Fe, Hf, Mn, Nb, Re, Si, Ta, Ti, and Zr) in amounts varying from 0.25 to 1.0 at.% on the elevated-temperature strength and room-temperature fracture toughness of directionally solidified Ni-33Al-31Cr-3Mo eutectic alloy. The alloys were grown at 12.7 mm/hr, where the unalloyed eutectic base alloy exhibited a planar eutectic microstructure. The different microstructures that formed because of these fifth-element additions are included in the table. The additions of these elements even in small amounts resulted in the formation of cellular microstructures, and in some cases, dendrites and third phases were observed. Most of these elemental additions did not improve either the elevated-temperature strength or the room-temperature fracture toughness over that of the base alloy. However, small improvements in the compression strength were observed between 1200 and 1400 K when 0.5 at.% Hf and 0.25 at.% Ti were added to the base alloy. The results of this study suggest that the microalloying of Ni-33Al-31Cr-3Mo will not significantly improve either its elevatedtemperature strength or its room-temperature fracture toughness. Thus, any improvements in these properties must be acquired by changing the processing conditions.

  19. Short and Medium-Range Order in Liquid Ternary Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 Alloys

    NASA Astrophysics Data System (ADS)

    Roik, Oleksandr S.; Samsonnikov, Oleksiy; Kazimirov, Volodymyr; Sokolskii, Volodymyr

    2010-01-01

    A local short-to-intermediate range order of liquid Al80Co10Ni10, Al72.5Co14.5Ni13, and Al65Co17.5Ni17.5 alloys was examined by X-ray diffraction and the reverse Monte Carlo modelling. The comprehensive analysis of three-dimensional models of the liquid ternary alloys was performed by means of the Voronoi-Delaunay method. The existence of a prepeak on the S(Q) function of the liquid alloys is caused by medium range ordering of 3d-transition metal atoms in dense-packed polytetrahedral clusters at temperatures close to the liquidus. The non-crystalline clusters, represented by aggregates of pentagons that consist of good tetrahedra, and chemical short-range order lead to the formation of the medium range order in the liquid binary Al-Ni, Al-Co and ternary Al-Ni-Co alloys.

  20. Electrodeposition of Nanocrystalline Ni–Fe Alloy Coatings Based on 1-Butyl-3-Methylimidazolium-Hydrogen Sulfate Ionic Liquid.

    PubMed

    He, Xinkuai; Zhang, Chuang; Zhu, Qingyun; Lu, Haozi; Cai, Youxing; Wu, Luye

    2017-02-01

    The electrodeposition of nanocrystalline Ni–Fe alloy coatings and associated nucleation/growth processes are investigated on the glassy carbon (GC) electrode in 1-butyl-3-methylimidazolium-hydrogen sulfate ([BMIM]HSO4) ionic liquid (IL). Cyclic voltammetric data suggest that the co-electrodeposition of Ni–Fe alloys is quasi-reversible. Moreover, chronoamperometry results indicate that the electrodeposition proceeds via a simultaneous nucleation and three-dimensional growth mechanism. In addition, the effects of electrodeposition potential and electrolyte temperature on the coating thickness and Fe content are also studied. The microstructure and composition of the Ni–Fe alloy coatings on Cu substrate are investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS). SEM observations show that these electrodeposits present a dense and compact structure, EDS analysis indicates that the coatings are composed of Ni and Fe, XRD pattern shows the coatings are crystalline with a face-centred cubic (fcc) structure. Tafel plots reveal that the Ni–Fe alloy prepared from [BMIM]HSO4 IL presents better corrosion resistance than that of pure Ni.

  1. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  2. High-Temperature Oxidation Behavior of Al-Co-Cr-Ni-(Fe or Si) Multicomponent High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Alfano, J. P.; Martens, R. L.; Weaver, M. L.

    2015-01-01

    High-entropy alloys (HEAs) are a class of alloys that are being considered for a number of applications. In the present study, the microstructures and 1050°C oxidation behaviors of two HEAs, Al10Cr22.5Co22.5Ni22.5Fe22.5 (at.%) and Al20Cr25Co25Ni25Si5 have been investigated along with Al15Cr10Co35Ni35Si5, which is a high-temperature shape-memory alloy. Oxide formation occurred via selective oxidation in a manner that was consistent with the oxide formation model devised by Giggins and Pettit for model Ni-Cr-Al alloys. The lower Al content alloy formed an external Cr2O3 scale and an internal subscale consisting of Al2O3 and AlN precipitates. The higher Al content alloys exhibited smaller mass gains and formed external Al2O3 scales without any internal oxidation of the alloys.

  3. Phase fields of nickel silicides obtained by mechanical alloying in the nanocrystalline state

    NASA Astrophysics Data System (ADS)

    Datta, M. K.; Pabi, S. K.; Murty, B. S.

    2000-06-01

    Solid state reactions induced by mechanical alloying (MA) of elemental blends of Ni and Si have been studied over the entire composition range of the Ni-Si system. A monotonous increase of the lattice parameter of the Ni rich solid solution, Ni(Si), is observed with refinement of crystallite size. Nanocrystalline phase/phase mixtures of Ni(Si), Ni(Si)+Ni31Si12, Ni31Si12+Ni2Si, Ni2Si+NiSi and NiSi+Si, have been obtained during MA, over the composition ranges of 0-10, 10-28, 28-33, 33-50, and >50 at. % Si, respectively. The results clearly suggest that only congruent melting phases, Ni31Si12, Ni2Si, and NiSi form, while the formation of noncongruent melting phases, Ni3Si, Ni3Si2, and NiSi2, is bypassed in the nanocrystalline state. The phase formation during MA has been discussed based on thermodynamic arguments. The predicted phase fields obtained from effective free energy calculations are quite consistent with those obtained during MA.

  4. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-08-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while themore » time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3. 14 refs.« less

  5. Microhardness and morphologic characteristics of rapidly solidified Al-12Si-8Ni-5Nd alloy

    NASA Astrophysics Data System (ADS)

    Karaköse, Ercan; Keskin, Mustafa

    2010-06-01

    Al-Si-Ni-Nd alloys with a nominal composition of Al-12 wt.% Si-8 wt.% Ni-5 wt.% Nd alloy are prepared by a conventional casting (ingot) and melt spinning technique at different cooling rates ( ν). The effects of the rapid solidification rate on the microstructures and microhardness performances of the specimen alloys are investigated in detail. The results obtained by the XRD, SEM and DSC show that the ingot and melt spun alloys have a multiphase structure. When ν is 5 m/s, the alloy consists of four phases namely α-Al, intermetallic Al3Ni, Al11Nd3, and fcc Si. The melt-spun ribbons are completely composed of α-Al and eutectic Si phases, and primary silicon is not observed when ν increases to 20 m/s, 25 m/s, 30 m/s and 35 m/s. The XRD analysis indicated that the solubility of Si in the α-Al matrix increases greatly with the rapid solidification. The change in microhardness is discussed based on the microstructural observations. The microhardness values of the melt spun ribbons are about three times higher than those of ingot counterparts.

  6. Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Firstov, G. S.; Kosorukova, T. A.; Koval, Yu. N.; Maier, H. J.

    2018-06-01

    The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.

  7. Synergistic effect of alloying elements doping and external pressure on the elastic property of Ni{sub 3}Al: A first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, C., E-mail: lichun@nwpu.edu.cn; Shang, J.; Yue, Z.

    2015-07-15

    In this paper, the basic electronic structures and elastic properties of Ni{sub 3}Al doping with alloying elements (Re, Cr, and Mo) under different pressures have been investigated using first-principles calculations based on density functional theory. It is shown that both alloying elements and external applied pressure contribute positively to the elastic properties of Ni{sub 3}Al, and the configurations of the compounds remain almost unchanged. The calculated elastic constants and moduli increase linearly with the pressure increasing from 0 and 40 GPa. Among the alloying elements studied in the present work, Re exhibits the most significant effect compared with the othermore » elements, showing its practical importance. Especially, if both alloying elements doping and pressure effects are considered simultaneously, which has not been considered previously, the studied compounds exhibit an even better elastic property than the simple superposition of the two influences. Such synergistic effect demonstrates promising applications of Ni-based single crystal superalloys in possible extreme mechanical environments.« less

  8. Applications of Ni3Al Based Intermetallic Alloys—Current Stage and Potential Perceptivities

    PubMed Central

    Jozwik, Pawel; Polkowski, Wojciech; Bojar, Zbigniew

    2015-01-01

    The paper presents an overview of current and prospective applications of Ni3Al based intermetallic alloys—modern engineering materials with special properties that are potentially useful for both structural and functional purposes. The bulk components manufactured from these materials are intended mainly for forging dies, furnace assembly, turbocharger components, valves, and piston head of internal combustion engines. The Ni3Al based alloys produced by a directional solidification are also considered as a material for the fabrication of jet engine turbine blades. Moreover, development of composite materials with Ni3Al based alloys as a matrix hardened by, e.g., TiC, ZrO2, WC, SiC and graphene, is also reported. Due to special physical and chemical properties; it is expected that these materials in the form of thin foils and strips should make a significant contribution to the production of high tech devices, e.g., Micro Electro-Mechanical Systems (MEMS) or Microtechnology-based Energy and Chemical Systems (MECS); as well as heat exchangers; microreactors; micro-actuators; components of combustion chambers and gasket of rocket and jet engines as well components of high specific strength systems. Additionally, their catalytic properties may find an application in catalytic converters, air purification systems from chemical and biological toxic agents or in a hydrogen “production” by a decomposition of hydrocarbons.

  9. Effect of different alloyed layers on the high temperature oxidation behavior of newly developed Ti 2AlNb-based alloys

    NASA Astrophysics Data System (ADS)

    Wu, Hongyan; Zhang, Pingze; Zhao, Haofeng; Wang, Ling; Xie, Aigen

    2011-01-01

    The application of titanium aluminide orthorhombic alloys (O-phase alloys) as potential materials in aircraft and jet engines was limited by their poor oxidation resistance at high temperature. The Ti 2AlNb-based alloys were chromised (Cr), chromium-tungstened (Cr-W) and nickel-chromised (Ni-Cr) by the double glow plasma surface alloying process to improve their high temperature oxidation resistance. The discontinuous oxidative behavior of Cr, Cr-W and Ni-Cr alloyed layers on Ti 2AlNb-based alloy at 1093 K was explored in this study. After exposing at 1093 K, the TiO 2 layer was formed on the bare alloy and accompanied by the occurrence of crack, which promoted oxidation rate. The oxidation behavior of Ti 2AlNb-based alloys was improved by surface alloying due to the formation of protective Al 2O 3 scale or continuous and dense NiCr 2O 4 film. The Ni-Cr alloyed layer presented the best high-temperature oxidation resistance among three alloyed layers.

  10. Eutectic superalloys strengthened by sigma, Ni3CB lamellae and gamma prime, Ni3Al precipitates

    NASA Technical Reports Server (NTRS)

    Lemkey, F. D.

    1973-01-01

    By means of a screening and solidification optimization study of certain alloys located on the gamma-sigma liquidus surface within the Ni-Cb-Cr-Al system, alloys with high temperature properties superior to those of all known superalloys were defined. One alloy, Ni - 19.7w/o Cb - 6.0w/o Cr - 2.5w/o Al, directionally solidified at 3 cm/hr met or exceeded each program goal. A second alloy, Ni-21.75 w/o Cb-2.55 w/o Al, although deficient in its inherent oxidation resistance, met the other program goals and combined a remarkable insensitivity of composite microstructure to solidification parameters with excellent low temperature toughness. This investigation demonstrated that useful properties for gas turbine airfoil application have been achieved by reinforcing a strong and tough gamma solid solution matrix containing precipitated gamma prime by a lamellar intermetallic compound Ni3 Cb having greater strength at elevated temperature.

  11. Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-01-01

    In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less

  12. Defect Structure of Beta NiAl Using the BFS Method for Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Amador, Carlos; Ferrante, John; Noebe, Ronald D.

    1996-01-01

    The semiempirical BFS method for alloys is generalized by replacing experimental input with first-principles results thus allowing for the study of complex systems. In order to examine trends and behavior of a system in the vicinity of a given point of the phase diagram a search procedure based on a sampling of selected configurations is employed. This new approach is applied to the study of the beta phase of the Ni-Al system, which exists over a range of composition from 45-60 at.% Ni. This methodology results in a straightforward and economical way of reproducing and understanding the basic features of this system. At the stoichiometric composition, NiAl should exist in a perfectly ordered B2 structure. Ni-rich alloys are characterized by antisite point defects (with Ni atoms in the Al sites) with a decrease in lattice parameters. On the Al-rich side of stoichiometry there is a steep decrease in lattice parameter and density with increasing Al content. The presence of vacancies in Ni sites would explain such behavior. Recent X-ray diffraction experiments suggest a richer structure: the evidence, while strongly favoring the presence of vacancies in Ni sites, also suggests the possibility of some vacancies in Al sites in a 3:1 ratio. Moreover, local ordering of vacant sites may be preferred over a random distribution of individual point defects.

  13. On the Formation of Lightweight Nanocrystalline Aluminum Alloys by Electrodeposition

    DOE PAGES

    Hilty, Robert D.; Masur, Lawrence J.

    2017-08-08

    New nanocrystalline aluminum alloys have been fabricated by electrodeposition. These are thermodynamically stable alloys of Al-Mn and Al-Zr with grain sizes < 100nm. Al-Mn and Al-Zr alloys are characterized here showing high strength (up to 1350 MPa) and hardness (up to 450 HVN) while maintaining the specific gravity of Al. Smooth and dense deposits plated from ionic liquids, such as EMIM:Cl (1-Ethyl-3-methylimidazolium chloride), can develop to thicknesses of 1mm or more.

  14. Degradation mechanisms of Ti/Al/Ni/Au-based Ohmic contacts on AlGaN/GaN HEMTs

    DOE PAGES

    Hwang, Ya-Hsi; Ahn, Shihyun; Dong, Chen; ...

    2015-04-27

    We investigated the degradation mechanism of Ti/Al/Ni/Au-based Ohmic metallization on AlGaN/GaN high electron mobility transistors upon exposure to buffer oxide etchant (BOE). The major effect of BOE on the Ohmic metal was an increase of sheet resistance from 2.89 to 3.69 Ω/ₜafter 3 min BOE treatment. The alloyed Ohmic metallization consisted 3–5 μm Ni-Al alloy islands surrounded by Au-Al alloy-rings. The morphology of both the islands and ring areas became flatter after BOE etching. Lastly, we used energy dispersive x-ray analysis and Auger electron microscopy to analyze the compositions and metal distributions in the metal alloys prior to and aftermore » BOE exposure.« less

  15. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  16. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys

    NASA Astrophysics Data System (ADS)

    Han, F. F.; Inoue, A.; Han, Y.; Kong, F. L.; Zhu, S. L.; Shalaan, E.; Al-Marzouki, F.; Greer, A. L.

    2017-04-01

    Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  17. Preparation and characterization of mechanically alloyed AB3-type based material LaMg2Ni5Al4 and its solid-gaz hydrogen storage reaction

    NASA Astrophysics Data System (ADS)

    Jaafar, Hassen; Aymard, Luc; Dachraoui, Walid; Demortière, Arnaud; Abdellaoui, Mohieddine

    2018-04-01

    We developed in the present paper the synthesis of a new AB3-type compound LaMg2Ni5Al4 by mechanical alloying (MA) process. ​​X-ray diffraction analysis (XRD) was used to determine the structural properties and the phase evolution of the powder mixtures. Two different synthesis pathways have been investigated. The first starting from elemental metals and the second from a mixture of two binary compounds LaNi5 (CaCu5-type structure, P6/mmm space group) and Al(Mg) solid solution (cubic Fm-3 m space group). The results show multiphase alloys which contain LaMg2Ni5Al4 main phase with hexagonal PuNi3-type structure (R-3 m space group). Rietveld analysis shows that using a planetary ball mill, we obtain a good yield of LaMg2Ni5Al4 compound after 5 h of mechanical alloying for both synthesis pathways. TEM analysis confirmed XRD results. SEM-EDX analysis of the final product was in agreement with the nominal chemical formula. A setup of possible solid-gaz hydrogenation reaction will be described so far at the end of this work. Electrochemical results demonstrate evidence on hydrogen absorption in the AB3 material and the discharge capacity was equal to 5.9 H/f.u.

  18. Thermodynamic modeling and experimental validation of the Fe-Al-Ni-Cr-Mo alloy system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, Zhenke; Zhang, F; Miller, Michael K

    2012-01-01

    NiAl-type precipitate-strengthened ferritic steels have been known as potential materials for the steam turbine applications. In this study, thermodynamic descriptions of the B2-NiAl type nano-scaled precipitates and body-centered-cubic (BCC) Fe matrix phase for four alloys based on the Fe-Al-Ni-Cr-Mo system were developed as a function of the alloy composition at the aging temperature. The calculated phase structure, composition, and volume fraction were validated by the experimental investigations using synchrotron X-ray diffraction and atom probe tomography. With the ability to accurately predict the key microstructural features related to the mechanical properties in a given alloy system, the established thermodynamic model inmore » the current study may significantly accelerate the alloy design process of the NiAl-strengthened ferritic steels.« less

  19. Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys.

    PubMed

    Han, F F; Inoue, A; Han, Y; Kong, F L; Zhu, S L; Shalaan, E; Al-Marzouki, F; Greer, A L

    2017-04-13

    Thermal stability and crystallization of three multicomponent glassy alloys, Al 86 Y 7 Ni 5 Co 1 Fe 0.5 Pd 0.5 , Al 85 Y 8 Ni 5 Co 1 Fe 0.5 Pd 0.5 and Al 84 Y 9 Ni 4 Co 1.5 Fe 0.5 Pd 1 , were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic Al x M y (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al 3 Y + Al 9 (Co, Ni) 2  + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent Al x M y ] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable Al x M y compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working.

  20. An Introduction to the BFS Method and Its Use to Model Binary NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, J.; Amador, C.

    1998-01-01

    We introduce the Bozzolo-Ferrante-Smith (BFS) method for alloys as a computationally efficient tool for aiding in the process of alloy design. An intuitive description of the BFS method is provided, followed by a formal discussion of its implementation. The method is applied to the study of the defect structure of NiAl binary alloys. The groundwork is laid for a detailed progression to higher order NiAl-based alloys linking theoretical calculations and computer simulations based on the BFS method and experimental work validating each step of the alloy design process.

  1. Microstructure of Al2O3 scales formed on NiCrAl alloys. Ph.D. Thesis - Case Western Reserve Univ.

    NASA Technical Reports Server (NTRS)

    Smialek, J. L.

    1981-01-01

    The structure of transient scales formed on pure and Y or Zr-doped Ni-15Cr-13Al alloys oxidized for 0.1 hr at 1100 C was studied by the use of transmission electron microscopy. Crystallographically oriented scales were found on all three alloys, but especially for the Zr-doped NiCrAl. The oriented scales consisted of alpha-(Al,Cr)2O3, Ni(Al,Cr)2O4 and gamma-Al2O3. They were often found in intimate contact with each other such that the close-packed planes and directions of one oxide phase were aligned with those of another. The prominent structural features of the oriented scales were approximately equal to micrometer subgrains; voids, antiphase domain boundaries and aligned precipitates were also prevalent. Randomly oriented alpha-Al2O3 was also found and was the only oxide ever observed at the immediate oxide metal interface. These approximately 0.15 micrometer grains were populated by intragranular voids which decreased in size and number towards the oxide metal interface. A sequence of oxidation was proposed in which the composition of the growing scale changed from oriented oxides rich in Ni and Cr to oriented oxides rich in Al. At the same time the structure changed from cubic spinels to hexagonal corundums with apparent precipitates of one phase in the matrix of the other. Eventually randomly oriented pure alpha-Al2O3 formed as the stable oxide with an abrupt transition: there was no gradual loss of orientation, no gradual compositional change or no gradual decrease in precipitate density.

  2. Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Saber, Mostafa

    and alpha → gamma phase transformation in Fe-Ni-Zr alloys. In addition to the experimental study of thermal stabilization of nanocrystalline Fe-Cr-Zr or Fe-Ni-Zr alloys, the thesis presented here developed a new predictive model, applicable to strongly segregating solutes, for thermodynamic stabilization of binary alloys. This model can serve as a benchmark for selecting solute and evaluating the possible contribution of stabilization. Following a regular solution model, both the chemical and elastic strain energy contributions are combined to obtain the mixing enthalpy. The total Gibbs free energy of mixing is then minimized with respect to simultaneous variations in the grain boundary volume fraction and the solute concentration in the grain boundary and the grain interior. The Lagrange multiplier method was used to obtained numerical solutions. Application are given for the temperature dependence of the grain size and the grain boundary solute excess for selected binary system where experimental results imply that thermodynamic stabilization could be operative. This thesis also extends the binary model to a new model for thermodynamic stabilization of ternary nanocrystalline alloys. It is applicable to strongly segregating size-misfit solutes and uses input data available in the literature. In a same manner as the binary model, this model is based on a regular solution approach such that the chemical and elastic strain energy contributions are incorporated into the mixing enthalpy DeltaHmix, and the mixing entropy DeltaSmix is obtained using the ideal solution approximation. The Gibbs mixing free energy Delta Gmix is then minimized with respect to simultaneous variations in grain growth and solute segregation parameters. The Lagrange multiplier method is similarly used to obtain numerical solutions for the minimum Delta Gmix. The temperature dependence of the nanocrystalline grain size and interfacial solute excess can be obtained for selected ternary systems. As

  3. NiAl-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan (Inventor); Whittenbeger, John D. (Inventor); Lowell, Carl F. (Inventor)

    1994-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 to 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAlY, and FeAl.

  4. Effects of grain size on the strength and ductility of Ni sub 3 Al and Ni sub 3 Al + boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viens, D.V.; Weihs, T.P.; Baker, I.

    Tensile and compression experiments have been performed on Ni{sub 3}Al and on Ni{sub 3}Al + B at 77K to 1023K at 1 {times} 10{sup {minus}4}s{sup {minus}1}. At low temperatures yielding occurs discontinuously and the yield strength obeys the relationship {sigma}{sub y} = {sigma}{sub i} + kd{sup {minus}3/4} where {sigma}{sub i} and k are constants. Grain refinement has little effect on the ductility of the binary alloy, but leads to a brittle to ductile transition in the alloy containing boron. At high temperatures, grain refinement weakens the material, owing to grain boundary sliding. Dynamic recrystalization occurs and leads to another brittlemore » to ductile transition upon refining the grains. Under all conditions investigated, fracture occurs intergranularly. An analysis based upon a work-hardening model is given for the d{sup {minus}3/4} dependence of the yield strength at low temperatures.« less

  5. Stress-induced solid-state amorphization of nanocrystalline Ni and NiZr investigated by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Deng, Chuang; Pal, Snehanshu

    2018-01-01

    In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.

  6. Study of Cu-Al-Ni-Ga as high-temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Wang, Qian; Zhao, Xu; Wang, Fang; Liu, Qingsuo

    2018-03-01

    The effect of Ga element on the microstructure, mechanical properties and shape memory effect of Cu-13.0Al-4.0Ni- xGa (wt%) high-temperature shape memory alloy was investigated by optical microscopy, SEM, XRD and compression test. The microstructure observation results showed that the Cu-13.0Al-4.0Ni- xGa ( x = 0.5 and 1.0) alloys displayed dual-phase morphology which consisted of 18R martensite and (Al, Ga)Cu phase, and their grain size was about several hundred microns, smaller than that of Cu-13.0Al-4.0Ni alloy. The compression test results proved that the mechanical properties of Cu-13.0Al-4.0Ni- xGa alloys were improved by addition of Ga element owing to the grain refinement and solid solution strengthening, and the compressive fracture strains were 11.5% for x = 0.5 and 14.9% for x = 1.0, respectively. When the pre-strain was 8%, the shape memory effect of 4.2 and 4.6% were obtained for Cu-13.0Al-4.0Ni-0.5 Ga and Cu-13.0Al-4.0Ni-1.0 Ga alloys after being heated to 400 °C for 1 min.

  7. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  8. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less

  9. Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2008-08-01

    Oxidation kinetics of Ni-Al (100) alloy surface is investigated at low temperatures (300-600 K) and at different gas pressures using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. Monte Carlo simulations employing the bond order simulation model are used to generate the surface segregated minimum energy initial alloy configurations for use in the MD simulations. In the simulated temperature-pressure-composition regime for Ni-Al alloys, we find that the oxide growth curves follow a logarithmic law beyond an initial transient regime. The oxidation rates for Ni-Al alloys were found to decrease with increasing Ni composition. Structure and dynamical correlations in the metal/oxide/gas environments are used to gain insights into the evolution and morphology of the growing oxide film. Oxidation of Ni-Al alloys is characterized by the absence of Ni-O bond formation. Oxide films formed on the various simulated metal surfaces are amorphous in nature and have a limiting thickness ranging from ˜1.7nm for pure Al to 1.1 nm for 15% Ni-Al surfaces. Oxide scale analysis indicates significant charge transfer as well as variation in the morphology and structure of the oxide film formed on pure Al and 5% Ni-Al alloy. For oxide scales thicker than 1 nm, the oxide structure in case of pure Al exhibits a mixed tetrahedral (AlO4˜37%) and octahedral (AlO6˜19%) environment, whereas the oxide scale on Ni-Al alloy surface is almost entirely composed of tetrahedral environment (AlO4˜60%) with very little AlO6 (<1%) . The oxide growth kinetic curves are fitted to Arrhenius-type plots to get an estimate of the activation energy barriers for metal oxidation. The activation energy barrier for oxidation on pure Al was found to be 0.3 eV lower than that on 5% Ni-Al surface. Atomistic observations as well as calculated dynamical correlation functions indicate a layer by layer growth on pure Al, whereas a transition from an initial island growth mode (<75ps) to a

  10. Strengthening by Substitutional Solutes and the Temperature Dependence of the Flow Stress in Ni3Al

    DTIC Science & Technology

    1989-05-26

    stoichiometric composition in polycrystalline Ni3AI and Ni3Ga. 29 Fig. 3.1 The Ni-Al binary-alloy phase diagram in vacinity of Ni3A1 phase, as verified in...I <I- iai / I I- I I I I000 - - II 21 25 29 33 37 ATOMIC % Al Fig. 3.1 The Ni-Al binary-alloy phase diagram in vacinity of Ni3Al phase, as verified

  11. Crystallography of the NiHfSi Phase in a NiAl (0.5 Hf) Single-Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Noebe, R. D.; Darolia, R.

    1996-01-01

    Small additions of Hf to conventionally processed NiAl single crystals result in the precipitation of a high density of cuboidal G-phase along with a newly identified silicide phase. Both of these phases form in the presence of Si which is not an intentional alloying addition but is a contaminant resulting from contact with the ceramic shell molds during directional solidification of the single-crystal ingots. The morphology, crystal structure and Orientation Relationship (OR) of the silicide phase in a NiAl (0.5 at.%Hf) single-crystal alloy have been determined using transmission electron microscopy, electron microdiffraction and energy dispersive X-ray spectroscopy. Qualitative elemental analysis and indexing of the electron microdiffraction patterns from the new phase indicate that it is an orthorhombic NiHfSi phase with unit cell parameters, a = 0.639 nm, b = 0.389 nm and c = 0.72 nm, and space group Pnma. The NiHfSi phase forms as thin rectangular plates on NiAl/111/ planes with an OR that is given by NiHfSi(100))(parallel) NiAl(111) and NiHfSi zone axes(010) (parallel) NiAl zone axes (101). Twelve variants of the NiHfSi phase were observed in the alloy and the number of variants and rectangular morphology of NiHfSi plates are consistent with symmetry requirements. Quenching experiments indicate that nucleation of the NiHfSi phase in NiAI(Hf) alloys is aided by the formation of NiAl group of zone axes (111) vacancy loops that form on the NiAl /111/ planes.

  12. Containerless drop tube solidification and grain refinement of NiAl3

    NASA Technical Reports Server (NTRS)

    Ethridge, E. C.; Curreri, P. A.; Kelly, M.; Workman, G.; Smith, A. M.; Bond, R.

    1984-01-01

    The possibility of undercooling Ni-Al alloys below the liquidus in order to produce a single phase peritectic structure by containerless drop tube solidification was studied. Containerless process is a technique for both high purity contamination free studies as well as for investigating the undercooling and rapid solidification of alloys by suppression of heterogeneous nucleation on container walls. In order to achieve large undercoolings one must avoid heterogeneous nucleation of crystallization. It was shown that the Marshall Space Flight Center drop tubes ae unique facilities for containerless solidification experiments and large undercoolings are possible with some alloys. The original goal of undercooling the liquid metal well below the liquidus to the peritectic temperature during containerless free to form primarily NiAl3 was achieved. The microstructures were interesting from another point of view. The microstructure from small diameter samples is greatly refined. Small dendrite arm spacings such as these could greatly facilitate the annealing and solid state transformation of the alloy to nearly 10% NiAl3 by reducing the distance over which diffusion needs to occur. This could minimize annealing time and might make it economically feasible to produce NiAl3 alloy.

  13. Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi

    NASA Astrophysics Data System (ADS)

    Ang, Andrew Siao Ming; Berndt, Christopher C.; Sesso, Mitchell L.; Anupam, Ameey; S, Praveen; Kottada, Ravi Sankar; Murty, B. S.

    2015-02-01

    High entropy alloys (HEAs) represent a new class of materials that present novel phase structures and properties. Apart from bulk material consolidation methods such as casting and sintering, HEAs can also be deposited as a surface coating. In this work, thermal sprayed HEA coatings are investigated that may be used as an alternative bond coat material for a thermal barrier coating system. Nanostructured HEAs that were based on AlCoCrFeNi and MnCoCrFeNi were prepared by ball milling and then plasma sprayed. Splat studies were assessed to optimise the appropriate thermal spray parameters and spray deposits were prepared. After mechanical alloying, aluminum-based and manganese-based HEA powders revealed contrary prominences of BCC and FCC phases in their X-ray diffraction patterns. However, FCC phase was observed as the major phase present in both of the plasma-sprayed AlCoCrFeNi and MnCoCrFeNi coatings. There were also minor oxide peaks detected, which can be attributed to the high temperature processing. The measured porosity levels for AlCoCrFeNi and MnCoCrFeNi coatings were 9.5 ± 2.3 and 7.4 ± 1.3 pct, respectively. Three distinct phase contrasts, dark gray, light gray and white, were observed in the SEM images, with the white regions corresponding to retained multicomponent HEAs. The Vickers hardness (HV0.3kgf) was 4.13 ± 0.43 and 4.42 ± 0.60 GPa for AlCoCrFeNi and MnCoCrFeNi, respectively. Both type of HEAs coatings exhibited anisotropic mechanical behavior due to their lamellar, composite-type microstructure.

  14. A Successful Synthesis of the CoCrFeNiAl0.3 Single-Crystal, High-Entropy Alloy by Bridgman Solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, S. G.; Zhang, S. F.; Gao, M. C.

    2013-08-22

    For the first time, a face-centered-cubic, single-crystal CoCrFeNiAl{sub 0.3} (designated as Al0.3), high-entropy alloy (HEA) was successfully synthesized by the Bridgman solidification (BS) method, at an extremely low withdrawal velocity through a constant temperature gradient, for which it underwent two BS steps. Specially, at the first BS step, the alloy sample underwent several morphological transitions accompanying the crystal growth from the melt. This microstructure evolves from as-cast dendrites, to equiaxed grains, and then to columnar crystals, and last to the single crystal. In particular, at the equiaxed-grain region, some visible annealing twins were observed, which indicates a low stacking faultmore » energy of the Al0.3 alloy. Although a body-centered- cubic CoCrFeNiAl (Al1) HEA was also prepared under the same conditions, only a single columnar-crystal structure with instinctively preferential crystallographic orientations was obtained by the same procedure. A similar morphological transition from dendrites to equiaxed grains occurred at the equiaxed-grain region in Al1 alloy, but the annealing twins were not observed probably because a higher Al addition leads to a higher stacking fault energy for this alloy.« less

  15. Ni{sub 3}Al technology transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikka, V.K.; Viswanathan, S.; Santella, M.L.

    1997-04-01

    Ductile Ni{sub 3}Al and Ni{sub 3}Al-based alloys have been identified for a range of applications. These applications require the use of material in a variety of product forms such as sheet, plate, bar, wire, tubing, piping, and castings. Although significant progress has been made in the melting, casting, and near-net-shape forming of nickel aluminides, some issues still remain. These include the need for: (1) high-strength castable composition for many applications that have been identified; (2) castability (mold type, fluidity, hot-shortness, porosity, etc.); (3) weld reparability of castings; and (4) workability of cast or powder metallurgy product to sheet, bar, andmore » wire. The four issues listed above can be {open_quotes}show stoppers{close_quotes} for the commercial application of nickel aluminides. This report describes the work completed to address some of these issues during FY 1996.« less

  16. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    PubMed

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.

  17. Effect of heat treatment on morphology evolution of Ti2Ni phase in Ti-Ni-Al-Zr alloy

    NASA Astrophysics Data System (ADS)

    Sheng, Liyuan; Yang, Yang; Xi, Tingfei

    2018-03-01

    The Ti6Al2Zr alloy with 15 wt.% Ni addition was prepared and then heat treated in the research. The microstructure of the alloy and evolution of Ti2Ni precipitate were investigated. The microstructure observations demonstrate that the Ni addition could promote the formation of eutectoid and eutectic structures in Ti-Al-Zr alloy. In the eutectoid structure, the ultrafine Ti2Ni fiber precipitates in the α-Ti matrix, but in the eutectic structure, the fine α-Ti phases precipitate in the Ti2Ni matrix. The heat treatment could change the morphology of Ti2Ni precipitates by thinning, fragmenting, merging and spherizing. In the alloy heat treated at and below 1073K, the coarsening of α-Ti precipitates in eutectic structure and Ti2Ni precipitates in eutectoid structure is the mainly characteristic. In the alloy heat treated above 1073K, the phase transformation of α to β phase is the main characteristic, which changes the morphology and amount of Ti2Ni phase by the solid solution of Ni. The phase transformation temperature of Ti-Ni-Al-Zr alloy is between 1073-1123K, which is increased compared with that of the Ti-Ni binary phase diagram.

  18. Effects of Alloying Elements on Room and High Temperature Tensile Properties of Al-Si Cu-Mg Base Alloys =

    NASA Astrophysics Data System (ADS)

    Alyaldin, Loay

    In recent years, aluminum and aluminum alloys have been widely used in automotive and aerospace industries. Among the most commonly used cast aluminum alloys are those belonging to the Al-Si system. Due to their mechanical properties, light weight, excellent castability and corrosion resistance, these alloys are primarily used in engineering and in automotive applications. The more aluminum is used in the production of a vehicle, the less the weight of the vehicle, and the less fuel it consumes, thereby reducing the amount of harmful emissions into the atmosphere. The principal alloying elements in Al-Si alloys, in addition to silicon, are magnesium and copper which, through the formation of Al2Cu and Mg2Si precipitates, improve the alloy strength via precipitation hardening following heat treatment. However, most Al-Si alloys are not suitable for high temperature applications because their tensile and fatigue strengths are not as high as desired in the temperature range 230-350°C, which are the temperatures that are often attained in automotive engine components under actual service conditions. The main challenge lies in the fact that the strength of heat-treatable cast aluminum alloys decreases at temperatures above 200°C. The strength of alloys under high temperature conditions is improved by obtaining a microstructure containing thermally stable and coarsening-resistant intermetallics, which may be achieved with the addition of Ni. Zr and Sc. Nickel leads to the formation of nickel aluminide Al3Ni and Al 9FeNi in the presence of iron, while zirconium forms Al3Zr. These intermetallics improve the high temperature strength of Al-Si alloys. Some interesting improvements have been achieved by modifying the composition of the base alloy with additions of Mn, resulting in an increase in strength and ductility at both room and high temperatures. Al-Si-Cu-Mg alloys such as the 354 (Al-9wt%Si-1.8wt%Cu-0.5wt%Mg) alloys show a greater response to heat treatment as a

  19. Analysis of NiAlTa precipitates in beta-NiAl + 2 at. pct Ta alloy

    NASA Technical Reports Server (NTRS)

    Pathare, V.; Michal, G. M.; Vedula, K.; Nathal, M. V.

    1987-01-01

    Results are reported from experiments performed to identify the precipitates, and their orientation in the matrix, in a beta-NiAl alloy containing 2 at. pct. Ta after undergoing creep test at 1300 K. Test specimens formed by extruding hot powders were compressed at 1300 K for about 50 hr at a strain rate averaging 6/1 million per sec. The specimens were then thinned and examined under an electron microscope and by X-ray diffractometry. An intermetallic NiAlTa compound with a hexagonal Cl4 structure appeared as second phase precipitates in the samples, exhibiting plate-like shapes and a habit plane close to (012). The prism planes of the hexagonal NiAlTa precipitates paralleled the closest packed planes in the cubic beta-NiAl matrix.

  20. Amperometric glucose sensor based on the Ni(OH)2/Al(OH)4- electrode obtained from a thin Ni3Al foil

    NASA Astrophysics Data System (ADS)

    Jarosz, Magdalena; Socha, Robert P.; Jóźwik, Paweł; Sulka, Grzegorz D.

    2017-06-01

    In this report, we present a facile and relatively fast method to roughen the surface of Ni3Al-based intermetallic foil, and test it as an amperometric non-enzymatic glucose sensor. The alloy samples underwent chemical etching in a H3PO4:CH3COOH (HAc):HNO3:H2O (24:1:1:7 in volume) solution in order to achieve a high surface area with more electroactive sites. The Ni(OH)2/Al(OH)4- electrode was fabricated using potential cycling technique in a highly concentrated alkaline solution. The electrodes were tested electrochemically for oxidation of glucose. We have demonstrated that Ni(OH)2/Al(OH)4- electrodes exhibit high sensitivity towards glucose detection (796 μAmM-1cm-2) and short response time (3 s) upon successive addition of glucose. Moreover, as for a non-nanometric material, prepared electrodes show a relatively good linear correlation between current density and glucose concentration (0.025-0.45 mM) and limit of detection (47.6 μM). For more in-depth characterization of presented material, electrodes were examined using scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).

  1. Influence of Annealing on Microstructure and Mechanical Properties of a Nanocrystalline CrCoNi Medium-Entropy Alloy

    PubMed Central

    Schuh, Benjamin; Völker, Bernhard; Todt, Juraj; Kormout, Karoline S.; Schell, Norbert; Hohenwarter, Anton

    2018-01-01

    An equiatomic CrCoNi medium-entropy alloy was subjected to high-pressure torsion. This process led to a refinement of the microstructure to a grain size of about 50 nm, combined with a strong increase in the materials hardness. Subsequently, the thermodynamic stability of the medium entropy alloy was evaluated by isothermal and isochronal heat treatments. Annealed samples were investigated by scanning and transmission electron microscopy as well as X-ray diffraction, and were subjected to tensile tests to establish microstructure-property relationships. Furthermore, a comparison of mechanical properties with a grade 316L stainless steel was performed in order to evaluate if the CrCoNi alloy is competitive with commercially available structural materials in the nanocrystalline state. A minority phase embedded in the face-centered cubic matrix of the CrCoNi alloy could be observed in multiple annealed states, as well as the as-received and high-pressure torsion processed material. For 200 h of annealing at 500 °C, it was determined that the minority phase has a hexagonal-closed-packed crystal structure. A possible explanation for the formation of the phase is a preferential segregation of Co to stacking faults. PMID:29695142

  2. Formation of gamma'-Ni3Al via the Peritectoid Reaction: gamma plus beta (+Al2O3) equals gamma'(+Al2O3)

    NASA Technical Reports Server (NTRS)

    Copland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8 - 32 at.%Al and temperature range T = 1400 - 1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma'-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3) = gamma + beta (+ Al2O3), at 1640 plus or minus 1 K and a liquid composition of 24.8 plus or minus 0.2 at.%Al (at an unknown oxygen content). The {gamma + beta + Al2O3} phase field is stable over the temperature range 1633 - 1640 K, and gamma'-Ni3Al forms via the peritectiod, gamma + beta (+ Al2O3) = gamma'(+ Al2O3), at 1633 plus or minus 1 K. This behavior is inconsistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma'-Ni3Al phase field.

  3. Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys

    NASA Astrophysics Data System (ADS)

    Harvey, Evan; Ladani, Leila

    Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.

  4. My Experience with Ti-Ni-Based and Ti-Based Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Miyazaki, Shuichi

    2017-12-01

    The present author has been studying shape memory alloys including Cu-Al-Ni, Ti-Ni-based, and Ni-free Ti-based alloys since 1979. This paper reviews the present author's research results for the latter two materials since 1981. The topics on the Ti-Ni-based alloys include the achievement of superelasticity in Ti-Ni alloys through understanding of the role of microstructures consisting of dislocations and precipitates, followed by the contribution to the development of application market of shape memory effect and superelasticity, characterization of the R-phase and monoclinic martensitic transformations, clarification of the basic characteristics of fatigue properties, development of sputter-deposited shape memory thin films and fabrication of prototypes of microactuators utilizing thin films, development of high temperature shape memory alloys, and so on. The topics of Ni-free Ti-based shape memory alloys include the characterization of the orthorhombic phase martensitic transformation and related shape memory effect and superelasticity, the effects of texture, omega phase and adding elements on the martensitic transformation and shape memory properties, clarification of the unique effects of oxygen addition to induce non-linear large elasticity, Invar effect and heating-induced martensitic transformation, and so on.

  5. Weldability of high toughness Fe-12% Ni alloys containing Ti, Al or Nb

    NASA Technical Reports Server (NTRS)

    Devletian, J. H.; Stephens, J. R.; Witzke, W. R.

    1977-01-01

    Three exceptionally high-toughness Fe-12%Ni alloys designed for cryogenic service were welded using the GTA welding process. Evaluation of weldability included equivalent energy (KIed) fracture toughness tests, transverse-weld tensile tests at -196 and 25 C and weld crack sensitivity tests. The Fe-12%Ni-0.25%Ti alloy proved extremely weldable for cryogenic applications, having weld and HAZ properties comparable with those of the wrought base alloy. The Fe-12%Ni-0.5%Al had good weld properties only after the weld joint was heat treated. The Fe-12%Ni-0.25%Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking.

  6. Effects of Minor Alloying Additions on the Microstructure, Toughness, and Creep Strength of Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.; Salem, J. A.

    2001-01-01

    A study of the effects of small (0.25 to 1.0 at%) fifth element additions to the structure and mechanical properties of directionally solidified (DS) NiAl-31Cr-3Mo has been undertaken. Essentially all the additions changed the as-DS'ed microstructure from lamellar eutectic grains to cells and, in some cases, introduced NiAl dendrites and/or third phases. In general the alloying additions did not improve strength or toughness over that possessed by the base composition; only Hf and, perhaps Ti, gave a minor increase in elevated temperature creep resistance. The lack of improvement in creep properties is probably due to inability to precipitation harden NiAl.

  7. Blanch Resistant and Thermal Barrier NiAl Coating Systems for Advanced Copper Alloys

    NASA Technical Reports Server (NTRS)

    Raj, Sai V. (Inventor)

    2005-01-01

    A method of forming an environmental resistant thermal barrier coating on a copper alloy is disclosed. The steps include cleansing a surface of a copper alloy, depositing a bond coat on the cleansed surface of the copper alloy, depositing a NiAl top coat on the bond coat and consolidating the bond coat and the NiAl top coat to form the thermal barrier coating. The bond coat may be a nickel layer or a layer composed of at least one of copper and chromium-copper alloy and either the bond coat or the NiAl top coat or both may be deposited using a low pressure or vacuum plasma spray.

  8. Embedded-atom-method study of structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Asta, Mark; Morgan, Dane; Hoyt, J. J.; Sadigh, Babak; Althoff, J. D.; de Fontaine, D.; Foiles, S. M.

    1999-06-01

    Structural, thermodynamic, and atomic-transport properties of liquid Ni-Al alloys have been studied by Monte Carlo and molecular-dynamics simulations based upon three different embedded-atom method (EAM) interatomic potentials, namely those due to Foiles and Daw (FD) [J. Mater. Res. 2, 5 (1987)], Voter and Chen (VC) [in Characterization of Defects in Materials, edited by R. W. Siegel et al. MRS Symposia Proceedings. No. 82 (Materials Research Society, Pittsburgh, 1987), p.175] and Ludwig and Gumbsch (LG) [Model. Simul. Mater. Sci. Eng. 3, 533 (1995)]. We present detailed comparisons between calculated results and experimental data for structure factors, atomic volumes, enthalpies of mixing, activities, and viscosities. Calculated partial structure factors are found to be in semiquantitative agreement with published neutron scattering measurements for Ni20Al80 alloys, indicating that short-range order in the liquid phase is qualitatively well described. Calculated thermodynamic properties of mixing are found to agree very well with experimental data for Ni compositions greater than 75 atomic %, while for alloys richer in Al the magnitudes of the enthalpies and entropies of mixing are significantly underestimated. The VC and LG potentials give atomic densities and viscosities in good agreement with experiment for Ni-rich compositions, while FD potentials consistently underestimate both properties at all concentrations. The results of this study demonstrate that VC and LG potentials provide a realistic description of the thermodynamic and atomic transport properties for NixAl1-x liquid alloys with x>=0.75, and point to the limitations of EAM potentials for alloys richer in Al.

  9. High thermally stable Ni /Ag(Al) alloy contacts on p-GaN

    NASA Astrophysics Data System (ADS)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.; Bor, H. Y.; Liu, C. Y.

    2007-01-01

    Ag agglomeration was found to occur at Ni /Ag to p-GaN contacts after annealing at 500°C. This Ag agglomeration led to the poor thermal stability showed by the Ni /Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10at.% Al by e-gun deposition, the Ni /Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  10. High thermally stable Ni/Ag(Al) alloy contacts on p-GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chou, C. H.; Lin, C. L.; Chuang, Y. C.

    2007-01-08

    Ag agglomeration was found to occur at Ni/Ag to p-GaN contacts after annealing at 500 degree sign C. This Ag agglomeration led to the poor thermal stability showed by the Ni/Ag contacts in relation to the reflectivity and electrical properties. However, after alloying with 10 at. % Al by e-gun deposition, the Ni/Ag(Al) p-GaN contacts were found to effectively retard Ag agglomeration thereby greatly enhancing the thermal stability. Based on the x-ray photoelectron spectroscopy analysis, the authors believe that the key for the retardation of Ag agglomeration was the formation of ternary Al-Ni-O layer at p-GaN interface.

  11. Investigations of Nanocrystalline Alloy Electrospark Coating Made of Nanocrystalline Alloy Based on 5БДCP Ferrum

    NASA Astrophysics Data System (ADS)

    Kolomeichenko, A. V.; Kuznetsov, I. S.; Izmaylov, A. Yu; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes the properties of wear resistant electrospark coating made of nanocrystalline alloy of type 5БДCP (Finemet). It is proved that electrospark coating has nanocrystalline structure which is like amorphous matrix with nanocrystals α - Fe. Coating thickness is 33 μm, micro-hardness is 8461 - 11357 MPa, wear resistance is 0,55×104s/g. Coating ofnanocrystalline alloy of type 5БДCP can be used to increase wear resistance of machinery working surfaces.

  12. Solute transport and the prediction of breakaway oxidation in gamma + beta Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1984-01-01

    The Al transport and the condition leading to breakaway oxidation during the cyclic oxidation of gamma + beta NiCrAl alloys have been studied. The Al concentration/distance profiles were measured after various cyclic oxidation exposures at 1200 C. It was observed that cyclic oxidation results in a decreasing Al concentration at the oxide/metal interface, maintaining a constant flux of Al to the Al2O3 scale. It was also observed that breakaway oxidation occurs when the Al concentration at the oxide/metal interface approaches zero. A numerical model was developed to simulate the diffusional transport of Al and to predict breakaway oxidation in gamma + beta NiCrAl alloys undergoing cyclic oxidation. In a comparison of two alloys with similar oxide spalling characteristics, the numerical model was shown to predict correctly the onset of breakaway oxidation in the higher Al-content alloy.

  13. Fabrication, microstructure, properties and deformation mechanisms of a nanocrystalline aluminum-iron-chromium-titanium alloy by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Luo, Hong

    A multi-phase nanocrystalline Al93Fe3Cr2Ti 2 alloy containing 30 vol.% intermetallic particles was prepared via mechanical alloying starting from elemental powders, followed by hot extrusion. The grain size of 6-45 nm can be achieved after 30-hours of milling. Thermal stability of nanostructured Al93Fe3Ti2Cr 2 alloys was investigated using a variety of analytical techniques including modulated differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, transmission electron microscopy. The MA-processed Al93Fe 3Ti2Cr2 alloy in the as-milled condition was composed of an Al-based supersaturated solid solution with high internal strains. Release of internal strains, intermetallic precipitation and grain growth occurred upon heating of the MA-processed Al alloy. Nevertheless, grain growth in the MA-processed Al alloy was very limited and fcc-Al grains with sizes in the range of 20 nm were still present in the alloys after exposure to 450°C (0.77 Tm). Systematic compressive tests and modulus measurements were performed as a function of temperature and strain rate to investigate the deformation behavior and mechanisms of the nc Al-Fe-Cr-Ti alloys. High strengths and moduli at both ambient and elevated temperatures have been demonstrated. The ductility of the nc Al93Fe3Cr2Ti2 alloy depends strongly on whether the oxide film at the prior powder particle boundary has been broken down or not. The MA-processed Al93Fe3Cr 2Ti2 alloy is brittle when the oxide film is continuous at PPB, and is ductile when the oxide film is broken down into discontinuous particles during extrusion. It is argued that the compressive strength at ambient temperature is controlled by propagation of dislocations into nc fcc-Al grains, whereas the compressive strength at elevated temperature is determined by dislocation propagation as well as dynamic recovery. Since the stress for dislocation propagation into nc fcc-Al grains increases with decreasing the grain size, the smaller

  14. High-strain-rate superplasticity of the Al-Zn-Mg-Cu alloys with Fe and Ni additions

    NASA Astrophysics Data System (ADS)

    Kotov, A. D.; Mikhaylovskaya, A. V.; Borisov, A. A.; Yakovtseva, O. A.; Portnoy, V. K.

    2017-09-01

    During high-strain-rate superplastic deformation, superplasticity indices, and the microstructure of two Al-Zn-Mg-Cu-Zr alloys with additions of nickel and iron, which contain equal volume fractions of eutectic particles of Al3Ni or Al9FeNi, have been compared. It has been shown that the alloys exhibit superplasticity with 300-800% elongations at the strain rates of 1 × 10-2-1 × 10-1 s-1. The differences in the kinetics of alloy recrystallization in the course of heating and deformation at different temperatures and rates of the superplastic deformation, which are related to the various parameters of the particles of the eutectic phases, have been found. At strain rates higher than 4 × 10-2, in the alloy with Fe and Ni, a partially nonrecrystallized structure is retained up to material failure and, in the alloy with Ni, a completely recrystallized structure is formed at rates of up to 1 × 10-1 s-1.

  15. Formation of gamma(sup prime)-Ni3Al via the Peritectoid Reaction: gamma + beta (+ Al2O3)=gamma(sup prime)(+ Al2O3)

    NASA Technical Reports Server (NTRS)

    Copeland, Evan

    2008-01-01

    The activities of Al and Ni were measured using multi-cell Knudsen effusion-cell mass spectrometry (multi-cell KEMS), over the composition range 8-32 at.%Al and temperature range T=1400-1750 K in the Ni-Al-O system. These measurements establish that equilibrium solidification of gamma(sup prime)-Ni3Al-containing alloys occurs by the eutectic reaction, L (+ Al2O3)=gamma + Beta(+ Al2O3), at 1640 +/- 1 K and a liquid composition of 24.8 +/- 0.2 at.%al (at an unknown oxygen content). The {gamma + Beta (+Al2O3} phase field is stable over the temperature range 1633-1640 K, and gamma(sup prime)-Ni3Al forms via the peritectoid, gamma + Beta (+ Al2O3)=gamma(sup prime) (+ Al2O3), at 1633 +/- 1 K. This behavior is consistent with the current Ni-Al phase diagram and a new diagram is proposed. This new Ni-Al phase diagram explains a number of unusual steady-state solidification structures reported previously and provides a much simpler reaction scheme in the vicinity of the gamma(sup prime)-Ni2Al phase field.

  16. Microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys observed by magnetic force microscopy

    NASA Astrophysics Data System (ADS)

    Pang, Z. Y.; Han, S. H.; Wang, Y. T.; Wang, W. H.; Han, B. S.

    2005-03-01

    The microstructure and magnetic microstructure of the Pr 60Al 10Ni 10Cu 20-xFe x ( x=0, 4, 10, 15, 18) alloys have been achieved simultaneously by employing a magnetic force microscope directly on the as-cast cylinder rod surface for the first time. By varying the content of Fe, the microstructure of the Pr-based alloy changes progressively from a full glassy state to a composite state with nanocrystalline particles embedded in the glassy matrix, and finally into a nanostructured state. The accompanying magnetic property gradually changes from paramagnetic to hard. The experiment directly evidences the existence of exchange coupling between the crystallites and the variety of the grain-size-dependent magnetic properties can be well explained by Löffler et al.'s new random-anisotropy model (Löffler, et al., Phys. Rev. Lett. 85 (9) (2000) 1990).

  17. Microstructures and Mechanical Properties of NiTiFeAlCu High-Entropy Alloys with Exceptional Nano-precipitates

    NASA Astrophysics Data System (ADS)

    Zhang, Yanqiu; Wang, Sibing; Jiang, Shuyong; Zhu, Xiaoming; Sun, Dong

    2017-01-01

    Three novel NiTiFeAlCu high-entropy alloys, which consist of nano-precipitates with face-centered cubic structure and matrix with body-centered cubic structure, were fabricated to investigate microstructures and mechanical properties. With the increase in Ni and Ti contents, the strength of NiTiFeAlCu alloy is enhanced, while the plasticity of NiTiFeAlCu alloy is lowered. Plenty of dislocations can be observed in the Ni32Ti32Fe12Al12Cu12 high-entropy alloy. The size of nano-precipitates decreases with the increase in Ni and Ti contents, while lattice distortion becomes more and more severe with the increase in Ni and Ti contents. The existence of nano-precipitates, dislocations and lattice distortion is responsible for the increase in the strength of NiTiFeAlCu alloy, but it has an adverse influence on the plasticity of NiTiFeAlCu alloy. Ni20Ti20Fe20Al20Cu20 alloy exhibits the substantial ability of plastic deformation and a characteristic of steady flow at 850 and 1000 °C. This phenomenon is attributed to a competition between the increase in the dislocation density induced by plastic strain and the decrease in the dislocation density due to the dynamic recrystallization.

  18. Effect of thermal fatigue on the structure and properties of Ni3Al-based alloy single crystals

    NASA Astrophysics Data System (ADS)

    Povarova, K. B.; Drozdov, A. A.; Bazyleva, O. A.; Bulakhtina, M. A.; Alad'ev, N. A.; Antonova, A. V.; Arginbaeva, E. G.; Morozov, A. E.

    2014-05-01

    The effect of thermal fatigue during tests of <001> and <111> single crystals according to the schedules 100 ai 850°C, 100 ai 1050°C, 100 ai 1100°C at a peak-to-peak stress Δσtc = 700-1000 MPa (sum of the maximum tensile and compressive stresses in a thermal cycle) on the structure, the fracture, and the fatigue life of an Ni3Al-based VKNA-1V alloy is studied. It is found that, at 103 thermal cycles, the <111> single crystals have the maximum thermal fatigue resistance at the maximum cycle temperature of 850 and 1050°C, and the properties of the <001> and <111> samples are almost the same at the maximum thermal cycle temperature of 1100°C. After thermal cycling at the maximum temperature of 850°C, the γ layers in the two-phase γ' + γ region in dendrites remain a single-phase structure, as in the as-cast material, and the layer thickness is 100-150 nm. When the maximum thermal cycle temperature increases to 1050 or 1100°C, the discontinuous γ-phase layers in the γ'(Ni3Al) matrix change their morphology and become shorter and wider (their thickness is 300-700 nm). The nickel-based supersaturated solid solution in these layers decomposes with the formation of secondary γ'(Ni3Al)-phase (γ'sec) precipitates in the form of cuboids 50 and 100 nm in size at the maximum cycle temperature of 1050 and 1100°C, respectively. The alternating stresses that appear during thermal cycling cause plastic deformation. As in nickel superalloys, this deformation at the first stage proceeds via the slip of screw dislocations along octahedral {111} planes. Networks of 60° dislocation segments form at γ'/γ interfaces in this case. Fracture begins at the lines of intersection of the slip planes of the {111} octahedron with the sample surface. During fractional, a crack passes from one octahedral plane to another and forms terraces and steps (crystallographic fracture); as a result, the fracture surface bends and becomes curved. In all cases, the fracture surfaces have a

  19. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.

    PubMed

    Okulov, I V; Pauly, S; Kühn, U; Gargarella, P; Marr, T; Freudenberger, J; Schultz, L; Scharnweber, J; Oertel, C-G; Skrotzki, W; Eckert, J

    2013-12-01

    The correlation between the microstructure and mechanical behavior during tensile loading of Ti68.8Nb13.6Al6.5Cu6Ni5.1 and Ti71.8Nb14.1Al6.7Cu4Ni3.4 alloys was investigated. The present alloys were prepared by the non-equilibrium processing applying relatively high cooling rates. The microstructure consists of a dendritic bcc β-Ti solid solution and fine intermetallic precipitates in the interdendritic region. The volume fraction of the intermetallic phases decreases significantly with slightly decreasing the Cu and Ni content. Consequently, the fracture mechanism in tension changes from cleavage to shear. This in turn strongly enhances the ductility of the alloy and as a result Ti71.8Nb14.1Al6.7Cu4Ni3.4 demonstrates a significant tensile ductility of about 14% combined with the high yield strength of above 820 MPa already in the as-cast state. The results demonstrate that the control of precipitates can significantly enhance the ductility and yet maintaining the high strength and the low Young's modulus of these alloys. The achieved high bio performance (ratio of strength to Young's modulus) is comparable (or even superior) with that of the recently developed Ti-based biomedical alloys. © 2013.

  20. Oxidation resistant nanocrystalline MCrAl(Y) coatings and methods of forming such coatings

    DOEpatents

    Cheruvu, Narayana S.; Wei, Ronghua

    2014-07-29

    The present disclosure relates to an oxidation resistant nanocrystalline coating and a method of forming an oxidation resistant nanocrystalline coating. An oxidation resistant coating comprising an MCrAl(Y) alloy may be deposited on a substrate, wherein M, includes iron, nickel, cobalt, or combinations thereof present greater than 50 wt % of the MCrAl(Y) alloy, chromium is present in the range of 15 wt % to 30 wt % of the MCrAl(Y) alloy, aluminum is present in the range of 6 wt % to 12 wt % of the MCrAl(Y) alloy and yttrium, is optionally present in the range of 0.1 wt % to 0.5 wt % of the MCrAl(Y) alloy. In addition, the coating may exhibit a grain size of 200 nm or less as deposited.

  1. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    NASA Astrophysics Data System (ADS)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  2. Processing and Mechanical Properties of NiAl-Based In-Situ Composites. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Johnson, David Ray

    1994-01-01

    In-situ composites based on the NiAl-Cr eutectic system were successfully produced by containerless processing and evaluated. The NiAl-Cr alloys had a fibrous microstructure while the NiAl-(Cr,Mo) alloys containing 1 at. percent or more molybdenum exhibited a lamellar structure. The NiAl-28Cr-6Mo eutectic displays promising high temperature strength while still maintaining a reasonable room temperature fracture toughness when compared to other NiAl-based materials. The Laves phase NiAlTa was used to strengthen NiAl and very promising creep strengths were found for the directionally solidified NiAl-NiAlTa eutectic. The eutectic composition was found to be near NiAl-15.5Ta (at. percent) and well aligned microstructures were produced at this composition. An off-eutectic composition of NiAl-14.5Ta was also processed, consisting of NiAl dendrites surrounded by aligned eutectic regions. The room temperature toughness of these two phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa. Polyphase in-situ composites were generated by directional solidification of ternary eutectics. The systems investigated were the Ni-Al-Ta-X (X=Cr, Mo, or V) alloys. Ternary eutectics were found in each of these systems and both the eutectic composition and temperature were determined. Of these ternary eutectics, the one in the NiAl-Ta-Cr system was found to be the most promising. The fracture toughness of the NiAl-(Cr,Al)NiTa-Cr eutectic was intermediate between those of the NiAl-NiAlTa eutectic and the NiAl-Cr eutectic. The creep strength of this ternary eutectic was similar to or greater than that of the NiAl-Cr eutectic.

  3. Effect of Ta Additions on the Microstructure, Damping, and Shape Memory Behaviour of Prealloyed Cu-Al-Ni Shape Memory Alloys.

    PubMed

    Saud, Safaa N; Hamzah, E; Bakhsheshi-Rad, H R; Abubakar, T

    2017-01-01

    The influence of Ta additions on the microstructure and properties of Cu-Al-Ni shape memory alloys was investigated in this paper. The addition of Ta significantly affects the green and porosity densities; the minimum percentage of porosity was observed with the modified prealloyed Cu-Al-Ni-2.0 wt.% Ta. The phase transformation temperatures were shifted towards the highest values after Ta was added. Based on the damping capacity results, the alloy of Cu-Al-Ni-3.0 wt.% Ta has very high internal friction with the maximum equivalent internal friction value twice as high as that of the prealloyed Cu-Al-Ni SMA. Moreover, the prealloyed Cu-Al-Ni SMAs with the addition of 2.0 wt.% Ta exhibited the highest shape recovery ratio in the first cycle (i.e., 100% recovery), and when the number of cycles is increased, this ratio tends to decrease. On the other hand, the modified alloys with 1.0 and 3.0 wt.% Ta implied a linear increment in the shape recovery ratio with increasing number of cycles. Polarization tests in NaCl solution showed that the corrosion resistance of Cu-Al-Ni-Ta SMA improved with escalating Ta concentration as shown by lower corrosion current densities, higher corrosion potential, and formation of stable passive film.

  4. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al-Cu-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Rodrigues, Adilson V.; Lima, Thiago S.; Vida, Talita A.; Brito, Crystopher; Garcia, Amauri; Cheung, Noé

    2018-03-01

    Al-Cu-Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al-5wt%Cu and Al-15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall-Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

  5. High temperature dispersion strengthening of NiAl

    NASA Technical Reports Server (NTRS)

    Sherman, M.; Vedula, K.

    1986-01-01

    A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism.

  6. Structural Evolution during Milling, Annealing, and Rapid Consolidation of Nanocrystalline Fe–10Cr–3Al Powder

    PubMed Central

    Kumar, Rajiv; Bakshi, S. R.; Joardar, Joydip; Parida, S.; Raja, V. S.; Singh Raman, R. K.

    2017-01-01

    Structural changes during the deformation-induced synthesis of nanocrystalline Fe–10Cr–3Al alloy powder via high-energy ball milling followed by annealing and rapid consolidation by spark plasma sintering were investigated. Reduction in crystallite size was observed during the synthesis, which was associated with the lattice expansion and rise in dislocation density, reflecting the generation of the excess grain boundary interfacial energy and the excess free volume. Subsequent annealing led to the exponential growth of the crystallites with a concomitant drop in the dislocation density. The rapid consolidation of the as-synthesized nanocrystalline alloy powder by the spark plasma sintering, on the other hand, showed only a limited grain growth due to the reduction of processing time for the consolidation by about 95% when compared to annealing at the same temperature. PMID:28772633

  7. Effect of mechanical alloying and heat treatment on the behavior of fe - 28% al - 5% cr powder with nanocrystalline structure

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Liu, H. L.; Wang, Y. X.; Xu, G. O.; Zheng, Z. X.

    2012-05-01

    Nanocrystalline powders of alloy Fe - 28% Al - 5% Cr (at.%) obtained by mechanical alloying from powdered iron, aluminum, and preliminarily alloyed Fe - 20% Cr are studied. The chemical composition is shown to be homogenized. The changes in the structure and in the morphology of the particles in the process of ball milling and subsequent heat treatment are determined. The alloying is shown to occur by the mechanism of continuous diffusion mixing.

  8. Bulk and surface properties of liquid Al-Cr and Cr-Ni alloys.

    PubMed

    Novakovic, R

    2011-06-15

    The energetics of mixing and structural arrangement in liquid Al-Cr and Cr-Ni alloys has been analysed through the study of surface properties (surface tension and surface segregation), dynamic properties (chemical diffusion) and microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) in the framework of statistical mechanical theory in conjunction with quasi-lattice theory. The Al-Cr phase diagram exhibits the existence of different intermetallic compounds in the solid state, while that of Cr-Ni is a simple eutectic-type phase diagram at high temperatures and includes the low-temperature peritectoid reaction in the range near a CrNi(2) composition. Accordingly, the mixing behaviour in Al-Cr and Cr-Ni alloy melts was studied using the complex formation model in the weak interaction approximation and by postulating Al(8)Cr(5) and CrNi(2) chemical complexes, respectively, as energetically favoured.

  9. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  10. Fabrication characteristics and hydrogenation behavior of hydrogen storage alloys for sealed Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Kim, Ho-Sung; Kim, Jeon Min; Kim, Tae-Won; Oh, Ik-Hyun; Choi, Jeon; Park, Choong Nyeon

    2008-08-01

    Hydrogen storage alloys based on LmNi4.2Co0.2Mn0.3Al0.3 were fabricated to study the equilibrium hydrogen pressure and electrochemical performance. The surface morphology and structure of the alloys were analyzed by SEM and XRD, and then the hydrogenation behaviors of all alloys were evaluated by PCT and electrochemical half-cell. We studied the hydrogenation behavior of the Lm-based alloy with changes in composition elements such as Mn, Al, and Co and investigated the optimal design for Lm-based alloy in a sealed battery system. As a result of studying the hydrogenation characterization of alloys with the substitution elements, hydrogen storage alloys such as LmNi3.75Co0.15Mn0.5Al0.3 and LmNi3.5Co0.5Mn0.5Al0.5 were obtained to correspond with the characteristics of a sealed battery with a higher capacity, long life cycle, lower internal pressure, and lower battery cost. The capacity preservation rate of LmNi3.5Co0.5Mn0.5Al0.5 was greatly improved to 92.7% (255 mAh/g) at 60 cycles, indicating a low equilibrium hydrogen pressure of 0.03 atm in PCT devices.

  11. High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics

    PubMed Central

    Li, Jinpeng; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu

    2018-01-01

    To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y2O3, Al2O3, and ZrO2, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y2O3), 154° (Al2O3), and 157° (ZrO2), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y2O3 reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al2O3, and ZrO2 systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al2O3), 0.09% (ZrO2), and 0.02% (Y2O3), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y2O3 system. Y2O3 ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys. PMID:29735958

  12. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1988-01-01

    NbAL3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al2O3 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAlY coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  13. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  14. Phase Evolution and Mechanical Properties of AlCoCrFeNiSi x High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

    NASA Astrophysics Data System (ADS)

    Kumar, Anil; Swarnakar, Akhilesh Kumar; Chopkar, Manoj

    2018-05-01

    In the current investigation, AlCoCrFeNiSi x (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

  15. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  16. Site preference of alloying elements in DO22-Ni3V phase: Phase-field and first-principles study

    NASA Astrophysics Data System (ADS)

    Zhang, Ding-Ni; Shangguan, Qian-Qian; Liu, Fu; Zhang, Ming-Yi

    2015-07-01

    Site preference of alloying elements in DO22-Ni3V phase was investigated using phase-field and first-principles method. The concentrations of alloying elements on sublattices of DO22-Ni3V phase were quantitatively studied using phase-field model based on microscopic diffusion equations. The phase-field computation results demonstrate that the concentration differences of alloying elements on the NiI and NiII site are attributed to the coordination environment difference. Host atoms Ni and substitutional ternary additions Al prefer to occupy NiI site. Antisite atoms V show site preference on the NiII site. Further reason of site preference of alloying elements on the two different Ni sites were studied using first-principles method to calculate the electronic structure of DO22-Ni3V phase. Calculation of density of states, orbitals population and charge population of the optimized Ni3V structure found that the electronic structures of NiI and NiII sites are different. Electronic structure difference, which is caused by coordination environment difference, is the essential reason for site selectivity behaviors of alloying elements on NiI and NiII sites.

  17. Structures and Electrochemical Hydrogen Storage Properties of the As-Spun RE-Mg-Ni-Co-Al-Based AB2-Type Alloys Applied to Ni-MH Battery

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Yuan, Zeming; Shang, Hongwei; Li, Yaqin; Qi, Yan; Zhao, Dongliang

    2017-05-01

    In this paper, the La0.8- x Ce0.2Y x MgNi3.5Co0.4Al0.1 ( x = 0, 0.05, 0.1, 0.15, 0.2) alloys were synthesized via smelting and melt spinning. The effect of Y content on the structure and electrochemical hydrogen storage characteristics of the as-cast and spun alloys was investigated. The identifications of XRD and SEM demonstrate that the experimental alloys possess a major phase LaMgNi4 and a minor phase LaNi5. The variation of Y content results in an obvious transformation of the phase abundance rather than phase composition in the alloys, namely LaMgNi4 phase increases while LaNi5 phase decreases with Y content growing. Furthermore, the replacement of Y for La causes the lattice constants and cell volume to clearly decrease and markedly refines the alloy grains. The electrochemical tests reveal that these alloys can obtain the maximum values of discharge capacity at the first cycling without any activation needed. With Y content growing, the discharge capacity of the alloys obviously declines, but its cycle stability remarkably improves. Moreover, the electrochemical dynamics of the alloys, involving the high-rate discharge ability, hydrogen diffusion coefficient ( D), limiting current density ( I L), and charge transfer rate, initially augment and then decrease with rising Y content.

  18. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  19. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    PubMed Central

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; Ghosh, Gautam; Liaw, Peter K.

    2015-01-01

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution body-centered-cubic iron for high-temperature application in fossil-energy power plants. In this study, we investigate the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy at 700–950 °C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent on differences in the matrix/precipitate compositions. Our results profile the ripening process in multicomponent alloys by illustrating controlling factors of interfacial energy, diffusivities, and element partitioning. The study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service. PMID:26537060

  20. Coercivity and nanostructure of melt-spun Ti-Fe-Co-B-based alloys

    DOE PAGES

    Zhang, W. Y.; Skomski, R.; Kashyap, A.; ...

    2016-02-18

    Nanocrystalline Ti-Fe-Co-B-based alloys, prepared by melt spinning and subsequent annealing, have been characterized structurally and magnetically. X-ray diffraction and thermomagnetic measurements show that the ribbons consist of tetragonal Ti 3(Fe,Co) 5B 2, FeCo-rich bcc, and NiAl-rich L2 1 phases; Ti 3(Fe,Co) 5B 2, is a new substitutional alloy series whose end members Ti 3Co 5B 2 and Ti 3Fe 5B 2 have never been investigated magnetically and may not even exist, respectively. Two compositions are considered, namely Ti 11+xFe 37.5-0.5xCo 37.5–0.5xB 14 (x = 0, 4) and alnico-like Ti 11Fe 26Co 26Ni 10Al 11Cu 2B 14, the latter also containingmore » an L2 1-type alloy. The volume fraction of the Ti 3(Fe,Co) 5B 2 phase increases with x, which leads to a coercivity increase from 221 Oe for x = 0 to 452 Oe for x = 4. Since the grains are nearly equiaxed, there is little or no shape anisotropy, and the coercivity is largely due to the magnetocrystallineanisotropy of the tetragonal Ti 3(Fe,Co) 5B 2 phase. The alloy containing Ni,Al, and Cu exhibits a magnetization of 10.6 kG and a remanence ratio of 0.59. Lastly, our results indicate that magnetocrystallineanisotropy can be introduced in alnico-like magnets, adding to shape anisotropy that may be induced by field annealing.« less

  1. Atomistic Modeling of Quaternary Alloys: Ti and Cu in NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Mosca, Hugo O.; Wilson, Allen W.; Noebe, Ronald D.; Garces, Jorge E.

    2002-01-01

    The change in site preference in NiAl(Ti,Cu) alloys with concentration is examined experimentally via ALCHEMI and theoretically using the Bozzolo-Ferrante-Smith (BFS) method for alloys. Results for the site occupancy of Ti and Cu additions as a function of concentration are determined experimentally for five alloys. These results are reproduced with large-scale BFS-based Monte Carlo atomistic simulations. The original set of five alloys is extended to 25 concentrations, which are modeled by means of the BFS method for alloys, showing in more detail the compositional range over which major changes in behavior occur. A simple but powerful approach based on the definition of atomic local environments also is introduced to describe energetically the interactions between the various elements and therefore to explain the observed behavior.

  2. Constitution of pseudobinary hypoeutectic beta-NiAl + alpha-V alloys

    NASA Technical Reports Server (NTRS)

    Cotton, J. D.; Kaufman, M. J.; Noebe, R. D.

    1991-01-01

    The formation of pseudobinary eutectics between NiAl (beta) and V (alpha) at high temperatures was investigated as a possible way of improving the ductility and toughness of the alloy. It is found that a pseudobinary eutectic, characterized by a large beta+alpha field, is formed in the Ni-Al-V ternary system below about 1370 C. The high-temperature solubility of V in beta is about 14 percent, decreasing markedly with decreasing temperature and increasing Al content above 50 at. pct Al. The pseudobinary hypoeutectic exibits crack resistance under indentation loading.

  3. Improvement of the functional properties of nanostructured Ti-Ni shape memory alloys by means of thermomechanical processing

    NASA Astrophysics Data System (ADS)

    Kreitcberg, Alena

    dominate the texture contributions, and therefore, there is no real alternative to having nanocrystalline Ti-Ni alloys, if one needs to maximize the Ti-Ni alloys functional properties. Since the creation of such a microstructure requires the use of severe cold deformation techniques and neither of these techniques can be completely exempt from defects, it was deemed necessary to compare the damage tolerance of nanocrystalline Ti-Ni alloys to that of their nanosubgrained and mixed nanocrystalline/nanosubgrained counterparts. With this objective in mind, a detailed analysis of interrelations between the level of the CR/WR-induced damage (edge microcrack size and concentration) and the fatigue life of Ti- Ni SMAs was carried out. It was shown that nanocrystalline structure provides higher tolerance to small-crack propagation than nanosubgrained or mixed nanocrystalline/ nanosubgrained structures, and that low-temperature deformability of these alloys has to be improved to benefit from the property-enhancement potential of nanocrystalline structure. To broaden our knowledge in the field of Ti-Ni alloy deformability, the strain-rate sensitivity of these alloys was studied. Different microstructures, varying from the coarse- to ultrafinegrained, were created by means of equal-channel angular pressing (ECAP) and subjected to strain-rate sensitivity testing. As a result, the material with ultrafine-grained microstructure demonstrated an improved deformability as compared to the coarse-grained structure, at any deformation temperature. Moreover, it was determined that the smaller the grain size, the lower the temperature and the higher the strain-rate at which superplasticity occurs. Based on the results obtained, combined thermomechanical processing (ECAP at elevated temperatures followed by CR) was proposed and validated in terms of structural refinement with reduced level of processing-induced defects. Scientific contributions. This thesis contributes to the advancement of

  4. Influence of alloying elements on the oxidation behavior of NbAl3

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Stephens, J. R.; Smialek, J. L.; Barrett, C. A.; Fox, D. S.

    1989-01-01

    NbAl3 is one candidate material for advanced aeropropulsion systems because of its high melting point, low density, and good oxidation resistance. Although NbAl3 has the lowest oxidation rate among the binary Nb-Al alloys, it does not form exclusive layers of protective Al203 scales. Recently Perkin et al., have shown the feasibility of forming alumina scales on Nb-Al alloys at greatly reduced Al contents. However, the objective was to maintain the high Al content, and hence low density, while achieving the capability of growing protective alumina scales. Alloy development followed approaches similar to those used successfully for superalloys and oxidation resistant MCrAly coatings. Among the three elements examined (Ti, Si, and Cr) as ternary additions to Nb-Al3, Cr was the most effective in favoring the selective oxidation of Al. Nb-41Al-8Cr formed exclusive layers of alumina and had a k sub p value of 0.22 mg squared/cm (sup 4)/hr at 1200 C. The addition of 1 wt percent Y to this alloy was also beneficial, resulting in nearly an order of magnitude decrease in K sub p at 1200 C. Further improvements were achieved by adding about 1 wt percent Si to the quaternary alloy. The k sub p value of 0.012 mg squared/cm (sup 4)/hr for Nb-40Al-8Cr-1Y-1Si at 1200 C was identical to the best NiAl + Zr alloys. These NbAl3 alloys also exhibited excellent cyclic oxidation resistance for 100 hr at 1200 C, being nearly equivalent to NiAl + Zr.

  5. Physical and mechanical metallurgy of NiAl

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Bowman, Randy R.; Nathal, Michael V.

    1994-01-01

    Considerable research has been performed on NiAl over the last decade, with an exponential increase in effort occurring over the last few years. This is due to interest in this material for electronic, catalytic, coating and especially high-temperature structural applications. This report uses this wealth of new information to develop a complete description of the properties and processing of NiAl and NiAl-based materials. Emphasis is placed on the controlling fracture and deformation mechanisms of single and polycrystalline NiAl and its alloys over the entire range of temperatures for which data are available. Creep, fatigue, and environmental resistance of this material are discussed. In addition, issues surrounding alloy design, development of NiAl-based composites, and materials processing are addressed.

  6. Thermodynamic Analysis of Compatibility of Several Reinforcement Materials with Beta Phase NiAl Alloys

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Chemical compatibility of several reinforcement materials with beta phase NiAl alloys within the concentration range 40 to 50 at. percent Al have been analyzed from thermodynamic considerations at 1373 and 1573 K. The reinforcement materials considered in this study include carbides, borides, oxides, nitrides, beryllides, and silicides. Thermodynamic data for NiAl alloys have been reviewed and activity of Ni and Al in the beta phase have been derived at 1373 and 1573 K. Criteria for chemical compatibility between the reinforcement material and the matrix have been defined and several chemically compatible reinforcement materials have been defined.

  7. Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs

    DOE PAGES

    Clark, Blythe G.; Hattar, Khalid Mikhiel; Marshall, Michael Thomas; ...

    2016-03-24

    Here, the widely recognized property improvements of nanocrystalline (NC) materials have generated significant interest, yet have been difficult to realize in engineering applications due to the propensity for grain growth in these interface-dense systems. While traditional pathways to thermal stabilization can slow the mobility of grain boundaries, recent theories suggest that solute segregation in NC alloy can reduce the grain boundary energy such that thermodynamic stabilization is achieved. Following the predictions of Murdock et al., here we compare for the first time the thermal stability of a predicted NC stable alloy (Fe-10at.% Mg) with a predicted non-NC stable alloy (Fe-10at.%more » Cu) using the same processing and characterization methodologies. Results indicate improved thermal stability of the Fe-Mg alloy in comparison to the Fe-Cu, and observed microstructures are consistent with those predicted by Monte Carlo simulations.« less

  8. The response of macrophages to a Cu-Al-Ni shape memory alloy.

    PubMed

    Colić, Miodrag; Tomić, Sergej; Rudolf, Rebeka; Anzel, Ivan; Lojen, Gorazd

    2010-09-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but little is known about their biocompatibility. The aim of this work was to study the response of rat peritoneal macrophages (PMØ) to a Cu-Al-Ni SMA in vitro, by measuring the functional activity of mitochondria, necrosis, apoptosis, and production of proinflammatory cytokines. Rapidly solidified (RS) thin ribbons were used for the tests. The control alloy was a permanent mold casting of the same composition, but without the shape memory effect. Our results showed that the control alloy was severely cytotoxic, whereas RS ribbons induced neither necrosis nor apoptosis of PMØ. These findings correlated with the data that RS ribbons are significantly more resistant to corrosion compared to the control alloy, as judged by the lesser release of Cu and Ni in the conditioning medium. However, the ribbons generated intracellular reactive oxygen species and upregulated the production of IL-6 by PMØ. These effects were almost completely abolished by conditioning the RS ribbons for 5 weeks. In conclusion, RS significantly improves the corrosion stability and biocompatibility of Cu-Al-Ni SMA. The biocompatibility of this functional material could be additionally enhanced by conditioning the ribbons in cell culture medium.

  9. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd.sub.0.54 Er.sub.0.46)AlNi alloys having a relatively constant .DELTA.Tmc over a wide temperature range.

  10. Thermally Induced Interdiffusion and Precipitation in a Ni/Ni 3 Al System

    DOE PAGES

    Sun, C.; Martinez, E.; Aguiar, J. A.; ...

    2015-05-20

    Ordered Ni 3Al intermetallic precipitates constitute the main hardening sources of Ni-based superalloys. Here, we report the interdiffusion and precipitation behavior in a Ni/Ni3Al model system. The deposition of Ni3Al on a pure Ni layer at 500°C generated L12-structured γ' (Ni3Al) precipitates, preferentially at the interface. After annealing at 800°C for 1 h, interdiffusion between Ni and Ni3Al layers occurred, and the γ' precipitates that grew near the parent Ni/Ni 3Al interface are ~2.8 times larger in size than those formed in the matrix. In conclusion, Monte Carlo simulations indicate that vacancies preferentially diffuse along the Ni/Ni 3Al interface, increasingmore » the probability of precipitation.« less

  11. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE PAGES

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan; ...

    2016-07-19

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  12. Understanding phase stability of Al-Co-Cr-Fe-Ni high entropy alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chuan; Zhang, Fan; Diao, Haoyan

    The concept of high entropy alloy (HEA) opens a vast unexplored composition range for alloy design. As a well-studied system, Al-Co-Cr-Fe-Ni has attracted tremendous amount of attention to develop new-generation low-density structural materials for automobile and aerospace applications. In spite of intensive investigations in the past few years, the phase stability within this HEA system is still poorly understood and needs to be clarified, which poses obstacles to the discovery of promising Al-Co-Cr-Fe-Ni HEAs. In the present work, the CALPHAD approach is employed to understand the phase stability and explore the phase transformation within the Al-Co-Cr-Fe-Ni system. As a result,more » the phase-stability mapping coupled with density contours is then constructed within the composition - temperature space, which provides useful guidelines for the design of low-density Al-Co-Cr-Fe-Ni HEAs with desirable properties.« less

  13. Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...

    2015-11-05

    Coherent B2-ordered NiAl-type precipitates have been used to reinforce solid-solution bodycentered- cubic iron for high-temperature application in fossil-energy power plants. In this study, the stability of nano-sized precipitates in a NiAl-strengthened ferritic alloy was investigated at 700 - 950°C using ultra-small angle X-ray scattering and electron microscopies. Here we show that the coarsening kinetics of NiAl-type precipitates is in excellent agreement with the ripening model in multicomponent alloys. We further demonstrate that the interfacial energy between the matrix and NiAl-type precipitates is strongly dependent to differences in the matrix/precipitate compositions. The results profile the ripening process in multicomponent alloys bymore » illustrating controlling factors (i.e., interfacial energy, diffusivities, and element partitioning). As a result, the study provides guidelines to design and develop high-temperature alloys with stable microstructures for long-term service.« less

  14. Lanthanide Al-Ni base Ericsson cycle magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-10-31

    A magnetic refrigerant for a magnetic refrigerator using the Ericsson thermodynamic cycle comprises DyAlNi and (Gd{sub 0.54}Er{sub 0.46})AlNi alloys having a relatively constant {Delta}Tmc over a wide temperature range. 16 figs.

  15. Effect of severe plastic deformation on the structure and crystal-lattice distortions in the Ni3(Al, X) ( X = Ti, Nb) intermetallic compound

    NASA Astrophysics Data System (ADS)

    Kazantseva, N. V.; Pilyugin, V. P.; Danilov, S. E.; Kolosov, V. Yu.

    2015-05-01

    A systematic combined study of crystal lattice distortions caused by doping and by severe plastic deformation (SPD) of Ti- and Nb-doped Ni3Al intermetallic compound has been carried out using methods of X-ray diffraction, electron microscopy, and electrical-resistance measurements. The degree of imperfection of the alloys has been estimated based on the results obtained by all three methods. The degree of structural perfection of niobium-doped crystals was found to be higher than in the case of Ti doping. The character of stresses (tensile stresses after doping; and compressive stresses after SPD) in the crystal lattice has been established and their values have been calculated. A significant increase in the density of dislocations, point defects, and lattice curvature has been found after SPD. A nanocrystalline structure is formed in these alloys, but no complete disordering of the intermetallic phase is observed.

  16. Microstructure and mechanical properties of NiCoCrAlYTa alloy processed by press and sintering route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, J.C., E-mail: jpereira@uc.edu.ve; Centro de Investigaciones en Mecánica, Facultad de Ingeniería, Universidad de Carabobo; Zambrano, J.C.

    2015-03-15

    Nickel-based superalloys such as NiCoCrAlY are widely used in high-temperature applications, such as gas turbine components in the energy and aerospace industries, due to their strength, high elastic modulus, and high-temperature oxidation resistance. However, the processing of these alloys is complex and costly, and the alloys are currently used as a bond coat in thermal barrier coatings. In this work, the effect of cold press and sintering processing parameters on the microstructure and mechanical properties of NiCoCrAlY alloy were studied using the powder metallurgy route as a new way to obtain NiCoCrAlYTa samples from a gas atomized prealloyed powder feedstock.more » High mechanical strength and adequate densification up to 98% were achieved. The most suitable compaction pressure and sintering temperature were determined for NiCoCrAlYTa alloy through microstructure characterization. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and energy dispersive spectroscopy microanalysis (EDS) were performed to confirm the expected γ-Ni matrix and β-NiAl phase distribution. Additionally, the results demonstrated the unexpected presence of carbides and Ni–Y-rich zones in the microstructure due to the powder metallurgy processing parameters used. Thus, microhardness, nanoindentation and uniaxial compression tests were conducted to correlate the microstructure of the alloy samples with their mechanical properties under the different studied conditions. The results show that the compaction pressure did not significantly affect the mechanical properties of the alloy samples. In this work, the compaction pressures of 400, 700 and 1000 MPa were used. The sintering temperature of 1200 °C for NiCoCrAlYTa alloy was preferred; above this temperature, the improvement in mechanical properties is not significant due to grain coarsening, whereas a lower temperature produces a decrease in mechanical properties due to high

  17. Ab initio simulations of molten Ni alloys

    NASA Astrophysics Data System (ADS)

    Woodward, Christopher; Asta, Mark; Trinkle, Dallas R.; Lill, James; Angioletti-Uberti, Stefano

    2010-06-01

    Convective instabilities responsible for misoriented grains in directionally solidified turbine airfoils are produced by variations in liquid-metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni-based alloys, required for modeling these instabilities, are calculated using ab initio molecular dynamics simulations. Equations of state are derived from constant number-volume-temperature ensembles at 1830 and 1750 K for elemental, binary (Ni-X, X=Al, W, Re, and Ta) and ternary (Ni-Al-X, X=W, Re, and Ta) Ni alloys. Calculated molar volumes agree to within 0.6%-1.8% of available measurements. Predictions are used to investigate the range of accuracy of a parameterization of molar volumes with composition and temperature based on measurements of binary alloys. Structural analysis reveals a pronounced tendency for icosahedral short-range order for Ni-W and Ni-Re alloys and the calculations provide estimates of diffusion rates and their dependence on compositions and temperature.

  18. Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys

    NASA Technical Reports Server (NTRS)

    Aning, A. O.; Wang, Z.; Courtney, T. H.

    1993-01-01

    The kinetics of solution of W, and the subsequent amorphization of Ni, in mechanically alloyed Ni-W alloys has been investigated. As W is a highly abrasive material in the energy intensive devices used for mechanical alloying, we studied the above reactions in different mills. One used hardened steel balls as the grinding media, and the other Al2O3. Abrasion is common to both mills, but Fe wear debris from the hardened steel enters into solution in the Ni rich phases whereas Al2O3 debris is present as small dispersoids. The kinetics of W solution and those of subsequent amorphization do not appear strongly affected by the Fe in solution or the Al2O3 dispersoid. Tungsten dissolves in crystalline Ni in amounts in excess of the equilibrium solubility during alloying. Amorphization of the Ni phase occurs if the W content in this phase exceeds ca. 28 at. pct.

  19. Development of dispersion-strengthened Ni-Cr-ThOz alloys for the space shuttle thermal protection system

    NASA Technical Reports Server (NTRS)

    Blankenship, C. P.; Saunders, N. T.

    1972-01-01

    Manufacturing processes were developed for TD-NiCr providing small sheet (45 x 90 cm), and larger sheet (60 x 150 cm) and foil. The alternate alloy, DS-NiCr, was produced by pack-chromizing Ni-ThO2 sheet. Formability criteria are being established for basic sheet forming processes, which are brake forming, corrugation forming, joggling, dimpling, and beading. Resistance spot welding (fusion and solid state), resistance seam welding, solid state diffusion welding, and brazing are included in the joining programs. Major emphasis is centered on an Al-modified Ni-Cr-ThO2 alloy development. These alloys, containing 3 to 5% Al, form the protective Al2O3 scale. This enhances oxidation resistance under reentry conditions. Both TD-NiCrAl and DS-NiCrAl alloys are included. A tentative composition of Ni-16Cr-3.5Al-2ThO2 was selected based on oxidation resistance and fabricability.

  20. Effects of Solute Concentrations on Kinetic Pathways in Ni-Al-Cr Alloys

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Weninger, Jessica; Sudbrack, Chantal K.; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The kinetic pathways resulting from the formation of coherent gamma'-precipitates from the gamma-matrix are studied for two Ni-Al-Cr alloys with similar gamma'-precipitate volume fractions at 873 K. The details of the phase decompositions of Ni-7.5Al-8.5Cr at.% and Ni-5.2Al-14.2Cr at.% for aging times from 1/6 to 1024 h are investigated by atom-probe tomography, and are found to differ significantly from a mean-field description of coarsening. The morphologies of the gamma'-precipitates of the alloys are similar, though the degrees of gamma'-precipitate coagulation and coalescence differ. Quantification within the framework of classical nucleation theory reveals that differences in the chemical driving forces for phase decomposition result in differences in the nucleation behavior of the two alloys. The temporal evolution of the gamma'-precipitate average radii and the gamma-matrix supersaturations follow the predictions of classical coarsening models. The compositional trajectories of the gamma-matrix phases of the alloys are found to follow approximately the equilibrium tie-lines, while the trajectories of the gamma'-precipitates do not, resulting in significant differences in the partitioning ratios of the solute elements.

  1. Shear-Coupled Grain Growth and Texture Development in a Nanocrystalline Ni-Fe Alloy during Cold Rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Li; Ungár, Tamás; Toth, Laszlo S.

    The evolution of texture, grain size, grain shape, dislocation and twin density has been determined by synchrotron X-ray diffraction and line profile analysis in a nanocrystalline Ni- Fe alloy after cold rolling along different directions related to the initial fiber and the long axis of grains. The texture evolution has been simulated by the Taylor-type relaxed constraints viscoplastic polycrystal model. The simulations were based on the activity of partial dislocations in correlation with the experimental results of dislocation density determination. The concept of stress-induced shear-coupling is supported and strengthened by both the texture simulations and the experimentally determined evolution ofmore » the microstructure parameters. Grain-growth and texture evolution are shown to proceed by the shear-coupling mechanism supported by dislocation activity as long as the grain size is not smaller than about 20 nm.« less

  2. Local structure study of Fe dopants in Ni-deficit Ni 3Al alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    V. N. Ivanovski; Umicevic, A.; Belosevic-Cavor, J.

    2015-08-24

    We found that the local electronic and magnetic structure, hyperfine interactions, and phase composition of polycrystalline Ni–deficient Ni 3-x FexAl (x = 0.18 and 0.36) were investigated by means of 57 Fe Mössbauer spectroscopy. The samples were characterized by X–ray diffraction and magnetization measurements. The ab initio calculations performed with the projector augmented wave method and the calculations of the energies of iron point defects were done to elucidate the electronic structure and site preference of Fe doped Ni 3 Al. Moreover, the value of calculated electric field gradient tensor V zz=1.6 10 21Vm -2 matches well with the resultsmore » of Mössbauer spectroscopy and indicates that the Fe atoms occupy Ni sites.« less

  3. Method For Making Electronic Circuits Having Nial And Ni3al Substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    2001-01-30

    A method for making electronic circuit component having improved mechanical properties and thermal conductivity comprises steps of providing NiAl and/or Ni.sub.3 Al, and forming an alumina layer thereupon prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  4. Study of the effects of implantation on the high Fe-Ni-Cr and Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Ribarsky, M. W.

    1985-01-01

    A theoretical study of the effects of implantation on the corrosion resistance of Fe-Ni-Cr and Ni-Cr-Al alloys was undertaken. The purpose was to elucidate the process by which corrosion scales form on alloy surfaces. The experiments dealt with Ni implanted with Al, exposed to S at high temperatures, and then analyzed using scanning electron microscopy, scanning Auger spectroscopy and X-ray fluorescence spectroscopy. Pair bonding and tight-binding models were developed to study the compositions of the alloys and as a result, a new surface ordering effect was found which may exist in certain real alloys. With these models, the behavior of alloy constituents in the presence of surface concentrations of O or S was also studied. Improvements of the models to take into account the important effects of long- and short-range ordering were considered. The diffusion kinetics of implant profiles at various temperatures were investigated, and it was found that significant non-equilibrium changes in the profiles can take place which may affect the implants' performance in the presence of surface contaminants.

  5. Hot Corrosion of Single-Crystal NiAl-X Alloys

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.

    1998-01-01

    Several single-crystal NiAl-X alloys (X=Hf, Ti, Cr, Ga) underwent hot corrosion testing in a Mach 0.3 burner rig at 900 deg. C for 300 1-hr cycles. The surface morphology after testing consisted of either mounds or an inward, uniform-type of attack which preserved surface features. It was observed that the surface morphology was affected by the surface preparation treatments. Microstructurally, the hot corrosion attack initiated as pits but evolved to a rampant attack consisting of the rapid inward growth of Al2O3. Electropolishing and chemical milling produced many pits and grooves on the surface. However, the presence of pits and grooves did not appear to strongly influence the hot corrosion response. Attack on many samples was strongly localized which was attributed to compositional inhomogeneity within the samples. It was found that increasing the Ti content from 1% to 5 % degraded the hot corrosion response of these alloys. In contrast, the addition of 1-2% Cr reduced the susceptibility of these alloys to hot corrosion attack and negated the deleterious effect of the 4-5% Ti addition.

  6. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    NASA Astrophysics Data System (ADS)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  7. Formation of Ti-Ta-based surface alloy on TiNi SMA substrate from thin films by pulsed electron-beam melting

    NASA Astrophysics Data System (ADS)

    Meisner, L. L.; Markov, A. B.; Ozur, G. E.; Rotshtein, V. P.; Yakovlev, E. V.; Meisner, S. N.; Poletika, T. M.; Girsova, S. L.; Semin, V. O.; Mironov, Yu P.

    2017-05-01

    TiNi shape memory alloys (SMAs) are unique metallic biomaterials due to combination of superelastisity and high corrosion resistance. Important factors limiting biomedical applications of TiNi SMAs are a danger of toxic Ni release into the adjacent tissues, as well as insufficient level of X-ray visibility. In this paper, the method for fabrication of protective Ni-free surface alloy of thickness ∼1 μm of near Ti70Ta30 composition on TiNi SMA substrate has been successfully realized. The method is based on multiple alternation of magnetron co-deposition of Ti70Ta30 thin (50 nm) films and their liquid-phase mixing with the TiNi substrate by microsecond low-energy, high current electron beam (≤15 keV, ∼2 J/cm2) using setup RITM-SP (Microsplav, Russia). It was found by AES, XRD, SEM/EDS and HRTEM/EDS examinations, that Ti-Ta surface alloy has an increased X-ray visibility and gradient multiphase amorphous-nanocrystalline structure containing nanopores.

  8. Relationship between microstructure, cytotoxicity and corrosion properties of a Cu-Al-Ni shape memory alloy.

    PubMed

    Colić, Miodrag; Rudolf, Rebeka; Stamenković, Dragoslav; Anzel, Ivan; Vucević, Dragana; Jenko, Monika; Lazić, Vojkan; Lojen, Gorazd

    2010-01-01

    Cu-Al-Ni shape memory alloys (SMAs) have been investigated as materials for medical devices, but their biomedical application is still limited. The aim of this work was to compare the microstructure, corrosion and cytotoxicity in vitro of a Cu-Al-Ni SMA. Rapidly solidified (RS) thin ribbons, manufactured via melt spinning, were used for the tests. The control alloy was a permanent mould casting of the same composition, but without shape memory effect. The results show that RS ribbons are significantly more resistant to corrosion compared with the control alloy, as judged by the lesser release of Cu and Ni into the conditioning medium. These results correlate with the finding that RS ribbons were not cytotoxic to L929 mouse fibroblasts and rat thymocytes. In addition, the RS ribbon conditioning medium inhibited cellular proliferation and IL-2 production by activated rat splenocytes to a much lesser extent. The inhibitory effects were almost completely abolished by conditioning the RS ribbons in culture medium for 4 weeks. Microstructural analysis showed that RS ribbons are martensitic, with boron particles as a minor phase. In contrast, the control Cu-Al-Ni alloy had a complex multiphase microstructure. Examination of the alloy surfaces after conditioning by energy dispersive X-ray and Auger electron spectroscopy showed the formation of Cu and Al oxide layers and confirmed that the metals in RS ribbons are less susceptible to oxidation and corrosion compared with the control alloy. In conclusion, these results suggest that rapid solidification significantly improves the corrosion stability and biocompatibility in vitro of Cu-Al-Ni SMA ribbons.

  9. Correlation of martensitic transformation temperatures of Ni- Mn-Ga/Al-X alloys to non-bonding electron concentration

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Satish Kumar, A.; Seshubai, V.; Rajasekharan, T.

    2015-02-01

    The martensitic transformation TM of the alloys of Ni-Mn-Ga and Ni-Mn-Al show a general trend of increase with electron per atom ratio (e/a) calculated from the total number of electrons outside the rare gas shell of the atoms. However prediction of TM fails among iron substituted Ni-Mn-Ga alloys and those with In doped for Ga, due to the absence of a useful trend. A scheme of computing modified electron concentration is presented considering only the non-bonding electrons per atom Ne/a of the compounds, based on Pauling's ideas on the electronic structure of metallic elements. Systematic variation of TM with Ne/a is reproduced for a large number of alloys of Ni-Mn-Ga and the anomaly observed for Fe containing alloys with e/a disappears. The non-bonding electron concentration is thus demonstrated to be effective in predicting TM of shape memory alloys of Ni-Mn-Ga-X system including the isoelectronic compounds of Ni-Mn-Ga-In.

  10. Microstructure, Mechanical Properties, and Two-Body Abrasive Wear Behavior of Cold-Sprayed 20 vol.% Cubic BN-NiCrAl Nanocomposite Coating

    NASA Astrophysics Data System (ADS)

    Luo, Xiao-Tao; Yang, Er-Juan; Shang, Fu-Lin; Yang, Guan-Jun; Li, Chen-Xin; Li, Chang-Jiu

    2014-10-01

    20 vol.% cubic boron nitride (cBN) dispersoid reinforced NiCrAl matrix nanocomposite coating was prepared by cold spray using mechanically alloyed nanostructured composite powders. The as-sprayed nanocomposite coating was annealed at a temperature of 750 °C to enhance the inter-particle bonding. Microstructure of spray powders and coatings was characterized. Vickers microhardness of the coatings was measured. Two-body abrasive wear behavior of the coatings was examined on a pin-on-disk test. It was found that, in mechanically alloyed composite powders, nano-sized and submicro-sized cBN particles are uniformly distributed in nanocrystalline NiCrAl matrix. Dense coating was deposited by cold spray at a gas temperature of 650 °C with the same phases and grain size as those of the starting powder. Vickers hardness test yielded a hardness of 1063 HV for the as-sprayed 20 vol.% cBN-NiCrAl coating. After annealed at 750 °C for 5 h, unbonded inter-particle boundaries were partially healed and evident grain growth of nanocrystalline NiCrAl was avoided. Wear resistance of the as-sprayed 20 vol.% cBN-NiCrAl nanocomposite coating was comparable to the HVOF-sprayed WC-12Co coating. Annealing of the nanocomposite coating resulted in the improvement of wear resistance by a factor of ~33% owing to the enhanced inter-particle bonding. Main material removal mechanisms during the abrasive wear are also discussed.

  11. High-temperature, low-cycle fatigue behavior of an Al-Mg-Si based heat-resistant aluminum alloy

    NASA Astrophysics Data System (ADS)

    Kim, Kyu-Sik; Sung, Si-Young; Han, Bum-Suck; Park, Joong-Cheol; Lee, Kee-Ahn

    2015-11-01

    High-temperature, low-cycle fatigue behavior of the new heat-resistant aluminum alloy was investigated in this study. The aluminum alloy consists of aluminum matrix and small amount of precipitated Mg2Si and (Co, Ni)3Al4 strengthening particles. At room temperature and 523 K, the yield and tensile strengths of Al-Mg-Si-(Co, Ni) the aluminum alloy were maintained with no significant decrease, and elongation increased slightly. Low-cycle fatigue tests controlled by total strain were performed with strain ratio (R) = -1, strain rate = 2×10-3 s-1 at 523 K. The fatigue limit of the low-cycle fatigue of this alloy showed plastic strain amplitude (Δ ɛ pa) of 0.22% at 103 cycles. This value was superior to that of conventional aluminum alloy such as A319. The results of the fractographical observation showed that second phases, especially (Co, Ni)3Al4 particles, affected fatigue behavior. This study also attempted to clarify the mechanism of high-temperature, low-cycle fatigue deformation of Al-Mg-Si-(Co, Ni) alloy in relation to its microstructure and energy dissipation analysis.

  12. Cu-Al-Ni-SMA-Based High-Damping Composites

    NASA Astrophysics Data System (ADS)

    López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa

    2009-08-01

    Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.

  13. Solid-state reactions during mechanical alloying of ternary Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems: A review

    NASA Astrophysics Data System (ADS)

    Hadef, Fatma

    2016-12-01

    The last decade has witnessed an intensive research in the field of nanocrystalline materials due to their enhanced properties. A lot of processing techniques were developed in order to synthesis these novel materials, among them mechanical alloying or high-energy ball milling. In fact, mechanical alloying is one of the most common operations in the processing of solids. It can be used to quickly and easily synthesize a variety of technologically useful materials which are very difficult to manufacture by other techniques. One advantage of MA over many other techniques is that is a solid state technique and consequently problems associated with melting and solidification are bypassed. Special attention is being paid to the synthesis of alloys through reactions mainly occurring in solid state in many metallic ternary Fe-Al-X systems, in order to improve mainly Fe-Al structural and mechanical properties. The results show that nanocrystallization is the common result occurring in all systems during MA process. The aim of this work is to illustrate the uniqueness of MA process to induce phase transformation in metallic Fe-Al-X (X=Ni, Mn, Cu, Ti, Cr, B, Si) systems.

  14. Laser surface alloying of FeCoCrAlNi high-entropy alloy on 304 stainless steel to enhance corrosion and cavitation erosion resistance

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Wu, C. L.; Zhang, C. H.; Guan, M.; Tan, J. Z.

    2016-10-01

    FeCoCrAlNi high-entropy alloy coating was synthesized with premixed high-purity Co, Cr, Al and Ni powders on 304 stainless steel by laser surface alloying, aiming at improving corrosion and cavitation erosion resistance. Phase constituents, microstructure and microhardness were investigated using XRD, SEM, and microhardness tester, respectively. The cavitation erosion and electrochemical corrosion behavior of FeCoCrAlNi coating in 3.5% NaCl solution were also evaluated using an ultrasonic vibrator and potentiodynamic polarization measurement. Experimental results showed that with appropriate laser processing parameters, FeCoCrAlNi coating with good metallurgical bonding to the substrate could be achieved. FeCoCrAlNi coating was composed of a single BCC solid solution. The formation of simple solid solutions in HEAs was the combined effect of mixing entropy (ΔSmix), mixing enthalpy (ΔHmix), atom-size difference (δ) and valence electron concentration (VEC), and the effect of ΔSmix was much larger than that of the other factors. The microhardness of the FeCoCrAlNi coating was ~3 times that of the 304 stainless steel. Both the corrosion and cavitation erosion resistance of the coating were improved. The cavitation erosion resistance for FeCoCrAlNi HEA coating was ~7.6 times that of 304 stainless steel. The corrosion resistance was also improved as reflected by a reduction in the current density of one order of magnitude as compared with 304 stainless steel.

  15. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  16. Orientation and faulted structure of γ'-phases in lanthanum-alloyed Ni-Al-Cr superalloy

    NASA Astrophysics Data System (ADS)

    Nikonenko, Elena; Shergaeva, Lyubov'; Popova, Natalya; Koneva, Nina; Qin, Rongshan; Gromov, Victor; Fedorischeva, Marina

    2017-12-01

    The paper presents the transmission and the scanning electron microscope investigations of thin foils of Ni-Al-Cr-based superalloy, which is obtained by the directional crystallization technique. This superalloy contains γ'- and γ- phases. Additionally, lanthanum is introduced in the superalloy in 0.015, 0.10 and 0.30 wt % concentrations. The superalloy specimens are then subjected to 1273 K annealing during 10 and 25 h. It is shown that γ'-phase is major. In the superalloy, lanthanides La2Ni3 and Al2La are detected along with carbide La2C3 particles located on dislocations of the major phase. The amount of phases in the superalloy depends on its thermal treatment and lanthanum concentration. The investigations include the effect of annealing on scalar density of dislocations in γ'-phase. It is demonstrated that lanthanum alloying modifies the preferred orientation of γ'-phase. Annealing of lanthanum-alloyed superalloy causes the orientation dispersion. In γ'-phase, the correlation is observed between the degree of heterogeneity of solid solution and scalar dislocation density. It is shown that this heterogeneity results in the formation of high-density dislocations in γ'- phase.

  17. Interdiffusion behavior between NiAlHf coating and Ni-based single crystal superalloy with different crystal orientations

    NASA Astrophysics Data System (ADS)

    Wang, Ruili; Gong, Xueyuan; Peng, Hui; Ma, Yue; Guo, Hongbo

    2015-01-01

    NiAlHf coatings were deposited onto Ni-based single crystal (SC) superalloy with different crystal orientations by electron beam physical vapor deposition (EB-PVD). The effects of the crystal orientations of the superalloy substrate on inter-diffusion behavior between the substrate and the NiAlHf coating were investigated. Substrate diffusion zone (SDZ) containing needle-like μ phases and interdiffusion zone (IDZ) mainly consisting of the ellipsoidal and rod-like μ phases were formed in the SC alloy after heat-treatment 10 h at 1100 °C. The thickness of secondary reaction zone (SRZ) formed in the SC alloy with (0 1 1) crystal orientation is about 14 μm after 50 h heat-treatment at 1100 °C, which is relatively thicker than that in the SC alloy with (0 0 1) crystal orientation, whereas the IDZ revealed similar thickness.

  18. Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml-Mg-Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Li, Yuan; Tao, Yang; Huo, Quan

    2015-01-01

    To improve the electrochemical properties of rare-earth-Mg-Ni-based hydrogen storage alloys, the effects of stoichiometry and Cu-substitution on the phase structure and thermodynamic properties of the alloys were studied. Nonsubstituted Ml0.80Mg0.20(Ni2.90Co0.50-Mn0.30Al0.30) x ( x = 0.68, 0.70, 0.72, 0.74, 0.76) alloys and Cu-substituted Ml0.80Mg0.20(Ni2.90Co0.50- y Cu y Mn0.30Al0.30)0.70 ( y = 0, 0.10, 0.30, 0.50) alloys were prepared by induction melting. Phase structure analysis shows that the nonsubstituted alloys consist of a LaNi5 phase, a LaNi3 phase, and a minor La2Ni7 phase; in addition, in the case of Cu-substitution, the Nd2Ni7 phase appears and the LaNi3 phase vanishes. Thermodynamic tests show that the enthalpy change in the dehydriding process decreases, indicating that hydride stability decreases with increasing stoichiometry and increasing Cu content. The maximum discharge capacity, kinetic properties, and cycling stability of the alloy electrodes all increase and then decrease with increasing stoichiometry or increasing Cu content. Furthermore, Cu substitution for Co ameliorates the discharge capacity, kinetics, and cycling stability of the alloy electrodes.

  19. On the existence of declared 9R phase in Fe–Ni invar alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabanova, I. G.; Sagaradze, V. V., E-mail: vsagaradze@imp.uran.ru; Kataeva, N. V.

    2016-07-15

    An analysis of recently reported electron diffraction patterns suggests that metastable austenitic Fe–32Ni alloy subjected to α → γ transformation upon slow heating does not exhibit any signs of formation of the 9R phase; the conventional nanocrystalline γ phase with an fcc lattice is formed instead. Extended lamellae with a layered structure, erroneously identified as a new phase of the (3R + 9R) type in Fe–32Ni alloy, are conventional twinning (midrib) regions of each initial α crystal, in which γ-phase twin nanolamellae are formed upon heating.

  20. Chromium and Tantalum Site Substitution Patterns in Ni3Al (L1(sub 2))gamma(prime)- Precipitates

    NASA Technical Reports Server (NTRS)

    Booth-Morrison, Christopher; Mao, Zugang; Seidman, David N.; Noebe, Ronald D.

    2008-01-01

    The site substitution behavior of Cr and Ta in the Ni3Al (Ll2)-type gamma'-precipitates of a Ni-Al-Cr-Ta alloy is investigated by atom-probe tomography (APT) and first-principles calculations. Measurements of the gamma'-phase composition by APT suggest that Al, Cr, and Ta share the Al sublattice sites of the gamma'-precipitates. The calculated substitutional energies of the solute atoms at the Ni and Al sublattice sites indicate that Ta has a strong preference for the Al sites, while Cr has a weak Al site preference. Furthermore, Ta is shown to replace Cr at the Al sublattice sites of the gamma'-precipitates, altering the elemental phase partitioning behavior of the Ni-Al-Cr-Ta alloy.

  1. Design and development of NiTi-based precipitation-strengthened high-temperature shape memory alloys for actuator applications

    NASA Astrophysics Data System (ADS)

    Hsu, Derek Hsen Dai

    As a vital constituent in the field of smart materials and structures, shape memory alloys (SMAs) are becoming ever-more important due to their wide range of commercial and industrial applications such as aircraft couplings, orthodontic wires, and eyeglasses frames. However, two major obstacles preventing SMAs from fulfilling their potential as excellent actuator materials are: 1) the lack of commercially-viable SMAs that operate at elevated temperatures, and 2) the degradation of mechanical properties and shape memory behavior due to thermal cyclic fatigue. This research utilized a thermodynamically-driven systems design approach to optimize the desired properties by controlling the microstructure and processing of high-temperature SMAs (HTSMAs). To tackle the two aforementioned problems with HTSMAs, the introduction of Ni2TiAl coherent nanoprecipitates in a Ni-Ti-Zr/Hf HTSMA matrix is hypothesized to strengthen the martensite phase while simultaneously increasing the transformation temperature. Differential scanning calorimetry (DSC) was used to determine the transformation temperatures and thermal cyclic stability of each alloy. Also, microstructural characterization was performed using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Lastly, compression testing was used to assess the mechanical behavior of the alloys. From the investigation of the first set of Ni48.5Ti31.5-X Zr20AlX (X = 0, 1, 2, 3) prototype alloys, Al addition was found to decrease the transformation temperatures, decrease the thermal cyclic stability, but also increase the strength due to the nucleation and growth of embrittling NiTi2 and NiTiZr Laves phases. However, the anticipated Heusler phase precipitation did not occur. The next study focused on Ni50Ti30-XHf20Al X (X = 0, 1, 2, 3, 4, 5) prototype alloys which replaced Zr with Hf to avoid the formation of brittle Laves phases

  2. Thermal Stabilization and Mechanical Properties of Nanocrystalline Iron-Nickel-Zirconium Alloys

    NASA Astrophysics Data System (ADS)

    Kotan, Hasan

    Ultrafine grained and nanostructured materials are promising for structural applications because of the high strength compared to coarse grained counterparts. However, their widespread application is limited by an inherently high driving force for thermally induced grain growth, even at low temperatures. Accordingly, the understanding of and control over grain growth in nanoscale materials is of great technological and scientific importance as many physical properties (i.e. mechanical properties) are functions of the average grain size and the grain size distribution within the microstructure. Here, we investigate the microstructural evolution and grain growth in Fe-Ni alloys with Zr addition and differentiate the stabilization mechanisms acting on grain boundaries. Fe-Ni alloys are chosen for stability investigations since they are important for understanding the behavior of many steels and other ferrous alloys. Zirconium is proven to be an effective grain size stabilizer in pure Fe and Fe-base systems. In this study, nanocrystalline alloys were prepared by high energy ball milling. In situ and ex situ experiments were utilized to directly follow grain growth and microstructural evolution as a function of temperature and composition. The information obtained from these experiments enables the real time observation of microstructural evolution and phase transformation and provides a unique view of dynamic reactions as they occur. The knowledge of the thermal stability will exploit the potential high temperature applications and the consolidation conditions (i.e. temperature and pressure) to obtain high dense materials for advanced mechanical tests. Our investigations reveal that the grain growth of Fe-Ni alloys is not affected by Ni content but strongly inhibited by the addition of 1 at% Zr up to about 700 °C. The microstructural stability is lost due to the bcc-to-fcc transformation (occurring at 700°C) by the sudden appearance of abnormally grown fcc grains

  3. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33 Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approximately 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  4. Effect of Microstructure on Creep in Directionally Solidified NiAl-31Cr-3Mo

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Raj, S. V.; Locci, I. E.

    2001-01-01

    The 1200 to 1400 K slow strain rate characteristics of the directionally solidified (DS) eutectic Ni-33Al-31Cr-3 Mo have been determined as a function of growth rate. While differences in the light optical level microstructure were observed in alloys grown at rates ranging from 7.6 to 508 mm/h, compression testing indicated that all had essentially the same strength. The exception was Ni-33Al-31Cr-3Mo DS at 25.4 mm/h which was slightly stronger than the other growth velocities; no microstructural reason could be found for this improvement. Comparison of the approx. 1300 K properties revealed that four different DS NiAl-34(Cr,Mo) alloys have a similar creep resistance which suggests that there is a common, but yet unknown, strengthening mechanism.

  5. Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping

    DOE PAGES

    Zuo, Tingting; Gao, Michael C.; Ouyang, Lizhi; ...

    2017-03-07

    Magnetic materials with excellent performances are desired for functional applications. Based on the high-entropy effect, a system of CoFeMnNiX (X = Al, Cr, Ga, and Sn) magnetic alloys are designed and investigated. The dramatic change in phase structures from face-centered-cubic (FCC) to ordered body-centered-cubic (BCC) phases, caused by adding Al, Ga, and Sn in CoFeMnNiX alloys, originates from the potent short-range chemical order in the liquid state predicted by ab initio molecular dynamics (AIMD) simulations. This phase transition leads to the significant enhancement of the saturation magnetization (M s), e.g., the CoFeMnNiAl alloy has M s of 147.86 Am 2/kg.more » In conclusion, first-principles density functional theory (DFT) calculations on the electronic and magnetic structures reveal that the anti-ferromagnetism of Mn atoms in CoFeMnNi is suppressed especially in the CoFeMnNiAl HEA because Al changes the Fermi level and itinerant electron-spin coupling that lead to ferromagnetism.« less

  6. A study of the Al content impact on the properties of MmNi 4.4- xCo 0.6Al x alloys as precursors for negative electrodes in NiMH batteries

    NASA Astrophysics Data System (ADS)

    Bliznakov, S.; Lefterova, E.; Dimitrov, N.; Petrov, K.; Popov, A.

    AB 5-type hydrogen storage alloys with MmNi 4.4- xCo 0.6Al x (Mm-mischmetal) composition are synthesized, structurally and thermodynamically characterized, and electrochemically tested in 6 M KOH electrolyte. It is shown that an increase of the Al content in the alloy results in expansion of both the alloy lattice cell size and the unit cell volume. These structural changes lead to decrease of the plateau pressure and increase of the plateau width in the pressure-composition-temperature desorption isotherms. Improvement of the specific electrode capacity is also registered with the increase of the cell parameters. In addition to that the higher Al content is found to enhance the stability of the alloy components' hydrides. Maximum discharge capacity of 278 mAh g -1 is measured with an electrode made from a MmNi 3.6Co 0.6Al 0.8 alloy. Cycle life tests of the accordingly prepared electrodes suggest a stability that is comparable to the stability of commercially available hydrogen storage electrodes.

  7. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings I: Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    This two-part paper reports the thermophysical properties of several cold- and vacuum plasma-sprayed monolithic Cu- and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data, while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys and stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold spray or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities, and total hemispherical emissivities of these cold- and vacuum-sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al, and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  8. Effect of powder reactivity on fabrication and properties of NiAl/Al2O3 composite coated on cast iron using spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Beyhaghi, Maryam; Kiani-Rashid, Ali-Reza; Kashefi, Mehrdad; Khaki, Jalil Vahdati; Jonsson, Stefan

    2015-07-01

    Powder mixtures of Ni, NiO and Al are ball milled for 1 and 10 h. X-ray diffractometry and differential thermal analysis show that while ball milling for 1 h produced mechanically activated powder; 10 h ball milling produced NiAl and Al2O3 phases. Dense NiAl/Al2O3 composite coatings are formed on gray cast iron substrate by spark plasma sintering (SPS) technique. The effect of powder reactivity on microstructure, hardness and scratch hardness of NiAl/Al2O3 coatings after SPS is discussed. Results show that in the coating sample made of mechanically activated powder in situ synthesis of NiAl/Al2O3 composite coating is fulfilled and a thicker well-formed diffusion bond layer at the interface between coating and substrate is observed. The diffusion of elements across the bond layers and phase evolution in the bond layers were investigated. No pores or cracks were observed at the interface between coating layer and substrate in any of samples. Higher Vickers hardness and scratch hardness values in coating made of 10 h ball milled powder than in coating fabricated from 1 h ball milled powder are attributed to better dispersion of Al2O3 reinforcement particles in NiAl matrix and nano-crystalline structure of NiAl matrix. Scratched surface of coatings did not reveal any cracking or spallation at coating-substrate interface indicating their good adherence at test conditions.

  9. Hot corrosion of Co-Cr, Co-Cr-Al, and Ni-Cr alloys in the temperature range of 700-750 deg C

    NASA Technical Reports Server (NTRS)

    Chiang, K. T.; Meier, G. H.

    1980-01-01

    The effect of SO3 pressure in the gas phase on the Na2SO4 induced hot corrosion of Co-Cr, Ni-Cr, and Co-Cr-Al alloys was studied in the temperature range 700 to 750 C. The degradation of the Co-Cr and Ni-Cr alloys was found to be associated with the formation of liquid mixed sulfates (CoSO4-Na2SO4 or NiSO4-Na2SO4) which provided a selective dissolution of the Co or Ni and a subsequent sulfidation oxidation mode of attack which prevented the maintenance of a protective Cr2O3 film. A clear mechanism was not developed for the degradation of Co-Cr-Al alloys. A pitting corrosion morphology was induced by a number of different mechanisms.

  10. Effect of the Thermomechanical Treatment on Structural and Phase Transformations in Cu-14Al-3Ni Shape Memory Alloy Subjected to High-Pressure Torsion

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. V.; Pushin, V. G.; Kuranova, N. N.; Svirid, A. E.; Uksusnikov, A. N.; Ustyugov, Yu. M.; Gunderov, D. V.

    2018-04-01

    The possibilities of controlling the structure and properties of a Cu-Al-Ni shape memory alloy due to the use of different schemes of the thermomechanical treatment, including forging, homogenizing in the austenitic state and subsequent quenching, and high-pressure torsion have been found. For the first time, an ultrafine-grain structure has been produced in this alloy via severe plastic deformation using high-pressure torsion. It has been detected that high-pressure torsion using ten revolutions of the anvils leads to the formation of a nanocrystalline structure with a grain size of less than 100 nm. The subsequent short-term heating of the alloy to 800°C (10 s) in the temperature region of the existence of the homogeneous β phase made it possible to form an ultrafine-grain structure with predominant sizes of recrystallized grains of 1 and 8 μm. The quenching after heating prevented the decomposition of the solid solution. The refinement of the grain structure changed the deformation behavior of the alloy, having provided the possibility of the significant plastic deformation upon mechanical tensile tests. The coarse-grained hot-forged quenched alloy was brittle, and fracture occurred along the boundaries of former austenite grains and martensite packets. The highstrength ultrafine-grained alloy also experienced mainly the intercrystalline fracture along the high-angle boundaries of elements of the structure, the grain size of which was less by two orders than that in the initial alloy. This determined an increase in its relative elongation upon mechanical tests.

  11. Effect of Alloying Additions on Oxidation Behaviors of Ni-Fe Based Superalloy for Ultra-Supercritical Boiler Applications

    NASA Astrophysics Data System (ADS)

    Lu, Jintao; Yang, Zhen; Zhao, Xinbao; Yan, Jingbo; Gu, Y.

    A new kind of Ni-Fe-based superalloy is designed recently for 750 °C-class A-USC boiler tube. The oxidation behavior of the designed alloys with various combinations of anti-oxidation additions, Cr, Al and Si, was investigated at 750 °C and 850 °C, respectively. The results indicated that the oxidation rate of tested alloys decreased with the increase of the sum of additions. Cr addition may drop the relative constant of parabolic rate greatly when temperature is raised. But the oxide scale, mainly consisted of NiCr spinel at 750 °C and NiCrMn spinel at 850 °C, was similar while the Cr content is in a range of 20-25 wt.% at tested temperatures. Al addition, however, showed the best effective to reduce the oxidation rates. Internal Al-rich oxide was observed at the scale/metal interface for alloys added with high content of Al and was increased with Al content increase. Very tiny difference between the oxide scales of the Si-added alloys was identified when Si content varies among 0.02-0.05 wt.%. Basing on these results, this presentation discussed the optimum combination of anti-oxidation additions as well as oxidation mechanisms in the designed Ni-Fe-base superalloy.

  12. Hydrogenation thermodynamics of melt-spun magnesium rich Mg-Ni nanocrystalline alloys with the addition of multiwalled carbon nanotubes and TiF3

    NASA Astrophysics Data System (ADS)

    Hou, Xiaojiang; Hu, Rui; Zhang, Tiebang; Kou, Hongchao; Li, Jinshan

    2016-02-01

    Based on the complexity of hydrogen absorption/desorption process and from the perspective of overall control, the as-cast Mg-10wt%Ni (Mg10Ni) alloy has been successively optimized by melt-spinning and surface catalyzed to realize the internal refinement as well as surface modification. The isothermal hydrogenation behavior of modified Mg-rich alloys has been investigated in this work. The results indicate that melt-spun Mg10Ni catalyzed by multiwalled carbon nanotubes (MWCNTs) coupling with TiF3 possesses superior activation properties and can absorb 6.23 wt% at 250 °C under 2.5 MPa. It is worth mentioning that the hydrogenation capacities of Mg10Ni-MWCNTs-TiF3 are 5.93 wt% and 5.99 wt% within the initial 1 min and 5 min, respectively. Meanwhile, the catalytic effect of MWCNTs and TiF3 has been discussed. The improved activation performance as well as the thermodynamics properties of Mg10Ni catalyzed by MWCNTs and TiF3 is attributed to the synergistic effect on dissociation of H2 molecules, diffusion of H-atoms and heterogeneous nucleation of hydrides.

  13. Lattice misfits in four binary Ni-Base γ/γ1 alloys at ambient and elevated temperatures

    NASA Astrophysics Data System (ADS)

    Kamara, A. B.; Ardell, A. J.; Wagner, C. N. J.

    1996-10-01

    High-temperature X-ray diffractometry was used to determine the in situlattice parameters, a γ and a γ', and lattice misfits, δ = ( a γ', - a γ)/ a γ, of the matrix (γ) and dispersed γ'-type (Ni3X) phases in polycrystalline binary Ni-Al, Ni-Ga, Ni-Ge, and Ni-Si alloys as functions of temperature, up to about 680 °C. Concentrated alloys containing large volume fractions of the γ' phase (˜0.40 to 0.50) were aged at 700 °C to produce large, elastically unconstrained precipitates. The room-temperature misfits are 0.00474 (Ni-Al), 0.01005 (Ni-Ga), 0.00626 (Ni-Ge), and -0.00226 (Ni-Si), with an estimated error of ± 4 pct. The absolute values of the lattice constants of the γ and γ' phases, at compositions corresponding to thermodynamic equilibrium at about 700 °C, are in excellent agreement with data from the literature, with the exception of Ni3Ga, the lattice constant of which is much larger than expected. In Ni-Ge alloys, δ decreases to 0.00612 at 679 °C, and in Ni-Ga alloys, the decrease is to 0.0097. In Ni-Si and Ni-Al alloys, δ exhibits a stronger temperature dependence, changing to-0.00285 at 683 °C (Ni-Si) and to 0.00424 at 680 °C (Ni-Al). Since the times required to complete the high-temperature X-ray diffraction (XRD) scans were relatively short (2.5 hours at most), we believe that the changes in δ observed are attributable to differences between the thermal expansion coefficients of the γ and γ' phases, because the compositions of the phases in question reflect the equilibrium compositions at 700 δC. Empirical equations are presented that accurately describe the temperature dependences of a γ, a γ', and δ over the range of temperatures of this investigation.

  14. Microstructure and magnetic behavior studies of processing-controlled and composition-modified Fe-Ni and Mn-Al alloys

    NASA Astrophysics Data System (ADS)

    Geng, Yunlong

    L10-type (Space group P4/mmm) magnetic compounds, including FeNi and MnAl, possess promising technical magnetic properties of both high magnetization and large magnetocrystalline anisotropy energy, and thus offer potential in replacing rare earth permanent magnets in some applications. In equiatomic Fe-Ni, the disorder-order transformation from fcc structure to the L10 structure is a diffusional transformation, but is inhibited by the low ordering temperature. The transformation could be enhanced through the creation of vacancies. Thus, mechanical alloying was employed to generate more open-volume defects. A decrease in grain size and concomitant increase in grain boundary area resulted from the mechanical alloying, while an initial increase in internal strain (manifested through an increase in dislocation density) was followed by a subsequent decrease with further alloying. However, a decrease in the net defect concentration was determined by Doppler broadening positron annihilation spectroscopy, as open volume defects utilized dislocations and grain boundaries as sinks. An alloy, Fe32Ni52Zr3B13, formed an amorphous structure after rapid solidification, with a higher defect concentration than crystalline materials. Mechanical milling was utilized in an attempt to generate even more defects. However, it was observed that Fe32Ni52Zr3B13 underwent crystallization during the milling process, which appears to be related to enhanced vacancy-type defect concentrations allowing growth of pre-existing Fe(Ni) nuclei. The milling and enhanced vacancy concentration also de-stabilizes the glass, leading to decreased crystallization temperatures, and ultimately leading to complete crystallization. In Mn-Al, the L10 structure forms from the parent hcp phase. However, this phase is slightly hyperstoichiometric relative to Mn, and the excess Mn occupies Al sites and couples antiparallel to the other Mn atoms. In this study, the Zr substituted preferentially for the Mn atoms in the

  15. Fatigue design curve of a TiNi/Al shape memory alloy composite for aircraft stringer design

    NASA Astrophysics Data System (ADS)

    Park, Young-Chul; Jo, Young-Jik; Baek, Seok-Heum; Furuya, Yasubumi

    2009-05-01

    In this study, a TiNi/Al6061 shape memory alloy (SMA) composite was fabricated by the hot press method, and pressed by a roller for its strength improvement using the shape memory fiber shrinkage phenomenon. These two kinds of specimens were fabricated with 0% and 5% volume ratio and 0%, 10 % and 20% reduction ratio of TiNi alloy fiber, respectively. A fatigue test has been performed to evaluate the fatigue life for the fabricated TiNi/Al SMA composite as an S-N curve. The results from the Goodman diagram is able to illustrate the failure criterion and fatigue limit between tensile and bending fatigue strength in the fatigue characterization of TiNi/Al SMA composites.

  16. Grain growth in nanocrystalline iron and Fe-Al alloys

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Zomorodian, Amir

    2010-02-01

    The effects of the annealing temperature and time, cryomilling in liquid nitrogen, and the addition of aluminum powder on the thermal stability and grain growth behavior of nanocrystalline iron were modeled using the Artificial Neural Network (ANN) technique. The developed model can be used as a guide for the quantification of the grain growth by considering the effects of annealing temperature and time. The model also quantified the effect of Al on the thermal stability of cryomilled nanocrystalline Fe. The model results showed that the cryomilling of Fe has a tangible effect on the stabilization of the nanostructure.

  17. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  18. Bulk Properties of Ni3Al(gamma') With Cu and Au Additions

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Ferrante, John

    1995-01-01

    The BFS method for alloys is applied to the study of 200 alloys obtained from adding Cu and Au impurities to a Ni3Al matrix. We analyze the trends in the bulk properties of these alloys (heat of formation, lattice parameter, and bulk modulus) and detect specific alloy compositions for which these quantities have particular values. A detailed analysis of the atomic interactions that lead to the preferred ordering patterns is presented.

  19. Hydrogen Storage Performances of REMg11Ni (RE = Sm, Y) Alloys Prepared by Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Cui, Songsong; Yuan, Zeming; Gao, Jinliang; Dong, Xiaoping; Qi, Yan; Guo, Shihai

    2018-01-01

    This study adopted mechanical milling to prepare Mg-based REMg11Ni (RE = Sm, Y) hydrogen storage alloys. The alloy structures were examined by X-ray diffraction and transmission electron microscopy. The isothermal hydrogenation thermodynamics and kinetics were determined by an automatic Sievert apparatus. The non-isothermal dehydrogenation performance of the alloys was tested by differential scanning calorimetry and thermogravimetry at different heating rates. The results showed a nanocrystalline and amorphous tendency for the alloys. The YMg11Ni alloy exhibited a larger hydrogen absorption capacity, faster hydriding rate, and lower temperature of onset hydrogen desorption than the SmMg11Ni alloy. The hydrogen desorption temperatures of the REMg11Ni (RE = Sm, Y) alloys were 557.6 K and 549.8 K (284.6 °C and 276.8 °C), respectively. The hydrogen desorption property of the RE = Y alloy was found superior to the RE = Sm alloy based on the time required to absorb 3 wt pct H2, i.e., the time needed by the RE = Y alloy was reduced to 1106, 456, 363, and 180 s, respectively, corresponding to the hydrogen desorption temperatures of 593 K, 613 K, 633 K, and 653 K (320 °C, 340 °C, 360 °C, and 380 °C), compared to 1488, 574, 390, and 192 s for the RE = Sm alloy under identical conditions. The dehydrogenation activation energies were 100.31 and 98.01 kJ/mol for the REMg11Ni (RE = Sm, Y) alloys, respectively, which agreed with those of the RE = Y alloy showing a superior hydrogen desorption property.

  20. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  1. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 1; Electrical and Thermal Conductivity, Thermal Diffusivity, and Total Hemispherical Emissivity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    This two-part paper reports the thermophysical properties of several cold and vacuum plasma sprayed monolithic Cu and Ni-based alloy coatings. Part I presents the electrical and thermal conductivity, thermal diffusivity, and total hemispherical emissivity data while Part II reports the specific heat capacity data for these coatings. Metallic copper alloys, stoichiometric NiAl and NiCrAlY coatings were fabricated by either the cold sprayed or the vacuum plasma spray deposition processes for thermal property measurements between 77 and 1223 K. The temperature dependencies of the thermal conductivities, thermal diffusivities, electrical conductivities and total hemispherical emissivities of these cold and vacuum sprayed monolithic coatings are reported in this paper. The electrical and thermal conductivity data correlate reasonably well for Cu-8%Cr-1%Al, Cu-23%Cr-5%Al and NiAl in accordance with the Wiedemann-Franz (WF) law although a better fit is obtained using the Smith-Palmer relationship. The Lorentz numbers determined from the WF law are close to the theoretical value.

  2. Change of magnetic properties of nanocrystalline alloys under influence of external factors

    NASA Astrophysics Data System (ADS)

    Sitek, Jozef; Holková, Dominika; Dekan, Julius; Novák, Patrik

    2016-10-01

    Nanocrystalline (Fe3Ni1)81Nb7B12 alloys were irradiated using different types of radiation and subsequently studied by Mössbauer spectroscopy. External magnetic field of 0.5 T, electron-beam irradiation up to 4 MGy, neutron irradiation up to 1017 neutrons/cm2 and irradiation with Cu ions were applied on the samples. All types of external factors had an influence on the magnetic microstructure manifested as a change in the direction of the net magnetic moment, intensity of the internal magnetic field and volumetric fraction of the constituent phases. The direction of the net magnetic moment was the most sensitive parameter. Changes of the microscopic magnetic parameters were compared after different external influence and results of nanocrystalline samples were compared with their amorphous precursors.

  3. Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations

    NASA Astrophysics Data System (ADS)

    Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő

    2018-05-01

    The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.

  4. Nanotwins in Nanocrystalline Mg-Al Alloys: An Insight from High-Resolution TEM and Molecular Dynamics Simulation

    DTIC Science & Technology

    2013-09-25

    Mathaudhu, C.Y.A. Tsao and E.J. Lavernia, Mater. Sci. Eng. A528 (2011) p. 2180. [21] S . Plimpton , J. Comput. Phys. 117 (1995) p. 1. [22] X.-Y. Liu, J.B...grained Mg are identi ? ed and supported with atomistic The views, opinions and/or findings contained in this report are those of the author( s ) and should...MONITORING AGENCY NAME( S ) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 nanocrystalline Mg – Al alloys

  5. Influence of Al content on non-equilibrium solidification behavior of Ni-Al-Ta model single crystal alloys

    NASA Astrophysics Data System (ADS)

    Ai, Cheng; Zhou, Jian; Zhang, Heng; Zhao, Xinbao; Pei, Yanling; Li, Shusuo; Gong, Shengkai

    2016-01-01

    The non-equilibrium solidification behaviors of five Ni-Al-Ta ternary model single crystal alloys with different Al contents were investigated by experimental analysis and theoretical calculation (by JMatPro) in this study. These model alloys respectively represented the γ' phase with various volume fractions (100%, 75%, 50%, 25% and 0%) at 900 °C. It was found that with decreasing Al content, liquidus temperature of experimental alloys first decreased and then increased. Meanwhile, the solidification range showed a continued downward trend. In addition, with decreasing Al content, the primary phases of non-equilibrium solidified model alloys gradually transformed from γ' phase to γ phase, and the area fraction of which first decreased and then increased. Moreover, the interdendritic/intercellular precipitation of model alloys changed from β phase (for 100% γ') to (γ+γ')Eutectic (for 75% γ'), (γ+γ')Eutectic+γ' (for 50% γ' and 25% γ') and none interdendritic precipitation (for 0% γ'), and the last stage non-equilibrium solidification sequence of model alloys was determined by the nominal Al content and different microsegregation behaviors of Al element.

  6. The cyclic oxidation resistance at 1200 C of beta-NiAl, FeAl, and CoAl alloys with selected third element additions

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.; Titran, R. H.

    1992-01-01

    The intermetallic compounds Beta-NiAl, FeAl, and CoAl were tested in cyclic oxidation with selected third element alloy additions. Tests in static air for 200 1-hr cycles at 1200 C indicated by specific weight change/time data and x-ray diffraction analysis that the 5 at percent alloy additions did not significantly improve the oxidation resistance over the alumina forming baseline alloys without the additions. Many of the alloy additions were actually deleterious. Ta and Nb were the only alloy additions that actually altered the nature of the oxide(s) formed and still maintained the oxidation resistance of the protective alumina scale.

  7. Synthesis, characterization and magnetic properties of nanocrystalline FexNi80-xCo20 ternary alloys

    NASA Astrophysics Data System (ADS)

    Dalavi, Shankar B.; Theerthagiri, J.; Raja, M. Manivel; Panda, R. N.

    2013-10-01

    Fe-Ni-Co alloys of various compositions (FexNi80-xCo20,x=20-50) were synthesized by using a sodium borohydride reduction route. The phase purity and crystallite size was ascertained by using powder X-ray diffraction (XRD). The alloys crystallize in the face centered cubic (fcc) structure with lattice parameters, a=3.546-3.558 Å. The XRD line broadening indicates the fine particle nature of the materials. The estimated crystallite sizes were found to be 27.5, 27, 24, and 22.8 nm for x=20, 30, 40, and 50; alloys respectively. Scanning electron micrograph studies indicates particle sizes to be in the range of 83-60 nm for Fe-Ni-Co alloys. The values of saturation magnetization for FexNi80-xCo20 are found to be in the range of 54.3-41.2 emu/g and are significantly lower than the bulk values (175-180 emu/g). The coercivity decreases from 170 to 122 Oe with decrease in Fe content. The observed magnetic behavior has been explained on the basis of size, surface effects, spin canting and the presence of superparamagnetic fractions in the ultrafine materials.

  8. The 1200 K compressive properties of N-containing NiAl

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Noebe, R. D.; Wheeler, D. R.

    1995-01-01

    As part of a series of experiments to understand the role of N on the strength of NiAl, a heat of NiAl was enriched with N by melting and atomization to powder in a nitrogen atmosphere. Following consolidation of the powder by hot extrusion, 1200 K compressive properties were measured in air. Within the range of strain rates examined, 10(exp -3) to 10(exp -9) s(exp -1), the strength of the N-enriched NiAl was greater than that of a simple 15 micron grain size polycrystalline, binary NiAl alloy. For the most part the overall improvement in strength is ascribed to the fine grain size of the N-doped NiAl rather than the alloy chemistry; however, the alloy displayed a complex behavior exhibiting both weakening effects as well as strengthening ones.

  9. Manifestations of Dynamic Strain Aging in Soft-Oriented NiAl Single Crystals

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Kaufman, M. J.; Noebe, R. D.

    1996-01-01

    The tensile and compressive properties of six NiAl-base single-crystal alloys have been investigated at temperatures between 77 and 1200 K. The normalized critical resolved shear stresses (CRSS/E) and work-hardening rates (Theta/E) for these alloys generally decreased with increasing temperature. However, anomalous peaks or plateaus for these properties were observed in conventional purity (CPNiAl), Si-doped (NiAl-Si), C-doped low Si (UF-NiAl1), and Mo-doped (NiAl-Mo) alloys at intermediate temperatures (600 to 1000 K). This anomalous behavior was not observed in high-purity, low interstitial material (HP-NiAl). Low or negative strain-rate sensitivities (SRS) also were observed in all six alloys in this intermediate temperature range. Coincident with the occurrence of negative strain-rate sensitivities was the observation of serrated stress-strain curves in the CPNiAl and NiAl-Si alloys. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main specie responsible for strain aging in NiAl is C but indicate that residual Si impurities can enhance the strain aging effects. The corresponding dislocation microstructures at low temperatures (300 to 600 K) were composed of well-defined cells. At intermediate temperatures (600 to 900 K), either poorly defined cells or coarse bands of localized slip, reminiscent of the vein structures observed in low-cycle fatigue specimens deformed in the DSA regime, were observed in conventional purity, Si-doped, and in Mo-doped alloys. In contrast, a well-defined cell structure persisted in the low interstitial, high-purity alloy. At elevated temperatures (greater than or equal to 1000 K), more uniformly distributed dislocations and sub-boundaries were observed in all alloys. These observations are consistent with the occurrence of DSA in NiAl single-crystal alloys at intermediate temperatures.

  10. Mechanical properties of in situ consolidated nanocrystalline multi-phase Al-Pb-W alloy studied by nanoindentation

    NASA Astrophysics Data System (ADS)

    Varam, Sreedevi; Prasad, Muvva D.; Rao, K. Bhanu Sankara; Rajulapati, Koteswararao V.

    2016-12-01

    Formation of chunks of various sizes ranging between 2 and 6 mm was achieved using high-energy ball milling in Al-1at.%Pb-1at.%W alloy system at room temperature during milling itself, aiding in in situ consolidation. X-ray diffraction and transmission electron microscopy (TEM) studies indicate the formation of multi-phase structure with nanocrystalline structural features. From TEM data, an average grain size of 23 nm was obtained for Al matrix and the second-phase particles were around 5 nm. A high strain rate sensitivity (SRS) of 0.071 ± 0.004 and an activation volume of 4.71b3 were measured using nanoindentation. Modulus mapping studies were carried out using Berkovich tip in dynamic mechanical analysis mode coupled with in situ scanning probe microscopy imaging. The salient feature of this investigation is highlighting the role of different phases, their crystal structures and the resultant interfaces on the overall SRS and activation volume of a multi-phase nc material.

  11. 3-Dimensional Microstructure of Al-Al3Ti Alloy Severely Deformed by ECAP

    NASA Astrophysics Data System (ADS)

    Sato, Hisashi; Hishikawa, Takahisa; Makino, Yuuki; Kunimine, Takahiro; Watanabe, Yoshimi

    Microstructure of Al-Al3Ti alloy deformed by Equal-Channel-Angular Pressing (ECAP) is 3-dimensionally investigated. Especially, distribution of Al3Ti particles is focused in this study. The Al-Al3Ti alloy has coarse Al3Ti platelet particles in α-Al matrix. When the Al-Al3Ti alloy is deformed by ECAP under route A, fine Al3Ti platelet particles are observed. These Al3Ti platelet particles are aligned along to deformation axis, and its plane normal is perpendicular to the deformation axis. On the other hand, Al-Al3Ti alloy ECAPed under route Bc forms several groups consisted of fine Al3Ti platelet particles. Moreover, longitudinal size of the Al3Ti particle groups is close to that of initial Al3Ti particles with 4-pass ECAP specimen. These distribution behaviors of the Al3Ti particle can be explained by plastic flow of α-Al matrix. Finally, it is concluded that distribution of Al3Ti particle in Al-Al3Ti alloy by ECAP is controlled by plastic deformation of α-Al matrix.

  12. Grain Growth in Nanocrystalline Mg-Al Thin Films

    DOE PAGES

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; ...

    2017-10-05

    We report that an improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing ~10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull.more » The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. In conclusion, the low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.« less

  13. Grain Growth in Nanocrystalline Mg-Al Thin Films

    NASA Astrophysics Data System (ADS)

    Kruska, Karen; Rohatgi, Aashish; Vemuri, Rama S.; Kovarik, Libor; Moser, Trevor H.; Evans, James E.; Browning, Nigel D.

    2017-12-01

    An improved understanding of grain growth kinetics in nanocrystalline materials, and in metals and alloys in general, is of continuing interest to the scientific community. In this study, Mg-Al thin films containing 10 wt pct Al and with 14.5 nm average grain size were produced by magnetron sputtering and subjected to heat treatments. The grain growth evolution in the early stages of heat treatment at 423 K, 473 K, and 573 K (150 °C, 200 °C, and 300 °C) was observed with transmission electron microscopy and analyzed based upon the classical equation developed by Burke and Turnbull. The grain growth exponent was found to be 7 ± 2 and the activation energy for grain growth was 31.1 ± 13.4 kJ/mol, the latter being significantly lower than in bulk Mg-Al alloys. The observed grain growth kinetics are explained by the Al supersaturation in the matrix and the pinning effects of the rapidly forming beta precipitates and possibly shallow grain boundary grooves. The low activation energy is attributed to the rapid surface diffusion which is dominant in thin film systems.

  14. Free-energy based pair-additive potentials for bulk Ni-Al systems: Application to study Ni-Al reactive alloying

    NASA Astrophysics Data System (ADS)

    Izvekov, Sergei; Rice, Betsy M.

    2012-09-01

    We present new numerical pair-additive Al, Ni, and Al-Ni potentials by force-matching (FM) ionic force and virial data from single (bulk liquid) phase ab initio molecular dynamics (MD) simulations using the Born-Oppenheimer method. The potentials are represented by piece-wise functions (splines) and, therefore, are not constrained to a particular choice of analytical functional form. The FM method with virial constraint naturally yields a potential which maps out the ionic free-energy surface of the reference ensemble. To further improve the free energetics of the FM ensemble, the FM procedure is modified to bias the potentials to reproduce the experimental melting temperatures of the reference (FCC-Al, FCC-Ni, B2-NiAl) phases, the only macroscopic data included in the fitting set. The performance of the resultant potentials in simulating bulk metallic phases is then evaluated. The new model is applied to perform MD simulations of self-propagating exothermic reaction in Ni-Al bilayers at P = 0-5 GPa initiated at T = 1300 K. Consistent with experimental observations, the new model describes realistically a sequence of peritectic phase transformations throughout the reaction and at a realistic rate. The reaction proceeds through interlayer diffusion of Al and Ni atoms at the interface with formation of B2-NiAl in the Al melt. Such material responses have, in the past, been proven to be difficult to observe with then-existing potentials.

  15. [Effect of heat treatment on the structure of a Cu-Zn-Al-Ni system dental alloy].

    PubMed

    Guastaldi, A C; Adorno, A T; Beatrice, C R; Mondelli, J; Ishikiriama, A; Lacefield, W

    1990-01-01

    This article characterizes the structural phases present in the copper-based metallic alloy system "Cu-Zn-Al-Ni" developed for dental use, and relates those phases to other properties. The characterization was obtained after casting (using the lost wax process), and after heat treatment. In order to obtain better corrosion resistance by changing the microstructure, the castings were submitted to 30, 45 and 60 minutes of heat treatment at the following temperatures: 750 degrees C, 800 degrees C, and 850 degrees C. The various phases were analyzed using X-ray diffraction and scanning electron microscopy (SEM). The results after heat treatment showed a phase (probably Cu3Al), that could be responsible for the improvement in the alloy's resistance to corrosion as compared to the as-cast structure.

  16. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.

    PubMed

    Nicula, R; Lüthen, F; Stir, M; Nebe, B; Burkel, E

    2007-11-01

    The reason for the extended use of titanium and its alloys as implant biomaterials stems from their lower elastic modulus, their superior biocompatibility and improved corrosion resistance compared to the more conventional stainless steel and cobalt-based alloys [Niinomi, M., Hattori, T., Niwa, S., 2004. Material characteristics and biocompatibility of low rigidity titanium alloys for biomedical applications. In: Jaszemski, M.J., Trantolo, D.J., Lewandrowski, K.U., Hasirci, V., Altobelli, D.E., Wise, D.L. (Eds.), Biomaterials in Orthopedics. Marcel Dekker Inc., New York, pp. 41-62]. Nanostructured titanium-based biomaterials with tailored porosity are important for cell-adhesion, viability, differentiation and growth. Newer technologies like foaming or low-density core processing were recently used for the surface modification of titanium alloy implant bodies to stimulate bone in-growth and improve osseointegration and cell-adhesion, which in turn play a key role in the acceptance of the implants. We here report preliminary results concerning the synthesis of mesoporous titanium alloy bodies by spark plasma sintering. Nanocrystalline cp Ti, Ti-6Al-4V, Ti-Al-V-Cr and Ti-Mn-V-Cr-Al alloy powders were prepared by high-energy wet-milling and sintered to either full-density (cp Ti, Ti-Al-V) or uniform porous (Ti-Al-V-Cr, Ti-Mn-V-Cr-Al) bulk specimens by field-assisted spark plasma sintering (FAST/SPS). Cellular interactions with the porous titanium alloy surfaces were tested with osteoblast-like human MG-63 cells. Cell morphology was investigated by scanning electron microscopy (SEM). The SEM analysis results were correlated with the alloy chemistry and the topographic features of the surface, namely porosity and roughness.

  17. Influence of temperature on AC conductivity of nanocrystalline CuAlO2

    NASA Astrophysics Data System (ADS)

    Prakash, T.

    2012-07-01

    Nanocrystalline CuAlO2 was synthesized by mechanical alloying of Cu2O and α-Al2O3 powders in the molar ratio of 1:1 for 20 h in toluene medium with tungsten carbide balls and vials using planetary ball mill. The ball milling was carried out at 300 rpm with a ball to powder weight ratio of 10:1 and then annealed at 1373 K in a platinum crucible for 20 h to get CuAlO2 phase with average crystallite size 45 nm. Complex impedance spectroscopic measurement in the frequency region 1 Hz to 10 MHz between the temperatures 333 to 473 K was carried out for nanocrystalline CuAlO2 sample. The obtained complex impedance data was analyzed for AC conductivities, DC and AC conductivities correlations and crossover frequencies ( f co ). The BNN (Barton, Nakajima and Namikawa) relation was applied to understand the correlation between DC and AC conductivities. The observed experimental results were discussed in the paper.

  18. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  19. Preparation and characterization of Ni-P/Ni3.1B composite alloy coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yurong; He, Jiawei; Wang, Wenchang; Shi, Jianhua; Mitsuzaki, Naotoshi; Chen, Zhidong

    2014-02-01

    The preparation of Ni-P/Ni3.1B composite alloy coating on the surface of copper was achieved by co-deposition of Ni3.1B nanoparticles with Ni-P coating during electroless plating. Ni-P-B alloy coating was obtained by heat-treating the as-plated Ni-P/Ni3.1B composite coating. The effect of the concentration of sodium alginate, borax, thiourea, Ni3.1B, temperature, and pH value on the deposition rate and B content were investigated and determined to be: 30 g L-1, 10 g L-1, 2 mg L-1, 20 mg L-1, 70 °C and 9.0 , respectively. Sodium alginate and thiourea were played as surfactant for coating Ni3.1B nanoparticles and stabilizer for the plating bath, respectively. Ni-P/Ni3.1B composite coating had good performance such as corrosion resistance and solderability.

  20. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  1. Fatigue crack propagation behaviour of unidirectionally solidified gamma/gamma-prime-delta eutectic alloys. [Ni-Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Bretz, P. E.; Hertzberg, R. W.

    1979-01-01

    Fatigue crack propagation studies were carried out on unidirectionally solidified gamma/gamma-prime-delta (Ni-Nb-Al) alloys over an aluminum content range of 1.5-2.5% by weight. The variation of Al content of as-grown alloys did not significantly affect the crack growth behavior of these eutectic composites. The results indicate that the addition of Al to the eutectic dramatically improved the FCP behavior. The gamma/gamma-prime-delta alloy exhibited crack growth rates for a given stress intensity range that are an order of magnitude lower than those for the gamma-delta alloy. It is suggested that this difference in FCP behavior can be explained on the basis of stacking fault energy considerations. Extensive delaminations at the crack tip were also revealed, which contributed to the superior fatigue response. Delamination was predominantly intergranular in nature.

  2. Structure and magnetic properties of amorphous and nanocrystalline Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloys

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.

    2004-07-01

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.

  3. Phonon Dispersion in Amorphous Ni-Alloys

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2007-06-01

    The well-known model potential is used to investigate the longitudinal and transverse phonon dispersion curves for six Ni-based binary amorphous alloys, viz. Ni31Dy69, Ni33Y67, Ni36Zr64, Ni50Zr50, Ni60 Nb40, and Ni81B19. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves. The theoretical approach given by Hubbard-Beeby is used in the present study to compute the phonon dispersion curves. Five local field correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al. and Sarkar et al. are employed to see the effect of exchange and correlation in the aforesaid properties.

  4. The Influence of Alloying and Processing on the Microstructure and Properties of Beta-NiAl.

    DTIC Science & Technology

    1998-09-30

    transformation , such as the Heusler alloys .’J. 9 ] It is the purpose of this article to report crystal structure of the parent and martensite phases and...additions, thermal and constitutional vacancies, deviations from stoichiometry, processing defects/inhomogeneities and precipitate phases on both the low ...Mn-Al Heusler alloys aged at phase , in the Ni-Al-Mn alloys quenched from high tern- low temperatures. peratures over 1000 °C.t41 In these specimens

  5. Self-discharge characteristic and mechanism of single-phase PuNi3-, Gd2Co7-, and Pr5Co19-type Nd-Mg-Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Jia, Zeru; Zhang, Lu; Zhao, Yumeng; Cao, Juan; Li, Yuan; Dong, Zhentao; Wang, Wenfeng; Han, Shumin

    2017-12-01

    To decrease the self-discharge rate of the nickel metal hydride batteries, the self-discharge characteristic and mechanism of single-phase PuNi3-, Gd2Co7-, and Pr5Co19-type Nd-Mg-Ni-based alloys are studied from the perspective of structure in this work. It is found that the self-discharge rate of the alloy electrodes gradually increases with a rising [NdNi5]/[NdMgNi4] subunit ratio. The factors resulting in reversible and irreversible self-discharge are analyzed by electrochemical pressure-composition isotherms, Tafel and SEM measurements. Electrochemical P-C isotherms show that with the increasing [NdNi5]/[NdMgNi4] subunit ratio, the hydrogen desorption plateau pressure sharply elevates, leading to less stability of the corresponding hydride and more reversible self-discharge of the alloys; whereas, corrosion current density of the three alloy electrodes gradually decreases and SEM shows that the amount of hydroxide accumulating on the alloy surface diminishes, indicating the oxidation/corrosion degree alleviates and less irreversible self-discharge with the higher [NdNi5]/[NdMgNi4] ratio. By calculating the proportion of reversible and irreversible self-discharge in total capacity loss, we find that the reversible self-discharge is nearly more than 90% for the three single-phase alloys, while irreversible self-discharge is less than 10%, which illustrates that reversible self-discharge is the dominate factor in self-discharge of Nd-Mg-Ni-based alloys in this study.

  6. Microstructure and Phase Stability of Single Crystal NiAl Alloyed with Hf and Zr

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Dickerson, R. M.; Garg, A.; Noebe, R. D.; Whittenberger, J. D.; Nathal, M. V.; Darolia, R.

    1996-01-01

    Six near stoichiometric, NiAl single-crystal alloys, with 0.05-1.5 at.% of Hf and Zr additions plus Si impurities, were microstructurally analyzed in the as-cast, homogenized, and aged conditions. Hafnium-rich interdendritic regions, containing the Heusler phase (Ni2AlHf), were found in all the as-cast alloys containing Hf. Homogenization heat treatments partially reduced these interdendritic segregated regions. Transmission electron microscopy (TEM) observations of the as-cast and homogenized microstructures revealed the presence of a high density of fine Hf (or Zr) and Si-rich precipitates. These were identified as G-phase, Nil6X6Si7, or as an orthorhombic NiXSi phase, where X is Hf or Zr. Under these conditions the expected Heusler phase (beta') was almost completely absent. The Si responsible for the formation of the G and NiHfSi phases is the result of molten metal reacting with the Si-containing crucible used during the casting process. Varying the cooling rates after homogenization resulted in the refinement or complete suppression of the G and NiHfSi phases. In some of the alloys studied, long-term aging heat treatments resulted in the formation of Heusler precipitates, which were more stable at the aging temperature and coarsened at the expense of the G-phase. In other alloys, long-term aging resulted in the formation of the NiXSi phase. The stability of the Heusler or NiXSi phases can be traced to the reactive element (Hf or Zr) to silicon ratio. If the ratio is high, then the Heusler phase appears stable after long time aging. If the ratio is low, then the NiHfSi phase appears to be the stable phase.

  7. The Corrosion Behavior of Ni3(Si,Nb) Alloys in Boiling 70 wt.% Sulfuric Acid

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Hsien; Larson, Christopher M.; Newkirk, Joseph W.; Brow, Richard K.; Zhang, San-Hong

    2016-02-01

    Corrosion-resistant Ni3(Si,Nb) alloys are promising materials of construction for hydrogen-production systems based on the sulfur-iodine thermochemical cycle. In this work, the corrosion rates of three different Ni3(Si,Nb) alloys were measured in boiling 70 wt.% sulfuric acid and a three-stage corrosion mechanism was identified, based on the composition and morphology of surface scale that developed. The α(Ni) + β(Ni3Si) eutectic constituent of the alloy microstructure was selectively attacked by acid and, when present, is detrimental to corrosion resistance. The G-phase (Ni16Si17Nb6) is more passive than the β-matrix and seems to contribute to a lower steady-state corrosion rate.

  8. Optimization of an oxide dispersion strengthened Ni-Cr-Al alloy for gas turbine engine vanes

    NASA Technical Reports Server (NTRS)

    Klarstrom, D. L.; Grierson, R.

    1975-01-01

    The investigation was carried out to determine the optimum alloy within the Ni-16Cr-Al-Y2O3 system for use as a vane material in advanced aircraft gas turbine engines. Six alloys containing nominally 4%, 5% and 6% Al with Y2O3 levels of 0.8% and 1.2% were prepared by mechanical attrition. Six small-scale, rectangular extrusions were produced from each powder lot for property evaluation. The approximate temperatures for incipient melting were found to be 1658 K (2525 F), 1644 K (2500 F) and 1630 K (2475 F) for the 4%, 5% and 6% aluminum levels, respectively. With the exception of longitudinal crystallographic texture, the eight extrusions selected for extensive evaluation either exceeded or were close to mechanical property goals. Major differences between the alloys became apparent during dynamic oxidation testing, and in particular during the 1366 K (2000 F)/500 hour Mach 1 tests carried out by NASA-Lewis. An aluminum level of 4.75% was subsequently judged to be optimum based on considerations of dynamic oxidation resistance, susceptibility to thermal fatigue cracking and melting point.

  9. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  10. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment

    NASA Astrophysics Data System (ADS)

    Rajabalizadeh, Z.; Seifzadeh, D.

    2017-11-01

    The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.

  11. Understanding effect of 3.5 wt.% NaCl on the corrosion of Al0.1CoCrFeNi high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Kumar, N.; Fusco, M.; Komarasamy, M.; Mishra, R. S.; Bourham, M.; Murty, K. L.

    2017-11-01

    High entropy alloys are a new class of metallic materials with potential for use in a wide variety of applications including their use in corrosive environment. The present study focused on the corrosion behavior of a single-phase, face-centered cubic high entropy alloy (HEA) Al0.1CoCrFeNi in as-cast condition, and the results are compared with the corrosion behavior of the SS304. The microstructural characterization of the alloys in as-received condition was carried out using optical microscopy, electron backscattered diffraction, energy dispersive spectroscopy, and X-ray diffraction. Corrosion behavior was studied using potentiodynamic polarization test in a 3.5 wt% NaCl solution and electrochemical impedance spectroscopy at room temperature. It was observed that the general corrosion resistance of the HEA was better than that of SS304. Pitting potential of the HEA was found to be superior to that of the SS304. Corrosion pits size was slightly smaller in SS304 than that in the HEA. 3D imaging determined that the pit depths were of the same order in both cases. Overall, the HEA Al0.1CoCrFeNi demonstrated a better resistance to general and pitting corrosion.

  12. Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Na, Suok-Min; Yoo, Jin-Hyeong; Lambert, Paul K.; Jones, Nicholas J.

    2018-05-01

    High-entropy alloys (HEAs) containing multiple principle alloying elements exhibit unique properties so they are currently receiving great attention for developing innovative alloy designs. In FeCoNi-based HEAs, magnetic behaviors strongly depend on the addition of alloying elements, usually accompanied by structural changes. In this work, the effect of non-magnetic components on the ferromagnetic transition and magnetic behaviors in equiatomic FeCoNiCrX (X=Al, Ga, Mn and Sn) HEAs was investigated. Alloy ingots of nominal compositions of HEAs were prepared by arc melting and the button ingots were cut into discs for magnetic measurements as functions of magnetic field and temperature. The HEAs of FeCoNiCrMn and FeCoNiCrSn show typical paramagnetic behaviors, composed of solid solution FCC matrix, while the additions of Ga and Al in FeCoNiCr exhibit ferromagnetic behaviors, along with the coexistence of FCC and BCC phases due to spinodal decomposition. The partial phase transition in both HEAs with the additions of Ga and Al would enhance ferromagnetic properties due to the addition of the BCC phase. The saturation magnetization for the base alloy FeCoNiCr is 0.5 emu/g at the applied field of 20 kOe (TC = 104 K). For the HEAs of FeCoNiCrGa and FeCoNiCrAl, the saturation magnetization significantly increased to 38 emu/g (TC = 703 K) and 25 emu/g (TC = 277 K), respectively. To evaluate the possibility of solid solution FCC and BCC phases in FeCoNiCr-type HEAs, we introduced a parameter of valence electron concentration (VEC). The proposed rule for solid solution formation by the VEC was matched with FeCoNiCr-type HEAs.

  13. Synthesis, structure stability and magnetic properties of nanocrystalline Ag-Ni alloy

    NASA Astrophysics Data System (ADS)

    Santhi, Kalavathy; Thirumal, E.; Karthick, S. N.; Kim, Hee-Je; Nidhin, Marimuthu; Narayanan, V.; Stephen, A.

    2012-05-01

    Silver-nickel alloy nanoparticles with an average size of 30-40 nm were synthesized by chemically reducing the mixture of silver and nickel salts using sodium borohydride. The structure and the magnetic properties of the alloy samples with different compositions were investigated. The phase stability of the material was analysed after annealing the sample in vacuum at various temperatures. The material exhibits single fcc phase which is stable up to 400 °C and Ni precipitation sets in when the sample is annealed to 500 °C. The thermal analysis using DSC was carried out to confirm the same. The alloy compositions are found to be in close correlation with the metal salt ratios in the precursors. The synthesized samples exhibit weak paramagnetic to ferromagnetic behaviour. The magnetic measurements reveal that by adjusting the precursor ratio, the Ni content in the material can be altered and hence its magnetic properties tailored to suit specific requirements. The formation of Ag-Ni alloy is confirmed by the observed Curie temperature from the magneto thermogram. Annealing the sample helps to produce significant enhancement in the magnetization of the material.

  14. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  15. Interfacial layers in high-temperature-oxidized NiCrAl

    NASA Technical Reports Server (NTRS)

    Larson, L. A.; Browning, R.; Poppa, H.; Smialek, J.

    1983-01-01

    The utility of Auger electron spectroscopy combined with ball cratering for depth analysis of oxide and diffusion layers produced in a Ni-14Cr-24Al alloy by oxidation in air at 1180 C for 25 hr is demonstrated. During postoxidation cooling, the oxide layers formed by this alloy spalled profusely. The remaining very thin oxide was primarily Cr2O3 with a trace of Ni. The underlying metal substrate exhibited gamma/gamma-prime and beta phases with a metallic interfacial layer which was similar to the bulk gamma/gamma-prime phase but slightly enriched in Cr and Al. These data are compared to electron microprobe results from a nominally identical alloy. The diffusion layer thickness is modelled with a simple mass balance equation and compared to recent results on the diffusion process in NiCrAl alloys.

  16. Evaluation of Ni-Cr-base alloys for SOFC interconnect applications

    NASA Astrophysics Data System (ADS)

    Yang, Zhenguo; Xia, Guan-Guang; Stevenson, Jeffry W.

    To further understand the suitability of Ni-Cr-base alloys for solid oxide fuel cell (SOFC) interconnect applications, three commercial Ni-Cr-base alloys, Haynes 230, Hastelloy S and Haynes 242 were selected and evaluated for oxidation behavior under different exposure conditions, scale conductivity and thermal expansion. Haynes 230 and Hastelloy S, which have a relatively high Cr content, formed a thin scale mainly comprised of Cr 2O 3 and (Mn,Cr,Ni) 3O 4 spinels under SOFC operating conditions, demonstrating excellent oxidation resistance and a high scale electrical conductivity. In contrast, a thick double-layer scale with a NiO outer layer above a chromia-rich substrate was grown on Haynes 242 in moist air or at the air side of dual exposure samples, indicating limited oxidation resistance for the interconnect application. With a face-centered-cubic (FCC) substrate, all three alloys possess a coefficient of thermal expansion (CTE) that is higher than that of candidate ferritic stainless steels, e.g. Crofer22 APU. Among the three alloys, Haynes 242, which is heavily alloyed with W and Mo and contains a low Cr content, demonstrated the lowest average CTE at 13.1 × 10 -6 K -1 from room temperature to 800 °C, but it was also observed that the CTE behavior of Haynes 242 was very non-linear.

  17. Oxidation behavior of NiCoCrAlY coatings deposited by double-Glow plasma alloying

    NASA Astrophysics Data System (ADS)

    Cui, Shiyu; Miao, Qiang; Liang, Wenping; Li, Baiqiang

    2018-01-01

    The NiCoCrAlY coatings were deposited on the Inconel 718 alloy substrates by a novel method called double-glow plasma alloying (DG). The phases and microstructure of the coatings were investigated by X-ray diffraction analysis while their chemical composition was analyzed using scanning electron microscopy. The morphology of the NiCoCrAlY coatings was typical of coatings formed by DG, with their structure consisting of uniform submicron-sized grains. Further, the coatings showed high adhesion strength (critical load >46 N). In addition, the oxidation characteristics of the coatings and the substrate were examined at three different temperatures (850, 950, and 1050 °C) using a muffle furnace. The coatings showed a lower oxidation rate, which was approximately one-tenth of that of the substrate. Even after oxidation for 100 h, the Al2O3 phase was the primary phase in the surface coating (850 °C), with the thickness of the oxide film increasing to 0.65 μm at 950 °C. When the temperature was increased beyond 1050 °C, the elemental Al and Ni were consumed in the formation of the oxide scale, which underwent spallation at several locations. The oxidation products of Cr, which were produced in large amounts and had a prism-like structure, controlled the subsequent oxidation behavior at the surface.

  18. On the crystallization kinetics of Zr-(Co,Ni)-Al bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Qin, X. M.; Zhang, Q. F.; Duan, X. Y.; Wang, X. C.; Jiang, Y. H.; Zhou, R.; Tan, J.

    2017-07-01

    Zr-based amorphous alloys are promising materials applied in engineering field, due to their strong glass-forming ability, outstanding mechanical properties and relatively low cost. In this work, the crystallization kinetics of Zr56Co18-xNixAl16 (x = 0, 2, 4 and 8; marked as Ni0, Ni2, Ni4 and Ni8, respectively) alloys are investigated in detail. The results show that, due to the addition of Ni, the glass transition of the alloys presents obvious dynamic characteristics, i.e., with the increasing heating rate, all characteristic temperatures are shifted to higher temperature. By fitting the Kissinger equation, the glass transition activation energy of Ni8 is the highest, indicating that Ni8 is much more difficult to crystallize. Therefore, the Ni8 alloy has the strongest anti-crystallization ability in the Zr56Co18-xNixAl16 alloys investigated.

  19. Microstructural Characterization of a Directionally-Solidified Ni-33 (at. %)Al-31Cr-3Mo Eutectic Alloy as a Function of Withdrawal Rate

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Locci, I. E.; Whittenberger, J. D.; Salem, J. A.

    2000-01-01

    The Ni-33 (at. %)Al-3lCr-3Mo eutectic alloy was directionally-solidified (DS) at different rates, V(sub I), varying between 2.5 to 508 mm/ h. Detailed qualitative and quantitative metallographic and chemical analyses were conducted on the directionally-solidified rods. The microstructures consisted of eutectic colonies with parallel lamellar NiAl/(Cr,Mo) plates for solidification rates at and below 12.7 mm/ h. Cellular eutectic microstructures were observed at higher solidification rates, where the plates exhibited a radial pattern. The microstructures were demonstrated to be fairly uniform throughout a 100 mm length of the DS zone by quantitative metallography. The average cell size, bar-d, decreased with increasing growth rate to a value of 125 microns at 508 mm/ h according to the relation bar-d (microns) approx. = 465 V(sup -0.22, sub I), where V(sub I) is in mm/ h. Both the average NiAl plate thickness, bar-Delta(sub NiAl), and the interlamellar spacing, bar-lambda, were observed to be constant for V(sub I) less than or = 50.8 mm/ h but decreased with increasing growth rate above this value as 0.93 bar-Delta(sub NiAl)(microns) = 61.2 V(sup -0.93, sub I) and bar-lambda (microns) = 47.7 V(sup -0.64, sub I), respectively. The present results are detailed on a microstructural map. Keywords Optical microscopy, microstructure, compounds intermetallic, directional solidification

  20. Atomistic modeling for interfacial properties of Ni-Al-V ternary system

    NASA Astrophysics Data System (ADS)

    Dong, Wei-ping; Lee, Byeong-Joo; Chen, Zheng

    2014-05-01

    Interatomic potentials for Ni-Al-V ternary systems have been developed based on the second-nearest-neighbor modified embedded-atom method potential formalism. The potentials can describe various fundamental physical properties of the relevant materials in good agreement with experimental information. The potential is utilized for an atomistic computation of interfacial properties of Ni-Al-V alloys. It is found that vanadium atoms segregate on the γ-fcc/L12 interface and this segregation affects the interfacial properties. The applicability of the atomistic approach to an elaborate alloy design of advanced Ni-based superalloys through the investigation of the effect of alloying elements on interfacial properties is discussed.

  1. Surface Properties of the IN SITU Formed Ceramics Reinforced Composite Coatings on TI-3AL-2V Alloys

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Guo, Wei; Hu, Dakui; Luo, Hui; Zhang, Yuanbin

    2012-04-01

    The synthesis of hard composite coating on titanium alloy by laser cladding of Al/Fe/Ni+C/Si3N4 pre-placed powders has been investigated in detail. SEM result indicated that a composite coating with metallurgical joint to the substrate was formed. XRD result indicated that the composite coating mainly consisted of γ-(Fe, Ni), FeAl, Ti3Al, TiC, TiNi, TiC0.3N0.7, Ti2N, SiC, Ti5Si3 and TiNi. Compared with Ti-3Al-2V substrate, an improvement of the micro-hardness and the wear resistance was observed for this composite coating.

  2. Influence of Cr and W alloying on the fiber-matrix interfacial shear strength in cast and directionally solidified sapphire NiAl composites

    NASA Technical Reports Server (NTRS)

    Asthana, R.; Tiwari, R.; Tewari, S. N.

    1995-01-01

    Sapphire-reinforced NiAl matrix composites with chromium or tungsten as alloying additions were synthesized using casting and zone directional solidification (DS) techniques and characterized by a fiber pushout test as well as by microhardness measurements. The sapphire-NiAl(Cr) specimens exhibited an interlayer of Cr rich eutectic at the fiber-matrix interface and a higher interfacial shear strength compared to unalloyed sapphire-NiAl specimens processed under identical conditions. In contrast, the sapphire-NiAl(W) specimens did not show interfacial excess of tungsten rich phases, although the interfacial shear strength was high and comparable to that of sapphire-NiAl(Cr). The postdebond sliding stress was higher in sapphire-NiAl(Cr) than in sapphire-NiAl(W) due to interface enrichment with chromium particles. The matrix microhardness progressively decreased with increasing distance from the interface in both DS NiAl and NiAl(Cr) specimens. The study highlights the potential of casting and DS techniques to improve the toughness and strength of NiAl by designing dual-phase microstructures in NiAl alloys reinforced with sapphire fibers.

  3. Effect of Minor Alloying Elements on Localized Corrosion Behavior of Aluminum-Copper-Magnesium based Solid Solution Alloys

    NASA Astrophysics Data System (ADS)

    Aburada, Tomohiro

    2011-12-01

    The effects and mechanistic roles of a minor alloying element, Ni, on the localized corrosion behavior were explored by studying (Al75Cu 17Mg8)97Ni3 and Al70Cu 18Mg12 amorphous alloys. To explore the minor alloying element limited to the outer surface layers, the corrosion behavior of Al70Cu 18Mg12 amorphous alloy in solutions with and without Ni 2+ was also studied. Both Ni alloying and Ni2+ in solution improved the localized corrosion resistance of the alloys by ennobling the pitting and repassivation potentials. Pit growth by the selective dissolution of Al and Mg was also suppressed by Ni alloying. Remaining Cu and Ni reorganized into a Cu-rich polycrystalline nanoporous structure with continuous ligaments in pits. The minor Ni alloying and Ni2+ in solution suppressed the coarsening of the ligaments in the dealloyed nanoporous structure. The presence of relatively immobile Ni atoms at the surface suppressed the surface diffusion of Cu, which reduced the coarsening of the nanoporous structure, resulting in the formation of 10 to 30 nm wide Cu ligaments. Two mechanistic roles of minor alloying elements in the improvement of the pitting corrosion resistance of the solid solution alloys are elucidated. The first role is the suppression of active dissolution by altering the atomic structure. Ni in solid solution formed stronger bonds with Al, and reduces the probability of weaker Al-Al bonds. The second role is to hinder dissolution by producing a greater negative shift of the true interfacial potential at the dissolution front under the dealloyed layer due to the greater Ohmic resistance through the finer porous structure. These effects contributed to the elevation of pitting potentials by ennobling the applied potential required to produce enough dissolution for the stabilization of pits. Scientifically, this thesis advances the state of understanding of alloy dissolution, particularly the role of minor alloying elements on preferential oxidation at the atomic

  4. Hyperfine Fields in Nanocrystalline Fe0.48Al0.52

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Satuła, D.; Dobrzyński, L.; Voronina, E.; Yelsukov, E. P.

    2004-12-01

    Mössbauer measurements with circularly polarized radiation were performed on a nanocrystalline, disordered Fe48Al52 alloy. The analysis of the data for various polarization states resulted in the characterization of the hyperfine magnetic field distribution and the dependence of the average z-component of hyperfine field on the chemical environment. An increasing number of Al in the first coordination shell causes not only a decrease of magnetic moments but also introduces noncollinearity.

  5. Anti-site disorder and improved functionality of Mn₂NiX (X = Al, Ga, In, Sn) inverse Heusler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Souvik; Kundu, Ashis; Ghosh, Subhradip, E-mail: subhra@iitg.ernet.in

    2014-10-07

    Recent first-principles calculations have predicted Mn₂NiX (X = Al, Ga, In, Sn) alloys to be magnetic shape memory alloys. Moreover, experiments on Mn₂NiGa and Mn₂NiSn suggest that the alloys deviate from the perfect inverse Heusler arrangement and that there is chemical disorder at the sublattices with tetrahedral symmetry. In this work, we investigate the effects of such chemical disorder on phase stabilities and magnetic properties using first-principles electronic structure methods. We find that except Mn₂NiAl, all other alloys show signatures of martensitic transformations in presence of anti-site disorder at the sublattices with tetrahedral symmetry. This improves the possibilities of realizingmore » martensitic transformations at relatively low fields and the possibilities of obtaining significantly large inverse magneto-caloric effects, in comparison to perfect inverse Heusler arrangement of atoms. We analyze the origin of such improvements in functional properties by investigating electronic structures and magnetic exchange interactions.« less

  6. High-Temperature Oxidation-Resistant and Low Coefficient of Thermal Expansion NiAl-Base Bond Coat Developed for a Turbine Blade Application

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Many critical gas turbine engine components are currently made from Ni-base superalloys that are coated with a thermal barrier coating (TBC). The TBC consists of a ZrO2-based top coat and a bond coat that is used to enhance the bonding between the superalloy substrate and the top coat. MCrAlY alloys (CoCrAlY and NiCrAlY) are currently used as bond coats and are chosen for their very good oxidation resistance. TBC life is frequently limited by the oxidation resistance of the bond coat, along with a thermal expansion mismatch between the metallic bond coat and the ceramic top coat. The aim of this investigation at the NASA Glenn Research Center was to develop a new longer life, higher temperature bond coat by improving both the oxidation resistance and the thermal expansion characteristics of the bond coat. Nickel aluminide (NiAl) has excellent high-temperature oxidation resistance and can sustain a protective Al2O3 scale to longer times and higher temperatures in comparison to MCrAlY alloys. Cryomilling of NiAl results in aluminum nitride (AlN) formation that reduces the coefficient of thermal expansion (CTE) of the alloy and enhances creep strength. Thus, additions of cryomilled NiAl-AlN to CoCrAlY were examined as a potential bond coat. In this work, the composite alloy was investigated as a stand-alone substrate to demonstrate its feasibility prior to actual use as a coating. About 85 percent of prealloyed NiAl and 15 percent of standard commercial CoCrAlY alloys were mixed and cryomilled in an attritor with stainless steel balls used as grinding media. The milling was carried out in the presence of liquid nitrogen. The milled powder was consolidated by hot extrusion or by hot isostatic pressing. From the consolidated material, oxidation coupons, four-point bend, CTE, and tensile specimens were machined. The CTE measurements were made between room temperature and 1000 C in an argon atmosphere. It is shown that the CTE of the NiAl-AlN-CoCrAlY composite bond coat

  7. Mechanical properties, microstructural and thermal evolution of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kursun, Celal; Gogebakan, Musa; Eskalen, Hasan

    2018-03-01

    We report on a work of the influence of the mechanical alloying on the microstructure, thermal and mechanical features of Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys. The Mg-based alloys were produced by mechanical alloying technique from mixtures of pure crystalline Mg, Ni, Y and Si powders. These alloys were investigated using a variety of analytical techniques including x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDX) and differential scanning calorimetry (DSC). The mechanical properties of the alloys were investigated by Vickers microhardness (HV) tester. After 75 h of milling time, three different intermetallic phases were obtained. These phases were defined as Mg24Y5, Mg2Ni3Si and Mg2Ni by XRD data. The particle and crystallite sizes of the Mg-based alloys were decreased by increasing milling time and they were calculated 2 μm and ˜9 nm, respectively. From the EDX analysis, it was determined that compositional homogeneity of the Mg-based alloys was fairly high. The microhardness values of the Mg65Ni20Y15-xSix (X = 1, 2, 3) alloys increased by increasing Si into the alloys and were determined 101, 131 and 158 HV, respectively.

  8. Solidification processing of intermetallic Nb-Al alloys

    NASA Technical Reports Server (NTRS)

    Smith, Preston P.; Oliver, Ben F.; Noebe, Ronald D.

    1992-01-01

    Several Nb-Al alloys, including single-phase NbAl3 and the eutectic of Nb2Al and NbAl3, were prepared either by nonconsumable arc melting in Ar or by zone processing in He following initial induction melting and rod casting, and the effect of the solidification route on the microstructure and room-temperature mechanical properties of these alloys was investigated. Automated control procedures and melt conditions for directional solidification of NbAl3 and the Nb2Al/Nb3Al eutectic were developed; high purity and stoichiometry were obtained. The effects of ternary additions of Ti and Ni are described.

  9. Microstructure and Tribological Properties of AlCoCrFeNiTi0.5 High-Entropy Alloy in Hydrogen Peroxide Solution

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Liu, W. M.; Zhang, T. B.; Li, J. S.; Wang, J.; Kou, H. C.; Li, J.

    2014-01-01

    Microstructure and tribological properties of an AlCoCrFeNiTi0.5 high-entropy alloy in high-concentration hydrogen peroxide solution were investigated in this work. The results show that the sigma phase precipitates and the content of bcc2 decrease during the annealing process. Meanwhile, the complex construction of the interdendrite region changes into simple isolated-island shape, and much more spherical precipitates are formed. Those changes of microstructure during the annealing process lead to the increase of hardness of this alloy. In the testing conditions, the AlCoCrFeNiTi0.5 alloy shows smoother worn surfaces and steadier coefficient of friction curves than does the 1Cr18Ni9Ti stainless steel, and SiC ceramic preserves better wear resistance than ZrO2 ceramic. After annealing, the wear resistance of the AlCoCrFeNiTi0.5 alloy increases coupled with SiC counterface but decreases with ZrO2 counterface.

  10. Effect of Composite Fabrication on the Strength of Single Crystal Al2O3 Fibers in Two Fe-Base Alloy Composites

    NASA Technical Reports Server (NTRS)

    Draper, Susan L.; Aiken, Beverly J. M.

    1998-01-01

    Continuous single-crystal Al2O3 fibers have been incorporated into a variety of metal and intermetallic matrices and the results have consistently indicated that the fiber strength had been reduced by 32 to 50% during processing. Two iron-based alloys, FeNiCoCrAl and FeAlVCMn, were chosen as matrices for Al2O3 fiber reinforced metal matrix composites (MMC) with the goal of maintaining Al2O3 fiber strength after composite processing. The feasibility of Al2O3/FeNiCoCrAl and Al2O3/FeAlVCMn composite systems for high temperature applications were assessed in terms of fiber-matrix chemical compatibility, interfacial bond strength, and composite tensile properties. The strength of etched-out fibers was significantly improved by choosing matrices containing less reactive elements. The ultimate tensile strength (UTS) values of the composites could generally be predicted with existing models using the strength of etched-out fibers. However, the UTS of the composites were less than desired due to a low fiber Weibull modulus. Acoustic emission analysis during tensile testing was a useful tool for determining the efficiency of the fibers in the composite and for determining the failure mechanism of the composites.

  11. Kinetics of NiO and NiCl2 Hydrogen Reduction as Precursors and Properties of Produced Ni/Al2O3 and Ni-Pd/Al2O3 Catalysts

    PubMed Central

    Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad

    2015-01-01

    The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335

  12. Creep and Toughness of Cryomilled NiAl Containing Cr

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon

    2000-01-01

    NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.

  13. High strength nanostructured Al-based alloys through optimized processing of rapidly quenched amorphous precursors.

    PubMed

    Kim, Song-Yi; Lee, Gwang-Yeob; Park, Gyu-Hyeon; Kim, Hyeon-Ah; Lee, A-Young; Scudino, Sergio; Prashanth, Konda Gokuldoss; Kim, Do-Hyang; Eckert, Jürgen; Lee, Min-Ha

    2018-01-18

    We report the methods increasing both strength and ductility of aluminum alloys transformed from amorphous precursor. The mechanical properties of bulk samples produced by spark-plasma sintering (SPS) of amorphous Al-Ni-Co-Dy powders at temperatures above 673 K are significantly enhanced by in-situ crystallization of nano-scale intermetallic compounds during the SPS process. The spark plasma sintered Al 84 Ni 7 Co 3 Dy 6 bulk specimens exhibit 1433 MPa compressive yield strength and 1773 MPa maximum strength together with 5.6% plastic strain, respectively. The addition of Dy enhances the thermal stability of primary fcc Al in the amorphous Al-TM -RE alloy. The precipitation of intermetallic phases by crystallization of the remaining amorphous matrix plays important role to restrict the growth of the fcc Al phase and contributes to the improvement of the mechanical properties. Such fully crystalline nano- or ultrafine-scale Al-Ni-Co-Dy systems are considered promising for industrial application because their superior mechanical properties in terms of a combination of very high room temperature strength combined with good ductility.

  14. Characterization of corrosion products of AB{sub 5}-type hydrogen storage alloys for nickel-metal hydride batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurel, F.; Knosp, B.; Backhaus-Ricoult, M.

    2000-01-01

    To better understand the decrease in storage capacity of AB{sub 5}-type alloys in rechargeable Ni/MH batteries undergoing repeated charge/discharge cycles, the corrosion of a MnNi{sub 3.55}Co{sub 0.75}Mn{sub 0.4}Al{sub 0.3} alloy in aqueous KOH electrolyte was studied. The crystal structure, chemical composition, and distribution of corrosion products were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Hollow and filed needles of a mixed rare earth hydroxide Mn(OH){sub 3} were found to cover a continuous nanocrystalline corrosion scale composed of metal (Ni, Co) solid solution, oxide (Ni,Co)O solid solution and rare earth hydroxide, and a Mn-depleted alloy subscale. Corrosionmore » kinetics were measured for three different temperatures. Growth kinetics of the continuous corrosion scale and of the Mm(OH){sub 3} needles obeyed linear and parabolic rate laws, respectively. Models for the corrosion mechanism were developed on the basis of diffusional transport of Mn and OH through the hydroxide needles and subsequent diffusion along grain boundaries through the nanocrystalline scale.« less

  15. Optical and electrical properties of mechanochemically synthesized nanocrystalline delafossite CuAlO2.

    PubMed

    Prakash, T; Prasad, K Padma; Ramasamy, S; Murty, B S

    2008-08-01

    Nanocrystalline p-type semiconductor copper aluminum oxide (CuAlO2) has been synthesized by mechanical alloying using freshly prepared Cu2O and alpha-AlO2O3 nanocrystals in toluene medium. A study on structural property performed with different alloying and post annealing durations, by X-ray diffraction (XRD) reveals the formation of single phase with average crystallite size approximately 45 nm. Optical absorbance onset at 364.5 nm confirms its wide band gap nature (E(g) = 3.4 eV) and the fluorescence emission behaviour (390 nm) confirms its direct band type transition. The activation energy for electrical conduction has been calculated by Arrhenius plots using impedance measurement. Both grain and grain boundary conductivity takes place with almost equal activation energies of approximately 0.45 eV. The paper discusses synthesis, structural, optical and electrical properties of delafossite CuAlO2 in detail.

  16. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGES

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2015-09-09

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  17. Wetting of Sn-Zn-Ga and Sn-Zn-Na Alloys on Al and Ni Substrate

    NASA Astrophysics Data System (ADS)

    Gancarz, Tomasz; Bobrowski, Piotr; Pawlak, Sylwia; Schell, Norbert; Chulist, Robert; Janik, Katarzyna

    2018-01-01

    Wetting of Al and Ni substrate by Sn-Zn eutectic-based alloys with 0.5 (wt.%) of Ga and 0.2 (wt.%) of Na was studied using the sessile drop method in the presence of ALU33® flux. Spreading tests were performed for 60 s, 180 s, and 480 s of contact, at temperatures of 503 K, 523 K and 553 K (230°C, 250°C, and 280°C). After cleaning the flux residue from solidified samples, the spreading areas of Sn-Zn0.5Ga and Sn-Zn0.2Na on Al and Ni substrate were determined. Selected, solidified solder-pad couples were cross-sectioned and subjected to scanning electron microscopy with energy dispersive spectroscopy, x-ray diffraction study and synchrotron measurements of the interfacial microstructure and identification of the phases. The growth of the intermetallic Ni5Zn21 phase layer was studied at the solder/Ni substrate interface, and the kinetics of the formation and growth of the intermetallic layer were determined. The formation of interlayers was not observed on the Al pads. On the contrary, dissolution of the Al substrate and migration of Al-rich particles into the bulk of the solder were observed.

  18. Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films

    NASA Astrophysics Data System (ADS)

    Huo, Wenyi; Liu, Xiaodong; Tan, Shuyong; Fang, Feng; Xie, Zonghan; Shang, Jianku; Jiang, Jianqing

    2018-05-01

    Nano-twinned, nanocrystalline CoCrFeNi high-entropy alloy films were produced by magnetron sputtering. The films exhibit a high hardness of 8.5 GPa, the elastic modulus of 161.9 GPa and the resistivity as high as 135.1 μΩ·cm. The outstanding mechanical properties were found to result from the resistance of deformation created by nanocrystalline grains and nano-twins, while the electrical resistivity was attributed to the strong blockage effect induced by grain boundaries and lattice distortions. The results lay a solid foundation for the development of advanced films with structural and functional properties combined in micro-/nano-electronic devices.

  19. Local structure of high-coercivity Fe-Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Menushenkov, A. P.; Menushenkov, V. P.; Chernikov, R. V.; Sviridova, T. A.; Grishina, O. V.; Sidorov, V. V.

    2011-04-01

    Results of hard magnetic Fe-Ni-Al alloys after various thermal processing local structure researches by method of EXAFS-spectroscopy with use of synchrotron radiation at temperature 77 K are presented. It is established, that during cooling a firm solution with critical speed reorganization of a local environment of nickel relative to quickly tempered sample owing to stratification of a firm solution is observed. The subsequent aging at 780°C practically restores local structure, characteristic for quickly tempered sample, keeping thus rather high coercitive force.

  20. Steam Oxidation Behavior of Advanced Steels and Ni-Based Alloys at 800 °C

    NASA Astrophysics Data System (ADS)

    Dudziak, T.; Boroń, L.; Deodeshmukh, V.; Sobczak, J.; Sobczak, N.; Witkowska, M.; Ratuszek, W.; Chruściel, K.

    2017-03-01

    This publication studies the steam oxidation behavior of advanced steels (309S, 310S and HR3C) and Ni-based alloys (Haynes® 230®, alloy 263, alloy 617 and Haynes® 282®) exposed at 800 °C for 2000 h under 1 bar pressure, in a pure water steam system. The results revealed that all exposed materials showed relatively low weight gain, with no spallation of the oxide scale within the 2000 h of exposure. XRD analysis showed that Ni-based alloys developed an oxide scale consisting of four main phases: Cr2O3 (alloy 617, Haynes® 282®, alloy 263 and Haynes® 230®), MnCr2O4 (alloy 617, Haynes® 282® and Haynes® 230®), NiCr2O4 (alloy 617) and TiO2 (alloy 263, Haynes® 282®). In contrast, advanced steels showed the development of Cr2O3, MnCr2O4, Mn7SiO12, FeMn(SiO4) and SiO2 phases. The steel with the highest Cr content showed the formation of Fe3O4 and the thickest oxide scale.

  1. Duplex precipitates and their effects on the room-temperature fracture behaviour of a NiAl-strengthened ferritic alloy

    DOE PAGES

    Sun, Zhiqian; Song, Gian; Ilavsky, Jan; ...

    2015-03-23

    Duplex precipitates are presented in a NiAl-strengthened ferritic alloy. They were characterized by the ultra-small angle X-ray scattering and transmission electron microscope. Fine cooling precipitates with the size of several to tens of nanometres harden the matrix considerably at room temperature. The cracks will likely to initiate from precipitates, and coalesce and propagate quickly through the matrix due to the excessive hardening effect of cooling precipitates, which lead to the premature fracture of NiAl-strengthened ferritic alloys.

  2. Influence of Al grain boundaries segregations and La-doping on embrittlement of intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Kovalev, Anatoly I.; Wainstein, Dmitry L.; Rashkovskiy, Alexander Yu.

    2015-11-01

    The microscopic nature of intergranular fracture of NiAl was experimentally investigated by the set of electron spectroscopy techniques. The paper demonstrates that embrittlement of NiAl intermetallic compound is caused by ordering of atomic structure that leads to formation of structural aluminum segregations at grain boundaries (GB). Such segregations contain high number of brittle covalent interatomic bonds. The alloying by La increases the ductility of material avoiding Al GB enrichment and disordering GB atomic structure. The influence of La alloying on NiAl mechanical properties was investigated. GB chemical composition, atomic and electronic structure transformations after La doping were investigated by AES, XPS and EELFS techniques. To qualify the interatomic bonds metallicity the Fermi level (EF) position and electrons density (neff) in conduction band were determined in both undoped and doped NiAl. Basing on experimental results the physical model of GB brittleness formation was proposed.

  3. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    PubMed

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  4. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  5. Reliability analysis of single crystal NiAl turbine blades

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan; Noebe, Ronald; Wheeler, Donald R.; Holland, Fred; Palko, Joseph; Duffy, Stephen; Wright, P. Kennard

    1995-01-01

    As part of a co-operative agreement with General Electric Aircraft Engines (GEAE), NASA LeRC is modifying and validating the Ceramic Analysis and Reliability Evaluation of Structures algorithm for use in design of components made of high strength NiAl based intermetallic materials. NiAl single crystal alloys are being actively investigated by GEAE as a replacement for Ni-based single crystal superalloys for use in high pressure turbine blades and vanes. The driving force for this research lies in the numerous property advantages offered by NiAl alloys over their superalloy counterparts. These include a reduction of density by as much as a third without significantly sacrificing strength, higher melting point, greater thermal conductivity, better oxidation resistance, and a better response to thermal barrier coatings. The current drawback to high strength NiAl single crystals is their limited ductility. Consequently, significant efforts including the work agreement with GEAE are underway to develop testing and design methodologies for these materials. The approach to validation and component analysis involves the following steps: determination of the statistical nature and source of fracture in a high strength, NiAl single crystal turbine blade material; measurement of the failure strength envelope of the material; coding of statistically based reliability models; verification of the code and model; and modeling of turbine blades and vanes for rig testing.

  6. Cu assisted stabilization and nucleation of L1 2 precipitates in Al 0.3 CuFeCrNi 2 fcc-based high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwalani, B.; Choudhuri, D.; Soni, V.

    2017-05-01

    A detailed investigation of precipitation of the ordered L12 (γ’) phase in a Al0.3CrCuFeNi2 high entropy alloy (HEA), more generally referred to as a complex concentrated alloy (CCA), reveals the role of copper (Cu) on stabilization and precipitation of the ordered L12 ( γ’) phase. Detailed characterization via coupling of scanning and transmission electron microscopy, and atom probe tomography revealed novel insights into Cu clustering within the face-centered cubic matrix of this HEA, leading to heterogeneous nucleation sites for the γ’ precipitates. The subsequent partitioning of Cu into the γ’ precipitates indicates their stabilization is due to Cu addition. Themore » γ’ order-disorder transition temperature was determined to be ~930 _C in this alloy, based on synchrotron diffraction experiments, involving in situ annealing. The growth and high temperature stability of the γ’ precipitates was also confirmed via systematic scanning electron microscopy investigations of samples annealed at temperatures in the range of 700-900 oC. The role of Cu revealed by this study can be employed in the design of precipitation strengthened HEAs, as well as in a more general sense applied to other types of superalloys, with the objective of potentially enhancing their mechanical properties at room and elevated temperatures« less

  7. Fabrication and Magnetic Properties of Co₂MnAl Heusler Alloys by Mechanical Alloying.

    PubMed

    Lee, Chung-Hyo

    2018-02-01

    We have applied mechanical alloying (MA) to produce nanocrystalline Co2MnAl Heusler alloys using a mixture of elemental Co50Mn25Al25 powders. An optimal milling and heat treatment conditions to obtain a Co2MnAl Heusler phase with fine microstructure were investigated by X-ray diffraction, differential scanning calorimeter and vibrating sample magnetometer measurements. α-(Co, Mn, Al) FCC phases coupled with amorphous phase are obtained after 3 hours of MA without any evidence for the formation of Co2MnAl alloys. On the other hand, a Co2MnAl Heusler alloys can be obtained by the heat treatment of all MA samples up to 650 °C. X-ray diffraction result shows that the average grain size of Co2MnAl Heusler alloys prepared by MA for 5 h and heat treatment is in the range of 95 nm. The saturation magnetization of MA powders decreases with MA time due to the magnetic dilution by alloying with nonmagnetic Mn and Al elements. The magnetic hardening due to the reduction of the grain size with ball milling is also observed. However, the saturation magnetization of MA powders after heat treatment increases with MA time and reaches to a maximum value of 105 emu/g after 5 h of MA. It can be also seen that the coercivity of 5 h MA sample annealed at 650 °C is fairly low value of 25 Oe.

  8. Oxidation of nickel-aluminum and iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.V.

    1984-01-01

    The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxide-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements aremore » discussed. A brief description of the effect of pre-oxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included.« less

  9. First-principles-based kinetic Monte Carlo studies of diffusion of hydrogen in Ni–Al and Ni–Fe binary alloys

    DOE PAGES

    Tafen, De Nyago

    2015-02-14

    The diffusion of dilute hydrogen in fcc Ni–Al and Ni–Fe binary alloys was examined using kinetic Monte Carlo method with input kinetic parameters obtained from first-principles density functional theory. The simulation involves the implementation of computationally efficient energy barrier model that describes the configuration dependence of the hydrogen hopping. The predicted hydrogen diffusion coefficients in Ni and Ni 89.4Fe 10.6 are compared well with the available experimental data. In Ni–Al, the model predicts lower hydrogen diffusivity compared to that in Ni. Overall, diffusion prefactors and the effective activation energies of H in Ni–Fe and Ni–Al are concentration dependent of themore » alloying element. Furthermore, the changes in their values are the results of the short-range order (nearest-neighbor) effect on the interstitial diffusion of hydrogen in fcc Ni-based alloys.« less

  10. Hot corrosion of four superalloys - HA-188, S-57, IN-617, and TD-NiCrAl

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.

    1979-01-01

    Cyclic oxidation and hot corrosion tests of two cobalt-base and two nickel-base alloys are reported. The alloys were exposed to maximum temperatures of 900 and 1000 C in a Mach 0.3 burner rig whose flame was doped with various concentrations of sea salt and sodium sulfate for hot corrosion tests. The test data were subjected to a regression analysis for the development of model equations relating corrosion to temperature and for the effects of salt concentration and composition on corrosion. The corrosion resistance varied with temperature, sea salt concentration, and salt composition, concluding that the S-57 cobalt-base alloy was the most hot corrosion-resistant alloy, and the TD-NiCrAl nickel-base alloy was the least resistant. However, under straight oxidation conditions, the TD-NiCrAl was most resistant, while S-57 was the least resistant alloy.

  11. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE PAGES

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.; ...

    2018-05-09

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  12. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  13. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notonegoro, Hamdan Akbar; Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435; Kurniawan, Budhy

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD)more » reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.« less

  14. The roles of auxeticity and volume fraction on γ‧ precipitate microstructures in nickel-base alloys

    NASA Astrophysics Data System (ADS)

    Ardell, Alan J.

    2017-01-01

    New correlations are found between the elastic constants and late-stage precipitate microstructures in Ni-Al, Ni-Ga, Ni-Ge and Ni-Si alloys. The auxetic behaviour of Poisson's ratio, ν, measured parallel to [0 0 1] or ? in response to [1 1 0] loading, favours the amalgamation of Ni3Al and Ni3Ga precipitates into non-equilibrium shapes along cube directions when δν = (νγ‧ - νγ)/νγ‧ > 0, the superscripts referring to the γ‧ (Ni3X) and γ (Ni-X) phases, respectively. When δν < 0 amalgamation of Ni3Ge and Ni3Si precipitates does not occur and the particles retain cuboidal shapes. When δν > 0 amalgamation of Ni3Al and Ni3Ga occurs readily, primarily producing laths of both phases. The γ‧ volume fraction, f, is also shown to play a role in the late-stage microstructures of Ni-Al alloys, with an increasing tendency to form Ni3Al laths, rather than plates, as f increases. The shapes of elastically soft γ precipitates in inverse Ni-Al and Ni-Ge alloys are different; Ni-Al precipitates are lath shaped, but Ni-Ge precipitates are plate shaped. The Ni-Ge plate shape, in a non-auxetic Ni3Ge matrix (Ni3Ge being the sole non-auxetic Ni3X phase of the four studied), is the only example of persistent plates in any of the Ni-base alloys investigated to date. The combination of an elastically soft precipitate (Ni-Ge) in a non-auxetic matrix suggests a connection between auxeticity and shape.

  15. Microstructure and mechanical properties of a single crystal NiAl alloy with Zr or Hf rich G-phase precipitates

    NASA Technical Reports Server (NTRS)

    Locci, I. E.; Noebe, R. D.; Bowman, R. R.; Miner, R. V.; Nathal, M. V.; Darolia, R.

    1991-01-01

    The possibility of producing NiAl reinforced with the G-phase (Ni16X6Si7), where X is Zr or Hf, has been investigated. The microstructure of these NiAl alloys have been characterized in the as-cast and annealed conditions. The G-phases are present as fine cuboidal precipitates (10 to 40 nm) and have lattice parameters almost four times that of NiAl. They are coherent with the matrix and fairly resistant to coarsening during annealing heat treatments. Segregation and nonuniform precipitate distribution observed in as-cast materials were eliminated by homogenization at temperatures near 1600 K. Slow cooling from these temperatures resulted in large plate shaped precipitates, denuded zones, and a loss of coherency in some of the large particles. Faster cooling produced a homogeneous fine distribution of cuboidal G-phase particles in the matrix. Preliminary mechanical properties for the Zr-doped alloy are presented and compared to binary single crystal NiAl. The presence of these precipitates appears to have an important strengthening effect at temperatures not less than 1000 K compared to binary NiAl single crystals.

  16. Burner Rig Hot Corrosion of a Single Crystal Ni-48Al-Ti-Hf-Ga Alloy

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Darolia, Ram; Cuy, Michael D.

    1998-01-01

    The hot corrosion resistance of a single crystal Ni-48Al-1Ti-0.5Hf-0.2Ga alloy was examined in a Mach 0.3 burner rig at 900 C for 300 hours. The combustion chamber was doped with 2 ppmw synthetic sea salt. The hot corrosion attack produced a random mound morphology on the surface. Microstructurally, the hot corrosion attack appeared to initiate with oxide-filled pits which were often broad and shallow. At an intermediate stage, the pits increased in size to incorporate unoxidized Ni islands in the corrosion product. The rampant attack stage, which was observed only at sharp sample corners, was characterized by rapid inward growth of alumina in finger-like protrusions incorporating significant amounts of Al-depleted Ni islands. Aluminum consumption in the oxide fingers resulted in the growth of a gamma' layer ahead of the advancing oxide fingers.

  17. Microstructure and phase analyses of melt-spun Si-Ni base anode materials for Li-ion battery

    NASA Astrophysics Data System (ADS)

    Jeon, Sung Min; Song, Jong Jin; Kim, Sun-I.; Kwon, Hye Jin; Sohn, Keun Yong; Park, Won-Wook

    2013-01-01

    Si-based anode composite materials have been studied to improve the performance and the durability of Li-ion secondary batteries in this study. Si-Ni-Al, Si-Ni-Cu and Si-Ni-Cu-Al base alloys were designed and rapidly solidified at the cooling rate of about 106 °C/sec by optimizing the melt spinning. The ribbons were characterized using FE-SEM equipped with EDS, X-ray diffractometer and HR-TEM. The thin ribbons of Si-Ni-Al alloy consisted of nano-sized Si particles and amorphous matrix, which was regarded as an ideal microstructure for the anode material. At the wheel side of the ribbon, 20-30 nm of Si particles were formed (Zone A); whereas at the air side relatively large Si particles were distributed (Zone B). The Si-Ni-Cu alloy showed coarser Si particles than the Si-Ni-Al alloy, and its matrix consisted of NiSi2, Cu3Si and amorphous structures. Finally, the microstructure of the Si-Ni-Cu-Al alloy strips was composed of coarse Si particles, CuNi, Al4Cu9, NiSi2, and unknown phases, and the size of those Si particles were too large to be used for the anode materials.

  18. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  19. Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy

    NASA Astrophysics Data System (ADS)

    Zhang, C.; Wu, G. F.; Dai, P. Q.

    2015-05-01

    An Al0.5CoCrFeNiSi0.2 high-entropy alloy was prepared by vacuum arc melting. The alloy was aged from 700 to 1100 °C. The effects of aging on the phase transformation and mechanical performances were explored. The as-cast alloy showed a dendritic (DR) microstructure. The DR region was an Fe,Cr-rich FCC phase, while the interdendritic (ID) region was a spinodal structure composed of Fe,Cr-rich BCC (A2) and Ni,Al-rich BCC (B2) phases. At aging temperatures between 700 and 900 °C, the Fe,Cr-rich BCC (A2) phase in the ID region transformed into σ and Fe,Cr-rich FCC phases. Meanwhile, some Ni,Al-rich FCC phase particles precipitated from the DR region. During aging at 1100 °C, the DR microstructure disappeared, and a microstructure composed of Fe,Cr-rich FCC and Ni,Al-rich BCC (B2) phases both possessing a lamellar shape was developed. The alloy exhibited evident hardening and lower tensile strain when the aging temperature was lower than 1000 °C, which was mainly attributed to the generation of the σ phase in the ID region. However, a contrasting behavior was observed when the aging temperature was higher than 1000 °C, which was attributed to the redissolution of the σ phase and the microstructure coarsening.

  20. Magnetic behavior of the nanophase of YbNi2 alloys

    NASA Astrophysics Data System (ADS)

    Ivanshin, V. A.; Gataullin, E. M.; Sukhanov, A. A.; Ivanshin, N. A.; Rojas, D. P.; Fernández Barquín, L.

    2017-04-01

    Variations in magnetic properties of the heavy-fermion YbNi2 alloy when milled in a high energy ball milling system have been investigated. The ferromagnetic transition ( T C = 10.4 K) in the initial sample almost vanishes after milling, which leads to the appearance of a magnetic transition at T* = 3.2 K in nanocrystallites. Before milling, processes of spin-lattice relaxation of the Orbach-Aminov type with the participation of the first excited Stark sublevel of the Yb3+ ion located at 75 K are dominating in the electron spin dynamics in the paramagnetic phase of the alloy. A comparative study of the temperature dependence of the magnetic properties and spectra of electron paramagnetic resonance in poly- and nanocrystalline samples indicates the existence of a magnetic inhomogeneity of the compound arising upon milling.

  1. Wear behavioral study of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Sondur, D. G.; Akkimardi, V. G.; Mallapur, D. G.

    2018-04-01

    In the current study, the wear behavior of as cast and 7 hr homogenized Al25Mg2Si2Cu4Ni alloy has been investigated. Microstructure, SEM and EDS results confirm the presence of different intermetallic and their effects on wear properties of Al25Mg2Si2Cu4Ni alloy in as cast as well as aged condition. Alloying main elements like Si, Cu, Mg and Ni partly dissolve in the primary α-Al matrix and to some amount present in the form of intermetallic phases. SEM structure of as cast alloy shows blocks of Mg2Si which is at random distributed in the aluminium matrix. Precipitates of Al2Cu in the form of Chinese script are also observed. Also `Q' phase (Al-Si-Cu-Mg) be distributed uniformly into the aluminium matrix. Few coarsened platelets of Ni are seen. In case of 7 hr homogenized samples blocks of Mg2Si get rounded at the corners, Platelets of Ni get fragmented and distributed uniformly in the aluminium matrix. Results show improved volumetric wear resistance and reduced coefficient of friction after homogenizing heat treatment.

  2. Oxidation of nickel-aluminum and iron-aluminum alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathcart, J.V.

    1985-01-01

    The high-temperature oxidation behavior of several ordered alloys in the Ni-Al and Fe-Al systems is reviewed with special emphasis on Ni/sub 3/Al and NiAl. Ordering influences oxidation through its effect on the activities of the alloy components and by changing the point defect concentration in an alloy. Three categories of Ni-Al alloys are distinguished based on Al content and oxidation behavior. A characteristic feature of the oxidation of high-aluminum Ni-Al and Fe-Al alloys is the formation of voids in the substrate at the oxidate-metal interface. The mechanism of void formation and its suppression by minor additions of oxygen-active elements ismore » discussed. A brief description of the effect of preoxidation on the reactions of Ni/sub 3/Al-base alloys in SO/sub 2//O/sub 2/ environments is also included. 51 references, 14 figures, 1 table.« less

  3. Nanocrystalline Al7075 + 1 wt % Zr Alloy Prepared Using Mechanical Milling and Spark Plasma Sintering

    PubMed Central

    Málek, Přemysl; Minárik, Peter; Chráska, Tomáš; Novák, Pavel; Průša, Filip

    2017-01-01

    The microstructure, phase composition, and microhardness of both gas-atomized and mechanically milled powders of the Al7075 + 1 wt % Zr alloy were investigated. The gas-atomized powder exhibited a cellular microstructure (grain size of a few µm) with layers of intermetallic phases along the cell boundaries. Mechanical milling (400 revolutions per minute (RPM)/8 h) resulted in a grain size reduction to the nanocrystalline range (20 to 100 nm) along with the dissolution of the intermetallic phases. Milling led to an increase in the powder’s microhardness from 97 to 343 HV. Compacts prepared by spark plasma sintering (SPS) exhibited negligible porosity. The grain size of the originally gas-atomized material was retained, but the continuous layers of intermetallic phases were replaced by individual particles. Recrystallization led to a grain size increase to 365 nm in the SPS compact prepared from the originally milled powder. Small precipitates of the Al3Zr phase were observed in the SPS compacts, and they are believed to be responsible for the retainment of the sub-microcrystalline microstructure during SPS. A more intensive precipitation in this SPS compact can be attributed to a faster diffusion due to a high density of dislocations and grain boundaries in the milled powder. PMID:28930192

  4. Developing precipitation hardenable high entropy alloys

    NASA Astrophysics Data System (ADS)

    Gwalani, Bharat

    High entropy alloys (HEAs) is a concept wherein alloys are constructed with five or more elements mixed in equal proportions; these are also known as multi-principle elements (MPEs) or complex concentrated alloys (CCAs). This PhD thesis dissertation presents research conducted to develop precipitation-hardenable high entropy alloys using a much-studied fcc-based equi-atomic quaternary alloy (CoCrFeNi). Minor additions of aluminium make the alloy amenable for precipitating ordered intermetallic phases in an fcc matrix. Aluminum also affects grain growth kinetics and Hall-Petch hardenability. The use of a combinatorial approach for assessing composition-microstructure-property relationships in high entropy alloys, or more broadly in complex concentrated alloys; using laser deposited compositionally graded AlxCrCuFeNi 2 (0 < x < 1.5) complex concentrated alloys as a candidate system. The composition gradient has been achieved from CrCuFeNi2 to Al 1.5CrCuFeNi2 over a length of ˜25 mm, deposited using the laser engineered net shaping process from a blend of elemental powders. With increasing Al content, there was a gradual change from an fcc-based microstructure (including the ordered L12 phase) to a bcc-based microstructure (including the ordered B2 phase), accompanied with a progressive increase in microhardness. Based on this combinatorial assessment, two promising fcc-based precipitation strengthened systems have been identified; Al0.3CuCrFeNi2 and Al0.3CoCrFeNi, and both compositions were subsequently thermo-mechanically processed via conventional techniques. The phase stability and mechanical properties of these alloys have been investigated and will be presented. Additionally, the activation energy for grain growth as a function of Al content in these complex alloys has also been investigated. Change in fcc grain growth kinetic was studied as a function of aluminum; the apparent activation energy for grain growth increases by about three times going from Al0.1CoCrFeNi

  5. Microstructure and Mechanical Properties Evolution of the Al, C-Containing CoCrFeNiMn-Type High-Entropy Alloy during Cold Rolling.

    PubMed

    Klimova, Margarita; Stepanov, Nikita; Shaysultanov, Dmitry; Chernichenko, Ruslan; Yurchenko, Nikita; Sanin, Vladimir; Zherebtsov, Sergey

    2017-12-29

    The effect of cold rolling on the microstructure and mechanical properties of an Al- and C-containing CoCrFeNiMn-type high-entropy alloy was reported. The alloy with a chemical composition (at %) of (20-23) Co, Cr, Fe, and Ni; 8.82 Mn; 3.37 Al; and 0.69 C was produced by self-propagating high-temperature synthesis with subsequent induction. In the initial as-cast condition the alloy had an face centered cubic single-phase coarse-grained structure. Microstructure evolution was mostly associated with either planar dislocation glide at relatively low deformation during rolling (up to 20%) or deformation twinning and shear banding at higher strain. After 80% reduction, a heavily deformed twinned/subgrained structure was observed. A comparison with the equiatomic CoCrFeNiMn alloy revealed higher dislocation density at all stages of cold rolling and later onset of deformation twinning that was attributed to a stacking fault energy increase in the program alloy; this assumption was confirmed by calculations. In the initial as-cast condition the alloy had low yield strength of 210 MPa with yet very high uniform elongation of 74%. After 80% rolling, yield strength approached 1310 MPa while uniform elongation decreased to 1.3%. Substructure strengthening was found to be dominated at low rolling reductions (<40%), while grain (twin) boundary strengthening prevailed at higher strains.

  6. Development of High-Strength High-Temperature Cast Al-Ni-Cr Alloys Through Evolution of a Novel Composite Eutectic Structure

    NASA Astrophysics Data System (ADS)

    Pandey, P.; Kashyap, S.; Tiwary, C. S.; Chattopadhyay, K.

    2017-12-01

    Aiming to develop high-strength Al-based alloys with high material index (strength/density) for structural application, this article reports a new class of multiphase Al alloys in the Al-Ni-Cr system that possess impressive room temperature and elevated temperature (≥ 200 °C) mechanical properties. The ternary eutectic and near eutectic alloys display a complex microstructure containing intermetallic phases displaying hierarchically arranged plate and rod morphologies that exhibit extraordinary mechanical properties. The yield strengths achieved at room temperatures are in excess of 350 MPa with compressive plastic strains of more than 30 pct (without fracturing) for these alloys. The stability of the complex microstructure also leads to a yield stress of 191 ± 8 to 232 ± 5 MPa at 250 °C. It is argued that the alloys derive their high strength and impressive plasticity through synergic effects of refined nanoeutectics of two different morphologies forming a core shell type of architecture.

  7. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    NASA Astrophysics Data System (ADS)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.

  8. High temperature deformation of NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Nix, W. D.

    1982-01-01

    The high temperature mechanical properties of the aluminides are reviewed with respect to their potential as high temperature structural materials. It is shown that NiAl and CoAl are substantially stronger than the pure metals Ni and Co at high temperatures and approach the strength of some superalloys, particularly when those superalloys are tested in "weak" directions. The factors that limit and control the high temperature strengths of NiAl and CoAl are examined to provide a basis for the development of intermetallic alloys of this type.

  9. Mechanical Properties of High Entropy Alloy Al0.1CoCrFeNi for Peripheral Vascular Stent Application.

    PubMed

    Alagarsamy, Karthik; Fortier, Aleksandra; Komarasamy, Mageshwari; Kumar, Nilesh; Mohammad, Atif; Banerjee, Subhash; Han, Hai-Chao; Mishra, Rajiv S

    2016-12-01

    High entropy alloys (HEAs) are new class of metallic materials with five or more principal alloying elements. Due to this distinct concept of alloying, the HEAs exhibit unique properties compared to conventional alloys. The outstanding properties of HEAs include increased strength, superior wear resistance, high temperature stability, increased fatigue properties, good corrosion, and oxidation resistance. Such characteristics of HEAs have generated significant interest among the scientific community. However, their applications are yet to be explored. This paper discusses the mechanical behavior and microstructure of Al 0.1 CoCrFeNi HEA subjected to thermo-mechanical processing, and its potential application in peripheral vascular stent implants that are prone to high failure rates. Results show that Al 0.1 CoCrFeNi alloy possesses characteristics that compare well against currently used stent materials and it can potentially find use in peripheral vascular stent implants and extend their life-cycle.

  10. Thermoelastic properties of γ-Fe and γ- Fe64Ni36 alloys

    NASA Astrophysics Data System (ADS)

    Tsujino, N.; Nishihara, Y.; Nakajima, Y.; Takahashi, E.; Funakoshi, K.

    2009-12-01

    The Earth’s core consists mainly of Fe-Ni alloy. Therefore the physical property of Fe-Ni alloy is a key issue to understand the planetary core. At 1 bar, γ-Fe is known as Anti-Invar alloy which shows anomalously high thermal expansivity, while γ-Fe64Ni36 is as a typical Inver-alloy. In addition, previous studies on γ-Fe-Ni Invar-alloys reported an anomalous pressure dependence of compression behavior (e.g., Dubrovinsky et al., 2001, Nataf et al., 2006, Matsushita et al., 2008). However, these studies were conducted at limited pressure range (> 6 GPa) or low temperature (30-300 K) conditions to identify physical properties of those alloys in the planetary interior. Therefore, we performed pressure-volume-temperature (P-V-T) measurements on γ-Fe and γ-Fe-Ni alloys at a wide P-T range of 0-23 GPa and 773-1873 K using the SPEED- Mk.II kawai-type multi-anvil apparatus at the SPring-8 synchrotron facility. On the basis of 2-γ state model by Weiss (1963), the thermal expansivity of γ-Fe can be decreased significantly with pressure. Our data, however, show no anomalous variation in the thermal expansion coefficient relative to pressure up to 23 GPa. In addition, anomalous pressure dependence on volume of γ-Fe64Ni36 reported by Matsushita et al. (2008) was not observed. Fitting 3rd order Birch-Murnaghan EOS and Mie-Grüneisen-Debye EOS to the P-V-T data of γ-Fe yielded V 0 = 49.028 ± 0.027 Å 3 , K T 0 = 111.2 ± 1.8 GPa, K ’ T = 5.2 ± 0.2, γ 0 = 2.30 ± 0.04 and q = -0.09 ± 0.21 with the fixed value of θ 0 = 340 K. The P-V data of γ- Fe64Ni36 was fittied using the 3rd order Birch-Marnagan, which yields V 0 = 48.85 ± 0.06 Å 3 , K T 0 = 88.1 ± 3.4 GPa, and K ’ 0 = 8.6± 0.5 at 1273 K.

  11. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.

    PubMed

    Shang, S L; Zacherl, C L; Fang, H Z; Wang, Y; Du, Y; Liu, Z K

    2012-12-19

    A systematic study of stacking fault energy (γ(SF)) resulting from induced alias shear deformation has been performed by means of first-principles calculations for dilute Ni-base superalloys (Ni(23)X and Ni(71)X) for various alloying elements (X) as a function of temperature. Twenty-six alloying elements are considered, i.e., Al, Co, Cr, Cu, Fe, Hf, Ir, Mn, Mo, Nb, Os, Pd, Pt, Re, Rh, Ru, Sc, Si, Ta, Tc, Ti, V, W, Y, Zn, and Zr. The temperature dependence of γ(SF) is computed using the proposed quasistatic approach based on a predicted γ(SF)-volume-temperature relationship. Besides γ(SF), equilibrium volume and the normalized stacking fault energy (Γ(SF) = γ(SF)/Gb, with G the shear modulus and b the Burgers vector) are also studied as a function of temperature for the 26 alloying elements. The following conclusions are obtained: all alloying elements X studied herein decrease the γ(SF) of fcc Ni, approximately the further the alloying element X is from Ni on the periodic table, the larger the decrease of γ(SF) for the dilute Ni-X alloy, and roughly the γ(SF) of Ni-X decreases with increasing equilibrium volume. In addition, the values of γ(SF) for all Ni-X systems decrease with increasing temperature (except for Ni-Cr at higher Cr content), and the largest decrease is observed for pure Ni. Similar to the case of the shear modulus, the variation of γ(SF) for Ni-X systems due to various alloying elements is traceable from the distribution of (magnetization) charge density: the spherical distribution of charge density around a Ni atom, especially a smaller sphere, results in a lower value of γ(SF) due to the facility of redistribution of charges. Computed stacking fault energies and the related properties are in favorable accord with available experimental and theoretical data.

  12. RETRACTED ARTICLE: Microstructure of carbide precipitates in L12-Ni3Al and L10-TiAl

    NASA Astrophysics Data System (ADS)

    Han, Chang Suk

    2008-04-01

    The crystallographic structures of carbide formed in Ni3Al- and TiAl-based intermetallics containing carbon are investigated in this study using transmission electron microscopy. In an L12-ordered Ni3Al alloy with 4 mol.% of chromium and 0.2 mol.% to 3.0 mol.% of carbon, fine octahedral precipitates of M23C6 type carbide were formed in the matrix by aging at temperatures around 973 K after solution annealing at 1423 K. TEM examination revealed that the M23C6 phase and the matrix lattices have a cube-cube orientation relationship and maintain partial atomic matching at the {111} interface. After prolonged aging or by aging at higher temperatures, the M23C6 precipitates adopt a rod-like morphology elongated parallel to the <100> directions. In L10-ordered TiAl containing from 0.1 mol.% to 2.0 mol.% carbon, TEM observations reveal that needle-like precipitates, which lie only in one direction parallel to the [001] axis of the L10 matrix appear in the matrix mainly at dislocations. Selected-area electron diffraction (SAED) patterns analyses showed that the needle-shaped precipitate is perovskite-type Ti3AlC. The orientation relationship between the Ti3AlC and the L10 matrix was found to be (001)Ti3AlC//(001)L10 matrix and [010]Ti3AlC//[010]L10 matrix. By aging at higher temperatures or for a longer period at 1073 K, plate-like precipitates of Ti2AlC with a hexagonal structure form on the {111} planes of the L10 matrix. The orientation relationship between the Ti2AlC and the L10 matrix is (0001)Ti2AlC//(111)L10 matrix and Ti2AlC//L10 matrix.

  13. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Jia, Yanyan; Li, Zhefu; Ye, Xiangxi; Liu, Renduo; Leng, Bin; Qiu, Jie; Liu, Min; Li, Zhijun

    2017-12-01

    The embrittlement of Ni-based structural alloys caused by fission production Te is one of the major challenges for molten salt reactors. It has been reported that solution element Cr can prevent the situation of intergranular cracks caused by Te. However, there is no detailed mechanism explanation on this phenomenon. In this study, the effect of Cr on Te diffusion in Ni-Cr binary system was investigated by diffusion experiments at 800 °C for 100 h. Results show that Te reacts with the alloy mainly forming Ni3Te2, and strip shaped Cr3Te4 is only found on the surface of Ni-15%Cr alloy. According to the discussion of thermodynamic chemical reaction process, Cr3Te4 exhibits the best stability and preferential formation compound in Te/Ni-Cr system as its Gibbs free energy of formation is the lowest. With the increase of Cr content in the alloy, the diffusion depth of Te along grain boundaries significantly decreases. Moreover, the formation process of reaction product and diffusion process are described. The diffusion of Te can be suppressed by high content of Cr in Ni-Cr alloy due to the formation of Cr3Te4 and thus the grain boundary is protected from Te corroding.

  14. Corrosion resistance tests on NiTi shape memory alloy.

    PubMed

    Rondelli, G

    1996-10-01

    The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels.

  15. Ni-Al films induced surface modification of La2Mg17 alloy leading to improved dehydrogenation properties

    NASA Astrophysics Data System (ADS)

    Zhang, Huaiwei; Fu, Li; Xuan, Weidong; Qin, Haiying; Ji, Zhenguo

    2018-05-01

    The effects of surface coating with Ni-Al nano-films to the hydrogenation properties of the La2Mg17 alloy are studied in the paper. The reversible hydrogen storage capacities, thermodynamics and kinetics process are all improved for the coating samples, and the comprehensive performances reach the best when the sputtering time is 5min with the film thickness 71.7 nm. The dehydrogenation temperature of the coating sample can be reduced to about 560K from above 720K comparing to the body alloy. The XPS analysis shows that the Ni-Al film coating layer can act as the catalyst in the dehydrogenation process.

  16. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  17. Diffraction, microstructure and thermal stability analysis in a double phase nanocrystalline Al20Mg20Ni20Cr20Ti20 high entropy alloy

    NASA Astrophysics Data System (ADS)

    Rameshbabu, A. M.; Parameswaran, P.; Vijayan, V.; Panneer, R.

    2017-12-01

    An effort has been made to develop a new composition of AlMgNiCrTi high entropy alloy (HEA) with a distinct properties includes squat density, intense strength and hardness, superior corrosion resistance, better oxidation resistance, high temperature resistance, fatigue load and crack resistance to congregate the necessity of aircraft applications. The equivalent atomic percentage for the above defined composition is established using analytical correlation for molar and atom renovation by trial and error method. The alloy is synthesized by powder metallurgy technique through mechanical alloying. Succeeding to mechanical alloying it is elucidated that the metal powder is primarily composed of single BCC solid solution with crystallite magnitude <10 nm. It is also observed that the alloy is thermally stable at prominent temperature about 800°C as it is retained its nanostructure which was revealed using differential scanning caloriemetry (DSC). This alloy powder was consolidated and sintered using spark plasma sintering at 800°C with 50 Mpa pressure to a density of 98.83%. Subsequent to sintering, Titanium carbide FCC phase evolved along with the BCC phase. The alloying behavior and phase transformation were studied using X-ray diffraction (XRD) and scanning electron microscope (SEM). The homogeneity of the composition is confirmed by energy dispersive spectroscopy (EDS). The hardness of the alloy is found to be 710±20 HV. The evolutions of the phases and hardness imply that this alloy is apposite for both high strength and high temperature applications.

  18. Development of Surface Nanocomposite Based on Al-Ni-O Ternary System on Al6061 Alloy by Friction-Stir Processing and Evaluation of Its Properties

    NASA Astrophysics Data System (ADS)

    Adel Mehraban, F.; Karimzadeh, F.; Abbasi, M. H.

    2015-05-01

    In this study, an Al/Al2O3-Al3Ni hybrid nanocomposite was developed on the surface of Al6061-T6 plate with preplaced NiO powder on its surface using friction-stir processing (FSP). The x-ray diffraction results showed that NiO particles were reduced by Al during FSP and Al3Ni and Al2O3 were formed as in situ reaction products. A thermodynamic analysis indicated that the reaction is thermodynamically possible and exothermic. Thus, the reaction that is initiated by the severe plastic deformation and friction associated with FSP could continue by the heat that is generated by the exothermic reaction. During each FSP pass, the FSP products are detached quickly from the interface and the growth of the particles is limited and nanometer-sized reinforcements were produced. The presence of facet and hexagonal nanoparticles in transmission electron microscopy micrographs of the stir zone confirmed the formation of Al3Ni and Al2O3 nanoreinforcements, respectively. Mechanical test results showed that the microhardness and ultimate tensile strength in the stir zone of nanocomposite decreased due to the dissolution of precipitates in Al6061-T6 during FSP. The tribological properties of Al6061 at 350°C were significantly improved by developing surface Al/Al2O3-Al3Ni nanocomposite.

  19. Mechanisms of elevated-temperature deformation in the B2 aluminides NiAl and CoAl

    NASA Technical Reports Server (NTRS)

    Yaney, D. L.; Nix, W. D.

    1988-01-01

    A strain rate change technique, developed previously for distinguishing between pure-metal and alloy-type creep behavior, was used to study the elevated-temperature deformation behavior of the intermetallic compounds NiAl and CoAl. Tests on NiAl were conducted at temperatures between 1100 and 1300 K while tests on CoAl were performed at temperatures ranging from 1200 to 1400 K. NiAl exhibits pure-metal type behavior over the entire temperature range studied. CoAl, however, undergoes a transition from pure-metal to alloy-type deformation behavior as the temperature is decreased from 1400 to 1200 K. Slip appears to be inherently more difficult in CoAl than in NiAl, with lattice friction effects limiting the mobility of dislocations at a much higher tmeperature in CoAl than in NiAl. The superior strength of CoAl at elevated temperatures may, therefore, be related to a greater lattice friction strengthening effect in CoAl than in NiAl.

  20. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE PAGES

    Rao, J. C.; Diao, H. Y.; Ocelík, V.; ...

    2017-03-27

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  1. Secondary phases in Al xCoCrFeNi high-entropy alloys: An in-situ TEM heating study and thermodynamic appraisal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, J. C.; Diao, H. Y.; Ocelík, V.

    Secondary phases, either introduced by alloying or heat treatment, are commonly present in most high-entropy alloys (HEAs). Understanding the formation of secondary phases at high temperatures, and their effect on mechanical properties, is a critical issue that is undertaken in the present paper, using the Al xCoCrFeNi (x = 0.3, 0.5, and 0.7) as a model alloy. The in-situ transmission-electron-microscopy (TEM) heating observation, an atom-probe-tomography (APT) study for the reference starting materials (Al 0.3 and Al 0.5 alloys), and thermodynamic calculations for all three alloys, are performed to investigate (1) the aluminum effect on the secondary-phase fractions, (2) the annealing-twinningmore » formation in the face-centered-cubic (FCC) matrix, (3) the strengthening effect of the secondary ordered body-centered-cubic (B2) phase, and (4) the nucleation path of the σ secondary phase thoroughly. Finally, the present work will substantially optimize the alloy design of HEAs and facilitate applications of HEAs to a wide temperature range.« less

  2. Influence of Al addition on structural, crystallization and soft magnetic properties of DC Joule annealed FeCo based nanocrystalline alloys

    NASA Astrophysics Data System (ADS)

    Murugaiyan, Premkumar; Abhinav, Anand; Verma, Rahul; Panda, Ashis K.; Mitra, Amitava; Baysakh, Sandip; Roy, Rajat K.

    2018-02-01

    The effect of minor Al addition on structural, crystallization, soft magnetic behaviour and magnetic field induced anisotropy through DC Joule annealing in (Fe53.95Co29.05)83Si1.3B11.7-xNb3Cu1Alx, (X = 0, 1) alloys has been studied. The Al added as-quenched melt spun ribbons show good glass forming ability, better thermo-physical properties like a high Tx1 of 438 °C, Tcam of 435 °C and Tcnc of 906 °C, compared to Tx1 of 389 °C, Tcam of 409 °C and Tcnc of 900 °C for the alloy without Al addition. The longitudinal magnetic field annealed Al added alloy exhibits low Hc of 12.92 A/m and maximum Ms. of 1.78 T. The better soft magnetic properties of Al added alloy are achieved through a high nucleation density of BCC-FeCo(Al) nanocrystallites having low K1 and λ values. The as-quenched alloys possess high magneto-strain exceeding 30 ppm and approach near zero value on nanocrystallization. The longitudinal magnetic field assisted DC Joule annealing, having current density (J) in the range of J = 20-25 A/mm2 promotes good magnetic softening due to precipitation of 5-35 nm nanocrystallites as explained by extended-random anisotropy model. The Al added alloy shows better magnetic field induced anisotropy (Ku) on nanocrystallization and shows visible change in the shape of hysteresis loop.

  3. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation

    DOE PAGES

    Schuh, B.; Mendez-Martin, F.; Völker, B.; ...

    2015-06-24

    An equiatomic CoCrFeMnNi high-entropy alloy (HEA), produced by arc melting and drop casting, was subjected to severe plastic deformation (SPD) using high-pressure torsion. This process induced substantial grain refinement in the coarse-grained casting leading to a grain size of approximately 50 nm. As a result, strength increased significantly to 1950 MPa, and hardness to similar to 520 MV. Analyses using transmission electron microscopy (TEM) and 3-dimensional atom probe tomography (3D-APT) showed that, after SPD, the alloy remained a true single-phase solid solution down to the atomic scale. Subsequent investigations characterized the evolution of mechanical properties and microstructure of this nanocrystallinemore » HEA upon annealing. Isochronal (for 1 h) and isothermal heat treatments were performed followed by microhardness and tensile tests. The isochronal anneals led to a marked hardness increase with a maximum hardness of similar to 630 HV at about 450 degrees C before softening set in at higher temperatures. The isothermal anneals, performed at this peak hardness temperature, revealed an additional hardness rise to a maximum of about 910 MV after 100 h. To clarify this unexpected annealing response, comprehensive microstructural analyses were performed using TEM and 3D-APT. New nano-scale phases were observed to form in the originally single-phase HEA. After times as short as 5 min at 450 degrees C, a NiMn phase and Cr-rich phase formed. With increasing annealing time, their volume fractions increased and a third phase, FeCo, also formed. It appears that the surfeit of grain boundaries in the nanocrystalline HEA offer many fast diffusion pathways and nucleation sites to facilitate this phase decomposition. The hardness increase, especially for the longer annealing times, can be attributed to these nano-scaled phases embedded in the HEA matrix. The present results give new valuable insights into the phase stability of single-phase high-entropy alloys as

  4. Evaluation of Cyclic Oxidation and Hot Corrosion Behavior of HVOF-Sprayed WC-Co/NiCrAlY Coating

    NASA Astrophysics Data System (ADS)

    Somasundaram, B.; Kadoli, Ravikiran; Ramesh, M. R.

    2014-08-01

    Corrosion of metallic structural materials at an elevated temperature in complex multicomponent gas environments are potential problems in many fossil energy systems, especially those using coal as a feedstock. Combating these problems involves a number of approaches, one of which is the use of protective coatings. The high velocity oxy fuel (HVOF) process has been used to deposit WC-Co/NiCrAlY composite powder on two types of Fe-based alloys. Thermocyclic oxidation behavior of coated alloys was investigated in the static air as well as in molten salt (Na2SO4-60%V2O5) environment at 700 °C for 50 cycles. The thermogravimetric technique was used to approximate the kinetics of oxidation. WC-Co/NiCrAlY coatings showed a lower oxidation rate in comparison to uncoated alloys. The oxidation resistance of WC-Co/NiCrAlY coatings can be ascribed to the oxide layer of Al2O3 and Cr2O3 formed on the outermost surface. Coated alloys extend a protective oxide scale composed of oxides of Ni and Cr that are known to impart resistance to the hot corrosion in the molten salt environment.

  5. Damage structures in fission-neutron irradiated Ni-based alloys at high temperatures

    NASA Astrophysics Data System (ADS)

    Yamakawa, K.; Shimomura, Y.

    1999-01-01

    The defects formed in Ni based (Ni-Si, Ni-Cu and Ni-Fe) alloys which were irradiated with fission-neutrons were examined by electron microscopy. Irradiations were carried out at 473 K and 573 K. In the 473 K irradiated specimens, a high density of large interstitial loops and small vacancy clusters with stacking fault tetrahedra (SFT) were observed. The number densities of these two types of defects did not strongly depend on the amount of solute atoms in each alloy. The density of the loops in Ni-Si alloys was much higher than those in Ni-Cu and Ni-Fe alloys, while the density of SFT only slightly depended on the kind of solute. Also, the size of the loops depended on the kinds and amounts of solute. In 573 K irradiated Ni-Cu specimens, a high density of dislocation lines developed during the growth of interstitial loops. In Ni-Si alloys, the number density and size of the interstitial loops changed as a function of the amount of solute. Voids were formed in Ni-Cu alloys but scarcely formed in Ni-Si alloys. The number density of voids was one hundredth of that of SFT observed in 473 K irradiated Ni-Cu alloys. Possible formation processes of interstitial loops, SFT dislocation lines and voids are discussed.

  6. High-velocity deformation of Al 0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    DOE PAGES

    Li, Z.; Zhao, S.; Diao, H.; ...

    2017-02-17

    Here, the mechanical behavior of a single phase (fcc) Al 0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives risemore » to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors.« less

  7. High-velocity deformation of Al0.3CoCrFeNi high-entropy alloy: Remarkable resistance to shear failure

    PubMed Central

    Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.

    2017-01-01

    The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors. PMID:28210000

  8. 10,000-Hour Cyclic Oxidation Behavior at 982 C (1800 F) of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1997-01-01

    Sixty-eight high temperature Co-, Fe-, and Ni-base alloys were tested for 10-one thousand hour cycles in static air at 982 C (1800 F). The oxidation behavior of the test samples was evaluated by specific weight change/time data, x-ray diffraction of the post-test samples, and their final appearance. The gravimetric and appearance data were combined into a single modified oxidation parameter, KB4 to rank the cyclic oxidation resistance from excellent to catastrophic. The alloys showing the 'best' resistance with no significant oxidation attack were the alumina/aluminate spinel forming Ni-base turbine alloys: U-700, NASA-VIA and B-1900; the Fe-base ferritic alloys with Al: TRW-Valve, HOS-875, NASA-18T, Thermenol and 18SR; and the Ni-base superalloy IN-702.

  9. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE PAGES

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...

    2017-06-06

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  10. Irradiation-induced damage evolution in concentrated Ni-based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou

    Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less

  11. Solute transport during the cyclic oxidation of Ni-Cr-Al alloys. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.

    1982-01-01

    Important requirements for protective coatings of Ni-Cr-Al alloys for gas turbine superalloys are resistance to oxidation accompanied by thermal cycling, resistance to thermal fatigue cracking. The resistance to oxidation accompanied by thermal cycling is discussed. The resistance to thermal fatigue cracking is also considered.

  12. Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses

    PubMed Central

    Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.

    2015-01-01

    For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale. PMID:26592568

  13. Atomistic Design of Favored Compositions for Synthesizing the Al-Ni-Y Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Li, J. H.; Liu, J. B.; Liu, B. X.

    2015-11-01

    For a ternary alloy system promising for obtaining the so-called bulk metallic glasses (BMGs), the first priority issue is to predict the favored compositions, which could then serve as guidance for the appropriate alloy design. Taking the Al-Ni-Y system as an example, here we show an atomistic approach, which is developed based on a recently constructed and proven realistic interatomic potential of the system. Applying the Al-Ni-Y potential, series simulations not only clarify the glass formation mechanism, but also predict in the composition triangle, a hexagonal region, in which a disordered state, i.e., the glassy phase, is favored energetically. The predicted region is defined as glass formation region (GFR) for the ternary alloy system. Moreover, the approach is able to calculate an amorphization driving force (ADF) for each possible glassy alloy located within the GFR. The calculations predict an optimized sub-region nearby a stoichiometry of Al80Ni5Y15, implying that the Al-Ni-Y metallic glasses designed in the sub-region could be the most stable. Interestingly, the atomistic predictions are supported by experimental results observed in the Al-Ni-Y system. In addition, structural origin underlying the stability of the Al-Ni-Y metallic glasses is also discussed in terms of a hybrid packing mode in the medium-range scale.

  14. Increasing Ti-6Al-4V brazed joint strength equal to the base metal by Ti and Zr amorphous filler alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganjeh, E., E-mail: navidganjehie@sina.kntu.ac.ir; Sarkhosh, H.; Bajgholi, M.E.

    Microstructural features developed along with mechanical properties in furnace brazing of Ti-6Al-4V alloy using STEMET 1228 (Ti-26.8Zr-13Ni-13.9Cu, wt.%) and STEMET 1406 (Zr-9.7Ti-12.4Ni-11.2Cu, wt.%) amorphous filler alloys. Brazing temperatures employed were 900-950 Degree-Sign C for the titanium-based filler and 900-990 Degree-Sign C for the zirconium-based filler alloys, respectively. The brazing time durations were 600, 1200 and 1800 s. The brazed joints were evaluated by ultrasonic test, and their microstructures and phase constitutions analyzed by metallography, scanning electron microscopy and X-ray diffraction analysis. Since microstructural evolution across the furnace brazed joints primarily depends on their alloying elements such as Cu, Ni andmore » Zr along the joint. Accordingly, existence of Zr{sub 2}Cu, Ti{sub 2}Cu and (Ti,Zr){sub 2}Ni intermetallic compounds was identified in the brazed joints. The chemical composition of segregation region in the center of brazed joints was identical to virgin filler alloy content which greatly deteriorated the shear strength of the joints. Adequate brazing time (1800 s) and/or temperature (950 Degree-Sign C for Ti-based and 990 Degree-Sign C for Zr-based) resulted in an acicular Widmanstaetten microstructure throughout the entire joint section due to eutectoid reaction. This microstructure increased the shear strength of the brazed joints up to the Ti-6Al-4V tensile strength level. Consequently, Ti-6Al-4V can be furnace brazed by Ti and Zr base foils produced excellent joint strengths. - Highlights: Black-Right-Pointing-Pointer Temperature or time was the main factors of controlling braze joint strength. Black-Right-Pointing-Pointer Developing a Widmanstaetten microstructure generates equal strength to base metal. Black-Right-Pointing-Pointer Brittle intermetallic compounds like (Ti,Zr){sub 2}Ni/Cu deteriorate shear strength. Black-Right-Pointing-Pointer Ti and Zr base filler alloys were the best choice for

  15. Development of High Strength Thermally Stable Al-based Alloys with Nanocomposite Structure

    DTIC Science & Technology

    2010-02-05

    Lin Z.G., Mezouar M ., Crichton W., Inoue A. Evidence of eutectic crystallization and transient nucleation in Al89La6Ni5 amorphous alloy // Appl...and (1.1–4.3)×1023 m -3, respectively, results in essential increasing of the microhardness (by 740–1740 MPa) in comparison with that of amorphous...crystallization event are in the ranges (0.22-0.59), (14.8–21.0) nm and (1.1–4.3)×1023 m -3, respectively. The lattice parameters of fcc Al nanocrystals have been

  16. Grain boundary character distribution in nanocrystalline metals produced by different processing routes

    DOE PAGES

    Bober, David B.; Kumar, Mukal; Rupert, Timothy J.; ...

    2015-12-28

    Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantlymore » random high angle (73 pct). Furthermore, these grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.« less

  17. High-Temperature Wettability and Interactions between Y-Containing Ni-Based Alloys and Various Oxide Ceramics.

    PubMed

    Li, Jinpeng; Zhang, Huarui; Gao, Ming; Li, Qingling; Bian, Weidong; Tao, Tongxiang; Zhang, Hu

    2018-05-07

    To obtain appropriate crucible materials for vacuum induction melting of MCrAlY alloys, four different oxide ceramics, including MgO, Y₂O₃, Al₂O₃, and ZrO₂, with various microstructures were designed and characterized. The high-temperature wettability and interactions between Ni-20Co-20Cr-10Al-1.5Y alloys and oxide ceramics were studied by sessile drop experiments under vacuum. The results showed that all the systems exhibited non-wetting behavior. The contact angles were stable during the melting process of alloys and the equilibrium contact angles were 140° (MgO), 148° (Y₂O₃), 154° (Al₂O₃), and 157° (ZrO₂), respectively. The interfacial reaction between the ceramic substrates and alloys occurred at high temperature. Though the ceramics had different microstructures, similar continuous Y₂O₃ reaction layer with thicknesses of about 25 μm at the alloy-ceramic interface in MgO, Al₂O₃, and ZrO₂ systems formed. The average area percentage of oxides in the alloy matrices were 0.59% (MgO), 0.11% (Al₂O₃), 0.09% (ZrO₂), and 0.02% (Y₂O₃), respectively. The alloys, after reacting with MgO ceramic, had the highest inclusion content, while those with the lowest content were in the Y₂O₃ system. Y₂O₃ ceramic was the most beneficial for vacuum induction melting of high-purity Y-containing Ni-based alloys.

  18. 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni- Base Alloys Evaluated at 982 deg. C (1800 deg. F)

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1999-01-01

    Power systems with operating temperatures in the range of 815 to 982 C (1500 to 1800 F) frequently require alloys that can operate for long times at these temperatures. A critical requirement is that these alloys have adequate oxidation resistance. The alloys used in these power systems require thousands of hours of operating life with intermittent shutdown to room temperature. Intermittent power plant shutdowns, however, offer the possibility that the protective scale will tend to spall (i.e., crack and flake off) upon cooling, increasing the rate of oxidative attack in subsequent heating cycles. Thus, it is critical that candidate alloys be evaluated for cyclic oxidation behavior. It was determined that exposing test alloys to ten 1000-hr cycles in static air at 982 10 000-hr Cyclic Oxidation Behavior of 68 High-Temperature Co-, Fe-, and Ni-Base Alloys Evaluated at 982 C (1800 F) could give a reasonable simulation of long-time power plant operation. Iron- (Fe-), nickel- (Ni-), and cobalt- (Co-) based high-temperature alloys with sufficient chromium (Cr) and/or aluminum (Al) content can exhibit excellent oxidation resistance. The protective oxides formed by these classes of alloys are typically Cr2O3 and/or Al2O3, and are usually influenced by their Cr, or Cr and Al, content. Sixty-eight Co-, Fe-, and Ni-base high-temperature alloys, typical of those used at this temperature or higher, were used in this study. At the NASA Lewis Research Center, the alloys were tested and compared on the basis of their weight change as a function of time, x-ray diffraction of the protective scale composition, and the physical appearance of the exposed samples. Although final appearance and x-ray diffraction of the final scale products were two factors used to evaluate the oxidation resistance of each alloy, the main criterion was the oxidation kinetics inferred from the specific weight change versus time data. These data indicated a range of oxidation behavior including parabolic

  19. Effects of Ni content on nanocrystalline Fe-Co-Ni ternary alloys synthesized by a chemical reduction method

    NASA Astrophysics Data System (ADS)

    Chokprasombat, Komkrich; Pinitsoontorn, Supree; Maensiri, Santi

    2016-05-01

    Magnetic properties of Fe-Co-Ni ternary alloys could be altered by changing of the particle size, elemental compositions, and crystalline structures. In this work, Fe50Co50-xNix nanoparticles (x=10, 20, 40, and 50) were prepared by the novel chemical reduction process. Hydrazine monohydrate was used as a reducing agent under the concentrated basic condition with the presence of poly(vinylpyrrolidone). We found that the nanoparticles were composed of Fe, Co and Ni with compositions according to the molar ratio of the metal sources. Interestingly, the particles were well-crystalline at the as-prepared state without post-annealing at high temperature. Increasing Ni content resulted in phase transformation from body centered cubic (bcc) to face centered cubic (fcc). For the fcc phase, the average particle size decreased when increased the Ni content; the Fe50Ni50 nanoparticles had the smallest average size with the narrowest size distribution. In additions, the particles exhibited ferromagnetic properties at room temperature with the coercivities higher than 300 Oe, and the saturation magnetiation decreased with increasing Ni content. These results suggest that the structural and magnetic properties of Fe-Co-Ni alloys could be adjusted by varying the Ni content.

  20. Physicochemical investigation of NiAl with small molybdenum additions

    NASA Technical Reports Server (NTRS)

    Troshkina, V. A.; Kucherenko, L. A.; Fadeeva, V. I.; Aristova, N. M.

    1982-01-01

    Specimens of four cast NiAl alloys, three of them containing 0.5, 1.0 and 1.5 at. % Mo., were homogenized for 10, 10, and 140 hr at 1373, 1523 and 1273 K, respectively, then kept at 1073, 1173 and 1323 K for 60, 120 and 3 hr, respectively, and quenched in icy water. The precipitation of a metastable Ni3Mo phase was observed at temperatures between 1073 and 1523 K. Molybdenum substituted for nickel was found to inhibit the lattice disordering in NiAl at 1073 and 1523 K.

  1. STEM and APT characterization of scale formation on a La,Hf,Ti-doped NiCrAl model alloy.

    PubMed

    Unocic, Kinga A; Chen, Yimeng; Shin, Dongwon; Pint, Bruce A; Marquis, Emmanuelle A

    2018-06-01

    A thermally grown scale formed on a cast NiCrAl model alloy doped with lanthanum, hafnium, and titanium was examined after isothermal exposure at 1100 °C for 100 h in dry flowing O 2 to understand the dopant segregation along scale grain boundaries. The complex scale formed on the alloy surface was composed of two types of substrates: phase-dependent, thin (<250 nm) outer layers and a columnar-grained ∼3.5 μm inner alumina layer. Two types of oxides formed between the inner and outer scale layers: small (3-15 nm) La 2 O 3 and larger (≤50 nm) HfO 2 oxide precipitates. Nonuniform distributions of the hafnium, lanthanum, and titanium dopants were observed along the inner scale grain boundaries, with hafnium dominating in most of the grain boundaries of α-Al 2 O 3. The concentration of reactive elements (RE) seemed to strongly depend on the grain boundary structure. The level of titanium grain boundary segregation in the inner scale decreased toward the model alloy (substrate), confirming the fast outward diffusion of titanium. Hafnium was also observed at the metal-scale interface and in the γ' (Ni 3 Al) phase of the alloy. High-resolution scanning transmission electron microscopy (STEM) confirmed the substitution of REs for aluminum atoms at the scale grain boundaries, consistent with both the semiconducting band structure and the site-blocking models. Both STEM and atom probe tomography allowed quantification of REs along the scale grain boundaries across the scale thickness. Analysis of the scale morphology after isothermal exposure in flowing oxygen revealed a myriad of new precipitate phases, RE segregation dependence on grain boundary type, and atomic arrangement along scale grain boundaries, which is expected to influence the scale growth rate, stability, and mechanical properties. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Low-cost Fe--Ni--Cr alloys for high temperature valve applications

    DOEpatents

    Muralidharan, Govindarajan

    2017-03-28

    An Fe--Ni--Cr alloy is composed essentially of, in terms of weight percent: 1 to 3.5 Al, up to 2 Co, 15 to 19.5 Cr, up to 2 Cu, 23 to 40 Fe, up to 0.3 Hf, up to 4 Mn, 0.15 to 2 Mo, up to 0.15 Si, up to 1.05 Ta, 2.8 to 4.3 Ti, up to 0.5 W, up to 0.06 Zr, 0.02 to 0.15 C, 0.0001 to 0.007 N, balance Ni, wherein, in terms of atomic percent: 6.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.10, 0.33.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.065, 4.ltoreq.(Fe+Cr)/(Al+Ti+Zr+Hf+Ta).ltoreq.10, the alloy being essentially free of Nb and V.

  3. Grain Refinement of Al-Si-Fe-Cu-Zn-Mn Based Alloy by Al-Ti-B Alloy and Its Effect on Mechanical Properties.

    PubMed

    Yoo, Hyo-Sang; Kim, Yong-Ho; Jung, Chang-Gi; Lee, Sang-Chan; Lee, Seong-Hee; Son, Hyeon-Taek

    2018-03-01

    We investigated the effects of Al-5.0wt%Ti-1.0wt%B addition on the microstructure and mechanical properties of the as-extruded Al-0.15wt%Si-0.2wt%Fe-0.3wt%Cu-0.15wt%Zn-0.9wt%Mn based alloys. The Aluminum alloy melt was held at 800 °C and then poured into a mould at 200 °C. Aluminum alloys were hot-extruded into a rod that was 12 mm in thickness with a reduction ratio of 38:1. AlTiB addition to Al-0.15Si-0.2Fe-0.3Cu-0.15Zn-0.9Mn based alloys resulted in the formation of Al3Ti and TiB2 intermetallic compounds and grain refinement. With increasing of addition AlTiB, ultimate tensile strength increased from 93.38 to 99.02 to 100.01 MPa. The tensile strength of the as-extruded alloys was improved due to the formation of intermetallic compounds and grain refinement.

  4. Studies of Al-Ti Alloys by SEM

    NASA Astrophysics Data System (ADS)

    Yildiz, K.; Atici, Y.; Keşlİ Oǧlu, K.; Yaşar, E.

    2007-04-01

    Al-Ti (1, 2 wt. %) alloys were investigated by Scanning Electron Microscopy (SEM). SEM observations and energy-dispersive x-ray analyses (EDX) showed that the phase structure of Al-Ti (1 %) alloy at 165 μm/s is composed of Al matrix and C, Ni, Fe and Si particles and the Al-Ti (1 %) alloys at 16 and 8 μm/s have only the Al matrix and C particles. It was also found that the Al-Ti (2 %) form the Al matrix and intermetallic TiAl.

  5. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  6. Effect of Aluminum Coating on the Surface Properties of Ti-(~49 at. pct) Ni Alloy

    NASA Astrophysics Data System (ADS)

    Sinha, Arijit; Khan, Gobinda Gopal; Mondal, Bholanath; Majumdar, Jyotsna Dutta; Chattopadhyay, Partha Protim

    2015-08-01

    Stable porous layer of mixed Al2O3 and TiO2 has been formed on the Ti-(~49 at. pct) Ni alloy surface with an aim to suppress leaching of Ni from the alloy surface in contact with bio-fluid and to enhance the process of osseointegration. Aluminum coating on the Ni-Ti alloy surface prior to the anodization treatment has resulted in enhancement of depth and uniformity of pores. Thermal oxidation of the anodized aluminum-coated Ni-Ti samples has exhibited the formation of Al2O3 and TiO2 phases with dense porous structure. The nanoindentation and nanoscratch measurements have indicated a remarkable improvement in the hardness, wear resistance, and adhesiveness of the porous aluminum-coated Ni-Ti sample after thermal oxidation.

  7. Fabrication and study of double sintered TiNi-based porous alloys

    NASA Astrophysics Data System (ADS)

    Sergey, Anikeev; Valentina, Hodorenko; Timofey, Chekalkin; Victor, Gunther; Ji-hoon, Kang; Ji-soon, Kim

    2017-05-01

    Double-sintered porous TiNi-based alloys were fabricated and their structural characteristics and physico-mechanical properties were investigated. A fabrication technology of powder mixtures is elaborated in this article. Sintering conditions were chosen experimentally to ensure good structure and properties. The porous alloys were synthesized by solid-state double diffusion sintering (DDS) of Ti-Ni powder and prepare to obtain dense, crack-free, and homogeneous samples. The Ti-Ni compound sintered at various temperatures was investigated by scanning electron microscopy. Phase composition of the sintered alloys was determined by x-ray diffraction. Analysis of the data confirmed the morphology and structural parameters. Mechanical and physical properties of the sintered alloys were evaluated. DDS at 1250 °C was found to be optimal to produce porous samples with a porosity of 56% and mean pore size of 90 μm. Pore size distribution was unimodal within the narrow range of values. The alloys present enhanced strength and ductility, owing to both the homogeneity of the macrostructure and relative elasticity of the bulk, which is hardened by the Ni-rich precipitates. These results suggest the possibility to manufacture porous TiNi-based alloys for application as a new class of dental implants.

  8. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    NASA Technical Reports Server (NTRS)

    Kumar, A.; Nasrallah, M.; Douglass, D. L.

    1974-01-01

    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  9. Nanostructured Mg 2Ni materials prepared by cold rolling and used as negative electrode for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Pedneault, Sylvain; Huot, Jacques; Roué, Lionel

    In the present work, cold rolling has been investigated as a new means of producing Mg-based metal hydrides for nickel-metal hydride (Ni-MH) batteries. Structure and electrochemical evolution of 2Mg-Ni cold-rolled samples were investigated as a function of the number of rolling passes as well as heat treatment. It was found that nanocrystalline Mg 2Ni alloy can be obtained by an appropriate three step process involving rolling, heat treatment and rolling again. It was shown that the number of primary and secondary rolling passes must be carefully optimized in order to favour the complete formation of Mg 2Ni alloy having a nanocrystalline structure (∼10 nm in crystallite size) without excessive sample oxidation. Actually, the best result was obtained by first rolling 90 times, followed by a heat treatment at 400 °C for 4 h and roll again 20 times. The resulting material displayed an initial discharge capacity of 205 mAh g -1, which is quite similar to that obtained with ball-milled Mg 2Ni alloy.

  10. Interfacial Stresses and the Anomalous Character of Thermoelastic-Deformation Curves of a Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Malygin, G. A.; Nikolaev, V. I.; Pulnev, S. A.; Chikiryaka, A. V.

    2017-12-01

    Thermoelastic-deformation curves of a single-crystalline Cu-13.5 wt % Al-4.0 wt % Ni shapememory (SM) alloy have been studied. Cyclic temperature variation in a 300-450 K interval revealed an anomalous character of thermoelastic hysteresis loops with regions of accelerated straining at both heating and cooling stages. The observed phenomenon can be used for increasing the response speed of SM-alloy based drive and sensor devices. Analysis of this phenomenon in the framework of the theory of diffuse martensitic transformations showed that the anomalous character of thermoelastic hysteresis loops may be related to the influence of interfacial stresses on the dynamics of martensitic transformations in these SM alloys.

  11. Thermokinetic Simulation of Precipitation in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Cirstea, C. D.; Karadeniz-Povoden, E.; Kozeschnik, E.; Lungu, M.; Lang, P.; Balagurov, A.; Cirstea, V.

    2017-06-01

    Considering classical nucleation theory and evolution equations for the growth and composition change of precipitates, we simulate the evolution of the precipitates structure in the classical stages of nucleation, growth and coarsening using the solid-state transformation Matcalc software. The formation of Ni3Ti, Ni4Ti3 or Ni3Ti2 precipitate is the key to hardening phenomenon of the alloys, which depends on the nickel solubility in the bulk alloys. The microstructural evolution of metastable Ni4Ti3 and Ni3Ti2 precipitates in Ni-rich TiNi alloys is simulated by computational thermokinetics, based on thermodynamic and diffusion databases. The simulated precipitate phase fractions are compared with experimental data.

  12. He behavior in Ni and Ni-based equiatomic solid solution alloy

    NASA Astrophysics Data System (ADS)

    Yan, Zhanfeng; Liu, Shaoshuai; Xia, Songqin; Zhang, Yong; Wang, Yugang; Yang, Tengfei

    2018-07-01

    In the current work, pure nickel (99.99 wt.%) and Ni-containing single phase equiatomic solid solution alloy Fe-Co-Cr-Ni were irradiated with 190 keV He ions at room temperature with different fluences and He behavior in both materials are compared. At 1 × 1017 cm-2, TEM observation reveals that only isolated and small He bubbles (1-2 nm) are formed in Fe-Co-Cr-Ni alloy while many small suspected "string"-like He bubbles are observed in nickel at the concentration peak region (5.5 at.%). When the fluence is increased to 5 × 1017 cm-2, average bubble size in nickel increases to ∼8 nm which is almost equal to that in Fe-Co-Cr-Ni, but a higher bubble density is observed in nickel. At the highest dose of 1 × 1018 cm-2, numerous surface blisters and exfoliations occur in nickel which are consistent with TEM observation, while the Fe-Co-Cr-Ni alloy only shows a slight surface blister. Bubble coarsening upon annealing at 500 °C (2 h) is observed at 5 × 1017 cm-2 in both alloys, but a significant larger bubble growth is observed in nickel, suggesting a relatively better resistance to He bubble growth for Fe-Co-Cr-Ni alloy.

  13. Pd surface functionalization of 3D electroformed Ni and Ni-Mo alloy metallic nanofoams for hydrogen production

    NASA Astrophysics Data System (ADS)

    Petica, A.; Brincoveanu, O.; Golgovici, F.; Manea, A. C.; Enachescu, M.; Anicai, L.

    2018-03-01

    The paper presents some experimental results regarding the functionalization of 3D electroformed Ni and Ni-Mo alloy nanofoams with Pd nanoclusters, as potential cathodic materials suitable for HER during seawater electrolysis. The electrodeposition from aqueous electrolytes containing NiCl2 and NH4Cl has been applied to prepare the 3D Ni nanofoams. Ni-Mo alloys have been electrodeposited involving aqueous ammonium citrate type electrolytes. Pd surface functionalization has been performed using both electroless and electrochemical procedures. Pd content varied in the range of 0.5 – 8 wt.%, depending on the applied procedure and the operation conditions. The use of a porous structure associated with alloying element (i.e. Mo) and Pd surface functionalization facilitated enhanced performances from HER view point in seawater electrolyte (lower Tafel slopes). The determined Tafel slope values ranged from 123 to 105 mV.dec-1, suggesting the Volmer step as rate determining step. The improvement of the HER catalytic activity may be ascribed to a synergistic effect between the high real active area of the 3D electroformed metallic substrate, Ni alloying with a left transition metal and surface modification using Pd noble metal.

  14. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    NiAl-1Hf single crystals have been shown to be quite strong at 1027 C, with strength levels approaching those of advanced Ni-based superalloys. Initial testing, however, indicated that the properties might not be reproducible. Study of the 1027 C creep behavior of four different NiAl-1Hf single-crystal ingots subjected to several different heat treatments indicated that strength lies in a narrow band. Thus, we concluded that the mechanical properties are reproducible. Recent investigations of the intermetallic NiAl have confirmed that minor alloying additions combined with single-crystal growth technology can produce elevated temperature strength levels approaching those of Ni-based superalloys. For example, General Electric alloy AFN 12 {Ni-48.5(at.%) Al-0.5Hf-1Ti-0.05Ga} has a creep rupture strength equivalent to Rene 80 combined with a approximately 30-percent lower density, a fourfold improvement in thermal conductivity, and the ability to form a self-protective alumina scale in aggressive environments. Although the compositions of strong NiAl single crystals are relatively simple, the microstructures are complex and vary with the heat treatment and with small ingot-toingot variations in the alloy chemistry. In addition, initial testing suggested a strong dependence between microstructure and creep strength. If these observations were true, the ability to utilize NiAl single-crystal rotating components in turbine machinery could be severely limited. To investigate the possible limitations in the creep response of high-strength NiAl single crystals, the NASA Glenn Research Center at Lewis Field initiated an in depth investigation of the effect of heat treatment on the microstructure and subsequent 1027 C creep behavior of [001]-oriented NiAl-1Hf with a nominal chemistry of Ni-47.5Al-1Hf-0.5Si. This alloy was selected since four ingots, grown over a number of years and possessing slightly different compositions, were available for study. Specimens taken from the

  15. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    NASA Astrophysics Data System (ADS)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  16. CVD Fiber Coatings for Al2O3/NiAl Composites

    NASA Technical Reports Server (NTRS)

    Boss, Daniel E.

    1995-01-01

    While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.

  17. Physical Properties of NiFeCrCo-based High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Zaddach, Alexander Joseph

    Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated

  18. Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamm, Artur; Aabloo, Alvo; Klintenberg, Mattias

    2015-08-26

    The aim of our study is to characterize some atomic-scale properties of Ni-based FCC multicomponent alloys. For this purpose, we use Monte Carlo method combined with density functional theory calculations to study short-range order (SRO), atomic displacements, electronic density of states, and magnetic moments in equimolar ternary NiCrCo, and quaternary NiCrCoFe alloys. The salient features for the ternary alloy are a negative SRO parameter between Ni Cr and a positive between Cr Cr pairs as well as a weakly magnetic state. For the quaternary alloy we predict negative SRO parameter for Ni Cr and Ni Fe pairs and positive formore » Cr Cr and Fe Fe pairs. Atomic displacements for both ternary and quaternary alloys are negligible. In contrast to the ternary, the quaternary alloy shows a complex magnetic structure. The electronic structure of the ternary and quaternary alloys shows differences near the Fermi energy between a random solid solution and the predicted structure with SRO. Despite that, the calculated EXAFS spectra does not show enough contrast to discriminate between random and ordered structures. Finally, the predicted SRO has an impact on point-defect energetics, electron phonon coupling and thermodynamic functions and thus, SRO should not be neglected when studying properties of these two alloys.« less

  19. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-05-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species (i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  20. Screening of Possible Re-Substitutional Elements in Single-Crystal Ni-Based Superalloys: A Viewpoint From Interdiffusion Coefficients in Ni-Al-X Ternaries

    NASA Astrophysics Data System (ADS)

    Chen, Juan; Zhang, Lijun; Lu, Xiao-Gang

    2018-07-01

    A popular area of research in the field of high-temperature alloys concerns the search of substitutional elements for Re in order to manufacture single-crystal Ni-based superalloys with less or even no Re addition. To find the elements with similar or even lower diffusion coefficients than Re is an effective strategy. Based on 29 fcc diffusion couples in ternary Ni-Al-X (X = Re, Os, and Ir) systems, high-throughput measurement of composition- and temperature-dependent interdiffusivity matrices was performed using our recently developed numerical inverse method implemented in HitDIC software. The reliability of the determined interdiffusivities was validated by comprehensively comparing the model-predicted composition/interdiffusion flux profiles for each diffusion couple with the corresponding experimental data. Moreover, we also conducted a comparison with the interdiffusivities evaluated using the traditional Matano-Kirkaldy method as well as those from the literature and in boundary binary systems. After that, a comprehensive comparison of the interdiffusion coefficients in fcc Ni-2 wt pct Al-6 wt pct X (X = Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) alloys at 1423 K to 1573 K was conducted. Results indicate that the diffusion rate of Re is lower than that of Os at 1473 K and 1523 K; but higher at 1573 K, while the diffusion rate of Ir is always slightly higher than those of Os and Re at 1473 K to 1573 K. Further analysis of the magnitude of the interdiffusion coefficient correlates with the alloying concentration, activation energy, atomic number, and atomic radius of different diffusing transition metal species ( i.e., Ti, Co, Ni, Nb, Mo, Ru, Rh, Ta, W, Re, Os, Ir, and Pt) was conducted, which is expected to provide useful information regarding element choice in the development of new-generation Ni-based single-crystal superalloys.

  1. Final Report for Department of Energy Grant No. DE-FG02-02ER45997, "Alloy Design of Nanoscale Precipitation Strengthened Alloys: Design of a Heat Treatable Aluminum Alloy Useful to 400C"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris E. Fine; Gautam Ghosh; Dieter Isheim

    A creep resistant high temperature Al base alloy made by conventional processing procedures is the subject of this research. The Ni-based superalloys have volume fractions of cubic L1{sub 2} phase precipitates near 50%. This is not attainable with Al base alloys and the approach pursued in this research was to add L1{sub 2} structured precipitates to the Al-Ni eutectic alloy, 2.7 at. % Ni-97.3 at. % Al. The eutectic reaction gives platelets of Al{sub 3}Ni (DO{sub 11} structure) in an almost pure Al matrix. The Al{sub 3}Ni platelets give reinforcement strengthening while the L1{sub 2} precipitates strengthen the Al alloymore » matrix. Based on prior research and the extensive research reported here modified cubic L1{sub 2} Al{sub 3}Zr is a candidate. While cubic Al{sub 3}Zr is metastable, the stable phase is tetragonal, only cubic precipitates were observed after 1600 hrs at 425 C and they hardly coarsened at all with time at this temperature. Also addition of Ti retards the cubic to tetragonal transformation; however, a thermodynamically stable precipitate is desired. A very thorough ab initio computational investigation was done on the stability of L1{sub 2} phases of composition, (Al,X){sub 3}(Zr,Ti) and the possible occurrence of tie lines between a stable L1{sub 2} phase and the Al alloy terminal solid solution. Precipitation of cubic (Al{sub (1-x)}Zn{sub x}){sub 3}Zr in Al was predicted by these computations and subsequently observed by experiment (TEM). To test the combined reinforcement-precipitation concept to obtain a creep resistant Al alloy, Zr and Ti were added to the Al-Ni eutectic alloy. Cubic L1{sub 2} precipitates did form. The first and only Al-Ni-Zr-Ti alloy tested for creep gave a steady state creep rate at 375 C of 8 x 10{sup -9} under 20MPa stress. The goal is to optimize this alloy and add Zn to achieve a thermodynamically stable precipitate.« less

  2. Active metal brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using Copper ABA® (Cu-3.0Si-2.3Ti-2.0Al wt.%)

    NASA Astrophysics Data System (ADS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2018-01-01

    The application of an active braze alloy (ABA) known as Copper ABA® (Cu-3.0Si-2.3Ti-2.0Al wt.%) to join Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) has been investigated. This ABA was selected to increase the operating temperature of the joint beyond the capabilities of typically used ABAs such as Ag-Cu-Ti-based alloys. Silica present as a secondary phase in the Al2O3 at a level of 5 wt.% enabled the ceramic component to bond to the ABA chemically by forming a layer of Si3Ti5 at the ABA/Al2O3 interface. Appropriate brazing conditions to preserve a near-continuous Si3Ti5 layer on the Al2O3 and a continuous Fe3Si layer on the Kovar® were found to be a brazing time of ≤15 min at 1025 °C or ≤2 min at 1050 °C. These conditions produced joints that did not break on handling and could be prepared easily for microscopy. Brazing for longer periods of time, up to 45 min, at these temperatures broke down the Si3Ti5 layer on the Al2O3, while brazing at ≥1075 °C for 2-45 min broke down the Fe3Si layer on the Kovar® significantly. Further complications of brazing at ≥1075 °C included leakage of the ABA out of the joint and the formation of a new brittle silicide, Ni16Si7Ti6, at the ABA/Al2O3 interface. This investigation demonstrates that it is not straightforward to join Al2O3 to Kovar® using Copper ABA®, partly because the ranges of suitable values for the brazing temperature and time are quite limited. Other approaches to increase the operating temperature of the joint are discussed.

  3. Effective cluster interactions at alloy surfaces and charge self-consistency: Surface segregation in Ni-10 at. % Al and Cu-Ni

    NASA Astrophysics Data System (ADS)

    Schulthess, T.; Monnier, R.; Crampin, S.

    1994-12-01

    First-principles results are presented for the effective cluster interactions at the surface of a random Ni-10 at. % Al alloy. The derivation is based on an extension of the generalized perturbation method to semi-infinite inhomogeneous binary alloys, using a layer version of the Korringa-Kohn-Rostocker multiple-scattering approach in conjunction with the single-site coherent potential approximation to compute the self-consistent electronic structure of the system. When applied to the bulk, the method yields effective pair interactions that have the full point-group symmetry of the lattice to a very high level of numerical accuracy, despite the fact that intra- and interlayer couplings (scattering-path operators) are treated differently, and which are in perfect agreement with those of a recent three-dimensional treatment. Besides the pair terms, a selected class of triplet and quadruplet interactions are calculated, as well as the point interactions induced by the presence of the surface. The value of the latter in the first lattice plane is strongly exaggerated in our approach, leading to a complete segregation of the minority species to the surface. Using a value corresponding to the difference in the surface energies of the pure components for this term leads to the observed Al concentration of ~=25% at the surface. Possible reasons for the shortcomings of the theory are analyzed, and test calculations for the well studied Cu-Ni system show that the free energy of the semi-infinite alloy cannot be approximated by the sum over the single-particle band energies, once charge self-consistency is enforced at the surface.

  4. The effect of anti-phase domain size on the ductility of a rapidly solidified Ni3Al-Cr alloy

    NASA Technical Reports Server (NTRS)

    Carro, G.; Bertero, G. A.; Wittig, J. E.; Flanagan, W. F.

    1989-01-01

    Tensile tests on splat-quenched Ni3Al-Cr alloys showed a sharp decrease in ductility with long-time annealing. The growth of the initially very-fine-size anti-phase domains showed a tenuous correlation with ductility up to a critical size, where ductility was lost. The grain size was relatively unaffected by these annealing treatments, but the grain-boundary curvature decreased, implying less toughness. An important observation was that, for the longest annealing time, a chromium-rich precipitate formed, which the data indicate could be a boride. Miniaturized tensile tests were performed on samples which were all obtained from the same splat-quenched foil, and the various domain sizes were controlled by subsequent annealing treatments.

  5. Elevated Temperature Compressive Strength Properties of Oxide Dispersion Strengthened NiAl After Cryo-milling and Roasting in Nitrogen

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Grahle, Peter; Arzt, Eduard; Hebsur, Mohan

    1998-01-01

    In an effort to superimpose two different elevated temperature strengthening mechanisms in NiAl, several lots of oxide dispersion strengthened (ODS) NiAl powder have been cryo-milled in liquid nitrogen to introduce AlN particles at the grain boundaries. As an alternative to cryo-milling, one lot of ODS NiAl was roasted in nitrogen to produce AlN. Both techniques resulted in hot extruded AlN-strengthened, ODS NiAl alloys which were stronger than the base ODS NiAl between 1200 and 1400 K. However, neither the cryo-milled nor the N2-roasted ODS NiAl alloys were as strong as cryo-milled binary NiAl containing like amounts of AlN. The reason(s) for the relative weakness of cryo-milled ODS NiAl is not certain; however the lack of superior strength in N2-roasted ODS NiAl is probably due to its relatively large AlN particles.

  6. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  8. Atomic Layer Deposition of Al2O3-Ga2O3 Alloy Coatings for Li[Ni0.5Mn0.3Co0.2]O2 Cathode to Improve Rate Performance in Li-Ion Battery.

    PubMed

    Laskar, Masihhur R; Jackson, David H K; Guan, Yingxin; Xu, Shenzhen; Fang, Shuyu; Dreibelbis, Mark; Mahanthappa, Mahesh K; Morgan, Dane; Hamers, Robert J; Kuech, Thomas F

    2016-04-27

    Metal oxide coatings can improve the electrochemical stability of cathodes and hence, their cycle-life in rechargeable batteries. However, such coatings often impose an additional electrical and ionic transport resistance to cathode surfaces leading to poor charge-discharge capacity at high C-rates. Here, a mixed oxide (Al2O3)1-x(Ga2O3)x alloy coating, prepared via atomic layer deposition (ALD), on Li[Ni0.5Mn0.3Co0.2]O2 (NMC) cathodes is developed that has increased electron conductivity and demonstrated an improved rate performance in comparison to uncoated NMC. A "co-pulsing" ALD technique was used which allows intimate and controlled ternary mixing of deposited film to obtain nanometer-thick mixed oxide coatings. Co-pulsing allows for independent control over film composition and thickness in contrast to separate sequential pulsing of the metal sources. (Al2O3)1-x(Ga2O3)x alloy coatings were demonstrated to improve the cycle life of the battery. Cycle tests show that increasing Al-content in alloy coatings increases capacity retention; whereas a mixture of compositions near (Al2O3)0.5(Ga2O3)0.5 was found to produce the optimal rate performance.

  9. Cast Aluminum Alloys for High Temperature Applications Using Nanoparticles Al2O3 and Al3-X Compounds (X = Ti, V, Zr)

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.

    2009-01-01

    In this paper, the effect of nanoparticles Al2O3 and Al3-X compounds (X = Ti, V, Zr) on the improvement of mechanical properties of aluminum alloys for elevated temperature applications is presented. These nanoparticles were selected based on their low cost, chemical stability and low diffusions rates in aluminum at high temperatures. The strengthening mechanism at high temperature for aluminum alloy is based on the mechanical blocking of dislocation movements by these nanoparticles. For Al2O3 nanoparticles, the test samples were prepared from special Al2O3 preforms, which were produced using ceramic injection molding process and then pressure infiltrated by molten aluminum. In another method, Al2O3 nanoparticles can also be homogeneously mixed with fine aluminum powder and consolidated into test samples through hot pressing and sintering. With the Al3-X nanoparticles, the test samples are produced as precipitates from in-situ reactions with molten aluminum using conventional permanent mold or die casting techniques. It is found that cast aluminum alloy using nanoparticles Al3-X is the most cost effective method to produce high strength aluminum alloys for high temperature applications in comparison to nanoparticles Al2O3. Furthermore, significant mechanical properties retention in high temperature environment could be achieved with Al3-X nanoparticles, resulting in tensile strength of nearly 3 times higher than most 300- series conventional cast aluminum alloys tested at 600 F.

  10. Manufacture of NiAl-based rods for plasma centrifugal spraying using mechanochemical synthesis

    NASA Astrophysics Data System (ADS)

    Logacheva, A. I.; Gusakov, M. S.; Sentyurina, Zh. A.; Logachev, I. A.; Kandyba, A. A.

    2017-05-01

    An alternative technology is proposed for the production of NiAl-Co-Cr-Hf-Al2O3 alloy rods. It includes the fabrication of a powder by mechanochemical synthesis (MCS) followed by hot isostatic pressing in forming tool. The processes of MCS of the intermetallic alloy in a planetary mill and an attritor are studied. The products of synthesis in various mixers are compared. The microstructure and the properties of compacted samples are studied: their ultimate compressive strength is 1390-1480 MPa at a plasticity of 8.5-8.8%. Spherical granules with a target size of 20-200 μm are fabricated by plasma centrifugal spraying of the rod workpiece formed by the proposed technology.

  11. Hot corrosion testing of Ni-based alloys and coatings in a modified Dean rig

    NASA Astrophysics Data System (ADS)

    Steward, Jason Reid

    Gas turbine blades are designed to withstand a variety of harsh operating conditions. Although material and coating improvements are constantly administered to increase the mean time before turbine refurbishment or replacement, hot corrosion is still considered as the major life-limiting factor in many industrial and marine gas turbines. A modified Dean rig was designed and manufactured at Tennessee Technological University to simulate the accelerated hot corrosion conditions and to conduct screening tests on the new coatings on Ni-based superalloys. Uncoated Ni-based superalloys, Rene 142 and Rene 80, were tested in the modified Dean rig to establish a testing procedure for Type I hot corrosion. The influence of surface treatments on the hot corrosion resistance was then investigated. It was found that grit-blasted specimens showed inferior hot corrosion resistance than that of the polished counterpart. The Dean rig was also used to test model MCrAlY alloys, pack cementation NiAl coatings, and electro-codeposited MCrAlY coatings. Furthermore, the hot corrosion attack on the coated-specimens were also assessed using a statistical analysis approach.

  12. Comparative study of the influence of natural convection on directional solidification of Al 3.5 wt% Ni and Al 7 wt% Si alloys

    NASA Astrophysics Data System (ADS)

    Zhou, B. H.; Jung, H.; Mangelinck-Noël, N.; Nguyen-Thi, H.; Billia, B.; Liu, Q. S.; Lan, C. W.

    We present numerical simulations of thermosolutal convection for directional solidification of Al 3.5 wt% Ni and Al 7 wt% Si. Numerical results predict that fragmentation of dendrite arms resulting from dissolution could be favored in Al 7 wt% Si, but not in Al 3.5 wt% Ni. Corresponding experiments are in qualitative agreement with the numerical predictions. Distinguishing the two fragmentation mechanisms, namely dissolution and remelting, is critical during experiments on earth, when fluid flow is dominant.

  13. Measuring grain boundary character distributions in Ni-base alloy 725 using high-energy diffraction microscopy

    DOE PAGES

    Bagri, Akbar; Hanson, John P.; Lind, J. P.; ...

    2016-10-25

    We use high-energy X-ray diffraction microscopy (HEDM) to characterize the microstructure of Ni-base alloy 725. HEDM is a non-destructive technique capable of providing three-dimensional reconstructions of grain shapes and orientations in polycrystals. The present analysis yields the grain size distribution in alloy 725 as well as the grain boundary character distribution (GBCD) as a function of lattice misorientation and boundary plane normal orientation. We find that the GBCD of Ni-base alloy 725 is similar to that previously determined in pure Ni and other fcc-base metals. We find an elevated density of Σ9 and Σ3 grain boundaries. We also observe amore » preponderance of grain boundaries along low-index planes, with those along (1 1 1) planes being the most common, even after Σ3 twins have been excluded from the analysis.« less

  14. Surface nanocrystalline and hardening effects of Ti-Al-V alloy by electropulsing ultrasonic shock

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoxin

    2015-04-01

    The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It's indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It's different from conventional experiments and theory. It's discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it's supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management.

  15. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  16. Ab-Initio Molecular Dynamics Simulations of Molten Ni-Based Superalloys (Preprint)

    DTIC Science & Technology

    2011-10-01

    in liquid–metal density with composition and temperature across the solidification zone. Here, fundamental properties of molten Ni -based alloys ...temperature across the solidification zone. Here, fundamental properties of molten Ni -based alloys , required for modeling these instabilities, are...temperature is assessed in model Ni -Al-W and RENE-N4 alloys . Calculations are performed using a recently implemented constant pressure methodology (NPT) which

  17. The BCC/B2 morphologies in Al xNiCoFeCr high-entropy alloys

    DOE PAGES

    Ma, Yue; Jiang, Beibei; Li, Chunling; ...

    2017-02-15

    Here, the present work primarily investigates the morphological evolution of the body-centered-cubic (BCC)/B2 phases in Al xNiCoFeCr high-entropy alloys (HEAs) with increasing Al content. It is found that the BCC/B2 coherent morphology is closely related to the lattice misfit between these two phases, which is sensitive to Al. There are two types of microscopic BCC/B2 morphologies in this HEA series: one is the weave-like morphology induced by the spinodal decomposition, and the other is the microstructure of a spherical disordered BCC precipitation on the ordered B2 matrix that appears in HEAs with a much higher Al content. The mechanical properties,more » including the compressive yielding strength and microhardness of the Al xNiCoFeCr HEAs, are also discussed in light of the concept of the valence electron concentration (VEC).« less

  18. Compositional instability of {beta}-phase in Ni-Mn-Ga alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chernenko, V.A.

    1999-02-05

    The ferromagnetic Heusler alloys of stoichiometric Ni{sub 2}MnGa and nonstoichiometric Ni-Mn-Ga chemical compositions though not containing a noble-metal, indeed, belong to {beta}-alloys which lattice stability is decided by the Hume-Rothery mechanism: electron concentration e/a measuring the decrease of the electron energy due to the pseudogap formation and size factor. The intriguing feature of Ni-Mn-Ga alloys similarly to Ti-Ni, Cu-Al-Be and Ni-Al alloys arises that transformation temperature, M{sub s}, is dramatically dependent on concentration reflecting an extremely high sensitivity of the lattice stability toward the content variation. The main purpose of present paper is an analysis of previous data concerning themore » compositional dependence of M{sub s} from the viewpoint of searching for empirical correlation between the electron concentration and stability of {beta}-phase in Ni-Mn-Ga system. This analysis will provide a confirmation of the feasibility of a reasonable explanation of seemingly random collection of alloys grouped with respect to their M{sub s} values as well as other features. The alloys of compositional range studied previously are added here to a few alloys including ones doped with V and Ge to ensure the decisive role of e/a ratio on M{sub s}. Original results about the temperature dependent resistance behavior are presented as well.« less

  19. Effect of Barothermal Treatment on the Structure and the Mechanical Properties of a High-Strength Eutectic Al-Zn-Mg-Cu-Ni Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.; Karpova, Zh. A.

    2017-11-01

    The effect of barothermal treatment by hot isostatic pressing (HIP) on the structure and the properties of castings of a promising high-strength cast aluminum alloy, namely, nikalin ATs6N4 based on the Al‒Zn-Mg-Cu-Ni system, has been studied using two barothermal treatment regimes different in isothermal holding temperature. It is shown that the casting porosity substantially decreases after barothermal treatment; eutectic phase Al3Ni particles are additionally refined during exposure to the barothermal treatment temperature: the higher the HIP temperature, the more substantial the refinement. The improvement of the casting structure after HIP increases their mechanical properties. It is found, in particular, that the plasticity of the alloy in the state of the maximum hardening increases by a factor of more than 8 as compared to the initial state (from 0.82 to 6.9%).

  20. Thermal barrier coatings with (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and 8YSZ top coat on Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Yao, Junqi; He, Yedong; Wang, Deren; Peng, Hui; Guo, Hongbo; Gong, Shengkai

    2013-12-01

    Developing new bond coat has been acknowledged as an effective way to extend the service life of thermal barrier coating (TBC) during high temperature. In this study, novel thermal barrier coating system, which is composed with an (Al2O3-Y2O3)/(Pt or Pt-Au) composite bond coat and a YSZ top coat on Ni-based superalloy, has been prepared by magnetron sputtering and EB-PVD, respectively. It is demonstrated, from the cyclic oxidation tests in air at 1100 °C for 200 h, that the YSZ top coat and alloy substrate can be bonded together effectively by the (Al2O3-Y2O3)/(Pt or Pt-Au) composite coating, showing excellent resistance to oxidation, cracking and buckling. These beneficial results can be attributed to the sealing effect of such composite coating, by which the alloy substrate can be protected from oxidation and the interdiffusion between the bond coat and alloy substrate can be avoided; and the toughening effect of noble metals and composite structure of bond coat, by which the micro-cracks propagation can be inhibited and the stress in bond coat can be relaxed. This ceramic/noble metal composite coating can be a considerable structure which would has great application prospect in the TBC.

  1. Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi

    2015-04-01

    Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.

  2. Influence of Processing on the Microstructure and Mechanical Properties of a NbAl3-Base Alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G.; Locci, Ivan E.; Raj, S. V.; Nathal, Michael V.

    1992-01-01

    Induction melting and rapid solidification processing, followed by grinding to 75-micron powder and P/M consolidation, have been used to produce a multiphase, NbAl3-based, oxidation-resistant alloy of Nb-67Al-7Cr-0.5Y-0.25W composition whose strength and ductility are significantly higher than those of the induction-melted alloy at test temperatures of up to 1200 K. Attention is given to the beneficial role of microstructural refinement; the major second phase, AlNbCr, improves both oxidation resistance and mechanical properties.

  3. NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unocic, Kinga A.; Shin, Dongwon; Unocic, Raymond R.

    The nanoscale oxidation mechanisms and kinetics of a model β-NiAl system were investigated using in situ closed-cell gas reaction scanning transmission electron microscopy (STEM). Here, we directly visualize the dynamic structural and chemical changes that occur during high-temperature oxidation at a high spatial resolution of 50.3Ni–49.7Al (at.%) nanoparticles under static air conditions at 730 Torr with heating up to 750 °C at 5 °C/s. A MEMS-based gas cell system, with microfabricated heater devices and a gas delivery system, was used to reveal site-specific oxidation initiation sites. Through time-resolved annular dark-field STEM imaging, we tracked the nanoscale oxidation kinetics of Almore » 2O 3. After oxidation at 750 °C, nucleation of voids at the Ni/Al 2O 3 interface was observed along a NiAl grain boundary, followed by the formation of faceted NiO crystals. Small faceted cubic crystals of NiO were formed at the initial stage of oxidation at high PO 2 due to the outward self-diffusion of Ni 2+ ions, followed by the formation of a mixture of metastable and stable α-Al 2O 3 at the oxide/metal interface that is attributed to a PO 2 decrease with oxidation time, which agreed with thermodynamic modeling calculations. Furthermore, the results from these in situ oxidation experiments in the β-NiAl system are in agreement with the established oxidation mechanisms; however, with in situ closed-cell gas microscopy it is now feasible to investigate nanoscale oxidation mechanisms and kinetics in real time and at high spatial resolution and can be broadly applied to understand the basic high-temperature oxidation mechanisms for a wide range of alloy compositions.« less

  4. NiAl Oxidation Reaction Processes Studied In Situ Using MEMS-Based Closed-Cell Gas Reaction Transmission Electron Microscopy

    DOE PAGES

    Unocic, Kinga A.; Shin, Dongwon; Unocic, Raymond R.; ...

    2017-02-07

    The nanoscale oxidation mechanisms and kinetics of a model β-NiAl system were investigated using in situ closed-cell gas reaction scanning transmission electron microscopy (STEM). Here, we directly visualize the dynamic structural and chemical changes that occur during high-temperature oxidation at a high spatial resolution of 50.3Ni–49.7Al (at.%) nanoparticles under static air conditions at 730 Torr with heating up to 750 °C at 5 °C/s. A MEMS-based gas cell system, with microfabricated heater devices and a gas delivery system, was used to reveal site-specific oxidation initiation sites. Through time-resolved annular dark-field STEM imaging, we tracked the nanoscale oxidation kinetics of Almore » 2O 3. After oxidation at 750 °C, nucleation of voids at the Ni/Al 2O 3 interface was observed along a NiAl grain boundary, followed by the formation of faceted NiO crystals. Small faceted cubic crystals of NiO were formed at the initial stage of oxidation at high PO 2 due to the outward self-diffusion of Ni 2+ ions, followed by the formation of a mixture of metastable and stable α-Al 2O 3 at the oxide/metal interface that is attributed to a PO 2 decrease with oxidation time, which agreed with thermodynamic modeling calculations. Furthermore, the results from these in situ oxidation experiments in the β-NiAl system are in agreement with the established oxidation mechanisms; however, with in situ closed-cell gas microscopy it is now feasible to investigate nanoscale oxidation mechanisms and kinetics in real time and at high spatial resolution and can be broadly applied to understand the basic high-temperature oxidation mechanisms for a wide range of alloy compositions.« less

  5. Corrosion behavior of Ni-based structural materials for electrolytic reduction in lithium molten salt

    NASA Astrophysics Data System (ADS)

    Cho, Soo Haeng; Park, Sung Bin; Lee, Jong Hyeon; Hur, Jin Mok; Lee, Han Soo

    2011-05-01

    In this study, the corrosion behavior of new Ni-based structural materials was studied for electrolytic reduction after exposure to LiCl-Li 2O molten salt at 650 °C for 24-216 h under an oxidizing atmosphere. The new alloys with Ni, Cr, Al, Si, and Nb as the major components were melted at 1700 °C under an inert atmosphere. The melt was poured into a preheated metallic mold to prepare an as-cast alloy. The corrosion products and fine structures of the corroded specimens were characterized by scanning electron microscope (SEM), Energy Dispersive X-ray Spectroscope (EDS), and X-ray diffraction (XRD). The corrosion products of as cast and heat treated low Si/high Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, NiO, and (Al,Nb,Ti)O 2; those of as cast and heat treated high Si/low Ti alloys were Cr 2O 3, NiCr 2O 4, Ni, and NiO. The corrosion layers of as cast and heat treated low Si/high Ti alloys were continuous and dense. However, those of as cast and heat treated high Si/low Ti alloys were discontinuous and cracked. Heat treated low Si/high Ti alloy showed the highest corrosion resistance among the examined alloys. The superior corrosion resistance of the heat treated low Si/high Ti alloy was attributed to the addition of an appropriate amount of Si, and the metallurgical evaluations were performed systematically.

  6. Evolution of the interfacial phases in Al2O3-Kovar® joints brazed using a Ag-Cu-Ti-based alloy

    NASA Astrophysics Data System (ADS)

    Ali, Majed; Knowles, Kevin M.; Mallinson, Phillip M.; Fernie, John A.

    2017-04-01

    A systematic investigation of the brazing of Al2O3 to Kovar® (Fe-29Ni-17Co wt.%) using the active braze alloy (ABA) Ag-35.25Cu-1.75Ti wt.% has been undertaken to study the chemical reactions at the interfaces of the joints. The extent to which silica-based secondary phases in the Al2O3 participate in the reactions at the ABA/Al2O3 interface has been clarified. Another aspect of this work has been to determine the influence of various brazing parameters, such as the peak temperature, Tp, and time at Tp, τ, on the resultant microstructure. As a consequence, the microstructural evolution of the joints as a function of Tp and τ is discussed in some detail. The formation of a Fe2Ti layer on the Kovar® and its growth, along with adjacent Ni3Ti particles in the ABA, dominate the microstructural developments at the ABA/Kovar® interface. The presence of Kovar® next to the ABA does not change the intrinsic chemical reactions occurring at the ABA/Al2O3 interface. However, the extent of these reactions is limited if the purity of the Al2O3 is high, and so it is necessary to have some silica-rich secondary phase in the Al2O3 to facilitate the formation of a Ti3Cu3O layer on the Al2O3. Breakdown of the Ti3Cu3O layer, together with fracture of the Fe2Ti layer and separation of this layer from the Kovar®, has been avoided by brazing at temperatures close to the liquidus temperature of the ABA for short periods of time, e.g., for Tp between 820 and 830 °C and τ between 2 and 8 min.

  7. Gigacycle fatigue behavior by ultrasonic nanocrystalline surface modification.

    PubMed

    Ahn, D G; Amanov, A; Cho, I S; Shin, K S; Pyoun, Y S; Lee, C S; Park, I G

    2012-07-01

    Nanocrystalline surface layer up to 84 microm in thick is produced on a specimen made of Al6061-T6 alloy by means of surface treatment called ultrasonic nanocrystalline surface modification (UNSM) technique. The refined grain size is produced in the top-layer and it is increased with increasing depth from the top surface. Vickers microhardness measurement for each nanocrystalline surface layer is performed and measurement results showed that the microhardness is increased from 116 HV up to 150 HV, respectively. In this study, fatigue behavior of Al6061-T6 alloy was studied up to 10(7)-10(9) cycles by using a newly developed ultrasonic fatigue testing (UFT) rig. The fatigue results of the UNSM-treated Al6061-T6 alloy specimens were compared with those of the untreated specimens. The microstructure of the untreated and UNSM-treated specimens was characterized by means of scanning electron microscopey (SEM) and transmission electron microscopey (TEM).

  8. Low-cost, high-strength Fe--Ni--Cr alloys for high temperature exhaust valve application

    DOEpatents

    Muralidharan, Govindarajan

    2017-09-05

    An Fe--Ni--Cr alloy is composed essentially of, in terms of wt. %: 2.4 to 3.7 Al, up to 1.05 Co, 14.8 to 15.9 Cr, 25 to 36 Fe, up to 1.2 Hf, up to 4 Mn, up to 0.6 Mo, up to 2.2 Nb, up to 1.05 Ta, 1.9 to 3.6 Ti, up to 0.08 W, up to 0.03 Zr, 0.18 to 0.27 C, up to 0.0015 N, balance Ni, wherein, in terms of atomic percent: 8.5.ltoreq.Al+Ti+Zr+Hf+Ta.ltoreq.11.5, 0.53.ltoreq.Al/(Al+Ti+Zr+Hf+Ta).ltoreq.0.65, and 0.16.ltoreq.Cr/(Fe+Ni+Cr+Mn).ltoreq.0.21, the alloy being essentially free of Cu, Si, and V.

  9. Magnetic, Optical and Magneto-optical Properties of Ni2MnGe Alloy Films

    NASA Astrophysics Data System (ADS)

    Kim, R. J.; Kudryavtsev, Y. V.; Kim, K. W.

    2005-03-01

    The influence of atomic ordering on the magnetic, the optical and the magneto-optical (MO) properties of Ni2MnGe Heusler alloy (HA) films was investigated. The bulk Ni2MnGe HA was prepared by arc melting, and the films were deposited by flash evaporation onto glass substrates at several substrate temperatures from 150 to 730 K. The bulk Ni2MnGe HA exhibits the cubic L21 structure with a = b = c = 0.5761 nm, and the annealed (at 573 K) bulk alloy is in the tetragonal structure with a = b = 0.5720 nm and c = 0.5865 nm. While the films deposited at 720 K show a well-ordered L21 structure, the deposition at 150 K < T < 710 K results in the formation of a nanocrystalline or an amorphous microstructure. It was found the structural disorder in Ni2MnGe films induces lack of the ferromagnetic order and noticeable changes in the optical and MO response.

  10. Microstructural Evolution and Mechanical Properties of Nanointermetallic Phase Dispersed Al65Cu20Ti15 Amorphous Matrix Composite Synthesized by Mechanical Alloying and Hot Isostatic Pressing

    NASA Astrophysics Data System (ADS)

    Roy, D.; Mitra, R.; Ojo, O. A.; Lojkowski, W.; Manna, I.

    2011-08-01

    The structure and mechanical properties of nanocrystalline intermetallic phase dispersed amorphous matrix composite prepared by hot isostatic pressing (HIP) of mechanically alloyed Al65Cu20Ti15 amorphous powder in the temperature range 573 K to 873 K (300 °C to 600 °C) with 1.2 GPa pressure were studied. Phase identification by X-ray diffraction (XRD) and microstructural investigation by transmission electron microscopy confirmed that sintering in this temperature range led to partial crystallization of the amorphous powder. The microstructures of the consolidated composites were found to have nanocrystalline intermetallic precipitates of Al5CuTi2, Al3Ti, AlCu, Al2Cu, and Al4Cu9 dispersed in amorphous matrix. An optimum combination of density (3.73 Mg/m3), hardness (8.96 GPa), compressive strength (1650 MPa), shear strength (850 MPa), and Young's modulus (182 GPa) were obtained in the composite hot isostatically pressed ("hipped") at 773 K (500 °C). Furthermore, these results were compared with those from earlier studies based on conventional sintering (CCS), high pressure sintering (HPS), and pulse plasma sintering (PPS). HIP appears to be the most preferred process for achieving an optimum combination of density and mechanical properties in amorphous-nanocrystalline intermetallic composites at temperatures ≤773 K (500 °C), while HPS is most suited for bulk amorphous alloys. Both density and volume fraction of intermetallic dispersoids were found to influence the mechanical properties of the composites.

  11. Atomistic clustering-ordering and high-strain deformation of an Al 0.1CrCoFeNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.

    2016-08-08

    Here, computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived propertiesmore » are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study Al xCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al 0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al 0.1CrCoFeNi.« less

  12. Reaction between NiO and Al2O3 in NiO/γ-Al2O3 catalysts probed by positronium atom

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Zhang, H. J.; Chen, Z. Q.

    2013-02-01

    NiO/γ-Al2O3 catalysts with NiO content of 9 wt% and 24 wt% were prepared by solid state reaction method. They are annealed in air at temperatures from 100 °C to 1000 °C. Positron lifetime spectra were measured to study the microstructure variation during annealing process. Four positron lifetime components were resolved with two long lifetime τ3 and τ4, which can be attributed to the ortho-positronium lifetime in microvoids and large pores, respectively. It was found that the longest lifetime τ4 is rather sensitive to the chemical environment of the large pores. The NiO active centers in the catalysts cause decrease of both τ4 and its intensity I4, which is due to the spin-conversion of positronium induced by NiO. However, after heating the catalysts above 600 °C, abnormal increase of the lifetime τ4 is observed. This is due to the formation of NiAl2O4 spinel from the reaction of NiO and γ-Al2O3. The generated NiAl2O4 weakens the spin-conversion effect of positronium, thus leads to the increase of o-Ps lifetime τ4. Formation of NiAl2O4 is further confirmed by both X-ray diffraction and X-ray photoelectron spectroscopy measurements.

  13. Microstructure of Reaction Zone Formed During Diffusion Bonding of TiAl with Ni/Al Multilayer

    NASA Astrophysics Data System (ADS)

    Simões, Sónia; Viana, Filomena; Koçak, Mustafa; Ramos, A. Sofia; Vieira, M. Teresa; Vieira, Manuel F.

    2012-05-01

    In this article, the characterization of the interfacial structure of diffusion bonding a TiAl alloy is presented. The joining surfaces were modified by Ni/Al reactive multilayer deposition as an alternative approach to conventional diffusion bonding. TiAl substrates were coated with alternated Ni and Al nanolayers. The nanolayers were deposited by dc magnetron sputtering with 14 nm of period (bilayer thickness). Joining experiments were performed at 900 °C for 30 and 60 min with a pressure of 5 MPa. Cross sections of the joints were prepared for characterization of their interfaces by scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), high resolution TEM (HRTEM), energy dispersive x-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD). Several intermetallic compounds form at the interface, assuring the bonding of the TiAl. The interface can be divided into three distinct zones: zone 1 exhibits elongated nanograins, very small equiaxed grains are observed in zone 2, while zone 3 has larger equiaxed grains. EBSD analysis reveals that zone 1 corresponds to the intermetallic Al2NiTi and AlNiTi, and zones 2 and 3 to NiAl.

  14. Evaluation of Zr(Ni, Mn){sub 2} Laves phase alloys as negative active material for Ni-MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knosp, B.; Jordy, C.; Blanchard, P.

    1998-05-01

    Laves phase alloys of compositions (Zr, Ti)(Ni, Mn, M){sub x} where M = Cr, V, Co, Al, and 1.9 < x < 2.1 with hexagonal C14 or cubic C15 structure have been studied in order to select the most suitable AB{sub 2} alloys as an active material for nickel-metal hydride (Ni-MH) batteries. With the selected alloy, feasibility of MH negative electrodes using industrial technology and containing more than 97% of the alloy powder has been demonstrated. 22 Ah Ni-MH batteries for electric vehicle application have been assembled, and 600 cycles have been achieved at steady C/3 charge and discharge ratesmore » and 80% depth of discharge.« less

  15. Tungsten wire-nickel base alloy composite development

    NASA Technical Reports Server (NTRS)

    Brentnall, W. D.; Moracz, D. J.

    1976-01-01

    Further development and evaluation of refractory wire reinforced nickel-base alloy composites is described. Emphasis was placed on evaluating thermal fatigue resistance as a function of matrix alloy composition, fabrication variables and reinforcement level and distribution. Tests for up to 1,000 cycles were performed and the best system identified in this current work was 50v/o W/NiCrAlY. Improved resistance to thermal fatigue damage would be anticipated for specimens fabricated via optimized processing schedules. Other properties investigated included 1,093 C (2,000 F) stress rupture strength, impact resistance and static air oxidation. A composite consisting of 30v/o W-Hf-C alloy fibers in a NiCrAlY alloy matrix was shown to have a 100-hour stress rupture strength at 1,093 C (2,000 F) of 365 MN/square meters (53 ksi) or a specific strength advantage of about 3:1 over typical D.S. eutectics.

  16. Oxidation of Al2O3 continuous fiber-reinforced/NiAl composites

    NASA Technical Reports Server (NTRS)

    Doychak, J.; Nesbitt, J. A.; Noebe, R. D.; Bowman, R. R.

    1992-01-01

    The 1200 C and 1300 C isothermal and cyclic oxidation behavior of Al2O3 continuous fiber-reinforced/NiAl composites were studied. Oxidation resulted in formation of Al2O3 external scales in a similar manner as scales formed on monolithic NiAl. The isothermal oxidation of an Al2O3/NiAl composite resulted in oxidation of the matrix along the fiber/matrix interface near the fiber ends. This oxide acted as a wedge between the fiber and the matrix, and, under cyclic oxidation conditions, led to further oxidation along the fiber lengths and eventual cracking of the composite. The oxidation behavior of composites in which the Al2O3 fibers were sputter coated with nickel prior to processing was much more severe. This was attributed to open channels around the fibers which formed during processing, most likely as a result of the diffusion of the nickel coating into the matrix.

  17. Grain refinement of Al-Si9.8-Cu3.4 alloy by novel Al-3.5FeNb-1.5C master alloy and its effect on mechanical properties

    NASA Astrophysics Data System (ADS)

    Apparao, K. Ch; Birru, Anil Kumar

    2018-01-01

    A novel Al-3.5FeNb-1.5C master alloy with uniform microstructure was prepared using a melt reaction process for this study. In the master alloy, basic intermetallic particles such as NbAl3, NbC act as heterogeneous nucleation substrates during the solidification of aluminium. The grain refining performance of the novel master alloy on Al-Si9.8-Cu3.4 alloy has also been investigated. It is observed that the addition of 0.1 wt.% of Al-3.5FeNb-1.5C master alloy can induce very effective grain refinement of the Al-Si9.8-Cu3.4 alloy. The average grain size of α-Al is reduced to 22.90 μm from about 61.22 μm and most importantly, the inoculation of Al-Si9.8-Cu3.4 alloy with FeNb-C is not characterised by any visible poisoning effect, which is the drawback of using commercial Al-Ti-B master alloys on aluminium cast alloys. Therefore, the mechanical properties of the Al-Si9.8-Cu3.4 alloy have been improved obviously by the addition of the 0.1 wt.% of Al-3.5FeNb-1.5C master alloy, including the yield strength and elongation.

  18. Effect of in-situ formed Al3Ti particles on the microstructure and mechanical properties of 6061 Al alloy

    NASA Astrophysics Data System (ADS)

    Gupta, Rahul; Chaudhari, G. P.; Daniel, B. S. S.

    2018-03-01

    In this study, in situ Titanium-tri-aluminide (Al3Ti) particles reinforced Al 6061 alloy matrix composites were fabricated by the reaction of potassium hexafluorotitanate (K2TiF6) inorganic salt with molten Al 6061 alloy via liquid metallurgy route. The development of in-situ Al3Ti particles and their effects on the mechanical properties such as yield strength (YS), ductility, ultimate tensile strength (UTS) and hardness, and microstructure of Al 6061 alloy were studied. It was observed from the results that in-situ formed Al3Ti particles were blocky in morphology whose average size was around 2.6 ± 1.1 μm. Microstructure studies showed that grain size of Al matrix was reduced due to the nucleating effect of Al3Ti particles. It was observed from the mechanical properties analysis that when the volume fraction of Al3Ti particles was increased, the hardness, UTS and YS of the composites were also increased as compared to that of Al 6061 alloy. An improvement in ductility was observed with the dispersion of Al3Ti particles in base alloy which is contrary to many other composites.

  19. Atomic simulation of mechanical behavior of Mg in a super-lattice of nanocrystalline Mg and amorphous Mg-Al alloy

    NASA Astrophysics Data System (ADS)

    Song, H. Y.; An, M. R.; Li, Y. L.; Deng, Q.

    2014-12-01

    The mechanical properties of a super-lattice architecture composed of nanocrystalline Mg and Mg-Al amorphous alloy are investigated using molecular dynamics simulation. The results indicate that deformation mechanism of nanocrystalline Mg is obviously affected by the amorphous boundary spacing and temperature. The strength of the material increases with the decrease of amorphous boundary spacing, presenting a Hall-Petch effect at both 10 K and 300 K. A stress platform and following stiffness softening, as well as a linear strengthening in the plastic stage, are observed when the amorphous boundary spacing below 8.792 nm at 10 K. The implying reason may be that the amorphous boundary acts as the dislocations emission and absorption source. However, the second stress peak is not observed for the models at 300 K. Instead, the flow stress in plastic stage is a nearly constant value. The simulation demonstrates the emergence of the new grain, accompanied by the deformation twins and stacking faults associated with the plastic behaviors at 300 K. The general conclusions derived from this work may provide a guideline for the design of high-performance hexagonal close-packed metals.

  20. Optimizing the coupled effects of Hall-Petch and precipitation strengthening in a Al 0.3 CoCrFeNi high entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gwalani, B.; Soni, Vishal; Lee, Michael

    2017-05-01

    A successful demonstration of applying integrated strengthening using Hall-Petch strengthening (grains size effect) and precipitation strengthening is shown in the fcc based high entropy alloy (HEA) Al0.3CoCrFeNi, leading to quantitative determinations of the Hall-Petch coefficients for both hardness and tensile yield strength, aswell as the enhancements in the yield strength fromtwo distinct types of ordered precipitates, L12 and B2. An excellent combination of yield strength (~490MPa), ultimate tensile strength (~850MPa), and ductility (~45% elongation) was achieved by optimizing and coupling both strengtheningmechanisms, resulting from a refined grain size as well as both L12 and B2 ordered precipitates. This opens upmore » new avenues for the future development of HEAs, with the appropriate balance of properties required for engineering applications.« less

  1. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.

    2017-07-01

    Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  2. The effect of 0.1 atomic percent zirconium on the cyclic oxidation behavior of beta-NiAl for 300 hours at 1200 C

    NASA Technical Reports Server (NTRS)

    Barrett, C. A.

    1988-01-01

    The long time effect of 0.1 at percent Zr (0.2 wt percent Zr) on the cyclic oxidation behavior of hipped beta-NiAl was studied. Oxidation testing was performed in static air at 1200 C for up to 3000 one-hour exposure cycles. Specific weight change versus time data was modeled with the COSP computer program to analyze cyclic oxidation behavior. The Zr-free stoichiometric alloy oxidized and spalled randomly to bare metal between cycles at a rate high enough to deplete Al to a low enough level that oxidation breakaway took place as nonprotective NiO replaced the alpha-Al2O3/NiAl2O4 scale as the controlling oxide. The Zr minimized this severe type of spalling maintaining the protective alpha-Al2O3 scale even out to 3000 hours for the stoichiometric alloy with no significant Al depletion. A third beta-NiAl alloy containing 0.1 at percent Zr but with 10 percent less Al than the stoichiometric alloy was also tested and showed some depletion of Al, but the protective Al2O3/NiAl2O4 was still maintained to close to 2700 hours.

  3. Nanocrystalline Nb-Al-Ge mixtures fabricated using wet mechanical milling

    NASA Astrophysics Data System (ADS)

    Pusceddu, E.; Charlton, S.; Hampshire, D. P.

    2008-02-01

    An investigation into Nb-Al-Ge mixtures is presented with special attention to the superconducting compounds Nb3(Al1-xGex) with x = 0, 0.3 and 1, which are reported to provide the highest upper critical field values for Nb-based compounds. Wet mechanical milling using copper milling media and distilled water as a process control agent (PCA) was used with the intention of improving the yield, properties and the performance of these materials. Very high yields of nanocrystalline material were achieved but significant copper contamination occurred - confirmed using inductively-coupled-plasma atomic-emission-spectroscopy. Simultaneous thermogravimetric measurements and differential scanning calorimetry were performed on powders milled for up to 20 h with different PCA content, to quantify the work done on the powders. A typical grain size of a few nm was obtained for the Nb-Al-Ge mixtures after several hours milling. Powder ground for 20 h with 5% PCA was processed using a hot isostatic press (HIP) operating at 2000 atm and temperatures up to 750 °C. The room temperature resistivity decreased as the temperature of the HIPing increased. Unfortunately, despite the nanocrystalline microstructure of the powders and the high HIP temperatures, if superconducting material was formed it was below the detection level of resistivity, Ac. susceptibility and SQUID measurements. We conclude that during milling there was widespread contamination of the powders by the PCA so that milling with distilled water as a PCA is not to be recommended for fabricating nanocrystalline Nb3(Al1-xGex) A15 superconducting compounds.

  4. Thermodynamic Effect of Platinum Addition to beta-NiAl: An Initial Investigation

    NASA Technical Reports Server (NTRS)

    2005-01-01

    An initial investigation was conducted to determine the effect of platinum addition on the activities of aluminum and nickel in beta-NiAl(Pt) over the temperature range 1354 to 1692 K. These measurements were made with a multiple effusion-cell configured mass spectrometer (multi-cell KEMS). The results of this study show that Pt additions act to decreased alpha(Al) and increased the alpha(Ni) in beta-NiAl(Pt) for constant X(sub Ni)/X(sub Al) approx. = 1.13, while at constant X(sub Al) the affect of Pt on Al is greatly reduced. The measured partial enthalpies of mixing indicate Al-atoms have a strong self interaction while Ni- and Pt-atoms in have similar interactions with Al-atoms. Conversely the binding of Ni-atoms in beta-NiAl decreases with Pt addition independent of Al concentration. These initial results prove the technique can be applied to the Ni-Al-Pt system but more activity measurements are required to fully understand the thermodynamics of this system and how Pt additions improved the scaling behavior of nickel-based superalloys. In addition, with the choice of a suitable oxide material for the effusion-cell, the "closed" isothermal nature of the effusion-cell allows the direct investigation of an alloy-oxide equilibrium which resembles the "local-equilibrium" description of the metal-scale interface observed during high temperature oxidation. It is proposed that with an Al(l) + Al2O3(s) experimental reference state together with the route measurement of the relative partial-pressures of Al(g) and Al2O(g) allows the activities of O and Al2O3 to be determined along with the activities of Ni and Al. These measurements provide a direct method of investigating the thermodynamics of the metal-scale interface of a TGO-scale.

  5. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli, E-mail: zhongliliu@yeah.net

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach).more » The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.« less

  6. Ni3Si(Al)/a-SiOx core shell nanoparticles: characterization, shell formation, and stability

    NASA Astrophysics Data System (ADS)

    Pigozzi, G.; Mukherji, D.; Gilles, R.; Barbier, B.; Kostorz, G.

    2006-08-01

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni3Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni3Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiOx). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  7. Room Temperature Antiferromagnetic Ordering of Nanocrystalline Tb1.90Ni0.10O3

    NASA Astrophysics Data System (ADS)

    Mandal, J.; Dalal, M.; Sarkar, B. J.; Chakrabarti, P. K.

    2017-02-01

    Nanocrystalline Ni-doped terbium oxide (Tb1.90Ni0.10O3) has been synthesized by the co-precipitation method followed by annealing at 700°C for 6 h in vacuum. The crystallographic phase and the substitution of Ni2+ ions in the lattice of Tb2O3 are confirmed by Rietveld analysis of the x-ray diffraction pattern using the software MAUD. High-resolution transmission electron microscopy is also carried out to study the morphology of the sample. Magnetic measurements are carried out at different temperatures from 5 K to 300 K using a superconducting quantum interference device (SQUID) magnetometer. The dependence of the magnetization of Tb1.90Ni0.10O3 as a function of temperature ( M- T) and magnetic field ( M- H) suggests the presence of both paramagnetic and antiferromagnetic phase at room temperature, but antiferromagnetic phase dominates below ˜120 K. The lack of saturation in the M- H curve and good fitting of the M- T curve by the Johnston formula also indicate the presence of both paramagnetic and antiferromagnetic phase at room temperature. Interestingly, an antiferromagnetic to ferromagnetic phase transition is observed below ˜40 K. The result also shows a high value of magnetization at 5 K.

  8. Surface tension measurement of undercooled liquid Ni-based multicomponent alloys

    NASA Astrophysics Data System (ADS)

    Chang, J.; Wang, H. P.; Zhou, K.; Wei, B.

    2012-09-01

    The surface tensions of liquid ternary Ni-5%Cu-5%Fe, quaternary Ni-5%Cu-5%Fe-5%Sn and quinary Ni-5%Cu-5%Fe-5%Sn-5%Ge alloys were determined as a function of temperature by the electromagnetic levitation oscillating drop method. The maximum undercoolings obtained in the experiments are 272 (0.15T L), 349 (0.21T L) and 363 K (0.22T L), respectively. For all the three alloys, the surface tension decreases linearly with the rise of temperature. The surface tension values are 1.799, 1.546 and 1.357 N/m at their liquidus temperatures of 1719, 1644 and 1641 K. Their temperature coefficients are -4.972 × 10-4, -5.057 × 10-4 and -5.385 × 10-4 N/m/K. It is revealed that Sn and Ge are much more efficient than Cu and Fe in reducing the surface tension of Ni-based alloys. The addition of Sn can significantly enlarge the maximum undercooling at the same experimental condition. The viscosity of the three undercooled liquid alloys was also derived from the surface tension data.

  9. Microstructural characterisation of friction stir welding joints of mild steel to Ni-based alloy 625

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, J.; University of Campinas; Ramirez, A.J., E-mail: ramirezlondono.1@osu.edu

    2015-12-15

    In this study, 6-mm-thick mild steel and Ni-based alloy 625 plates were friction stir welded using a tool rotational speed of 300 rpm and a travel speed of 100 mm·min{sup −1}. A microstructural characterisation of the dissimilar butt joint was performed using optical microscopy, scanning and transmission electron microscopy, and energy dispersive X-ray spectroscopy (XEDS). Six different weld zones were found. In the steel, the heat-affected zone (HAZ) was divided into three zones and was composed of ferrite, pearlite colonies with different morphologies, degenerated regions of pearlite and allotriomorphic and Widmanstätten ferrite. The stir zone (SZ) of the steel showedmore » a coarse microstructure consisting of allotriomorphic and Widmanstätten ferrite, degenerate pearlite and MA constituents. In the Ni-based alloy 625, the thermo-mechanically affected zone (TMAZ) showed deformed grains and redistribution of precipitates. In the SZ, the high deformation and temperature produced a recrystallised microstructure, as well as fracture and redistribution of MC precipitates. The M{sub 23}C{sub 6} precipitates, present in the base material, were also redistributed in the stir zone of the Ni-based alloy. TMAZ in the steel and HAZ in the Ni-based alloy could not be identified. The main restorative mechanisms were discontinuous dynamic recrystallisation in the steel, and discontinuous and continuous dynamic recrystallisation in the Ni-based alloy. The interface region between the steel and the Ni-based alloy showed a fcc microstructure with NbC carbides and an average length of 2.0 μm. - Highlights: • Comprehensive microstructural characterisation of dissimilar joints of mild steel to Ni-based alloy • Friction stir welding of joints of mild steel to Ni-based alloy 625 produces sound welds. • The interface region showed deformed and recrystallised fcc grains with NbC carbides and a length of 2.0 μm.« less

  10. Iron-rich (Fe1-x-yNixCoy)88Zr7B4Cu1 nanocrystalline magnetic materials for high temperature applications with minimal magnetostriction

    NASA Astrophysics Data System (ADS)

    Martone, Anthony; Dong, Bowen; Lan, Song; Willard, Matthew A.

    2018-05-01

    As inductor technology advances, greater efficiency and smaller components demand new core materials. With recent developments of nanocrystalline magnetic materials, soft magnetic properties of these cores can be greatly improved. FeCo-based nanocrystalline magnetic alloys have resulted in good soft magnetic properties and high Curie temperatures; however, magnetoelastic anisotropies persist as a main source of losses. This investigation focuses on the design of a new Fe-based (Fe,Ni,Co)88Zr7B4Cu1 alloy with reduced magnetostriction and potential for operation at elevated temperatures. The alloys have been processed by arc melting, melt spinning, and annealing in a protective atmosphere to produce nanocrystalline ribbons. These ribbons have been analyzed for structure, hysteresis, and magnetostriction using X-Ray diffraction, vibrating sample magnetometry (VSM), and a home-built magnetostriction system, respectively. In addition, Curie temperatures of the amorphous phase were analyzed to determine the best performing, high-temperature material. Our best result was found for a Fe77Ni8.25Co2.75Zr7B4Cu1 alloy with a 12 nm average crystallite size (determined from Scherrer broadening) and a 2.873 Å lattice parameter determined from the Nelson-Riley function. This nanocrystalline alloy possesses a coercivity of 10 A/m, magnetostrictive coefficient of 4.8 ppm, and amorphous phase Curie temperature of 218°C.

  11. Characterization of Nanocrystalline Nickel-Cobalt Alloys Synthesized by Direct and Pulse Electrodeposition

    NASA Astrophysics Data System (ADS)

    Salehi, M.; Saidi, A.; Ahmadian, M.; Raeissi, K.

    2014-01-01

    Nanocrystalline Ni-Co alloys are electrodeposited by direct (DC) and pulse current (PC) in an electrolyte solution which consisted of nickel sulfate, cobalt sulfate and boric acid. Electrodeposition parameters including current density, electrolyte pH and pulse times in a single electrolyte bath were changed. XRD pattern showed that the structure of the alloys depends on Co content and the synthesis parameter and changed from single phase structure (fcc) to dual phase structure (fcc + hcp). The Co content in the deposited alloys declined from 70 at.% to 50 at.% by increasing in direct current from 70 mA/cm2 to 115 mA/cm2 and also decreased from 75 at.% to 33 at.% with decrease in pH values from 4 to 2. By applying PC the Co content changed from 76 at.% to 41 at.%. Magnetic properties measurements showed the saturation magnetization (Ms) increased with increasing the Co content. There was no significant effect on coercivity values (Hc) with change in Co content and about 40 Oe was obtained for all samples. The grain size of deposited alloys obtained between 24-58 nm and 15-21 nm by applying DC and PC, respectively.

  12. Design of Novel Precipitate-Strengthened Al-Co-Cr-Fe-Nb-Ni High-Entropy Superalloys

    NASA Astrophysics Data System (ADS)

    Antonov, Stoichko; Detrois, Martin; Tin, Sammy

    2018-01-01

    A series of non-equiatomic Al-Co-Cr-Fe-Nb-Ni high-entropy alloys, with varying levels of Co, Nb and Fe, were investigated in an effort to obtain microstructures similar to conventional Ni-based superalloys. Elevated levels of Co were observed to significantly decrease the solvus temperature of the γ' precipitates. Both Nb and Co in excessive concentrations promoted the formation of Laves and NiAl phases that formed either during solidification and remained undissolved during homogenization or upon high-temperature aging. Lowering the content of Nb, Co, or Fe prevented the formation of the eutectic type Laves. In addition, lowering the Co content resulted in a higher number density and volume fraction of the γ' precipitates, while increasing the Fe content led to the destabilization of the γ' precipitates. Various aging treatments were performed which led to different size distributions of the strengthening phase. Results from the microstructural characterization and hardness property assessments of these high-entropy alloys were compared to a commercial, high-strength Ni-based superalloy RR1000. Potentially, precipitation-strengthened high-entropy alloys could find applications replacing Ni-based superalloys as structural materials in power generation applications.

  13. Effect of cobalt on microstructure and properties of AlCr1.5CuFeNi2Cox high-entropy alloys

    NASA Astrophysics Data System (ADS)

    Kukshal, Vikas; Patnaik, Amar; Bhat, I. K.

    2018-04-01

    The present paper investigates the effect of Co addition on the alloying behaviour, microstructure and the resulting properties of cast AlCr1.5CuFeNi2Cox high-entropy alloys intended to be used for high temperature applications. The elements Al, Cr, Cu, Fe, Ni and Co (Purity > 99) weighing approximately 800 g was melted in a high temperature vacuum induction furnace. The microstructure, phase transformation, density, microhardness and compressive strength of the samples were analysed using x-ray diffraction (XRD), scanning electron microscopes (SEM), Vickers microhardness tester and universal Testing machine. The crystalline structure of the alloys exhibits simple FCC and BCC phases. The microstructures investigation of the alloys shows the segregation of copper in the interdendritic region resulting in Cu-rich FCC phase. The addition of Co further enhances the formation of FCC phase resulting in the decrease in micro hardness value of the alloys, which varies from 471 HV to 364 HV with increase in the cobalt content from x = 0 to x = 1 (molar ratio). The similar decreasing trend is also observed for the compressive strength of the alloys.

  14. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    DTIC Science & Technology

    2014-05-13

    nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and...the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta...approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are

  15. Study on Microstructure and Mechanical Properties of Hypereutectic Al-18Si Alloy Modified with Al-3B.

    PubMed

    Gong, Chunjie; Tu, Hao; Wu, Changjun; Wang, Jianhua; Su, Xuping

    2018-03-20

    An hypereutectic Al-18Si alloy was modified via an Al-3B master alloy. The effect of the added Al-3B and the modification temperature on the microstructure, tensile fracture morphologies, and mechanical properties of the alloy were investigated using an optical microscope, Image-Pro Plus 6.0, a scanning electron microscope, and a universal testing machine. The results show that the size of the primary Si and its fraction decreased at first, and then increased as an additional amount of Al-3B was added. When the added Al-3B reached 0.2 wt %, the fraction of the primary Si in the Al-18Si alloy decreased with an increase in temperature. Compared with the unmodified Al-18Si alloy, the tensile strength and elongation of the alloy modified at 850 °C with 0.2 wt % Al-3B increased by 25% and 81%, respectively. The tensile fracture of the modified Al-18Si alloy exhibited partial ductile fracture characteristics, but there were more areas with ductile characteristics compared with that of the unmodified Al-18Si alloy.

  16. Atomistic clustering-ordering and high-strain deformation of an Al0.1CrCoFeNi high-entropy alloy

    PubMed Central

    Sharma, Aayush; Singh, Prashant; Johnson, Duane D.; Liaw, Peter K.; Balasubramanian, Ganesh

    2016-01-01

    Computational investigations of structural, chemical, and deformation behavior in high-entropy alloys (HEAs), which possess notable mechanical strength, have been limited due to the absence of applicable force fields. To extend investigations, we propose a set of intermolecular potential parameters for a quinary Al-Cr-Co-Fe-Ni alloy, using the available ternary Embedded Atom Method and Lennard-Jones potential in classical molecular-dynamics simulations. The simulation results are validated by a comparison to first-principles Korringa-Kohn-Rostoker (KKR) - Coherent Potential Approximation (CPA) [KKR-CPA] calculations for the HEA structural properties (lattice constants and bulk moduli), relative stability, pair probabilities, and high-temperature short-range ordering. The simulation (MD)-derived properties are in quantitative agreement with KKR-CPA calculations (first-principles) and experiments. We study AlxCrCoFeNi for Al ranging from 0 ≤ x ≤2 mole fractions, and find that the HEA shows large chemical clustering over a wide temperature range for x < 0.5. At various temperatures high-strain compression promotes atomistic rearrangements in Al0.1CrCoFeNi, resulting in a clustering-to-ordering transition that is absent for tensile loading. Large fluctuations under stress, and at higher temperatures, are attributed to the thermo-plastic instability in Al0.1CrCoFeNi. PMID:27498807

  17. The effect of variations of cobalt content on the cyclic oxidation resistance of selected Ni-base superalloys

    NASA Technical Reports Server (NTRS)

    Barrett, Charles A.

    1987-01-01

    Cobalt levels were systematically varied in the Ni-base turbine alloys U-700 (cast), U-700m (PM/HIP), Waspaloy, Mar-M-247, In-738, Nimonic-115, U-720, and SX-R-150. the cobalt levels ranged from 0 wt pct to the nominal commercial content in each alloy. the alloys were tested in cyclic oxidation in static air at 1000, 1100 and 1150 C for 500, 200, and 100 hr, respectively. An oxidation attack parameter, Ka, derived from the specific weight change versus time data was used to evaluate the oxidation behavior of the alloys along with X-ray diffraction analysis of the surface oxides. The alloys tend to form either Cr2O3/chromite spinel or Al2O3/aluminate spinel depending on the Cr/Al ratio in the alloys. Alloys with a ratio of 3.5 or higher tend to favor the Cr oxides while those under 3.0 form mostly Al oxides. In general the Al2O3/aluminate spinel forming alloys have the better oxidation resistance. Increased cobalt content lowers the scaling resistance of the higher Cr allys while a 5.0 wt pct Co content is optimum for the Al controlling alloys. The refractory metals, particularly Ta, appear beneficial to both types of oxides, perhaps due to the formation of the omnipresent trirutile Ni(Ta, Cb, Mo, W)2O6. Both scales break down as increasing amounts of NiO are formed.

  18. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  19. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. Daniel; Luton, Michael J.

    1995-01-01

    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  20. Tribological Properties of AlCrCuFeNi2 High-Entropy Alloy in Different Conditions

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Ma, Shengguo; Gao, Michael C.; Zhang, Chuan; Zhang, Teng; Yang, Huijun; Wang, Zhihua; Qiao, Junwei

    2016-07-01

    In order to understand the environmental effect on the mechanical behavior of high-entropy alloys, the tribological properties of AlCrCuFeNi2 are studied systematically in dry, simulated rainwater, and deionized water conditions against the Si3N4 ceramic ball at a series of different normal loads. The present study shows that both the friction and wear rate in simulated rainwater are the lowest. The simulated rainwater plays a significant role in the tribological behavior with the effect of forming passive film, lubricating, cooling, cleaning, and corrosion. The wear mechanism in simulated rainwater is mainly adhesive wear accompanied by abrasive wear as well as corrosive wear. In contrast, those in dry condition and deionized water are abrasive wear, adhesive wear, and surface plastic deformation. Oxidation contributes to the wear behavior in dry condition but is prevented in liquid condition. In addition, the phase diagram of Al x CrCuFeNi2 is predicted using CALPHAD modeling, which is in good agreement with the literature report and the present study.

  1. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  2. Room temperature ferromagnetism of nanocrystalline Nd1.90Ni0.10O3

    NASA Astrophysics Data System (ADS)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Chakrabarti, P. K.

    2018-05-01

    Nanocrystalline sample of Ni2+ doped neodymium oxide (Nd1.90Ni0.10O3-δ, NNO) is synthesized by co-precipitation method. Analysis of X-ray diffraction (XRD) pattern by Rietveld refinement method confirms the desired phase of NNO and complete substitution of Ni2+ ions in the Nd2O3 lattice. Analyses of transmission electron microscopy (TEM) and Raman spectroscopy of NNO recorded at room temperature (RT) also substantiate this fact. Besides, no traces of impurities are found in the analyses of XRD, TEM and Raman data. Room temperature hysteresis loop of NNO suggests the presence of weak ferromagnetism (FM) in low field region ( 600 mT), but in high field region paramagnetism of the host is more prominent. Magnetization vs. temperature ( M- T) curve in the entire temperature range (300-5 K) is analyzed successfully by a combined equation generated from three-dimensional (3D) spin wave model and Curie-Weiss law, which suggests the presence of mixed paramagnetic phase together with ferromagnetic phase in the doped sample. The onset of magnetic ordering is analyzed by oxygen vacancy mediated F-center exchange (FCE) coupling mechanism.

  3. Surface nanocrystalline and hardening effects of Ti-Al-V alloy by electropulsing ultrasonic shock

    NASA Astrophysics Data System (ADS)

    Ye, Xiaoxin; Tang, Guoyi

    2015-03-01

    The effect of electropulsing ultrasonic shock (EUS) on the surface hardening and microstructure of Ti6Al4V alloy was studied. It was found that electropulsing improved the microhardness dramatically both in the influential depth and maximum value, compared with the only ultrasonic-shocked sample. It's indicated that refined surface layer with nanocrystalline and improved microhardness were obtained on account of surface severe plastic deformation, dynamic recrystallization (DRX) and phase change, which was implemented at relative low temperature and high strain rate/capacity due to the coupling of the thermal and athermal effects of EUS. It's different from conventional experiments and theory. It's discussed that the positive contributions of EPT in the thermodynamics and kinetics of microstructure and properties change were attributed to the reduction of nucleation energy barrier and acceleration of atomic diffusion. Therefore, it's supposed that EUS is an energy-saving and high-efficiency method of surface treatment technique with the help of high-energy electropulses, which is promising in cost reduction of the surface engineering and energy management. The work is supported by National Natural Science Foundation of China (No. 50571048) and Shenzhen science and technology research funding project of China (No. SGLH20121008144756946).

  4. Investigations in Producing Porous NiAl by Combustion Synthesis

    NASA Astrophysics Data System (ADS)

    Zhong, Songming

    In recent years, nickel aluminide (NiAl) intermetallic foam, which combines the advantages of nickel-based alloy and metallic foam, has attracted great attention due to its extraordinary properties. In this present work, nickel aluminide (NiAl) foam has been reactively processed from elemental powder (nickel and aluminium) with different types and percentage of volume of a foaming agent (TiH2 or CaCO3), using a combustion synthesis (CS) approach. Most of the previous research has focused on producing close-cell NiAl intermetallic foam; however, this paper presents a new combustion synthesis process to fabricate a hybrid open-cell and close-cell NiAl intermetallic foam. Mixed elemental powder was compacted at moderate pressure generating closed and open porosity with green compact; as a result, part of the liberated gas could escape from the sample, which resulted in producing open-cell pores, in addition, closed cell pores in the product. The effect of foaming agent type and volume percentage on the product is discussed. An increase in volume percentage of TiH2 was found to have beneficial effects on increasing porosity; however, with the increase of volume percentage of CaCO3, there is a big drop in porosity because the low viscosity under high temperature makes more liberated gas escape and pores collapse. According to XRD and EDX analysis, despite the present of multiple phases in samples, NiAl was still the major phase. Hardness measurement shows that high hardness value was obtained at sample of low grain size, hardness value increases with decreasing grain size.

  5. Microstructural Change and Mechanical Properties with Isochronal Aging in Al-Ni-Gd Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Kato, Hideomi; Hirosawa, Shoichi; Matsuda, Kenji; Shiflet, Gary J.

    The changes of precipitation microstructures and mechanical properties during isochronal aging have been studied for melt-spun metallic glasses of Al-Ni-Gd ternary system. The fabricated Al90Ni3Gd7, Al87Ni7Gd6 and Al85Ni7Gd8 ribbons were isochronally aged up to 400°C and then examined by X-ray diffraction (XRD), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometry (EDX). It was found that two different intermetallic compounds of Al23Ni6Gd4 and Al19Ni5Gd3 as well as primary crystallized α-Al are formed by the isochronal aging in good agreement with the fact that three exothermic peaks are detected in the differential scanning calorimetry (DSC) curves. The highest nanoindentation hardness and Young's modulus were obtained for the isochronally-aged Al85Ni7Gd8, suggesting that not only the increase in Ni and Gd contents but also the isochronal aging is quite effective in strengthening the melt-spun Al-Ni-Gd alloys.

  6. Experimental wear behavioral studies of as-cast and 5 hr homogenized Al25Mg2Si2Cu4Ni alloy at constant load based on taguchi method

    NASA Astrophysics Data System (ADS)

    Harlapur, M. D.; Mallapur, D. G.; Udupa, K. Rajendra

    2018-04-01

    In the present study, an experimental study of the volumetric wear behaviour of Aluminium (Al-25Mg2Si2Cu4Ni) alloy in as cast and 5Hr homogenized with T6 heat treatment is carried out at constant load. The Pin on disc apparatus was used to carry out the sliding wear test. Taguchi method based on L-16 orthogonal array was employed to evaluate the data on the wear behavior. Signal-to-noise ratio among the objective of smaller the better and mean of means results were used. General regression model is obtained by correlation. Lastly confirmation test was completed to compose a comparison between the experimental results foreseen from the mention correlation. The mathematical model reveals the load has maximum contribution on the wear rate compared to speed. Scanning Electron Microscope was used to analyze the worn-out wear surfaces. Wear results show that 5Hr homogenized Al-25Mg2Si2Cu4Ni alloy samples with T6 treated had better volumetric wear resistance as compared to as cast samples.

  7. Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance

    PubMed Central

    Fu, Ming; Xiong, Wei

    2018-01-01

    High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility–brittleness AlCoCrFeNiSi system was chosen as an object of study, and the detailed evolution of the surface morphology, particle size distribution, and microstructure of the powder during mechanical alloying was investigated. An AlCoCrFeNiSi HEA coating was deposited using powder milled for 10 h, which can be used as an ideal feedstock for APS. The surface morphology, microstructure, microhardness, and wear behavior of the coating at room temperature were investigated. The results showed that as the milling time increased, the particle size first increased, and then decreased. At the milling time of 10 h, simple body-centered cubic (BCC) and face-centered cubic (FCC) solid solution phases were formed. After spraying, the lamellar structure inside a single particle disappeared. An ordered BCC phase was detected, and the diffraction peaks of the Si element also disappeared, which indicates that phase transformation occurred during plasma spraying. A transmission electron microscopy analysis showed that nanometer crystalline grains with a grain size of about 30 nm existed in the APS coating. For the coating, an average microhardness of 612 ± 41 HV was obtained. Adhesive wear, tribo-oxidation wear, and slight abrasion wear took place during the wear test. The coating showed good wear resistance, with a volume wear rate of 0.38 ± 0.08 × 10−4 mm3·N−1·m−1, which makes it a promising coating for use in abrasive environments. PMID:29473872

  8. Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI's applications

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.

  9. Degradation of GaAs/AlGaAs Quantized Hall Resistors With Alloyed AuGe/Ni Contacts.

    PubMed

    Lee, Kevin C

    1998-01-01

    Careful testing over a period of 6 years of a number of GaAs/AlGaAs quantized Hall resistors (QHR) made with alloyed AuGe/Ni contacts, both with and without passivating silicon nitride coatings, has resulted in the identification of important mechanisms responsible for degradation in the performance of the devices as resistance standards. Covering the contacts with a film, such as a low-temperature silicon nitride, that is impervious to humidity and other contaminants in the atmosphere prevents the contacts from degrading. The devices coated with silicon nitride used in this study, however, showed the effects of a conducting path in parallel with the 2-dimensional electron gas (2-DEG) at temperatures above 1.1 K which interferes with their use as resistance standards. Several possible causes of this parallel conduction are evaluated. On the basis of this work, two methods are proposed for protecting QHR devices with alloyed AuGe/Ni contacts from degradation: the heterostructure can be left unpassivated, but the alloyed contacts can be completely covered with a very thick (> 3 μm) coating of gold; or the GaAs cap layer can be carefully etched away after alloying the contacts and prior to depositing a passivating silicon nitride coating over the entire sample. Of the two, the latter is more challenging to effect, but preferable because both the contacts and the heterostructure are protected from corrosion and oxidation.

  10. Effects of Some Light Alloying Elements on the Oxidation Behavior of Fe and Ni-Cr Based Alloys During Air Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zeng, Zhensu; Kuroda, Seiji; Kawakita, Jin; Komatsu, Masayuki; Era, Hidenori

    2010-01-01

    The oxidation behavior of iron binary powders with addition of Si (1, 4 wt.%) and B (1, 3 wt.%) and that of a Ni-Cr based alloy powder with Si (4.3 wt.%), B (3.0 wt.%), and C (0.8 wt.%) additions during atmosphere plasma spray (APS) have been investigated. Analysis of the chemical composition and phases of oxides in the captured in-flight particles and deposited coatings was carried out. The results show that the addition of Si and B to iron effectively reduced the oxygen contents in the coatings, especially during the in-flight period at higher particles temperature. Ni-Cr based alloy powder with Si, B, and C additions reduced the oxidation of the base alloys significantly. Preferential oxidation and subsequent vaporization of Si, B, and C from the surface of the sprayed particles are believed to play a major role in controlling oxidation in the APS process.

  11. Interfacial exchange interactions and magnetism of Ni2MnAl /Fe bilayers

    NASA Astrophysics Data System (ADS)

    Yanes, R.; Simon, E.; Keller, S.; Nagyfalusi, B.; Khmelevsky, S.; Szunyogh, L.; Nowak, U.

    2017-08-01

    Based on multiscale calculations combining ab initio methods with spin dynamics simulations, we perform a detailed study of the magnetic behavior of Ni2MnAl /Fe bilayers. Our simulations show that such a bilayer exhibits a small exchange bias effect when the Ni2MnAl Heusler alloy is in a disordered B2 phase. Additionally, we present an effective way to control the magnetic structure of the Ni2MnAl antiferromagnet, in the pseudo-ordered B2-I as well as the disordered B2 phases, via a spin-flop coupling to the Fe layer.

  12. Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study

    NASA Astrophysics Data System (ADS)

    Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.

    2017-12-01

    The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.

  13. Electrochemical properties of LaNi{sub 5{minus}x}Ge{sub x} alloys in Ni-MH batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witham, C.; Hightower, A.; Fultz, B.

    1997-11-01

    Electrochemical studies were performed on LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys with 0 {le} x {le} 0.5. The authors carried out single-electrode studies to understand the effects of the Ge substituent on the hydrogen absorption characteristics, the electrochemical capacity, and the electrochemical kinetics of hydrogen absorption and desorption. The electrochemical characteristics of the Ge-substituted alloys are compared to those of the Sn-substituted alloys reported earlier. LaNi{sub 5{minus}x}Ge{sub x} alloys show compositional trends similar to LaNi{sub 5{minus}x}Sn{sub x} alloys, but unlike the Sn-substituted alloys, Ge-substituted alloys continue to exhibit facile kinetics for hydrogen absorption/desorption at high solute concentrations. Cycle lives ofmore » LaNi{sub 5{minus}x}Ge{sub x} electrodes were measured in 300 mAh laboratory test cells and were found to be superior to the Sn-substituted LaNi{sub 5} and comparable to a Mm(Ni, Co, Mn, Al){sub 5} alloy. The optimum Ge content for LaNi{sub 5{minus}x}Ge{sub x} metal hydride alloys in alkaline rechargeable cells is in the range 0.4 {le} x {le} 0.5.« less

  14. Biocompatibility of austenite and martensite phases in NiTi-based alloys

    NASA Astrophysics Data System (ADS)

    Danilov, A.; Kapanen, A.; Kujala, S.; Saaranen, J.; Ryhänen, J.; Pramila, A.; Jämsä, T.; Tuukkanen, J.

    2003-10-01

    The effect of surface phase composition on the biocompatibility of NiTi-based shape memory alloys was studied. The biocompatibility characteristics of parent β-phase (austenite) in binary NiTi and of martensite in ternary NiTiCu alloys after similar surface mechanical treatment were compared. The martensitic phase as a result of surface mechanical treatment (strain-induced martensite) was shown to decrease the biocompatibility of material in comparison to fully austenite state. The cytotoxicity (amount of dead cells / 1000 cells) and cell attachent (paxillin count / frame) were found to be linear functions of structural stresses in austenite.

  15. Computational study of configurational and vibrational contributions to the thermodynamics of substitutional alloys: The case of Ni3Al

    NASA Astrophysics Data System (ADS)

    Michelon, M. F.; Antonelli, A.

    2010-03-01

    We have developed a methodology to study the thermodynamics of order-disorder transformations in n -component substitutional alloys that combines nonequilibrium methods, which can efficiently compute free energies, with Monte Carlo simulations, in which configurational and vibrational degrees of freedom are simultaneously considered on an equal footing basis. Furthermore, with this methodology one can easily perform simulations in the canonical and in the isobaric-isothermal ensembles, which allow the investigation of the bulk volume effect. We have applied this methodology to calculate configurational and vibrational contributions to the entropy of the Ni3Al alloy as functions of temperature. The simulations show that when the volume of the system is kept constant, the vibrational entropy does not change upon transition while constant-pressure calculations indicate that the volume increase at the order-disorder transition causes a vibrational entropy increase of 0.08kB/atom . This is significant when compared to the configurational entropy increase of 0.27kB/atom . Our calculations also indicate that the inclusion of vibrations reduces in about 30% the order-disorder transition temperature determined solely considering the configurational degrees of freedom.

  16. Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.

    PubMed

    Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G

    2006-08-28

    We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.

  17. Remarkable Improvement of Shape-Memory Effect in a Co-31Ni-3Si Alloy by Ausforming

    NASA Astrophysics Data System (ADS)

    Sun, Jiangwei; Wang, Shanling; Yan, Zhiwei; Peng, Huabei; Wen, Yuhua

    2015-04-01

    In order to improve the shape-memory effect (SME) in Co-Ni alloys, the influence of ausforming temperature on the SME, microstructures, and mechanical behavior in a Co-31Ni-3Si alloy was studied. The results show that the ausforming at 1073 K (800 °C) could remarkably improve the SME in Co-31Ni-3Si alloy. A large recovery strain of 2.3 pct was obtained after bent by 3.7 pct at 77 K (-196 °C). The increase of yield strength and the decrease of the critical stress for the stress-induced gamma to epsilon martensitc transformation are responsible for the remarkable improvement of SME. The results indirectly showed that the SME in Co-Ni alloys results from the stress-induced gamma to epsilon martensitic transformation, and their low yield strength account for their poor SME. It can be expected that the strengthening of matrix by other methods, such as solution, dispersion, and grain refinement hardening, will improve the SME of Co-Ni alloys.

  18. Effects of F-treatment on degradation of Mg 2Ni electrode fabricated by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kim, Jun Sung; Lee, Chang Rae; Choi, Jae Woong; Kang, Sung Goon

    The effects of surface fluorination on the electrochemical charge-discharge properties of a Mg 2Ni electrode, prepared by mechanical alloying in Ni-MH batteries are investigated. After 20 h milling, Mg and Ni powder form nanocrystalline Mg 2Ni. The discharge capacity of this alloy increases greatly on the initial cycle but, due to the formation of a Mg(OH) 2 passive layer, displays rapid degradation in alkaline solution within 10 cycles. In a 6 M KOH+ x M KF electrolyte ( x=0.5, 1, and 2), a continuous and stable fluorinated layer is formed and the durability of the Mg 2Ni electrode increases marketly and a high rate discharge capability is obtained (90-100 mAh/g). Addition of 2 M KF leads to the highest durability of all the electrodes tested. The improvement is due to a thin MgF 2—flourinated layer, which reduces the charge-transfer resistance and protects the Mg 2Ni electrode from forming a Mg(OH) 2 layer.

  19. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation.

    PubMed

    Yang, Lina; Minnich, Austin J

    2017-03-14

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

  20. Thermal transport in nanocrystalline Si and SiGe by ab initio based Monte Carlo simulation

    PubMed Central

    Yang, Lina; Minnich, Austin J.

    2017-01-01

    Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials. PMID:28290484

  1. A Comparison between Shear Bond Strength of VMK Master Porcelain with Three Base-metal Alloys (Ni-cr-T3, VeraBond, Super Cast) and One Noble Alloy (X-33) in Metal-ceramic Restorations

    PubMed Central

    Ahmadzadeh, A; Neshati, A; Mousavi, N; Epakchi, S; Dabaghi Tabriz, F; Sarbazi, AH

    2013-01-01

    Statement of Problem: The increase in the use of metal-ceramic restorations and a high prevalence of porcelain chipping entails introducing an alloy which is more compatible with porcelain and causes a stronger bond between the two. This study is to compare shear bond strength of three base-metal alloys and one noble alloy with the commonly used VMK Master Porcelain. Materials and Method: Three different groups of base-metal alloys (Ni-cr-T3, Super Cast, and VeraBond) and one group of noble alloy (X-33) were selected. Each group consisted of 15 alloy samples. All groups went through the casting process and change from wax pattern into metal disks. The VMK Master Porcelain was then fired on each group. All the specimens were put in the UTM; a shear force was loaded until a fracture occurred and the fracture force was consequently recorded. The data were analyzed by SPSS Version 16 and One-Way ANOVA was run to compare the shear strength between the groups. Furthermore, the groups were compared two-by-two by adopting Tukey test. Results: The findings of this study revealed shear bond strength of Ni-Cr-T3 alloy was higher than the three other alloys (94 MPa or 330 N). Super Cast alloy had the second greatest shear bond strength (80. 87Mpa or 283.87 N). Both VeraBond (69.66 MPa or 245 N) and x-33 alloys (66.53 MPa or 234 N) took the third place. Conclusion: Ni-Cr-T3 with VMK Master Porcelain has the greatest shear bond strength. Therefore, employment of this low-cost alloy is recommended in metal-ceramic restorations. PMID:24724144

  2. Computational Design and Discovery of Ni-Based Alloys and Coatings: Thermodynamic Approaches Validated by Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zi-Kui; Gleeson, Brian; Shang, Shunli

    This project developed computational tools that can complement and support experimental efforts in order to enable discovery and more efficient development of Ni-base structural materials and coatings. The project goal was reached through an integrated computation-predictive and experimental-validation approach, including first-principles calculations, thermodynamic CALPHAD (CALculation of PHAse Diagram), and experimental investigations on compositions relevant to Ni-base superalloys and coatings in terms of oxide layer growth and microstructure stabilities. The developed description included composition ranges typical for coating alloys and, hence, allow for prediction of thermodynamic properties for these material systems. The calculation of phase compositions, phase fraction, and phase stabilities,more » which are directly related to properties such as ductility and strength, was a valuable contribution, along with the collection of computational tools that are required to meet the increasing demands for strong, ductile and environmentally-protective coatings. Specifically, a suitable thermodynamic description for the Ni-Al-Cr-Co-Si-Hf-Y system was developed for bulk alloy and coating compositions. Experiments were performed to validate and refine the thermodynamics from the CALPHAD modeling approach. Additionally, alloys produced using predictions from the current computational models were studied in terms of their oxidation performance. Finally, results obtained from experiments aided in the development of a thermodynamic modeling automation tool called ESPEI/pycalphad - for more rapid discovery and development of new materials.« less

  3. Al3+ ions dependent structural and magnetic properties of Co-Ni nano-alloys.

    PubMed

    Kadam, R H; Alone, Suresh T; Gaikwad, Anil S; Birajdar, A P; Shirsath, Sagar E

    2014-06-01

    Ferrite samples with a chemical formula Co0.5Ni0.5Al(x)Fe(2-x)O4 (where x = 0.0, 0.25, 0.5, 0.75 and 1.0) were synthesized by sol-gel auto-combustion method. The synthesized samples were annealed at 600 degrees C for 4 h. An analysis of X-ray diffraction (XRD) patterns reveals the formation of single phase cubic spinel structure. The lattice parameter decreased linearly with the increasing Al content x. Nano size of the powders were confirmed by the transmission electron micrographs (TEM). Particle size, bulk density decreased whereas specific surface area and porosity of the samples increased with the Al substitution. Cation distribution of constituent ions shows linear dependence of Al substitution. Based on the cation distribution obtained from XRD data, structural parameters such as lattice parameters, ionic radii of available sites and the oxygen parameter 'u' is calculated. Saturation magnetization (M(s)), magneton number (n(B)) and coercivity (H(c)) decreased with the Al substitution. Possible explanation for the observed structural and magnetic behavior with various Al content are discussed.

  4. Effects of environment on the release of Ni, Cr, Fe, and Co from new and recast Ni-Cr alloy.

    PubMed

    Oyar, Perihan; Can, Gülşen; Atakol, Orhan

    2014-07-01

    The addition of previously cast alloy to new alloy for economic reasons may increase the release of elements. The purpose of this study was to analyze the effects of the immersion period, immersion media, and addition of previously cast alloy to new alloy on the release of elements. Disk-shaped specimens were prepared from a Ni-Cr alloy (Ni: 61 wt%, Cr: 26 wt%, Mo: 11 wt%, Si: 1.5 wt%, Fe, Ce, Al, and Co <1 wt%) (Remanium CS; Dentaurum) with new alloy (group N) and 50% new/50% recast alloy (group R). After the immersion of the specimens in both NaCl (pH 4) and artificial saliva (pH 6.7) for 3, 7, 14, 30, and 60 days, the release of ions was determined by using atomic absorption spectrometry. Data were analyzed with a 3-way ANOVA (α=.001). The release of Ni was significantly affected by the immersion period, of Ni and Cr by the alloy and media (P<.01), and of Fe by the alloy (P<.01). Ion release from the recast alloy in artificial saliva was 109.71 for Ni, 6.49 for Cr, 223.22 for Fe, and 29.90 μg/L for Co. The release of Co in NaCl was below the detection limit in both groups. The release of Ni in NaCl and artificial saliva increased with the length of the immersion period in both groups. The release of Cr and Fe was higher in artificial saliva than in NaCl in group R, regardless of the immersion period. The release of Co in NaCl was below the detection limit in both groups. Copyright © 2014 The Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Solid state amorphization of metastable Al 0.5TiZrPdCuNi high entropy alloy investigated by high voltage electron microscopy

    DOE PAGES

    Nagase, Takeshi; Takeuchi, Akira; Amiya, Kenji; ...

    2017-07-18

    Here, the phase stability of high entropy alloy (HEA), Al 0.5TiZrPdCuNi, under fast electron irradiation was studied by in-situ high voltage electron microscopy (HVEM). The initial phase of this alloy quenched from the melt was dependent on cooling rate. At high cooling rates an amorphous phase was obtained, whereas a body-centered cubic ( b.c.c.) phase were obtained at low cooling rates. By thermal crystallization of the amorphous phase b.c.c. phase nano-crystals were formed. Upon fast electron irradiation solid state amorphization (SSA) was observed in b.c.c. phase regardless of the initial microstructure (i.e., “coarse crystalline structure” or “nano-crystalline structure with grainmore » boundaries as a sink for point defects”). SSA behavior in the Al 0.5TiZrPdCuNi HEAs was investigated by in-situ transmission electron microscopy observations. Because the amorphization is very rarely achieved in a solid solution phase under fast electron irradiation in common metallic materials, this result suggests that the Al 0.5TiZrPdCuNi HEA from other common alloys and the other HEAs. The differences in phase stability against the irradiation between the Al 0.5TiZrPdCuNi HEA and the other HEAs were discussed. This is the first experimental evidence of SSA in HEAs stimulated by fast electron irradiation.« less

  6. Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  7. Stability of Fe-Ni hydride after the reaction between Fe-Ni alloy and hydrous phase (δ-AlOOH) up to 1.2 Mbar: Possibility of H contribution to the core density deficit

    NASA Astrophysics Data System (ADS)

    Terasaki, Hidenori; Ohtani, Eiji; Sakai, Takeshi; Kamada, Seiji; Asanuma, Hidetoshi; Shibazaki, Yuki; Hirao, Naohisa; Sata, Nagayoshi; Ohishi, Yasuo; Sakamaki, Tatsuya; Suzuki, Akio; Funakoshi, Ken-ichi

    2012-03-01

    The hydrous mineral, δ-AlOOH, is stable up to at least the core-mantle boundary, and therefore has been proposed as a water carrier to the Earth's deep mantle. If δ-AlOOH is transported down to the core-mantle boundary by a subducting slab or the mantle convection, then the reaction between the iron alloy core and δ-AlOOH is important in the deep water/hydrogen cycle in the Earth. Here we conducted an in situ X-ray diffraction study to determine the behavior of hydrogen between Fe-Ni alloys and δ-AlOOH up to near the core-mantle boundary conditions. The obtained diffraction spectra show that fcc/dhcp Fe-Ni hydride is stable over a wide pressure range of 19-121 GPa at high temperatures. Although the temperature of formation of Fe-Ni hydride tends to increase up to 1950 K with increasing pressure to 121 GPa, this reaction temperature is well below the mantle geotherm. δ-AlOOH was confirmed to coexist stably with perovskite, suggesting that δ-AlOOH can be a major hydrous phase in the lower mantle. Therefore, when δ-AlOOH contacts with the core at the core-mantle boundary, the hydrogen is likely to dissolve into the Earth's core. Based on the present results, the amount of hydrogen to explain the core density deficit is estimated to be 1.0-2.0 wt.%.

  8. Nanocrystalline Fe/Zr alloys: preparation by using mechanical alloying and mechanical milling processes

    NASA Astrophysics Data System (ADS)

    Rodríguez, V. A. Peña; Medina, J. Medina; Marcatoma, J. Quispe; Ayala, Ch. Rojas; Landauro, C. V.; Baggio-Saitovitch, E. M.; Passamani, E. C.

    2011-11-01

    Nanocrystalline Fe/Zr alloys have been prepared after milling for 9 h the mixture of elemental Fe and Zr powders or the arc-melting produced Fe2Zr alloy by using mechanical alloying and mechanical milling techniques, respectively. X-ray and Mössbauer results of the Fe and Zr powders, mechanically alloyed, suggest that amorphous Fe2Zr phase and \\upalpha-Fe(Zr) nanograins have been produced with relative concentrations of 91% and 9%, respectively. Conversely, the results of the mechanically milled Fe2Zr alloy indicate that nanograins of the Fe2Zr alloy have been formed, surrounded by a magnetic inter-granular phase that are simultaneously dispersed in a paramagnetic amorphous phase.

  9. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  10. The performances of proto-type Ni/MH secondary batteries using Zr-based hydrogen storage alloys and filamentary type Ni

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Min; Lee, Ho; Kim, Jin-Ho; Lee, Paul S.; Lee, Jai-Young

    2001-04-01

    For the purpose of developing a Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out. After careful alloy design of ZrMn2-based hydrogen storage alloys through varying their stoichiometry by means of substituting or adding alloying elements, the Zr0.9Ti0.1(Mn0.7V0.5Ni1.4)0.92 with high capacity (392 mAh/g at the 0.25C) and improved performance (comparable to that of commercialized AB5 type alloy) was developed. Another endeavor was made to improve the poor activation property and the low rate capability of the developed Zr-based Laves phase alloy for commercialization. The combination method of hot-immersion and slow-charging was introduced. It was found that electrode activation was greatly improved after hot immersion at 80°C for 12h followed by charging at 0.05C. The effects of this method are discussed in comparison with other activation methods. The combination method was successfully applied to the formation process of 80 Ah Ni/MH cells. A series of systematic investigations has been rendered to analyze the inner cell pressure characteristics of a sealed type Ni-MH battery. It was found that the increase of inner cell pressure in the sealed type Ni/MH battery of the above-mentioned Zr-Ti-Mn-V-Ni alloy was mainly due to the accumulation of oxygen gas during charge/discharge cycling. The fact identified that the surface catalytic activity was affected more dominantly by the oxygen recombination reaction than the reaction surface area was also identified. In order to improve the surface catalytic activity of a Zr-Ti-Mn-V-Ni alloy, which is closely related to the inner pressure behavior in a sealed cell, the electrode was fabricated by mixing the alloy with Cu powder and a filamentary type of Ni and replacing 75% of the carbon black with them; thus, the inner cell pressure rarely increases with cycles due to the active gas recombination reaction. Measurements of the surface

  11. Observations of Dynamic Strain Aging in Polycrystalline NiAl

    NASA Technical Reports Server (NTRS)

    Weaver, M. L.; Noebe, R. D.; Kaufman, M. J.

    1996-01-01

    Dynamic strain aging has been investigated at temperatures between 77 and 1100 K in eight polycrystalline NiAl alloys. The 0.2% offset yield stress and work hardening rates for these alloys generally decreased with increasing temperature. However, local plateaus or maxima were observed in conventional purity and carbon doped alloys at intermediate temperatures (600-900 K). This anomalous behavior was not observed in low interstitial high-purity, nitrogen doped, or in titanium doped materials. Low or negative strain rate sensitivities (SRS) were also observed in all eight alloys in this intermediate temperature range. Coincident with the occurrence of negative SRS was the occurrence of serrated flow in conventional purity alloys containing high concentrations of Si in addition to C. These phenomena have been attributed to dynamic strain aging (DSA). Chemical analysis of the alloys used in this study suggests that the main species causing strain aging in polycrystalline NiAl is C but indicate that residual Si impurities can enhance the strain aging effect.

  12. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  13. Ni nanotube array-based electrodes by electrochemical alloying and de-alloying for efficient water splitting.

    PubMed

    Teng, Xue; Wang, Jianying; Ji, Lvlv; Lv, Yaokang; Chen, Zuofeng

    2018-05-17

    The design of cost-efficient earth-abundant catalysts with superior performance for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is extremely important for future renewable energy production. Herein, we report a facile strategy for constructing Ni nanotube arrays (NTAs) on a Ni foam (NF) substrate through cathodic deposition of NiCu alloy followed by anodic stripping of metallic Cu. Based on Ni NTAs, the as-prepared NiSe2 NTA electrode by NiSe2 electrodeposition and the NiFeOx NTA electrode by dipping in Fe3+ solution exhibit excellent HER and OER performance in alkaline conditions. In these systems, Ni NTAs act as a binder-free multifunctional inner layer to support the electrocatalysts, offer a large specific surface area and serve as a fast electron transport pathway. Moreover, an alkaline electrolyzer has been constructed using NiFeOx NTAs as the anode and NiSe2 NTAs as the cathode, which only demands a cell voltage of 1.78 V to deliver a water-splitting current density of 500 mA cm-2, and demonstrates remarkable stability during long-term electrolysis. This work provides an attractive method for the design and fabrication of nanotube array-based catalyst electrodes for highly efficient water-splitting.

  14. Effect of Cooling Rate on Morphology of TiAl3 Particles in Al-4Ti Master Alloy.

    PubMed

    Zhao, Jianhua; Wang, Tao; Chen, Jing; Fu, Lu; He, Jiansheng

    2017-02-27

    The Al-4Ti master alloy was fabricated by aluminum (Al) and sponge titanium particle in a resistance furnace at different cooling rates. This work aims to investigate the relationship between the cooling rate and morphology of TiAl3. The microstructure and composition of master alloys at different cooling rates were characterized and analyzed by optical microscopy (OM), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and SEM with energy dispersive spectroscopy (EDS). The results showed that various morphologies of TiAl3 particles in the Al-4Ti master alloy could be acquired at different cooling rates. Petal-like, blocky, and flake-like TiAl3 particles in the Al-4Ti master alloy were respectively acquired at the cooling rates of 3.36 K/s, 2.57 K/s, and 0.31 K/s. It was also found that the morphology of TiAl3 particles in the prepared master alloy changed from petal-like to blocky, then finally to flake-like, with the decrease of cooling rate. In addition, the morphology of the TiAl3 particles has no effect on the phase inversion temperature of Al-4Ti master alloy.

  15. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  16. The effect of milling time on the synthesis of Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kursun, C., E-mail: celalkursun@ksu.edu.tr; Gogebakan, M., E-mail: gogebakan@ksu.edu.tr

    In the present work, nanocrystalline Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy was produced by mechanical alloying from mixtures of pure crystalline Cu, Mg, Ti and Ni powders using a Fritsch planetary ball mill with a ball to powder ratio of 10:1. Morphological changes, microstructural evolution and thermal behaviour of the Cu-Mg-Ti-Ni powders at different stages of milling were characterised by X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray detection (SEM/EDX) and differential thermal analysis (DTA). This alloy resulted in formation of single phase solid solution with FCC structure α-Cu (Mg, Ti, Ni) after 80 h of milling. In the initialmore » stage of milling different sized and shaped elemental powders became uniform during mechanical alloying. The homogeneity of the Cu{sub 54}Mg{sub 22}Ti{sub 18}Ni{sub 6} alloy increased with increasing milling time. The EDX result also confirmed the compositional homogeneity of the powder alloy. The crystallite size of alloy was calculated below 10 nm from XRD data.« less

  17. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography

    PubMed Central

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-01-01

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys. PMID:28773880

  18. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography.

    PubMed

    Klein, Thomas; Clemens, Helmut; Mayer, Svea

    2016-09-06

    Advanced intermetallic alloys based on the γ-TiAl phase have become widely regarded as most promising candidates to replace heavier Ni-base superalloys as materials for high-temperature structural components, due to their facilitating properties of high creep and oxidation resistance in combination with a low density. Particularly, recently developed alloying concepts based on a β-solidification pathway, such as the so-called TNM alloy, which are already incorporated in aircraft engines, have emerged offering the advantage of being processible using near-conventional methods and the option to attain balanced mechanical properties via subsequent heat-treatment. Development trends for the improvement of alloying concepts, especially dealing with issues regarding alloying element distribution, nano-scale phase characterization, phase stability, and phase formation mechanisms demand the utilization of high-resolution techniques, mainly due to the multi-phase nature of advanced TiAl alloys. Atom probe tomography (APT) offers unique possibilities of characterizing chemical compositions with a high spatial resolution and has, therefore, been widely used in recent years with the aim of understanding the materials constitution and appearing basic phenomena on the atomic scale and applying these findings to alloy development. This review, thus, aims at summarizing scientific works regarding the application of atom probe tomography towards the understanding and further development of intermetallic TiAl alloys.

  19. Piercing mandrel strengthening by surfacing with nickel aluminide-based alloy

    NASA Astrophysics Data System (ADS)

    Zorin, I. V.; Dubtsov, Yu N.; Sokolov, G. N.; Artem'ev, A. A.; Lysak, V. I.; Elsukov, S. N.

    2017-02-01

    Electrode composite wire (CW) was used for argon-arc surfacing of a thermal-resisting nickel aluminide-based alloy (Ni-Al-Cr-W-Mo-Ta system) on the butt-end surface of the non-water-cooled piercing mandrel. It was shown that multipassing surfacing forms a defect-free deposited metal based on the γ’-Ni3Al phase of various structural origins. Using high-temperature sclerometry and thermal fatigue testing methods, the metal deposited with CW containing ultrafine particle of 0.3-0.4 % wt. WC carbide features increased resistance to thermal and force effects at temperatures up to 1200 °C.

  20. Investigation of the mechanical properties of FeNiCrMnSi high entropy alloy wear resistant

    NASA Astrophysics Data System (ADS)

    Buluc, G.; Florea, I.; Chelariu, R.; Popescu, G.; Carcea, I.

    2016-06-01

    In this paper we investigated microstructure, hardness and wear resistance for FeNiCrMnAl, high entropy alloy. The FeNiCrMnSi, high entropy alloy was elaborated in a medium induction furnace, by choosing the silicon, as an alliance element within the equi- atomic high entropy alloy, we managed to obtain a dendritic structure, the formation of intermetallic compounds or separated silicon. The medium hardness value of the investigated alloy was 948.33 HV and the medium value of the friction coefficient was 0.6655 in the first 20 seconds and 0.5425 for 1667 seconds. The volume loss of the high entropy alloy FeNiCrMnSi was 0.0557 mm3.

  1. The irradiation-induced microstructural development and the role of γ' on void formation in Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi

    1984-05-01

    The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.

  2. Observations on the oxidation of Mn-modified Ni-base Haynes 230 alloy under SOFC exposure conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.

    2005-07-01

    The commercial Ni-base Haynes 230 alloy (Ni-Cr-Mo-W-Mn) was modified with two increased levels of Mn (1 and 2 wt per cent) and evaluated for its oxidation resistance under simulated SOFC interconnect exposure conditions. Oxidation rate, oxide morphology, oxide conductivity and thermal expansion were measured and compared with commercial Haynes 230. It was observed that additions of higher levels of Mn to the bulk alloy facilitated the formation of a bi-layered oxide scale that was comprised of an outer M3O4 (M=Mn, Cr, Ni) spinel-rich layer at the oxide – gas interface over a Cr2O3-rich sub-layer at the metal – oxide interface.more » The modified alloys showed higher oxidation rates and the formation of thicker oxide scales compared to the base alloy. The formation of a spinel-rich top layer improved the scale conductivity, especially during the early stages of the oxidation, but the higher scale growth rate resulted in an increase in the area-specific electrical resistance over time. Due to their face-centered cubic crystal structure, both commercial and modified alloys demonstrated a coefficient of thermal expansion that was higher than that of typical anode-supported and electrolyte-supported SOFCs.« less

  3. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    PubMed

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  4. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  5. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.

    PubMed

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-11-05

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.

  6. Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability

    PubMed Central

    Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor

    2017-01-01

    In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics. PMID:29113096

  7. Atomistic Simulations and Experimental Analysis of the Effect of Ti Additions on the Structure of NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita; Amador, Carlos

    1997-01-01

    The Bozzolo-Ferrante-Smith (BFS) semiempirical method for alloy energetics is applied to the study of ternary additions to NiAl alloys. A detailed description of the method and its application to alloy design is given. Two different approaches are used in the analysis of the effect of Ti additions to NiAl. First, a thorough analytical study is performed, where the energy of formation, lattice parameter and bulk modulus are calculated for hundreds of possible atomic distributions of Ni, Al and Ti. Substitutional site preference schemes and formation of precipitates are thus predicted and analyzed. The second approach used consists of the determination of temperature effects on the final results, as obtained by performing a number of large scale numerical simulations using the Monte Carlo - Metropolis procedure and BFS for the calculation of the energy at every step in the simulation. The results indicate a sharp preference of Ti for Al sites in Ni-rich NiAl alloys and the formation of ternary Heusler precipitates beyond the predicted solubility limit of 5 at. % Ti. Experimental analysis of three NiAl+Ti alloys confirms the theoretical predictions.

  8. High temperature tensile and creep behaviour of low pressure plasma-sprayed Ni-Co-Cr-Al-Y coating alloy

    NASA Technical Reports Server (NTRS)

    Hebsur, M. G.; Miner, R. V.

    1986-01-01

    The high temperature tensile and creep behavior of low pressure plasma-sprayed plates of a typical Ni-Co-Cr-Al-Y alloy has been studied. From room temperature to 800 K, the Ni-Co-Cr-Al-Y alloy studied has nearly a constant low ductility and a high strength. At higher temperatures, it becomes weak and highly ductile. At and above 1123 K, the behavior is highly dependent on strain rate and exhibits classic superplastic characteristics with a high ductility at intermediate strain rates and a strain rate sensitivity of about 0.5. At either higher or lower strain rates, the ductility decreases and the strain rate sensitivities are about 0.2. In the superplastic deformation range, the activation energy for creep is 120 + or - 20 kJ/mol, suggesting a diffusion-aided grain boundary sliding mechanism. Outside the superplastic range, the activation energy for creep is calculated to be 290 + or - 20 kJ/mol.

  9. Activation characteristics of multiphase Zr-based hydrogen storage alloys for Ni/MH rechargeable batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H.; Lee, S.M.; Lee, J.Y.

    1999-10-01

    AB{sub 2} type Zr-based Laves phase alloys have been studied for possible use as negative electrodes of Ni/MH batteries with high hydrogen storage capacity. However, these alloys have the serious problem of slow activation owing to the formation of surface oxide films. To overcome this problem, alloys with multiphase microstructures have been developed. These alloys become electrochemically active via the creation of micropores by the dissolution of soluble oxide components such as vanadium oxide. However, this phenomenon has been described based only on changes in the chemical composition of the oxide layer. In the present study, this phenomenon is approachedmore » with respect to interactions between the constituent phases. An electrochemical analysis of constituent phases showed that the second phase, resulting in localized Ni-rich pits on the alloy surface. The presence of microcracks at the periphery of the Ni-rich pits after 30 h exposure to KOH electrolyte implies that hydrogen is absorbed preferentially at Ni-rich pits, thereby forming a large active surface area. However, such multiphase alloys have poor cycle durability due to the persistent dissolution of components in the second phase. Through Cr substitution, the authors have developed a family of durable alloys to prevent this unwanted dissolution from the second phase.« less

  10. Production of Nanocrystalline Ni-20Cr Coatings for High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Singh, Harpreet; Singh, Narinder

    2014-04-01

    Presynthesized nanocrystalline Ni-20Cr powder was deposited on SA 516 and T91 boiler steels by a high-velocity oxy-fuel spraying process. Ni-20Cr powder was synthesized by the ball milling approach. The high-temperature oxidation behavior of bare and coated samples was then studied under cyclic isothermal conditions at 900 °C for 50 cycles. The kinetics of oxidation was established using weight change measurements for the bare and coated boiler steels. Uncoated and coated samples of T91 steel were exposed to the superheated zone of a power plant boiler at 750 °C under cyclic conditions for 15 cycles. Each cycle consisted of 100 h of heating followed by 1 h of cooling. Attempts were made to study the kinetics of erosion-corrosion using weight change and thickness loss data for the samples. Different characterization techniques were used to study the oxidized and eroded-corroded samples, including x-ray diffraction, scanning electron microscopy/energy-dispersive spectroscopy, and x-ray mapping analyses. The Ni-20Cr alloy powder coating was found to offer excellent oxidation resistance to the base steels and was successful in reducing the weight gain of SA 516 steel by 98.5 % and that of T91 steel by 65 %. The coating was observed to reduce the erosion-corrosion rate of T91 steel by 86 % in terms of thickness loss. This indicates that the investigated nanostructured coating can be a better choice over conventional coating for erosion-corrosion control of boiler tubes.

  11. High-Strength Ultra-Fine-Grained Hypereutectic Al-Si-Fe-X (X = Cr, Mn) Alloys Prepared by Short-Term Mechanical Alloying and Spark Plasma Sintering

    PubMed Central

    Průša, Filip; Bláhová, Markéta; Vojtěch, Dalibor; Kučera, Vojtěch; Bernatiková, Adriana; Kubatík, Tomáš František; Michalcová, Alena

    2016-01-01

    In this work, Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn (wt %) alloys were prepared by a combination of short-term mechanical alloying and spark plasma sintering. The microstructure was composed of homogeneously dispersed intermetallic particles forming composite-like structures. X-ray diffraction analysis and TEM + EDS analysis determined that the α-Al along with α-Al15(Fe,Cr)3Si2 or α-Al15(Fe,Mn)3Si2 phases were present, with dimensions below 130 nm. The highest hardness of 380 ± 7 HV5 was observed for the Al-20Si-10Fe-6Mn alloy, exceeding the hardness of the reference as-cast Al-12Si-1Cu-1 Mg-1Ni alloy (121 ± 2 HV5) by nearly a factor of three. Both of the prepared alloys showed exceptional thermal stability with the hardness remaining almost the same even after 100 h of annealing at 400 °C. Additionally, the compressive strengths of the Al-20Si-10Fe-6Cr and Al-20Si-10Fe-6Mn alloys reached 869 MPa and 887 MPa, respectively, and had virtually the same values of 870 MPa and 865 MPa, respectively, even after 100 h of annealing. More importantly, the alloys showed an increase in ductility at 400 °C, reaching several tens of percent. Thus, both of the investigated alloys showed better mechanical properties, including superior hardness, compressive strength and thermal stability, as compared to the reference Al-10Si-1Cu-1Mg-1Ni alloy, which softened remarkably, reducing its hardness by almost 50% to 63 ± 8 HV5. PMID:28774094

  12. Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys

    NASA Astrophysics Data System (ADS)

    Takahashi, H.; Garner, F. A.

    1992-10-01

    Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.

  13. Composition susceptibility and the role of one, two, and three-body interactions in glass forming alloys: Cu50Zr50 vs Ni50Al50

    NASA Astrophysics Data System (ADS)

    Tang, Chunguang; Harrowell, Peter

    2018-06-01

    In this paper, we compare the composition fluctuations and interaction potentials of a good metallic glass former, Cu50Zr50, and a poor glass former, Ni50Al50. The Bhatia-Thornton correlation functions are calculated. Motivated by the observation of chemical ordering at the NiAl surface, we derive a new property, R^ c n(q ) , corresponding to the linear susceptibility of concentration to a perturbation in density. We present a direct comparison of the potentials for the two model alloys using a 2nd order density expansion, and establish that the one-body energy plays a crucial role in stabilizing the crystal relative to the liquid in both alloys but that the three-body contribution to the heat of fusion is significantly larger in NiAl than CuZr.

  14. Nial-base composite containing high volume fraction of AlN for advanced engines

    NASA Technical Reports Server (NTRS)

    Hebsur, Mohan G. (Inventor); Whittenberger, John D. (Inventor); Lowell, Carl E. (Inventor)

    1997-01-01

    A particulate reinforced NiAl-AlN composite alloy has a NiAl matrix and greater than about 13 volume percent fine particles of AlN within the matrix. The particles preferably have a diameter from about 15 nanometers to about 50 nanometers. The particulate reinforced NiAl-AlN composite alloy may be prepared by cryomilling prealloyed NiAl in liquid nitrogen using grinding media having a diameter of from about 2 mm to about 6 mm at an impeller speed of from about 450 RPM to about 800 RPM. The cryomilling may be done for a duration of from about 4 hours to about 20 hours to obtain a cryomilled powder. The cryomilled powder may be consolidated to form the particulate reinforced NiAl-AlN composite alloy. The particulate reinforced alloy can further include a toughening alloy. The toughening alloy may include NiCrAlY, FeCrAY and FeAl.

  15. Site preference of ternary alloying additions to NiTi: Fe, Pt, Pd, Au, Al, Cu, Zr and Hf

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Mosca, Hugo O.

    2004-01-01

    Atomistic modeling of the site substitution behavior of Pd in NiTi (J. Alloys and Comp. (2004), in press) has been extended to examine the behavior of several other alloying additions, namely, Fe, Pt, Au, Al, Cu, Zr and Hf in this important shape memory alloy. It was found that all elements, to a varying degree, displayed absolute preference for available sites in the deficient sublattice. How- ever, the energetics of the different substitutional schemes, coupled with large scale simulations indicate that the general trend in all cases is for the ternary addition to want to form stronger ordered structures with Ti.

  16. Advanced Class of FML on the Base Al-Li Alloy 1441 with Lower Density

    NASA Astrophysics Data System (ADS)

    Antipov, V. V.; Senatorova, O. G.; Lukina, N. F.

    Structure, composition, properties combination of specimens and components, a number of technological parameters for production of advanced FML based on high-modulus Al-Li 1441 alloy (E 79 GPa) with reduced density (d 2.6 g/m3) and optimized adhesive prepreg reinforced with high-strength high-modulus VMP glass fibres are described. Service life 1441 alloy provides the possibility of manufacture of thin sheets (up to 0.3 mm), clad and unclad. Moreover, some experience on the usage of 1441 T1, T11 sheets and shapes in Be 200 and Be 103 aircraft was accumulated. The class of FML materials based on Al-Li alloy provide an 5% improvement in weight efficiency and stiffness of skin structures as compared with those made from FML with conventional Al-Cu-Mg (2024T3 a.o.) and Al-Zn-Mg-Cu (7475T76 a.o.) alloys.

  17. The microstructure and properties of rapidly solidified, dispersion-strengthened NiAl

    NASA Technical Reports Server (NTRS)

    Jha, S. C.; Ray, R.

    1990-01-01

    An advanced rapid solidification technology for processing reactive and refractory alloys, utilized to produce large quantities of melt-spun filaments of NiAl, is presented. The melt-spun filaments are pulverized to fine particle sizes, and subsequently consolidated by hot extrusion or hot isostatic pressing. Rapid solidification process gives rise to very fine-grained microstructures. However, exposure to elevated temperature during hot consolidation leads to grain growth. Alloying agents such as borides, carbides, and tungsten can pin the grain boundaries and retard the grain growth. Various alloy compositions are investigated. The eventual goal is to utilize the hot-extruded and forged stock to grow single-crystal NiAl blades for advanced gas-turbine engine applications. Single-crystal NiAl, containing a uniform dispersion of carbide strengthening precipitates, is expected to lead to highly creep-resistant turbine blades, and is of considerable interest to the aerospace propulsion industry.

  18. Structural and electronic properties of Ga2O3-Al2O3 alloys

    NASA Astrophysics Data System (ADS)

    Peelaers, Hartwin; Varley, Joel B.; Speck, James S.; Van de Walle, Chris G.

    2018-06-01

    Ga2O3 is emerging as an important electronic material. Alloying with Al2O3 is a viable method to achieve carrier confinement, to increase the bandgap, or to modify the lattice parameters. However, the two materials have very different ground-state crystal structures (monoclinic β-gallia for Ga2O3 and corundum for Al2O3). Here, we use hybrid density functional theory calculations to assess the alloy stabilities and electronic properties of the alloys. We find that the monoclinic phase is the preferred structure for up to 71% Al incorporation, in close agreement with experimental phase diagrams, and that the ordered monoclinic AlGaO3 alloy is exceptionally stable. We also discuss bandgap bowing, lattice constants, and band offsets that can guide future synthesis and device design efforts.

  19. RETRACTED ARTICLE: Microstructure and strengthening mechanism of Ni3Al intermetallic compound

    NASA Astrophysics Data System (ADS)

    Oh, Chang-Sup; Han, Chang-Suk

    2013-09-01

    Structural studies have been performed on precipitation hardening found in Ni3Al-base ordered alloys using transmission electron microscopy. The γ' phase hardens appreciably by the fine precipitation of disordered γ. The strength of γ' increases over the temperature range of experiment by the precipitation of fine γ particles. The peak temperature where a maximum strength was obtained shifted to higher temperature. Superlattice dislocations dissociate into fourfold Shockley partial dislocations in a uniform supersaturated solid solution of the γ' phase. Dislocations are attracted into the disordered γ phase and dissociate further in the particles. At any stage of aging, dislocations cut through the particles and the Orowan bypassing process does not occur even in the overaged stage of this alloy system. When the applied stress is removed, the dislocations make cross slip into (010) plane, while those in γ precipitates remain on the (111) primary slip plane. The increase of high temperature strength in γ' containing γ precipitates is due to the restraint of cross slip of dislocations from (111) to (010) by the dispersion of disordered γ particles. The orientation dependence of strength is decreased by the fine precipitation of a disordered γ phase.

  20. Microstructure and properties of thermally sprayed Al-Sn-based alloys for plain bearing applications

    NASA Astrophysics Data System (ADS)

    Marrocco, T.; Driver, L. C.; Harris, S. J.; McCartney, D. G.

    2006-12-01

    Al-Sn plain bearings for automotive applications traditionally comprise a multilayer structure. Conventionally, bearing manufacturing involves casting the Al-Sn alloy and roll-bonding to a steel backing strip. Recently, high-velocity oxyfuel (HVOF) thermal spraying has been used as a novel alternative manufacturing route. The present project extends previous work on ternary Al-Sn-Cu alloys to quaternary systems, which contain specific additions for potentially enhanced properties. Two alloys were studied in detail, namely, Al-20wt.%Sn-1wt.%Cu-2wt.%Ni and Al-20wt.%Sn-1wt.%Cu-7wt.%Si. This article will describe the microstructural evolution of these alloys following HVOF spraying onto steel substrates and subsequent heat treatment. The microstructures of powders and coatings were investigated by scanning electron microscopy, and the phases were identified by x-ray diffraction. Coating microhardnesses were determined under both as-sprayed and heat-treated conditions, and by the differences related to the microstructures that developed. Finally, the wear behavior of the sprayed and heat-treated coatings in hot engine oil was measured using an industry standard test and was compared with that of previous work on a ternary alloy.

  1. Nature of hardness evolution in nanocrystalline NiTi shape memory alloys during solid-state phase transition

    PubMed Central

    Amini, Abbas; Cheng, Chun

    2013-01-01

    Due to a distinct nature of thermomechanical smart materials' reaction to applied loads, a revolutionary approach is needed to measure the hardness and to understand its size effect for pseudoelastic NiTi shape memory alloys (SMAs) during the solid-state phase transition. Spherical hardness is increased with depths during the phase transition in NiTi SMAs. This behaviour is contrary to the decrease in the hardness of NiTi SMAs with depths using sharp tips and the depth-insensitive hardness of traditional metallic alloys using spherical tips. In contrast with the common dislocation theory for the hardness measurement, the nature of NiTi SMAs' hardness is explained by the balance between the interface and the bulk energy of phase transformed SMAs. Contrary to the energy balance in the indentation zone using sharp tips, the interface energy was numerically shown to be less dominant than the bulk energy of the phase transition zone using spherical tips. PMID:23963305

  2. Electronic Topological Transitions in CuNiMnAl and CuNiMnSn under pressure from first principles study

    NASA Astrophysics Data System (ADS)

    Rambabu, P.; Kanchana, V.

    2018-06-01

    A detailed study on quaternary ordered full Heusler alloys CuNiMnAl and CuNiMnSn at ambient and under different compressions is presented using first principles electronic structure calculations. Both the compounds are found to possess ferromagnetic nature at ambient with magnetic moment of Mn being 3.14 μB and 3.35 μB respectively in CuNiMnAl and CuNiMnSn. The total magnetic moment for both the compounds is found to decrease under compression. Fermi surface (FS) topology change is observed in both compounds under pressure at V/V0 = 0.90, further leading to Electronic Topological Transitions (ETTs) and is evidenced by the anomalies visualized in density of states and elastic constants under compression.

  3. Structural, thermal, optical, and photoacoustic study of nanocrystalline Bi{sub 2}Te{sub 3} produced by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souza, S. M.; Triches, D. M.; Poffo, C. M.

    2011-01-01

    Nanocrystalline Bi{sub 2}Te{sub 3} was produced by mechanical alloying and its properties were investigated by differential scanning calorimetry (DSC) x-ray diffraction (XRD), Raman spectroscopy (RS), and photoacoustic spectroscopy (PAS). Combining the XRD and RS results, the volume fraction of the interfacial component in as-milled and annealed samples was estimated. The PAS results suggest that the contribution of the interfacial component to the thermal diffusivity of nanostructured Bi{sub 2}Te{sub 3} is very significant.

  4. Effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy

    DOE PAGES

    Wang, Z.; Gao, M. C.; Ma, S. G.; ...

    2015-08-05

    Cold rolling can break down the as-cast dendrite microstructure and thus may have pronounced impact on the mechanical behavior of the alloy. In the present study, the effect of cold rolling on the microstructure and mechanical properties of Al 0.25CoCrFe 1.25Ni 1.25 high-entropy alloy in the face-centered cubic structure was investigated. With increasing the thickness reduction from cold rolling, the hardness, the yield strength, and the fracture strength increased at the cost of reducing ductility. At the thickness reduction of 80%, the tensile strength (hardness) was 702 MPa (406 MPa), 1.62 (2.43) times that in the as-cast condition. Compared tomore » traditional alloys, Al 0.25CoCrFe 1.25Ni 1.25 has the highest hardening rate with respect to CR thickness reduction. Lastly, the phase relation and the mixing properties of Gibbs free energy, enthalpy and entropy of Al xCoCrFe 1.25Ni 1.25 were predicted using the CALPHAD method.« less

  5. Growth of C60 thin films on Al2O3/NiAl(100) at early stages

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Liao, C.-H.; Hung, T.-C.; Wu, Y.-C.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.

    2018-03-01

    The growth of thin films of C60 on Al2O3/NiAl(100) at the earliest stage was studied with scanning tunneling microscopy and synchrotron-based photoelectron spectroscopy under ultrahigh-vacuum conditions. C60 molecules, deposited from the vapor onto an ordered thin film of Al2O3/NiAl(100) at 300 K, nucleated into nanoscale rectangular islands, with their longer sides parallel to direction either [010] or [001] of NiAl. The particular island shape resulted because C60 diffused rapidly, and adsorbed and nucleated preferentially on the protrusion stripes of the crystalline Al2O3 surface. The monolayer C60 film exhibited linear protrusions of height 1-3 Å, due to either the structure of the underlying Al2O3 or the lattice mismatch at the boundaries of the coalescing C60 islands; such protrusions governed also the growth of the second layer. The second layer of the C60 film grew only for a C60 coverage >0.60 ML, implying a layer-by-layer growth mode, and also ripened in rectangular shapes. The thin film of C60 was thermally stable up to 400 K; above 500 K, the C60 islands dissociated and most C60 desorbed.

  6. Influence of hot isostatic pressing on the structure and properties of an innovative low-alloy high-strength aluminum cast alloy based on the Al-Zn-Mg-Cu-Ni-Fe system

    NASA Astrophysics Data System (ADS)

    Akopyan, T. K.; Padalko, A. G.; Belov, N. A.

    2015-11-01

    Hot isostatic pressing (HIP) is applied for treatment of castings of innovative low-ally high-strength aluminum alloy, nikalin ATs6N0.5Zh based on the Al-Zn-Mg-Cu-Ni-Fe system. The influence of HIP on the structure and properties of castings is studied by means of three regimes of barometric treatment with different temperatures of isometric holding: t 1 = 505 ± 2°C, p 1 = 100 MPa, τ1 = 3 h (HIP1); t 2 = 525 ± 2°C, p 2 = 100 MPa, τ2 = 3 h (HIP2); and t 3 = 545 ± 2°C, p 3 = 100 MPa, τ3 = 3 h (HIP3). It is established that high-temperature HIP leads to actually complete elimination of porosity and additional improvement of the morphology of second phases. Improved structure after HIP provides improvement properties, especially of plasticity. In particular, after heat treatment according of regime HIP2 + T4 (T4 is natural aging), the alloy plasticity is improved by about two times in comparison with the initial state (from ~6 to 12%). While applying regime HIP3 + T6 (T6 is artificial aging for reaching the maximum strength), the plasticity has improved by more than three times in comparison with the initial state, as after treatment according to regimes HIP1 + T6 and HIP2 + T6 (from ~1.2 to ~5.0%), which are characterized by a lower HIP temperature.

  7. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    PubMed

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  8. Effects of Insert Metal Type on Interfacial Microstructure During Dissimilar Joining of TiAl Alloy to SCM440 by Friction Welding

    NASA Astrophysics Data System (ADS)

    Park, Jong-Moon; Kim, Ki-Young; Kim, Kyoung-Kyun; Ito, Kazuhiro; Takahashi, Makoto; Oh, Myung-Hoon

    2018-05-01

    Although the welding zone of direct bonding between a TiAl alloy and SCM440 can be obtained by friction welding, martensitic transformation and the formation of intermetallic compounds (IMCs) and cracks result in a lower tensile strength of the joints relative to those of other welding techniques. Insert metals were used as a buffer layer to relieve stress while increasing the bond strength. In this study, the microstructure and mechanical properties on welded joints of a TiAl alloy and SCM440 with various insert metals, were investigated. The TiAl/Cu/SCM440 and TiAl/Ni/SCM440 joints were fabricated using a servo-motor-type friction welding machine. As a result, it was confirmed that the formation of a welding flash was dependent on the insert metal type, and the strength of the base metal. At the TiAl/Cu/SCM440 interface, the formation of IMCs CuTiAl and Cu2TiAl was observed at TiAl/Cu, while no IMC formation was observed at Cu/SCM440. On the other hand, at the TiAl/Ni/SCM440 interface, several IMCs with more than 100 μm thickness were found, and roughly two compositions, viz., Ti2NiAl3 and TiNi2Al, were observed at the TiAl/Ni interface. At the Ni/SCM440 interface, 10 μm-thick FeNi and others were found.

  9. Microstructure and transformation behavior of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} high temperature shape-memory alloy with Sc micro-addition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramaiah, K.V., E-mail: kvramaiah@nal.res.in; Saikrishna, C.N.; Gouthama

    2015-08-15

    NiTiPd shape-memory alloys (SMAs) are potential functional materials for use as solid-state actuators in the temperature range 100–250 °C. The present study investigates the effect of 1.0 at.% Sc micro-addition to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy, Sc replacing either Ti or Ni. Results show that all the three alloys studied have stable transformation behavior on stress-free thermal cycling and hence, are suitable for cyclic actuation applications. However, the addition of Sc to NiTiPd alloy leads to decrease of transformation temperatures, the magnitude of decrease being greater for the alloy with Sc replacing Ni. The martensite finish (M{sub f}) temperature ofmore » 181 °C for the NiTiPd alloy decreased to 139 °C for Sc replacing Ti and 83 °C for Sc replacing Ni. Also, the indentation modulus of NiTiPdSc (Sc replacing Ni) alloy is found to be significantly low compared to the other alloys. Analysis indicates that the observed differences in the alloy properties are related to the solubility of Sc in the NiTiPd matrix. While the quaternary NiTiPdSc alloy, Sc replacing Ti, has a single phase microstructure, the alloy with Sc replacing Ni shows the presence of Sc-rich and TiPd-type second phases in the microstructure. TEM examination revealed that the TiPd-type phase has a distinct rod-like morphology (30–50 nm) arranged in a grid-like structure. The transformation and indentation behavior of the alloys is elucidated using thermodynamic calculations of frictional energy and an electronic structure based analysis. - Highlights: • TEM of Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed distinct grid of TiPd-type phase nanorods < 50 nm. • Stress-free thermal cycling of all the three alloys showed stable transformation behavior. • Ni{sub 24.7}Ti{sub 49.3}Pd{sub 25}Sc{sub 1} and Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed single and multiphase structures. • Sc micro-addition (1 at.%) to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy decreased

  10. Tribological Performance of Ni3Al Matrix Self-Lubricating Composites Containing Multilayer Graphene and Ti3SiC2 at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Yan, Zhao; Shi, Xiaoliang; Huang, Yuchun; Deng, Xiaobin; Yang, Kang; Liu, Xiyao

    2017-09-01

    The application of Ni3Al-based alloy (NA) in the field of aerospace was limited by its poor tribological properties. For improving the tribological performance of NA, multilayer graphene (MLG) and Ti3SiC2 were added in Ni3Al matrix composites. Tribological behavior of Ni3Al matrix composites containing 1.5 wt.% MLG and 10 wt.% Ti3SiC2 (NMT) against Si3N4 ball at 12 N-0.2 m/s from 25 to 750 °C was investigated. The results showed that NMT exhibited the excellent tribological behavior [lower friction coefficients (0.26-0.57) and less wear resistance (3.1-6.5 × 10-6 mm3 N-1 m-1)] due to synergetic effect of MLG and Ti3SiC2 over a wide temperature range from 25 to 750 °C. At 25-350 °C, part of MLG enriched on worn surface could play a role in reducing friction and improving wear resistance. At 350-550 °C, although MLG gradually lost the lubricating properties, the partial decomposition of Ti3SiC2 could continually improve the tribological properties of NMT. At 550-750 °C, Ti3SiC2 on worn surface was oxidized to form lubricating film, while Ti3SiC2 in the subsurface played an important role in supporting the film, resulting in the excellent high-temperature tribological performance. The research had good guiding significance for the preparation of wide temperature range self-lubricating material and the study of synergetic effect of complex solid lubricants.

  11. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  12. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGES

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni 0.5Fe 0.5, Ni 0.5Co 0.5 and Ni 0.5Pd 0.5 are ordered ferromagnetically, whereas Ni 0.5Cr 0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied bymore » a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less

  13. BFS Simulation and Experimental Analysis of the Effect of Ti Additions on the Structure of NiAl

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante,John; Garg, Anita; Honecy, Frank S.; Amador, Carlos

    1999-01-01

    The Bozzolo-Ferrante-Smith (BFS) method for alloy energetics is applied to the study of ternary additions to NiAl. A description of the method and its application to alloy design is given. Two different approaches are used in the analysis of the effect of Ti additions to NiAl. First, a thorough analytical study is performed, where the energy of formation, lattice parameter and bulk modulus are calculated for a large number of possible atomic distributions of Ni, Al and Ti. Substitutional site preference schemes and formation of precipitates are thus predicted and analyzed. The second approach used consists of the determination of temperature effects on the final results, as obtained by performing a number of large scale numerical simulations using the Monte Carlo-Metropolis procedure and BFS for the calculation of the energy at every step in the simulation. The results indicate a sharp preference of Ti for Al sites in Ni-rich NiAl alloys and the formation of ternary Heusler precipitates beyond the predicted solubility limit of 5 at. % Ti. Experimental analysis of three Ni-Al-Ti alloys confirms the theoretical predictions.

  14. Laser Cladding of Ni, Nb, and Mg Alloys for Improved Environmental Resistance at High Temperature

    DTIC Science & Technology

    1989-01-01

    v*LASER CLADDING OF NI , Nb AND Mg ALLOYS < FOR 7IMPR-OVED ENVIIONM ENTAL I RESISTANCE AT HIGH TEMPERATURE Final Report for Research Conducted through...resistance at high temperature. Major emphasis has been on Ni -Cr-Al-Hf system. Microstructural evolution and oxidation properties of Ni and Nb alloys ...metastable crystalline and amorphous structure on a) the high temperature oxidation properties of laser clad Ni and Nb alloys , and b) the corrosion

  15. Elevated temperature creep and fracture properties of the 62Cu-35Au-3Ni braze alloy

    NASA Astrophysics Data System (ADS)

    Stephens, J. J.; Greulich, F. A.

    1995-06-01

    The Cu-Au-Ni braze alloys are used for metal/ceramic brazes in electronic assemblies because of their good wetting characteristics and low vapor pressure. We have studied the tensile creep properties of annealed 62Cu-35Au-3Ni alloy over the temperature range 250 °C to 750 °C. Two power-law equations have been developed for the minimum creep rate as a function of true stress and temperature. At the highest temperatures studied (650 °C and 750 °C), the minimum creep rate is well described with a stress exponent of 3.0, which can be rationalized in the context of Class I solid solution strengthening. The inverted shape of the creep curves observed at these temperatures is also consistent with Class I alloy behavior. At lower temperatures, power-law creep is well described with a stress exponent of 7.5, and normal three-stage creep curves are observed. Intergranular creep damage, along with minimum values of strain to fracture, is most apparent at 450 °C and 550 °C. The lower stress exponent in the Class I alloy regime helps to increase the strain to fracture at higher temperatures (650 °C and 750 °C). The minimum creep rate behavior of the 62Cu-35Au-3Ni alloy is also compared with those of the 74.2Cu-25. 8Au alloy and pure Cu. This comparison indicates that the 62Cu-35Au-3Ni has considerably higher creep strength than pure Cu. This fact suggests that the 62Cu-35Au-3Ni braze alloy can be used in low mismatch metal-to-ceramic braze joints such as Mo to metallized alumina ceramic with few problems. However, careful joint design may be essential for the use of this alloy in high thermal mismatch metal-to-ceramic braze joints.

  16. Effect of Heat Treatment on Morphology of Fe-Rich Intermetallics in Hypereutectic Al-Si-Cu-Ni Alloy with 1.26 pct Fe

    NASA Astrophysics Data System (ADS)

    Sha, Meng; Wu, Shusen; Wan, Li; Lü, Shulin

    2013-12-01

    Cobalt is generally considered as the element that can neutralize the negative effects of iron in Al alloys, such as inducing fracture and failure for stress concentration. Nevertheless, Fe-rich intermetallics would be inclined to form coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles when the content of Fe was high, which could also cause inferior mechanical properties. The dissolution and transformation of δ-Al4(Fe, Co, Ni)Si2 phase in solution heat-treated samples of Al-20Si-1.85Cu-1.05Ni-1.26Fe-1.35Co alloy were studied using optical microscopy, image analysis, and scanning electron microscopy. The effects of solution heat treatment time ranging from 0 to 9 hours at 783.15 K (510 °C) on mechanical properties were also investigated. The coarse plate-like δ-Al4(Fe, Co, Ni)Si2 particles varied slowly through concurrent dissolution along widths and at the plate tips as solution treatment time increased, which could be explained from diffusion-induced grain boundary migration. Solution heat treatment also has an important influence on mechanical properties. The maximum ultimate tensile strength and yield strength after T6 treatment were 258 and 132 MPa, respectively, while the maximum hardness was 131 HB. Compared with those of the samples in the as-cast state, they increased by 53, 42, and 28 pct, respectively. Moreover, δ-Al4(Fe, Co, Ni)Si2 phase, which appears as a coarse plate-like particle in two dimensions, is actually a cuboid in three dimensions. The length of this cuboid is close to the width, while the height is much smaller.

  17. Damage accumulation in ion-irradiated Ni-based concentrated solid-solution alloys

    DOE PAGES

    Ullah, Mohammad W.; Aidhy, Dilpuneet S.; Zhang, Yanwen; ...

    2016-03-05

    We investigate Irradiation-induced damage accumulation in Ni 0.8Fe 0.2 and Ni 0.8Cr 0.2 alloys by using molecular dynamics simulations to assess possible enhanced radiation-resistance in these face-centered cubic (fcc), single-phase, concentrated solid-solution alloys, as compared with pure fcc Ni.

  18. Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen

    2017-02-13

    In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less

  19. Wetting Behavior of Ternary Au-Ge-X (X = Sb, Sn) Alloys on Cu and Ni

    NASA Astrophysics Data System (ADS)

    Jin, S.; Valenza, F.; Novakovic, R.; Leinenbach, C.

    2013-06-01

    Au-Ge-based alloys are potential substitutes for Pb-rich solders currently used for high-temperature applications. In the present work, the wetting behavior of two Au-Ge-X (X = Sb, Sn) ternary alloys, i.e., Au-15Ge-17Sb and Au-13.7 Ge-15.3Sn (at.%), in contact with Cu and Ni substrates has been investigated. Au-13.7Ge-15.3Sn alloy showed complete wetting on both Cu and Ni substrates. Total spreading of Au-15Ge-17Sb alloy on Cu was also observed, while the final contact angle of this alloy on Ni was about 29°. Pronounced dissolution of Cu substrates into the solder alloys investigated was detected, while the formation of Ni-Ge intermetallic compounds at the interface of both solder/Ni systems suppressed the dissolution of Ni into the solder.

  20. High-indexed Pt 3Ni alloy tetrahexahedral nanoframes evolved through preferential CO etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chenyu; Zhang, Lihua; Yang, Hongzhou

    2017-03-07

    Here, chemically controlling crystal structures in nanoscale is challenging, yet provides an effective way to improve catalytic performances. Pt-based nanoframes are a new class of nanomaterials that have great potential as high-performance catalysts. To date, these nanoframes are formed through acid etching in aqueous solutions, which demands long reaction time and often yields ill-defined surface structures. Herein we demonstrate a robust and unprecedented protocol for facile development of high-performance nanoframe catalysts using size and crystallographic facet-controlled PtNi 4 tetrahexahedral nanocrystals prepared through a colloidal synthesis approach as precursors. This new protocol employs the Mond process to preferentially dealloy nickel componentmore » in the <100> direction through carbon monoxide etching of carbon-supported PtNi 4 tetrahexahedral nanocrystals at an elevated temperature. The resultant Pt 3Ni alloy tetrahexahedral nanoframes possess an open, stable, and high-indexed microstructure, containing a segregated Pt thin layer strained to the Pt–Ni alloy surfaces and featuring a down-shift d-band center as revealed by the density functional theory calculations. These nanoframes exhibit much improved catalytic performance, such as high stability under prolonged electrochemical potential cycles, promoting direct electro-oxidation of formic acid to carbon dioxide and enhancing oxygen reduction reaction activities. Because carbon monoxide can be generated from the carbon support through thermal annealing in air, a common process for pretreating supported catalysts, the developed approach can be easily adopted for preparing industrial scale catalysts that are made of Pt–Ni and other alloy nanoframes.« less

  1. Phase Constituents and Microstructure of Ti3Al/Fe3Al + TiN/TiB2 Composite Coating on Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Li, Jianing; Chen, Chuanzhong; Zhang, Cuifang

    Laser cladding of the Fe3Al + B4C/TiN + Al2O3 pre-placed powders on the Ti-6Al-4V alloy can form the Ti3Al/Fe3Al + TiN/TiB2 composite coating, which improved the wear resistance of the Ti-6Al-4V alloy surface. In this study, the Ti3Al/Fe3Al + TiN/TiB2 composite coating has been researched by means of X-ray diffraction and scanning electron microscope. It was found that during the laser cladding process, Al2O3 can react with TiB2, leading to the formations of Ti3Al and B. This principle can be used to improve the Fe3Al + B4C/TiN laser-cladded coating on the Ti-6Al-4V alloy. Furthermore, during the cladding process, C consumed the oxygen in Fe3Al + B4C /TiN + Al2O3 molten pool, which retarded the productions of the redundant metal oxides.

  2. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni-Al-TiC composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karantzalis, A.E., E-mail: akarantz@cc.uoi.gr; Lekatou, A.; Tsirka, K.

    2012-07-15

    Monolithic Ni{sub 3}Al and Ni-25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution-reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt-particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni{sub 3}Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) materialmore » detachment and d) debris-counter surfaces interactions. - Highlights: Black-Right-Pointing-Pointer Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. Black-Right-Pointing-Pointer Solidification phenomena examination. Black-Right-Pointing-Pointer TiC crystal formation and growth mechanisms. Black-Right-Pointing-Pointer Sliding wear examination.« less

  3. Temporal Evolution of the Nanostructure and Phase Compositions in a Model Ni-Al-Cr Alloy

    NASA Technical Reports Server (NTRS)

    Sudbrack, Chantal K.; Yoon, Kevin E.; Seidman, David N.; Seidman, David N.

    2006-01-01

    In a Ni-5.2 Al-14.2 Cr at.% alloy with moderate solute supersaturations and a very small gamma/gamma prime lattice parameter misfit, the nanostructural and compositional pathways during gamma prime(L12) precipitation at 873 K are investigated using atom-probe tomography, conventional transmission electron microscopy, and hardness measurements. Nucleation of high number densities (N(sub v) greater than 10(sup 23) per cubic meters) of solute-rich precipitates (mean radius = [R] = 0.75 nm), with a critical nucleus composition of Ni-18.3 plus or minus 0.9 Al-9.3 plus or minus 0.7 Cr at.%, initiates between 0.0833 and 0.167 h. With increasing aging time (a) the solute concentrations decay in spheroidal precipitates ([R] less than 10 nm); (b) the observed early-stage coalescence peaks at maximum N(sub v) in coincidence with the smallest interprecipitate spacing; and (c) the reaction enters a quasi-stationary regime where growth and coarsening operate concomitantly. During this quasi-stationary regime, the c (face-centered cubic)-matrix solute supersaturations decay with a power-law dependence of about -1/3, while the dependencies of [R] and N(sub v) are 0.29 plus or minus 0.05 and -0.64 plus or minus 0.06 at a coarsening rate slower than model predications. Coarsening models allow both equilibrium phase compositions to be determined from the compositional measurements. The observed early-stage coalescence is discussed in further detail.

  4. A new activation process for a Zr-based alloy as a negative electrode for Ni/MH electric vehicle batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, J.S.; Lee, H.; Lee, S.M.

    1999-12-01

    The effects of a combination hot-immersion and slow-charging method on the activation of a Zr-based alloy were investigated. A Zr{sub 0.7}Ti{sub 0.3}Cr{sub 0.3}Mn{sub 0.3}V{sub 0.4}Ni{sub 1.0} alloy electrode was treated with two steps: alloy electrodes were immersed at 80 C for 12 h in a KOH solution and then charged at a low current density for one cycle. It was found that the alloy electrode activation was greatly improved after this hot-immersion and slow-charging treatment, and furthermore the treated electrodes were fully activated at the first normal cycle. The effects of this treatment are discussed on the basis of resultsmore » obtained by scanning electron microscopy, Auger electron spectroscopy, and inductively coupled plasma spectroscopy. The hot-immersion and slow-charging method was successfully applied to the formation process of 80 Ah Ni/MH cells using this Zr-based alloy.« less

  5. Effect of Al on Grain Refinement and Mechanical Properties of Mg-3Nd Casting Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Feng, Yicheng; Wang, Liping; Chen, Yanhong; Guo, Erjun

    2018-05-01

    The effect of Al on the grain refinement and mechanical properties of as-cast Mg-3Nd alloy was investigated systematically by a series of microstructural analysis, solidification analysis and tensile tests. The results show that Al has an obvious refining effect on the as-cast Mg-3Nd alloy. With increasing Al content, the grain size of the as-cast Mg-3Nd alloy decreases firstly, then increases slightly after the Al content reaching 3 wt.%, and the minimum grain size of the Mg-3Nd alloy is 48 ± 4.0 μm. The refining mechanism can be attributed to the formation of Al2Nd particles, which play an important role in the heterogeneous nucleation. The strength and elongation of the Mg-3Nd alloy refined by Al also increase with increasing Al content and slightly decrease when the Al content is more than 3 wt.%, and the strengthening mechanism is attributed to the grain refinement as well as dispersed intermetallic particles. Furthermore, the microstructural thermal stability of the Mg-3Nd-3Al alloy is higher than that of the Mg-3Nd-0.5Zr alloy. Overall, the Mg-3Nd alloy with Al addition is a novel alloy with wide and potential application prospects.

  6. Oxide compounds on Ni-Cr alloys.

    PubMed

    Baran, G R

    1984-11-01

    Five Ni-Cr alloys were studied in order to identify the compounds formed on the alloy surface during oxidation under conditions similar to those encountered during dental laboratory procedures prior to application of porcelain. After the alloys were oxidized, the films covering the surfaces were removed with the aid of a Br-methanol solution. X-ray diffraction was used to analyze the compounds formed. Oxides of nearly all elements contained by the alloys were found after low-temperature (650 degrees C) oxidation, while NiO and particularly Cr2O3 were predominant after oxidation at high temperatures (1000 degrees C).

  7. Role of oxygen diffusion at Ni/Cr2O3 interface in intergranular oxidation of Ni-Cr alloy

    NASA Astrophysics Data System (ADS)

    Medasani, Bharat; Sushko, Maria; Schreiber, Daniel; Rosso, Kevin; Bruemmer, Stephen

    Certain Ni-Cr alloys used in nuclear systems experience intergranular oxidation and stress corrosion cracking when exposed to high-temperature water leading to their degradation and unexpected failure. To develop a mechanistic understanding of grain boundary oxidation processes, we proposed a mesoscale metal alloy oxidation model that combines quantum Density Functional Theory (DFT) with mesoscopic Poisson-Nernst-Planck/classical DFT. This framework encompasses the chemical specificity of elementary diffusion processes and mesoscale reactive dynamics, and allows modeling oxidation processes on experimentally relevant length scales from first principles. As a proof of concept, a preliminary model was previously employed that limited oxygen diffusion pathways to those through the oxide phase and did not allow oxygen diffusion in the alloy or across oxide/alloy interfaces. In this work, we expand the model to include oxygen diffusion pathways along Ni/Cr2O3 interfaces and demonstrate the increasing importance of such pathways for intergranular oxidation of Ni-Cr alloys with high Cr content. This work is supported by the U.S. Dept. of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Simulations are performed using PNNL Institutional Computing facility.

  8. Anomalous magnetic configuration of Mn{sub 2}NiAl ribbon and the role of hybridization in the martensitic transformation of Mn{sub 50}Ni{sub 50−x}Al{sub x} ribbons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, R. B.; Department of Physics, Hebei Medical University, Shijiazhuang 050017; Zhao, D. W.

    2014-12-08

    The magnetic configuration of Mn{sub 2}NiAl ribbon has been investigated. In contrast to Ni{sub 2}MnAl, the compound Mn{sub 2}NiAl with considerable disorder does exhibit ferromagnetism and, due to exchange interaction competition, both ferromagnetic and antiferromagnetic moment orientations can coexist between nearest neighbor Mn atoms. This is unexpected in Heusler alloys. Regarding the mechanism of the martensitic transformation in Mn{sub 50}Ni{sub 50−x}Al{sub x}, it is found that increasing the Al content results in an unusual change in the lattice constant, a decrease of the transformation entropy change, and enhancement of the calculated electron localization. These results indicate that the p-d covalentmore » hybridization between Mn (or Ni) and Al atoms gradually increases at the expense of the d-d hybridization between Ni and Mn atoms. This leads to an increased stability of the austenite phase and a decrease of the martensitic transformation temperature. For 11 ≤ x ≤ 14, Mn{sub 50}Ni{sub 50−x}Al{sub x} ferromagnetic shape memory alloys are obtained.« less

  9. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  10. Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys

    DOE PAGES

    Béland, Laurent Karim; Lu, Chenyang; Osetskiy, Yuri N.; ...

    2016-02-25

    Alloying of Ni with Fe or Co reduces primary damage production under ion irradiation. Similar results have been obtained from classical molecular dynamics simulations of 1, 10, 20, and 40 keV collision cascades in Ni, NiFe, and NiCo. In all cases, a mix of imperfect stacking fault tetrahedra, faulted loops with a 1/3 {111} Burgers vector, and glissile interstitial loops with a 1/2 {110} Burgers vector were formed, along with small sessile point defect complexes and clusters. Primary damage reduction occurs by three mechanisms. First, Ni-Co, Ni-Fe, Co-Co, and Fe-Fe short-distance repulsive interactions are stiffer than Ni-Ni interactions, which leadmore » to a decrease in damage formation during the transition from the supersonic ballistic regime to the sonic regime. This largely controls final defect production. Second, alloying decreases thermal conductivity, leading to a longer thermal spike lifetime. The associated annealing reduces final damage production. These two mechanisms are especially important at cascades energies less than 40 keV. Third, at the higher energies, the production of large defect clusters by subcascades is inhibited in the alloys. A number of challenges and limitations pertaining to predictive atomistic modeling of alloys under high-energy particle irradiation are discussed.« less

  11. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  12. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE PAGES

    Che, Hui; Huso, Jesse; Morrison, John L.; ...

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  13. Advanced nickel base alloys for high strength, corrosion applications

    DOEpatents

    Flinn, J.E.

    1998-11-03

    Improved nickel-base alloys of enhanced strength and corrosion resistance, produced by atomization of an alloy melt under an inert gas atmosphere and of composition 0--20Fe, 10--30Cr, 2--12Mo, 6 max. Nb, 0.05--3 V, 0.08 max. Mn, 0.5 max. Si, less than 0.01 each of Al and Ti, less than 0.05 each of P and S, 0.01--0.08C, less than 0.2N, 0.1 max. 0, bal. Ni. 3 figs.

  14. The Effects of Composition and gamma'/gamma Lattice Parameter Mismatch on the Critical Resolved Shear Stresses for Octahedral and Cube Slip in NiAlCrX Alloys

    NASA Technical Reports Server (NTRS)

    Miner, R. V.

    1997-01-01

    Prototypical single-crystal NiAlCrX superalloys were studied to examine the effects of the common major alloying elements, Co, Mo, Nb, Ta, Ti, and W, on yielding behavior. The alloys contained about 10 at. pct Cr, 60 vol pct of the gamma' phase, and about 3 at. pct of X in the gamma'. The critical resolved shear stresses (CRSSs) for octahedral and primary cube slip were measured at 760 C, which is about the peak strength temperature. The CRSS(sub oct) and CRSS(sub cube) are discussed in relation to those of Ni, (Al, X) gamma' alloys taken from the literature and the gamma'/gamma lattice mismatch. The CRSS(sub oct) of the gamma + gamma' alloys reflected a similar compositional dependence to that of both the CRSS(sub cube) of the gamma' phase and the gamma'/gamma lattice parameter mismatch. The CRSS(sub cube) of the gamma + gamma' alloys also reflected the compositional dependence of the gamma'/gamma mismatch, but bore no similarity to that of CRSS(sub cube) for gamma' alloys since it is controlled by the gamma matrix. The ratio of CRSS(sub cube)/CRSS(sub oct) was decreased by all alloying elements except Co, which increased the ratio. The decrease in CRSS(sub cube)/CRSS(sub oct) was related to the degree in which elements partition to the gamma' rather than the gamma phase.

  15. Effect of chemical composition of Ni-Cr dental casting alloys on the bonding characterization between porcelain and metal.

    PubMed

    Huang, H-H; Lin, M-C; Lee, T-H; Yang, H-W; Chen, F-L; Wu, S-C; Hsu, C-C

    2005-03-01

    The purpose of this study was to investigate the influence of chemical composition of Ni-Cr dental casting alloys on the bonding behaviour between porcelain and metal. A three-point bending test was used to measure the fracture load of alloy after porcelain firing. A scanning electron microscope, accompanied by an energy dispersion spectrometer, was used to analyse the morphology and chemical composition of the fracture surface. An X-ray photoelectron spectrometer and glow discharge spectrometer were used to identify the structure and cross-sectional chemical composition, respectively, of oxide layers on Ni-Cr alloys after heat treatment at 990 degrees C for 5 min. Results showed that the oxide layers formed on all Ni-Cr alloys contained mainly Cr2O3, NiO, and trace MoO3. The Ni-Cr alloy with a higher Cr content had a thicker oxide layer, as well as a weaker bonding behaviour of porcelain/metal interface. The presence of Al (as Al2O3) and Be (as BeO) on the oxide layer suppressed the growth of the oxide layer, leading to a better porcelain/metal bonding behaviour. However, the presence of a small amount of Ti (as TiO2) on the oxide layer did not have any influence on the bonding behaviour. The fracture propagated along the interface between the opaque porcelain and metal, and exhibited an adhesive type of fracture morphology.

  16. Microstructure and mechanical properties of Ni and Fe-base boride-dispersion-strengthened microcrystalline alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wade, C.S.; Park, H.G.; Hoagland, R.G.

    This paper considers the relation between microstructure and mechanical properties of two Ni-base and two Fe-base Boride-Dispersion-Strengthened Microcrystalline (BDSM) alloys. In these very fine grained materials the borides were primarily Cr, Mo, and MoFe in a fcc matrix in three of the alloys, and a bcc in one of the Fe-base alloys. Strength data and resistance to stress corrosion cracking are reported and, in the latter case, extraordinary resistance to SCC in NaCl, Na{sub 2}S{sub 2}O{sub 3} and boiling MgCl{sub 2} environments was observed in every case. The fcc BDSM alloys also demonstrated excellent thermal stability in terms of strengthmore » and fracture roughness up to 1000 C. The bcc alloy suffered severe loss of toughness. The fracture mode involved ductile rupture in all alloys and they display a reasonably linear correlation between K{sub Ic} and the square root of particle spacing.« less

  17. Effect of Ni +-ION bombardment on nickel and binary nickel alloys

    NASA Astrophysics Data System (ADS)

    Roarty, K. B.; Sprague, J. A.; Johnson, R. A.; Smidt, F. A.

    1981-03-01

    Pure nickel and four binary nickel alloys have been subjected to high energy Ni ion bombardment at 675, 625 and 525°C. After irradiation, each specimen was studied by transmission electron microscopy. The pure nickel control was found to swell appreciably (1 to 5%) and the Ni-Al and the Ni-Ti samples were found to swell at all temperatures, but to a lesser degree (0.01 to 0.35%). The Ni-Mo contained a significant density of voids only at 525° C, while swelling was suppressed at all temperatures in the Ni-Si alloy. The dislocation structure progressed from loops to tangles as temperature increased in all materials except the Ni-Ti, in which there was an absence of loops at all temperatures. Dislocation densities decreased as temperature increased in all samples. These results do not correlate well with the relative behavior of the same alloys observed after neutron irradiation at 455°C. The differences between these two sets of data appear to be caused by different mechanisms controlling void nucleation in ion and neutron irradiation of these alloys.

  18. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  19. 77 FR 32942 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    .... Intended Use: The instrument will be used to fabricate bulk nanostructured metals and metallic glasses, in particular Mg based alloys, CuNb, NiAl, Nb based alloys and metal matrix composites with oxide nanoparticles... oxide nanoparticles during the melting of metals. Suction casting is required to achieve nanocrystalline...

  20. Application of Precipitate Free Zone Growth Kinetics to the β-Phase Depletion Behavior in a CoNiCrAlY Coating Alloy: An Analytical Approach

    NASA Astrophysics Data System (ADS)

    Chen, H.

    2018-06-01

    This paper concerns the β-phase depletion kinetics of a thermally sprayed free-standing CoNiCrAlY (Co-31.7 pct Ni-20.8 pct Cr-8.1 pct Al-0.5 pct Y, all in wt pct) coating alloy. An analytical β-phase depletion model based on the precipitate free zone growth kinetics was developed to calculate the β-phase depletion kinetics during isothermal oxidation. This approach, which accounts for the molar volume of the alloy, the interfacial energy of the γ/ β interface, and the Al concentration at γ/ γ + β boundary, requires the Al concentrations in the β-phase depletion zone as the input rather than the oxidation kinetics at the oxide/coating interface. The calculated β-phase depletion zones derived from the current model were compared with experimental results. It is shown that the calculated β-phase depletion zones using the current model are in reasonable agreement with those obtained experimentally. The constant compositional terms used in the model are likely to cause the discrepancies between the model predictions and experimental results. This analytical approach, which shows a reasonable correlation with experimental results, demonstrates a good reliability in the fast evaluation on lifetime prediction of MCrAlY coatings.