Sample records for nanocrystalline zn2sno4 microcubes

  1. Eu 3+-doped wide band gap Zn 2SnO 4 semiconductor nanoparticles: Structure and luminescence

    DOE PAGES

    Dimitrievska, Mirjana; Ivetić, Tamara B.; Litvinchuk, Alexander P.; ...

    2016-08-03

    Nanocrystalline Zn 2SnO 4 powders doped with Eu 3+ ions were synthesized via a mechanochemical solid-state reaction method followed by postannealing in air at 1200 °C. X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and Raman and photoluminescence (PL) spectroscopies provide convincing evidence for the incorporation of Eu 3+ ions into the host matrix on noncentrosymmetric sites of the cubic inverse spinel lattice. Microstructural analysis shows that the crystalline grain size decreases with the addition of Eu 3+. Formation of a nanocrystalline Eu 2Sn 2O 7 secondary phase is also observed. Luminescence spectra of Eu 3+-doped samples show several emissions, including narrow-bandmore » magnetic dipole emission at 595 nm and electric dipole emission at 615 nm of the Eu 3+ ions. Excitation spectra and lifetime measurements suggest that Eu 3+ ions are incorporated at only one symmetry site. According to the crystal field theory, it is assumed that Eu 3+ ions participate at octahedral sites of Zn 2+ or Sn 4+ under a weak crystal field, rather than at the tetrahedral sites of Zn2+, because of the high octahedral stabilization energy for Eu 3+. Activation of symmetry forbidden (IR-active and silent) modes is observed in the Raman scattering spectra of both pure and doped samples, indicating a disorder of the cation sublattice of Zn 2SnO 4 nanocrystallites. These results were further supported by the first principle lattice dynamics calculations. The spinel-type Zn 2SnO 4 shows effectiveness in hosting Eu 3+ ions, which could be used as a prospective green/red emitter. As a result, this work also illustrates how sustainable and simple preparation methods could be used for effective engineering of material properties.« less

  2. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  3. Simultaneous detection of morphine and codeine in urine samples of heroin addicts using multi-walled carbon nanotubes modified SnO2-Zn2SnO4 nanocomposites paste electrode

    NASA Astrophysics Data System (ADS)

    Taei, M.; Hasanpour, F.; Hajhashemi, V.; Movahedi, M.; Baghlani, H.

    2016-02-01

    The SnO2-Zn2SnO4 nanocomposite was successfully prepared via a simple solid state method. Then, a chemically modified electrode based on incorporating SnO2-Zn2SnO4 into multi-walled carbon nanotube paste matrix (MWCNTs/SnO2-Zn2SnO4/CPE) was prepared for the simultaneous determination of morphine(MO) and codeine (CO). The measurements were carried out by application of differential pulse voltammetry (DPV), cyclic voltammetry, and chronoamperometry. The MWCNTs/SnO2-Zn2SnO4/CPE showed an efficient electrocatalytic activity for the oxidation of MO and CO. The separation of the oxidation peak potential for MO-CO was about 550 mV. The calibration curves obtained for MO and CO were in the ranges of 0.1-310 μmol L-1 and 0.1-600.0 μmol L-1, respectively. The detection limits (S/N = 3) were 0.009 μmol L-1 for both drugs. The method also successfully employed as a selective, simple, and precise method for the determination of MO and CO in pharmaceutical and biological samples.

  4. Mesoporous ZnO microcube derived from a metal-organic framework as photocatalyst for the degradation of organic dyes

    NASA Astrophysics Data System (ADS)

    Ban, Jin-jin; Xu, Guan-cheng; Zhang, Li; Lin, He; Sun, Zhi-peng; Lv, Yan; Jia, Dian-zeng

    2017-12-01

    A cube-like porous ZnO architecture was synthesized by direct two-step thermolysis of a zinc-based metal-organic framework [(CH3)2NH2][Zn(HCOO)3]. The obtained ZnO microcube was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy and nitrogen adsorption and desorption isotherms. The mesoporous ZnO microcube was comprised by many nanoparticles, and inherited the cube shape from [(CH3)2NH2][Zn(HCOO)3] precursor. With large surface area and mesoporous structure, the ZnO microcube exhibits excellent photocatalytic activities against methyl orange (MO) and rhodamine B (RhB) under UV irradiation, and the degradation rates reached 99.7% and 98.1% within 120 min, respectively.

  5. ZnO Quantum Dot Decorated Zn2SnO4 Nanowire Heterojunction Photodetectors with Drastic Performance Enhancement and Flexible Ultraviolet Image Sensors.

    PubMed

    Li, Ludong; Gu, Leilei; Lou, Zheng; Fan, Zhiyong; Shen, Guozhen

    2017-04-25

    Here we report the fabrication of high-performance ultraviolet photodetectors based on a heterojunction device structure in which ZnO quantum dots were used to decorate Zn 2 SnO 4 nanowires. Systematic investigations have shown their ultrahigh light-to-dark current ratio (up to 6.8 × 10 4 ), specific detectivity (up to 9.0 × 10 17 Jones), photoconductive gain (up to 1.1 × 10 7 ), fast response, and excellent stability. Compared with a pristine Zn 2 SnO 4 nanowire, a quantum dot decorated nanowire demonstrated about 10 times higher photocurrent and responsivity. Device physics modeling showed that their high performance originates from the rational energy band engineering, which allows efficient separation of electron-hole pairs at the interfaces between ZnO quantum dots and a Zn 2 SnO 4 nanowire. As a result of band engineering, holes migrate to ZnO quantum dots, which increases electron concentration and lifetime in the nanowire conduction channel, leading to significantly improved photoresponse. The enhancement mechanism found in this work can also be used to guide the design of high-performance photodetectors based on other nanomaterials. Furthermore, flexible ultraviolet photodetectors were fabricated and integrated into a 10 × 10 device array, which constitutes a high-performance flexible ultraviolet image sensor. These intriguing results suggest that the band alignment engineering on nanowires can be rationally achieved using compound semiconductor quantum dots. This can lead to largely improved device performance. Particularly for ZnO quantum dot decorated Zn 2 SnO 4 nanowires, these decorated nanowires may find broad applications in future flexible and wearable electronics.

  6. Nanocrystalline SnO2:F thin films for liquid petroleum gas sensors.

    PubMed

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO(2)-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO(2) films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO(2) with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO(2):F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO(2) was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO(2):F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  7. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    PubMed Central

    Chaisitsak, Sutichai

    2011-01-01

    This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG) sensors by doping with fluorine (F). Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer). The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM) and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time) of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C) with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection. PMID:22164007

  8. CO2 Sensors Based on Nanocrystalline SnO2 Doped with CuO

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Liu, Chung Chiun; Ward, Benjamin J.

    2008-01-01

    Nanocrystalline tin oxide (SnO2) doped with copper oxide (CuO) has been found to be useful as an electrical-resistance sensory material for measuring the concentration of carbon dioxide in air. SnO2 is an n-type semiconductor that has been widely used as a sensing material for detecting such reducing gases as carbon monoxide, some of the nitrogen oxides, and hydrocarbons. Without doping, SnO2 usually does not respond to carbon dioxide and other stable gases. The discovery that the electrical resistance of CuO-doped SnO2 varies significantly with the concentration of CO2 creates opportunities for the development of relatively inexpensive CO2 sensors for detecting fires and monitoring atmospheric conditions. This discovery could also lead to research that could alter fundamental knowledge of SnO2 as a sensing material, perhaps leading to the development of SnO2-based sensing materials for measuring concentrations of oxidizing gases. Prototype CO2 sensors based on CuO-doped SnO2 have been fabricated by means of semiconductor-microfabrication and sol-gel nanomaterial-synthesis batch processes that are amendable to inexpensive implementation in mass production.

  9. Vertically building Zn2SnO4 nanowire arrays on stainless steel mesh toward fabrication of large-area, flexible dye-sensitized solar cells.

    PubMed

    Li, Zhengdao; Zhou, Yong; Bao, Chunxiong; Xue, Guogang; Zhang, Jiyuan; Liu, Jianguo; Yu, Tao; Zou, Zhigang

    2012-06-07

    Zn(2)SnO(4) nanowire arrays were for the first time grown onto a stainless steel mesh (SSM) in a binary ethylenediamine (En)/water solvent system using a solvothermal route. The morphology evolution following this reaction was carefully followed to understand the formation mechanism. The SSM-supported Zn(2)SnO(4) nanowire was utilized as a photoanode for fabrication of large-area (10 cm × 5 cm size as a typical sample), flexible dye-sensitized solar cells (DSSCs). The synthesized Zn(2)SnO(4) nanowires exhibit great bendability and flexibility, proving potential advantage over other metal oxide nanowires such as TiO(2), ZnO, and SnO(2) for application in flexible solar cells. Relative to the analogous Zn(2)SnO(4) nanoparticle-based flexible DSSCs, the nanowire geometry proves to enhance solar energy conversion efficiency through enhancement of electron transport. The bendable nature of the DSSCs without obvious degradation of efficiency and facile scale up gives the as-made flexible solar cell device potential for practical application.

  10. Negative differential resistance and resistive switching in SnO2/ZnO interface

    NASA Astrophysics Data System (ADS)

    Pant, Rohit; Patel, Nagabhushan; Nanda, K. K.; Krupanidhi, S. B.

    2017-09-01

    We report a very stable negative differential resistance (NDR) and resistive switching (RS) behavior of highly transparent thin films of the SnO2/ZnO bilayer, deposited by magnetron sputtering. When this bilayer of SnO2/ZnO was annealed at temperatures above 400 °C, ZnO diffuses into SnO2 at the threading dislocations and gaps between the grain boundaries, leading to the formation of a ZnO nanostructure surrounded by SnO2. Such a configuration forms a resonant tunneling type structure with SnO2/ZnO/SnO2…….ZnO/SnO2 interface formation. Interestingly, the heterostructure exhibits a Gunn diode-like behavior and shows NDR and RS irrespective of the voltage sweep direction, which is the characteristic of unipolar devices. A threshold voltage of ˜1.68 V and a peak-to-valley ratio of current ˜2.5 are observed for an electrode separation of 2 mm, when the bias is swept from -5 V to +5 V. It was also observed that the threshold voltage can be tuned with changing distance between the electrodes. The device shows a very stable RS with a uniform ratio of about 3.4 between the high resistive state and the low resistive state. Overall, the results demonstrate the application of SnO2/ZnO bilayer thin films in transparent electronics.

  11. Study of lattice strain and optical properties of nanocrystalline SnO2

    NASA Astrophysics Data System (ADS)

    Ahmad, Naseem; Khan, Shakeel; Bhargava, Richa; Ansari, Mohd Mohsin Nizam

    2018-05-01

    Nanocrystalline SnO2 has been synthesized by co-precipitation method by using two solvents (water and ethylene glycol). The structure and surface morphology were investigated using XRD and scanning electron microscope (SEM). The optical properties were studied using diffused reflectance spectroscopy (DRS). From the XRD analysis, the prepared materials are found to be pure crystalline with tetragonal rutile structure. The lattice strain and crystallite size, were calculated using Williamson-Hall method, are found to be 0.00413 & 16.3 nm in water assisted SnO2 and 0.00495 & 35.6 nm for EG assisted SnO2. Study of surface morphology of the samples was carried out using SEM. It has been seen that the solvents which are used in synthesis can also alter the optical properties of the materials. The optical band gap of the water based SnO2 and EG based SnO2 are found to be 3.92eV and 3.86eV respectively.

  12. Electrical transport properties of spray deposited transparent conducting ortho-Zn2SnO4 thin films

    NASA Astrophysics Data System (ADS)

    Ramarajan, R.; Thangaraju, K.; Babu, R. Ramesh; Joseph, D. Paul

    2018-04-01

    Ortho Zinc Stannate (Zn2SnO4) exhibits excellent electrical and optical properties to serve as alternate transparent electrode in optoelectronic devices. Here we have optimized ortho-Zn2SnO4 thin film by spray pyrolysis method. Deposition was done onto a pre-heated glass substrate at a temperature of 400 °C. The XRD pattern indicated films to be polycrystalline with cubic structure. The surface of films had globular and twisted metal sheet like morphologies. Films were transparent in the visible region with band gap around 3.6 eV. Transport properties were studied by Hall measurements at 300 K. Activation energies were calculated from Arrhenius's plot from temperature dependent electrical measurements and the conduction mechanism is discussed.

  13. Nanocrystalline SnO2 formation by oxygen ion implantation in tin thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, Vidya; Rukade, Deepti; Kanjilal, Dinakar; Bhattacharyya, Varsha

    2018-03-01

    Metallic tin thin films of thickness 100 nm are deposited on fused silica substrates by thermal evaporation technique. These films are implanted with 45 keV oxygen ions at fluences ranging from 5 × 1015 to 5 × 1016 ions cm-2. The energy of the oxygen ions is calculated using SRIM in order to form embedded phases at the film-substrate interface. Post-implantation, films are annealed using a tube furnace for nanocrystalline tin oxide formation. These films are characterized using x-ray diffraction, Raman spectroscopy, UV-vis spectroscopy and photoluminescence spectroscopy. XRD and Raman spectroscopy studies reveal the formation of single rutile phase of SnO2. The size of the nanocrystallites formed decreases with an increase in the ion fluence. The nanocrystalline SnO2 formation is also confirmed by UV-vis and photoluminescence spectroscopy.

  14. Synthesis of nanocrystalline α - Zn 2SiO 4 at ZnO-porous silicon interface: Phase transition study

    NASA Astrophysics Data System (ADS)

    Singh, R. G.; Singh, Fouran; Mehra, R. M.; Kanjilal, D.; Agarwal, V.

    2011-05-01

    Thermal annealing induced formation of nanocrystalline Zinc silicate (α-Zn 2SiO 4) at the interface of ZnO-porous silicon (PSi) nanocomposites is reported. The PSi templates were formed by electrochemical anodization of p-type (100) Si and ZnO crystallites were deposited on the PSi surface by a Sol-gel spin coating process. The formation of α-Zn 2SiO 4 is confirmed by glancing angle X-ray diffraction and Fourier transform infrared spectroscopy studies. The presence of intense yellow-green emission also confirms the formation of α-Zn 2SiO 4. The mechanism of silicate phase formation at the ZnO-PSi interface and the origin of various photoluminescence (PL) bands are discussed in view of its potential applications in advanced optoelectronic devices.

  15. Enhanced Ethanol Gas Sensing Properties of SnO2-Core/ZnO-Shell Nanostructures

    PubMed Central

    Tharsika, T.; Haseeb, A. S. M. A.; Akbar, Sheikh A.; Sabri, Mohd Faizul Mohd; Hoong, Wong Yew

    2014-01-01

    An inexpensive single-step carbon-assisted thermal evaporation method for the growth of SnO2-core/ZnO-shell nanostructures is described, and the ethanol sensing properties are presented. The structure and phases of the grown nanostructures are investigated by field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. XRD analysis indicates that the core-shell nanostructures have good crystallinity. At a lower growth duration of 15 min, only SnO2 nanowires with a rectangular cross-section are observed, while the ZnO shell is observed when the growth time is increased to 30 min. Core-shell hierarchical nanostructures are present for a growth time exceeding 60 min. The growth mechanism for SnO2-core/ZnO-shell nanowires and hierarchical nanostructures are also discussed. The sensitivity of the synthesized SnO2-core/ZnO-shell nanostructures towards ethanol sensing is investigated. Results show that the SnO2-core/ZnO-shell nanostructures deposited at 90 min exhibit enhanced sensitivity to ethanol. The sensitivity of SnO2-core/ZnO-shell nanostructures towards 20 ppm ethanol gas at 400 °C is about ∼5-times that of SnO2 nanowires. This improvement in ethanol gas response is attributed to high active sensing sites and the synergistic effect of the encapsulation of SnO2 by ZnO nanostructures. PMID:25116903

  16. Construction of 1D SnO2-coated ZnO nanowire heterojunction for their improved n-butylamine sensing performances

    NASA Astrophysics Data System (ADS)

    Wang, Liwei; Li, Jintao; Wang, Yinghui; Yu, Kefu; Tang, Xingying; Zhang, Yuanyuan; Wang, Shaopeng; Wei, Chaoshuai

    2016-10-01

    One-dimensional (1D) SnO2-coated ZnO nanowire (SnO2/ZnO NW) N-N heterojunctions were successfully constructed by an effective solvothermal treatment followed with calcination at 400 °C. The obtained samples were characterized by means of XRD, SEM, TEM, Scanning TEM coupled with EDS and XPS analysis, which confirmed that the outer layers of N-type SnO2 nanoparticles (avg. 4 nm) were uniformly distributed onto our pre-synthesized n-type ZnO nanowire supports (diameter 80~100 nm, length 12~16 μm). Comparisons of the gas sensing performances among pure SnO2, pure ZnO NW and the as-fabricated SnO2/ZnO NW heterojunctions revealed that after modification, SnO2/ZnO NW based sensor exhibited remarkably improved response, fast response and recovery speeds, good selectivity and excellent reproducibility to n-butylamine gas, indicating it can be used as promising candidates for high-performance organic amine sensors. The enhanced gas-sensing behavior should be attributed to the unique 1D wire-like morphology of ZnO support, the small size effect of SnO2 nanoparticles, and the semiconductor depletion layer model induced by the strong interfacial interaction between SnO2 and ZnO of the heterojunctions. The as-prepared SnO2/ZnO NW heterojunctions may also supply other novel applications in the fields like photocatalysis, lithium-ion batteries, waste water purification, and so on.

  17. Superparamagnetic nanocrystalline ZnFe2O4 with a very high Curie temperature.

    PubMed

    Deka, Sasanka; Joy, P A

    2008-08-01

    Studies on the magnetic properties of nanocrystalline ZnFe2O4 synthesized by an autocombustion method are reported. Superparamagnetic behavior is observed for the nanocrystalline materials with particle sizes of 8 nm and 17 nm, with superparamagnetic blocking temperatures of 65 K and 75 K, respectively. Magnetic hysteresis with very large coercivities of 533 Oe and 325 Oe, respectively, are observed at 12 K. Studies on the temperature variation of the magnetization above room temperature indicate that the Curie temperature is as high as approximately 800 K when compared to the paramagnetic nature of bulk zinc ferrite at room temperature.

  18. Structural and physical properties of transparent conducting, amorphous Zn-doped SnO2 films

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2014-01-01

    The structural and physical properties of conducting amorphous Zn-doped SnO2 (a-ZTO) films, prepared by pulsed laser deposition, were investigated as functions of oxygen deposition pressure (pO2), composition, and thermal annealing. X-ray scattering and X-ray absorption spectroscopy measurements reveal that at higher pO2, the a-ZTO films are highly transparent and have a structural framework similar to that found in crystalline (c-), rutile SnO2 in which the Sn4+ ion is octahedrally coordinated by 6 O2- ions. The Sn4+ ion in these films however has a coordination number (CN) smaller by 2%-3% than that in c-SnO2, indicating the presence of oxygen vacancies, which are the likely source of charge carriers. At lower pO2, the a-ZTO films show a brownish tint and contain some 4-fold coordinated Sn2+ ions. Under no circumstances is the CN around the Zn2+ ion larger than 4, and the Zn-O bond is shorter than the Sn-O bond by 0.07 Å. The addition of Zn has no impact on the electroneutrality but improves significantly the thermal stability of the films. Structural changes due to pO2, composition, and thermal annealing account well for the changes in the physical properties of a-ZTO films.

  19. A novel label-free photoelectrochemical sensor based on N,S-GQDs and CdS co-sensitized hierarchical Zn2SnO4 cube for detection of cardiac troponin I.

    PubMed

    Fan, Dawei; Bao, Chunzhu; Khan, Malik Saddam; Wang, Chuanlei; Zhang, Yong; Liu, Qinze; Zhang, Xian; Wei, Qin

    2018-05-30

    A novel label-free photoelectrochemical (PEC) sensor based on graphene quantum dots doped with nitrogen and sulfur (N,S-GQDs) and CdS co-sensitized hierarchical Zn 2 SnO 4 cube was fabricated to detect cardiac troponin I (cTnI). The unique hierarchical Zn 2 SnO 4 cube was synthesized successfully by the solvothermal method, which has a large specific surface to load functional materials. N,S-GQDs nanoparticles were assembled to the surface of cubic Zn 2 SnO 4 coated ITO electrode, which efficiently accelerated the electronic transition and improved photo-to-current conversion efficiency. Then, CdS nanoparticles further were modified by in-situ growth method to form Zn 2 SnO 4 /N,S-GQDs/CdS composite with prominent photocurrent, which was 30 times that of the Zn 2 SnO 4 cube alone. In this work, the specific immune recognition between cTnI antigens and cTnI antibodies (anti-cTnI) reduced the intensity of the photoelectric signal. And the intensity decreased linearly with the logarithm of cTnI concentration range from 0.001 ng/mL to 50 ng/mL with a detection limit of 0.3 pg/mL. With high sensitivity, excellent selectivity, good stability and reproducibility, the fabricated PEC sensor showed promising applications in the sensor, clinical diagnosis of myocardial infarction and PEC analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Sensing mechanism of SnO2/ZnO nanofibers for CH3OH sensors: heterojunction effects

    NASA Astrophysics Data System (ADS)

    Tang, Wei

    2017-11-01

    SnO2/ZnO composite nanofibers were synthesized by a simple electrospinning method. The prepared SnO2/ZnO gas sensors exhibited good linear and high response to methanol. The enhanced sensing behavior of SnO2/ZnO might be associated with the homotypic heterojunction effects formed in n-SnO2/n-ZnO nanograins boundaries. In addition, the possible sensing mechanisms of methanol on SnO2/ZnO surface were investigated by density functional theory in order to make the methanol adsorption and desorption process clear. Zn doped SnO2 model was adopted to approximate the SnO2/ZnO structure because of the calculation power limitations. Calculation results showed that when exposed to methanol, the methanol would react with bridge oxygen O2c , planar O3c and pre adsorbed oxygen vacancy on the lattice surface. The -CH3 and -OH of methanol molecule would both lose one H atom. The lost H atoms bonded with oxygen at the adsorption sites. The final products were HCHO and H2O. Electrons were transferred from methanol to the lattice surface to reduce the resistance of semiconductor gas sensitive materials, which is in agreement with the experimental phenomena. More adsorption models of other interfering gases, such as ethanol, formaldehyde and acetone will be built and calculated to explain the selectivity issue from the perspective of adsorption energy, transferred charge and density of states in the future work.

  1. Effect of replacing Sn4+ ions by Zn2+ ions on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Selvi, E. Thamarai; Sundar, S. Meenakshi

    2017-05-01

    This paper highlights on the consequence of replacing tetravalent Sn4+ ions of the SnO2 by divalent Zn2+ ions on their structural, optical, and magnetic properties. Samples of Sn1- x Zn x O2 with x = 0, 0.01, 0.02, 0.03, and 0.04 were synthesized using microwave irradiated solvothermal process. The X-ray powder diffraction patterns reveal the rutile tetragonal phase of all doped SnO2 samples with no secondary phases. The transmission electron microscopy results show the formation of spherical nanoparticles of size 10-30 nm. Morphological changes were observed by scanning electron microscopy. The functional groups were investigated using Fourier transform infrared spectroscopy studies. Optical studies were carried by UV-Vis spectroscopy and fluorescence spectroscopy. Electron paramagnetic resonance was used to calculate the Lande splitting factor ` g'. The magnetic properties using vibrating sample magnetometer exhibit room temperature ferromagnetism for all the samples.

  2. Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5-xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI's applications

    NASA Astrophysics Data System (ADS)

    Akhtar, Majid Niaz; Khan, Muhammad Azhar; Ahmad, Mukhtar; Nazir, M. S.; Imran, M.; Ali, A.; Sattar, A.; Murtaza, G.

    2017-01-01

    The influence of Cu substitution on the structural and morphological characteristics of Ni-Zn nanocrystalline ferrites have been discussed in this work. The detailed and systematic magnetic characterizations were also done for Cu substituted Ni-Zn nanoferrites. The nanocrystalline ferrites of Cu substituted CuxZn0.5-xNi0.5Fe2O4 ferrites (x=0, 0.1, 0.2, 0.3, 0.4 and 0.5) were synthesized using sol gel self-combustion hybrid method. X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), Transmission electron microscope (TEM) and Vibrating sample magnetometer (VSM) were used to investigate the properties of Cu substituted nanocrystalline ferrites. Single phase structure of Cu substituted in Ni-Zn nanocrystalline ferrites were investigated for all the samples. Crystallite size, lattice constant and volume of the cell were found to increase by increasing Cu contents in spinel structure. The better morphology with well-organized nanocrystals of Cu-Zn-Ni ferrites at x=0 and 0.5 were observed from both FESEM and TEM analysis. The average grain size was 35-46 nm for all prepared nanocrystalline samples. Magnetic properties such as coercivity, saturation, remanence, magnetic squareness, magneto crystalline anisotropy constant (K) and Bohr magneton were measured from the recorded M-H loops. The magnetic saturation and remanence were increased by the incorporation of Cu contents. However, coercivity follow the Stoner-Wolforth model except for x=0.3 which may be due to the site occupancy and replacement of Cu contents from octahedral site. The squareness ratio confirmed the super paramgnetic behaviour of the Cu substituted in Ni-Zn nanocrystalline ferrites. Furthermore, Cu substituted Ni-Zn nanocrystalline ferrites may be suitable for many industrial and domestic applications such as components of transformers, core, switching, and MLCI's due to variety of the soft magnetic characteristics.

  3. Morphology-modulation of SnO2 Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications

    NASA Astrophysics Data System (ADS)

    Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin

    2015-01-01

    The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively).

  4. Morphology-modulation of SnO2 Hierarchical Architectures by Zn Doping for Glycol Gas Sensing and Photocatalytic Applications

    PubMed Central

    Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin

    2015-01-01

    The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively). PMID:25597269

  5. Synthesis and enhanced acetone gas-sensing performance of ZnSnO3/SnO2 hollow urchin nanostructures

    NASA Astrophysics Data System (ADS)

    Lian, Dandan; Shi, Bing; Dai, Rongrong; Jia, Xiaohua; Wu, Xiangyang

    2017-12-01

    A kind of novel ZnSnO3/SnO2 hollow urchin nanostructure was synthesized by a facile, eco-friendly two-step liquid-phase process. The structure, morphology, and composition of samples were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption-desorption techniques. The results revealed that many tiny needle-like SnO2 nanowires with the average diameter of 5 nm uniformly grew on the surface of the ZnSnO3 hollow microspheres and the ZnSnO3/SnO2 hollow urchin nanostructures with different SnO2 content also were successfully prepared. In order to comprehend the evolution process of the ZnSnO3/SnO2 hollow urchin nanostructures, the possible growth mechanism of samples was illustrated via several experiments in different reaction conditions. Moreover, the gas-sensing performance of as-prepared samples was investigated. The results showed that ZnSnO3/SnO2 hollow urchin nanostructures with high response to various concentration levels of acetone enhanced selectivity, satisfying repeatability, and good long-term stability for acetone detection. Specially, the 10 wt% ZnSnO3/SnO2 hollow urchin nanostructure exhibited the best gas sensitivity (17.03 for 50 ppm acetone) may be a reliable biomarker for the diabetes patients, which could be ascribed to its large specific surface area, complete pore permeability, and increase of chemisorbed oxygen due to the doping of SnO2.

  6. Studying Structural, Optical, Electrical, and Sensing Properties of Nanocrystalline SnO2:Cu Films Prepared by Sol-Gel Method for CO Gas Sensor Application at Low Temperature

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.

    Nanocrystalline SnO2 and SnO2:Cu thin films derived from SnCl22H2O precursors have been prepared on glass substrates using sol-gel dip-coating technique. The deposited film was 300±20nm thick and the films were annealed in air at 500∘C for 1h. Structural, optical and sensing properties of the films were studied under different preparation conditions, such as Cu-doping concentration of 2%, 4% and 6wt.%. X-ray diffraction studies show the polycrystalline nature with tetragonal rutile structure of SnO2 and Cu:SnO2 thin films. The films have highly preferred orientation along (110). The crystallite size of the prepared samples reduced with increasing Cu-doping concentrations and the addition of Cu as dopants changed the structural properties of the thin films. Surface morphology was determined through scanning electron microscopy and atomic force microscopy. Results show that the particle size decreased as doping concentration increased. The films have moderate optical transmission (up to 82.4% at 800nm), and the transmittance, absorption coefficient and energy gap at different Cu-doping concentration were measured and calculated. Results show that Cu-doping decreased the transmittance and energy gap whereas it increased the absorption coefficient. Two peaks were noted with Cu-doping concentration of 0-6wt.%; the first peak was positioned exactly at 320nm ultraviolet emission and the second was positioned at 430-480nm. Moreover, emission bands were noticed in the photoluminescence spectra of Cu:SnO2. The electrical properties of SnO2 films include DC electrical conductivity, showing that the films have two activation energies, namely, Ea1 and Ea2, which increase as Cu-doping concentration increases. Cudoped nanocrystalline SnO2 gas-sensing material has better sensitivity to CO gas compared with pure SnO2.

  7. Preparation of Cu2ZnSnS4 nano-crystalline powder by mechano-chemical method

    NASA Astrophysics Data System (ADS)

    Alirezazadeh, Farzaneh; Sheibani, Saeed; Rashchi, Fereshteh

    2018-01-01

    Copper zinc tin sulfide (Cu2ZnSnS4, CZTS) is one of the most promising ceramic materials as an absorber layer in solar cells due to its suitable band gap, high absorption coefficient and non-toxic and environmental friendly constituent elements. In this work, nano-crystalline CZTS powder was synthesized by mechanical milling. Elemental powders of Cu, Zn, Sn and were mixed in atomic ratio of 2:1:1:4 according to the stoichiometry of Cu2ZnSnS4 and then milled in a planetary high energy ball mill under argon atmosphere. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and diffusion reflectance spectroscopy (DRS). XRD results confirm the formation of single-phase CZTS with kesterite structure after 20 h of milling. Also, the mean crystallite size was about 35 nm. SEM results show that after 20 h of milling, the product has a relatively uniform particle size distribution. Optical properties of the product indicate that the band gap of prepared CZTS is 1.6 eV which is near to the optimum value for photovoltaic solar cells showing as a light absorber material in solar energy applications.

  8. Effects of SnO2, WO3, and ZrO2 addition on the magnetic and mechanical properties of NiCuZn ferrites

    NASA Astrophysics Data System (ADS)

    Wang, Sea-Fue; Yang, Hsiao-Ching; Hsu, Yung-Fu; Hsieh, Chung-Kai

    2015-01-01

    In this study, the effects of SnO2, WO3 and ZrO2 addition at levels up to 5 wt% on the magnetic and mechanical properties of Ni0.5Cu0.3Zn0.2Fe2O4 ceramics were investigated. Only Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with a SnO2 addition of ≥3.5 wt% required a densification temperature of 1150 °C, while the others reached maximum densification at 1075 °C. All samples revealed a pure spinel phase and a uniform microstructure, except for the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic with the WO3 addition, which showed an exaggerated grain growth accompanied with a small amount of needle-shaped Cu0.85Zn0.15WO4 second phase. The fracture mode in the pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic revealed a transgranular phase, as the CuO second phase increased the grain boundary strength; the Ni0.5Cu0.3Zn0.2Fe2O4 ceramics sintered with 5 wt% additives showed an intergranular phase. The Vickers hardness and the bending strength of the Ni0.5Cu0.3Zn0.2Fe2O4 ceramic were 733.6 and 62.0 MPa, respectively. The Vickers hardness of the ferrite with added SnO2 or ZrO2 showed only a slight improvement, while an apparent change (832.7) was observed with the addition of 5.0 wt% WO3. The bending strength of the ferrite was optimized at 75.7 MPa with 2.0 wt% SnO2 and at 90.5 MPa with 3.5 wt% ZrO2, while that of the ferrite sintered with WO3 added dropped gradually from 62.0 to 47.7 MPa as the amount of WO3 was increased from 0 to 5.0 wt% due to the non-uniform microstructure. The pure Ni0.5Cu0.3Zn0.2Fe2O4 ceramic sintered at 1075 °C had an initial permeability of 356.9 and a quality factor of 71.2. The addition of ZrO2 led to a significant increase in the initial permeability (588.4 at 5.0 wt% ZrO2), but a slight decline in the quality factor (56.6 at 5.0 wt% ZrO2).

  9. Nanocrystalline SnO2 formation using energetic ion beam.

    PubMed

    Mohanty, T; Batra, Y; Tripathi, A; Kanjilal, D

    2007-06-01

    Nanocrystalline tin oxide (SnO2) thin films grown by RF magnetron sputtering technique were characterized by UV-Visible absorption spectroscopy and Photoluminescence spectroscopy. From atomic force microscopic (AFM) and Glancing angle X-ray diffraction (GAXRD) measurements, the radius of grains was found to be approximately 6+/-2 nm. The thin films were bombarded with 250 keV Xe2+ ion beam to observe the stability of nanophases against radiation. For ion bombarded films, optical absorption band edge is shifted towards red region. Atomic force microscopy studies show that the radius of the grains was increased to approximately 8 +/- 1 nm and the grains were nearly uniform in size. The size of the grains has been reduced after ion bombardment in the case of films grown on Si. During this process, defects such as vacancies, voids were generated in the films as well as in the substrates. Ion bombardment induces local temperature increase of thin films causing melting of films. Ion beam induced defects enhances the diffusion of atoms leading to uniformity in size of grains. The role of matrix on ion beam induced grain growth is discussed.

  10. Effect of various SnO2 pH on ZnO/SnO2-composite film via immersion technique

    NASA Astrophysics Data System (ADS)

    Malek, M. F.; Mohamed, R.; Mamat, M. H.; Ismail, A. S.; Yusoff, M. M.; Rusop, M.

    2018-05-01

    ZnO/SnO2-composite film has been synthesized via immersion technique with various pH of SnO2. The pH of SnO2 were varied between 4.5 and 6.5. The optical measurements of the samples were carried out using Varian Cary 5000 UV-Vis spectrophotometer within the range from 350 nm to 800 nm at room temperature in air with a data interval of 1 nm. On the other hand, the optical photoluminescence properties were measured by a photoluminescence spectrometer (PL, model: Horiba Jobin Yvon - 79 DU420A-OE-325) using a He-Cd laser as the excitation source at 325 nm. These highly oriented ZnO/SnO2-composite film are potential for the creation of functional materials, such as the sensors, solar cells and etc.

  11. Thermal stability enhancement of modified carboxymethyl cellulose films using SnO2 nanoparticles.

    PubMed

    Baniasad, Arezou; Ghorbani, Mohsen

    2016-05-01

    In this study, in-situ and ex-situ hydrothermal synthesis procedures were applied to synthesize novel CMC/porous SnO2 nanocomposites from rice husk extracted carboxymethyl cellulose (CMC) biopolymer. In addition, the effects of SnO2 nanoparticles on thermal stability of the prepared nanocomposite were specifically studied. Products were investigated in terms of morphology, particle size, chemical structure, crystallinity and thermal stability by using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Presence of characteristic bands in the FTIR spectra of samples confirmed the successful formation of CMC and CMC/SnO2 nanocomposites. In addition, FESEM images revealed four different morphologies of porous SnO2 nanoparticles including nanospheres, microcubes, nanoflowers and olive-like nanoparticles with hollow cores which were formed on CMC. These nanoparticles possessed d-spacing values of 3.35Å. Thermal stability measurements revealed that introduction of SnO2 nanoparticles in the structure of CMC enhanced stability of CMC to 85%. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The Bulk Nanocrystalline zn Produced by Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Zhao, K. Y.; Li, C. J.; Tao, J. M.; Chan, T. L.; Koch, C. C.

    The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn).

  13. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  14. Interfacial effect on the structural and optical properties of pure SnO2 and dual shells (ZnO; SiO2) coated SnO2 core-shell nanospheres for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Selvi, N.; Sankar, S.; Dinakaran, K.

    2014-12-01

    Nanocrystallites of SnO2 core and dual shells (ZnO, SiO2) coated SnO2 core-shell nanospheres were successfully synthesized by co-precipitation method. The as prepared and annealed samples were characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), High resolution transmission electron microscopy (HRTEM) and UV-Vis analysis. XRD pattern confirms the obtained SnO2 core with tetragonal rutile crystalline structure and the shell ZnO with hexagonal structure. FTIR result shows the functional groups present in the samples. The spherical morphology and the formation of the core-shell structures have been confirmed by HRTEM measurements. The UV-Vis showed that band gap is red shifted for as-prepared and the shells coated core-shell samples. From this investigation it can be concluded that the surface modification with different metal and insulating oxides strongly influences the optical properties of the core-shell materials which enhance their potential applications towards optical devices fabrication.

  15. The gas-sensing potential of nanocrystalline SnO2 produced by a mechanochemical milling via centrifugal action

    NASA Astrophysics Data System (ADS)

    Kersen, Ü.

    In this work, the synthesis of undoped nanocrystalline tin dioxide powders and the subsequent preparation of SnO2 thick-films were studied. An initial mixture of SnCl2 and Ca(OH)2 was sealed in a vial for milling in an air atmosphere. Heat treatment of the milled powder resulted in the formation of tetragonal and orthorhombic SnO2 phases, which was confirmed by X-ray diffraction (XRD) analysis. It was found that crystallite size could be controlled by varying the milling time, the rotation speed and the temperature used for the heat treatment. Crystallite sizes in the range 20 to 30 nm (determined by XRD measurements) were obtained. The total pore volume was 0.22 ml/g for a measured particle size of 37 m2/g. No contamination of the powder during milling was found. The response of the prepared thick-films to H2S gas in the concentration range 0.5 to 10 ppm in air was investigated as a function of the preparation conditions. The advantage of mechanochemical synthesis of powder is its relative simplicity, low cost and possibility of obtaining isolated, unagglomerated nanosized grains. It is shown that chemical reactions, which usually occur in the vibratory mill to produce the SnO phase, can also be initiated during a short processing time in the centrifugal mill.

  16. Cation vacancies and electrical compensation in Sb-doped thin-film SnO2 and ZnO

    NASA Astrophysics Data System (ADS)

    Korhonen, E.; Prozheeva, V.; Tuomisto, F.; Bierwagen, O.; Speck, J. S.; White, M. E.; Galazka, Z.; Liu, H.; Izyumskaya, N.; Avrutin, V.; Özgür, Ü.; Morkoç, H.

    2015-02-01

    We present positron annihilation results on Sb-doped SnO2 and ZnO thin films. The vacancy types and the effect of vacancies on the electrical properties of these intrinsically n-type transparent semiconducting oxides are studied. We find that in both materials low and moderate Sb-doping leads to formation of vacancy clusters of variable sizes. However, at high doping levels cation vacancy defects dominate the positron annihilation signal. These defects, when at sufficient concentrations, can efficiently compensate the n-type doping produced by Sb. This is the case in ZnO, but in SnO2 the concentrations appear too low to cause significant compensation.

  17. Nanocrystalline ZnO as a Visible Active Photocatalyst for the Degradation of Benzene-1,4-diol

    NASA Astrophysics Data System (ADS)

    Ramachandran, Saranya; Sivasamy, A.

    We have synthesized nanocrystalline ZnO by a simple precipitation method. The prepared ZnO was found to be highly phase pure and nanocrystalline hexagonal wurtzite structure. UV-Visible-DRS spectroscopy showed the material to have bandgap energy of 3.22eV. HR-SEM image revealed the material to be made up of distinct hexagonal particles with a highly porous surface. AFM analysis was employed to confirm the high surface roughness and porosity of the material. The photocatalytic activity of the prepared ZnO was evaluated by the degradation of benzene-1,4-diol (hydroquinone), under visible light irradiation. Preliminary experiments showed the catalyst to be effective at neutral pH with an optimum catalyst dosage of 4g/L. Kinetic studies showed the degradation reaction to follow pseudo-first-order kinetics. In the presence of commonly used industrial electrolytes, the catalyst exhibited a decrease in efficiency. Reusability studies showed the catalytic efficiency of ZnO to diminish marginally after the third cycle of reuse.

  18. A study of structural, electrical, and optical properties of p-type Zn-doped SnO2 films versus deposition and annealing temperature

    NASA Astrophysics Data System (ADS)

    Le, Tran; Phuc Dang, Huu; Luc, Quang Ho; Hieu Le, Van

    2017-04-01

    This study presents a detailed investigation of the structural, electrical, and optical properties of p-type Zn-doped SnO2 versus the deposition and annealing temperature. Using a direct-current (DC) magnetron sputtering method, p-type transparent conductive Zn-doped SnO2 (ZTO) films were deposited on quartz glass substrates. Zn dopants incorporated into the SnO2 host lattice formed the preferred dominant SnO2 (1 0 1) and (2 1 1) planes. X-ray photoelectron spectroscopy (XPS) was used for identifying the valence state of Zn in the ZTO film. The electrical property of ZTO films changed from n-type to p-type at the threshold temperature of 400 °C, and the films achieved extremely high conductivity at the optimum annealing temperature of 600 °C after annealing for 2 h. The best conductive property of the film was obtained on a 10 wt% ZnO-doped SnO2 target with a resistivity, hole concentration, and hole mobility of 0.22 Ω · cm, 7.19  ×  1018 cm-3, and 3.95 cm2 V-1 s-1, respectively. Besides, the average transmission of films was  >84%. The surface morphology of films was examined using scanning electron microscopy (SEM). Moreover, the acceptor level of Zn2+ was identified using photoluminescence spectra at room temperature. Current-voltage (I-V) characteristics revealed the behavior of a p-ZTO/n-Si heterojunction diode.

  19. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  20. Fabrication and characterization of SnO2/ZnO gas sensors for detecting toluene gas.

    PubMed

    Min, Byung-Sam; Park, Young-Ho; Lee, Chang-Seop

    2014-11-01

    This study investigates the use of SnO2, ZnO, Ag, Au, Cu, In, Pd, Ru and carbon black to improve the sensitivity of a gas sensor for detecting toluene gas. Metal-SnO2/ZnO thick films were screen-printed onto Al2O3 substrates with platinum electrodes. The physico-chemical properties of the sensor materials were characterized using SEM/EDS, XRD, and BET analyses. Measuring the electrical resistance of each sensor as a function of the gas concentration determined the sensing characteristics. The sensors were tested using toluene, benzene, xylene, ethanol, methanol, ammonia and trimethylamine vapors with concentrations of 1-2000 ppm. The gas sensing properties of metal-SnO2/ZnO thick films depended on the content and variety of metals and the content of carbon black. The optimum condition of sensor material for toluene gas detection is operation temperature 300 degrees C and when metal catalyst Cu and carbon black were added. The best sensitivity and selectivity for toluene gas at 300 degrees C resulted from doping with 5 wt.% carbon black, 1 wt.% Cu and 20 wt.% ZnO to SnO2.

  1. Temperature and field dependent magnetization studies on nano-crystalline ZnFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Sahu, B. N.; Suresh, K. G.; Venkataramani, N.; Prasad, Shiva; Krishnan, R.

    2018-05-01

    Single phase nano-crystalline zinc ferrite (ZnFe2O4) thin films were deposited on fused quartz substrate using the pulsed laser deposition technique. The films were deposited at different substrate temperatures. The field dependence of magnetization at 10 K shows hysteresis loops for all the samples. Temperature dependence of the field cooled (FC) and zero field cooled (ZFC) magnetization indicated irreversible behavior between the FC and ZFC data, and the irreversibility depends on the measuring magnetic field. The thermo-magnetic irreversibility in the magnetization data is correlated with the magnitude of the applied field and the coercivity (HC) obtained from the M-H loops.

  2. Chemical and thermal stability of the characteristics of filtered vacuum arc deposited ZnO, SnO2 and zinc stannate thin films

    NASA Astrophysics Data System (ADS)

    Çetinörgü, E.; Goldsmith, S.

    2007-09-01

    ZnO, SnO2 and zinc stannate thin films were deposited on commercial microscope glass and UV fused silica substrates using filtered vacuum arc deposition system. During the deposition, the substrate temperature was at room temperature (RT) or at 400 °C. The film structure and composition were determined using x-ray diffraction and x-ray photoelectron spectroscopy, respectively. The transmission of the films in the VIS was 85% to 90%. The thermal stability of the film electrical resistance was determined in air as a function of the temperature in the range 28 °C (RT) to 200 °C. The resistance of ZnO increased from ~ 5000 to 105 Ω when heated to 200 °C, that of SnO2 films increased from 500 to 3900 Ω, whereas that of zinc stannate thin films increased only from 370 to 470 Ω. During sample cooling to RT, the resistance of ZnO and SnO2 thin films continued to rise considerably; however, the increase in the zinc stannate thin film resistance was significantly lower. After cooling to RT, ZnO and SnO2 thin films became practically insulators, while the resistance of zinc stannate was 680 Ω. The chemical stability of the films was determined by immersing in acidic and basic solutions up to 27 h. The SnO2 thin films were more stable in the HCl solution than the ZnO and the zinc stannate thin films; however, SnO2 and zinc stannate thin films that were immersed in the NaOH solution did not dissolve after 27 h.

  3. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE PAGES

    Huso, Jesse; Morrison, John L.; Che, Hui; ...

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  4. Microstructure and physical properties of laser Zn modified amorphous-nanocrystalline coating on a titanium alloy

    NASA Astrophysics Data System (ADS)

    Li, Jia-Ning; Gong, Shui-Li; Shi, Yi-Ning; Suo, Hong-Bo; Wang, Xi-Chang; Deng, Yun-Hua; Shan, Fei-Hu; Li, Jian-Quan

    2014-02-01

    A Zn modified amorphous-nanocrystalline coating was fabricated on a Ti-6Al-4V alloy by laser cladding of the Co-Ti-B4C-Zn-Y2O3 mixed powders. Such coating was researched by means of a scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM), etc. Experimental results indicated that the Co5Zn21 and TiB2 nanocrystalline phases were produced through in situ metallurgical reactions, which blocked the motion of dislocation, and TiB2 grew along (010), (111) and (024). The Co5Zn21 nanocrystals were produced attached to the ceramics, which mainly consisted of the Co nanoparticles embedded in a heterogeneous zinc, and had varied crystalline orientations.

  5. The enhancement of photovoltaic parameters in dye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles.

    PubMed

    Aponsu, G M L P; Wijayarathna, T R C K; Perera, I K; Perera, V P S; Siriwardhana, A C P K

    2013-05-15

    In this paper, the performance of nano-porous electrodes made of a composite material of SrTiO3 and SnO2 are compared with those made of bare SnO2. When these particular devices are analyzed in a comparative mode the results confirmed the enhancement of photovoltaic parameters in the former device. The performance of respective cells were examined by several methods including I-V characteristic measurements, photocurrent action spectra, dark I-V measurements, Mott-Schottky measurements and X-ray diffraction measurements. Even though such improvements in this particular cell could be explicated by the formation of a potential energy barrier of SrTiO3 particles of comparably large width at the SrTiO3/SnO2 interface, the passivation of voids in the SnO2 film by SrTiO3 particles to a certain extent could not be totally ruled out. Besides, high energetic electrons injected by dye molecules move more credibly through mini-bands formed in the chain of nano-crystalline SnO2 particles to the back contact. The blocking of the recombination path and the shifting up of the uppermost electron occupied level of SnO2 accompanying the conduction band edge in the SrTiO3/SnO2 composite film, may have lead to the observed enhancement of the fill factor and photovoltage, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jagadeesha Angadi, V.; Anupama, A.V.; Choudhary, Harish K.

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiatingmore » the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications. - Graphical abstract: The nanocrystalline Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4} ceramic sample transforms to crystalline α-Fe{sub 2}O{sub 3} and ZnFe{sub 2}O{sub 4} phases (and amorphous MnO phase) at a γ-irradiation dose of 50 kGy, as MnO goes out of the spinel lattice. The high energy γ-irradiation causes structural damage to the nanomaterials leading to change in morphology of the sample as seen in the SEM images. - Highlights: • Mn atoms are more unstable in the Mn-Zn ferrite spinel lattice than Zn-atoms. • Displacement of Mn atoms by γ-radiation from the lattice renders phase transformation. • In Mn{sub 0.5}Zn{sub 0.5}Fe{sub 2}O{sub 4}, Mn-ferrite cell transforms to crystalline α-Fe{sub 2}O{sub 3} and amorphous MnO. • The stable Zn

  7. Structural and optical characterization of p-type highly Fe-doped SnO2 thin films and tunneling transport on SnO2:Fe/p-Si heterojunction

    NASA Astrophysics Data System (ADS)

    Ben Haj Othmen, Walid; Ben Hamed, Zied; Sieber, Brigitte; Addad, Ahmed; Elhouichet, Habib; Boukherroub, Rabah

    2018-03-01

    Nanocrystalline highly Fe-doped SnO2 thin films were prepared using a new simple sol-gel method with iron amounts of 5, 10, 15 and 20%. The obtained gel offers a long durability and high quality allowing to reach a sub-5 nm nanocrystalline size with a good crystallinity. The films were structurally characterized through X-ray diffraction (XRD) that confirms the formation of rutile SnO2. High Resolution Transmission Electron Microscopy (HRTEM) images reveals the good crystallinity of the nanoparticles. Raman spectroscopy shows that the SnO2 rutile structure is maintained even for high iron concentration. The variation of the PL intensity with Fe concentration reveals that iron influences the distribution of oxygen vacancies in tin oxide. The optical transmittance results indicate a redshift of the SnO2 band gap when iron concentration increases. The above optical results lead us to assume the presence of a compensation phenomenon between oxygen vacancies and introduced holes following Fe doping. From current-voltage measurements, an inversion of the conduction type from n to p is strongly predicted to follow the iron addition. Electrical characterizations of SnO2:Fe/p-Si and SnO2:Fe/n-Si heterojunctions seem to be in accordance with this deduction. The quantum tunneling mechanism is expected to be important at high Fe doping level, which was confirmed by current-voltage measurements at different temperatures. Both optical and electrical properties of the elaborated films present a particularity for the same iron concentration and adopt similar tendencies with Fe amount, which strongly correlate the experimental observations. In order to evaluate the applicability of the elaborated films, we proceed to the fabrication of the SnO2:Fe/SnO2 homojunction for which we note a good rectifying behavior.

  8. Growth of nanocrystalline Cu2ZnSnS4 thin films using the spray pyrolysis technique and their characterization

    NASA Astrophysics Data System (ADS)

    Chandel, Tarun; Halaszova, Sona; Prochazka, Michal; Hasko, Daniel; Velic, Dusan; Thakur, Vikas; Dwivedi, Shailendra Kumar; Zaman, M. Buhanuz; Rajaram, Poolla

    2018-05-01

    Nanocrystalline thin films of Cu2ZnSnS4 (CZTS) were grown on the glass substrates using the spray pyrolysis technique. The films were grown at a substrate temperature of 300 °C after which they were annealed at 350 °C in vacuum. X-ray diffraction (XRD) studies showed that the films crystallized in the kesterite structure. Energy dispersive analysis of X-rays (EDAX) studies showed that the films possess the desired stoichiometry i.e. the proportion of Cu:Zn:Sn:S in the CZTS solid solution is close to 2:1:1:4. Secondary Ions Mass Spectroscopy (SIMS) depth profiling confirmed the uniformity in elemental composition along the depth of the films. SEM studies showed that the films are covered with CZTS particles forming sheet like structures. AFM studies show that the size of the particles on the surface of the films is around 10-15 nm. UV-VIS-NIR transmission spectra were used to determine the optical band gap of the CZTS films which was found to be around 1.55eV.

  9. NO2 Gas Sensing Properties of Multiple Networked ZnGa2O4 Nanorods Coated with TiO2.

    PubMed

    An, Soyeon; Park, Sunghoon; Ko, Hyunsung; Jin, Changhyun; Lee, Chongmu

    2015-01-01

    The NO2 gas sensing properties of ZnGa2O4-TiO2 heterostructure nanorods was examined. ZnGa2O4-core/TiO2-shell nanorods were fabricated by the thermal evaporation of a mixture of Zn and GaN powders and the sputter deposition of TiO2. Multiple networked ZnGa2O4-core/TiO2-shell nanorod sensors showed the response of 876% at 10 ppm NO2 at 300 degrees C. This response value at 10 ppm NO2 is approximately 4 times larger than that of bare ZnGa2O4 nanorod sensors. The response values obtained by the ZnGa2O4-core/TiO2-shell nanorods in this study are more than 13 times higher than those obtained previously by the SnO2-core/ZnO-shell nanofibers at 5% NO2. The significant enhancement in the response of ZnGa2O4 nanorods to NO2 gas by coating them with TiO2 can be explained based on the space-charge model.

  10. Vacancy-like defects in nanocrystalline SnO2: influence of the annealing treatment under different atmospheres

    NASA Astrophysics Data System (ADS)

    Macchi, C.; Ponce, M. A.; Desimone, P. M.; Aldao, C. M.; Somoza, A.

    2018-03-01

    The study of electronic and chemical properties of semiconductor oxides is motivated by their several applications. In particular, tin oxide is widely used as a solid state gas sensor material. In this regard, the defect structure has been proposed to be crucial in determining the resulting film conductivity and then its sensitivity. Here, the characteristics of vacancy-like defects in nanocrystalline commercial high-purity tin oxide powders and the influence of the annealing treatment under different atmospheres are presented. Specifically, SnO2 nanopowders were annealed at 330 °C under three different types of atmospheres: inert (vacuum), oxidative (oxygen) and reductive (hydrogen). The obtained experimental results are discussed in terms of the vacancy-like defects detected, shedding light to the basic conduction mechanisms, which are responsible for gas detection.

  11. Mechanism of γ-irradiation induced phase transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 ceramics

    NASA Astrophysics Data System (ADS)

    Jagadeesha Angadi, V.; Anupama, A. V.; Choudhary, Harish K.; Kumar, R.; Somashekarappa, H. M.; Mallappa, M.; Rudraswamy, B.; Sahoo, B.

    2017-02-01

    The structural, infrared absorption and magnetic property transformations in nanocrystalline Mn0.5Zn0.5Fe2O4 samples irradiated with different doses (0, 15, 25 and 50 kGy) of γ-irradiation were investigated in this work and a mechanism of phase transformation/decomposition is provided based on the metastable nature of the Mn-atoms in the spinel lattice. The nano-powder sample was prepared by solution combustion route and the pellets of the sample were exposed to γ-radiation. Up to a dose of 25 kGy of γ-radiation, the sample retained the single phase cubic spinel (Fd-3m) structure, but the disorder in the sample increased. On irradiating the sample with 50 kGy γ-radiation, the spinel phase decomposed into new stable phases such as α-Fe2O3 and ZnFe2O4 phases along with amorphous MnO phase, leading to a change in the surface morphology of the sample. Along with the structural transformations the magnetic properties deteriorated due to breakage of the ferrimagnetic order with higher doses of γ-irradiation. Our results are important for the understanding of the stability, durability and performance of the Mn-Zn ferrite based devices used in space applications.

  12. Electrochemical and fluorescence properties of SnO2 thin films and its antibacterial activity

    NASA Astrophysics Data System (ADS)

    Henry, J.; Mohanraj, K.; Sivakumar, G.; Umamaheswari, S.

    2015-05-01

    Nanocrystalline SnO2 thin films were deposited by a simple and inexpensive sol-gel spin coating technique and the films were annealed at two different temperatures (350 °C and 450 °C). Structural, vibrational, optical and electrochemical properties of the films were analyzed using XRD, FTIR, UV-Visible, fluorescence and cyclic voltammetry techniques respectively and their results are discussed in detail. The antimicrobial properties of SnO2 thin films were investigated by agar agar method and the results confirm the antibacterial activity of SnO2 against Escherichia coli and Bacillus.

  13. MicroCub In Flight

    NASA Image and Video Library

    2018-01-18

    The MicroCub, a modified a Bill Hempel 60-percent-scale super cub, approaches for a landing at NASA's Armstrong Flight Research Center. This was the first flight of the MicroCub in which the crew validated the airworthiness of the aircraft.

  14. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  15. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE PAGES

    Che, Hui; Huso, Jesse; Morrison, John L.; ...

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  16. The effect of interaction between surface plasmons of gold nanoparticles and optical active centers on luminescence of Eu3+- doped Zn2SnO4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Thien, Nguyen Duy; Vu, Le Van; Long, Nguyen Ngoc

    2018-04-01

    The enhancement and quenching of Eu3+ ion emission were investigated in Zn2SnO4:Eu3+@Au (ZTO:Eu3+@Au) nanocomposites. Under 361 nm excitation we revealed the extinction of the intrinsic defect emission and the enhancement of Eu3+ ion emission when Au content in samples is increased, but under excitation wavelength of 394 nm we observed only the suppression of Eu3+ ion emission. The cause of the observed PL behavior is related to the interaction between surface plasmon induced by gold nanoparticles and luminescence centers in the samples.

  17. Template-free hydrothermal synthesis of MgO-TiO2 microcubes toward high potential removal of toxic water pollutants

    NASA Astrophysics Data System (ADS)

    Chowdhury, Ipsita Hazra; Kundu, Sukanya; Naskar, Milan Kanti

    2018-01-01

    MgO-TiO2 microcubes were synthesized by a facile template-free hydrothermal method followed by calcination. Different analytical tools such as XRD, DTA/TG, FTIR, N2 adsorption-desorption study, FESEM, TEM and UV-DRS were used to characterize the sample. The FESEM images exhibited cube shaped particles of size 2-4 μm. The MgO-TiO2 microcubes exhibit a high potential removal of toxic Pb (II) ions and photocatalytic degradation of organic dye methyl orange from water. The absorption capacity was determined by changing different experimental conditions. The spontaneity of the reaction was confirmed by thermodynamic study. The prepared MgO-TiO2 microcubes showed superior adsorption capacity up to 2900 mg g-1 for Pb (II) ions, and about 95% of photodegradation of methyl orange (MO), the water pollutants.

  18. Structural, Optical and Ethanol Sensing Properties of Dy-Doped SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaikh, F. I.; Chikhale, L. P.; Nadargi, D. Y.; Mulla, I. S.; Suryavanshi, S. S.

    2018-04-01

    We report a facile co-precipitation synthesis of dysprosium (Dy3+) doped tin oxide (SnO2) thick films and their use as gas sensors. The doping percentage (Dy3+) was varied from 1 mol.% to 4 mol.% with the step of 1 mol.%. As-produced material with varying doping levels were sintered in air; and by using a screen printing technique, their thick films were developed. Prior to sensing performance investigations, the films were examined for structural, morphological and compositional properties using x-ray diffraction, a field emission scanning electron microscope, a transmission electron microscope, selected area electron diffraction, energy dispersive analysis by x-rays, Fourier transform infrared spectroscopy and Raman spectroscopic techniques. The structural analyses revealed formation of single phase nanocrystalline material with tetragonal rutile structure of SnO2. The morphological analyses confirmed the nanocrystalline porous morphology of as-developed material. Elemental analysis defined the composition of material in accordance with the doping concentration. The produced sensor material exhibited good response towards different reducing gases (acetone, ethanol, LPG, and ammonia) at different operating temperatures. The present study confirms that the Dy3+ doping in SnO2 enhances the response towards ethanol with reduction in operating temperature. Particularly, 3 mol.% Dy3+ doped sensor exhibited the highest response (˜ 92%) at an operating temperature of 300°C with better selectivity, fast response (˜ 13 s) and recovery (˜ 22 s) towards ethanol.

  19. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  20. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  1. Characterization and properties of TiO2-SnO2 nanocomposites, obtained by hydrolysis method

    NASA Astrophysics Data System (ADS)

    Kutuzova, Anastasiya S.; Dontsova, Tetiana A.

    2018-04-01

    The paper deals with the process of TiO2-SnO2 nanocomposites synthesis utilizing simple hydrolysis method with further calcination for photocatalytic applications. The obtained nanopowders contain 100, 90, 75, 65 and 25 wt% of TiO2. The synthesized nanocomposite samples were analyzed by X-ray diffraction method, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and N2 adsorption-desorption method. The correlation between structure and morphology of the obtained nanocrystalline composite powders and their sorption and photocatalytic activity towards methylene blue degradation was established. It was found that the presence of SnO2 in the nanocomposites stabilizes the anatase phase of TiO2. Furthermore, sorption and photocatalytic properties of the obtained composites are significantly influenced not only by specific surface area, but also by pore size distribution and mesopore volume of the samples. In our opinion, the results obtained in this study have shown that the TiO2-SnO2 composites with SnO2 content that does not exceed 10% are promising for photocatalytic applications.

  2. Ultrahigh-Performance Cu2ZnSnS4 Thin Film and Its Application in Microscale Thin-Film Lithium-Ion Battery: Comparison with SnO2.

    PubMed

    Lin, Jie; Guo, Jianlai; Liu, Chang; Guo, Hang

    2016-12-21

    To develop a high-performance anode for thin-film lithium-ion batteries (TFBs, with a total thickness on the scale of micrometers), a Cu 2 ZnSnS 4 (CZTS) thin film is fabricated by magnetron sputtering and exhibits an ultrahigh performance of 950 mAh g -1 even after 500 cycles, which is the highest among the reported CZTS for lithium storage so far. The characterization and electrochemical tests reveal that the thin-film structure and additional reactions both contribute to the excellent properties. Furthermore, the microscale TFBs with effective footprints of 0.52 mm 2 utilizing the CZTS thin film as anode are manufactured by microfabrication techniques, showing superior capability than the analogous TFBs with the SnO 2 thin film as anode. This work demonstrates the advantages of exploiting thin-film electrodes and novel materials into micropower sources by electronic manufacture methods.

  3. Optimized photodegradation of Bisphenol A in water using ZnO, TiO2 and SnO2 photocatalysts under UV radiation as a decontamination procedure

    NASA Astrophysics Data System (ADS)

    Abo, Rudy; Kummer, Nicolai-Alexeji; Merkel, Broder J.

    2016-09-01

    Experiments on photodegradation of Bisphenol A (BPA) were carried out in water samples by means photocatalytic and photo-oxidation methods in the presence of ZnO, TiO2 and SnO2 catalysts. The objective of this study was to develop an improved technique that can be used as a remediation procedure for a BPA-contaminated surface water and groundwater based on the UV solar radiation. The photodegradation of BPA in water performed under a low-intensity UV source mimics the UVC and UVA spectrum of solar radiation between 254 and 365 nm. The archived results reveal higher degradation rates observed in the presence of ZnO than with TiO2 and SnO2 catalysts during 20 h of irradiation. The intervention of the advanced photocatalytic oxidation (PCO) reduces the time of degradation to less than 1 h to reach a degradation rate of 90 % for BPA in water. The study proposes the use of ZnO as a competitor catalyst to the traditional TiO2, providing the most effective treatment of contaminated water with phenolic products.

  4. Effect of Various Catalysts on the Stability of Characteristics of Acetone Sensors Based on Thin Nanocrystalline SnO2 Films

    NASA Astrophysics Data System (ADS)

    Sevastyanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Khludkova, L. S.; Chernikov, E. V.; Davydova, T. A.

    2018-02-01

    The results of studies of electrical and gas sensitive characteristics of acetone sensors based on thin nanocrystalline SnO2 films with various catalysts deposited on the surface (Pt/Pd, Au) and introduced into the volume (Au, Ni, Co) are presented. Films containing impurities of gold and 3d-metals were obtained by the method of magnetron sputtering of mosaic targets. Particular attention was paid to the influence of the longterm tests and humidity level on the properties of sensors. It is shown that the sensors with the deposited dispersed gold layers with Au+Ni and, especially, Au+Co additives introduced into the volume are characterized by the increased stability in the process of testing under prolonged exposure to acetone and also under conditions of varying humidity.

  5. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes.more » The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.« less

  6. Magnetically Separable Fe3O4/SnO2/Graphene Adsorbent for Waste Water Removal

    NASA Astrophysics Data System (ADS)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2017-05-01

    Our previous study conducted the SnO2 and SnO2/graphene adsorption efficiency in Methylene Blue removal from aqueous solution, however, the difficulty of adsorbent separation from the methylene blue solution limits its efficiency. Therefore, in this work, SnO2 and SnO2/graphene was combined with Fe3O4 to improve the separation process and adsorption performance for removing the organic dyes. Fe3O4/SnO2/grapheme were synthesized by using the co-precipitation method. The graphene content was varied from 1, 3, and 5 weight percent (wt%). The crystalline phase and thermal stability of the samples were characterized by using X- ray Diffraction (XRD) and Thermal Gravimetric Analysis (TGA). The adsorption ability of the samples was investigated by using significant adsorption degradation of MB observed when the graphene in Fe3O4/SnO2 nanocomposite was added. The other parameters such as pH and initial concentration have also been investigated. The reusability was also investigated to study the stability of the samples. The fitting of equilibrium adsorption capacity result indicates that the adsorption mechanism of Fe3O4/SnO2 nanocomposite with graphene tends to follow the Langmuir adsorption isotherm model.

  7. a Facile Synthesis of Fully Porous Tazo Composite and its Remarkable Gas Sensitive Performance

    NASA Astrophysics Data System (ADS)

    Liang, Dongdong; Liu, Shimin; Wang, Zhinuo; Guo, Yu; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan; Zhang, Zhihua

    The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett-Joyner-Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.

  8. Nanocrystalline ZnCO3-A novel sorbent for low-temperature removal of H2S.

    PubMed

    Balichard, Kevin; Nyikeine, Camille; Bezverkhyy, Igor

    2014-01-15

    The reactivity of a nanocrystalline ZnCO3 toward H2S (0.2vol% in N2/H2 mixture) at 140-180°C was characterized by thermal gravimetric analysis and by breakthrough curves measurements. We have found that under used conditions transformation of ZnCO3 into ZnS is complete and the rate determining step of the sulfidation is the surface reaction. Such behavior is in strike contrast with that of ZnO whose sulfidation is severely limited by diffusion. The higher reactivity of ZnCO3 in comparison with ZnO is attributed to the different microstructure of ZnS layer formed in these materials after a partial sulfidation. As in ZnO-ZnS transformation the molar volume increases (from 14.5 to 23.8cm(3)/mol), a continuous protective ZnS layer is formed hampering the access of H2S to the non reacted ZnO core. By contrast, in ZnCO3-ZnS transformation the molar volume decreases (from 27.9 to 23.8cm(3)/mol), which produces a discontinuous non-protective ZnS layer enabling a complete transformation of ZnCO3 even at 140°C. The higher reactivity of ZnCO3 results in a considerable increase of the breakthrough sulfur capacity of the carbonate in comparison with oxide. The material has therefore a good potential for being used as a disposable sorbent for H2S capture at low temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren

    This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.

  10. Bio-green synthesis of Fe doped SnO2 nanoparticle thin film

    NASA Astrophysics Data System (ADS)

    Gattu, Ketan P.; Ghule, Kalyani; Huse, Nanasaheb P.; Dive, Avinash S.; Bagul, Sagar B.; Digraskar, Renuka V.; Sharma, Ramphal; Ghule, Anil V.

    2017-05-01

    Herein Fe doped SnO2 nanoparticles have been synthesized using simple, cost effective and ecofriendly biosynthesis method, in which remnant water (ideally kitchen waste) collected from soaked Bengal gram beans (Cicer arietinum L.) was used. This extract consists of different bio-molecules which acted as complexing as well as capping agents for synthesis of Fe-doped SnO2 nanoparticles. The X-ray powder diffraction (XRD) and Field-emission scanning electron microscopy (FE-SEM) revealed uniform size distribution with the average size of 6 nm and confirmed the formation of rutile structure with space group (P42/mnm) and nanocrystalline nature of the products with spherical morphology. Further, the gas sensing properties of the materials have been studied in comparison with other gases. The reported gas sensing results are promising, which suggest that the Fe-dopant is a promising noble metal additives to fabricate low cost SnO2 based sensor.

  11. The effect of solution pH on the electrochemical performance of nanocrystalline metal ferrites MFe2O4 (M=Cu, Zn, and Ni) thin films

    NASA Astrophysics Data System (ADS)

    Elsayed, E. M.; Rashad, M. M.; Khalil, H. F. Y.; Ibrahim, I. A.; Hussein, M. R.; El-Sabbah, M. M. B.

    2016-04-01

    Nanocrystalline metal ferrite MFe2O4 (M=Cu, Zn, and Ni) thin films have been synthesized via electrodeposition-anodization process. Electrodeposited (M)Fe2 alloys were obtained from aqueous sulfate bath. The formed alloys were electrochemically oxidized (anodized) in aqueous (1 M KOH) solution, at room temperature, to the corresponding hydroxides. The parameters controlling the current efficiency of the electrodeposition of (M)Fe2 alloys such as the bath composition and the current density were studied and optimized. The anodized (M)Fe2 alloy films were annealed in air at 400 °C for 2 h. The results revealed the formation of three ferrite thin films were formed. The crystallite sizes of the produced films were in the range between 45 and 60 nm. The microstructure of the formed film was ferrite type dependent. The corrosion behavior of ferrite thin films in different pH solutions was investigated using open circuit potential (OCP) and potentiodynamic polarization measurements. The open circuit potential indicates that the initial potential E im of ZnFe2O4 thin films remained constant for a short time, then sharply increased in the less negative direction in acidic and alkaline medium compared with Ni and Cu ferrite films. The values of the corrosion current density I corr were higher for the ZnFe2O4 films at pH values of 1 and 12 compared with that of NiFe2O4 and CuFe2O4 which were higher only at pH value 1. The corrosion rate was very low for the three ferrite films when immersion in the neutral medium. The surface morphology recommended that Ni and Cu ferrite films were safely used in neutral and alkaline medium, whereas Zn ferrite film was only used in neutral atmospheres.

  12. Structural, dielectric and impedance spectroscopic studies of Ni0.5Zn0.5-xLixFe2O4 nanocrystalline ferrites

    NASA Astrophysics Data System (ADS)

    Venkatesh, Davuluri; Ramesh, K. V.

    2017-09-01

    Nanocrystalline lithium substituted Ni-Zn ferrites with composition Ni0.5Zn0.5-xLixFe2O4 (x = 0.00-0.25 in steps of 0.05) were synthesized by the citrate gel auto-combustion method and were sintered at 1000∘C for 4 h in air atmosphere. The structural, dielectric, impedance spectroscopic and magnetic properties were studied by using X-ray diffraction, impedance analyzer and vibrating sample magnetometer respectively. The X-ray diffraction patterns confirm that all samples exhibit a single phase cubic spinel structure. Suitable cation distribution for all compositions has been proposed by using the X-ray diffraction line intensity calculations and the theoretical lattice parameter for each composition was observed in close agreement with the experimental ones and thereby supporting the proposed distribution. An increase in the saturation magnetization was observed up to x = 0.10 level of Li+ substitution and thereafter magnetization reduced for higher concentrations to the highest level of Li+ substitution. The dielectric constant and the DC resistivity of Ni-Zn-Li ferrites were noticed to decrease with increase in the Li+ ion concentration. The impedance spectroscopic studies by using the Cole-Cole plots were studied in order to obtain the relaxation time, grain resistance and grain capacitance. AC conductivity initially remained almost independent of frequency for lower frequencies and thereafter for higher frequencies the AC conductivity increased with increase of Lithium concentration.

  13. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules.

    PubMed

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-08

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (R air/R gas = 12.8) compared to that (R air/R gas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  14. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    PubMed Central

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors. PMID:26743814

  15. Hierarchical ZnO Nanowires-loaded Sb-doped SnO2-ZnO Micrograting Pattern via Direct Imprinting-assisted Hydrothermal Growth and Its Selective Detection of Acetone Molecules

    NASA Astrophysics Data System (ADS)

    Choi, Hak-Jong; Choi, Seon-Jin; Choo, Soyoung; Kim, Il-Doo; Lee, Heon

    2016-01-01

    We propose a novel synthetic route by combining imprinting transfer of a Sb-doped SnO2 (ATO)-ZnO composite micrograting pattern (MP), i.e., microstrip lines, on a sensor substrate and subsequent hydrothermal growth of ZnO nanowires (NWs) for producing a hierarchical ZnO NW-loaded ATO-ZnO MP as an improved chemo-resistive sensing layer. Here, ATO-ZnO MP structure with 3-μm line width, 9-μm pitch, and 6-μm height was fabricated by direct transfer of mixed ATO and ZnO nanoparticle (NP)-dispersed resists, which are pre-patterned on a polydimethylsiloxane (PDMS) mold. ZnO NWs with an average diameter of less than 50 nm and a height of 250 nm were quasi-vertically grown on the ATO-ZnO MP, leading to markedly enhanced surface area and heterojunction composites between each ATO NP, ZnO NP, and ZnO NW. A ZnO NW-loaded MP sensor with a relative ratio of 1:9 between ATO and ZnO (1:9 ATO-ZnO), exhibited highly sensitive and selective acetone sensing performance with 2.84-fold higher response (Rair/Rgas = 12.8) compared to that (Rair/Rgas = 4.5) of pristine 1:9 ATO-ZnO MP sensor at 5 ppm. Our results demonstrate the processing advantages of direct imprinting-assisted hydrothermal growth for large-scale homogeneous coating of hierarchical oxide layers, particularly for applications in highly sensitive and selective chemical sensors.

  16. Evaluation of SnO2 for sunlight photocatalytic decontamination of water.

    PubMed

    Aslam, M; Qamar, M Tariq; Ali, Shahid; Rehman, Ateeq Ur; Soomro, M T; Ahmed, Ikram; Ismail, I M I; Hameed, A

    2018-07-01

    The broad bandgap tin (IV) oxide (SnO 2 ) is the least investigated semiconductor material for photocatalytic water decontamination in sunlight exposure. A detailed study covering the synthesis, characterization and the evaluation of photocatalytic activity of SnO 2 , in the natural sunlight exposure, is presented. The structural characterization by XRD revealed the formation of phase pure tetragonal SnO 2 with the average crystallite size of ∼41.5 nm whereas minor Sn 2+ states in the material were identified by XPS analysis. As explored by diffuse reflectance (DR) and photoluminescence (PL) spectroscopy, the material exhibited a distinct absorption edge at ∼3.4 eV. The morphological and microstructure analysis of the synthesized SnO 2 was carried out by FESEM and HRTEM. The electrochemical impedance spectroscopy (EIS) and chronopotentiometry (CP) predicted the better charge transport and retention ability of the material under illumination whereas the Mott-Schottky extrapolation prophesied the n-type behavior with the flat-band potential of -0.60 V. The photocatalytic activity of SnO 2 was assessed in the exposure of complete spectrum natural sunlight for the removal of 2,4,6-trichlorophenol. The HPLC and TOC analysis monitored the progress of degradation and mineralization whereas the released chloride ions were evaluated by ion chromatography. The effect of the transition metal ions (Fe 3+ , Cu 2+ , Ni 2+, and Zn 2+ ) as electron capture agents and H 2 O 2 as ROS generator was explored during the degradation process. The utility of the material for the simultaneous removal of chlorophenols in the mixture was also investigated. The SnO 2 exhibited sustained activity in the repeated use. Based on experimental evidence congregated, the mechanism of the removal process and the efficacy of SnO 2 for sunlight photocatalytic decontamination of water was established. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Structure of the SnO2(110 ) -(4 ×1 ) Surface

    NASA Astrophysics Data System (ADS)

    Merte, Lindsay R.; Jørgensen, Mathias S.; Pussi, Katariina; Gustafson, Johan; Shipilin, Mikhail; Schaefer, Andreas; Zhang, Chu; Rawle, Jonathan; Nicklin, Chris; Thornton, Geoff; Lindsay, Robert; Hammer, Bjørk; Lundgren, Edvin

    2017-09-01

    Using surface x-ray diffraction (SXRD), quantitative low-energy electron diffraction (LEED), and density-functional theory (DFT) calculations, we have determined the structure of the (4 ×1 ) reconstruction formed by sputtering and annealing of the SnO2(110 ) surface. We find that the reconstruction consists of an ordered arrangement of Sn3O3 clusters bound atop the bulk-terminated SnO2(110 ) surface. The model was found by application of a DFT-based evolutionary algorithm with surface compositions based on SXRD, and shows excellent agreement with LEED and with previously published scanning tunneling microscopy measurements. The model proposed previously consisting of in-plane oxygen vacancies is thus shown to be incorrect, and our result suggests instead that Sn(II) species in interstitial positions are the more relevant features of reduced SnO2(110 ) surfaces.

  18. Gas Sensing Properties of ZnO-SnO2 Nanostructures.

    PubMed

    Chen, Weigen; Li, Qianzhu; Xu, Lingna; Zeng, Wen

    2015-02-01

    One-dimensional (1D) semiconductor metal oxide nanostructures have attracted increasing attention in electrochemistry, optics, magnetic, and gas sensing fields for the good properties. N-type low dimensional semiconducting oxides such as SnO2 and ZnO have been known for the detection of inflammable or toxic gases. In this paper, we fabricated the ZnO-SnO2 and SnO2 nanoparticles by hydrothermal synthesis. Microstructure characterization was performed using X-ray diffraction (XRD) and surface morphologies for both the pristine and doped samples were observed using field emission scanning electron microscope (FESEM), transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). Then we made thin film gas sensor to study the gas sensing properties of ZnO-SnO2 and SnO2 gas sensor to H2 and CO. A systematic comparison study reveals an enhanced gas sensing performance for the sensor made of SnO2 and ZnO toward H2 and CO over that of the commonly applied undecorated SnO2 nanoparticles. The improved gas sensing properties are attributed to the size of grains and pronounced electron transfer between the compound nanostructures and the absorbed oxygen species as well as to the heterojunctions of the ZnO nanoparticles to the SnO2 nanoparticles, which provide additional reaction rooms. The results represent an advance of compound nanostructures in further enhancing the functionality of gas sensors, and this facile method could be applicable to many sensing materials, offering a new avenue and direction to detect gases of interest based on composite tin oxide nanoparticles.

  19. Dopant controlled photoinduced hydrophilicity and photocatalytic activity of SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Talinungsang; Dhar Purkayastha, Debarun; Krishna, M. Ghanashyam

    2018-07-01

    The influence of Fe and Ni (1 wt.%) doping on the wettability and photocatalytic activity of sol-gel derived SnO2 films is reported. X-ray diffraction studies revealed the presence of tetragonal phase for both pure and doped SnO2 thin films. The crystallite size was of the order of 8 nm indicating the nanocrystalline nature of the films. The pure SnO2 films which were hydrophilic with a contact angle of 11.8° showed increase in contact angle with doping (38.7° for Fe and 48.6° for Ni). This is accompanied by decrease in surface energy and root mean square roughness, with doping of SnO2 film. In order to further increase the water contact angle, the film surfaces were modified using a layer of stearic acid. As a consequence, the water contact angles increased to 108°, 110° and 111° for the pure, Fe and Ni doped SnO2 films respectively, rendering them hydrophobic. Significantly, the unmodified surfaces that did not exhibit any change under UV irradiation showed photoinduced hydrophilicity on modification with stearic acid. There was a red-shift in the optical band gap of SnO2 films from 3.8 to 3.5 eV with doping, indicating the possibility of dopant controlled photocatalytic activity. This was confirmed by observing the photocatalytic degradation of an aqueous solution of methylene blue under UV irradiation. There was, indeed, significant improvement in the photocatalytic efficiency of the metal doped SnO2 thin film in comparison to undoped film. The current work, thus, demonstrates a simple method to chemically engineer the wettability and photocatalytic activity of SnO2 thin film surfaces.

  20. Comparison of Photocatalytic Performance of Different Types of Graphene in Fe3O4/SnO2 Composites

    NASA Astrophysics Data System (ADS)

    Paramarta, Valentinus; Taufik, Ardiansyah; Saleh, Rosari

    2017-03-01

    We have reported the role of annealing temperature Fe3O4/SnO2 nanocomposites as a photocatalyst for remove methylene blue (MB) dye from aqueous solution. However, how to enhanced the degradation performance of Fe3O4/SnO2 nanocomposites is important to its photocatalytic application. Therefore, in this work Fe3O4/SnO2 nanocomposites was combined with two different types of graphene materials (NGP and grahene) to improve the photocatalytic performance for remove methylene blue (MB) dye. Fe3O4/SnO2/NGP and Fe3O4/SnO2/graphene have been successfully synthesized by co-precipitation method. The influence of two types graphene on Fe3O4/SnO2 nanocomposites properties were systematically investigated by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and Thermal gravimetric analysis (TGA). Degradation of methylene Blue (MB) in aqueous solution was studied in detail under photocatalytic process. Effect of catalyst dosage (0.1-0.4 g/L) and scavengers on dye degradation were carried out to check the efficiency of photocatalyst. The results indicated Fe3O4/SnO2/graphene displayed higher photocatalytic activity than other catalyst. The reusability tests have also been done to ensure the stability of the used photocatalyst.

  1. Preparation and characterization of SnO2 and Carbon Co-coated LiFePO4 cathode materials.

    PubMed

    Wang, Haibin; Liu, Shuxin; Huang, Yongmao

    2014-04-01

    The SnO2 and carbon co-coated LiFePO4 cathode materials were successfully synthesized by solid state method. The microstructure and morphology of LiFePO4 composites were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscope. The results showed that the SnO2 and carbon co-coated LiFePO4 cathode materials exhibited more uniform particle size distribution. Compared with the uncoated LiFePO4/C, the structure of LiFePO4 with SnO2 and carbon coating had no change. The existence of SnO2 and carbon coating layer effectively enhanced the initial discharge capacity. Among the investigated samples, the one with DBTDL:LiFePO4 molar ratios of 7:100 exhibited the best electrochemical performance.

  2. Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes.

    PubMed

    Bandara, J; Tennakone, K; Jayatilaka, P P B

    2002-10-01

    Composite ZnO/SnO2 catalyst has been studied for the sensitized degradation of dyes e.g. Eosin Y (2', 4', 5', 7'-tetrabromofluorescein disodium salt) in relation to efficient charge separation properties of the catalyst. Improved photocatalytic activity was observed in the case of ZnO/SnO2 composite catalyst compared to the catalytic activity of ZnO, SnO2 or TiO2 powder. The suppression of charge recombination in the composite ZnO/SnO2 catalyst led to higher catalytic activity for the degradation of Eosin Y. Degradation of Eosin follows concomitant formation of CO2 and formation of CO2 followed a pseudo-first-order rate. Photoelectrochemical cells constructed using SnO2, ZnO, ZnO/SnO2 sensitized with Eosin Y showed V(oc) of 175, 306, 512 mV/cm2 and I(sc) of 50, 70, 200 microA/cm2 respectively. A higher irreversible degradation of Eosin Y and higher V(oc) observed on composite ZnO/SnO2 than ZnO and SnO2 separately can be considered as a proof of enhanced charge separation of ZnO/SnO2 catalyst. Eosin Y showed a higher emission decreases on ZnO/SnO2 composite than on individual ZnO, SnO2 or TiO2 indicating dominance of the charge injection process. Photoinjected electrons are tunneled from ZnO to SnO2 particles accumulating injected electrons in the conduction bands allowing wider separation of excited carriers.

  3. Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique

    NASA Astrophysics Data System (ADS)

    Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan

    2018-05-01

    Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.

  4. The improvement of gas-sensing properties of SnO2/zeolite-assembled composite

    NASA Astrophysics Data System (ADS)

    Sun, Yanhui; Wang, Jing; Li, Xiaogan; Du, Haiying; Huang, Qingpan

    2018-05-01

    SnO2-impregnated zeolite composites were used as gas-sensing materials to improve the sensitivity and selectivity of the metal oxide-based resistive-type gas sensors. Nanocrystalline MFI type zeolite (ZSM-5) was prepared by hydrothermal synthesis. Highly dispersive SnO2 nanoparticles were then successfully assembled on the surface of the ZSM-5 nanoparticles by using the impregnation methods. The SnO2 nanoparticles are nearly spherical with the particle size of 10 nm. An enhanced formaldehyde sensing of as-synthesized SnO2-ZSM-5-based sensor was observed whereas a suppression on the sensor response to other volatile organic vapors (VOCs) such as acetone, ethanol, and methanol was noticed. The possible reasons for this contrary observation were proposed to be related to the amount of the produced water vapor during the sensing reactions assisted by the ZSM-5 nanoparticles. This provides a possible new strategy to improve the selectivity of the gas sensors. The effect of the humidity on the sensor response to formaldehyde was investigated and it was found the higher humidity would decrease the sensor response. A coating layer of the ZSM-5 nanoparticles on top of the SnO2-ZSM-5-sensing film was thus applied to further improve the sensitivity and selectivity of the sensor through the strong adsorption ability to polar gases and the "filtering effect" by the pores of ZSM-5.

  5. Synthesis and Behavior of Cetyltrimethyl Ammonium Bromide Stabilized Zn1+xSnO3+x (0 ≤ x ≤1) Nano-Crystallites

    PubMed Central

    Placke, Astrid; Kumar, Ashok; Priya, Shashank

    2016-01-01

    We report synthesis of cetyltrimethyl ammonium bromide (CTAB) stabilized Zn1+xSnO3+x (0 ≤ x ≤1) nano-crystallites by facile cost-effective wet chemistry route. The X-ray diffraction patterns of as-synthesized powders at the Zn/Sn ratio of 1 exhibited formation of ZnSn(OH)6. Increasing the Zn/Sn ratio further resulted in the precipitation of an additional phase corresponding to Zn(OH)2. The decomposition of these powders at 650°C for 3h led to the formation of the orthorhombic phase of ZnSnO3 and tetragonal SnO2-type phase of Zn2SnO4 at the Zn/Sn ratio of 1 and 2, respectively, with the formation of their mixed phases at intermediate compositions, i.e., at Zn/Sn ratio of 1.25, 1.50 and 1.75, respectively. The lattice parameters of orthorhombic and tetragonal phases were a ~ 3.6203 Å, b ~ 4.2646 Å and c ~ 12.8291Å (for ZnSnO3) and a = b ~ 5.0136 Å and c ~ 3.3055Å (for Zn2SnO4). The transmission electron micrographs revealed the formation of nano-crystallites with aspect ratio ~ 2; the length and thickness being 24, 13 nm (for ZnSnO3) and 47, 22 nm (for Zn2SnO4), respectively. The estimated direct bandgap values for the ZnSnO3 and Zn2SnO4 were found to be 4.21 eV and 4.12 eV, respectively. The ac conductivity values at room temperature (at 10 kHz) for the ZnSnO3 and Zn2SnO4 samples were 8.02 × 10−8 Ω-1 cm-1 and 6.77 × 10−8 Ω-1 cm-1, respectively. The relative permittivity was found to increase with increase in temperature, the room temperature values being 14.24 and 25.22 for the samples ZnSnO3 and Zn2SnO4, respectively. Both the samples, i.e., ZnSnO3 and Zn2SnO4, exhibited low values of loss tangent up to 300 K, the room temperature values being 0.89 and 0.72, respectively. A dye-sensitized solar cell has been fabricated using the optimized sample of zinc stannate photo-anode, i.e., Zn2SnO4. The cyclic voltammetry revealed oxidation and reduction around 0.40 V (current density ~ 11.1 mA/cm2) and 0.57 V (current density– 11.7 mA/cm2) for Zn2SnO4

  6. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    NASA Astrophysics Data System (ADS)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  7. In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg 2SnO 4)

    NASA Astrophysics Data System (ADS)

    Xu, P.; Tang, M.; Nino, J. C.

    2009-06-01

    Magnesium stannate spinel (Mg 2SnO 4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr 2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg 2SnO 4 was achieved at an ion dose of 5 × 10 19 Kr ions/m 2 at 50 K and 10 20 Kr ions/m 2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr 2+ ions in Mg 2SnO 4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg 2SnO 4 was finally compared with normal spinel MgAl 2O 4.

  8. Wear behavior of Cu-Zn alloy by ultrasonic nanocrystalline surface modification.

    PubMed

    Cho, In Shik; Amanov, Auezhan; Ahn, Deok Gi; Shin, Keesam; Lee, Chang Soon; Pyoun, Young-Shik; Park, In-Gyu

    2011-07-01

    The ultrasonic nanocrystalline surface modification (UNSM) was applied to disk specimens made of Cu-Zn alloy in order to investigate the UNSM effects under five various conditions on wear of deformation twinning. In this paper, ball-on-disk test was conducted, and the results of UNSM-treated specimens showed that surface layer dislocation density and multi-directional twins were abruptly increased, and the grain size was altered into nano scale. UNSM delivers force onto the workpiece surface 20,000 times per second with 1,000 to 4,000 contact counts per square millimeter. The UNSM technology creates nanocrystalline and deformation twinning on the workpiece surface. One of the main concepts of this study is that defined phenomena of the UNSM technology, and the results revealed that nanocrystalline and deformation twinning depth might be controlled by means of impact energy of UNSM technology. EBSD and TEM analyses showed that deformation layer was increased up to 268 microm, and initial twin density was 0.001 x 10(6) cm(-2) and increased up to 0.343 x 10(6) cm(-2). Wear volume loss was also decreased from 703 x 10(3) mm3 to 387 x 10(3) mm3. Wear behavior according to deformation depth was observed under three different combinations. This is related to deformation depth which was created by UNSM technology.

  9. Fabrication of hydrogen peroxide biosensor based on Ni doped SnO2 nanoparticles.

    PubMed

    Lavanya, N; Radhakrishnan, S; Sekar, C

    2012-01-01

    Ni doped SnO(2) nanoparticles (0-5 wt%) have been prepared by a simple microwave irradiation (2.45 GHz) method. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies confirmed the formation of rutile structure with space group (P(42)/mnm) and nanocrystalline nature of the products with spherical morphology. Direct electrochemistry of horseradish peroxidase (HRP)/nano-SnO(2) composite has been studied. The immobilized enzyme retained its bioactivity, exhibited a surface confined, reversible one-proton and one-electron transfer reaction, and had good stability, activity and a fast heterogeneous electron transfer rate. A significant enzyme loading (3.374×10(-10) mol cm(-2)) has been obtained on nano-Ni doped SnO(2) as compared to the bare glassy carbon (GC) and nano-SnO(2) modified surfaces. This HRP/nano-Ni-SnO(2) film has been used for sensitive detection of H(2)O(2) by differential pulse voltammetry (DPV), which exhibited a wider linearity range from 1.0×10(-7) to 3.0×10(-4)M (R=0.9897) with a detection limit of 43 nM. The apparent Michaelis-Menten constant (K(M)(app)) of HRP on the nano-Ni-SnO(2) was estimated as 0.221 mM. This excellent performance of the fabricated biosensor is attributed to large surface-to-volume ratio and Ni doping into SnO(2) which facilitate the direct electron transfer between the redox enzyme and the surface of electrode. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Properties of Resistive Hydrogen Sensors as a Function of Additives of 3 D-Metals Introduced in the Volume of Thin Nanocrystalline SnO2 Films

    NASA Astrophysics Data System (ADS)

    Sevast'yanov, E. Yu.; Maksimova, N. K.; Potekaev, A. I.; Sergeichenko, N. V.; Chernikov, E. V.; Almaev, A. V.; Kushnarev, B. O.

    2017-11-01

    Analysis of the results of studying electrical and gas sensitive characteristics of the molecular hydrogen sensors based on thin nanocrystalline SnO2 films coated with dispersed Au layers and containing Au+Ni and Au+Co impurities in the bulk showed that the characteristics of these sensors are more stable under the prolonged exposure to hydrogen in comparison with Au/SnO2:Sb, Au films modified only with gold. It has been found that introduction of the nickel and cobalt additives increases the band bending at the grain boundaries of tin dioxide already in freshly prepared samples, which indicates an increase in the density Ni of the chemisorbed oxygen. It is important that during testing, the band bending eφs at the grain boundaries of tin dioxide additionally slightly increases. It can be assumed that during crystallization of films under thermal annealing, the 3d-metal atoms in the SnO2 volume partially segregate on the surface of microcrystals and form bonds with lattice oxygen, the superstoichiometric tin atoms are formed, and the density Ni increases. If the bonds of oxygen with nickel and cobalt are stronger than those with tin, then, under the prolonged tests, atomic hydrogen will be oxidized not by lattice oxygen, but mainly by the chemisorbed one. In this case, stability of the sensors' characteristics increases.

  11. Neutron diffraction study of the inverse spinels Co2TiO4 and Co2SnO4

    NASA Astrophysics Data System (ADS)

    Thota, S.; Reehuis, M.; Maljuk, A.; Hoser, A.; Hoffmann, J.-U.; Weise, B.; Waske, A.; Krautz, M.; Joshi, D. C.; Nayak, S.; Ghosh, S.; Suresh, P.; Dasari, K.; Wurmehl, S.; Prokhnenko, O.; Büchner, B.

    2017-10-01

    We report a detailed single-crystal and powder neutron diffraction study of Co2TiO4 and Co2SnO4 between the temperature 1.6 and 80 K to probe the spin structure in the ground state. For both compounds the strongest magnetic intensity was observed for the (111)M reflection due to ferrimagnetic ordering, which sets in below TN=48.6 and 41 K for Co2TiO4 and Co2SnO4 , respectively. An additional low intensity magnetic reflection (200)M was noticed in Co2TiO4 due to the presence of an additional weak antiferromagnetic component. Interestingly, from both the powder and single-crystal neutron data of Co2TiO4 , we noticed a significant broadening of the magnetic (111)M reflection, which possibly results from the disordered character of the Ti and Co atoms on the B site. Practically, the same peak broadening was found for the neutron powder data of Co2SnO4 . On the other hand, from our single-crystal neutron diffraction data of Co2TiO4 , we found a spontaneous increase of particular nuclear Bragg reflections below the magnetic ordering temperature. Our data analysis showed that this unusual effect can be ascribed to the presence of anisotropic extinction, which is associated to a change of the mosaicity of the crystal. In this case, it can be expected that competing Jahn-Teller effects acting along different crystallographic axes can induce anisotropic local strain. In fact, for both ions Ti3 + and Co3 +, the 2 tg levels split into a lower dx y level yielding a higher twofold degenerate dx z/dy z level. As a consequence, one can expect a tetragonal distortion in Co2TiO4 with c /a <1 , which we could not significantly detect in the present work.

  12. Bouquet-Like Mn2SnO4 Nanocomposite Engineered with Graphene Sheets as an Advanced Lithium-Ion Battery Anode.

    PubMed

    Rehman, Wasif Ur; Xu, Youlong; Sun, Xiaofei; Ullah, Inam; Zhang, Yuan; Li, Long

    2018-05-30

    Volume expansion is a major challenge associated with tin oxide (SnO x ), which causes poor cyclability in lithium-ion battery anode. Bare tin dioxide (SnO 2 ), tin dioxide with graphene sheets (SnO 2 @GS), and bouquet-like nanocomposite structure (Mn 2 SnO 4 @GS) are prepared via hydrothermal method followed by annealing. The obtained composite material presents a bouquet structure containing manganese and tin oxide nanoparticle network with graphene sheets. Benefiting from this porous nanostructure, in which graphene sheets provide high electronic pathways to enhance the electronic conductivity, uniformly distributed particles offer accelerated kinetic reaction with lithium ion and reduced volume deviation in the tin dioxide (SnO 2 ) particle during charge-discharge testing. As a consequence, ternary composite Mn 2 SnO 4 @GS showed a high rate performance and outstanding cyclability of anode material for lithium-ion batteries. The electrode achieved a specific capacity of about 1070 mA h g -1 at a current density of 400 mA g -1 after 200 cycles; meanwhile, the electrode still delivered a specific capacity of about 455 mA h g -1 at a high current density of 2500 mA g -1 . Ternary Mn 2 SnO 4 @GS material could facilitate fabrication of unique structure and conductive network as advanced lithium-ion battery.

  13. One-Pot Green Synthesis of Ag-Decorated SnO2 Microsphere: an Efficient and Reusable Catalyst for Reduction of 4-Nitrophenol.

    PubMed

    Hu, Min; Zhang, Zhenwei; Luo, Chenkun; Qiao, Xiuqing

    2017-12-01

    In this paper, hierarchical Ag-decorated SnO 2 microspheres were synthesized by a facile one-pot hydrothermal method. The resulting composites were characterized by XRD, SEM, TEM, XPS, BET, and FTIR analysis. The catalytic performances of the samples were evaluated with the reduction of 4-nitrophenol to 4-aminophenol by potassium borohydride (KBH 4 ) as a model reaction. Time-dependent experiments indicated that the hierarchical microspheres assembled from SnO 2 and Ag nanoparticles can be formed when the react time is less than 10 h. With the increase of hydrothermal time, SnO 2 nanoparticles will self-assemble into SnO 2 nanosheets and Ag nanoparticles decorated SnO 2 nanosheets were obtained. When evaluated as catalyst, the obtained Ag-decorated SnO 2 microsphere prepared for 36 h exhibited excellent catalytic performance with normalized rate constant (κ nor ) of 6.20 min -1 g -1 L, which is much better than that of some previous reported catalysts. Moreover, this Ag-decorated SnO 2 microsphere demonstrates good reusability after the first five cycles. In addition, we speculate the formation mechanism of the hierarchical Ag-decorated SnO 2 microsphere and discussed the possible origin of the excellent catalytic activity.

  14. MicroCub Subscale Aircraft

    NASA Image and Video Library

    2018-01-18

    The MicroCub is the newest addition to NASA Armstrong's fleet of subscale research aircraft. The aircraft is a modified a Bill Hempel 60-percent-scale super cub, designed with a 21-foot wingspan, a Piccolo Autopilot guidance system and a JetCat SPT-15 Turboprop.

  15. Optical absorption and photoluminescence study of nanocrystalline Zn0.92M0.08O (M: Li & Gd)

    NASA Astrophysics Data System (ADS)

    Punia, Khushboo; Lal, Ganesh; Kumar, Sudhish

    2018-05-01

    Nanocrystalline samples of Zn0.92Li0.08O and Zn0.92Gd0.08O have been synthesized using citrate sol-gel route without post synthesis annealing and characterized using powder X-ray diffraction (XRD), UV-Vis-NIR and Photoluminescence spectroscopic measurements. Analysis of XRD pattern and PL spectra revealed single phase formation of the nanocrystalline Zn0.92Li0.08O and Zn0.92Gd0.08O in the wurtzite type hexagonal structure with intrinsic crystal and surface defects. UV-Vis-NIR optical absorption measurements show that the maximum photo absorption occurs below 600nm in the UV& visible band. The estimated values of band gap energy were found to be 2.53eV and 2.73eV for Zn0.92Li0.08O and Zn0.92Gd0.08O respectively. The photoluminescence spectra excited at the wavelength 325nm displays two broad peaks in the UV and visible bands centered at ˜416 nm & ˜602 nm for Zn0.92Gd0.08O and ˜406nm & ˜598nm for Zn0.92Li0.08O. Both Gd and Li doping in ZnO leads to considerable decrease in the optical band gap energy and red shifting of the UV emission band towards the visible band.

  16. Three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth as a flexible anode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haifeng; Ren, Weina; Cheng, Chuanwei

    2015-07-01

    In this study, three-dimensional SnO2@TiO2 double-shell nanotubes on carbon cloth are synthesized by a combination of the hydrothermal method for ZnO nanorods and a subsequent SnO2 and TiO2 thin film coating with atomic layer deposition (ALD). The as-prepared SnO2@TiO2 double-shell nanotubes are further tested as a flexible anode for Li ion batteries. The SnO2@TiO2 double-shell nanotubes/carbon cloth electrode exhibited a high initial discharge capacity (e.g. 778.8 mA h g-1 at a high current density of 780 mA g-1) and good cycling performance, which could be attributed to the 3D double-layer nanotube structure. The interior space of the stable TiO2 hollow tube can accommodate the large internal stress caused by volume expansion of SnO2 and protect SnO2 from pulverization and exfoliation.

  17. Rapid synthesis of barium titanate microcubes using composite-hydroxides-mediated avenue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Xi; Ouyang, Jing, E-mail: jingouyang@csu.edu.cn; Jin, Jiao

    2014-04-01

    Highlights: • Barium titanate oxides microcubes can be synthesized within 1 min. • Composite-hydroxides-mediated strategy provided a possible large scale production. • BST obtained in the strategy showed fairly good crystallinity and tetragonality. - Abstract: This paper reports the rapid synthesis of barium titanate (BaTiO{sub 3}, BTO) microcubes via composite-hydroxides-mediated reaction within 1 min. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectrum (EDS) results confirmed both cubic and tetragonal lattices in the sample and the uniform microcubes with an average size of 1 μm. Ultraviolet–visible (UV–vis) spectrum indicated that the band gap of the BTO powder wasmore » 3.05 eV. Ferroelectric polarization vs. electric field (P–E) tests showed that the ferroelectric domains had formed in the as-synthesized BTO microcubes and sintered ceramics. BTO ceramics sintered at 1100 °C for 3 h showed fairly good tetragonality and possessed a maximum polarization of 0.21 μC/cm{sup 2}, indicating that the sintering temperature for the BTO powders prepared via this method was relatively low. The process and equipment reported herein provided a potential method for the rapid synthesis of titanate based perovskites.« less

  18. Structural, Optical, and Photocatalytic Properties of Quasi-One-Dimensional Nanocrystalline ZnO, ZnOC:nC Composites, and C-doped ZnO

    NASA Astrophysics Data System (ADS)

    Shalaeva, E. V.; Gyrdasova, O. I.; Krasilnikov, V. N.; Melkozerova, M. A.; Baklanova, I. V.; Buldakova, L. Yu.

    Various thermolysis rotes of zinc glicolate complexes are considered for the synthesis of quasi-one-dimensional nanostructured aggregates ZnO and Zn-O-C used as photocatalysts. Structural features of quasi-one-dimensional aggregates Zn-O-C and ZnO are investigated in detail. Transmission electron microscopy, Raman spectroscopy, and electron paramagnetic resonance spectroscopy methods demonstrate that the aggregates Zn-O-C have either composite structure (ZnO crystallites in amorphous carbon matrix) or a C-doped ZnO single-phase structure depending on heat treatment conditions, and that all the aggregates exhibit as a rule a tubular morphology, a nanocrystalline structure with a high specific surface area, and a high concentration of singly charged oxygen vacancies. The mechanism of the nanocrystalline structure formation is discussed and the effect of thermolysis condition on the formation of the textured structure of aggregates is investigated. The results of examination of the photocatalytic and optical absorption properties of the synthesized aggregates are presented. The photocatalytic activity for the hydroquinone oxidation reaction under ultraviolet and visible light increases in the series: the reference ZnO powder, quasi-one-dimensional ZnO, quasi-one-dimensional aggregates C-doped ZnO, and this tendency correlates with the reduction of the optical gap width. As a result of our studies, we have arrived at an important conclusion that thermal treatment of ZnO:nC composites allows a C-doped ZnO with high catalytic activity. This increasing photoactivity of C-doped ZnO aggregates is attributed to the optimal specific surface area and electron-energy spectrum restructuring to be produced owing to the presence of singly charged oxygen vacancies and carbon dissolved in the ZnO lattice.

  19. Multiple electron injection dynamics in linearly-linked two dye co-sensitized nanocrystalline metal oxide electrodes for dye-sensitized solar cells.

    PubMed

    Shen, Qing; Ogomi, Yuhei; Park, Byung-wook; Inoue, Takafumi; Pandey, Shyam S; Miyamoto, Akari; Fujita, Shinsuke; Katayama, Kenji; Toyoda, Taro; Hayase, Shuzi

    2012-04-07

    Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to Nc

  20. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Keigo, E-mail: ksuzuki@murata.com; Murayama, Koji; Tanaka, Nobuhiko

    We found an enhancement of Eu{sup 3+} emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu{sup 3+} emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu{sup 3+} ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu{sup 3+} ions. These findings will be useful for the material design of Eu-doped ZnOmore » phosphors.« less

  1. Calcination Method Synthesis of SnO2/g-C3N4 Composites for a High-Performance Ethanol Gas Sensing Application

    PubMed Central

    Cao, Jianliang; Qin, Cong; Wang, Yan; Zhang, Bo; Gong, Yuxiao; Zhang, Huoli; Sun, Guang; Bala, Hari; Zhang, Zhanying

    2017-01-01

    The SnO2/g-C3N4 composites were synthesized via a facile calcination method by using SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized composites were characterized by the techniques of X-ray diffraction (XRD), the field-emission scanning electron microscopy and transmission electron microscopy (SEM and TEM), energy dispersive spectrometry (EDS), thermal gravity and differential thermal analysis (TG-DTA), and N2-sorption. The analysis results indicated that the as-synthesized samples possess the two dimensional structure. Additionally, the SnO2 nanoparticles were highly dispersed on the surface of the g-C3N4nanosheets. The gas-sensing performance of the as-synthesized composites for different gases was tested. Moreover, the composite with 7 wt % g-C3N4 content (SnO2/g-C3N4-7) SnO2/g-C3N4-7 exhibits an admirable gas-sensing property to ethanol, which possesses a higher response and better selectivity than that of the pure SnO2-based sensor. The high surface area of the SnO2/g-C3N4 composite and the good electronic characteristics of the two dimensional graphitic carbon nitride are in favor of the elevated gas-sensing property. PMID:28468245

  2. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2.

    PubMed

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-08

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  3. Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2

    NASA Astrophysics Data System (ADS)

    Makkonen, Ilja; Korhonen, Esa; Prozheeva, Vera; Tuomisto, Filip

    2016-06-01

    Positron annihilation spectroscopy, when combined with supporting high-quality modeling of positron states and annihilation in matter, is a powerful tool for detailed defect identification of vacancy-type defects in semiconductors and oxides. Here we demonstrate that the Doppler broadening of the positron annihilation radiation is a very sensitive means for observing the oxygen environment around cation vacancies, the main open-volume defects trapping positrons in measurements made for transparent semiconducting oxides. Changes in the positron annihilation signal due to external manipulation such as irradiation and annealing can be correlated with the associated changes in the sizes of the detected vacancy clusters. Our examples for ZnO, In2O3 and SnO2 demonstrate that oxygen vacancies in oxides can be detected directly using positron annihilation spectroscopy when they are complexed with cation vacancies.

  4. Synthesis and characterization of binary ZnO-SnO2 (ZTO) thin films by e-beam evaporation technique

    NASA Astrophysics Data System (ADS)

    Bibi, Shagufta; Shah, A.; Mahmood, Arshad; Ali, Zahid; Raza, Qaisar; Aziz, Uzma; Haneef; Waheed, Abdul; Shah, Ziaullah

    2018-04-01

    The binary ZnO-SnO2 (ZTO) thin films with varying SnO2 concentrations (5, 10, 15, and 20 wt%) were grown on glass substrate by e-beam evaporation technique. The prepared ZTO films were annealed at 400 °C in air. These films were then characterized to investigate their structural, optical, and electrical properties as a function of SnO2 concentration. XRD analysis reveals that the crystallinity of the film decreases with the addition of SnO2 and it transforms to an amorphous structure at a composition of 40% SnO2 and 60% ZnO. Morphology of the films was examined by atomic force microscopy which points out that surface roughness of the films decreases with the increasing of SnO2 in the film. Optical properties such as optical transparency, band-gap energy, and optical constants of these films were examined by spectrophotometer and spectroscopic Ellipsometer. It was observed that the average optical transmission of mixed films improves with incorporation of SnO2. In addition, the band-gap energy of the films was determined to be in the range of 3.37-3.7 eV. Furthermore, it was found that the optical constants (n and k) decrease with the addition of SnO2. Similarly, it is observed that the electrical resistivity increases nonlinearly with the increase in SnO2 in ZnO-SnO2 thin films. However, it is noteworthy that the highest figure of merit (FOM) value, i.e., 55.87 × 10-5 Ω-1, is obtained for ZnO-SnO2 (ZTO) thin film with 40 wt% of SnO2 composition. Here, we suggest that ZnO-SnO2 (ZTO) thin film with composition of 60:40 wt% can be used as an efficient TCO film due to the improved transmission, and reduced RMS value and highest FOM value.

  5. A simple structure of Cu2ZnSnS4/CdS solar cells prepared by sputtering

    NASA Astrophysics Data System (ADS)

    Li, Zhishan; Wang, Shurong; Ma, Xun; Yang, Min; Jiang, Zhi; Liu, Tao; Lu, Yilei; Liu, Sijia

    2017-12-01

    In this work, Cu2ZnSnS4 (CZTS) thin films were grown on Mo-coated Soda-lime-glass (SLG) substrates by annealing of sputtered ZnS/Sn/CuS precursors at 580 ℃ for 15 min. As a try, the CZTS solar cells were fabricated using simple structure of Mo-coated SLG/CZTS/CdS/Al and traditional structure of Mo-coated SLG/CZTS/CdS/i-ZnO/In2O3:SnO2 (ITO)/Al, respectively. The results show that the CZTS device with simple structure can achieve same level of the open circuit voltage (Voc) compared with that of traditional structure. In addition, the power conversion efficiency of 2.95% and 3.59% were obtained with simple structure and traditional structure, respectively. The CZTS solar cell with simple structure provides a promising way and an easy process to prepare high-performance CZTS thin film solar cells which is available to large-scale industrial production in the future.

  6. Novel development of nanocrystalline kesterite Cu2ZnSnS4 thin film with high photocatalytic activity under visible light illumination

    NASA Astrophysics Data System (ADS)

    Apostolopoulou, Andigoni; Mahajan, Sandip; Sharma, Ramphal; Stathatos, Elias

    2018-01-01

    Cu2ZnSnS4 (CZTS) represents a promising p-type direct band gap semiconductor with large absorption coefficient in the visible region of solar light. In the present study, a kesterite CZTS nanocrystalline film, with high purity, was successfully synthesized via the combination of successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) technique. The morphology and structural properties of the CZTS films were characterized by FE-SEM microscopy, porosimetry in terms of Brunauer-Emmett-Teller (BET) technique, X-ray diffraction and Raman spectroscopy. The as-prepared films under mild heat treatment at 250 °C in the presence of sulfur atmosphere exhibited fine nanostructure with 35 nm average particle size, high specific surface area of 53 m2/g and 9 nm pore diameter. The photocatalytic activity of the films was examined to the degradation of Basic Blue 41 (BB-41) and Acid Orange 8 (AO-8) organic azo dyes under visible light irradiation, demonstrating 97.5% and 70% discoloration for BB-41 and AO-8 respectively. Reusability of the CZTS films was also tested proving good stability over several repetitions. The reduction of photocatalyst's efficiency after three successive repetitions didn't exceed 5.6% and 8.5% for BB-41 and AO-8 respectively.

  7. Effect of milling atmosphere on structural and magnetic properties of Ni-Zn ferrite nanocrystalline

    NASA Astrophysics Data System (ADS)

    Hajalilou, Abdollah; Hashim, Mansor; Ebrahimi-Kahrizsangi, Reza; Masoudi Mohamad, Taghi

    2015-04-01

    Powder mixtures of Zn, NiO, and Fe2O3 are mechanically alloyed by high energy ball milling to produce Ni-Zn ferrite with a nominal composition of Ni0.36Zn0.64Fe2O4. The effects of milling atmospheres (argon, air, and oxygen), milling time (from 0 to 30 h) and heat treatment are studied. The products are characterized using x-ray diffractometry, field emission scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy, and transmitted electron microscopy. The results indicate that the desired ferrite is not produced during the milling in the samples milled under either air or oxygen atmospheres. In those samples milled under argon, however, Zn/NiO/Fe2O3 reacts with a solid-state diffusion mode to produce Ni-Zn ferrite nanocrystalline in a size of 8 nm after 30-h-milling. The average crystallite sizes decrease to 9 nm and 10 nm in 30-h-milling samples under air and oxygen atmospheres, respectively. Annealing the 30-h-milling samples at 600 °C for 2 h leads to the formation of a single phase of Ni-Zn ferrite, an increase of crystallite size, and a reduction of internal lattice strain. Finally, the effects of the milling atmosphere and heating temperature on the magnetic properties of the 30-h-milling samples are investigated. Project supported by the University Putra Malaysia Graduate Research Fellowship Section.

  8. Characterization of core/shell structures based on CdTe and GaAs nanocrystalline layers deposited on SnO2 microwires

    NASA Astrophysics Data System (ADS)

    Ghimpu, L.; Ursaki, V. V.; Pantazi, A.; Mesterca, R.; Brâncoveanu, O.; Shree, Sindu; Adelung, R.; Tiginyanu, I. M.; Enachescu, M.

    2018-04-01

    We report the fabrication and characterization of SnO2/CdTe and SnO2/GaAs core/shell microstructures. CdTe or GaAs shell layers were deposited by radio-frequency (RF) magnetron sputtering on core SnO2 microwires synthesized by a flame-based thermal oxidation method. The produced structures were characterized by scanning electron microscopy (SEM), high-resolution scanning transmission electron microscope (HR-STEM), X-ray diffraction (XRD), Raman scattering and FTIR spectroscopy. It was found that the SnO2 core is of the rutile type, while the shells are composed of CdTe or GaAs nanocrystallites of zincblende structure with the dimensions of crystallites in the range of 10-20 nm. The Raman scattering investigations demonstrated that the quality of the porous nanostructured shell is improved by annealing at temperatures of 420-450 °C. The prospects of implementing these microstructures in intrinsic type fiber optic sensors are discussed.

  9. Correlation between emission property and concentration of Sn2+ center in the SnO-ZnO-P2O5 glass.

    PubMed

    Masai, Hirokazu; Tanimoto, Toshiro; Fujiwara, Takumi; Matsumoto, Syuji; Tokuda, Yomei; Yoko, Toshinobu

    2012-12-03

    The authors report on the correlation between the photoluminescence (PL) property and the SnO amount in SnO-ZnO-P2O5 (SZP) glass. In the PL excitation (PLE) spectra of the SZP glass containing Sn2+ emission center, two S1 states, one of which is strongly affected by SnO amount, are assumed to exist. The PLE band closely correlates with the optical band edge originating from Sn2+ species, and they both largely red-shifts with increasing amount of SnO. The emission decay time of the SZP glass decreased with increasing amount of SnO and the internal quantum efficiencies of the SZP glasses containing 1~5 mol% of SnO are comparable to that of MgWO4. It is expected that the composition-dependent S1 state (the lower energy excitation band) governs the quantum efficiency of the SZP glasses.

  10. Preparation, characterization and nonlinear absorption studies of cuprous oxide nanoclusters, micro-cubes and micro-particles

    NASA Astrophysics Data System (ADS)

    Sekhar, H.; Narayana Rao, D.

    2012-07-01

    Cuprous oxide nanoclusters, micro-cubes and micro-particles were successfully synthesized by reducing copper(II) salt with ascorbic acid in the presence of sodium hydroxide via a co-precipitation method. The X-ray diffraction and FTIR studies revealed that the formation of pure single-phase cubic. Raman and EPR spectral studies show the presence of CuO in as-synthesized powders of Cu2O. Transmission electron microscopy and field emission scanning electron microscopy data revealed that the morphology evolves from nanoclusters to micro-cubes and micro-particles by increasing the concentration of NaOH. Linear optical measurements show absorption peak maximum shifts towards red with changing morphology from nanoclusters to micro-cubes and micro-particles. The nonlinear optical properties were studied using open aperture Z-scan technique with 532 nm 6 ns laser pulses. Samples-exhibited both saturable as well as reverse saturable absorption. Due to confinement effects (enhanced band gap), we observed enhanced nonlinear absorption coefficient (β) in the case of nanoclusters compared to their micro-cubes and micro-particles.

  11. Characterization of SnO2 Film with Al-Zn Doping Using Sol-Gel Dip Coating Techniques

    NASA Astrophysics Data System (ADS)

    Doyan, A.; Susilawati; Ikraman, N.; Taufik, M.

    2018-04-01

    Sn1-2x AlxZnxO2 film has been developed using sol-gel dip coating technique. The materials SnCl2.2H2O, AlCl3 and ZnCl2 dissolved in water and ethanol with 5:95 volume ratio. Variations dopant concentration x = 0.000, 0.005, 0.0025, and 0.050. The film was grown with sol concentration 0.4 M, the withdrawal speed of 12 cm/min and sintering at 600 °C for 30 minutes. The characteristics Sn1-2x AlxZnxO2 films with various doping concentration phase were characterized by XRD. The morphological characteristics and the composition of the constituent elements of the film were characterized by SEM-EDX. The characteristics of the shape, structure, and size of the particles were characterized by TEM. The XRD results show that all films have a tetragonal SnO2 rutile phase without any secondary phase with an average particle size in the range 5.14 – 2.09 nm. The SEM results show that the film grown has a smooth morphology with a striped texture (x = 0.00), and there is a crack (x = 0.050). The EDX results show that the composition and distribution of the constituent elements of the film are uniformly distributed. TEM results show that the particle films has tetragonal rutile structure, orthorhombic and amorphous with a spherical shape.

  12. Novel microwave-assisted synthesis of porous g-C3N4/SnO2 nanocomposite for solar water-splitting

    NASA Astrophysics Data System (ADS)

    Seza, A.; Soleimani, F.; Naseri, N.; Soltaninejad, M.; Montazeri, S. M.; Sadrnezhaad, S. K.; Mohammadi, M. R.; Moghadam, H. Asgari; Forouzandeh, M.; Amin, M. H.

    2018-05-01

    Highly porous nanocomposites of graphitic-carbon nitride and tin oxide (g-C3N4/SnO2) were prepared through simple pyrolysis of urea molecules under microwave irradiation. The initial amount of tin was varied in order to investigate the effect of SnO2 content on preparation and properties of the composites. The synthesized nanocomposites were well-characterized by XRD, FE-SEM, HR-TEM, BET, FTIR, XPS, DRS, and PL. A homogeneous distribution of SnO2 nanoparticles with the size of less than 10 nm on the porous C3N4 sheets could be obtained, suggesting that in-situ synthesis of SnO2 nanoparticles was responsible for the formation of g-C3N4. The process likely occurred by the aid of the large amounts of OH groups formed on the surfaces of SnO2 nanoparticles during the polycondensation reactions of tin derivatives which could facilitate the pyrolysis of urea to carbon nitride. The porous nanocomposite prepared with initial tin amount of 0.175 g had high specific surface area of 195 m2 g-1 which showed high efficiency photoelectrochemical water-splitting ability. A maximum photocurrent density of 33 μA cm-2 was achieved at an applied potential of 0.5 V when testing this nanocomposite as photo-anode in water-splitting reactions under simulated visible light irradiation, introducing it as a promising visible light photoactive material.

  13. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. SU-E-T-172: Characterization of TLD-100 (LiF:Mg,Ti) Microcube Energy Response in a Cylindrical Chamber Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, V; Hammer, C; Kunugi, K

    Purpose: To characterize the energy response of TLD-100 microcubes inside a Virtual Water chamber phantom. Methods: Four TLD microcubes were placed inside a water-proof Virtual Water (VW) chamber phantom and irradiated to a known dose on a Varian linac in a 1D water tank. These chamber phantoms were then replaced by TLD-100 chips inside a separate VW paddle and irradiated to the same dose. Each energy response reading was calculated as light output per unit dose in nC/cGy and normalized to a calibration set irradiated to the same dose in 60Co. The differences in response between the TLD chips andmore » microcubes were then analyzed. Results: Across all energies, the average microcube response was less sensitive to energy than the average chip response with both falling consistently within 2.8% of previously established values in the literature Conclusion: TLD microcubes showed a lower average sensitivity to energy than their TLD chip counterparts. The use of TLD-100 microcubes inside the chamber phantom was validated against TLD-100 chips inside of VW paddles.« less

  15. Investigation of the structure and stability of SnO2 nanocrystal and its surface-bound water

    NASA Astrophysics Data System (ADS)

    Wang, H.; Wesolowski, D. J.; Proffen, T. E.; Kolesnikov, A. I.; Vlcek, L.; Wang, W.; Feygenson, M.; Sofo, J. O.; Anovitz, L.

    2012-12-01

    Driven partly by a myriad use of engineered metal oxide nanoparticles, understanding their stabilities and interactions with environmental matrix during and after applications are desired. SnO2 (cassiterite) is one of the frequently used oxides in solid-state gas sensors and oxidation catalysts. A close relationship between the gas sensitivity and catalysis of oxides with their surface chemistry ensures continuous interests in the study of SnO2-water interfacial complexity (unavoidable "contamination" in which water can potentially participate in reactions and change SnO2 conductivity). Such information is important, as the existence of hydration layers on the surface of SnO2 nanoparticles not only play a critical role in stabilizing the nanoparticle but also affect its selectivity/sensitivity, as a nanosensor. SnO2 nanoparticles (2-5 nm) synthesized by a wet chemical route are dominated by {110} faces and are capped with H2O or D2O water molecules (after purification), depending on isotopic composition of water used for syntheses. When water is in direct contact with terminal Sn and O atoms, there is a controversial argument as to whether or not dissociative adsorption occurs (i.e., formation of hydroxyl groups). Although theoretical studies point toward a tendency for dissociative configuration in the direct contact layer, experimental studies have not unambiguously confirmed this conclusion. We present combined investigations using neutron total scattering (NPDF at the NOMAD beamline, SNS) and inelastic neutron scattering (INS at the SEQUOIA beamline, SNS) techniques as static and dynamic probes to reveal structure and dynamics of water and SnO2 nanocrystalline stability upon dehydration. The NPDF results (measured with deuterated samples) suggest layered water configurations with G(r) signals dominated by O-D bonds at 0.98 Å, and the second hydration layer that gives a broad peak at 2.5-4 Å. There is no evidence of a third hydration layer at 5-7 Å as shown

  16. Ultrasonic-assisted pyrolyzation fabrication of reduced SnO2–x /g-C3N4 heterojunctions: Enhance photoelectrochemical and photocatalytic activity under visible LED light irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Kai; Zeng, Xiaoqiao; Gao, Shanmin

    Novel SnO 2–x/g-C 3N 4 heterojunction nanocomposites composed of reduced SnO 2–x nanoparticles and exfoliated g-C 3N 4 nanosheets were prepared by a convenient one-step pyrolysis method. The structural, morphological, and optical properties of the as-prepared nanocomposites were characterized in detail, indicating that the aggregation of g-C 3N 4 nanosheets was prevented by small, well-dispersed SnO 2–x nanoparticles. The ultraviolet–visible spectroscopy absorption bands of the nanocomposites were shifted to a longer wavelength region than those exhibited by pure SnO 2 or g-C 3N 4. The charge transfer and recombination processes occurring in the nanocomposites were investigated using linear scan voltammetrymore » and electrochemical impedance spectroscopy. Under 30-W visible-light-emitting diode irradiation, the heterojunction containing 27.4 wt.% SnO 2–x exhibited the highest photocurrent density of 0.0468 mA·cm–2, which is 33.43 and 5.64 times larger than that of pure SnO 2 and g-C 3N 4, respectively. The photocatalytic activity of the heterojunction material was investigated by degrading rhodamine B under irradiation from the same light source. Kinetic study revealed a promising degradation rate constant of 0.0226 min-1 for the heterojunction containing 27.4 wt.% SnO 2–x, which is 32.28 and 5.79 times higher than that of pure SnO 2 and g-C 3N 4, respectively. The enhanced photoelectrochemical and photocatalytic performances of the nanocomposite may be due to its appropriate SnO 2–x content and the compact structure of the junction between the SnO 2–x nanoparticles and the g-C 3N 4 nanosheets, which inhibits the recombination of photogenerated electrons and holes.« less

  17. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex

    PubMed Central

    Walldén, Karin; Nyman, Tomas; Hällberg, B. Martin

    2017-01-01

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling. PMID:28397834

  18. SnoN Stabilizes the SMAD3/SMAD4 Protein Complex.

    PubMed

    Walldén, Karin; Nyman, Tomas; Hällberg, B Martin

    2017-04-11

    TGF-β signaling regulates cellular processes such as proliferation, differentiation and apoptosis through activation of SMAD transcription factors that are in turn modulated by members of the Ski-SnoN family. In this process, Ski has been shown to negatively modulate TGF-β signaling by disrupting active R-SMAD/Co-SMAD heteromers. Here, we show that the related regulator SnoN forms a stable complex with the R-SMAD (SMAD3) and the Co-SMAD (SMAD4). To rationalize this stabilization at the molecular level, we determined the crystal structure of a complex between the SAND domain of SnoN and the MH2-domain of SMAD4. This structure shows a binding mode that is compatible with simultaneous coordination of R-SMADs. Our results show that SnoN, and SMAD heteromers can form a joint structural core for the binding of other transcription modulators. The results are of fundamental importance for our understanding of the molecular mechanisms behind the modulation of TGF-β signaling.

  19. Hollow SnO2@Co3O4 core-shell spheres encapsulated in three-dimensional graphene foams for high performance supercapacitors and lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Huang, Sheng-Yun; Wang, Tao; Zhang, Kai; Yuen, Matthew M. F.; Xu, Jian-Bin; Fu, Xian-Zhu; Sun, Rong; Wong, Ching-Ping

    2015-12-01

    Hollow SnO2@Co3O4 spheres are fabricated using 300 nm spherical SiO2 particles as template. Then three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are successfully obtained through self-assembly in hydrothermal process from graphene oxide nanosheets and metal oxide hollow spheres. The three-dimensional graphene foams encapsulated architectures could greatly improve the capacity, cycling stability and rate capability of hollow SnO2@Co3O4 spheres electrodes due to the highly conductive networks and flexible buffering matrix. The three-dimensional graphene foams encapsulated hollow SnO2@Co3O4 spheres are promising electrode materials for supercapacitors and lithium-ion batteries.

  20. Enhanced photovoltaic performance of dye sensitized solar cell using SnO2 nanoflowers

    NASA Astrophysics Data System (ADS)

    Arote, Sandeep A.; Tabhane, Vilas A.; Pathan, Habib M.

    2018-01-01

    The study highlighted enhanced performance of SnO2 based DSSC using photoanode with nanostructured morphology. The simple organic surfactant free hydrothermal synthesis method was used for preparation of SnO2 nanoflowers for dye sensitized solar cell (DSSC) application. The hydrothermal reaction time was varied to obtain different SnO2 nanostructures. The hydrothermal reaction time showed considerable effect on optical and structural properties of the prepared samples. The results indicated that the prepared samples were pure rutile SnO2. The band gap of prepared samples was greater than bulk SnO2 and varied from 3.64 to 3.81 eV with increase in hydrothermal reaction time. With increase in reaction time from 4 to 24 h, the microstructure of SnO2 changed from agglomerated nanoparticles to nanopetals and finally to self-assembled nanoflowers. Flower-like SnO2 nanostructures showed size around 300-700 nm, and composed of large numbers of 3 dimensional petals connected with each other forming 3D nanoflowers by self-assembly. Consequently, the DSSC with flower-like SnO2 nanostructures exhibited good photovoltaic performance with Voc, Jsc and η about 0.43 V, 4.36 mA/cm2 and 1.11%, respectively.

  1. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  2. SnO 2 nanowires decorated with forsythia-like TiO 2 for photoenergy conversion

    DOE PAGES

    Park, Ik Jae; Park, Sangbaek; Kim, Dong Hoe; ...

    2017-05-17

    Here, we report forsythia-like TiO 2-decorated SnO 2 nanowires on fluorine-doped SnO 2 electrode as a photoelectrode of dye-sensitized solar cells. When SnO 2 nanowires grown via vapor-liquid-solid reaction were soaked in TiCl 4 solution, leaf-shaped rutile TiO 2 was grown onto the surface of the nanowires. The TiO 2 decoration increases the short circuit current (J sc), open circuit voltage (V oc) and fill factor (FF) of dye-sensitized solar cells. Further, electron lifetime increased by employing an atomic-layer-deposited TiO 2 nanoshell between the TiO 2 leaves and the SnO 2 nanowire, due to preventing charge recombination at the nanowire/electrolytemore » interface.« less

  3. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes

    NASA Astrophysics Data System (ADS)

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L.

    2016-10-01

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness—for example, in structural components of aircraft and spacecraft.

  4. Preparation of Zn(BH4)2 and diborane and hydrogen release properties of Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15)

    NASA Astrophysics Data System (ADS)

    Kwak, Young Jun; Kwon, Sung Nam; Song, Myoung Youp

    2015-09-01

    Zn(BH4)2 was prepared by milling ZnCl2 and NaBH4 in a planetary ball mill under Ar atmosphere, and Zn(BH4)2+xMgH2 (x=1, 5, 10, and 15) samples were prepared. Diborane (B2H6) and hydrogen release characteristics of the Zn(BH4)2 and Zn(BH4)2+xMgH2 samples were studied. The samples synthesized by milling ZnCl2 and NaBH4 contained Zn(BH4)2 and NaCl, together with small amounts of ZnCl2 and NaBH4. We designated these samples as Zn(BH4)2(+NaCl). The weight loss up to 400 °C of the Zn(BH4)2(+NaCl) sample synthesized by milling 4 h was 11.2 wt%. FT-IR analysis showed that Zn(BH4)2 was formed in the Zn(BH4)2(+NaCl) samples. MgH2 was also milled in a planetary ball mill, and mixed with the Zn(BH4)2(+NaCl) synthesized by milling for 4 h in a mortar and pestle. The weight loss up to 400 °C of Zn(BH4)2(+NaCl)+MgH2 was 8.2 wt%, corresponding to the weight % of diborane and hydrogen released from the Zn(BH4)2(+NaCl)+MgH2 sample, with respect to the sample weight. DTA results of Zn(BH4)2(+NaCl)+xMgH2 showed that the decomposition peak of Zn(BH4)2 was at about 61 °C, and that of MgH2 was at about 370-389 °C.

  5. Effect of Zn addition on structural, magnetic properties, antistructural modeling of Co1-xZnxFe2O4 nano ferrite

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, S.; Kane, S. N.; Tatarchuk, T. R.; Mazaleyrat, F.

    2018-05-01

    Effect of Zn addition on cationic distribution, structural properties, magnetic properties, antistructural modeling of nanocrystalline Co1-xZnxFe2O4 (0.08 ≤ x ≤ 0.56) ferrite is reported. XRD confirms the formation of single phase cubic spinel nano ferrites with average grain diameter ranging between 41.2 - 54.9 nm. Coercivity (Hc), anisotropy constant (K1) decreases with Zn addition, but experimental, theoretical saturation magnetization (Ms, Ms(t)) increases upto x = 0.32, then decreases, attributed to the breaking of collinear ferrimagnetic phase. Variation of magnetic properties is correlated with cationic distribution. A new antistructural modeling for describing active surface centers is discussed to explain change in concentration of donor's active centers Zn'B, Co'B, acceptor's active centers Fe*A are explained.

  6. Nano SnO 2-Al 2O 3 mixed oxide and SnO 2-Al 2O 3-carbon composite oxides as new and novel electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, M.; Venugopal, N.; Raja, K. Phani; Rao, M. Mohan

    New nano-materials like SnO 2-Al 2O 3 and SnO 2-Al 2O 3-carbon were synthesized by a single step hydrothermal method in searching for novel mixed oxides with high electrochemical double layer capacitance. A SnO 2-Al 2O 3-carbon sample was calcined at 600 °C and tested for its performance. The source of carbon was tetrapropyl ammonium hydroxide. The capacitive behavior of SnO 2 was compared to the performance of SnO 2-Al 2O 3, SnO 2-Al 2O 3-carbon and calcined SnO 2-Al 2O 3-carbon using the techniques of cyclic voltammetry, double potential step, chronopotentiometry and E-log I polarization. In 0.1 M NaCl solutions, SnO 2-Al 2O 3 gave the best performance with a value of 119 Fg -1 and cycled 1000 times. The nano-material mixed oxides were characterized by TEM, XRD, ICP-AES and SEM-EDAX.

  7. SU-G-201-08: Energy Response of Thermoluminescent Microcube Dosimeters in Water for Kilovoltage X-Ray Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Maso, L; Lawless, M; Culberson, W

    Purpose: To characterize the energy dependence for TLD-100 microcubes in water at kilovoltage energies. Methods: TLD-100 microcubes with dimensions of (1 × 1 × 1) mm{sup 3} were irradiated with kilovoltage x-rays in a custom-built thin-window liquid water phantom. The TLD-100 microcubes were held in Virtual Water™ probes and aligned at a 2 cm depth in water. Irradiations were performed using the M-series x-ray beams of energies ranging from 50-250 kVp and normalized to a {sup 60}Co beam located at the UWADCL. Simulations using the EGSnrc Monte Carlo Code System were performed to model the x-ray beams, the {sup 60}Comore » beam, the water phantom and the dosimeters in the phantom. The egs-chamber user code was used to tally the dose to the TLDs and the dose to water. The measurements and calculations were used to determine the intrinsic energy dependence, absorbed-dose energy dependence, and absorbed-dose sensitivity. These values were compared to TLD-100 chips with dimensions of (3.2 × 0.9 × 0.9) mm{sup 3}. Results: The measured TLD-100 microcube response per dose to water among all investigated x-ray energies had a maximum percent difference of 61% relative to {sup 60}Co. The simulated ratio of dose to water to the dose to TLD had a maximum percent difference of 29% relative to {sup 60}Co. The ratio of dose to TLD to the TLD output had a maximum percent difference of 13% relative to {sup 60}Co. The maximum percent difference for the absorbed-dose sensitivity was 15% more than the used value of 1.41. Conclusion: These results confirm that differences in beam quality have a significant effect on TLD response when irradiated in water. These results also indicated a difference in TLD-100 response between microcube and chip geometries. The intrinsic energy dependence and the absorbed-dose energy dependence deviated up to 10% between TLD-100 microcubes and chips.« less

  8. Nature of Dielectric Properties, Electric Modulus and AC Electrical Conductivity of Nanocrystalline ZnIn2Se4 Thin Films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.

    2018-02-01

    The structural characteristics of thermally deposited ZnIn2Se4 thin films were indexed utilizing x-ray diffraction as well as scanning electron microscopy techniques. Dielectric properties, electric modulus and AC electrical conductivity of ZnIn2Se4 thin films were examined in the frequency range from 42 Hz to 106 Hz. The capacitance, conductance and impedance were measured at different temperatures. The dielectric constant and dielectric loss decrease with an increase in frequency. The maximum barrier height was determined from the analysis of the dielectric loss depending on the Giuntini model. The real part of the electric modulus revealed a constant maximum value at higher frequencies and the imaginary part of the electric modulus was characterized by the appearance of dielectric relaxation peaks. The AC electrical conductivity obeyed the Jonscher universal power law. Correlated barrier hopping model was the appropriate mechanism for AC conduction in ZnIn2Se4 thin films. Estimation of the density of states at the Fermi level and activation energy, for AC conduction, was carried out based on the temperature dependence of AC electrical conductivity.

  9. Crystal structures of ZnCl2·2.5H2O, ZnCl2·3H2O and ZnCl2·4.5H2O

    PubMed Central

    Hennings, Erik; Schmidt, Horst; Voigt, Wolfgang

    2014-01-01

    The formation of different complexes in aqueous solutions is an important step in understanding the behavior of zinc chloride in water. The structure of concentrated ZnCl2 solutions is governed by coordination competition of Cl− and H2O around Zn2+. According to the solid–liquid phase diagram, the title compounds were crystallized below room temperature. The structure of ZnCl2·2.5H2O contains Zn2+ both in a tetra­hedral coordination with Cl− and in an octa­hedral environment defined by five water mol­ecules and one Cl− shared with the [ZnCl4]2− unit. Thus, these two different types of Zn2+ cations form isolated units with composition [Zn2Cl4(H2O)5] (penta­aqua-μ-chlorido-tri­chlorido­di­zinc). The trihydrate {hexa­aqua­zinc tetra­chlorido­zinc, [Zn(H2O)6][ZnCl4]}, consists of three different Zn2+ cations, one of which is tetra­hedrally coordinated by four Cl− anions. The two other Zn2+ cations are each located on an inversion centre and are octa­hedrally surrounded by water mol­ecules. The [ZnCl4] tetra­hedra and [Zn(H2O)6] octa­hedra are arranged in alternating rows parallel to [001]. The structure of the 4.5-hydrate {hexa­aqua­zinc tetra­chlorido­zinc trihydrate, [Zn(H2O)6][ZnCl4]·3H2O}, consists of isolated octa­hedral [Zn(H2O)6] and tetra­hedral [ZnCl4] units, as well as additional lattice water mol­ecules. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ZnCl4 tetra­hedra and water mol­ecules as acceptor groups leads to the formation of a three-dimensional network in each of the three structures. PMID:25552980

  10. Abundant defects and defect clusters in kesterite Cu2ZnSnS4 and Cu2ZnSnSe4

    NASA Astrophysics Data System (ADS)

    Chen, Shiyou; Wang, Lin-Wang; Walsh, Aron; Gong, Xin-Gao; Wei, Su-Huai

    2013-03-01

    Cu2ZnSnS4 and Cu2ZnSnSe4 are drawing intensive attention as the light-absorber materials in thin-film solar cells. A large variety of intrinsic defects can be formed in these quaternary semiconductors, which have important influence on their optical and electrical properties, and hence their photovoltaic performance. We will present our first-principles calculation study on a series of intrinsic defects and defect clusters in Cu2ZnSnS4 and Cu2ZnSnSe4, and discuss: (i) strong phase-competition between the kesterites and the coexisting secondary compounds; (ii) the dominant CuZn antisites and Cu vacancies which determine the intrinsic p-type conductivity, and their dependence on the elemental ratios; (iii) the high population of charge-compensated defect clusters (like VCu + ZnCu and 2CuZn + SnZn) and their contribution to non-stoichiometry ; (iv) the deep-level defects which act as recombination centers. Based on the calculation, we will explain the experimental observation that Cu poor and Zn rich conditions give the highest solar cell efficiency, as well as suggesting an efficiency limitation in Cu2ZnSn(S,Se)4 cells with high S composition. Supported by NSF of China, JCAP: a U.S. DOE Energy Innovation Hub, Royal Society of U.K. and EPSRC, and U.S. DOE.

  11. Dynamic creation and evolution of gradient nanostructure in single-crystal metallic microcubes.

    PubMed

    Thevamaran, Ramathasan; Lawal, Olawale; Yazdi, Sadegh; Jeon, Seog-Jin; Lee, Jae-Hwang; Thomas, Edwin L

    2016-10-21

    We demonstrate the dynamic creation and subsequent static evolution of extreme gradient nanograined structures in initially near-defect-free single-crystal silver microcubes. Extreme nanostructural transformations are imposed by high strain rates, strain gradients, and recrystallization in high-velocity impacts of the microcubes against an impenetrable substrate. We synthesized the silver microcubes in a bottom-up seed-growth process and use an advanced laser-induced projectile impact testing apparatus to selectively launch them at supersonic velocities (~400 meters per second). Our study provides new insights into the fundamental deformation mechanisms and the effects of crystal and sample-shape symmetries resulting from high-velocity impacts. The nanostructural transformations produced in our experiments show promising pathways to developing gradient nanograined metals for engineering applications requiring both high strength and high toughness-for example, in structural components of aircraft and spacecraft. Copyright © 2016, American Association for the Advancement of Science.

  12. Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Liao, Chen-Yu; Chen, Chieh-Wen; Hao, Yu-Chuan; Yu, Ing-Song; Chen, Jian-Zhang

    2017-11-01

    This study investigates a quasi-solid-state gel-electrolyte supercapacitor fabricated with nanoporous SnO2/CNT nanocomposite electrodes and a polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte. First, pastes containing SnO2 nanoparticles, CNTs, ethyl cellulose, and terpineol are screen-printed onto carbon cloth. A tube furnace is then used for calcining the SnO2/CNT electrodes on carbon cloth. After furnace-calcination, the wettability of SnO2/CNT significantly improved; furthermore, the XPS analysis shows that number of C-O bond and oxygen content significantly decrease after furnace-calcination owing to the burnout of the ethyl cellulose by the furnace calcination processes. The furnace-calcined SnO2/CNT electrodes sandwich the PVA/H2SO4 gel electrolyte to form a supercapacitor. The fabricated supercapacitor exhibits an areal capacitance of 5.61 mF cm-2 when flat and 5.68 mF cm-2 under bending with a bending radius (R) of 1.0 cm. After a 1000 cycle stability test, the capacitance retention rates of the supercapacitor are 96% and 97% when flat and under bending (R  =  1.0 cm), respectively.

  13. Time-Resolved Optical Emission Spectroscopy Diagnosis of CO2 Laser-Produced SnO2 Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Hui; Wang, Xinbing; Zuo, Duluo

    2016-09-01

    The spectral emission and plasma parameters of SnO2 plasmas have been investigated. A planar ceramic SnO2 target was irradiated by a CO2 laser with a full width at half maximum of 80 ns. The temporal behavior of the specific emission lines from the SnO2 plasma was characterized. The intensities of Sn I and Sn II lines first increased, and then decreased with the delay time. The results also showed a faster decay of Sn I atoms than that of Sn II ionic species. The temporal evolutions of the SnO2 plasma parameters (electron temperature and density) were deduced. The measured temperature and density of SnO2 plasma are 4.38 eV to 0.5 eV and 11.38×1017 cm-3 to 1.1×1017 cm-3, for delay times between 0.1 μs and 2.2 μs. We also investigated the effect of the laser pulse energy on SnO2 plasma. supported by National Natural Science Foundation of China (No. 11304235) and the Director Fund of WNLO

  14. Facile method for preparing superoleophobic surfaces with hierarchical microcubic/nanowire structures

    NASA Astrophysics Data System (ADS)

    Kwak, Wonshik; Hwang, Woonbong

    2016-02-01

    To facilitate the fabrication of superoleophobic surfaces having hierarchical microcubic/nanowire structures (HMNS), even for low surface tension liquids including octane (surface tension = 21.1 mN m-1), and to understand the influences of surface structures on the oleophobicity, we developed a convenient method to achieve superoleophobic surfaces on aluminum substrates using chemical acid etching, anodization and fluorination treatment. The liquid repellency of the structured surface was validated through observable experimental results the contact and sliding angle measurements. The etching condition required to ensure high surface roughness was established, and an optimal anodizing condition was determined, as a critical parameter in building the superoleophobicity. The microcubic structures formed by acid etching are essential for achieving the formation of the hierarchical structure, and therefore, the nanowire structures formed by anodization lead to an enhancement of the superoleophobicity for low surface tension liquids. Under optimized morphology by microcubic/nanowire structures with fluorination treatment, the contact angle over 150° and the sliding angle less than 10° are achieved even for octane.

  15. On the 16O 6+ ion irradiation induced magnetic moment generation in ZnFe2O4 nano ferrite

    NASA Astrophysics Data System (ADS)

    Satalkar, M.; Kane, S. N.; Raghuvanshi, S.

    2018-05-01

    X-ray diffraction (XRD) was utilized to study the effect of 80 MeV 16O 6+ ion irradiation of the as-burnt ZnFe2O4 samples, prepared by sol-gel auto-combustion technique. The samples were irradiated at fluence: 1 × 1011, 1 × 1012, 1 × 1013, 1 × 1014 ions/cm2 to observe the effect of irradiation on structural properties and cationic distribution. XRD confirms the formation of single phase nanocrystalline cubic spinel ferrites with Scherrer's particle diameter (D) ranging between 15.7 - 17.4 nm. Results very distinctly show the electronic energy loss induced changes in: - experimental and theoretical lattice parameter (aexp., ath.), tetrahedral and octahedral bond length (RA, RB), and shared tetrahedral and octahedral edge (dAE, dBE). The paper reports the generation of magnetic moment of Zn ferrite by swift heavy ion irradiation induced distortion at tetrahedral site.

  16. Ternary composite of TiO2 nanotubes/Ti plates modified by g-C3N4 and SnO2 with enhanced photocatalytic activity for enhancing antibacterial and photocatalytic activity.

    PubMed

    Faraji, Masoud; Mohaghegh, Neda; Abedini, Amir

    2018-01-01

    A series of g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plates were fabricated via simple dipping of TiO 2 nanotubes/Ti in a solution containing SnCl 2 and g-C 3 N 4 nanosheets and finally annealing of the plates. Synthesized plates were characterized by various techniques. The SEM analysis revealed that the g-C 3 N 4 -SnO 2 nanosheets with high physical stability have been successfully deposited onto the surface of TiO 2 nanotubes/Ti plate. Photocatalytic activity was investigated using two probe chemical reactions: oxidative decomposition of acetic acid and oxidation of 2-propanol under irradiation. Antibacterial activities for Escherichia coli (E. coli) bacteria were also investigated in dark and under UV/Vis illuminations. Detailed characterization and results of photocatalytic and antibacterial activity tests revealed that semiconductor coupling significantly affected the photocatalyst properties synthesized and hence their photocatalytic and antibacterial activities. Modification of TiO 2 nanotubes/Ti plates with g-C 3 N 4 -SnO 2 deposits resulted in enhanced photocatalytic activities in both chemical and microbial systems. The g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate exhibited the highest photocatalytic and antibacterial activity, probably due to the heterojunction between g-C 3 N 4 -SnO 2 and TiO 2 nanotubes/Ti in the ternary composite plate and thus lower electron/hole recombination rate. Based on the obtained results, a photocatalytic and an antibacterial mechanism for the degradation of E. coli bacteria and chemical pollutants over g-C 3 N 4 -SnO 2 /TiO 2 nanotubes/Ti plate were proposed and discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of substrates on structural and optical properties of tin oxide (SnO2) nanostructures.

    PubMed

    Johari, Anima; Bhatnagar, M C; Rana, Vikas

    2012-10-01

    We report on controlling the morphology of tin oxide (SnO2) nanostructures and the study of the effect of surface morphology on structural and optical properties of SnO2 nanostuctures. In present work, Tin oxide (SnO2) nanostructures such as nanowires and nanorods have been grown by thermal evaporation of SnO2 powder. To demonstrate the effect of different substrates on the morphology of grown SnO2 nanostructures, the thermal evaporation of SnO2 powder was carried out on Si and gold catalyzed Si (Au/Si) substrates. The scanning-electron-microscopic analysis shows the growth of SnO2 nanowires on Au/Si substrate and growth of SnO2 nanorods on Si substrate. The scanning-and transmission-electron-microscopic analysis shows that the diameter of SnO2 nanowires and nanorods are about 70 nm and 95 nm respectively and their length is about 80 microm and 30 microm respectively. The vapor-liquid-solid (VLS) growth of SnO2 nanowires and vapor-solid (VS) growth of SnO2 nanorods is also confirmed with the help of TEM and EDX spectra. The synthesized SnO2 nanowires show tetragonal rutile structure of SnO2, whereas SnO2 nanorods show tetragonal rutile as well as cassiterite structure of SnO2. UV-Vis absorption spectra showed the optical band gaps of 4.1 eV and 3.8 eV for the SnO2 nanowires and the nanorods, respectively. The SnO2 nanowires and nanorods show photoluminescence with broad emission peaks centred at around 600 nm and 580 nm respectively. Raman spectra of SnO2 nanowires shows three Raman shifts (478, 632, 773 cm(-1)) corresponding to Eg, A1g and B2g vibration modes, whereas in Raman spectra of SnO2 nanorods, A1g peak is dramatically reduced and the B2g mode is totally quenched.

  18. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol

    PubMed Central

    Wan, Wenjin; Li, Yuehua; Ren, Xingping; Zhao, Yinping; Gao, Fan; Zhao, Heyun

    2018-01-01

    Two dimensional (2D)SnO2 nanosheets were synthesized by a substrate-free hydrothermal route using sodium stannate and sodium hydroxide in a mixed solvent of absolute ethanol and deionized water at a lower temperature of 130 °C. The characterization results of the morphology, microstructure, and surface properties of the as-prepared products demonstrated that SnO2 nanosheets with a tetragonal rutile structure, were composed of oriented SnO2 nanoparticles with a diameter of 6–12 nm. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (FETEM) results demonstrated that the dominant exposed surface of the SnO2 nanoparticles was (101), but not (110). The growth and formation was supposed to follow the oriented attachment mechanism. The SnO2 nanosheets exhibited an excellent sensing response toward ethylene glycol at a lower optimal operating voltage of 3.4 V. The response to 400 ppm ethylene glycol reaches 395 at 3.4 V. Even under the low concentration of 5, 10, and 20 ppm, the sensor exhibited a high response of 6.9, 7.8, and 12.0 to ethylene glycol, respectively. The response of the SnO2 nanosheets exhibited a linear dependence on the ethylene glycol concentration from 5 to 1000 ppm. The excellent sensing performance was attributed to the present SnO2 nanoparticles with small size close to the Debye length, the larger specific surface, the high-energy exposed facets of the (101) surface, and the synergistic effects of the SnO2 nanoparticles of the nanosheets. PMID:29462938

  19. Iron doped SnO2/Co3O4 nanocomposites synthesized by sol-gel and precipitation method for metronidazole antibiotic degradation.

    PubMed

    Agarwal, Shilpi; Tyagi, Inderjeet; Gupta, Vinod Kumar; Sohrabi, Maryam; Mohammadi, Sanaz; Golikand, Ahmad Nozad; Fakhri, Ali

    2017-01-01

    Sol-gel and precipitation reaction methods were used to synthesize Un-doped and Fe-doped SnO 2 /Co 3 O 4 nanocomposites under UV light; the synthesized nanocomposites were applied for the photocatalytic degradation of metronidazole antibiotic. The developed photo catalyst was well characterized using energy dispersive X-ray spectrometer (EDX), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), field emission scanning electron microscopy (FE-SEM), UV-Visible and photoluminescence (PL) spectroscopy. Effective parameters such as pH, photocatalyst dose and contact time was optimized and well investigated. From the obtained facts it is clear that the 98.3% of MTZ was degraded with in 15min, pH6 and 0.1g catalyst when the Fe molar ratio was 1:1 at %. As compared to results obtained from un-doped SnO 2 /Co 3 O 4 nanocomposites Fe doped SnO 2 /Co 3 O 4 nanocomposites possess greater photocatalytic efficiency. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Photoluminescence analysis of Ce3+:Zn2SiO4 & Li++ Ce3+:Zn2SiO4: phosphors by a sol-gel method

    NASA Astrophysics Data System (ADS)

    Babu, B. Chandra; Vandana, C. Sai; Guravamma, J.; Rudramadevi, B. Hemalatha; Buddhudu, S.

    2015-06-01

    Here, we report on the development and photoluminescence analysis of Zn2SiO4, Ce3+:Zn2SiO4 & Li+ + Ce3+: Zn2SiO4 novel powder phosphors prepared by a sol-gel technique. The total amount of Ce3+ ions was kept constant in this experiment at 0.05 mol% total doping. The excitation and emission spectra of undoped (Zn2SiO4) and Ce3+ doped Zn2SiO4 and 0.05 mol% Li+ co-doped samples have been investigated. Cerium doped Zn2SiO4 powder phosphors had broad blue emission corresponding to the 2D3/22FJ transition at 443nm. Stable green-yellow-red emission has been observed from Zn2SiO4 host matrix and also we have been observed the enhanced luminescence of Li+ co-doped Zn2SiO4:Ce3+. Excitation and emission spectra of these blue luminescent phosphors have been analyzed in evaluating their potential as luminescent screen coating phosphors.

  1. Self-catalytic branch growth of SnO 2 nanowire junctions

    NASA Astrophysics Data System (ADS)

    Chen, Y. X.; Campbell, L. J.; Zhou, W. L.

    2004-10-01

    Multiple branched SnO2 nanowire junctions have been synthesized by thermal evaporation of SnO powder. Their nanostructures were studied by transmission electron microscopy and field emission scanning electron microcopy. It was observed that Sn nanoparticles generated from decomposition of the SnO powder acted as self-catalysts to control the SnO2 nanojunction growth. Orthorhombic SnO2 was found as a dominate phase in nanojunction growth instead of rutile structure. The branches and stems of nanojunctions were found to be an epitaxial growth by electron diffraction analysis and high-resolution electron microscopy observation. The growth directions of the branched SnO2 nanojunctions were along the orthorhombic [1 1 0] and [ 1 1 bar 0 ] . A self-catalytic vapor-liquid-solid growth mechanism is proposed to describe the growth process of the branched SnO2 nanowire junctions.

  2. Facile synthesis of SnO2/α-Fe2O3 nanocomposite for supercapacitor capacitor applications

    NASA Astrophysics Data System (ADS)

    Rani, B. Jansi; Saravanakumar, B.; Ravi, G.; Yuvakkumar, R.

    2018-05-01

    Facile and economically viable one step hydrothermal route was adapted to synthesis SnO2/α-Fe2O3 nanocomposite with and without hexamine (HMT) as surfactant successfully. The formation of SnO2/α-Fe2O3 nanocomposite was confirmed through XRD, Raman, PL and FTIR studies. The presence of well defined XRD diffraction peaks of both SnO2 and α-Fe2O3 revealed the formation SnO2/α-Fe2O3 nanocomposite. The obtained characteristic Raman active (Eg+Eg+Eu+A2u) mode of vibrations confirmed the formation of SnO2/α-Fe2O3 nanocomposite. Photoluminescence study revealed the emission behavior of the product. Metal oxygen vibrations of Fe-O in both octahedral, tetrahedral sites and Sn-O were confirmed by the bands located at 466, 580 and 673 cm-1 respectively through FTIR. The spherical morphology of the product synthesized with and without the surfactant HMT has been revealed by SEM images. The electrochemical behavior of the product was investigated through CV and EIS studies in 1M Na2SO4 electrolyte solution and obtained the highest specific capacitance of 211.25 F/g at 5 mV for the surfactant assisted product.

  3. Effect of pulsed and continuous ultrasound on structural and magnetic properties of nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite

    NASA Astrophysics Data System (ADS)

    Hassen, Harzali; Adel, Megriche; Arbi, Mgaidi

    2018-03-01

    Ultrasound-assisted co-precipitation has been used to prepare nano-sized Ni0.4Cu0.2Zn0.4Fe2O4 ferrite. Continuous (C-US) and pulsed (P-US) ultrasound modes are used at constant frequency = 20 kHz, reaction time = 2 h and pulse durations of 10 s on and 10 s off. All experiments were conducted at two temperatures 90 and 100°C. Samples were characterized by X-ray diffraction (XRD), Fourier transform spectroscopy (FT-IR), N2 adsorption isotherms at 77 k analysis (BET), transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM) techniques. A nanocrystalline single-phase with particle size in the range 12-18 nm is obtained in both modes: continuous and pulsed ultrasound mode. FT-IR measurements show two absorption bands assigned to the tetrahedral and octahedral vibrations (ν1 and ν2) characteristics of cubic spinel ferrite. The specific surface area (S BET) is in the range of 110-140 m2 g-1 and an average pore size between 5.5 and 6.5 nm. The lowest values are obtained in pulsed mode. Finally, this work shows that the magnetic properties are affected by the ultrasound conditions, without affecting the particle shape. The saturation magnetization (Ms) values obtained for all samples are comparable. In P-US mode, the saturation magnetization (Ms) increases as temperature increases. Moreover, P-US mode opens a new avenue for synthesis of NiCuZn ferrites.

  4. In-situ deposition of hematite (α-Fe2O3) microcubes on cotton cellulose via hydrothermal method

    NASA Astrophysics Data System (ADS)

    Gili, M.; Latag, G.; Balela, M.

    2018-03-01

    Hematite microcubes with truncated edges have been successfully deposited on cotton cellulose via one-step hydrothermal process using anhydrous FeCl3 and glycine as Fe(III) precursor and chelating agent, respectively. The amount of glycine significantly affects the morphology and yield of hematite. The addition of 0.495 g of glycine to 50 ml of 0.1 M FeCl3 solution with 0.400 g of cotton resulted to hematite-deposited cellulose having ∼15% hematite content. The reduction of glycine to 0.247 g increased the amount of hematite on the surface of the cotton cellulose to ∼20% by weight. However, the hematite microcubes have a wide size distribution, with particle size in the range of 0.684 μm to 1.520 μm. Without glycine, hematite cannot be formed in the solution.

  5. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    PubMed

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  6. FIB-tomographic studies on chemical vapor deposition grown SnO2 nanowire arrays on TiO2 (001)

    NASA Astrophysics Data System (ADS)

    Chen, Haoyun; Liu, Yi; Wu, Hong; Xiong, Xiang; Pan, Jun

    2016-12-01

    Tin oxide nanowire arrays on titania (001) have been successfully fabricated by chemical vapor deposition of Sn(O t Bu)4 precursor. The morphologies and structures of ordered SnO2 nanowires (NWs) were analyzed by cross-sectional SEM, HR-TEM and AFM. An FIB-tomography technique was applied in order to reconstruct a 3D presentation of ordered SnO2 nanowires. The achieved 3D analysis showed the spatial orientation and angles of ordered SnO2 NWs can be obtained in a one-shot experiment, and the distribution of Au catalysts showed the competition between 1D and 2D growth. The SnO2 nanowire arrays can be potentially used as a diameter- and surface-dependent sensing unit for the detection of gas- and bio-molecules.

  7. Hydrothermally grown α-MnO2 interlocked mesoporous micro-cubes of several nanocrystals as selective and sensitive nitrogen dioxide chemoresistive gas sensors

    NASA Astrophysics Data System (ADS)

    Shinde, Pritamkumar V.; Xia, Qi Xun; Ghule, Balaji G.; Shinde, Nanasaheb M.; Seonghee, Jeong; Kim, Kwang Ho; Mane, Rajaram S.

    2018-06-01

    The interesting and multifunctional properties of alpha-manganese dioxide (α-MnO2) are considered to be highly sensitive and selective to nitrogen dioxide (NO2) chemresistive gas sensors. The α-MnO2 mesoporous interlocked micro-cubes composed of several interconnected nanocrystals synthesized by a facile and low-cost hydrothermal method on soda-lime glass substrate are envisaged as selective and sensitive NO2 gas sensors. Phase-purity and surface area with pore-size distribution are initially screened. The three-dimensional α-MnO2 mesoporous-cube-based gas sensors tested for NO2 gas from room-temperature (27 °C) to 250 °C have demonstrated 33% response for 100 ppm NO2 levels at 150 °C. The response and recovery time values of the α-MnO2 sensor are found to be 26 s and recovery 91 s, respectively, with high selectivity, good sensitivity, and considerable chemical and environmental stabilities, confirming the gas sensor applications potentiality of α-MnO2 morphology which is a combination of interlocked mesoporous micro-cubes and well-connected nanocrystals.

  8. Highly sensitive SnO2 sensor via reactive laser-induced transfer

    PubMed Central

    Palla Papavlu, Alexandra; Mattle, Thomas; Temmel, Sandra; Lehmann, Ulrike; Hintennach, Andreas; Grisel, Alain; Wokaun, Alexander; Lippert, Thomas

    2016-01-01

    Gas sensors based on tin oxide (SnO2) and palladium doped SnO2 (Pd:SnO2) active materials are fabricated by a laser printing method, i.e. reactive laser-induced forward transfer (rLIFT). Thin films from tin based metal-complex precursors are prepared by spin coating and then laser transferred with high resolution onto sensor structures. The devices fabricated by rLIFT exhibit low ppm sensitivity towards ethanol and methane as well as good stability with respect to air, moisture, and time. Promising results are obtained by applying rLIFT to transfer metal-complex precursors onto uncoated commercial gas sensors. We could show that rLIFT onto commercial sensors is possible if the sensor structures are reinforced prior to printing. The rLIFT fabricated sensors show up to 4 times higher sensitivities then the commercial sensors (with inkjet printed SnO2). In addition, the selectivity towards CH4 of the Pd:SnO2 sensors is significantly enhanced compared to the pure SnO2 sensors. Our results indicate that the reactive laser transfer technique applied here represents an important technical step for the realization of improved gas detection systems with wide-ranging applications in environmental and health monitoring control. PMID:27118531

  9. A comparative study of the magnetization in transition metal ion doped CeO2, TiO2 and SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Apostolov, A. T.; Apostolova, I. N.; Wesselinowa, J. M.

    2018-05-01

    Using the microscopic s-d model taking into account anharmonic spin-phonon interactions we have studied the magnetic properties of Co and Cu ion doped CeO2 and TiO2 nanoparticles and compared them with those of SnO2. By Co-doping there is a maximum in the magnetization M(x) curve for all nanoparticles observed in the most transition metal doped ones. The s-d interaction plays an important role by the decrease of M at higher dopant concentration. We have discussed the magnetization in dependence of different model parameters. By small Cu-ion doping there are some differences. In CeO2M decreases with the Cu-concentration, whereas in TiO2 and SnO2M increases. For higher Cu dopant concentrations M(X) decreases in TiO2 nanoparticles. We obtain room temperature ferromagnetism also in Zn doped CeO2, TiO2 and SnO2 nanoparticles, i.e. in non-transition metal ion doped ones. The different behavior of M in Co and Cu doped nanoparticles is due to a combination effect of multivalent metal ions, oxygen vacancies, different radius of cation dopants, connection between lattice and magnetism, as well as competition between the s-d and d-d ferromagnetic or antiferromagnetic interactions.

  10. Effect of aging heat time and annealing temperature on the properties of nanocrystalline tin dioxide thin films

    NASA Astrophysics Data System (ADS)

    Kadhim, Imad H.; Abu Hassan, H.

    2017-04-01

    Nanocrystalline tin dioxide (SnO2) thin films have been successfully prepared by sol-gel spin-coating technique on p-type Si (100) substrates. A stable solution was prepared by mixing tin(II) chloride dihydrate, pure ethanol, and glycerin. Temperature affects the properties of SnO2 thin films, particularly the crystallite size where the crystallization of SnO2 with tetragonal rutile structure is achieved when thin films that prepared under different aging heat times are annealed at 400∘C. By increasing aging heat time in the presence of annealing temperatures the FESEM images indicated that the thickness of the fabricated film was directly proportional to solution viscosity, increasing from approximately 380 nm to 744 nm, as well as the crystallization of the thin films improved and reduced defects.

  11. SnO2/TiO2 bilayer thin films exhibiting superhydrophilic properties

    NASA Astrophysics Data System (ADS)

    Talinungsang, Nibedita Paul; Purkayastha, Debarun Dhar

    2017-05-01

    Nanostructured thin films of TiO2, SnO2, and SnO2/TiO2 have been deposited by sol-gel method. The films are characterized by X-ray diffraction, wettability and optical properties. In the present work, we have achieved a way of converting hydrophilic to super-hydrophilic state by incorporating TiO2 buffer layer in between substrate and SnO2 film, which has its utility in anti-fogging surfaces. The decrease in contact angle of water over SnO2/TiO2 bilayer is attributed to the increase in roughness of the film as well as surface energy of the substrate.

  12. Atomic Layer Deposition of Electron Selective SnOx and ZnO Films on Mixed Halide Perovskite: Compatibility and Performance.

    PubMed

    Hultqvist, Adam; Aitola, Kerttu; Sveinbjörnsson, Kári; Saki, Zahra; Larsson, Fredrik; Törndahl, Tobias; Johansson, Erik; Boschloo, Gerrit; Edoff, Marika

    2017-09-06

    The compatibility of atomic layer deposition directly onto the mixed halide perovskite formamidinium lead iodide:methylammonium lead bromide (CH(NH 2 ) 2 , CH 3 NH 3 )Pb(I,Br) 3 (FAPbI 3 :MAPbBr 3 ) perovskite films is investigated by exposing the perovskite films to the full or partial atomic layer deposition processes for the electron selective layer candidates ZnO and SnO x . Exposing the samples to the heat, the vacuum, and even the counter reactant of H 2 O of the atomic layer deposition processes does not appear to alter the perovskite films in terms of crystallinity, but the choice of metal precursor is found to be critical. The Zn precursor Zn(C 2 H 5 ) 2 either by itself or in combination with H 2 O during the ZnO atomic layer deposition (ALD) process is found to enhance the decomposition of the bulk of the perovskite film into PbI 2 without even forming ZnO. In contrast, the Sn precursor Sn(N(CH 3 ) 2 ) 4 does not seem to degrade the bulk of the perovskite film, and conformal SnO x films can successfully be grown on top of it using atomic layer deposition. Using this SnO x film as the electron selective layer in inverted perovskite solar cells results in a lower power conversion efficiency of 3.4% than the 8.4% for the reference devices using phenyl-C 70 -butyric acid methyl ester. However, the devices with SnO x show strong hysteresis and can be pushed to an efficiency of 7.8% after biasing treatments. Still, these cells lacks both open circuit voltage and fill factor compared to the references, especially when thicker SnO x films are used. Upon further investigation, a possible cause of these losses could be that the perovskite/SnO x interface is not ideal and more specifically found to be rich in Sn, O, and halides, which is probably a result of the nucleation during the SnO x growth and which might introduce barriers or alter the band alignment for the transport of charge carriers.

  13. Spin canting and magnetic transition in NixZn1-xFe2O4 (x=0.0, 0.5 and 1.0) nanoparticles

    NASA Astrophysics Data System (ADS)

    Rani, Stuti; Raghav, Dharmendra Singh; Yadav, Prashant; Varma, G. D.

    2018-04-01

    Nanoparticles of NixZn1-xFe2O4(x=0.0, 0.5 and 1.0) have been synthesized via co-precipitation method and studied thestructural and magnetic properties. Rietveld refinement of X ray diffraction data of as synthesized samples revealthat the samples have mixed spinel structure with space group Fd-3m. The lattice parameter of the samples decreases as doping concentration of Ni ions increases. Magnetic measurements show paramagnetic to ferrimagnetic transition at room temperature on Ni doping in ZnFe2O4 nanoparticles. The magnetic measurements also show spin canting in samples possibly due to their nanocrystalline nature. The spin canting angles have been calculated with the help of Yafet-Kittel (Y-K) model. Furthermore, the Law of approach (LA) fitting of M-H curves indicates that the samples are highly anisotropicin nature. The Arrot plots of as synthesized samples also indicate the paramagnetic to ferrimagnetic transition. The correlation between the structural and observed magnetic properties of NixZn1-xFe2O4(x=0.0, 0.5 and 1.0) nanocrystals will be described and discussed in this paper.

  14. Multi-applicative tetragonal TiO2/SnO2 nanocomposites for photocatalysis and gas sensing

    NASA Astrophysics Data System (ADS)

    Patil, S. M.; Dhodamani, A. G.; Vanalakar, S. A.; Deshmukh, S. P.; Delekar, S. D.

    2018-04-01

    TiO2-based mixed metal oxide heteronanostructures have multiple applications in photocatalysis and gas sensing because of their charge transport properties. In this study, we prepared tetragonal TiO2/SnO2 nanocomposites (NCs) with different weight percentages using a simple wet impregnation method. The physicochemical properties of the NCs were investigated using X-ray diffraction, Fourier transform-infrared spectroscopy, ultraviolet-visible spectroscopy, field-emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and Brunauer-Emmett-Teller surface area analysis. The results showed that the surface area of the NCs increased significantly and the anatase TiO2 was sensitized after the addition of a small amount of cassiterite SnO2 NPs. We systematically studied the as-prepared NCs during the photocatalytic degradation of Congo Red dye under visible light irradiation (λ > 420 nm) and NH3 gas sensing, which demonstrated the efficient photocatalytic performance and the superior sensing response of the catalyst with a weight composition of 25% SnO2 in TiO2 (4:1) compared with the other NCs or the bare individual nanoparticles. The improved photocatalytic and gas sensing performance of the TiO2/SnO2 (4:1) NCs may be attributed to the increased active surface area, the increased adsorption of the dye and target gas molecules, as well as efficient electron-hole charge separation and transfer.

  15. Heterogeneous nanocrystals assembled TiO2/SnO2/C composite for improved lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Mao, Yuning; Zhang, Xuzhen; Yang, Li

    2018-07-01

    Using stable TiO2 and flexible carbon as double-functional structure protector of nanostructural SnO2 to fabricate TiO2/SnO2/C composites is widely considered as a favorable strategy for improving the lithium storage performance of SnO2 anodes. But, it is still a challenge to obtain a satisfying TiO2/SnO2/C composite. Herein, an interesting porous nanostructure of TiO2/SnO2/C nanosphere composite assembled by TiO2 and SnO2 nanocrystals with an outer carbon coating has been fabricated by a well-designed approach. Thanks to the perfectly combined action of porous spherical nanostructure, TiO2 and SnO2 nanocrystals and carbon coating, the as-prepared composite obtains excellent structure stability and improved electrochemcial properties. When used as a promising anode for lithium-ion batteres, it exhibits outstanding lithium storage performance, delivering a high capacity of 687.2 mAh g-1 after even 400 cycles.

  16. Enhancement of visible light photocatalytic activity over bistructural SnO2 nanobelts

    NASA Astrophysics Data System (ADS)

    Wang, Lihua; Wang, Yongli; Su, Dezhi; Zhao, Yongjie

    2018-02-01

    SnO2 nanobelts were synthesized by hydrothermal method. The structure and morphology were investigated by XRD, Raman spectra, SEM and TEM. The results revealed that the synthesized SnO2 nanobelts were covered with amorphous surface. For the photocatalytic efficiency of methylene blue, the none-fully crystallized SnO2 nanobelts were over four times higher than bulk SnO2. Moreover, the photo-degradation rate constant with SnO2 nanobelts as photocatalysts was over six times higher than bulk SnO2. It was considered that the subtle structure of SnO2 nanobelts not only lowered the band gap but also improved the transfer of charge carriers and trapping effect of solar light. Furthermore, this strategy of enhancing photocatalytic performance could be extended to the other kinds of metal oxide photocatalyst.

  17. Structural and magnetic properties of sol-gel Co2xNi0.5-x Zn0.5-xFe2O4 thin films

    NASA Astrophysics Data System (ADS)

    Rebrov, Evgeny V.; Gao, Pengzhao; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Turgut, Zafer; Kozlowski, Gregory

    2011-03-01

    Nanocrystalline Co2xNi0.5-xZn0.5-xFe2O4 (x=0-0.5) thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology as well as magnetic and microwave absorption properties of the films calcined at 1073 K were studied using X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. All films were uniform without microcracks. The Co content in the Co-Ni-Zn films resulted in a grain size ranging from 15 to 32 nm while it ranged from 33 to 49 nm in the corresponding powders. Saturation and remnant magnetization increased with increase in grain size, while coercivity demonstrated a drop due to multidomain behavior of crystallites for a given value of x. Saturation magnetization increased and remnant magnetization had a maximum as a function of grain size independent of x. In turn, coercivity increased with x independent of grain size. Complex permittivity of the Co-Ni-Zn ferrite films was measured in the frequency range 2-15 GHz. The highest hysteretic heating rate in the temperature range 315-355 K was observed in CoFe2O4. The maximum absorption band shifted from 13 to 11 GHz as cobalt content increased from x=0.1 to 0.2.

  18. Nonstoichiometric Zn Ferrite and ZnFe2O4/Fe2O3 Composite Spheres: Preparation, Magnetic Properties, and Chromium Removal

    NASA Astrophysics Data System (ADS)

    Hang, Chun-Liang; Yang, Li-Xia; Sun, Chang-Mei; Liang, Ying

    2018-03-01

    Monodisperse and porous nonstoichiometric Zn ferrite can be prepared by a solvothermal method. Such non-Zn ferrite was used to be the precursor for synthesis of ZnFe2O4/Fe2O3 composite via calcination at 600°C for 3 h in air. X-ray powder diffractometer (XRD) and Energy Dispersive Spectrometer (EDS) proved the nonstoichiometry of Zn ferrite synthesized by solvothermal method and the formation of ZnFe2O4/Fe2O3 composite via calcination. TEM image showed that non-Zn ferrite spheres with wormlike nanopore structure were made of primary nanocrystals. BET surface area of non-Zn ferrite was much higher than that of ZnFe2O4/Fe2O3 composite. Saturation magnetization of non-Zn ferrites was significantly higher than that of ZnFe2O4/Fe2O3 composites. Calcination of non-Zn ferrite resulted in the formation of large amount of non-magnetic Fe2O3,which caused a low magnetization of composite. Because of higher BET surface area and higher saturation magnetization, non-Zn ferrite presented better Cr6+ adsorption property than ZnFe2O4/Fe2O3 composites.

  19. Tuning the optical bandgap in multi-cation compound transparent conducting-oxides: The examples of In2ZnO4 and In4Sn3O12

    NASA Astrophysics Data System (ADS)

    Sabino, Fernando P.; Oliveira, Luiz N.; Wei, Su-Huai; Da Silva, Juarez L. F.

    2018-02-01

    Transparent conducting oxides such as the bixbyite In2O3 and rutile SnO2 systems have large disparities between the optical and fundamental bandgaps, ΔEgO F , because selection rules forbid dipolar transitions from the top of the valence band to the conduction-band minimum; however, the optical gaps of multi-cation compounds with the same chemical species often coincide with their fundamental gaps. To explain this conundrum, we have employed density-functional theory to compute the optical properties of multi-cation compounds, In2ZnO4 and In4Sn3O12, in several crystal structures. We show that a recently proposed mechanism to explain the disparity between the optical and fundamental gaps of M2O3 (M = Al, Ga, and In) applies also to other binary systems and to multi-compounds. Namely, a gap disparity will arise if the following three conditions are satisfied: (i) the crystal structure has inversion symmetry; (ii) the conduction-band minimum is formed by the cation and O s-orbitals; and (iii) there is strong p-d coupling and weak p-p in the vicinity of the valence-band maximum. The third property depends critically on the cationic chemical species. In the structures with inversion symmetry, Zn (Sn) strengthens (weakens) the p-d coupling in In2ZnO4 (In4Sn3O12), enhancing (reducing) the gap disparity. Furthermore, we have also identified a In4Sn3O12 structure that is 31.80 meV per formula unit more stable than a recently proposed alternative model.

  20. Inelastic neutron scattering investigation of low temperature phase transition in Rb2ZnCl4 and K2ZnCl4

    NASA Astrophysics Data System (ADS)

    Quilichini, M.; Dvořák, V.; Boutrouille, P.

    1991-09-01

    Inelastic scattering of neutrons has revealed soft optic modes at the T point frac{1}{2}({b}^*+{c}^*) of the Brillouin zone both in Rb2ZnCl4 and K2ZnCl4 which are responsible for the phase transition from the ferroelectric to the lowest temperature phase of these materials. Moreover, in K2ZnCl4 near the T point a minimum on the soft optic branch in the direction (μ{b}^*+frac{1}{2}{c}^*) has been found which confirms the existence of a new incommensurate phase recently discovered by Gesi. The origin of this incommensurate phase is discussed from a phenomenological point of view and formulae for elastic constants are derived describing their behaviour near transition into incommensurate phase. Des mesures de diffusion inélastique des neutrons ont mis en évidence l'existence d'un mode optique mou au point T(frac{1}{2}({b}^*+{c}^*)) de la zone de Brillouin responsable de la transition de la phase ferroélectrique vers la phase basse température dans les deux composés Rb2ZnCl4 and K2ZnCl4. Pour K2ZnCl4 on montre que la branche optique molle présente un minimum au voisinage de T dans la direction (μ{b}^*+frac{1}{2}{c}^*), ce qui confirme l'existence de la nouvelle phase incommensurable récemment trouvée par Gesi. L'origine de cette phase est discutée sur la base d'un modèle phénoménologique dont on dérive aussi les formules des constantes élastiques et leur comportement au voisinage de la transition vers la phase incommensurable.

  1. Metallic Sn spheres and SnO2@C core-shells by anaerobic and aerobic catalytic ethanol and CO oxidation reactions over SnO2 nanoparticles

    PubMed Central

    Kim, Won Joo; Lee, Sung Woo; Sohn, Youngku

    2015-01-01

    SnO2 has been studied intensely for applications to sensors, Li-ion batteries and solar cells. Despite this, comparatively little attention has been paid to the changes in morphology and crystal phase that occur on the metal oxide surface during chemical reactions. This paper reports anaerobic and aerobic ethanol and CO oxidation reactions over SnO2 nanoparticles (NPs), as well as the subsequent changes in the nature of the NPs. Uniform SnO2@C core-shells (10 nm) were formed by an aerobic ethanol oxidation reaction over SnO2 NPs. On the other hand, metallic Sn spheres were produced by an anaerobic ethanol oxidation reaction at 450 °C, which is significantly lower than that (1200 °C) used in industrial Sn production. Anaerobic and aerobic CO oxidation reactions were also examined. The novelty of the methods for the production of metallic Sn and SnO2@C core-shells including other anaerobic and aerobic reactions will contribute significantly to Sn and SnO2-based applications. PMID:26300041

  2. Sonochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles using nanocrystalline MgAl2O4 as an effective catalyst☆

    PubMed Central

    Safari, Javad; Gandomi-Ravandi, Soheila; Akbari, Zahra

    2012-01-01

    An efficient four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles is described by one-step condensation of an aldehyde, benzil, ammonium acetate and primary aromatic amine with nanocrystalline magnesium aluminate in ethanol under ultrasonic irradiation. High yields, short reaction times, mild conditions, simplicity of operation and easy work-up are some advantages of this protocol. PMID:25685459

  3. Ordered mesoporous MFe(2)O(4) (M = Co, Cu, Mg, Ni, Zn) thin films with nanocrystalline walls, uniform 16 nm diameter pores and high thermal stability: template-directed synthesis and characterization of redox active trevorite.

    PubMed

    Haetge, Jan; Suchomski, Christian; Brezesinski, Torsten

    2010-12-20

    In this paper, we report on ordered mesoporous NiFe(2)O(4) thin films synthesized via co-assembly of hydrated ferric nitrate and nickel chloride with an amphiphilic diblock copolymer, referred to as KLE. We establish that the NiFe(2)O(4) samples are highly crystalline after calcination at 600 °C, and that the conversion of the amorphous inorganic framework comes at little cost to the ordering of the high quality cubic network of pores averaging 16 nm in diameter. We further show that the synthesis method employed in this work can be readily extended to other ferrites, such as CoFe(2)O(4), CuFe(2)O(4), MgFe(2)O(4), and ZnFe(2)O(4), which could pave the way for innovative device design. While this article focuses on the self-assembly and characterization of these materials using various state-of-the-art techniques, including electron microscopy, grazing incidence small-angle X-ray scattering (GISAXS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), X-ray photoelectron spectroscopy (XPS), as well as UV-vis and Raman spectroscopy, we also examine the electrochemical properties and show the benefits of combining a continuous mesoporosity with nanocrystalline films. KLE-templated NiFe(2)O(4) electrodes exhibit reasonable levels of lithium ion storage at short charging times which stem from facile pseudocapacitance.

  4. Impact of Substrate Types on Structure and Emission of ZnO Nanocrystalline Films

    NASA Astrophysics Data System (ADS)

    Ballardo Rodriguez, I. Ch.; El Filali, B.; Díaz Cano, A. I.; Torchynska, T. V.

    2018-02-01

    Zinc oxide (ZnO) films were simultaneously synthesized by an ultrasonic spray pyrolysis (USP) method on p-type Si (100), silicon carbide polytype [6H-SiC (0001)], porous 6H-SiC and amorphous glass substrates with the aim of studying the impact of substrate types on the structure and emission of ZnO nanocrystalline films. Porous silicon carbide (P-SiC) was prepared by the electrochemical anodization method at a constant potential of 20 V and etching time of 12 min. ZnO films grown on the SiC and P-SiC substrates are characterized by a wurtzite crystal structure with preferential growth along the (002) direction and with grain sizes of 90-180 and 70-160 nm, respectively. ZnO films grown on the Si substrate have just some small irregular hexagonal islands. The amorphous glass substrate did not promote the formation of any regular crystal forms. The obtained x-ray diffraction and photoluminescence (PL) results have shown that the better ZnO film crystallinity and high PL intensity of near-band edge emissions were achieved in the films grown on the porous SiC and SiC substrates. The preferential growth and crystalline nature of ZnO films on the SiC substrate have been discussed from the point of view of the lattice parameter compatibility between ZnO and SiC crystals.

  5. Preparation and characterization of ZnS thin films by the chemical bath deposition method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ando, Shizutoshi; Iwashita, Taisuke

    2017-06-01

    Nowadays, the conversion efficiency of Cu(In・Ga)Se2 (CIGS)-based solar cell already reached over 20%. CdS thin films prepared by chemical bath deposition (CBD) method are used for CIGS-based thin film solar cells as the buffer layer. Over the past several years, a considerable number of studies have been conducted on ZnS buffer layer prepared by CBD in order to improve in conversion efficiency of CIGS-based solar cells. In addition, application to CIGS-based solar cell of ZnS buffer layer is expected as an eco-friendly solar cell by cadmium-free. However, it was found that ZnS thin films prepared by CBD included ZnO or Zn(OH)2 as different phase [1]. Nakata et. al reported that the conversion efficiency of CIGS-based solar cell using ZnS buffer layer (CBD-ZnS/CIGS) reached over 18% [2]. The problem which we have to consider next is improvement in crystallinity of ZnS thin films prepared by CBD. In this work, we prepared ZnS thin films on quarts (Si02) and SnO2/glass substrates by CBD with the self-catalysis growth process in order to improve crystallinity and quality of CBD-ZnS thin films. The solution to use for CBD were prepared by mixture of 0.2M ZnI2 or ZnSO4, 0.6M (NH2)2CS and 8.0M NH3 aq. In the first, we prepared the particles of ZnS on Si02 or SnO2/glass substrates by CBD at 80° for 20 min as initial nucleus (1st step ). After that, the particles of ZnS on Si02 or SnO2/glass substrates grew up to be ZnS thin films by CBD method at 80° for 40 min again (2nd step). We found that the surface of ZnS thin films by CBD with the self-catalyst growth process was flat and smooth. Consequently, we concluded that the CBD technique with self-catalyst growth process in order to prepare the particles of ZnS as initial nucleus layer was useful for improvement of crystallinity of ZnS thin films on SnO2/glass. [1] J.Vidal et,al., Thin Solid Films 419 (2002) 118. [2] T.Nakata et.al., Jpn. J. Appl. Phys. 41(2B), L165-L167 (2002)

  6. A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Beura, Rosalin; Pachaiappan, R.; Thangadurai, P.

    2018-03-01

    The samples of Sn4+ doped (1, 5, 10, 15, 20 & 30%) ZnO nanostructures were synthesized by a low temperature hydrothermal method. Structural analysis by XRD and Raman spectroscopy showed the hexagonal wurtzite phase of ZnO and the formation of a secondary phase Zn2SnO4 beyond 10% doping of Sn4+. Microstructural analysis by TEM also confirmed the wurtzite ZnO with rod as well as particle like structure. Presence of various functional groups (sbnd OH, sbnd CH, Znsbnd O) were confirmed by FTIR. Optical properties were studied by UV-vis absorption, photoluminescence emission spectroscopies and lifetime measurement. Band gap of the undoped and Sn4+ doped ZnO were analyzed by Tauc plot and it was observed that the band gap of the materials had slightly decreased from 3.2 to 3.16 eV and again increased to 3.23 eV with respect to the increase in the doping concentration from 1 to 30%. A significant change was also noticed in the photoluminescence emission properties of ZnO i.e. increase in the intensity of NBE emission and decrease in DLE, on subject to Sn4+ doping. Average PL lifetime had increased from 29.45 ns for ZnO to 30.62 ns upon 1% Sn ion doping in ZnO. Electrical properties studied by solid state impedance spectroscopy showed that the conductivity had increased by one order of magnitude (from 7.48×10-8 to 2.21×10-7 S/cm) on Sn4+ doping. Photocatalytic experiments were performed on methyl orange (MO) as a model industrial dye under UV light irradiation for different irradiation times. The optimum Sn4+ content in order to achieve highest photocatalytic activity was found to be 1% Sn 4+ doping. The enhancement was achieved due to a decrease in the band gap favoring the generation of electron-hole pairs and the enhanced PL life time that delays the recombination of these charge carrier formation. The third reason was that the increased electrical conductivity that indicated the faster charge transfer in this material to enhance the photocatalytic activity. The Sn

  7. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Pan, De-an; Wang, Xin-feng; Tian, Jian-jun; Wang, Jian; Zhang, Shen-gen; Volinsky, Alex A.

    2011-03-01

    Nanocrystalline ZnFe 2O 4 powder was prepared by the auto-combustion method using citric acid, acetic acid, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15 nm can be obtained by using acrylic acid as fuel additive. Samples prepared using other fuel additives contain ZnO impurities. In order to eliminate ZnO impurities, the sample prepared with citric acid as fuel additive was annealed at different temperatures up to 1000 °C in air and in argon. Annealed powders have pure ZnFe 2O 4 phase when annealing temperature is higher than 650 °C in air. Sample annealed at 650 °C in air is paramagnetic. However, annealed powders become a mixture of Fe 3O 4 and FeO after annealing at 1000 °C in argon atmosphere due to Zn volatility and the reduction reaction.

  8. Fabrication of Cu2ZnSn(S,Se)4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes

    NASA Astrophysics Data System (ADS)

    Ma, Ruixin; Yang, Fan; Li, Shina; Zhang, Xiaoyong; Li, Xiang; Cheng, Shiyao; Liu, Zilin

    2016-04-01

    CZTSSe is an important earth abundant collection of materials for the development of low cost and high efficiency thin film solar cells. This work developed a simple non-vacuum-based route to fabricate CZTSSe absorber films. This was demonstrated by first synthesizing Cu2ZnSnS4 (CZTS) nano-crystalline based on solid-phase synthesis. Then a stable colloidal ink composed of CZTS nano-crystalline was blade coated on Mo-coated substrates followed by an annealing process under Ar atmosphere. After CZTS films formation, the films were sintered into CZTSSe absorber films by exposing them under Selenium vapor. The formation of a kesterite type CZTS was confirmed using X-ray diffraction and Raman scattering measurements. The band gap of CZTSSe absorber films was determined to be 1.26 eV, which was appropriate for use as an absorber layer in thin film solar cells. The CZTSSe absorber films showed a good photovoltatic performance, demonstrating this simple approach had great potential for CZTSSe solar cell production.

  9. Remediation of arsenic and lead with nanocrystalline zinc sulfide.

    PubMed

    Piquette, Alan; Cannon, Cody; Apblett, Allen W

    2012-07-27

    Nanocrystalline (1.7 ± 0.3 nm) zinc sulfide with a specific surface area up to 360 m(2) g(-1) was prepared from the thermal decomposition of a single-source precursor, zinc ethylxanthate. Zinc ethylxanthate decomposes to cubic zinc sulfide upon exposure to temperatures greater than or equal to 125 °C. The resulting zinc sulfide was tested as a water impurity extractant. The target impurities used in this study were As(5+), As(3+), and Pb(2+). The reaction of the nanocrystalline ZnS with Pb(2+) proceeds as a replacement reaction where solid PbS is formed and Zn(2+) is released into the aqueous system. Removal of lead to a level of less than two parts per billion is achievable. The results of a detailed kinetics experiment between the ZnS and Pb(2+) are included in this study. Unlike the instance of lead, both As(5+) and As(3+) adsorb on the surface of the ZnS extractant as opposed to an ion-exchange process. An uptake capacity of > 25 mg g(-1) for the removal of As(5+) is possible. The uptake of As(3+) appears to proceed by a slower process than that of the As(5+) with a capacity of nearly 20 mg g(-1). The nanocrystalline zinc sulfide was extremely successful for the removal of arsenic and lead from simulated oil sand tailing pond water.

  10. The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa

    1993-08-01

    Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.

  11. Magnetic micro scavengers: highly porous Ni1-x Co x Fe2O4 microcubes for efficient disintegration of nitrophenol.

    PubMed

    Pervaiz, Erum; Virk, Muhammad Syam Azhar; Tareen, Ayesha Khan; Zhang, Bingxue; Zhao, Qiuyan; Wang, Zhenzhen; Yang, Minghui

    2018-05-25

    The fabrication of functional materials in patterned morphology is focused to obtain remarkable physiognomies of the materials for certain applications. Instead of randomly distributed agglomerated nanoparticles, it is highly desirable to arrange them in a motif, as this directed formation of nanomaterials can have a substantial influence on their performance and activity in various applications. With this perspective, MOF derived hollow cubes of nickel cobalt ferrites have been synthesized via a facile process using sacrificial templates at 600 °C. Microcubes, composed of tiny grains in a size range from 10 nm ± 2 nm were obtained in pure form as a polycrystalline material. The high specific surface area (1185 m 2 g -1 ) and mesoporous nature of hollow cubic ferrites were found to be excellent adsorbents for nitrophenol at room temperature. The equilibrium quantity of adsorbed nitrophenol was calculated as 47 mg g -1 ferrite, accomplished in 7 min. Their large surface area, mesopores and hollow nature, in combination with controlled size distribution of grains, have enabled this remarkable utilization of nanoferrites for removal of nitrophenol from water.

  12. Understanding the low temperature electrical properties of nanocrystalline tin oxide for gas sensor applications

    NASA Astrophysics Data System (ADS)

    Drake, Christina Hartsell

    Nanocrystalline metal/metal oxide is an important class of transparent and electronic materials due to its potential use in many applications, including gas sensors. At the nanoscale, many of the phenomena observed that give nanocrystalline semiconducting oxide enhanced performance as a gas sensor material over other conventional engineering materials is still poorly understood. This study is aimed at understanding the low temperature electrical and chemical properties of nanocrystalline SnO2 that makes it suitable for room temperature gas detectors. Studies were carried out in order to understand how various synthesis methods affect the surfaces on the nano-oxides, interactions of a target gas (in this study hydrogen) with different surface species, and changes in the electrical properties as a function of dopants and grain size. A correlation between the surface reactions and the electrical response of doped nanocrystalline metal-oxide-semiconductors exposed to a reducing gas is established using Fourier Transform Infrared (FTIR) Spectroscopy attached to a specially built custom designed catalytic cell. First principle calculations of oxygen vacancy concentrations from absorbance spectra are presented. FTIR is used for effectively screening of these nanostructures for gas sensing applications. The effect of processing temperature on the microstructural evolution and on the electronic properties of nanocrystalline trivalent doped-SnO 2 is also presented. This study includes the effect of dopants (In and Ce) on the growth of nano-SnO2, as well as their effects on the electronic properties and gas sensor behavior of the nanomaterial at room temperature. Band bending affects are also investigated for this system and are related to enhanced low temperature gas sensing. The role and importance of oxygen vacancies in the electronic and chemical behavior of surface modified nanocrystalline SnO2 are explored in this study. A generalized explanation for the low temperature

  13. Enhanced room temperature ferromagnetism in Ni doped SnO2 nanoparticles: A comprehensive study

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Ali, T.; Naseem Siddique, M.; Ahmad, Abid; Tripathi, P.

    2017-08-01

    We emphasized on a detailed investigation of the structural, optical, and magnetic properties of pure and Ni-doped SnO2 nanoparticles (NPs) synthesized by a sol-gel process. An extensive structural study has been carried out using various characterization techniques. The X-ray Diffraction (XRD) spectra show the formation of the single phase tetragonal structure of pure and Ni-doped SnO2 NPs without any noticeable impurity phase such as NiO. XRD results indicate that the crystallite size of SnO2 is found to be decreased with Ni doping, which has also been confirmed by the Field Emission Scanning Electron Microscopy study. X-ray Photoelectron Spectroscopy (XPS) measurements displayed a clear sign for Ni2+ ions occupying the lattice sites of Sn4+ in the SnO2 host which also gives clear evidence for the formation of single phase Sn1-xNixO2 NPs. The optical analysis shows a significant decrease in the energy gap of SnO2, i.e., (from 3.71 eV to 3.28 eV) as Ni concentration increases which may be correlated with the core level valence band XPS analysis. Photoluminescence studies show that Ni doping creates oxygen vacancies due to dissimilar ionic radii of Ni2+ and Sn4+. Superconducting quantum interference device measurements revealed that the Ni doped SnO2 NPs exhibit strong ferromagnetic behavior at room temperature and this analysis has been well fitted with a simple relationship to find out magnetic parameters proposed by Stearns and Cheng et al. Hence, our results demonstrate that Ni-doping has strong impact on the structural, optical, and magnetic properties.

  14. Porous SnO2-CuO nanotubes for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Cheong, Jun Young; Kim, Chanhoon; Jung, Ji-Won; Yoon, Ki Ro; Kim, Il-Doo

    2018-01-01

    Facile synthesis of rationally designed structures is critical to realize a high performance electrode for lithium-ion batteries (LIBs). Among different candidates, tin(IV) oxide (SnO2) is one of the most actively researched electrode materials due to its high theoretical capacity (1493 mAh g-1), abundance, inexpensive costs, and environmental friendliness. However, severe capacity decay from the volume expansion and low conductivity of SnO2 have hampered its use as a feasible electrode for LIBs. Rationally designed SnO2-based nanostructures with conductive materials can be an ideal solution to resolve such limitations. In this work, we have successfully fabricated porous SnO2-CuO composite nanotubes (SnO2-CuO p-NTs) by electrospinning and subsequent calcination step. The porous nanotubular structure is expected to mitigate the volume expansion of SnO2, while the as-formed Cu from CuO upon lithiation allows faster electron transport by improving the low conductivity of SnO2. With a synergistic effect of both Sn and Cu-based oxides, SnO2-CuO p-NTs deliver stable cycling performance (91.3% of capacity retention, ∼538 mAh g-1) even after 350 cycles at a current density of 500 mA g-1, along with enhanced rate capabilities compared with SnO2.

  15. Flexible High-Performance Lead-Free Na0.47K0.47Li0.06NbO3 Microcube-Structure-Based Piezoelectric Energy Harvester.

    PubMed

    Gupta, Manoj Kumar; Kim, Sang-Woo; Kumar, Binay

    2016-01-27

    Lead-free piezoelectric nano- and microstructure-based generators have recently attracted much attention due to the continuous demand of self-powered body implantable devices. We report the fabrication of a high-performance flexible piezoelectric microgenerator based on lead-free inorganic piezoelectric Na0.47K0.47Li0.06NbO3 (NKLN) microcubes for the first time. The composite generator is fabricated using NKLN microcubes and polydimethylsiloxane (PDMS) polymer on a flexible substrate. The flexible device exhibits excellent performance with a large recordable piezoelectric output voltage of 48 V and output current density of 0.43 μA/cm(2) under vertical compressive force of 2 kgf, for which an energy conversion efficiency of about 11% has been achieved. Piezoresponse and ferroelectric studies reveal that NKLN microcubes exhibited high piezoelectric charge coefficient (d33) as high as 460 pC/N and a well-defined hysteresis loops with remnant polarization and coercive field of 13.66 μC/cm(2) and 19.45 kV/cm, respectively. The piezoelectric charge generation mechanism from NKLN microgenerator are discussed in the light of the high d33 and alignment of electric dipoles in polymer matrix and dielectric constant of NKLN microcubes. It has been demonstrated that the developed power generator has the potential to generate high electric output power under mechanical vibration for powering biomedical devices in the near future.

  16. Thermoelectric Properties of Self Assembled TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 W/mK2 at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  17. Soft exfoliation of 2D SnO with size-dependent optical properties

    NASA Astrophysics Data System (ADS)

    Singh, Mandeep; Della Gaspera, Enrico; Ahmed, Taimur; Walia, Sumeet; Ramanathan, Rajesh; van Embden, Joel; Mayes, Edwin; Bansal, Vipul

    2017-06-01

    Two-dimensional (2D) materials have recently gained unprecedented attention as potential candidates for next-generation (opto)electronic devices due to their fascinating optical and electrical properties. Tin monoxide, SnO, is an important p-type semiconductor with applications across photocatalysis (water splitting) and electronics (transistors). However, despite its potential in several important technological applications, SnO remains underexplored in its 2D form. Here we present a soft exfoliation strategy to produce 2D SnO nanosheets with tunable optical and electrical properties. Our approach involves the initial synthesis of layered SnO microspheres, which are readily exfoliated through a low-power sonication step to form high quality SnO nanosheets. We demonstrate that the properties of 2D SnO are strongly dependent on its dimensions. As verified through optical absorption and photoluminescence studies, a strong size-dependent quantum confinement effect in 2D SnO leads to substantial variation in its optical and electrical properties. This results in a remarkable (>1 eV) band gap widening in atomically thin SnO. Through photoconductivity measurements, we further validate a strong correlation between the quantum-confined properties of 2D SnO and the selective photoresponse of atomically thin sheets in the high energy UV light. Such tunable semiconducting properties of 2D SnO could be exploited for a variety of applications including photocatalysis, photovoltaics and optoelectronics in general.

  18. Enhanced photovoltaic properties in dye sensitized solar cells by surface treatment of SnO2 photoanodes

    PubMed Central

    Basu, Kaustubh; Benetti, Daniele; Zhao, Haiguang; Jin, Lei; Vetrone, Fiorenzo; Vomiero, Alberto; Rosei, Federico

    2016-01-01

    We report the fabrication and testing of dye sensitized solar cells (DSSC) based on tin oxide (SnO2) particles of average size ~20 nm. Fluorine-doped tin oxide (FTO) conducting glass substrates were treated with TiOx or TiCl4 precursor solutions to create a blocking layer before tape casting the SnO2 mesoporous anode. In addition, SnO2 photoelectrodes were treated with the same precursor solutions to deposit a TiO2 passivating layer covering the SnO2 particles. We found that the modification enhances the short circuit current, open-circuit voltage and fill factor, leading to nearly 2-fold increase in power conversion efficiency, from 1.48% without any treatment, to 2.85% achieved with TiCl4 treatment. The superior photovoltaic performance of the DSSCs assembled with modified photoanode is attributed to enhanced electron lifetime and suppression of electron recombination to the electrolyte, as confirmed by electrochemical impedance spectroscopy (EIS) carried out under dark condition. These results indicate that modification of the FTO and SnO2 anode by titania can play a major role in maximizing the photo conversion efficiency. PMID:26988622

  19. Thermoelectric Properties of Self Assemble TiO2/SnO2 Nanocomposites

    NASA Technical Reports Server (NTRS)

    Dynys, Fred; Sayir, Ali; Sehirlioglu, Alp

    2008-01-01

    Recent advances in improving efficiency of thermoelectric materials are linked to nanotechnology. Thermodynamically driven spinodal decomposition was utilized to synthesize bulk nanocomposites. TiO2/SnO2 system exhibits a large spinodal region, ranging from 15 to 85 mole % TiO2. The phase separated microstructures are stable up to 1400 C. Semiconducting TiO2/SnO2 powders were synthesized by solid state reaction between TiO2 and SnO2. High density samples were fabricated by pressureless sintering. Self assemble nanocomposites were achieved by annealing at 1000 to 1350 C. X-ray diffraction reveal phase separation of (Ti(x)Sn(1-x))O2 type phases. The TiO2/SnO2 nanocomposites exhibit n-type behavior; a power factor of 70 (mu)W/m sq K at 1000 C has been achieved with penta-valent doping. Seebeck, thermal conductivity, electrical resistivity and microstructure will be discussed in relation to composition and doping.

  20. Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application

    PubMed Central

    Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su

    2014-01-01

    Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778

  1. Designed hybrid nanostructure with catalytic effect: beyond the theoretical capacity of SnO2 anode material for lithium ion batteries

    PubMed Central

    Wang, Ye; Huang, Zhi Xiang; Shi, Yumeng; Wong, Jen It; Ding, Meng; Yang, Hui Ying

    2015-01-01

    Transition metal cobalt (Co) nanoparticle was designed as catalyst to promote the conversion reaction of Sn to SnO2 during the delithiation process which is deemed as an irreversible reaction. The designed nanocomposite, named as SnO2/Co3O4/reduced-graphene-oxide (rGO), was synthesized by a simple two-step method composed of hydrothermal (1st step) and solvothermal (2nd step) synthesis processes. Compared to the pristine SnO2/rGO and SnO2/Co3O4 electrodes, SnO2/Co3O4/rGO nanocomposites exhibit significantly enhanced electrochemical performance as the anode material of lithium-ion batteries (LIBs). The SnO2/Co3O4/rGO nanocomposites can deliver high specific capacities of 1038 and 712 mAh g−1 at the current densities of 100 and 1000 mA g−1, respectively. In addition, the SnO2/Co3O4/rGO nanocomposites also exhibit 641 mAh g−1 at a high current density of 1000 mA g−1 after 900 cycles, indicating an ultra-long cycling stability under high current density. Through ex-situ TEM analysis, the excellent electrochemical performance was attributed to the catalytic effect of Co nanoparticles to promote the conversion of Sn to SnO2 and the decomposition of Li2O during the delithiation process. Based on the results, herein we propose a new method in employing the catalyst to increase the capacity of alloying-dealloying type anode material to beyond its theoretical value and enhance the electrochemical performance. PMID:25776280

  2. Preparation of ZnO/SnO2 Composite Nanometer Photocatalyst and Photocatalytic Treatment of Marine Diesel Pollution

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Yu, X. C.; Nie, Z. W.; Guo, M. C.; Liu, J. H.; Wang, L. P.

    2017-12-01

    The ZnO/SnO2 composite nanophotocatalyst studied in this paper was prepared by a chemical precipitation method, which were characterized by XRD and SEM. The results show that the prepared samples were rutile SnO2 particles and the average grain size is 8.41 nm. In this paper, the factors for the degradation efficiency of marine diesel oil degraded by ZnO/SnO2 composite nanophotocatalyst are the catalysts’ doping ratio, the initial concentration of oil, the pH value of seawater, the dosage of catalyst and the dosage of hydrogen peroxide. The results show that the ZnO/SnO2 composite nanophotocatalyst can effectively degrade seawater diesel oil under UV light. When the doping ratio of ZnO and SnO2 is 0.35, the reaction time is 2.5 hours, the pH value of seawater with oil is 7, The concentration of diesel oil is 0.1g/L, the dosage of catalyst is 0.3g/L and the dosage of hydrogen peroxide is 0.1 g/L, the highest degradation rate is 91.54%.

  3. Synthesis and characterization of (Sn,Zn)O alloys

    DOE PAGES

    Bikowski, Andre; Holder, Aaron; Peng, Haowei; ...

    2016-09-29

    SnO exhibits electrical properties that render it promising for solar energy conversion applications, but it also has a strongly indirect band gap. Recent theoretical calculations predict that this disadvantage can be mitigated by isovalent alloying with other group-II oxides such as ZnO. Here, we synthesized new metastable isovalent (Sn,Zn)O alloy thin films by combinatorial reactive co-sputtering and characterized their structural, optical and electrical properties. The alloying of ZnO into SnO leads to a change of the valence state of the tin from Sn 0 via Sn 2+ to Sn 4+, which can be counteracted by reducing the oxygen partial pressuremore » during the deposition. The optical characterization of the smooth <10 at. % Sn 1-xZn xO thin films showed an increase in the absorption coefficient in the range from 1 to 2 eV, which is consistent with the theoretical predictions for the isovalent alloying. However, the experimentally observed alloying effect may be convoluted with the effect of local variations of the Sn oxidation state. As a result, this effect would have to be minimized to improve the (Sn,Zn)O optical and electrical properties for their use as absorbers in solar energy conversion applications.« less

  4. Structural Inheritance and Redox Performance of Nanoporous Electrodes from Nanocrystalline Fe85.2B10-14P0-4Cu0.8 Alloys

    PubMed Central

    Fu, Chaoqun; Xu, Lijun; Dan, Zhenhua; Makino, Akihiro; Hara, Nobuyoshi; Qin, Fengxiang; Chang, Hui

    2017-01-01

    Nanoporous electrodes have been fabricated by selectively dissolving the less noble α-Fe crystalline phase from nanocrystalline Fe85.2B14–xPxCu0.8 alloys (x= 0, 2, 4 at.%). The preferential dissolution is triggered by the weaker electrochemical stability of α-Fe nanocrystals than amorphous phase. The final nanoporous structure is mainly composed of amorphous residual phase and minor undissolved α-Fe crystals and can be predicted from initial microstructure of nanocrystalline precursor alloys. The structural inheritance is proved by the similarity of the size and outlines between nanopores formed after dealloying in 0.1 M H2SO4 and α-Fe nanocrystals precipitated after annealing of amorphous Fe85.2B14−xPxCu0.8 (x = 0, 2, 4 at.%) alloys. The Redox peak current density of the nanoporous electrodes obtained from nanocrystalline Fe85.2B10P4Cu0.8 alloys is more than one order higher than those of Fe plate electrode and its counterpart nanocrystalline alloys due to the large surface area and nearly-amorphous nature of ligaments. PMID:28594378

  5. Microwave assisted combustion synthesis of nanocrystalline CoFe2O4 for LPG sensing

    NASA Astrophysics Data System (ADS)

    Chaudhari, Prashant; Acharya, S. A.; Darunkar, S. S.; Gaikwad, V. M.

    2015-08-01

    A microwave-assisted citrate precursor method has been utilized for synthesis of nanocrystalline powders of CoFe2O4. The process takes only a few minutes to obtain as-synthesized CoFe2O4. Structural properties of the synthesized material were investigated by X-ray diffraction; scanning electron microscopy, Thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy. The gas sensing properties of thick film of CoFe2O4 prepared by screen printing towards Liquid Petroleum Gas (LPG) revealed that CoFe2O4 thick films are sensitive and shows maximum sensitivity at 350°C for 2500 ppm of LPG.

  6. Effect of annealing temperature on optical and electrical properties of ZrO2-SnO2 based nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Anitha, V. S.; Lekshmy, S. Sujatha; Berlin, I. John; Joy, K.

    2014-01-01

    Transparent nanocomposite ZrO2-SnO2 thin films were prepared by sol-gel dip-coating technique. Films were annealed at 500°C, 800°C and 1200°C respectively. X-ray diffraction(XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. The grain size of all the three phases' increased with annealing temperature. An average transmittance greater than 85%(in UV-Visible region) is observed for all the films. The band gap for the films decreased from 4.79 eV to 4.62 eV with increase in annealing temperature from 500 to 1200 °C. The electrical resistivity increased with increase in annealing temperature. Such composite ZrO2-SnO2 films can be used in many applications and in optoelectronic devices.

  7. Ant-cave structured MnCO3/Mn3O4 microcubes by biopolymer-assisted facile synthesis for high-performance pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Chandra Sekhar, S.; Nagaraju, Goli; Yu, Jae Su

    2018-03-01

    Porous and ant-cave structured MnCO3/Mn3O4 microcubes (MCs) were facilely synthesized via a biopolymer-assisted hydrothermal approach. Herein, chitosan was used as a natural biopolymer, which greatly controls the surface morphology and size of the prepared composite. The amino and hydroxyl group-functionalized chitosan engraves the outer surface of MCs during the hydrothermal process, which designs the interesting morphology of nanopath ways on the surface of MCs. When used as an electrode material for pseudocapacitors, the ant-cave structured MnCO3/Mn3O4 MCs showed superior energy storage values compared to the material prepared without chitosan in aqueous electrolyte solution. Precisely, the prepared ant-cave structured MnCO3/Mn3O4 MCs exhibited a maximum specific capacitance of 116.2 F/g at a current density of 0.7 A/g with an excellent cycling stability of 73.86% after 2000 cycles. Such facile and low-cost synthesis of pseudocapacitive materials with porous nanopaths is favorable for the fabrication of high-performance energy storage devices.

  8. Superparamagnetic behavior of Fe-doped SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Hachisu, M.; Onuma, K.; Kondo, T.; Miike, K.; Miyasaka, T.; Mori, K.; Ichiyanagi, Y.

    2014-02-01

    SnO2 is an n-type semiconductor with a wide band gap of 3.62 eV, and SnO2 nanoparticles doped with magnetic ions are expected to realized new diluted magnetic semiconductors (DMSs). Realizing ferromagnetism at room temperature is important for spintronics device applications, and it is interesting that the magnetic properties of these DMS systems can be varied significantly by modifying the preparation methods or conditions. In this study, the magnetic properties of Fe-doped (3% and 5%) SnO2 nanoparticles, prepared using our novel chemical preparation method and encapsulated in amorphous SiO2, were investigated. The particle size (1.8-16.9 nm) and crystal phase were controlled by the annealing temperature. X-ray diffraction confirmed a rutile SnO2 single-phase structure for samples annealed at 1073-1373 K, and the composition was confirmed using X-ray fluorescence analysis. SQUID magnetometer measurements revealed superparamagnetic behavior of the 5%-Fe-doped sample at room temperature, although SnO2 is known to be diamagnetic. Magnetization curves at 5 K indicated that the 3%-Fe-doped has a larger magnetization than that of the 5%-Fe-doped sample. We conclude that the magnetization of the 5%-Fe-doped sample decreased at 5 K due to the superexchange interaction between the antiferromagnetic coupling in the nanoparticle system.

  9. Popcorn balls-like ZnFe2O4-ZrO2 microsphere for photocatalytic degradation of 2,4-dinitrophenol

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Liu, Yutang; Xia, Xinnian; Wang, Longlu

    2017-06-01

    In this paper, novel popcorn balls-like ZnFe2O4-ZrO2 composite microspheres were successfully fabricated by a simple hydrothermal method. The morphology, structure and optical property of the microspheres were characterized. The microspheres were used as the photocatalysts to degrade 2,4-dinitrophenol, and exhibited superior photocatalytic performance. Under simulated solar visible light irradiation, the degradation rate of ZnFe2O4-ZrO2 photocatalyst (mass ratio of ZnFe2O4/ZrO2 = 2:1) was almost 7.4 and 2.4 times higher than those of pure ZnFe2O4 and ZrO2. The enhancement could attribute to stronger light absorption, lower carrier recombination and multi-porous structure of the microspheres. Moreover, the popcorn balls-like photocatalysts can be easily separated, because of the magnetism of the samples. After five times runs, the photocatalyst still showed 90% of its photocatalytic degradation efficiency. This work demonstrated a good prospect for removing organic pollutants in water.

  10. Magnetic micro scavengers: highly porous Ni1‑x Co x Fe2O4 microcubes for efficient disintegration of nitrophenol

    NASA Astrophysics Data System (ADS)

    Pervaiz, Erum; Syam Azhar Virk, Muhammad; Tareen, Ayesha Khan; Zhang, Bingxue; Zhao, Qiuyan; Wang, Zhenzhen; Yang, Minghui

    2018-05-01

    The fabrication of functional materials in patterned morphology is focused to obtain remarkable physiognomies of the materials for certain applications. Instead of randomly distributed agglomerated nanoparticles, it is highly desirable to arrange them in a motif, as this directed formation of nanomaterials can have a substantial influence on their performance and activity in various applications. With this perspective, MOF derived hollow cubes of nickel cobalt ferrites have been synthesized via a facile process using sacrificial templates at 600 °C. Microcubes, composed of tiny grains in a size range from 10 nm ± 2 nm were obtained in pure form as a polycrystalline material. The high specific surface area (1185 m2 g‑1) and mesoporous nature of hollow cubic ferrites were found to be excellent adsorbents for nitrophenol at room temperature. The equilibrium quantity of adsorbed nitrophenol was calculated as 47 mg g‑1 ferrite, accomplished in 7 min. Their large surface area, mesopores and hollow nature, in combination with controlled size distribution of grains, have enabled this remarkable utilization of nanoferrites for removal of nitrophenol from water.

  11. Selective Improvement of NO2 Gas Sensing Behavior in SnO2 Nanowires by Ion-Beam Irradiation.

    PubMed

    Kwon, Yong Jung; Kang, Sung Yong; Wu, Ping; Peng, Yuan; Kim, Sang Sub; Kim, Hyoun Woo

    2016-06-01

    We irradiated SnO2 nanowires with He ions (45 MeV) with different ion fluences. Structure and morphology of the SnO2 nanowires did not undergo noticeable changes upon ion-beam irradiation. Chemical equilibrium in SnO2/gas systems was calculated from thermodynamic principles, which were used to study the sensing selectivity of the tested gases, demonstrating the selective sensitivity of the SnO2 surface to NO2 gas. Being different from other gases, including H2, ethanol, acetone, SO2, and NH3, the sensor response to NO2 gas significantly increases as the ion fluence increases, showing a maximum under an ion fluence of 1 × 10(16) ions/cm(2). Photoluminescence analysis shows that the relative intensity of the peak at 2.1 eV to the peak at 2.5 eV increases upon ion-beam irradiation, suggesting that structural defects and/or tin interstitials have been generated. X-ray photoelectron spectroscopy indicated that the ionic ratio of Sn(2+/)Sn(4+) increases by the ion-beam irradiation, supporting the formation of surface Sn interstitials. Using thermodynamic calculations, we explained the observed selective sensing behavior. A molecular level model was also established for the adsorption of NO2 on ion-irradiated SnO2 (110) surfaces. We propose that the adsorption of NO2-related species is considerably enhanced by the generation of surface defects that are comprised of Sn interstitials.

  12. Contrasting the material chemistry of Cu 2ZnSnSe 4 and Cu 2ZnSnS (4-x)Se x

    DOE PAGES

    Aguiar, Jeffery A.; Patel, Maulik; Aoki, Toshihiro; ...

    2016-02-02

    Earth-abundant sustainable inorganic thin-film solar cells, independent of precious elements, pivot on a marginal material phase space targeting specific compounds. Advanced materials characterization efforts are necessary to expose the roles of microstructure, chemistry, and interfaces. Here, the earth-abundant solar cell device, Cu 2ZnSnS (4-x)Se x, is reported, which shows a high abundance of secondary phases compared to similarly grown Cu 2ZnSnSe 4.

  13. The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko

    1990-05-01

    The phase relations in the In 2O 3Fe 2ZnO 4ZnO system at 1350°C are determined by means of a classical quenching method. There are a series of homologous solid solutions, In 1.28Fe 0.72O 3(ZnO)InFeO 3(ZnO), In 1.69Fe 0.31O 3(ZnO) 2InFeO 3(ZnO) 2In 0.85Fe 1.15O 3(ZnO) 2, In 2O 3(ZnO) 3InFeO 3(ZnO) 3In 0.78Fe 1.22O 3(ZnO) 3, In 2O 3(ZnO) 4InFeO 3(ZnO) 4In 0.62Fe 1.38O 3(ZnO) 4, In 2O 3(ZnO) 5InFeO 3(ZnO) 5In 0.67Fe 1.33O 3(ZnO) 5, In 2O 3(ZnO) 6InFeO 3(ZnO) 6In 0.60Fe 1.40O 3(ZnO) 6, In 2O 3(ZnO) 7InFeO 3(ZnO) 7In 0.51Fe 1.49O 3(ZnO) 7, In 2O 3(ZnO) 8InFeO 3(ZnO) 8In 1- xFe 1+ xO 3(ZnO) 8 (0.44 ≦ x ≦ 0.64), In 2O 3(ZnO) 9InFeO 3(ZnO) 9In 0.20Fe 1.80O 3(ZnO) 9, In 2O 3(ZnO) 10InFeO 3(ZnO) 10In 1- xFe 1+ xO 3(ZnO) 10 (0.74 ≦ x ≦ 0.89), In 2O 3(ZnO) 11InFeO 3(ZnO) 11In 1- xFe 1+ xO 3(ZnO) 11 (0.60 ≦ x < 1.00), and In 2O 3(ZnO) 13InFeO 3(ZnO) 13Fe 2O 3(ZnO) 13 having the layered structures with space group R overline3m (m = odd) or {P6 3}/{mmc} (m = even) for m in the InFeO 3(ZnO) m. We conclude that there are a series of homologous phases, (Fe 2O 3)(ZnO) m (m ≧ 12) , in the binary ZnOFe 2O 3 system. The lattice constants for these solid solutions are presented as a hexagonal crystal system. It is also concluded that the crystal structures for each solid solution consist of three kinds of layers which are stacked perpendicular to the c-axis in the hexagonal crystal system. In 1+ xFe 1- xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of the InO 1.5, (In xFe 1- xZn)O 2.5, and ZnO layers, and In 1- xFe 1+ xO 3(ZnO) m (0 ≦ x ≦ 1) is composed of (In 1- xFe x)O 1.5, (FeZn)O 2.5, and ZnO layers, respectively. The solid solution range between Fe 2ZnO 4 and In xFe 2- xZnO 4 ( x = 0.40 ± 0.02) with a spinel structure is observed.

  14. Facile fabrication of robust TiO2@SnO2@C hollow nanobelts for outstanding lithium storage

    NASA Astrophysics Data System (ADS)

    Tian, Qinghua; Li, Lingxiangyu; Chen, Jizhang; Yang, Li; Hirano, Shin-ichi

    2018-02-01

    Elaborate fabrication of state-of-the-art nanostructure SnO2@C-based composites greatly contributes to alleviate the huge volume expansion issue of the SnO2 anodes. But the preparation processes of most of them are complicated and tedious, which is generally adverse to the development of SnO2@C-based composite anodes. Herein, a unique nanostructure of TiO2@SnO2@C hollow nanobelts (TiO2@SnO2@C HNBs), including the characteristics of one-dimensional architecture, sandwich protection, hollow structure, carbon coating, and a mechanically robust TiO2 support, has been fabricated by a facile approach for the first time. As anodes for lithium-ion batteries, the as-fabricated TiO2@SnO2@C HNBs exhibit an outstanding lithium storage performance, delivering capacity of 804.6 and 384. 5 mAh g-1 at 200 and even 1000 mA g-1 after 500 cycles, respectively. It is demonstrated that thus outstanding performance is mainly attributed to the unique nanostructure of TiO2@SnO2@C HNBs.

  15. Synthesis and Characterization of Photocatalytic TiO 2 -ZnFe 2 O 4 Nanoparticles

    DOE PAGES

    Srinivasan, Sesha S.; Wade, Jeremy; Stefanakos, Elias K.

    2006-01-01

    A new coprecipimore » tation/hydrolysis synthesis route is used to create a TiO 2 -ZnFe 2 O 4 nanocomposite that is directed towards extending the photoresponse of TiO 2 from UV to visible wavelengths ( > 400   nm ). The effect of TiO 2 's accelerated anatase-rutile phase transformation due to the presence of the coupled ZnFe 2 O 4 narrow-bandgap semiconductor is evaluated. The transformation's dependence on pH, calcinations temperature, particle size, and ZnFe 2 O 4 concentration has been analyzed using XRD, SEM, and UV-visible spectrometry. The requirements for retaining the highly photoactive anatase phase present in a ZnFe 2 O 4 nanocomposite are outlined. The visible-light-activated photocatalytic activity of the TiO 2 -ZnFe 2 O 4 nanocomposites has been compared to an Aldrich TiO 2 reference catalyst, using a solar-simulated photoreactor for the degradation of phenol.« less

  16. Fabrication of SnO2-TiO2 core-shell nanopillar-array films for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Cheng, Hsyi-En; Lin, Chun-Yuan; Hsu, Ching-Ming

    2017-02-01

    Immobilized or deposited thin film TiO2 photocatalysts are suffering from a low photocatalytic activity due to either a low photon absorption efficiency or a high carrier recombination rate. Here we demonstrate that the photocatalytic activity of TiO2 can be effectively improved by the SnO2-TiO2 core-shell nanopillar-array structure which combines the benefits of SnO2/TiO2 heterojunction and high reaction surface area. The SnO2-TiO2 core-shell nanopillar-array films were fabricated using atomic layer deposition and dry etching techniques via barrier-free porous anodic alumina templates. The photocatalytic activity of the prepared films was evaluated by methylene blue (MB) bleaching under 352 nm UV light irradiation. The results show that the photocatalytic activity of TiO2 film was 45% improved by introducing a SnO2 film between TiO2 and ITO glass substrate and was 300% improved by using the SnO2-TiO2 core-shell nanopillar-array structure. The 45% improvement by the SnO2 interlayer is attributed to the SnO2/TiO2 heterojunction which separates the photogenerated electron-hole pairs in TiO2 for MB degradation, and the high photocatalytic activity of the SnO2-TiO2 core-shell nanopillar-array films is attributed to the three dimensional SnO2/TiO2 heterojunction which owns both the carrier separation ability and the high photocatalytic reaction surface area.

  17. Highly enhanced ultraviolet photosensitivity and recovery speed in electrospun Ni-doped SnO2 nanobelts

    NASA Astrophysics Data System (ADS)

    Huang, Siya; Matsubara, Kohei; Cheng, Jing; Li, Heping; Pan, Wei

    2013-09-01

    Precisely controlled Ni-doped SnO2 (NSO) nanobelt arrays are synthesized and assembled via electrospinning. In comparison to pristine SnO2 nanobelts, enhanced photosensitivity (˜103) as well as recovery speed (˜1 s) is obtained in NSO nanobelts. The mechanism is clarified by the compensation effect of acceptor impurity Ni, which not only promotes the oxygen-surface interaction but also introduces trapping centers in SnO2 matrix. The reduced grain size (˜4 nm) along with increased depletion layer thickness also benefits the photosensitivity of NSO nanobelts. These improved photoresponse properties make the NSO nanobelt a promising candidate for high-performance ultraviolet detectors.

  18. Hierarchical MnO2/SnO2 heterostructures for a novel free-standing ternary thermite membrane.

    PubMed

    Yang, Yong; Zhang, Zhi-Cheng; Wang, Peng-Peng; Zhang, Jing-Chao; Nosheen, Farhat; Zhuang, Jing; Wang, Xun

    2013-08-19

    We report the synthesis of a novel hierarchical MnO2/SnO2 heterostructures via a hydrothermal method. Secondary SnO2 nanostructure grows epitaxially on the surface of MnO2 backbones without any surfactant, which relies on the minimization of surface energy and interfacial lattice mismatch. Detailed investigations reveal that the cover density and morphology of the SnO2 nanostructure can be tailored by changing the experimental parameter. Moreover, we demonstrate a bottom-up method to produce energetic nanocomposites by assembling nanoaluminum (n-Al) and MnO2/SnO2 hierarchical nanostructures into a free-standing MnO2/SnO2/n-Al ternary thermite membrane. This assembled approach can significantly reduce diffusion distances and increase their intimacy between the components. Different thermite mixtures were investigated to evaluate the corresponding activation energies using DSC techniques. The energy performance of the ternary thermite membrane can be manipulated through different components of the MnO2/SnO2 heterostructures. Overall, our work may open a new route for new energetic materials.

  19. Magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles for visible light photodegradation of methyl orange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Suresh D., E-mail: suresh.dk@manipal.edu; Kumbar, Sagar; Menon, Samvit G.

    Highlights: • Phase pure, magnetic ZnFe{sub 2}O{sub 4}@ZnO nanoparticles synthesized with excellent yield. • ZnFe{sub 2}O{sub 4}@ZnO displayed higher UV photocatalytic efficiency than ZnO nanoparticles. • First report on visible light photodegradation of methyl orange by ZnFe{sub 2}O{sub 4}@ZnO. • Excellent reusability of ZnFe{sub 2}O{sub 4}@ZnO nanoparticles observed for azo dye removal. - Abstract: Visible light photodegradation of aqueous methyl orange using magnetically separable core–shell ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported. A combination of low temperature (190 °C) microwave synthesis and hydrothermal method were used to prepare phase pure material with excellent yield (95%). The magnetic separability, surface area ofmore » 41 m{sup 2}/g and visible light absorption make ZnFe{sub 2}O{sub 4}@ZnO nanoparticles a good solar photocatalyst. ZnFe{sub 2}O{sub 4}@ZnO displayed greater UV photocatalytic efficiency than ZnO owing to the generation of large number of electron-hole pairs. Visible light photodegradation of MO using ZnFe{sub 2}O{sub 4}@ZnO nanoparticles is reported for the first time. Higher first order rate constants under both UV and visible light for core-shell nanoparticles suggested their superiority over its individual oxides. The ZnFe{sub 2}O{sub 4}@ZnO showed excellent reusability with high photocatalytic efficiencies suggesting its suitability for solar photocatalytic applications.« less

  20. Enhanced antibacterial performance of hybrid semiconductor nanomaterials: ZnO/SnO 2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Talebian, Nasrin; Nilforoushan, Mohammad Reza; Zargar, Elahe Badri

    2011-10-01

    The nano-sized coupled oxides ZnO/SnO 2 thin films in a molar ratio of 2:1 (Z2S), 1:1 (ZS) and 1:2 (ZS2) were prepared using sol-gel dip coating method and characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV-vis spectroscopy. Escherichia coli ( E. coli, ATCC 25922) was selected as a model for the Gram-negative bacteria to evaluate antibacterial property of composite samples compared with single ZnO (Z) and single SnO 2 (S) films. The antibacterial activity has been studied applying the so-called antibacterial drop test under UV illumination. The bactericidal activity was estimated by relative number of bacteria survived calculated from the number of viable cells which form colonies on the nutrient agar plates. The influence of the SnO 2-ZnO nanocomposite composition on the structural features and on the antibacterial properties of the thin films are reported and discussed. It is found that all coatings exhibited a high antibacterial activity. The coupled oxide photocatalyst Z2S has better photocatalytic activity to bacteria inactivation than ZS, ZS2, Z and S films. Furthermore, nanostructured films were active even in the absence of irradiation.

  1. The luminescence properties of nanocrystalline phosphors Mg2SiO4:Eu3+

    NASA Astrophysics Data System (ADS)

    Kolomytsev, A. Y.; Mamonova, D. V.; Manshina, A. A.; Kolesnikov, I. E.

    2017-11-01

    Nanocrystalline Eu3+-doped Mg2SiO4 powders were prepared with combined Pechini-solid phase synthesis. The structural properties were investigated with XRD, SEM and Raman spectroscopy. XRD pattern indicated that Mg2SiO4:Eu3+ were obtained with formation of other phase: MgO. Raman spectrum revealed good homogeneity and crystallinity of synthesized nanopowders. The luminescence properties were studied with measurement of excitation and emission spectra and decay curves. The effect of Eu3+ concentration on 5D0 level lifetime was studied. Most probably, the observed shortening of 5D0 level lifetime with Eu3+ concentration is caused by increase of nonradiative process probability.

  2. Photocurrent generation in SnO2 thin film by surface charged chemisorption O ions

    NASA Astrophysics Data System (ADS)

    Lee, Po-Ming; Liao, Ching-Han; Lin, Chia-Hua; Liu, Cheng-Yi

    2018-06-01

    We report a photocurrent generation mechanism in the SnO2 thin film surface layer by the charged chemisorption O ions on the SnO2 thin film surface induced by O2-annealing. A critical build-in electric field in the SnO2 surface layer resulted from the charged O ions on SnO2 surface prolongs the lifetime and reduces the recombination probability of the photo-excited electron-hole pairs by UV-laser irradiation (266 nm) in the SnO2 surface layer, which is the key for the photocurrent generation in the SnO2 thin film surface layer. The critical lifetime of prolonged photo-excited electron-hole pair is calculated to be 8.3 ms.

  3. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass

    NASA Astrophysics Data System (ADS)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-03-01

    photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates. Electronic supplementary information (ESI) available: (1) QCM measurement of SnO2 deposition on spermine functionalized silica-based sensors, (2) scheme of the surface functionalization procedure, (3) FTIR-ATR analysis of polyamine (spermine) functionalized glass surfaces, (4) FITC staining of amine groups on glass surfaces, (5) AFM height analysis of bare, spermine coated and SnO2 coated glass slides, (6) SEM micrograph of a spermine functionalized SnO2 coated glass slide, (7) XPS analysis of SnO2 coated surfaces, (8) kinetic profile of rhodamine B degradation with spermine/SnO2, (9) control experiments for the photodegradation of rhodamine B, (10) comparison with commercial SnO2 catalyst, (11) incubation of non-functionalized glass surfaces with E. coli, and (12) incubation of SnO2 coated glass surfaces with E. coli. See DOI: 10.1039/c3nr00007a

  4. Microstructural, Optical and Dielectric Properties of Al-Incorporated SnO2 Nanoparticles

    NASA Astrophysics Data System (ADS)

    Ahmed, Ateeq; Tripathi, P.; Naseem Siddique, M.; Ali, Tinku

    2017-08-01

    In this work, Pure SnO2 and Al doped SnO2 nanoparticles with the composition Sn1-xAlxO2 (x = 0, and 0.05) have been successfully prepared using sol-gel technique. The effect of Al dopant on microstructural, optical and dielectric properties has been investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Ultraviolet (UV-Visible) absorption spectroscopy andImpedance spectroscopy (LCR meter)respectively. The XRD patterns indicated tetragonal rutile structure with single phase without any detectable impurity for all samples and incorporation of Al ions into the SnO2 lattice. Crystalline size decreased with aluminum content. The results of SEM confirm nanoparticles size decreases with Al dopant. UV-Visible results showed that optical band also decreases when Al is doped into pure SnO2 lattice. Frequency dependent dielectric properties of pure and doped SnO2 nanoparticles have been also studied.

  5. Shape Engineering Driven by Selective Growth of SnO2 on Doped Ga2O3 Nanowires.

    PubMed

    Alonso-Orts, Manuel; Sánchez, Ana M; Hindmarsh, Steven A; López, Iñaki; Nogales, Emilio; Piqueras, Javier; Méndez, Bianchi

    2017-01-11

    Tailoring the shape of complex nanostructures requires control of the growth process. In this work, we report on the selective growth of nanostructured tin oxide on gallium oxide nanowires leading to the formation of SnO 2 /Ga 2 O 3 complex nanostructures. Ga 2 O 3 nanowires decorated with either crossing SnO 2 nanowires or SnO 2 particles have been obtained in a single step treatment by thermal evaporation. The reason for this dual behavior is related to the growth direction of trunk Ga 2 O 3 nanowires. Ga 2 O 3 nanowires grown along the [001] direction favor the formation of crossing SnO 2 nanowires. Alternatively, SnO 2 forms rhombohedral particles on [110] Ga 2 O 3 nanowires leading to skewer-like structures. These complex oxide structures were grown by a catalyst-free vapor-solid process. When pure Ga and tin oxide were used as source materials and compacted powders of Ga 2 O 3 acted as substrates, [110] Ga 2 O 3 nanowires grow preferentially. High-resolution transmission electron microscopy analysis reveals epitaxial relationship lattice matching between the Ga 2 O 3 axis and SnO 2 particles, forming skewer-like structures. The addition of chromium oxide to the source materials modifies the growth direction of the trunk Ga 2 O 3 nanowires, growing along the [001], with crossing SnO 2 wires. The SnO 2 /Ga 2 O 3 junctions does not meet the lattice matching condition, forming a grain boundary. The electronic and optical properties have been studied by XPS and CL with high spatial resolution, enabling us to get both local chemical and electronic information on the surface in both type of structures. The results will allow tuning optical and electronic properties of oxide complex nanostructures locally as a function of the orientation. In particular, we report a dependence of the visible CL emission of SnO 2 on its particular shape. Orange emission dominates in SnO 2 /Ga 2 O 3 crossing wires while green-blue emission is observed in SnO 2 particles attached to Ga 2

  6. Low-loss Z-type barium hexaferrite composites from nanoscale ZnAl2O4 addition for high-frequency applications

    NASA Astrophysics Data System (ADS)

    Zheng, Zongliang; Feng, Quanyuan; Harris, Vincent G.

    2018-05-01

    In this study, nanocrystalline ZnAl2O4 (ZA) were introduced to Z-type barium hexaferrite (Co2Z) and the effects of ZA addition upon the crystal-phase composition, microstructure, permeability and permittivity as well as losses characteristics over a wide frequency range of 10 MHz-1 GHz have been systematically investigated. With increasing ZA content (x) from 0 to 15 wt%, the permeability μ' at low frequencies decreased from 12.0 to 4.3, while the permittivity ɛ' was decreased from 27.4 to 10.7. Correspondingly, the frequency stability of permeability and permittivity were improved and the losses were effectively reduced. When x is in the range of 5-10 wt%, the magnetic loss tan δμ is in the order of 10-2 and the dielectric loss tan δɛ is in the order of 10-3 at 300 MHz, which is lower by one order of magnitude compared with that of undoped Co2Z. The modified magnetic and dielectric properties are closely related to the changing phase composition and microstructure.

  7. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity.

    PubMed

    Wu, Shuisheng; Dai, Weili

    2017-03-03

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs.

  8. Microwave-Hydrothermal Synthesis of SnO2-CNTs Hybrid Nanocomposites with Visible Light Photocatalytic Activity

    PubMed Central

    Wu, Shuisheng; Dai, Weili

    2017-01-01

    SnO2 nanoparticles coated on carbon nanotubes (CNTs) were prepared via a simple microwave-hydrothermal route. The as-obtained SnO2-CNTs composites were characterized using X-ray powder diffraction, Raman spectroscopy, and transmission electron microscopy. The photocatalytic activity of as-prepared SnO2-CNTs for degradation of Rhodamine B under visible light irradiation was investigated. The results show that SnO2-CNTs nanocomposites have a higher photocatalytic activity than pure SnO2 due to the rapid transferring of electrons and the effective separation of holes and electrons on SnO2-CNTs. PMID:28336888

  9. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals.

    PubMed

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-13

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs.

  10. High Efficiency Dye-sensitized Solar Cells Constructed with Composites of TiO2 and the Hot-bubbling Synthesized Ultra-Small SnO2 Nanocrystals

    PubMed Central

    Mao, Xiaoli; Zhou, Ru; Zhang, Shouwei; Ding, Liping; Wan, Lei; Qin, Shengxian; Chen, Zhesheng; Xu, Jinzhang; Miao, Shiding

    2016-01-01

    An efficient photo-anode for the dye-sensitized solar cells (DSSCs) should have features of high loading of dye molecules, favorable band alignments and good efficiency in electron transport. Herein, the 3.4 nm-sized SnO2 nanocrystals (NCs) of high crystallinity, synthesized via the hot-bubbling method, were incorporated with the commercial TiO2 (P25) particles to fabricate the photo-anodes. The optimal percentage of the doped SnO2 NCs was found at ~7.5% (SnO2/TiO2, w/w), and the fabricated DSSC delivers a power conversion efficiency up to 6.7%, which is 1.52 times of the P25 based DSSCs. The ultra-small SnO2 NCs offer three benefits, (1) the incorporation of SnO2 NCs enlarges surface areas of the photo-anode films, and higher dye-loading amounts were achieved; (2) the high charge mobility provided by SnO2 was confirmed to accelerate the electron transport, and the photo-electron recombination was suppressed by the highly-crystallized NCs; (3) the conduction band minimum (CBM) of the SnO2 NCs was uplifted due to the quantum size effects, and this was found to alleviate the decrement in the open-circuit voltage. This work highlights great contributions of the SnO2 NCs to the improvement of the photovoltaic performances in the DSSCs. PMID:26758941

  11. Nanofibrillated Cellulose-Assisted Synthesis of Fiber-Like ZnO-ZnFe2O4 Composites with Enhanced Visible-Light-Driven Photocatalytic Activity

    NASA Astrophysics Data System (ADS)

    Cai, Aijun; Guo, Aiying; Du, Liqiang; Chang, Yongfang; Wang, Xiuping

    2018-05-01

    In this article, fiber-like ZnO-ZnFe2O4 composites are obtained by using nanofibrillated cellulose as a biotemplate. The as-prepared composites exhibit strong absorbance in the visible-light region. The ZnO-ZnFe2O4 composites exhibit a similar bandgap (1.88 eV) compared with the ZnFe2O4 (1.85 eV). The ZnO-ZnFe2O4 composites can be easily collected by an external magnet, which contributes to improving the utilization efficiency of the photocatalysts. The photocatalytic activity of the ZnO-ZnFe2O4 catalysts was evaluated by photodegrading rhodamine B (RhB) under visible-light irradiation. Compared with ZnO and ZnFe2O4, the ZnO-ZnFe2O4 catalysts show higher photocatalytic activity due to the efficient electron-hole separation.

  12. Detection of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases in co-evaporated Cu2ZnSnSe4 thin-films

    NASA Astrophysics Data System (ADS)

    Schwarz, Torsten; Marques, Miguel A. L.; Botti, Silvana; Mousel, Marina; Redinger, Alex; Siebentritt, Susanne; Cojocaru-Mirédin, Oana; Raabe, Dierk; Choi, Pyuck-Pa

    2015-10-01

    Cu2ZnSnSe4 thin-films for photovoltaic applications are investigated using combined atom probe tomography and ab initio density functional theory. The atom probe studies reveal nano-sized grains of Cu2Zn5SnSe8 and Cu2Zn6SnSe9 composition, which cannot be assigned to any known phase reported in the literature. Both phases are considered to be metastable, as density functional theory calculations yield positive energy differences with respect to the decomposition into Cu2ZnSnSe4 and ZnSe. Among the conceivable crystal structures for both phases, a distorted zinc-blende structure shows the lowest energy, which is a few tens of meV below the energy of a wurtzite structure. A band gap of 1.1 eV is calculated for both the Cu2Zn5SnSe8 and Cu2Zn6SnSe9 phases. Possible effects of these phases on solar cell performance are discussed.

  13. Structure and properties of hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O

    NASA Astrophysics Data System (ADS)

    Haussühl, S.; Middendorf, B.; Dörffel, M.

    1991-07-01

    Mg-hopeites (Mg xZn 1- x) 3(PO 4) 2 · 4H 2O were prepared by crystallization from hot aqueous solutions (70°C). The structure of (Mg 0.206Zn 0.794) 3(PO 4) 2 · 4H 2O has been determined from 1612 unique reflections (MoKα, R = 0.033): Pnma, a1 = 10.594(2), a2 = 18.333(2), a3 = 5.029(2)Å, Z = 4, Dcalc = 2.943g cm -3. The structure resembles that of pure hopeite. However, the magnesium atoms occupy only the sixcoordinated site. The thermal behavior of hopeites is strongly influenced by the substitution of Zn by Mg. The dehydration range is shifted to higher temperatures with increasing Mg content. A strongly anisotropic thermal expansion was measured by X-ray diffraction in a temperature range of -40° to 50°C. Experiments to substitute Zn by Ca, Sr, and Ba in the hopeite failed. A hitherto unknown monoclinic phase with the composition BaZn 2(PO 4) 2 · H 2O and a1 = 4.707(2), a2 = 7.840(2), a3 = 8.061(3)Å, and α 2 = 88.99(4)° was found.

  14. Structure and magnetic properties of amorphous and nanocrystalline Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloys

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.

    2004-07-01

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.

  15. Ion beam induced amorphization and bond breaking in Zn2SiO4:Eu3+ nanocrystalline phosphor.

    PubMed

    Sunitha, D V; Nagabhushana, H; Singh, Fouran; Sharma, S C; Dhananjaya, N; Nagabhushana, B M; Chakradhar, R P S

    2012-05-01

    This paper reports on the ionoluminescence (IL) of Zn(2)SiO(4):Eu(3+) nanophosphors bombarded with 100 MeV Si(7+) ions with fluences in the range (3.91-21.48)×10(12) ions cm(-2). The prominent IL emission peaks recorded at 580, 590, 612, 650 and 705 nm are attributed to the luminescence centers activated by Eu(3+) ions. It is observed that IL intensity decreases and saturates with increase of Si(7+) ion fluence. Fourier transform infrared (FT-IR) studies confirm surface/bulk amorphization for a fluence of (3.91-21.48)×10(13) ions cm(-2). These results show degradation of SiO (2ν(3)) bonds present on the surface of the sample and/or due to lattice disorder produced by dense electronic excitation under heavy ion irradiation. These results are discussed in detail. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Adsorption of Cd2+ ions on plant mediated SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Haq, Sirajul; Rehman, Wajid; Waseem, Muhammad; Shahid, Muhammad; Mahfooz-ur-Rehman; Hussain Shah, Khizar; Nawaz, Mohsan

    2016-10-01

    Plant mediated SnO2 nanoparticles were synthesized by using SnCl4.5H2O as a precursor material. The nanoparticles were then characterized for BET surface area measurements, energy dispersive x-rays (EDX), scanning electron microscopy (SEM), UV-vis diffuse reflectance (DRS) spectra and x-rays diffraction (XRD) analysis. The successful synthesis of SnO2 nanoparticles was confirmed by EDX analysis. The particle sizes were in the range 19-27 nm whereas the crystallite size computed from XRD measurement was found to be 19.9 nm. Batch adsorption technique was employed for the removal of Cd2+ ions from aqueous solution. The sorption studies of Cd2+ ions were performed at pHs 4 and 6. The equilibrium concentration of Cd2+ ions was determined by atomic absorption spectrometer (flame mode). The uptake of Cd2+ ions was affected by initial concentration, pH and temperature of the electrolytic solution. It was observed that the adsorption of Cd2+ ions enhanced with increase in the initial concentration of Cd2+ ions whereas a decrease in the percent adsorption was detected. From the thermodynamic parameters, the adsorption process was found spontaneous and endothermic in nature. The n values confirmed 2:1 exchange mechanism between surface protons and Cd2+ ions.

  17. Two new three-dimensional zinc phosphites templated by piperazine: [H2pip][Zn3(HPO3)4(H2O)2] and K[H2pip]0.5[Zn3(HPO3)4

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Wang, Guo-Ming; Wang, Zong-Hua; Wang, Ying-Xia; Lin, Jian-Hua

    2014-01-01

    Two three-dimensional open-framework zinc phosphites with the same organically templated, [H2pip][Zn3(HPO3)4(H2O)2] (1) and K[H2pip]0.5[Zn3(HPO3)4] (2) (pip = piperazine), have been solvothermally synthesized and structurally characterized by IR, elemental analysis, thermogravimetric analysis, powder and single-crystal X-ray diffractions. Compound 1 consists of ZnO4 tetrahedra, [HPO3] pseudopyramids and [ZnO4(H2O)2] octahedra, which are linked through their vertexes to generate three-dimensional architecture with intersecting 8-membered channels along the [1 0 0], [0 0 1] and [1 0 1] directions. Compound 2 is constructed from strictly alternating ZnO4 tetrahedra and [HPO3] pseudopyramids, and exhibits (3,4)-connected inorganic framework with 8-, and 12-membered channels, in which the K+ and diprotonated H2pip2+ extra-framework cations reside, respectively. The coexistence of inorganic K+ and organic piperazine mixed templates in the structure is unique and, to the best of our knowledge, firstly observed in metal-phosphite materials. In addition, the participation of left-handed and right-handed helical chains in construction of the puckered 4.82 sheet structure in 2 is also noteworthy.

  18. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  19. Photoluminescence analysis of Ce{sup 3+}:Zn{sub 2}SiO{sub 4} & Li{sup +}+ Ce{sup 3+}:Zn{sub 2}SiO{sub 4}: phosphors by a sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, B. Chandra, E-mail: chandrababuphd@gmail.com; Vandana, C. Sai; Guravamma, J.

    2015-06-24

    Here, we report on the development and photoluminescence analysis of Zn{sub 2}SiO{sub 4}, Ce{sup 3+}:Zn{sub 2}SiO{sub 4} & Li{sup +} + Ce{sup 3+}: Zn{sub 2}SiO{sub 4} novel powder phosphors prepared by a sol-gel technique. The total amount of Ce{sup 3+} ions was kept constant in this experiment at 0.05 mol% total doping. The excitation and emission spectra of undoped (Zn{sub 2}SiO{sub 4}) and Ce{sup 3+} doped Zn{sub 2}SiO{sub 4} and 0.05 mol% Li{sup +} co-doped samples have been investigated. Cerium doped Zn{sub 2}SiO{sub 4} powder phosphors had broad blue emission corresponding to the 2D{sub 3/2}→2F{sub J} transition at 443nm. Stable green-yellow-red emissionmore » has been observed from Zn{sub 2}SiO{sub 4} host matrix and also we have been observed the enhanced luminescence of Li{sup +} co-doped Zn{sub 2}SiO{sub 4}:Ce{sup 3+}. Excitation and emission spectra of these blue luminescent phosphors have been analyzed in evaluating their potential as luminescent screen coating phosphors.« less

  20. Size effect of SnO2 nanoparticles on bacteria toxicity and their membrane damage.

    PubMed

    Chávez-Calderón, Adriana; Paraguay-Delgado, Francisco; Orrantia-Borunda, Erasmo; Luna-Velasco, Antonia

    2016-12-01

    Semiconductor SnO 2 nanoparticles (NPs) are being exploited for various applications, including those in the environmental context. However, toxicity studies of SnO 2 NPs are very limited. This study evaluated the toxic effect of two sizes of spherical SnO 2 NPs (2 and 40 nm) and one size of flower-like SnO 2 NPs (800 nm) towards the environmental bacteria E. coli and B. subtilis. SnO 2 NPs were synthesized using a hydrothermal or calcination method and they were well characterized prior to toxicity assessment. To evaluate toxicity, cell viability and membrane damage were determined in cells (1 × 10 9  CFU mL -1 ) exposed to up to 1000 mg L -1 of NPs, using the plate counting method and confocal laser scanning microscopy. Spherical NPs of smaller primary size (E2) had the lowest hydrodynamic size (226 ± 96 nm) and highest negative charge (-30.3 ± 10.1 mV). Smaller spherical NPs also showed greatest effect on viability (IC 50  > 500 mg L -1 ) and membrane damage of B. subtilis, whereas E. coli was unaffected. Scanning electron microscopy confirmed the membrane damage of exposed B. subtilis and also exhibited the attachment of E2 NPs to the cell surface, as well as the elongation of cells. It was also apparent that toxicity was caused solely by NPs, as released Sn 4+ was not toxic to B. subtilis. Thus, surface charge interaction between negatively charged SnO 2 NPs and positively charged molecules on the membrane of the Gram positive B. subtilis was indicated as the key mechanism related to toxicity of NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Facile fabrication of a well-ordered porous Cu-doped SnO2 thin film for H2S sensing.

    PubMed

    Zhang, Shumin; Zhang, Pingping; Wang, Yun; Ma, Yanyun; Zhong, Jun; Sun, Xuhui

    2014-09-10

    Well-ordered Cu-doped and undoped SnO2 porous thin films with large specific surface areas have been fabricated on a desired substrate using a self-assembled soft template combined with simple physical cosputtering deposition. The Cu-doped SnO2 porous film gas sensor shows a significant enhancement in its sensing performance, including a high sensitivity, selectivity, and a fast response and recovery time. The sensitivity of the Cu-doped SnO2 porous sensor is 1 order of magnitude higher than that of the undoped SnO2 sensor, with average response and recovery times to 100 ppm of H2S of ∼ 10.1 and ∼ 42.4 s, respectively, at the optimal operating temperature of 180 °C. The well-defined porous sensors fabricated by the method also exhibit high reproducibility because of the accurately controlled fabrication process. The facile process can be easily extended to the fabrication of other semiconductor oxide gas sensors with easy doping and multilayer porous nanostructure for practical sensing applications.

  2. Single step synthesis and characterization of ZnAl2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Jain, Megha; Manju, Singh, Kulwinder; Kumar, Akshay; Sharma, Jeewan; Chae, K. H.; Vij, Ankush; Thakur, Anup

    2018-05-01

    Zinc aluminate (ZnAl2O4) has proved to be a potential candidate in many areas such as catalysis, display panels, pigments in paints, radiation dosimetry, luminescence etc. Here, we report the solution combustion synthesis & spectroscopic studies of ZnAl2O4 nanoparticles. Urea (fuel) and metal nitrates (oxidizer) were taken in stoichiometric ratio at 1:1. The X-ray diffraction analysis of the as-prepared and annealed samples showed all reflection planes pertaining to ZnAl2O4. However, a weak intensity peak of secondary phase was also observed at 2θ value of 34.5°, which correspond to the diffraction plane (002) of ZnO. This phase was found to disappear after annealing the sample at 1000 °C for 1 hour. Fourier transform infrared spectroscopy (FTIR) also inferred the formation of ZnAl2O4. Photoluminescence measurements carried out on samples at excitation wavelength of 345 nm showed that ZnAl2O4 is an efficient luminescent material with emission in violet region of visible spectra.

  3. Size dependent exchange bias in single-phase Zn0.3Ni0.7Fe2O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohan, Rajendra; Ghosh, Mritunjoy Prasad; Mukherjee, Samrat

    2018-07-01

    We report the microstructural and magnetic characterization of single phase nanocrystalline partially inverted Zn0.3Ni0.7Fe2O4 mixed spinel ferrite. The samples were annealed at 200 °C, 400 °C, 600 °C, 800 °C and 1000 °C. X-ray diffraction results indicate phase purity of all the samples and application of Debye- Scherrer yielded a crystallite size variation from 5 nm to 33 nm for the different samples. Magnetic measurements have revealed the freezing of interfacial spins which were the cause of the large horizontal M-H loop shift causing large exchange bias with high anisotropy. The magnetic measurements show a hysteresis loop with high effective anisotropy constant due to highly magnetically disordered surface spin at 5 K.

  4. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lv, Fujian; Xiao, Shengxiong; Bian, Zhenfeng; Buntkowsky, Gerd; Nuckolls, Colin; Li, Hexing

    2014-11-01

    This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation. Electronic supplementary information (ESI) available: Methods for sample preparation, characterization and Fig. S1-S8. See DOI: 10.1039/c4nr05598e

  5. Structural investigations and magnetic properties of sol-gel Ni0.5Zn0.5Fe2O4 thin films for microwave heating

    NASA Astrophysics Data System (ADS)

    Gao, Pengzhao; Rebrov, Evgeny V.; Verhoeven, Tiny M. W. G. M.; Schouten, Jaap C.; Kleismit, Richard; Kozlowski, Gregory; Cetnar, John; Turgut, Zafer; Subramanyam, Guru

    2010-02-01

    Nanocrystalline Ni0.5Zn0.5Fe2O4 thin films have been synthesized with various grain sizes by a sol-gel method on polycrystalline silicon substrates. The morphology, magnetic, and microwave absorption properties of the films calcined in the 673-1073 K range were studied with x-ray diffraction, scanning electron microscopy, x-ray photoelectron spectroscopy, atomic force microscopy, vibrating sample magnetometry, and evanescent microwave microscopy. All films were uniform without microcracks. Increasing the calcination temperature from 873 to 1073 K and time from 1 to 3 h resulted in an increase of the grain size from 12 to 27 nm. The saturation and remnant magnetization increased with increasing the grain size, while the coercivity demonstrated a maximum near a critical grain size of 21 nm due to the transition from monodomain to multidomain behavior. The complex permittivity of the Ni-Zn ferrite films was measured in the frequency range of 2-15 GHz. The heating behavior was studied in a multimode microwave cavity at 2.4 GHz. The highest microwave heating rate in the temperature range of 315-355 K was observed in the film close to the critical grain size.

  6. Synthesis and Gas Sensing Properties of Single La-Doped SnO2 Nanobelts

    PubMed Central

    Wu, Yuemei; Zhang, Heng; Liu, Yingkai; Chen, Weiwu; Ma, Jiang; Li, Shuanghui; Qin, Zhaojun

    2015-01-01

    Single crystal SnO2 nanobelts (SnO2 NBs) and La-SnO2 nanobelts (La-SnO2 NBs) were synthesized by thermal evaporation. Both a single SnO2 NB sensor and a single La-SnO2 NB sensor were developed and their sensing properties were investigated. It is found that the single La-SnO2 NB sensor had a high sensitivity of 8.76 to ethanediol at a concentration of 100 ppm at 230 °C, which is the highest sensitivity of a single SnO2 NB to ethanediol among three kinds of volatile organic (VOC) liquids studied, including ethanediol, ethanol, and acetone. The La-SnO2 NBs sensor also exhibits a high sensitivity, good selectivity and long-term stability with prompt response time to ethanediol. The mechanism behind the enhanced sensing performance of La-doped SnO2 nanobelts is discussed. PMID:26087374

  7. Are Ski and SnoN Involved in the Tumorigenesis of Oral Squamous Cell Carcinoma Through Smad4?

    PubMed

    Alaeddini, Mojgan; Etemad-Moghadam, Shahroo

    2018-05-04

    Transforming growth factor-β has been implicated in the tumorigenesis of oral squamous cell carcinoma (OSCC). Ski and SnoN are negative regulators of transforming growth factor-β/Smad pathway with both prooncogenic and antioncogenic functions in different cancers. The aim of this study was to assess the expression of Ski and SnoN in OSCC for the first time. Smad4 was also evaluated in these tumors. Clinical data on 61 primary OSCCs were gathered, and the specimens were subjected to immunohistochemical staining with monoclonal antibodies against SKI, SnoN, and Smad4 and scored semiquantitatively. Spearman rank, Fisher exact, and χ tests were used for statistical analysis, and P-value <0.05 was considered significant. Ski positivity and SnoN positivity were mostly cytoplasmic and found in 96.7% and 100% of the cases, respectively. Smad4 staining was low to negative in 65% of the specimens. No significant relationship was found either among the markers or between each of the proteins and the clinicopathologic data (P>0.05). According to our findings, Ski, SnoN, and Smad4 seem to play a role in OSCC oncogenesis, and we suggest that Ski and SnoN functions may take place independent of Smad4. Considering the dual and complex role of these proteins in tumorigenesis, further investigation to clarify the molecular pathways involved in their mode of action is suggested.

  8. Novel Chemoresistive CH4 Sensor with 10 ppm Sensitivity Based on Multi-Walled Carbon Nanotubes (MWCNTs) Functionalized with SnO2nanocrystals

    EPA Science Inventory

    Chemoresistive sensors based on multi-walled carbon nanotubes (MWCNTs)functionalized with SnO2 nanocrystals have great potential for detecting trace gases at low concentrations (single ppm levels) at room temperature, because the SnO2 nanocrystals act as active sites for the chem...

  9. Synthesis of new 2-amino-4H-pyran-3,5-dicarboxylate derivatives using nanocrystalline MIIZr4(PO4)6 ceramics as reusable and robust catalysts under microwave irradiation

    NASA Astrophysics Data System (ADS)

    Safaei-Ghomi, Javad; Javidan, Abdollah; Ziarati, Abolfazl; Shahbazi-Alavi, Hossein

    2015-08-01

    In the present paper, we report the successful synthesis of nanocrystalline MIIZr4(PO4)6 ceramics (M: Mn, Ni, Fe, Co). These nano-structures were characterized by X-ray diffraction, scanning electron microscopy, and vibrating sample magnetometer (VSM). Size of nano-structures was in the range of 20-150 nm. Nano-MIIZr4(PO4)6 as an efficient and green catalyst has been used for the preparation of 2-amino-4H-pyran-3,5-dicarboxylate derivatives by the three-component condensation reaction of ethyl cyanoacetate, ethyl acetoacetate, and various aromatic aldehydes under microwave irradiation. Extraordinarily, the best results were obtained using MnZr4(PO4)6 nanocrystallines as an efficient catalyst. This method provides several advantages including easy work-up, excellent yields, short reaction times, using of microwave as green method, recoverability of the catalyst, and little catalyst loading.

  10. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  11. The Assessment for Sensitivity of a NO2 Gas Sensor with ZnGa2O4/ZnO Core-Shell Nanowires—a Novel Approach

    PubMed Central

    Chen, I-Cherng; Lin, Shiu-Shiung; Lin, Tsao-Jen; Hsu, Cheng-Liang; Hsueh, Ting Jen; Shieh, Tien-Yu

    2010-01-01

    The application of novel core-shell nanowires composed of ZnGa2O4/ZnO to improve the sensitivity of NO2 gas sensors is demonstrated in this study. The growth of ZnGa2O4/ZnO core-shell nanowires is performed by reactive evaporation on patterned ZnO:Ga/SiO2/Si templates at 600 °C. This is to form the homogeneous structure of the sensors investigated in this report to assess their sensitivity in terms of NO2 detection. These novel NO2 gas sensors were evaluated at working temperatures of 25 °C and at 250 °C, respectively. The result reveals the ZnGa2O4/ZnO core-shell nanowires present a good linear relationship (R2 > 0.99) between sensitivity and NO2 concentration at both working temperatures. These core-shell nanowire sensors also possess the highest response (<90 s) and recovery (<120 s) values with greater repeatability seen for NO2 sensors at room temperature, unlike traditional sensors that only work effectively at much higher temperatures. The data in this study indicates the newly-developed ZnGa2O4/ZnO core-shell nanowire based sensors are highly promising for industrial applications. PMID:22319286

  12. Transparent nanocrystalline ZnO and ZnO:Al coatings obtained through ZnS sols

    NASA Astrophysics Data System (ADS)

    Kolobkova, E. V.; Evstropiev, S. K.; Nikonorov, N. V.; Vasilyev, V. N.; Evstropyev, K. S.

    2017-11-01

    Thin and uniform ZnO and ZnO:Al coatings were prepared on glass surfaces by using film-forming colloidal solutions containing small ZnS nanoparticles and polyvinylpyrrolidone as a polymer stabilizer. Film-forming ZnS sols were synthesized in the mixed water-propanol-2 solutions by chemical reaction between zinc nitrate and sodium sulfide. The addition of modifying component such as Al(NO3)3 into the film-forming solutions allows one to obtain thin and uniform ZnO:Al coatings. An increase in the sodium sulfide content in film-forming solutions leads to the growth of light absorption in the UV. The evolution of a coating material at all technological stages from the ZnS sols up to the transparent ZnO and ZnO:Al2O3 coatings (the latter kind being denoted further, in accord with a common practice, by ZnO:Al) was studied using the optical spectroscopy, XRD analysis, DSC-TGA, and SEM methods. The chemical processes of decomposing salts and the polymer occur by heating the intermediate composite ZnS/polyvinylpyrrolidone coatings in the 280-500 °C temperature range. Experimental data show that the ZnO and ZnO:Al coatings prepared consist of the slightly elongated oxide nanoparticles. These coatings fully cover the glass surface and demonstrate a high transparency in the UV and visible.

  13. Electrospinning Hetero-Nanofibers In2O3/SnO2 of Homotype Heterojunction with High Gas Sensing Activity

    PubMed Central

    Du, Haiying; Yao, PengJun; Sun, Yanhui; Wang, Jing; Wang, Huisheng; Yu, Naisen

    2017-01-01

    In2O3/SnO2 composite hetero-nanofibers were synthesized by an electrospinning technique for detecting indoor volatile organic gases. The physical and chemical properties of In2O3/SnO2 hetero-nanofibers were characterized and analyzed by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), Energy Dispersive X-Ray Spectroscopy (EDX), specific surface Brunauer–Emmett–Teller (BET) and X-ray photoelectron spectroscopy (XPS). Gas sensing properties of In2O3/SnO2 composite hetero-nanofibers were measured with six kinds of indoor volatile organic gases in concentration range of 0.5~50 ppm at the operating temperature of 275 °C. The In2O3/SnO2 composite hetero-nanofibers sensor exhibited good formaldehyde sensing properties, which would be attributed to the formation of n-n homotype heterojunction in the In2O3/SnO2 composite hetero-nanofibers. Finally, the sensing mechanism of the In2O3/SnO2 composite hetero-nanofibers was analyzed based on the energy-band principle. PMID:28792433

  14. Effect of vacuum annealing and substrate temperature on structural and optical properties of ZnIn2Se4 thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Attia, A. A.; Salem, G. F.; Ali, H. A. M.; Ismail, M. I.

    2013-09-01

    Zinc indium selenide (ZnIn2Se4) thin films were prepared by the thermal evaporation technique with high deposition rate. The effect of thermal annealing in vacuum on the crystallinity of the as-deposited films was studied at different temperatures (523, 573 and 623 K). The effect of substrate temperature (623 K) for different thickness values (173, 250, 335 and 346 nm) on the optical parameters of ZnIn2Se4 was also studied. The structural studies showed nanocrystalline nature of the room temperature (300 K) deposited films with crystallite size of about a few nanometers. The crystallite size increased up to 31 nm with increasing the annealing temperature in vacuum. From the reflection and transmission data, the refractive index n and the extinction coefficient k were estimated for ZnIn2Se4 thin films and they were found to be independent of film thickness. Analysis of the absorption coefficient data of the as-deposited films revealed the existence of allowed direct and indirect transitions with optical energy gaps of 2.21 eV and 1.71 eV, respectively. These values decreased with increasing annealing temperature. At substrate temperature of 623 K, the direct band gap increased to 2.41 eV whereas the value of indirect band gap remained nearly unchanged. The dispersion analysis showed that the values of the oscillator energy Eo, dispersion energy Ed, dielectric constant at infinite frequency ε∞, and lattice dielectric constant εL were changed appreciably under the effect of annealing and substrate temperature. The covalent nature of structure was studied as a function of the annealing and substrate temperature using an empirical relation for the dispersion energy Ed. Generalized Miller's rule and linear refractive index were used to estimate the nonlinear susceptibility and nonlinear refractive index of the thin films.

  15. Synthesis and characterization of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO nanocomposites from waste batteries for photocatalytic, electrochemical and thermal studies

    NASA Astrophysics Data System (ADS)

    Mylarappa, M.; Venkata Lakshmi, V.; Vishnu Mahesh, K. R.; Nagaswarupa, H. P.; Raghavendra, N.

    2017-11-01

    In the present paper, Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO composites recovered from waste batteries using acid dissolution and ferrite processing were studied. The recovered Mn-ZnFe2O4 nanocomposites were decorated onto rGO using the facile hydrothermal method. The recovered material was characterized using x-ray powder diffraction to study the particle size and crystallinity. The morphology of the composites was analyzed using scanning electron microscopy, and elements present in the materials were studied using energy dispersive x-ray analysis. The functional groups attached were observed using a Fourier transform infrared spectrometer. Furthermore, the recovered composites were evaluated in thermal studies using thermal gravimetric analysis, differential scanning calorimetry and dynamic thermal analysis. The material was used as a photocatalyst for the removal of acid orange 88 dye, and as an electrocatalyst. The decreased band gap energy for the Mn-ZnFe2O4/rGO composite was displayed in better photocatalytic activity for a given reaction. The electrochemical properties of Mn-ZnFe2O4 and Mn-ZnFe2O4/rGO have been investigated using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) with a paste-type electrode. The CV indicated the reversibility of the electrode reaction, and the EIS revealed that a decrease in the charge transfer resistance increases the double layer capacitance of the rGO/Mn-ZnFe2O4 electrode.

  16. SnO2/CNT nanocomposite supercapacitors fabricated using scanning atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Xu, Chang-Han; Chiu, Yi-Fan; Yeh, Po-Wei; Chen, Jian-Zhang

    2016-08-01

    SnO2/CNT electrodes for supercapacitors are fabricated by first screen-printing pastes containing SnO2 nanoparticles and CNTs on carbon cloth, following which nitrogen atmospheric pressure plasma jet (APPJ) sintering is performed at various APPJ scan rates. The APPJ scan rates change the time intervals for which the reactive plasma species and the heat of the nitrogen APPJs influence the designated sintering spot on the carbon cloth, resulting in APPJ-sintered SnO2/CNT nanocomposites with different properties. The water contact angle decreases with the APPJ scan rate. The improved wettability can facilitate the penetration of the electrolyte into the nanopores of the SnO2/CNT nanocomposites, thereby improving the charge storage and specific capacitance of the supercapacitors. Among the three tested APPJ scan rates, 1.5, 3, and 6 mm s-1, the SnO2/CNT supercapacitor sintered by APPJ under the lowest APPJ scan rate of 1.5 mm s-1 shows the best specific capacitance of ˜90 F g-1 as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. A high APPJ scan rate may result in low degree of materials activation and sintering, leading to poorer performance of SnO2/CNT supercapacitors. The results suggest the feasibility of an APPJ roll-to-roll process for the fabrication of SnO2/CNT nanocomposite supercapacitors.

  17. Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting

    NASA Astrophysics Data System (ADS)

    Han, Hyun Soo; Shin, Sun; Noh, Jun Hong; Cho, In Sun; Hong, Kug Sun

    2014-04-01

    Hierarchically organized nanostructures were fabricated by growing SnO2 nanoparticles on a fluorine-doped tin oxide/glass substrate via a laser ablation method. Cauliflower-like clusters consisting of agglomerated nanoparticles were deposited and aligned with respect to the substrate with a large internal surface area and open channels of pores. The morphological changes of SnO2 nanostructured films were investigated as a function of the oxygen working pressure in the range of 100-500 mTorr. A nanostructured scaffold prepared at an oxygen working pressure of 100 mTorr exhibited the best photoelectrochemical (PEC) performance. A Ti:Fe2O3-SnO2 nanostructured photoanode showed the photocurrent that was 34% larger than that of a Ti:Fe2O3 flat photoanode when the amount of Ti:Fe2O3 sensitizer was identical for the two photoanodes. The larger surface area and longer electron lifetime of the Ti:Fe2O3-SnO2 nanostructured photoanode explains its improved PEC performance.

  18. Synthesis, characterization, and magnetic properties of ZnO-ZnFe2O4 nanoparticles with high photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Falak, P.; Hassanzadeh-Tabrizi, S. A.; Saffar-Teluri, A.

    2017-11-01

    In the present research, a magnetic ZnO-ZnFe2O4 binary nanocomposite was synthesized by a one-step microemulsion method. The characteristics of the synthesized powders were characterized using various analytical instruments including X-ray diffraction, scanning electron microscope, transmission electron microscope, thermogravimetric and differential thermal analysis, vibrating sample magnetometer, and ultraviolet-visible spectroscopy. The results of transmission electron microscope proved that the synthesized nanoparticles have irregular morphologies and the average particle size is about 20 nm. The photocatalytic investigation of ZnO-ZnFe2O4 nanoparticles was carried out using methylene blue solution under UV light. The synthesized nanoparticles showed enhanced photocatalytic performance in comparison with the ZnO nanoparticles more than 40%. The magnetization saturation value of ZnO-ZnFe2O4 nanoparticles was about 5.8 emu/g, which was high enough to be magnetically removed by applying a magnetic field. The results showed that the magnetization and coercivity of the samples reduced by increasing calcination temperature.

  19. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells.

    PubMed

    Ashok, Aditya; Vijayaraghavan, S N; Unni, Gautam E; Nair, Shantikumar V; Shanmugam, Mariyappan

    2018-04-27

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO 2 ) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO 2 show a distribution of ∼10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO 2 , is observed to be imposed by trapping and de-trapping processes via SnO 2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO 2 . The photo-generated charge carriers are captured and released by the SnO 2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  20. On the physics of dispersive electron transport characteristics in SnO2 nanoparticle-based dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Ashok, Aditya; Vijayaraghavan, S. N.; Unni, Gautam E.; Nair, Shantikumar V.; Shanmugam, Mariyappan

    2018-04-01

    The present study elucidates dispersive electron transport mediated by surface states in tin oxide (SnO2) nanoparticle-based dye sensitized solar cells (DSSCs). Transmission electron microscopic studies on SnO2 show a distribution of ˜10 nm particles exhibiting (111) crystal planes with inter-planar spacing of 0.28 nm. The dispersive transport, experienced by photo-generated charge carriers in the bulk of SnO2, is observed to be imposed by trapping and de-trapping processes via SnO2 surface states present close to the band edge. The DSSC exhibits 50% difference in performance observed between the forward (4%) and reverse (6%) scans due to the dispersive transport characteristics of the charge carriers in the bulk of the SnO2. The photo-generated charge carriers are captured and released by the SnO2 surface states that are close to the conduction band-edge resulting in a very significant variation; this is confirmed by the hysteresis observed in the forward and reverse scan current-voltage measurements under AM1.5 illumination. The hysteresis behavior assures that the charge carriers are accumulated in the bulk of electron acceptor due to the trapping, and released by de-trapping mediated by surface states observed during the forward and reverse scan measurements.

  1. SnO2 quantum dots with rapid butane detection at lower ppm-level

    NASA Astrophysics Data System (ADS)

    Cai, Pan; Dong, Chengjun; Jiang, Ming; Shen, Yuanyuan; Tao, You; Wang, Yude

    2018-04-01

    SnO2 quantum dots (QDs) were successfully synthesized by a facile approach employing benzyl alcohol and ammonium hydroxide at lower temperature of 130 °C. It is revealed that the SnO2 QDs is about 3 nm in size to form clusters. The gas sensor based on SnO2 QDs shows a high potential for detecting low-ppm-level butane at 400 °C, exhibiting a high sensitivity, short response and rapid recovery time, and effective selectivity. The sensing mechanism is understood in terms of adsorbed oxygen species. Significantly, the excellent sensing performance is attributed to the smaller size of SnO2 and larger surface area (204.85 m2/g).

  2. Probing the Failure Mechanism of SnO2 Nanowires for Sodium-ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Meng; Kushima, Akihiro; Shao, Yuyan

    2013-09-30

    Non-lithium metals such as sodium have attracted wide attention as a potential charge carrying ion for rechargeable batteries, performing the same role as lithium in lithium- ion batteries. As sodium and lithium have the same +1 charge, it is assumed that what has been learnt about the operation of lithium ion batteries can be transferred directly to sodium batteries. Using in-situ TEM, in combination with DFT calculations, we probed the structural and chemical evolution of SnO2 nanowire anodes in Na-ion batteries and compared them quantitatively with results from Li-ion batteries [Science 330 (2010) 1515]. Upon Na insertion into SnO2, amore » displacement reaction occurs, leading to the formation of amorphous NaxSn nanoparticles covered by crystalline Na2O shell. With further Na insertion, the NaxSn core crystallized into Na15Sn4 (x=3.75). Upon extraction of Na (desodiation), the NaxSn core transforms to Sn nanoparticles. Associated with a volume shrinkage, nanopores appear and metallic Sn particles are confined in hollow shells of Na2O, mimicking a peapod structure. These pores greatly increase electrical impedance, therefore naturally accounting for the poor cyclability of SnO2. DFT calculations indicate that Na+ diffuses 30 times slower than Li+ in SnO2, in agreement with in-situ TEM measurement. Insertion of Na can chemo-mechanically soften the reaction product to greater extent than in lithiation. Therefore, in contrast to the lithiation of SnO2, no dislocation plasticity was seen ahead of the sodiation front. This direct comparison of the results from Na and Li highlights the critical role of ionic size and electronic structure of different ionic species on the charge/discharge rate and failure mechanisms in these batteries.« less

  3. Strain effect in epitaxial VO2 thin films grown on sapphire substrates using SnO2 buffer layers

    NASA Astrophysics Data System (ADS)

    Kim, Heungsoo; Bingham, Nicholas S.; Charipar, Nicholas A.; Piqué, Alberto

    2017-10-01

    Epitaxial VO2/SnO2 thin film heterostructures were deposited on m-cut sapphire substrates via pulsed laser deposition. By adjusting SnO2 (150 nm) growth conditions, we are able to control the interfacial strain between the VO2 film and SnO2 buffer layer such that the semiconductor-to-metal transition temperature (TC) of VO2 films can be tuned without diminishing the magnitude of the transition. It is shown that in-plane tensile strain and out-of-plane compressive strain of the VO2 film leads to a decrease of Tc. Interestingly, VO2 films on SnO2 buffer layers exhibit a structural phase transition from tetragonal-like VO2 to tetragonal-VO2 during the semiconductor-to-metal transition. These results suggest that the strain generated by SnO2 buffer provides an effective way for tuning the TC of VO2 films.

  4. Data of chemical analysis and electrical properties of SnO2-TiO2 composite nanofibers.

    PubMed

    Bakr, Zinab H; Wali, Qamar; Ismail, Jamil; Elumalai, Naveen Kumar; Uddin, Ashraf; Jose, Rajan

    2018-06-01

    In this data article, we provide energy dispersive X-ray spectroscopy (EDX) spectra of the electrospun composite (SnO 2 -TiO 2 ) nanowires with the elemental values measured in atomic and weight%. The linear sweep voltammetry data of composite and its component nanofibers are provided. The data collected in this article is directly related to our research article "Synergistic combination of electronic and electrical properties of SnO 2 and TiO 2 in a single SnO 2 -TiO 2 composite nanowire for dye-sensitized solar cells" [1].

  5. Ultrafast Recombination Dynamics in Dye-Sensitized SnO2/TiO2 Core/Shell Films.

    PubMed

    Gish, Melissa K; Lapides, Alexander M; Brennaman, M Kyle; Templeton, Joseph L; Meyer, Thomas J; Papanikolas, John M

    2016-12-15

    Interfacial dynamics are investigated in SnO 2 /TiO 2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([Ru II (bpy) 2 (4,4'-(PO 3 H 2 ) 2 bpy)] 2+ , RuP) using transient absorption methods. Electron injection from the chromophore into the TiO 2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived charge-separated states (CSS) depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO 2 core and must tunnel through the TiO 2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of dye-sensitized photoelectrosynthesis cells (DSPECs).

  6. Magnetic properties of Mn0.1Mg0.2TM0.7Fe2O4 (TM = Zn, Co, or Ni) prepared by hydrothermal processes: The effects of crystal size and chemical composition

    NASA Astrophysics Data System (ADS)

    Nhlapo, T. A.; Msomi, J. Z.; Moyo, T.

    2018-02-01

    Nano-crystalline Zn-, Co-, and Ni-substituted Mn-Mg ferrites were prepared by hydrothermal process and annealed at 1100 °C. Annealing conditions are critical on the crystalline phase. TEM and XRD data reveal particle sizes between 8 nm and 15 nm for the as-prepared fine powders, which increase to about 73 nm after sintering at 1100 °C. Mӧssbauer spectra show well resolved magnetic splitting in bulk samples. The as-prepared fine powders show weak hyperfine splitting and broad central doublets associated with fine particles. Magnetization data reveal a high coercive field at about 300 K of about 945 Oe in the Co-based nanosized oxide, which reduces to about 360 Oe after thermal annealing at 1100 °C. The magnetization curves of Zn- and Ni-based samples show much lower coercive fields indicative of superparamagnetic nanoparticles. The crystallite size and chemical composition have significant effects on the properties of Mn0.1Mg0.2(Zn,Co,Ni)0.7Fe2O4 investigated.

  7. Photocatalytic degradation of diclofenac using TiO2-SnO2 mixed oxide catalysts.

    PubMed

    Mugunthan, E; Saidutta, M B; Jagadeeshbabu, P E

    2017-12-26

    The complex nature of diclofenac limits its biological degradation, posing a serious threat to aquatic organisms. Our present work aims to eliminate diclofenac from wastewater through photocatalytic degradation using TiO 2 -SnO 2 mixed-oxide catalysts under various operating conditions such as catalyst loading, initial diclofenac concentration and initial pH. Different molar ratios of Ti-Sn (1:1, 5:1, 10:1, 20:1 and 30:1) were prepared by the hydrothermal method and were characterized. The results indicated that addition of Sn in small quantity enhances the catalytic activity of TiO 2 . Energy Band gap of the TiO 2 -SnO 2 catalysts was found to increase with an increase in Tin content. TiO 2 -SnO 2 catalyst with a molar ratio of 20:1 was found to be the most effective when compared to other catalysts. The results suggested that initial drug concentration of 20 mg/L, catalyst loading of 0.8 g/L and pH 5 were the optimum operating conditions for complete degradation of diclofenac. Also, the TiO 2 -SnO 2 catalyst was effective in complete mineralization of diclofenac with a maximum total organic carbon removal of 90% achieved under ultraviolet irradiation. The repeatability and stability results showed that the TiO 2 -SnO 2 catalyst exhibited an excellent repeatability and better stability over the repeated reaction cycles. The photocatalytic degradation of diclofenac resulted in several photoproducts, which were identified through LC-MS.

  8. Gas-sensing enhancement methods for hydrothermal synthesized SnO2-based sensors

    NASA Astrophysics Data System (ADS)

    Zhao, Yalei; Zhang, Wenlong; Yang, Bin; Liu, Jingquan; Chen, Xiang; Wang, Xiaolin; Yang, Chunsheng

    2017-11-01

    Gas sensing for hydrothermal synthesized SnO2-based gas sensors can be enhanced in three ways: structural improvement, composition optimization, and processing improvement. There have been zero-dimensional, one-dimensional, and three-dimensional structures reported in the literature. Controllable synthesis of different structures has been deployed to increase specific surface area. Change of composition would intensively tailor the SnO2 structure, which affected the gas-sensing performance. Furthermore, doping and compounding methods have been adopted to promote gas-sensing performance by adjusting surface conditions of SnO2 crystals and constructing heterojunctions. As for processing area, it is very important to find the optimal reaction time and temperature. In this paper, a gas-solid reaction rate constant was proposed to evaluate gas-sensing properties and find an excellent hydrothermal synthesized SnO2-based gas sensor.

  9. Metal-to-insulator transition induced by UV illumination in a single SnO2 nanobelt

    NASA Astrophysics Data System (ADS)

    Viana, E. R.; Ribeiro, G. M.; de Oliveira, A. G.; González, J. C.

    2017-11-01

    An individual tin oxide (SnO2) nanobelt was connected in a back-gate field-effect transistor configuration and the conductivity of the nanobelt was measured at different temperatures from 400 K to 4 K, in darkness and under UV illumination. In darkness, the SnO2 nanobelts showed semiconductor behavior for the whole temperature range measured. However, when subjected to UV illumination the photoinduced carriers were high enough to lead to a metal-to-insulator transition (MIT), near room temperature, at T MIT = 240 K. By measuring the current versus gate voltage curves, and considering the electrostatic properties of a non-ideal conductor, for the SnO2 nanobelt on top of a gate-oxide substrate, we estimated the capacitance per unit length, the mobility and the density of carriers. In darkness, the density was estimated to be 5-10 × 1018 cm-3, in agreement with our previously reported result (Phys. Status Solid. RRL 6, 262-4 (2012)). However, under UV illumination the density of carriers was estimated to be 0.2-3.8 × 1019 cm-3 near T MIT, which exceeded the critical Mott density estimated to be 2.8 × 1019 cm-3 above 240 K. These results showed that the electrical properties of the SnO2 nanobelts can be drastically modified and easily tuned from semiconducting to metallic states as a function of temperature and light.

  10. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs; Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com; Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical andmore » morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.« less

  11. Double Z-scheme ZnO/ZnS/g-C3N4 ternary structure for efficient photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Dong, Zhifang; Wu, Yan; Thirugnanam, Natarajan; Li, Gonglin

    2018-02-01

    In the present work, a novel ZnO/ZnS/g-C3N4 ternary nanocomposite with double Z-scheme heterojunction has been designed via a two-step facile chemical conversion route. The spherical ZnS nanoparticles were uniformly loaded onto ZnO nanoflowers surface. And then the ZnO/ZnS nanocomposite was further hybridized with g-C3N4 nanosheets. Ternary ZnO/ZnS/g-C3N4 nanocomposite displays the largest specific surface area (about 76.2 m2/g), which provides plentiful activated sites for photocatalytic reaction. Furthermore, the ternary material exhibits the highest methylene blue photodegradation rate of about 0.0218 min-1 and the optimum photocatalytic H2 production (1205 μmol/g) over water splitting at 4 h under solar light irradiation. Moreover, it showed the highest photocurrent effect and the minimum charge-transfer resistance. These results implied that the higher photoactivity of ZnO/ZnS/g-C3N4 nanocomposite could be attributed to the multi-steps charge transfer and effective electron-hole separation in the double Z-scheme system.

  12. Preparation of Ru-doped SnO2-supported Pt catalysts and their electrocatalytic properties for methanol oxidation.

    PubMed

    Pang, H L; Zhang, X H; Zhong, X X; Liu, B; Wei, X G; Kuang, Y F; Chen, J H

    2008-03-01

    Ru-doped SnO2 nanoparticles were prepared by chemical precipitation and calcinations at 823 K. Due to high stability in diluted acidic solution, Ru-doped SnO2 nanoparticles were selected as the catalyst support and second catalyst for methanol electrooxidation. The micrograph, elemental composition, and structure of the Ru-doped SnO2 nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction, respectively. The electrocatalytic properties of the Ru-doped SnO2-supported Pt catalyst (Pt/Ru-doped SnO2) for methanol oxidation have been investigated by cyclic voltammetry. Under the same loading mass of Pt, the Pt/Ru-doped SnO2 catalyst shows better electrocatalytic performance than the Pt/SnO2 catalyst and the best atomic ratio of Ru to Sn in Ru-doped SnO2 is 1/75. Additionally, the Pt/Ru-doped SnO2 catalyst possesses good long-term cycle stability.

  13. First-principles study of defect formation in a photovoltaic semiconductor Cu2ZnGeSe4

    NASA Astrophysics Data System (ADS)

    Nishihara, Hironori; Maeda, Tsuyoshi; Wada, Takahiro

    2018-02-01

    The formation energies of neutral Cu, Zn, Ge, and Se vacancies in kesterite-type Cu2ZnGeSe4 were evaluated by first-principles pseudopotential calculations using plane-wave basis functions. The calculations were performed at typical points in Cu-(Zn1/2Ge1/2)-Se and Cu3Se2-ZnSe-GeSe2 pseudoternary phase diagrams for Cu2ZnGeSe4. The results were compared with those for Cu2ZnSnSe4, Cu2ZnGeS4, and Cu2ZnSnS4 calculated using the same version of the CASTEP program code. The results indicate that Cu vacancies are easily formed in Cu2ZnGeSe4 under the Cu-poor condition as in the above compounds and CuInSe2, suggesting that Cu2ZnGeSe4 is also a preferable p-type absorber material for thin-film solar cells. The formation energies of possible antisite defects, such as CuZn and CuGe, and of possible complex defects, such as CuZn+ZnCu, were also calculated and compared within the above materials. The antisite defect of CuZn, which has the smallest formation energy within the possible defects, is concluded to be the most hardly formed in Cu2ZnGeSe4 among the compounds.

  14. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    NASA Astrophysics Data System (ADS)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  15. Synthesis of nanodimensional orthorhombic SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Kanjilal, D.; Bhattacharyya, V.

    2018-04-01

    Amorphous thin films of SnO2 are irradiated by swift heavy ions at two different fluences. Unirradiated as well as irradiated films are characterized by glancing angle X-ray diffraction (GAXRD), UV-Vis spectroscopy and atomic force microscopy (AFM). GAXRD study reveals formation of orthorhombic nanophases of SnO2. Nanophase formation is also confirmed by the quantum size effect manifested by blue shift in terms of increase in band gap energy. The size and shape of the irradiation induced surface structures depend on ion fluence.

  16. Syntheses, structures and properties of homo- and heterobimetallic complexes of the type [Zn(tren)NCS] 2[M(NCS) 4] [tren = tris(2-aminoethyl)amine; M = Zn, Cu

    NASA Astrophysics Data System (ADS)

    Chattopadhyay, Soumi; Bhar, Kishalay; Das, Sumitra; Chantrapromma, Suchada; Fun, Hoong-Kun; Ghosh, Barindra Kumar

    2010-04-01

    A 2:2:1:6 molar ratio of Zn(ClO 4) 2·6H 2O, tris(2-aminoethyl)amine (tren), Zn(ClO 4) 2·6H 2O/Cu(ClO 4) 2·6H 2O and NH 4NCS in methanol-water solution mixtures affords homo-/heterobimetallic compounds of the type [Zn(tren)NCS] 2[M(NCS) 4] (M = Zn, 1; M = Cu, 2) which have been characterized using microanalytical, spectroscopic, magnetic and other physicochemical results. The structures of the compounds are determined by X-ray diffraction measurements. Structural analyses reveal that 1 and 2 are isomorphous and consist of two discrete [Zn(tren)NCS] + cations and a [M(NCS) 4] 2- (M = Zn/Cu) anion. Zinc(II) centers in the [Zn(tren)NCS] + units adopt distorted trigonal bipyramidal geometry with ZnN 5 chromophores coordinated through four N atoms of tren and one N atom of terminal thiocyanate. Each metal(II) center in [M(NCS) 4] 2- has a distorted tetrahedral coordination environment with an MN 4 chromophore ligated by four N atoms of the terminal thiocyanates. In solid state, doubly N-H…S hydrogen bonded 1D chains of [Zn(tren)NCS] + cations are interconnected by tetrahedral [Zn(NCS) 4] 2-/[Cu(NCS) 4] 2- anions through cooperative N-H…S and N-H…N (in 1) and N-H…S and C-H…S (in 2) hydrogen bonds resulting in 3D network structures. Establishment of such networks seems to be aiding the crystallization.

  17. Zn2GeO4 nanowires as efficient electron injection material for electroluminescent devices.

    PubMed

    Wang, Jiangxin; Yan, Chaoyi; Magdassi, Shlomo; Lee, Pooi See

    2013-08-14

    Pure phase Zn2GeO4 nanowires (NWs) were grown by the chemical vapor transport method on p-GaN: Mg/Al2O3 substrate. The as-grown Zn2GeO4 NWs exhibited n-type characteristic due to native defects and formed a p-n heterojunction with the p-GaN substrate. The unique energy level of Zn2GeO4 NWs promotes electron injection into GaN active region while suppressing hole injection into Zn2GeO4 NWs. The device exhibited an emission centered at 426 nm and a low turn-on voltage around 4 V. Zn2GeO4 NWs are first reported in this paper as promising electron transport and injection material for electroluminescent devices.

  18. Synthesis and property of spinel porous ZnMn2O4 microspheres

    NASA Astrophysics Data System (ADS)

    Guo, N.; Wei, X. Q.; Deng, X. L.; Xu, X. J.

    2015-11-01

    Mesoporous ternary zinc manganese oxides on the Ti sheet substrate are prepared by easy and fast hydrothermal method for the first time. The obtained ZnMn2O4 materials with homogenously distributed pores have been characterized by XRD, SEM and Raman spectra, which show the good crystal phase and particles for improving supercapacitive performance. XRD and SEM images show that the as-prepared samples have good crystallinity, and ZnMn2O4 microsphere has an average diameter of 10 μm. In addition, ZnMn2O4 are also characterized in 2 M KOH solution using three-electrode system. In the work, we study that different substrates (Ti, carbon and nickel foam) have an important effect on the electrochemical performance of the samples. The research of cyclic voltammogram (CV) indicates that the obtained specific capacitance (155 F g-1) values on nickel foam substrate for the ZnMn2O4 microspheres are higher than the values reported for some inexpensive oxides. However, the specific capacitance of all ZnMn2O4 samples has almost no change at two different scan rates which shows good long-term cycling stability. The electrochemical impedance spectroscopy with a small resistance reveals that the as-synthesized samples have good frequency response characteristics. These results indicate that the unique ZnMn2O4 electrode would be a promising electrode for high-performance supercapacitor applications.

  19. Metal-Organic Framework-Derived Reduced Graphene Oxide-Supported ZnO/ZnCo2O4/C Hollow Nanocages as Cathode Catalysts for Aluminum-O2 Batteries.

    PubMed

    Liu, Yisi; Jiang, Hao; Hao, Jiayu; Liu, Yulong; Shen, Haibo; Li, Wenzhang; Li, Jie

    2017-09-20

    Aluminum-air battery is a promising candidate for large-scale energy applications because of its low cost and high energy density. Remarkably, tremendous efforts have been concentrated on developing efficient and stable cathode electrocatalysts toward the oxygen reduction reaction. In this work, a hydrothermal-calcination approach was utilized to prepare novel reduced graphene oxide (rGO)-supported hollow ZnO/ZnCo 2 O 4 nanoparticle-embedded carbon nanocages (ZnO/ZnCo 2 O 4 /C@rGO) using a zeolitic imidazolate framework (ZIF-67)/graphene oxide/zinc nitrate composite as the precursor. The ZnO/ZnCo 2 O 4 /C@rGO hybrid exhibits remarkable electrocatalytic performance for oxygen reduction reaction under alkaline conditions and superior stability and methanol tolerance to those of the commercial Pt/C catalyst. Furthermore, novel and simple Al-air coin cells were first fabricated using the hybrid materials as cathode catalysts under ambient air conditions to further investigate their catalytic performance. The coin cell with the ZnO/ZnCo 2 O 4 /C@rGO cathode catalyst displays a higher open circuit voltage and discharge voltage and more sluggish potential drop than those of the cell with the ZnO/ZnCo 2 O 4 /C cathode catalyst, which confirms that rGO can enhance the electrocatalytic activity and stability of the catalyst system. The excellent electrocatalytic performance of the ZnO/ZnCo 2 O 4 /C@rGO hybrid is attributed to the prominent conductivity and high specific surface area resulting from rGO, the more accessible catalytic active sites induced by the unique porous hollow nanocage structure, and synergic covalent coupling between rGO sheets and ZnO/ZnCo 2 O 4 /C nanocages.

  20. [Ski and SnoN: antagonistic proteins of TGFbeta signaling].

    PubMed

    Vignais, M L

    2000-02-01

    Ski and SnoN are two proto-oncogenes that, at high cellular concentrations, are associated with tumors. Up to now, apart the fact that SnoN and Ski were known to bind to DNA indirectly, very little was known about the mechanism which enables these factors to induce tumorigenesis. We know now that SnoN and Ski interact with the SMAD proteins which are mediators of TGFbeta signaling. These SMADs enable recruitment to target gene promoters of SnoN and Ski as well as the histone deacetylase activity which is associated with them. Whereas physiologic concentrations of SnoN and Ski allow a feedback regulation of TGFbeta signaling, deregulation of SnoN or Ski expression leads to total inhibition of TGFbeta signaling and of the tumor suppressors Smad2 and Smad4, which can explain the role of SnoN and Ski as oncogenes.

  1. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  2. A novel snowflake-like SnO2 hierarchical architecture with superior gas sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yanqiong

    2018-02-01

    Snowflake-like SnO2 hierarchical architecture has been synthesized via a facile hydrothermal method and followed by calcination. The SnO2 hierarchical structures are assembled with thin nanoflakes blocks, which look like snowflake shape. A possible mechanism for the formation of the SnO2 hierarchical structures is speculated. Moreover, gas sensing tests show that the sensor based on snowflake-like SnO2 architectures exhibited excellent gas sensing properties. The enhancement may be attributed to its unique structures, in which the porous feature on the snowflake surface could further increase the active surface area of the materials and provide facile pathways for the target gas.

  3. Fabrication of textured SnO2 transparent conductive films using self-assembled Sn nanospheres

    NASA Astrophysics Data System (ADS)

    Fukumoto, Michitaka; Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2018-06-01

    We present a novel method to fabricate textured surfaces on transparent conductive SnO2 films by processing substrates through a bottom-up technique with potential for industrially scalable production. The substrate processing consists of three steps: deposition of precursor Sn films on glass substrates, formation of a self-assembled Sn nanosphere layer with reductive annealing, and conversion of Sn to SnO2 by oxidative annealing. Ta-doped SnO2 films conformally deposited on the self-assembled nanospherical SnO2 templates exhibited attractive optical and electrical properties, namely, enhanced haze values and low sheet resistances, for applications as transparent electrodes in photovoltaics.

  4. SnO2@C@VO2 Composite Hollow Nanospheres as an Anode Material for Lithium-Ion Batteries.

    PubMed

    Guo, Wenbin; Wang, Yong; Li, Qingyuan; Wang, Dongxia; Zhang, Fanchao; Yang, Yiqing; Yu, Yang

    2018-05-02

    Porous SnO 2 @C@VO 2 composite hollow nanospheres were ingeniously constructed through the combination of layer-by-layer deposition and redox reaction. Moreover, to optimize the electrochemical properties, SnO 2 @C@VO 2 composite hollow nanospheres with different contents of the external VO 2 were also studied. On the one hand, the elastic and conductive carbon as interlayer in the SnO 2 @C@VO 2 composite can not only buffer the huge volume variation during repetitive cycling but also effectively improve electronic conductivity and enhance the utilizing rate of SnO 2 and VO 2 with high theoretical capacity. On the other hand, hollow nanostructures of the composite can be consolidated by the multilayered nanocomponents, resulting in outstanding cyclic stability. In virtue of the above synergetic contribution from individual components, SnO 2 @C@VO 2 composite hollow nanospheres exhibit a large initial discharge capacity (1305.6 mAhg -1 ) and outstanding cyclic stability (765.1 mAhg -1 after 100 cycles). This design of composite hollow nanospheres may be extended to the synthesis of other nanomaterials for electrochemical energy storage.

  5. Cation-Deficient Spinel ZnMn2O4 Cathode in Zn(CF3SO3)2 Electrolyte for Rechargeable Aqueous Zn-Ion Battery.

    PubMed

    Zhang, Ning; Cheng, Fangyi; Liu, Yongchang; Zhao, Qing; Lei, Kaixiang; Chen, Chengcheng; Liu, Xiaosong; Chen, Jun

    2016-10-05

    Rechargeable aqueous Zn-ion batteries are attractive cheap, safe and green energy storage technologies but are bottlenecked by limitation in high-capacity cathode and compatible electrolyte to achieve satisfactory cyclability. Here we report the application of nonstoichiometric ZnMn 2 O 4 /carbon composite as a new Zn-insertion cathode material in aqueous Zn(CF 3 SO 3 ) 2 electrolyte. In 3 M Zn(CF 3 SO 3 ) 2 solution that enables ∼100% Zn plating/stripping efficiency with long-term stability and suppresses Mn dissolution, the spinel/carbon hybrid exhibits a reversible capacity of 150 mAh g -1 and a capacity retention of 94% over 500 cycles at a high rate of 500 mA g -1 . The remarkable electrode performance results from the facile charge transfer and Zn insertion in the structurally robust spinel featuring small particle size and abundant cation vacancies, as evidenced by combined electrochemical measurements, XRD, Raman, synchrotron X-ray absorption spectroscopy, FTIR, and NMR analysis. The results would enlighten and promote the use of cation-defective spinel compounds and trifluoromethanesulfonic electrolyte to develop high-performance rechargeable zinc batteries.

  6. SnO2-gated AlGaN/GaN high electron mobility transistors based oxygen sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hung, S.T.; Chung, Chi-Jung; Chen, Chin Ching

    2012-01-01

    Hydrothermally grown SnO2 was integrated with AlGaN/GaN high electron mobility transistor (HEMT) sensor as the gate electrode for oxygen detection. The crystalline of the SnO2 was improved after annealing at 400 C. The grain growth kinetics of the SnO2 nanomaterials, together with the O2 gas sensing properties and sensing mechanism of the SnO2 gated HEMT sensors were investigated. Detection of 1% oxygen in nitrogen at 100 C was possible. A low operation temperature and low power consumption oxygen sensor can be achieved by combining the SnO2 films with the AlGaN/GaN HEMT structure

  7. Synthesis of magnetic Bi2O2CO3/ZnFe2O4 composite with improved photocatalytic activity and easy recyclability

    NASA Astrophysics Data System (ADS)

    Liu, Yumin; Ren, Hao; Lv, Hua; Guang, Jing; Cao, Yafei

    2018-03-01

    Magnetic Bi2O2CO3/ZnFe2O4 heterojunction photocatalysts with varying content of ZnFe2O4 were constructed by modifying Bi2O2CO3 nanosheets with mesoporous ZnFe2O4 nanoparticles. The photoactivity of the products was investigated by decomposing RhodamineB (RhB) and it was found that the photoactivity of Bi2O2CO3/ZnFe2O4 composite was closely related to the loading amount of ZnFe2O4. Under simulant sunlight irradiation, the optimum photoactivity of Bi2O2CO3/ZnFe2O4 composite was almost 2.3 and 2.1 times higher than that by bare ZnFe2O4 and Bi2O2CO3, respectively. The improved photoactivity resulted from the synergistic effect of Bi2O2CO3 and ZnFe2O4, which not only extended the photoabsorption region but also significantly facilitated the interfacial charge transfer. Besides the high photocatalytic performance, Bi2O2CO3/ZnFe2O4 composite also exhibited excellent stable and recycling properties, which enabled it have great potential in a long-term practical use.

  8. Antibacterial studies of ZnO nanoparticle coatings on nanocrystalline YSZ irradiated with femtosecond laser light

    NASA Astrophysics Data System (ADS)

    Alvarez, Crysthal; Garcia, Valeria; Cuando, Natanael; Aguilar, Guillermo

    2018-02-01

    Recently, efforts have been made to create a transparent ceramic cranial implant comprised of nanocrystalline yttriastabilized zirconia (nc-YSZ) that will provide optical access to the brain. This has been referred to as Window to the Brain (WttB) in the literature. WttB will allow the use of laser and photonic treatments and diagnostics in areas with difficult optical access in the brain. Nevertheless, infection is still one of the frequent cranial implant complications. In most cases a second surgery is required to replace the infected implant. To address potential infections in the WttB platform, we have studied the antibacterial effect of a Zinc Oxide (ZnO) nanoparticles coating on nc-YSZ. After coating with ZnO nanoparticles, the implant was irradiated with infrared femtosecond laser light. We synthesized ZnO nanoparticles through the Laser Ablation of Solids in Liquids (LASL) method, using a Zinc solid target in a liquid medium (water/acetone). Antibacterial coatings were obtained by air brush, using a precursor solution of ZnO nanoparticles in distilled water. Escherichia coli (E. coli) have been used as representative, clinical relevant bacteria to probe the antibacterial effect of the coating. Our previous studies suggested that the use of ZnO nanoparticles inhibit bacterial growth. Laser irradiation treatment alone also offers inhibition of bacterial growth, up to 70%. The incorporation of nanoparticles offers an additional 20% inhibition. Thus, this work represents the next step towards the development of a clinically-oriented transparent cranial implant.

  9. Synthesis of ZnGa2O4 Hierarchical Nanostructure by Au Catalysts Induced Thermal Evaporation

    PubMed Central

    2010-01-01

    In this paper, ZnGa2O4 hierarchical nanostructures with comb-like morphology are fabricated by a simple two-step chemical vapor deposition (CVD) method: first, the Ga2O3 nanowires were synthesized and employed as templates for the growth of ZnGa2O4 nanocombs; then, the as-prepared Ga2O3 nanowires were reacted with ZnO vapor to form ZnGa2O4 nanocombs. Before the reaction, the Au nanoparticles were deposited on the surfaces of Ga2O3 nanowires and used as catalysts to control the teeth growth of ZnGa2O4 nanocombs. The as-prepared ZnGa2O4 nanocombs were highly crystallized with cubic spinel structure. From the photoluminescence (PL) spectrum, a broad band emission in the visible light region was observed of as-prepared ZnGa2O4 nanocombs, which make it promising application as an optical material. PMID:20802787

  10. Nanocrystalline NiNd0.01Fe1.99O4 as a gas sensor

    NASA Astrophysics Data System (ADS)

    Shinde, Tukaram J.; Gadkari, Ashok B.; Jadhav, Sarjerao R.; Kumar, Surender; Dalawai, Sanjeev P.; Vasambekar, Pramod N.

    2015-06-01

    Nanocrystalline NiNd0.01Fe1.99O4 has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl2, LPG and C2H5OH. It was observed that NiNd0.01Fe1.99O4 is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.

  11. Excellent rate capability and cycling stability in Li+-conductive Li2SnO3-coated LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries.

    PubMed

    Mou, Jirong; Deng, Yunlong; Song, Zhicui; Zheng, Qiaoji; Lam, Kwok Ho; Lin, Dunmin

    2018-05-22

    High-voltage LiNi0.5Mn1.5O4 is a promising cathode candidate for lithium-ion batteries (LIBs) due to its considerable energy density and power density, but the material generally undergoes serious capacity fading caused by side reactions between the active material and organic electrolyte. In this work, Li+-conductive Li2SnO3 was coated on the surface of LiNi0.5Mn1.5O4 to protect the cathode against the attack of HF, mitigate the dissolution of Mn ions during cycling and improve the Li+ diffusion coefficient of the materials. Remarkable improvement in cycling stability and rate performance has been achieved in Li2SnO3-coated LiNi0.5Mn1.5O4. The 1.0 wt% Li2SnO3-coated LiNi0.5Mn1.5O4 cathode exhibits excellent cycling stability with a capacity retention of 88.2% after 150 cycles at 0.1 C and rate capability at high discharge rates of 5 C and 10 C, presenting discharge capacities of 119.5 and 112.2 mAh g-1, respectively. In particular, a significant improvement in cycling stability at 55 °C is obtained after the coating of 1.0 wt% Li2SnO3, giving a capacity retention of 86.8% after 150 cycles at 1 C and 55 °C. The present study provides a significant insight into the effective protection of Li-conductive coating materials for a high-voltage LiNi0.5Mn1.5O4 cathode material.

  12. Effect of fluorine doping on highly transparent conductive spray deposited nanocrystalline tin oxide thin films

    NASA Astrophysics Data System (ADS)

    Moholkar, A. V.; Pawar, S. M.; Rajpure, K. Y.; Bhosale, C. H.; Kim, J. H.

    2009-09-01

    The undoped and fluorine doped thin films are synthesized by using cost-effective spray pyrolysis technique. The dependence of optical, structural and electrical properties of SnO 2 films, on the concentration of fluorine is reported. Optical absorption, X-ray diffraction, scanning electron microscope (SEM) and Hall effect studies have been performed on SnO 2:F (FTO) films coated on glass substrates. The film thickness varies from 800 to 1572 nm. X-ray diffraction pattern reveals the presence of cassiterite structure with (2 0 0) preferential orientation for FTO films. The crystallite size varies from 35 to 66 nm. SEM and AFM study reveals the surface of FTO to be made of nanocrystalline particles. The electrical study reveals that the films are degenerate and exhibit n-type electrical conductivity. The 20 wt% F doped film has a minimum resistivity of 3.8 × 10 -4 Ω cm, carrier density of 24.9 × 10 20 cm -3 and mobility of 6.59 cm 2 V -1 s -1. The sprayed FTO film having minimum resistance of 3.42 Ω/cm 2, highest figure of merit of 6.18 × 10 -2 Ω -1 at 550 nm and 96% IR reflectivity suggest, these films are useful as conducting layers in electrochromic and photovoltaic devices and also as the passive counter electrode.

  13. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds.

    PubMed

    Bhattacharjee, Archita; Ahmaruzzaman, M; Sinha, Tanur

    2015-02-05

    Tin oxide (SnO2) nanoparticles of sizes ∼4.5, ∼10 and ∼30 nm were successfully synthesized by a simple chemical precipitation method using amino acid, glycine which acts as a complexing agent and surfactant, namely sodium dodecyl sulfate (SDS) as a stabilizing agent, at various calcination temperatures of 200, 400 and 600°C. This method resulted in the formation of spherical SnO2 nanoparticles and the size of the nanoparticles was found to be a factor of calcination temperature. The spherical SnO2 nanoparticles show a tetragonal rutile crystalline structure. A dramatic increase in band gap energy (3.8-4.21 eV) was observed with a decrease in grain size (30-4.5 nm) due to three dimensional quantum confinement effect shown by the synthesized SnO2 nanoparticles. SnO2 nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and fourier transformed infrared spectroscopy (FT-IR). The optical properties were investigated using UV-visible spectroscopy. These SnO2 nanoparticles were employed as catalyst for the reduction of p-nitro phenol to p-amino phenol in aqueous medium for the first time. The synthesized SnO2 nanoparticles act as an efficient photocatalyst in the degradation of methyl violet 6B dye under direct sunlight. For the first time, methyl violet 6B dye was degraded by SnO2 nanoparticles under direct sunlight. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. BiVO4/WO3/SnO2 Double-Heterojunction Photoanode with Enhanced Charge Separation and Visible-Transparency for Bias-Free Solar Water-Splitting with a Perovskite Solar Cell.

    PubMed

    Baek, Ji Hyun; Kim, Byeong Jo; Han, Gill Sang; Hwang, Sung Won; Kim, Dong Rip; Cho, In Sun; Jung, Hyun Suk

    2017-01-18

    Coupling dissimilar oxides in heterostructures allows the engineering of interfacial, optical, charge separation/transport and transfer properties of photoanodes for photoelectrochemical (PEC) water splitting. Here, we demonstrate a double-heterojunction concept based on a BiVO 4 /WO 3 /SnO 2 triple-layer planar heterojunction (TPH) photoanode, which shows simultaneous improvements in the charge transport (∼93% at 1.23 V vs RHE) and transmittance at longer wavelengths (>500 nm). The TPH photoanode was prepared by a facile solution method: a porous SnO 2 film was first deposited on a fluorine-doped tin oxide (FTO)/glass substrate followed by WO 3 deposition, leading to the formation of a double layer of dense WO 3 and a WO 3 /SnO 2 mixture at the bottom. Subsequently, a BiVO 4 nanoparticle film was deposited by spin coating. Importantly, the WO 3 /(WO 3 +SnO 2 ) composite bottom layer forms a disordered heterojunction, enabling intimate contact, lower interfacial resistance, and efficient charge transport/transfer. In addition, the top BiVO 4 /WO 3 heterojunction layer improves light absorption and charge separation. The resultant TPH photoanode shows greatly improved internal quantum efficiency (∼80%) and PEC water oxidation performance (∼3.1 mA/cm 2 at 1.23 V vs RHE) compared to the previously reported BiVO 4 /WO 3 photoanodes. The PEC performance was further improved by a reactive-ion etching treatment and CoO x electrocatalyst deposition. Finally, we demonstrated a bias-free and stable solar water-splitting by constructing a tandem PEC device with a perovskite solar cell (STH ∼3.5%).

  15. Study on preparation of SnO2-TiO2/Nano-graphite composite anode and electro-catalytic degradation of ceftriaxone sodium.

    PubMed

    Guo, Xiaolei; Wan, Jiafeng; Yu, Xiujuan; Lin, Yuhui

    2016-12-01

    In order to improve the electro-catalytic activity and catalytic reaction rate of graphite-like material, Tin dioxide-Titanium dioxide/Nano-graphite (SnO 2 -TiO 2 /Nano-G) composite was synthesized by a sol-gel method and SnO 2 -TiO 2 /Nano-G electrode was prepared in hot-press approach. The composite was characterized by X-ray photoelectron spectroscopy, fourier transform infrared, Raman, N 2 adsorption-desorption, scanning electrons microscopy, transmission electron microscopy and X-ray diffraction. The electrochemical performance of the SnO 2 -TiO 2 /Nano-G anode electrode was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The electro-catalytic performance was evaluated by the degradation of ceftriaxone sodium and the yield of ·OH radicals in the reaction system. The results demonstrated that TiO 2 , SnO 2 and Nano-G were composited successfully, and TiO 2 and SnO 2 particles dispersed on the surface and interlamination of the Nano-G uniformly. The specific surface area of SnO 2 modified anode was higher than that of TiO 2 /Nano-G anode and the degradation rate of ceftriaxone sodium within 120 min on SnO 2 -TiO 2 /Nano-G electrode was 98.7% at applied bias of 2.0 V. The highly efficient electro-chemical property of SnO 2 -TiO 2 /Nano-G electrode was attributed to the admirable conductive property of the Nano-G and SnO 2 -TiO 2 /Nano-G electrode. Moreover, the contribution of reactive species ·OH was detected, indicating the considerable electro-catalytic activity of SnO 2 -TiO 2 /Nano-G electrode. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. High-pressure phases transitions in SnO2 to 117 GPa: Implications for silica

    NASA Astrophysics Data System (ADS)

    Shieh, S. R.; Kubo, A.; Duffy, T. S.; Prakapenka, V. B.; Shen, G.

    2005-12-01

    Cassiterite (SnO2) is regarded to be a good analog material for silica as both SnO2 and SiO2 are group IV-B metal dioxides. The high-pressure behavior of SnO2 has been the subject of many previous investigations extending up to 49 GPa and in addition to the rutile structure, three high-pressure phases, CaCl2-type, α-PbO2-type, and pyrite-type were observed. Better knowledge of high-pressure phases of SnO2 will be useful to understand the behavior of silica at deep mantle conditions. In addition, high-pressure metal dioxide phases may qualify as superhard solids. Our study will also provide insights into interpretation of shock compression data. Pure natural cassiterite (SnO2) powder was compressed in a diamond anvil cell using an argon medium. Pressure was determined from the equation of state of platinum. In situ monochromatic x-ray diffraction at high pressure was carried out at the GSECARS, Advanced Photon Source. High temperatures were achieved using double-sided laser heating . Three heating cycles were conducted with total heating times up to 30 minutes. Our diffraction results on SnO2 demonstrate the existence of four phase transitions to 117 GPa. The observed sequence of high-pressure phases for SnO2 is rutile-type, CaCl2-type, pyrite-type, ZrO2 orthorhombic phase I (Pbca), cotunnite-type. Our observations of the first three phases are generally in agreement with earlier studies. The orthorhombic phase I and cotunnite-type structures were observed in SnO2 for the first time. The Pbca phase is found at 50-74 GPa during room-temperature compression. The cotunnite-type structure was synthesized when SnO2 was heated at 74 GPa and 1200 K. The cotunnite-type form was observed during compression between 54-117 GPa. Fitting the pressure-volume data for the high-pressure phases to the second-order Birch-Murnaghan equation of state yields a bulk modulus of 259(26) GPa for the Pbca phase and 417(7) GPa for the cotunnite-type phase. Rietveld profile refinements were

  17. In situ synthesized SnO2 nanorod/reduced graphene oxide low-dimensional structure for enhanced lithium storage

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Xiao, Xuezhang; Zhang, Yiwen; Li, Junpeng; Zhong, Jiayi; Li, Meng; Fan, Xiulin; Wang, Chuntao; Chen, Lixin

    2018-03-01

    A unique SnO2 nanorod (NR)/reduced graphene oxide (RGO) composite morphology has been synthesized using the in situ hydrothermal method, for use as an anode material in lithium-ion batteries. The SnO2 NR adhering to the RGO exhibits a length of 250-400 nm and a diameter of 60-80 nm without any obvious aggregation. The initial discharge/charge capacities of the SnO2 NR/RGO composite are 1761.3 mAh g-1 and 1233.1 mAh g-1, with a coulombic efficiency (CE) of 70% under a current density of 200 mA g-1, and a final capacity of 1101 mAh g-1 after 50 cycles. The rate capability of the SnO2 NR/RGO is also improved compared to that of bare SnO2 NR. The superior electrochemical performance is ascribed to the special morphology of the SnO2 NRs—which plays a role in shorting the transmission path—and the sheet-like 2D graphene, which prevents the agglomeration of SnO2 and enhances conductivity during the electrochemical reaction of SnO2 NR/RGO.

  18. Chip-to-chip SnO2 nanowire network sensors for room temperature H2 detection

    NASA Astrophysics Data System (ADS)

    Köck, A.; Brunet, E.; Mutinati, G. C.; Maier, T.; Steinhauer, S.

    2012-06-01

    The employment of nanowires is a very powerful strategy to improve gas sensor performance. We demonstrate a gas sensor device, which is based on silicon chip-to-chip synthesis of ultralong tin oxide (SnO2) nanowires. The sensor device employs an interconnected SnO2 nanowire network configuration, which exhibits a huge surface-to-volume ratio and provides full access of the target gas to the nanowires. The chip-to-chip SnO2 nanowire device is able to detect a H2 concentration of only 20 ppm in synthetic air with ~ 60% relative humidity at room temperature. At an operating temperature of 300°C a concentration of 50 ppm H2 results in a sensitivity of 5%. At this elevated temperature the sensor shows a linear response in a concentration range between 10 ppm and 100 ppm H2. The SnO2-nanowire fabrication procedure based on spray pyrolysis and subsequent annealing is performed at atmospheric pressure, requires no vacuum and allows upscale of the substrate to a wafer size. 3D-integration with CMOS chips is proposed as viable way for practical realization of smart nanowire based gas sensor devices for the consumer market.

  19. Metal-Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery.

    PubMed

    Ge, Xiaoli; Li, Zhaoqiang; Wang, Chengxiang; Yin, Longwei

    2015-12-09

    Metal-organic frameworks (MOFs) derived porous core/shell ZnO/ZnCo2O4/C hybrids with ZnO as a core and ZnCo2O4 as a shell are for the first time fabricated by using core/shell ZnCo-MOF precursors as reactant templates. The unique MOFs-derived core/shell structured ZnO/ZnCo2O4/C hybrids are assembled from nanoparticles of ZnO and ZnCo2O4, with homogeneous carbon layers coated on the surface of the ZnCo2O4 shell. When acting as anode materials for lithium-ion batteries (LIBs), the MOFs-derived porous ZnO/ZnCo2O4/C anodes exhibit outstanding cycling stability, high Coulombic efficiency, and remarkable rate capability. The excellent electrochemical performance of the ZnO/ZnCo2O4/C LIB anodes can be attributed to the synergistic effect of the porous structure of the MOFs-derived core/shell ZnO/ZnCo2O4/C and homogeneous carbon layer coating on the surface of the ZnCo2O4 shells. The hierarchically porous core/shell structure offers abundant active sites, enhances the electrode/electrolyte contact area, provides abundant channels for electrolyte penetration, and also alleviates the structure decomposition induced by Li(+) insertion/extraction. The carbon layers effectively improve the conductivity of the hybrids and thus enhance the electron transfer rate, efficiently prevent ZnCo2O4 from aggregation and disintegration, and partially buffer the stress induced by the volume change during cycles. This strategy may shed light on designing new MOF-based hybrid electrodes for energy storage and conversion devices.

  20. Synthesis and characterisations of SnO2 nanorods via low temperature hydrothermal method

    NASA Astrophysics Data System (ADS)

    Inderan, Vicinisvarri; Lim, Shin Ye; Ong, Teng Sian; Bastien, Samuel; Braidy, Nadi; Lee, Hooi Ling

    2015-12-01

    In the present study, tin oxide (SnO2) nanorods were successfully synthesized through hydrothermal treatment at a relatively low temperature (180 °C) using various concentrations of metal precursor, SnCl4·5H2O (0.04 M-0.16 M) in a mixed solution of ethanol and water before bringing the pH to 13 by adding 6 M NaOH. The effect of concentration on the morphology and structure of SnO2 were comprehensively studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and Fourier Transform Infrared (FTIR). It was found that increasing the concentration of tin precursor from 0.04 M to 0.16 M leads to a complete conversion from nanospheres to nanoplates and finally to nanorods. The SEM results confirmed that SnO2 nanorods are obtained for concentrations up to 0.12 M. At synthesis condition of 0.12 M, SnCl4·5H2O and pH 13, single rutile nanorods with preferential growth in the [002] direction were obtained. It was found that the diameter of nanorods formed at 0.12 M is similar to that of nanoplates formed at 0.08 M (20 nm), which suggests that spear-shaped nanorods might have originated from the primary nanoparticles (the particles grown in lower concentration during hydrothermal treatment). Possible reaction mechanisms are proposed to explain the observed morphologies.

  1. Facile fabrication of hollow mesosphere of crystalline SnO2 nanoparticles and synthesis of SnO2@SWCNTs@Reduced Graphene Oxide nanocomposite as efficient Pt-Free counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Wasim; Yao, Jixin; Zhang, Kang; Zuo, Xueqin; Yang, Qun; Tang, Huaibao; Ur Rehman, Khalid Mehmood; Li, Guang; Wu, Mingzai; Zhu, Kerong; Zhang, Haijun

    2018-06-01

    In this research, SnO2@SWCNTs@Reduced Graphene Oxide based nanocomposite was synthesized by a one step hydrothermal method and reported new cost effective platinum-free counter-electrodes (CEs) in dye-sensitized solar cells (DSSCs). The CEs were formed by using the nanocomposites with the help of a pipette using a doctor-blade technique. The efficiency of this nanocomposite revealed significant elctrocatalytic properties upon falling the triiodide, possessing to synergistic effect of SnO2 nano particles and improved conductivity when SWCNTs dispersed on graphene sheet. Therefore, the power conversion efficiency (PCE) of prepared SnO2@SWCNTs@RGO nanocomposite CE attained of (6.1%) in DSSCs which is equivalent to the value (6.2%) which attained to the value (6.2%) with pure Pt CE as a reference. SnO2@SWCNTs@RGO nanocomposite CEs give more stable catalytic activities for triiodide reduction than SnO2 and SWCNTs CEs in the cyclic voltammetry (CV) analysis. Furthermore, to the subsistence of graphene oxide, the nanocomposite acquired both higher stability and efficiency in the nanocomposite.

  2. Highly Efficient Gas Sensor Using a Hollow SnO2 Microfiber for Triethylamine Detection.

    PubMed

    Zou, Yihui; Chen, Shuai; Sun, Jin; Liu, Jingquan; Che, Yanke; Liu, Xianghong; Zhang, Jun; Yang, Dongjiang

    2017-07-28

    Triethylamine (TEA) gas sensors having excellent response and selectivity are in great demand to monitor the real environment. In this work, we have successfully prepared a hollow SnO 2 microfiber by a unique sustainable biomass conversion strategy and shown that the microfiber can be used in a high-performance gas sensor. The sensor based on the hollow SnO 2 microfiber shows a quick response/recovery toward triethylamine. The response of the hollow SnO 2 microfiber is up to 49.5 when the concentration of TEA gas is 100 ppm. The limit of detection is as low as 2 ppm. Furthermore, the sensor has a relatively low optimal operation temperature of 270 °C, which is lower than those of many other reported sensors. The excellent sensing properties are largely attributed to the high sensitivity provided by SnO 2 and the good permeability and conductivity of the one-dimensional hollow structure. Thus, the hollow SnO 2 microfiber using sustainable biomass as a template is a significant strategy for a unique TEA gas sensor.

  3. CdS/CdSe co-sensitized SnO2 photoelectrodes for quantum dots sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Lin, Yibing; Lin, Yu; Meng, Yongming; Tu, Yongguang; Zhang, Xiaolong

    2015-07-01

    SnO2 nanoparticles were synthesized by hydrothermal method and applied to photo-electrodes of quantum dots-sensitized solar cells (QDSSCs). After sensitizing SnO2 films via CdS quantum dots, CdSe quantum dots was decorated on the surface of CdS/SnO2 photo-electrodes to further improve the power conversion efficiency. CdS and CdSe quantum dots were deposited by successive ionic layer absorption and reaction method (SILAR) and chemical bath deposition method (CBD) respectively. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to identify the surface profile and crystal structure of SnO2 photo-electrodes before and after deposited quantum dots. After CdSe co-sensitized process, an overall power conversion efficiency of 1.78% was obtained in CdSe/CdS/SnO2 QDSSC, which showed 66.4% improvement than that of CdS/SnO2 QDSSC.

  4. Excellent Brightness with Shortening Lifetime of Textured Zn2SiO4:Mn2+ Phosphor Films on Quartz Glass

    NASA Astrophysics Data System (ADS)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Kim, Seongsin Margaret; Kung, Patrick

    2010-04-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor films were fabricated by the thermal diffusion of ZnO:Mn on quartz glass. The Zn2SiO4:Mn2+ phosphor films became textured along several hexagonal directions and their chemical composition was continuously graded at the interface. The decay time of Mn2+ was as short as 4.4 ms, and the optical transition probability of the films defined as the inverse of decay time showed a strong correlation with film texture degree as a function of annealing temperature. The brightest Zn2SiO4:Mn2+ film showed a photoluminescent brightness as high as 65% compared with a commercial Zn2SiO4:Mn2+ phosphor powder screen and a maximum absolute transparency of 70%. These excellent optical properties are explained by the combination of the unique textured structure and continuous grading of the Zn2SiO4:Mn2+ chemical composition at the interface.

  5. Effect of Dy3+ substitution on structural and magnetic properties of nanocrystalline Ni-Cu-Zn ferrites

    NASA Astrophysics Data System (ADS)

    Kabbur, S. M.; Ghodake, U. R.; Nadargi, D. Y.; Kambale, Rahul C.; Suryavanshi, S. S.

    2018-04-01

    Nanocrystalline Ni0.25Cu0.30Zn0.45DyxFe2-xO4 (x = 0.0, 0.025, 0.05, 0.075, 0.1 and 0.125 mol.) ferrimagnetic oxides have been synthesized by sol-gel autocombustion route. X-ray diffraction study reveals the formation of spinel cubic structure with an expansion of the unit cell by Dy addition. Bertaut method was employed to propose the site occupancy i.e. cation distribution for elements at A-tetrahedral and B-octahedral sites of spinel lattice. The intrinsic vibrational absorption bands i.e. υ1 (712-719 cm-1) and υ2 (496-506 cm-1) are observed for tetrahedral and octahedral sites respectively. The microstructural aspect confirms the formation of an average grain size (∼7-99 nm) with presence of expected elements. Magnetization studies reveal that the magnetic moments are no longer linear but exhibit canting effect due to spin frustration. The frequency dispersion spectrum of initial permeability has been explained based on grain size, saturation magnetization and anisotropy constant. Thermal hysteresis curve (initial permeability versus temperature) indicates magnetic disordering to paramagnetic state at Néel temperature (TN). High values of TN show that the present ferrite samples are cation-ordered with d-electrons contributing towards the magnetic interaction at the sublattice.

  6. Structure and Magnetism of Nanocrystalline and Epitaxial (Mn,Zn,Fe)3O4

    DTIC Science & Technology

    2012-01-01

    a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...Park, NC 27709-2211 15. SUBJECT TERMS structure, magnetism, nanocrystalline, films F. J. Wong, A . J. Grutter, J. M. Iwata-Harms, V. V. Mehta, U. S...shifted by 200虠 Oe at low temperatures. No such effect is observed in the epitaxial films. We hypothesize that the presence of a more structurally

  7. Spinel and post-spinel phase assemblages in Zn 2TiO 4: an experimental and theoretical study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanyao; Liu, Xi; Shieh, Sean R.

    Zn2TiO4 spinel (Zn2TiO4-Sp) was synthesized by a solid-state reaction method (1573 K, room P and 72 h) and quasi-hydrostatically compressed to ~24 GPa using a DAC coupled with a synchrotron X-ray radiation (ambient T). We found that the Zn2TiO4-Sp was stable up to ~21 GPa and transformed to another phase at higher P. With some theoretical simulations, we revealed that this high-P phase adopted the CaTi2O4-type structure (Zn2TiO4-CT). Additionally, the isothermal bulk modulus (KT) of the Zn2TiO4-Sp was experimentally obtained as 156.0(44) GPa and theoretically obtained as 159.1(4) GPa, with its first pressure derivative K'TKT' as 3.8(6) and 4.37(4), respectively.more » The volumetric and axial isothermal bulk moduli of the Zn2TiO4-CT were theoretically obtained as KT = 150(2) GPa (K'TKT' = 5.4(2); for the volume), KT-a = 173(2) GPa (K'T-aKT-a' = 3.9(1); for the a-axis), KT-b = 74(2) GPa (K'T-bKT-b' = 7.0(2); for the b-axis), and KT-c = 365(8) GPa (K'T-cKT-c' = 1.5(4); for the c-axis), indicating a strong elastic anisotropy. The Zn2TiO4-CT was found as ~10.0 % denser than the Zn2TiO4-Sp at ambient conditions. The spinel and post-spinel phase assemblages for the Zn2TiO4 composition at high T have been deduced as Zn2TiO4-Sp, ZnTiO3-ilmenite + ZnO-wurtzite, ZnTiO3-ilmenite + ZnO-rock salt, ZnTiO3-perovskite + ZnO-rock salt, and Zn2TiO4-CT as P increases, which presumably implies a potential stability field for a CT-type Mg2SiO4 at very high P.« less

  8. The calcination temperature dependence of microstructural, vibrational spectra and magnetic properties of nanocrystalline Mn0.5Zn0.5Fe2O4

    NASA Astrophysics Data System (ADS)

    Indrayana, I. P. T.; Siregar, N.; Suharyadi, E.; Kato, T.; Iwata, S.

    2016-11-01

    Effect of calcination temperature on microstructural, vibrational, and magnetic properties of Mn0.5Zn0.5Fe2O4 nanoparticles have been successfully investigated. The nanoparticles were synthesized via coprecipitation method and calcined at different temperatures varying from 400, 600, 800, and 1000°C. The X-ray diffraction (XRD) pattern confirmed the formation of cubic spinel structure Mn0.5Zn0.5Fe2O4 with crystallite size ranging from 18.3 nm to 24.8 nm. The TEM micrograph showed the morphology of nanoparticles change from nearly spherical to cubic form after calcination. The FTIR spectra confirmed the existence of vibrations at 416.6 cm-1 - 455.2 cm-1 and 555.5 cm-1 -578.6 cm-1 which corresponds to the intrinsic stretching vibration of metal-oxygen at octahedral and tetrahedral sites, respectively. The maximum specific magnetization and coercivity increase with increasing calcination temperature. The maximum specific magnetization value of 54.7emu/gram was obtained for sample calcined at 1000°C. The results showed that calcination treatment will facilitate the tunability of microstructural and magnetic properties of nanoparticles for expanding the field of application.

  9. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  10. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Du, Ning; Zhang, Hui; Yu, Jingxue; Qi, Yue; Yang, Deren

    2011-02-01

    This paper reports the synthesis of carbon-coated SnO2 (SnO2-C) nanotubes through a simple glucose hydrothermal and subsequent carbonization approach by using Sn nanorods as sacrificial templates. The as-synthesized SnO2-C nanotubes have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure SnO2 nanotubes. The hollow nanostructure, together with the carbon matrix which has good buffering effect and high electronic conductivity, can be responsible for the improved cyclic performance.

  11. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  12. Spectral and ion emission features of laser-produced Sn and SnO2 plasmas

    NASA Astrophysics Data System (ADS)

    Hui, Lan; Xin-Bing, Wang; Du-Luo, Zuo

    2016-03-01

    We have made a detailed comparison of the atomic and ionic debris, as well as the emission features of Sn and SnO2 plasmas under identical experimental conditions. Planar slabs of pure metal Sn and ceramic SnO2 are irradiated with 1.06 μm, 8 ns Nd:YAG laser pulses. Fast photography employing an intensified charge coupled device (ICCD), optical emission spectroscopy (OES), and optical time of flight emission spectroscopy are used as diagnostic tools. Our results show that the Sn plasma provides a higher extreme ultraviolet (EUV) conversion efficiency (CE) than the SnO2 plasma. However, the kinetic energies of Sn ions are relatively low compared with those of SnO2. OES studies show that the Sn plasma parameters (electron temperature and density) are lower compared to those of the SnO2 plasma. Furthermore, we also give the effects of the vacuum degree and the laser pulse energy on the plasma parameters. Project supported by the National Natural Science Foundation of China (Grant No. 11304235) and the Director Fund of WNLO, China.

  13. A Facile Large-Scale Synthesis of Porous SnO2 by Bronze for Superior Lithium Storage and Gas Sensing Properties Through a Wet Chemical Reaction Strategy

    NASA Astrophysics Data System (ADS)

    Yue, Lu; Ge, Jingjing; Luo, Gaixia; Bian, Kaiting; Yin, Chao; Guan, Rongfeng; Zhang, Wenhui; Zhou, Zheng; Wang, Kaixin; Guo, Xiufeng

    2018-03-01

    A facile approach to prepare porous SnO2 and SnO2/C composite with Cu-Sn alloy as raw material by wet chemical reaction strategy has been developed. The prepared porous SnO2 and its carbon composite showed homogeneous mesoporous structure and high surface area, displayed superior rate performance and high reversible capacity of 625 mAh g-1 and 1185 mAh g-1 over 800 cycles at 0.4 A g-1, respectively. Compared with commercial SnO2, porous SnO2 sensor presented higher response, faster response/recovery capability, good selectivity and repeatability to ethanol at 180°C.

  14. New SnO2/MgAl-layered double hydroxide composites as photocatalysts for cationic dyes bleaching.

    PubMed

    Dvininov, E; Ignat, M; Barvinschi, P; Smithers, M A; Popovici, E

    2010-05-15

    A new type of nanocomposite containing SnO(2) has been obtained by wet impregnation of dehydrated Mg/Al-hydrotalcite-type compounds with ethanolic solutions of SnCl(4).2H(2)O. Tin chloride hydrolysis was achieved using NaOH or NH(4)OH aqueous solutions, at pH around 9, followed by the conversion into corresponding hydroxides through calcinations. The powder X-ray diffraction (PXRD) and UV-Vis diffuse reflectance (UV-DR) methods confirmed the structure of as-synthesized solids. The chemical composition and morphology of the synthesized materials were investigated by energy dispersive X-ray analysis (EDX), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-synthesized materials were used for photocatalytic studies showing a good activity for methylene blue decolourization, which varies with SnO(2) content and used as a hydrolysing agent. The proposed mechanism is based on the shifting of flat band potential of SnO(2) due to the interaction with Mg/Al-LDH, this being energetically favourable to the formation of hydroxyl radicals responsible for methylene blue degradation. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  15. Structural and elemental characterization of high efficiency Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Wang, Kejia; Shin, Byungha; Reuter, Kathleen B.; Todorov, Teodor; Mitzi, David B.; Guha, Supratik

    2011-01-01

    We have carried out detailed microstructural studies of phase separation and grain boundary composition in Cu2ZnSnS4 based solar cells. The absorber layer was fabricated by thermal evaporation followed by post high temperature annealing on hot plate. We show that inter-reactions between the bottom molybdenum and the Cu2ZnSnS4, besides triggering the formation of interfacial MoSx, results in the out-diffusion of Cu from the Cu2ZnSnS4 layer. Phase separation of Cu2ZnSnS4 into ZnS and a Cu-Sn-S compound is observed at the molybdenum-Cu2ZnSnS4 interface, perhaps as a result of the compositional out-diffusion. Additionally, grain boundaries within the thermally evaporated absorber layer are found to be either Cu-rich or at the expected bulk composition. Such interfacial compound formation and grain boundary chemistry likely contributes to the lower than expected open circuit voltages observed for the Cu2ZnSnS4 devices.

  16. Improved Li storage performance in SnO 2 nanocrystals by a synergetic doping

    DOE PAGES

    Wan, Ning; Lu, Xia; Wang, Yuesheng; ...

    2016-01-06

    Tin dioxide (SnO 2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO 2 (Co/SnO 2) and a cobalt and nitrogen co-doped SnO 2 (Co-N/SnO 2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the morphology, specific surface area, and electrochemical properties could be largely modulated in the doped and co-doped SnO 2 nanocrystals. Gavalnostatic cycling results indicate that the Co-N/SnO 2 electrode delivers a specific capacity as high as 716 mAh gmore » –1 after 50 cycles, and the same outstanding rate performance can be observed in subsequent cycles due to the ionic/electronic conductivity enhancement by co-doping effect. Further, microstructure observation indicates the existence of intermediate phase of Li 3N with high ionic conductivity upon cycling, which probably accounts for the improvements of Co-N/SnO 2 electrodes. Furthermore, we find that the method of synergetic doping into SnO 2 with Co and N, with which the electrochemical performances is enhanced remarkably, undoubtedly, will have an important influence on the material itself and community of LIBs as well.« less

  17. Ultrahigh broadband photoresponse of SnO2 nanoparticle thin film/SiO2/p-Si heterojunction.

    PubMed

    Ling, Cuicui; Guo, Tianchao; Lu, Wenbo; Xiong, Ya; Zhu, Lei; Xue, Qingzhong

    2017-06-29

    The SnO 2 /Si heterojunction possesses a large band offset and it is easy to control the transportation of carriers in the SnO 2 /Si heterojunction to realize high-response broadband detection. Therefore, we investigated the potential of the SnO 2 nanoparticle thin film/SiO 2 /p-Si heterojunction for photodetectors. It is demonstrated that this heterojunction shows a stable, repeatable and broadband photoresponse from 365 nm to 980 nm. Meanwhile, the responsivity of the device approaches a high value in the range of 0.285-0.355 A W -1 with the outstanding detectivity of ∼2.66 × 10 12 cm H 1/2 W -1 and excellent sensitivity of ∼1.8 × 10 6 cm 2 W -1 , and its response and recovery times are extremely short (<0.1 s). This performance makes the device stand out among previously reported oxide or oxide/Si based photodetectors. In fact, the photosensitivity and detectivity of this heterojunction are an order of magnitude higher than that of 2D material based heterojunctions such as (Bi 2 Te 3 )/Si and MoS 2 /graphene (photosensitivity of 7.5 × 10 5 cm 2 W -1 and detectivity of ∼2.5 × 10 11 cm H 1/2 W -1 ). The excellent device performance is attributed to the large Fermi energy difference between the SnO 2 nanoparticle thin film and Si, SnO 2 nanostructure, oxygen vacancy defects and thin SiO 2 layer. Consequently, practical highly-responsive broadband PDs may be actualized in the future.

  18. The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route

    NASA Astrophysics Data System (ADS)

    Li, Ji; Ma, Tuteng; Wei, Ming; Liu, Weifeng; Jiang, Guoshun; Zhu, Changfei

    2012-06-01

    An electrodeposition route for preparing Cu2ZnSnSe4 thin films for thin film solar cell absorber layers is demonstrated. The Cu2ZnSnSe4 thin films are prepared by co-electrodeposition Cu-Zn-Sn metallic precursor and subsequently annealing in element selenium atmosphere. The structure, composition and optical properties of the films were investigated by X-ray diffraction (XRD), Raman spectrometry, energy dispersive spectrometry (EDS) and UV-VIS absorption spectroscopy. The Cu2ZnSnSe4 thin film with high crystalline quality was obtained, the band gap and absorption coefficient were 1.0 eV and 10-4 cm-1, which is quite suitable for solar cells fabrication. A solar cell with the structure of ZnO:Al/i-ZnO/CdS/Cu2ZnSnSe4/Mo/glass was fabricated and achieved an conversion efficiency of 1.7%.

  19. ZnCl 2- and NH 4Cl-hydroponics gel electrolytes for zinc-carbon batteries

    NASA Astrophysics Data System (ADS)

    Khalid, N. H.; Ismail, Y. M. Baba; Mohamad, A. A.

    Absorbency testing is used to determine the percentage of ZnCl 2 or NH 4Cl solution absorbed by a hydroponics gel (HPG). It is found that the absorbency of ZnCl 2 or NH 4Cl solution decreases with increasing solution concentration. The conductivity of ZnCl 2- and NH 4Cl-HPG electrolytes is dependent on the solution concentration. A mixture of salt solution with HPG yields excellent gel polymer electrolytes with conductivities of 0.026 and 0.104 S cm -1 at 3 M ZnCl 2 and 7 M NH 4Cl, respectively. These gel electrolytes are then used to produce zinc-carbon cells. The fabricated cells give capacities of 8.8 and 10.0 mAh, have an internal resistance of 25.4 and 19.8 Ω, a maximum power density of 12.7 and 12.2 mW cm -2, and a short-circuit current density of 29.1 and 33.9 mA cm -2 for ZnCl 2- and NH 4Cl-HPG electrolytes, respectively.

  20. Synthesis of ZnFe2O4/SiO2 composites derived from a diatomite template.

    PubMed

    Liu, Zhaoting; Fan, Tongxiang; Zhou, Han; Zhang, Di; Gong, Xiaolu; Guo, Qixin; Ogawa, Hiroshi

    2007-03-01

    A novel porous ZnFe2O4/SiO2 composite product has been generated with a template-directed assembly method from porous diatomite under different synthesis conditions, such as precursor concentrations (metallic nitrates), calcination temperature and diatomite type. The phase composition and morphology of all the materials were examined by x-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The results indicated that an inherited hierarchical porous structure from the diatomite template can be obtained, and the synthesis conditions were found to have clear effects on the formation of the ZnFe2O4/SiO2 composite. The ideal composite of ZnFe2O4/SiO2 can be obtained through optimization of diatomite template type, precursor solution and calcination temperature. Furthermore, the adsorption abilities of two types of diatomites were analyzed in detail using FTIR spectra and nitrogen adsorption measurements etc, which proved that A-diatomite (Shengzhou-diatomite) is better than B-diatomite (Changbai-diatomite) on the aspect of adsorbing Zn and Fe ions, and of forming the ZnFe2O4.

  1. Selective Detection of Formaldehyde Gas Using a Cd-Doped TiO2-SnO2 Sensor

    PubMed Central

    Zeng, Wen; Liu, Tianmo; Wang, Zhongchang; Tsukimoto, Susumu; Saito, Mitsuhiro; Ikuhara, Yuichi

    2009-01-01

    We report the microstructure and gas-sensing properties of a nonequilibrium TiO2-SnO2 solid solution prepared by the sol-gel method. In particular, we focus on the effect of Cd doping on the sensing behavior of the TiO2-SnO2 sensor. Of all volatile organic compound gases examined, the sensor with Cd doping exhibits exclusive selectivity as well as high sensitivity to formaldehyde, a main harmful indoor gas. The key gas-sensing quantities, maximum sensitivity, optimal working temperature, and response and recovery time, are found to meet the basic industrial needs. This makes the Cd-doped TiO2-SnO2 composite a promising sensor material for detecting the formaldehyde gas. PMID:22291551

  2. Structure, photoluminescence and thermoluminescence study of a composite ZnTa2O6/ZnGa2O4 compound doped with Pr3+

    NASA Astrophysics Data System (ADS)

    Noto, L. L.; Shaat, S. K. K.; Poelman, D.; Dhlamini, M. S.; Mothudi, B. M.; Swart, H. C.

    2016-05-01

    The study of persistent luminescence is interesting for applications related to biological imaging, self-lit roads and security signs. Composite Pr-doped samples were prepared in one pot by solid chemical reaction at 1200 °C for 4 h. The X-ray diffraction patterns of the samples showed mixed phases which correspond to ZnGa2O4 and ZnTa2O6 phases. Interestingly, the secondary electron microscopy images showed that the surface morphology is composed of particles with different shapes: irregular, rhombus and rod shapes. The X-ray maps obtained using field emission scanning electron microscopy, confirmed that the irregular particles correspond to ZnTa2O6, and the rods correspond to ZnGa2O4. Red emission was observed from 1D2 → 3H4, 3P0 → 3H6, 3P0 → 3F2 and 1D2 → 3H5 transitions of Pr3+. The lifetime of the persistent luminescence was measured, and the corresponding trapping centres were investigated using thermoluminescence spectroscopy.

  3. Laser induced forward transfer of SnO2 for sensing applications using different precursors systems

    NASA Astrophysics Data System (ADS)

    Mattle, Thomas; Hintennach, Andreas; Lippert, Thomas; Wokaun, Alexander

    2013-02-01

    This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 ∘C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.

  4. Mechanical properties of nanocrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Karimpoor, Amir A.; Erb, Uwe

    2006-05-01

    Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.

  5. LPG sensing characteristics of electrospray deposited SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Gürbüz, Mevlüt; Günkaya, Göktuğ; Doğan, Aydın

    2014-11-01

    In this study, SnO2 films were fabricated on conductive substrate such as aluminum and platinum coated alumina using electro-spray deposition (ESD) method for gas sensor applications. Solution flow rate, coating time, substrate-nozzle distance and solid/alcohol ratio were studied to optimize SnO2 film structure. The morphology of the deposited films was characterized by stereo and scanning electron microscopy (SEM). The gas sensing properties of tin oxide films were investigated using liquid petroleum gas (LPG) for various lower explosive limit (LEL). The results obtained from microscopic analyses show that optimum SnO2 films were evaluated at flow rate of 0.05 ml/min, at distance of 6 cm, for 10 min deposition time, for 20 gSnO2/Lethanol ratio and at 7 kV DC electric field. By the results obtained from the gas sensing behavior, the sensitivity of the films was increased with operating temperature. The films showed better sensitivity for 20 LEL LPG concentration at 450 °C operating temperature.

  6. Thermoelectric Properties in the TiO2/SnO2 System

    NASA Technical Reports Server (NTRS)

    Dynys, F.; Sayir, A.; Sehirlioglu, A.; Berger, M.

    2009-01-01

    Nanotechnology has provided a new interest in thermoelectric technology. A thermodynamically driven process is one approach in achieving nanostructures in bulk materials. TiO2/SnO2 system exhibits a large spinodal region with exceptional stable phase separated microstructures up to 1400 C. Fabricated TiO2/SnO2 nanocomposites exhibit n-type behavior with Seebeck coefficients greater than -300 .V/K. Composites exhibit good thermal conductance in the range of 7 to 1 W/mK. Dopant additions have not achieved high electrical conductivity (<1000 S/m). Formation of oxygen deficient composites, TixSn1-xO2-y, can change the electrical conductivity by four orders of magnitude. Achieving higher thermoelectric ZT by oxygen deficiency is being explored. Seebeck coeffcient, thermal conductivity, electrical conductance and microstructure will be discussed in relation to composition and doping.

  7. The fast filling of nano-SnO2 in CNTs by vacuum absorption: a new approach to realize cyclic durable anodes for lithium ion batteries.

    PubMed

    Hu, Renzong; Sun, Wei; Liu, Hui; Zeng, Meiqin; Zhu, Min

    2013-12-07

    CNTs filled with amorphous-nanocrystalline SnO2, as a unique SnO2-based nanocomposite structure, were synthesized by a rapid vacuum absorption followed by calcination. The SnO2/CNT nanocomposite anodes had a much higher Li storage capacity than the pristine CNTs, as well as a markedly improved cyclic performance (430 mA h g(-1) after 300 cycles at 0.1 A g(-1)). These superior electrode properties resulted from the unique feature of the amorphous-nanocrystalline mixture of tin oxides stored in the CNT tubes of this nanocomposite, because this structure accommodated the stress and confined the volume change of Li(+) insertion/desertion in Sn. Although the nanocomposites had a large initial irreversible capacity loss due to SEI formation, it could be dramatically reduced by prelithiation treatment of the nanocomposite electrode.

  8. Gas response properties of citrate gel synthesized nanocrystalline MgFe{sub 2}O{sub 4}: Effect of sintering temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patil, J.Y.; Mulla, I.S.; Suryavanshi, S.S., E-mail: sssuryavanshi@rediffmail.com

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ► Synthesis of nanocrystalline MgFe{sub 2}O{sub 4} by economical citrate gel combustion method. ► Structural, morphological, and gas response properties of MgFe{sub 2}O{sub 4}. ► Enhancement in selectivity of MgFe{sub 2}O{sub 4} towards LPG with sintering temperature. ► Use of MgFe{sub 2}O{sub 4} to detect different gases at different operating temperatures. -- Abstract: Spinel type MgFe{sub 2}O{sub 4} material was synthesized by citrate gel combustion method. The effect of sintering temperature on structural, morphological, and gas response properties was studied. The powder X-ray diffraction pattern and transmission electron microscope study confirms nanocrystalline spinel structure ofmore » the synthesized powder. The material was tested for response properties to various reducing gases like liquid petroleum gas (LPG), acetone, ethanol, and ammonia. The results demonstrated n-type semiconducting behavior of MgFe{sub 2}O{sub 4} material. It was revealed that MgFe{sub 2}O{sub 4} sintered at 973 K was most sensitive to LPG at 648 K and to acetone at 498 K. However MgFe{sub 2}O{sub 4} sintered at 1173 K exhibited higher response and selectivity to LPG with marginal increase in the operating temperature. Furthermore, the sensor exhibited a fast response and a good recovery. It was observed that the particles size, porosity, and surface activity of the sensor material is affected by the sintering temperature.« less

  9. Fenton-like oxidation of 4-chlorophenol using H2O2 in situ generated by Zn-Fe-CNTs composite.

    PubMed

    Liu, Yong; Fan, Qing; Liu, Yanlan; Wang, Jianlong

    2018-05-15

    In this paper, a zinc-iron-carbon nanotubes (Zn-Fe-CNTs) composite was prepared, characterized and used to develop a Fenton-like system of Zn-Fe-CNTs/O 2 for the degradation of 4-chlorophenol (4-CP), in which H 2 O 2 was generated in situ from zinc-carbon galvanic cells and oxygen in aqueous solution was activated by iron attached on the surface of CNTs to produce ·OH radicals for the oxidation of 4-CP. The experimental results showed that the particles of Zn and Fe in Zn-Fe-CNTs composite were adhered to the surface of CNTs, which accelerated the electron transfer process. The BET area of Zn-Fe-CNTs composite was 32.9 m 2 /g. The contents of Zn and Fe (% w) in the composite were 44.7% and 4.2%, respectively. The removal efficiency of 4-CP and TOC in Zn-Fe-CNTs/O 2 system was 90.8% and 52.9%, respectively, with the initial pH of 2.0, O 2 flow rate of 800 mL/min, Zn-Fe-CNTs dosage of 1.0 g/L, 4-CP concentration of 50 mg/L and reaction time of 20 min. Based on the analysis of the degradation intermediate products with LC-MS and IC, a possible degradation pathway of 4-CP in Zn-Fe-CNTs/O 2 system was proposed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Super-bright and short-lived photoluminescence of textured Zn2SiO4:Mn2+ phosphor film on quartz glass

    NASA Astrophysics Data System (ADS)

    Park, Jehong; Park, Kwangwon; Lee, Jaebum; Kim, Jongsu; Seo, Kwangil; Kwon, Kevin; Kung, Patrick; Kim, Seongsin M.

    2010-02-01

    Green-emissive textured Zn2SiO4:Mn2+ phosphor film was fabricated by a thermal diffusion of ZnO:Mn on quartz glass. The characterization has been performed in terms of Mn2+ ions concentration (Mn/Zn=1~9 mol %). As an increase of Mn2+ ions concentration in the Zn2SiO4:Mn2+ phosphor film, the emission peak was red shifted from 519 nm to 526 nm, and the decay time to 10% of the maximum intensity was shorter from 20 ms to 0.5 ms. All annealed Zn2SiO4:Mn2+ phosphor films became textured along some hexagonal directions on the amorphous quartz glass. The brightest Zn2SiO4:Mn2+ film at optimal Mn2+ concentration of 5 % showed the photoluminescence brightness of 65 % and the shortened decay time of 4.4 ms in comparison with a commercially Zn2SiO4: Mn2+ powder phosphor screen. The excellencies can be attributed to a unique textured structure.

  11. Highly uniform and vertically aligned SnO2 nanochannel arrays for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Yup; Kang, Jin Soo; Shin, Junyoung; Kim, Jin; Han, Seung-Joo; Park, Jongwoo; Min, Yo-Sep; Ko, Min Jae; Sung, Yung-Eun

    2015-04-01

    Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process. In the modified process, ultrasonication is utilized to avoid formation of partial compact layers and lateral cracks in the SnO2 nanochannel arrays. Building on this breakthrough, we first demonstrate the photovoltaic application of these vertically aligned SnO2 nanochannel arrays. These vertically aligned arrays were directly and successfully applied in quasi-solid state dye-sensitized solar cells (DSSCs) as photoanodes, yielding reasonable conversion efficiency under back-side illumination. In addition, a significantly short process time (330 s) for achieving the optimal thickness (7.0 μm) and direct utilization of the anodized electrodes enable a simple, rapid and low-cost fabrication process. Furthermore, a TiO2 shell layer was coated on the SnO2 nanochannel arrays by the atomic layer deposition (ALD) process for enhancement of dye-loading and prolonging the electron lifetime in the DSSC. Owing to the presence of the ALD TiO2 layer, the short-circuit photocurrent density (Jsc) and conversion efficiency were increased by 20% and 19%, respectively, compared to those of the DSSC without the ALD TiO2 layer. This study provides valuable insight into the development of efficient SnO2-based photoanodes for photovoltaic application by a simple and rapid fabrication process.Nanostructured electrodes with vertical alignment have been considered ideal structures for electron transport and interfacial contact with redox electrolytes in photovoltaic devices. Here, we report large-scale vertically aligned SnO2 nanochannel arrays with uniform structures, without lateral cracks fabricated by a modified anodic oxidation process

  12. Synthesis and properties of Li2SnO3/polyaniline nanocomposites as negative electrode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Qiufen; Huang, Ying; Miao, Juan; Zhao, Yang; Wang, Yan

    2012-10-01

    The nanocomposites Li2SnO3/polyaniline (Li2SnO3/PANI) have been synthesized by a micro emulsion polymerization method. The structure, morphology and electrochemical properties of the as-prepared materials are characterized by XRD, FTIR, Raman, XPS, TGA, TEM and electrochemical measurements. Results show that Li2SnO3/PANI nanocomposites are composed of uniform and blocky nano-sized particles (40-50 nm) with clear lattice fringes. Electrochemical measurement suggests that Li2SnO3/PANI exhibits better cycling properties and lower initial irreversible capacities than Li2SnO3 as negative electrodes materials for lithium-ion batteries. At a current density of 60 mA g-1 in the voltage about 0.05-2.0 V, the initial irreversible capacity of Li2SnO3/PANI is 563 mAh g-1 while it is 687.5 mAh g-1 to Li2SnO3. The capacity retained of Li2SnO3/PANI (569.2 mAh g-1) is higher than that of Li2SnO3 (510.2 mAh g-1) after 50 cycles. The PANI in the Li2SnO3/PANI nanocomposites can buffer the released stress caused by the drastic volume variation during the alloying/de-alloying process of Li-Sn.

  13. Efficient and Convenient Synthesis of 1,8-Dioxodecahydroacridine Derivatives Using Cu-Doped ZnO Nanocrystalline Powder as a Catalyst under Solvent-Free Conditions

    PubMed Central

    Alinezhad, Heshmatollah; Mohseni Tavakkoli, Sahar

    2013-01-01

    A simple and convenient one-step method for synthesis of acridines and their derivatives from condensation of aromatic aldehydes, cyclic diketones, and aryl amines using Cu-doped ZnO nanocrystalline powder as a catalyst is reported. The present protocol provides several advantages such as good yields, short reaction time, easy workup, and simplicity in operation. PMID:24294130

  14. Zr-doped SnO2 thin films synthesized by spray pyrolysis technique for barrier layers in solar cells

    NASA Astrophysics Data System (ADS)

    Reddy, N. Nanda Kumar; Akkera, Harish Sharma; Sekhar, M. Chandra; Park, Si-Hyun

    2017-12-01

    In the present work, we investigated the effect of Zr doping (0-6 at%) on the structural, electrical, and optical properties of tin oxide (SnO2) thin films deposited onto glass substrates using a spray pyrolysis technique. The room-temperature X-ray diffraction pattern shows that all deposited films exhibit polycrystalline tetragonal structure. The pure SnO2 film is grown along a preferred (200) direction, whereas Zr-doped SnO2 (Zr:SnO2) films started growing along the (220) orientation along with a high intensity peak of (200). Scanning electron microscope (SEM) and atomic force microscope (AFM) images showed that the grains of the films are spherical in structure, and the grain size decreased with increasing of Zr concentration. The optical transmission spectra of deposited films as a function of wavelength confirm that the average optical transmittance is > 85% for Zr:SnO2 films. The value of the optical bandgap is significantly decreased from 3.94 to 3.68 eV with increasing Zr concentration. Furthermore, the electrical measurements found that the sheet resistance ( R sh) and resistivity ( ρ) values are decreased with increasing of Zr doping. The lowest values of R sh = 6.82 Ω and ρ = 0.4 × 10- 3 Ω cm are found in 6-at% Zr-doped SnO2 film. In addition, a good efficiency value of the figure of merit ( ɸ = 3.35 × 10- 3 Ω-1) is observed in 6-at% Zr-doped SnO2 film. These outstanding properties of Zr-doped SnO2 films make them useful for several optoelectronic device applications.

  15. Interplay between O2 and SnO2: oxygen ionosorption and spectroscopic evidence for adsorbed oxygen.

    PubMed

    Gurlo, Alexander

    2006-10-13

    Tin dioxide is the most commonly used material in commercial gas sensors based on semiconducting metal oxides. Despite intensive efforts, the mechanism responsible for gas-sensing effects on SnO(2) is not fully understood. The key step is the understanding of the electronic response of SnO(2) in the presence of background oxygen. For a long time, oxygen interaction with SnO(2) has been treated within the framework of the "ionosorption theory". The adsorbed oxygen species have been regarded as free oxygen ions electrostatically stabilized on the surface (with no local chemical bond formation). A contradiction, however, arises when connecting this scenario to spectroscopic findings. Despite trying for a long time, there has not been any convincing spectroscopic evidence for "ionosorbed" oxygen species. Neither superoxide ions O(2)(-), nor charged atomic oxygen O,(-) nor peroxide ions O(2)(2-) have been observed on SnO(2) under the real working conditions of sensors. Moreover, several findings show that the superoxide ion does not undergo transformations into charged atomic oxygen at the surface, and represents a dead-end form of low-temperature oxygen adsorption on reduced metal oxide.

  16. Fabrication of hierarchical flower-like porous ZnO nanostructures from layered ZnC2O4·3Zn(OH)2 and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Cui, Jiashan; Sun, Jianbo; Liu, Xin; Li, Jinwei; Ma, Xinzhi; Chen, Tingting

    2014-07-01

    ZnO materials with porous and hierarchical flower-like structure were synthesized through mild hydrothermal and simple calcination approach, in which the flower-like layered zinc oxalate hydroxide (ZnC2O4·3Zn(OH)2) precursor was first synthesized and then calcined at 600 °C. The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopic (TEM), Brunauer-Emmett-Teller (BET) and thermogravimetric (TG) analysis. We proposed the possible growth mechanism of the material via studying the time evolution experiment results. In the process of reaction, oxalic acid as a structure-directing agent hydrolyzed and then formed primarily sheets-like intermediate ZnC2O4·2H2O. Hexamethylenetetramine (HMT) as surfactant, with directional adsorption, leads to the formation of layered zinc oxalate hydroxide precursor. Furthermore, the gas sensitivity also can be characterized, whose results indicated that the synthesized materials had a preferable selectivity to ethanol gas. The fast response rate and reversible performance can be attributed to the produced greater specific surface area produced, which was caused by the porous and hierarchical flower-like structure.

  17. Metal-Organic Frameworks Derived Okra-like SnO2 Encapsulated in Nitrogen-Doped Graphene for Lithium Ion Battery.

    PubMed

    Zhou, Xiangyang; Chen, Sanmei; Yang, Juan; Bai, Tao; Ren, Yongpeng; Tian, Hangyu

    2017-04-26

    A facile process is developed to prepare SnO 2 -based composites through using metal-organic frameworks (MOFs) as precursors. The nitrogen-doped graphene wrapped okra-like SnO 2 composites (SnO 2 @N-RGO) are successfully synthesized for the first time by using Sn-based metal-organic frameworks (Sn-MOF) as precursors. When utilized as an anode material for lithium-ion batteries, the SnO 2 @N-RGO composites possess a remarkably superior reversible capacity of 1041 mA h g -1 at a constant current of 200 mA g -1 after 180 charge-discharge processes and excellent rate capability. The excellent performance can be primarily ascribed to the unique structure of 1D okra-like SnO 2 in SnO 2 @N-RGO which are actually composed of a great number of SnO 2 primary crystallites and numerous well-defined internal voids, can effectively alleviate the huge volume change of SnO 2 , and facilitate the transport and storage of lithium ions. Besides, the structural stability acquires further improvement when the okra-like SnO 2 are wrapped by N-doped graphene. Similarly, this synthetic strategy can be employed to synthesize other high-capacity metal-oxide-based composites starting from various metal-organic frameworks, exhibiting promising application in novel electrode material field of lithium-ion batteries.

  18. An insight into the origin of room-temperature ferromagnetism in SnO2 and Mn-doped SnO2 quantum dots: an experimental and DFT approach.

    PubMed

    Manikandan, Dhamodaran; Boukhvalov, D W; Amirthapandian, S; Zhidkov, I S; Kukharenko, A I; Cholakh, S O; Kurmaev, E Z; Murugan, Ramaswamy

    2018-02-28

    SnO 2 and Mn-doped SnO 2 single-phase tetragonal crystal structure quantum dots (QDs) of uniform size with control over dopant composition and microstructure were synthesized using the high pressure microwave synthesis technique. On a broader vision, we systematically investigated the influence of dilute Mn ions in SnO 2 under the strong quantum confinement regime through various experimental techniques and density functional theoretical (DFT) calculations to disclose the physical mechanism governing the observed ferromagnetism. DFT calculations revealed that the formation of the stable (001) surface was much more energetically favorable than that of the (100) surface, and the formation energy of the oxygen vacancies in the stable (001) surface was comparatively higher in the undoped SnO 2 QDs. X-ray photoelectron spectroscopy (XPS) and first-principles modeling of doped QDs revealed that the lower doping concentration of Mn favored the formation of MnO-like (Mn 2+ ) structures in defect-rich areas and the higher doping concentration of Mn led to the formation of multiple configurations of Mn (Mn 2+ and Mn 3+ ) in the stable surfaces of SnO 2 QDs. Electronic absorption spectra indicated the characteristic spin allowed ligand field transitions of Mn 2+ and Mn 3+ and the red shift in the band gap. DFT calculations clearly indicated that only the substitutional dopant antiferromagnetic configurations were more energetically favorable. The gradual increase of magnetization at a low level of Mn-doping could be explained by the prevalence of antiferromagnetic manganese-vacancy pairs. Higher concentrations of Mn led to the appearance of ferromagnetic interactions between manganese and oxygen vacancies. The increase in the concentration of metallic dopants caused not just an increase in the total magnetic moment of the system but also changed the magnetic interactions between the magnetic moments on the metal ions and oxygen. The present study provides new insight into the

  19. Zn2+ -Ion Sensing by Fluorescent Schiff Base Calix[4]arene Macrocycles.

    PubMed

    Ullmann, Steve; Schnorr, René; Handke, Marcel; Laube, Christian; Abel, Bernd; Matysik, Jörg; Findeisen, Matthias; Rüger, Robert; Heine, Thomas; Kersting, Berthold

    2017-03-17

    A macrocyclic ligand (H 2 L) containing two o,o'-bis(iminomethyl)phenol and two calix[4]arene head units has been synthesized and its coordination chemistry towards divalent Ni and Zn investigated. The new macrocycle forms complexes of composition [ML] (M=Zn, M=Ni) and [ZnL(py) 2 ], which were characterized by elemental analysis; IR, UV/Vis, and NMR spectroscopy; electrospray ionization mass spectrometry (ESI-MS); and X-ray crystallography (for [ZnL(py) 2 ] and [NiL]). H 2 L allows the sensitive optical detection of Zn 2+ among a series of biologically relevant metal ions by a dual fluorescence enhancement/quenching effect in solution. The fluorescence intensity of the macrocycle increases by a factor of ten in the presence of Zn 2+ with a detection limit in the lower nanomolar region. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effect of size on structural, optical and magnetic properties of SnO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Thamarai Selvi, E.; Meenakshi Sundar, S.

    2017-07-01

    Tin Oxide (SnO2) nanostructures were synthesized by a microwave oven assisted solvothermal method using with and without cetyl trimethyl ammonium bromide (CTAB) capping agent. XRD confirmed the pure rutile-type tetragonal phase of SnO2 for both uncapped and capped samples. The presence of functional groups was analyzed by Fourier transform infrared spectroscopy. Scanning electron microscopy shows the morphology of the samples. Transmission electron microscopy images exposed the size of the SnO2 nanostructures. Surface defect-related g factor of SnO2 nanoparticles using fluorescence spectroscopy is shown. For both uncapped and capped samples, UV-visible spectrum shows a blue shift in absorption edge due to the quantum confinement effect. Defect-related bands were identified by electron paramagnetic resonance (EPR) spectroscopy. The magnetic properties were studied by using vibrating sample magnetometer (VSM). A high value of magnetic moment 0.023 emu g-1 at room temperature for uncapped SnO2 nanoparticles was observed. Capping with CTAB enhanced the saturation magnetic moment to high value of 0.081 emu g-1 by altering the electronic configuration on the surface.

  1. Optical calibration of SNO +

    NASA Astrophysics Data System (ADS)

    Leming, Edward; SNO+ Collaboration

    2015-04-01

    Situated 2 km underground in Sudbury, Northern Ontario, the SNO + detector consists of an acrylic sphere 12 m in diameter containing 780 tons of target mass, surrounded by approximately 9,500 PMTs. For SNO, this target mass was heavy water, however the change to SNO + is defined by the change of this target mass to a novel scintillator. With the lower energy threshold, low intrinsic radioactivity levels and the best shielding against muons and cosmogenic activation of all existing neutrino experiments, SNO + will be sensitive to exciting new physics. The experiment will be studying solar, reactor, super nova and geo-neutrinos, though the main purpose of SNO + is the search for neutrinoless double-beta decay of Te-130. To meet the requirements imposed by the physics on detector performance, a detailed optical calibration is needed. Source deployment must be kept to a minimum and eliminated if possible, in order to meet the stringent radiopurity requirements. This led to the development of the Embedded LED/laser Light Injection Entity (ELLIE) system. This talk provides a summary of the upgrades to from SNO to SNO +, discussing the requirements on and methods of optical calibration, focusing on the deployed laserball and ELLIE system.

  2. Facial synthesis of nanostructured ZnCo2O4 on carbon cloth for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Patil, Swati J.; Park, Jungsung; Lee, Dong-Weon

    2017-12-01

    In this work, we have synthesized the ZnCo2O4 electrode by a facial one-step hydrothermal method on a carbon cloth for the supercapacitor application. The structural and phase purity of the prepared electrode material was confirmed by X-ray diffraction (XRD) technique. The surface morphology and elemental stoichiometry were studied using field emission scanning electron microscopy (FE-SEM). The FE-SEM micrograph illustrates that the ZnCo2O4 material is composed of microstrips with a ~0.5 μm width and length in micron uniformly covered the carbon cloth surface. The ZnCo2O4 electrode material further investigated for electrochemical analyses. The cyclic voltammetry results showed that the ZnCo2O4 microstrips electrode exhibited the highest specific capacitance of 1084 F/g at 2 mV/s scan rate. Remarkably, a maximum energy density of 12.5 Wh/kg was attained at a current density of 2 mA/cm2 with the power density of 3.6 kW/kg for the ZnCo2O4 microstrips electrode. Furthermore, the 96.2 % capacitive retention is obtained at a higher scan rate of 100 mV/s after 1000 CV cycles, indicating excellent cycling stability of the ZnCo2O4 microstrips electrode. The frequency-dependent rate capability and an ideal capacitive behaviour of the ZnCo2O4 microstrips electrode were analyzed using impedance analyses; a representing the ion diffusion structure of the material. These results show that the ZnCo2O4 microstrips electrode could be a promising material for supercapacitor application.

  3. Field emission from in situ-grown vertically aligned SnO2 nanowire arrays

    PubMed Central

    2012-01-01

    Vertically aligned SnO2 nanowire arrays have been in situ fabricated on a silicon substrate via thermal evaporation method in the presence of a Pt catalyst. The field emission properties of the SnO2 nanowire arrays have been investigated. Low turn-on fields of 1.6 to 2.8 V/μm were obtained at anode-cathode separations of 100 to 200 μm. The current density fluctuation was lower than 5% during a 120-min stability test measured at a fixed applied electric field of 5 V/μm. The favorable field-emission performance indicates that the fabricated SnO2 nanowire arrays are promising candidates as field emitters. PMID:22330800

  4. Effect of Growth Parameters on SnO2 Nanowires Growth by Electron Beam Evaporation Method

    NASA Astrophysics Data System (ADS)

    Rakesh Kumar, R.; Manjula, Y.; Narasimha Rao, K.

    2018-02-01

    Tin oxide (SnO2) nanowires were synthesized via catalyst assisted VLS growth mechanism by the electron beam evaporation method at a growth temperature of 450 °C. The effects of growth parameters such as evaporation rate of Tin, catalyst film thickness, and different types of substrates on the growth of SnO2 nanowires were studied. Nanowires (NWs) growth was completely seized at higher tin evaporation rates due to the inability of the catalyst particle to initiate the NWs growth. Nanowires diameters were able to tune with catalyst film thickness. Nanowires growth was completely absent at higher catalyst film thickness due to agglomeration of the catalyst film. Optimum growth parameters for SnO2 NWs were presented. Nanocomposites such as Zinc oxide - SnO2, Graphene oxide sheets- SnO2 and Graphene nanosheets-SnO2 were able to synthesize at a lower substrate temperature of 450 °C. These nanocompsoites will be useful in enhancing the capacity of Li-ion batteries, the gas sensing response and also useful in increasing the photo catalytic activity.

  5. Carbon-Coated Hierarchical SnO2 Hollow Spheres for Lithium Ion Batteries.

    PubMed

    Liu, Qiannan; Dou, Yuhai; Ruan, Boyang; Sun, Ziqi; Chou, Shu-Lei; Dou, Shi Xue

    2016-04-18

    Hierarchical SnO2 hollow spheres self-assembled from nanosheets were prepared with and without carbon coating. The combination of nanosized architecture, hollow structure, and a conductive carbon layer endows the SnO2 -based anode with improved specific capacity and cycling stability, making it more promising for use in lithium ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Ab initio understanding of magnetic properties in Zn2+ substitution of Fe3O4 ultra-thin film with dilute Zn substitution

    NASA Astrophysics Data System (ADS)

    Huang, Zhaocong; Chen, Qian; Jiang, Sheng; Dong, Shuai; Zhai, Ya

    2018-05-01

    The mechanism of the magnetic properties on the Zn2+ substituted Fe3O4 film have been investigated based on first principle calculations. It is found that the surface effect plays an important role in the occupation of Zn ion, and in turn changes the magnetic moment. It may also destroy the half metallic behavior of Fe3O4 film even if the Zn2+ concentration only is one Zn2+ per unit cell (4%), which is different from that in bulk material.

  7. SnO2 epitaxial films with varying thickness on c-sapphire: Structure evolution and optical band gap modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Mi; Xu, Maji; Li, Mingkai; Zhang, Qingfeng; Lu, Yinmei; Chen, Jingwen; Li, Ming; Dai, Jiangnan; Chen, Changqing; He, Yunbin

    2017-11-01

    A series of a-plane SnO2 films with thickness between 2.5 nm and 1436 nm were grown epitaxially on c-sapphire by pulsed laser deposition (PLD), to allow a detailed probe into the structure evolution and optical band gap modulation of SnO2 with growing thickness. All films exhibit excellent out-of-plane ordering (lowest (200) rocking-curve half width ∼0.01°) with an orientation of SnO2(100) || Al2O3(0001), while three equivalent domains that are rotated by 120° with one another coexist in-plane with SnO2[010] || Al2O3 [11-20]. Initially the SnO2(100) film assumes a two-dimensional (2D) layer-by-layer growth mode with atomically smooth surface (minimum root-mean-square roughness of 0.183 nm), and endures compressive strain along both c and a axes as well as mild tensile strain along the b-axis. With increasing thickness, transition from the 2D to 3D island growth mode takes place, leading to formation of various defects to allow relief of the stress and thus relaxation of the film towards bulk SnO2. More interestingly, with increasing thickness from nm to μm, the SnO2 films present a non-monotonic V-shaped variation in the optical band gap energy. While the band gap of SnO2 films thinner than 6.1 nm increases rapidly with decreasing film thickness due to the quantum size effect, the band gap of thicker SnO2 films broadens almost linearly with increasing film thickness up to 374 nm, as a result of the strain effect. The present work sheds light on future design of SnO2 films with desired band gap for particular applications by thickness control and strain engineering.

  8. Structural and spectroscopic study of mechanically synthesized SnO2 nanostructures

    NASA Astrophysics Data System (ADS)

    Vij, Ankush; Kumar, Ravi

    2016-05-01

    We report the single step synthesis of SnO2 nanostructures using high energy mechanical attrition method. X-ray diffraction (XRD) pattern reveals the single phase rutile structure with appreciable broadening of diffraction peaks, which is a signature of nanostructure formation. The average crystallite size of SnO2 nanostructures has been calculated to be ~15 nm. The micro-Raman study reveals the shifting of A1g Raman mode towards lower wave number, which is correlated with the nanostructure formation.

  9. A Fast Humidity Sensor Based on Li+-Doped SnO2 One-Dimensional Porous Nanofibers

    PubMed Central

    Yin, Min; Yang, Fang; Wang, Zhaojie; Zhu, Miao; Liu, Ming; Xu, Xiuru; Li, Zhenyu

    2017-01-01

    One-dimensional SnO2- and Li+-doped SnO2 porous nanofibers were easily fabricated via electrospinning and a subsequent calcination procedure for ultrafast humidity sensing. Different Li dopant concentrations were introduced to investigate the dopant’s role in sensing performance. The response properties were studied under different relative humidity levels by both statistic and dynamic tests. The best response was obtained with respect to the optimal doping of Li+ into SnO2 porous nanofibers with a maximum 15 times higher response than that of pristine SnO2 porous nanofibers, at a relative humidity level of 85%. Most importantly, the ultrafast response and recovery time within 1 s was also obtained with the 1.0 wt % doping of Li+ into SnO2 porous nanofibers at 5 V and at room temperature, benefiting from the co-contributions of Li-doping and the one-dimensional porous structure. This work provides an effective method of developing ultrafast sensors for practical applications—especially fast breathing sensors. PMID:28772895

  10. Azadirachta indica (neem) leaves mediated synthesis of SnO2/NiO nanocomposite and assessment of its photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Varshney, Bhaskar; Shoeb, Mohd; Siddiqui, M. J.; Azam, Ameer; Mobin, Mohammad

    2018-05-01

    SnO2/NiO nanocomposite are prepared by using a simple cost effective and ecofriendly green soft template method followed by ultrasonication treatment further by calcination at 300 °C. The resulting nanocatalysts were characterized by X-ray diffraction (XRD), UV-Visible spectroscopy and transmission electron microscopy (TEM). The SnO2-NiO photocatalyst was made of a mesoporous network of aggregated NiO and cassiterite SnO2 nanocrystallites, the size of which was estimated to be 16.68 nm and 13.17 nm, respectively, after calcination. According to UV-visible spectroscopy, the evident energy band gap value of the SnO2-NiO photocatalyst was estimated to be 3.132 eV to be compared with those of pure SnO2, that is, 3.7 eV. Moreover, the heterostructure SnO2-NiO photocatalyst showed much higher photocatalytic activities for the degradation of methylene blue than those of individual SnO2 and NiO nanomaterials. This behaviour was rationalized in terms of better charge separation and the suppression of charge recombination in the SnO2-NiO photocatalyst because of the energy difference between the conduction band edges of SnO2 and NiO as evidenced by the band alignment determination. Finally, this mesoporous SnO2-NiO heterojunction nanocatalyst was stable and could be easily recycled several times opening new avenues for potential industrial applications.

  11. Colloid electrostatic self-assembly synthesis of SnO2/graphene nanocomposite for supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Yankun; Liu, Yushan; Zhang, Jianmin

    2015-10-01

    In this paper, a simple and fast colloid electrostatic self-assembly method was adopted to prepare the SnO2/graphene nanocomposite (SGNC). The crystal structure, chemical composition, and porous property of composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption experiments. The morphology analyses showed that the SnO2 nanoparticles about 5 nm were distributed homogenously on the reduced graphene oxide (rGO) sheets surface. The electrochemical performance measurements exhibited that SGNC possessed the specific capacitance of 347.3 F g-1 at a scan rate of 5 mV s-1 in 1 M Na2SO4 electrolyte solution. Furthermore, this material also showed excellent cycling stability, and the specific capacitance still retained 90 % after 3000 cycles. These results indicate that the SGNC is a promising electrode material for high-performance supercapacitors.

  12. Zn0-CNTs-Fe3O4 catalytic in situ generation of H2O2 for heterogeneous Fenton degradation of 4-chlorophenol.

    PubMed

    Yang, Zhao; Gong, Xiao-Bo; Peng, Lin; Yang, Dan; Liu, Yong

    2018-06-04

    A novel Zn 0 -CNTs-Fe 3 O 4 composite was synthesized by the chemical co-precipitation combined with high sintering process at nitrogen atmosphere. The as-prepared composite was characterized by SEM, EDS, XRD, XPS, VSM and N 2 adsorption/desorption experiments. A novel heterogeneous Fenton-like system, composed of Zn 0 -CNTs-Fe 3 O 4 composite and dissolved oxygen (O 2 ) in solution, which can in situ generate H 2 O 2 and OH, was used for the degradation of 4-chlorophenol (4-CP). The influences of various operational parameters, including the initial pH, dosage of Zn 0 -CNTs-Fe 3 O 4 and initial concentration of 4-CP on the removal of 4-CP were investigated. The removal efficiencies of 4-CP and total organic carbon (TOC) were 99% and 57%, respectively, at the initial pH of 1.5, Zn 0 -CNTs-Fe 3 O 4 dosage of 2 g/L, 4-CP initial concentration of 50 mg/L and oxygen flow rate of 400 mL/min. Based on the results of the radical scavenger effect study, the hydroxyl radical was considered as the main reactive oxidants in Zn 0 -CNTs-Fe 3 O 4 /O 2 system and a possible degradation pathway of 4-CP was proposed. Copyright © 2018. Published by Elsevier Ltd.

  13. SnO2/Reduced Graphene Oxide Interlayer Mitigating the Shuttle Effect of Li-S Batteries.

    PubMed

    Hu, Nana; Lv, Xingshuai; Dai, Ying; Fan, Linlin; Xiong, Dongbin; Li, Xifei

    2018-06-06

    The short cycle life of lithium-sulfur batteries (LSBs) plagues its practical application. In this study, a uniform SnO 2 /reduced graphene oxide (denoted as SnO 2 /rGO) composite is successfully designed onto the commercial polypropylene separator for use of interlayer of LSBs to decrease the charge-transfer resistance and trap the soluble lithium polysulfides (LPSs). As a result, the assembled devices using the separator modified with the functional interlayer (SnO 2 /rGO) exhibit improved cycle performance; for instance, over 200 cycles at 1C, the discharge capacity of the cells reaches 734 mAh g -1 . The cells also display high rate capability, with the average discharge capacity of 541.9 mAh g -1 at 5C. Additionally, the mechanism of anchoring behavior of the SnO 2 /rGO interlayer was systematically investigated using density functional theory calculations. The results demonstrate that the improved performance is related to the ability of SnO 2 /rGO to effectively absorb S 8 cluster and LPS. The strong Li-O/Sn-S/O-S bonds and tight chemical adsorption between LPS and SnO 2 mitigate the shuttle effect of LSBs. This study demonstrates that engineering the functional interlayer of metal oxide and carbon materials in LSBs may be an easy way to improve their rate capacity and cycling life.

  14. Deformation Microstructures Near Vickers Indentations in SNO2/SI Coated Systems

    NASA Astrophysics Data System (ADS)

    Daria, G.; Evghenii, H.; Olga, S.; Zinaida, D.; Iana, M.; Victor, Z.

    The micromechanical properties (hardness and brittleness) of the hard-on-hard SnO2 / Si-coated system (CS) and their modification depending the on load value has been studied. A nonmonotonic changing of microhardness with load growth was detected. The brittle/plastic behavior of the rigid/hard-on-hard SnO2 / Si CS and its response to concentrated load action explains it.A specific evolution of the indentation-deformed zone vs. load value attributed to the change in the internal stress redistribution between film and substrate was detected. It results in a brittleness indentation size effect (BISE) of the SnO2 / Si CS revealed in this experiment.It was shown that the greater portion of internal stresses under indentation is concentrated in the coating layer at small loads. This fact causes a strong elastic-plastic relaxation in the film and its delamination from substrate. The increase of brittle failure in the indentation-deformed zone with a decrease of indentation load was revealed.

  15. Polyaniline assisted by TiO2:SnO2 nanoparticles as a hydrogen gas sensor at environmental conditions

    NASA Astrophysics Data System (ADS)

    Nasirian, Shahruz; Milani Moghaddam, Hossain

    2015-02-01

    In the present research, polyaniline assisted by TiO2:SnO2 nanoparticles was synthesized and deposited onto an epoxy glass substrate with Cu-interdigited electrodes for gas sensing application. To examine the efficiency of the polyaniline/TiO2:SnO2 nanocomposite (PTS) as a hydrogen (H2) gas sensor, its nature, stability, response, recovery/response time have been studied with a special focus on its ability to work at environmental conditions. H2 gas sensing results demonstrated that a PTS sensor with 20 and 10 wt% of anatase-TiO2 and SnO2 nanoparticles, respectively, has the best response time (75 s) with a recovery time of 117 s at environmental conditions. The highest (lowest) response (recovery time) was 6.18 (46 s) in PTS sensor with 30 and 15 wt% of anatase- (rutile-)TiO2 and SnO2 nanoparticles, respectively, at 0.8 vol.% H2 gas. Further, the H2 gas sensing mechanism of PTS sensor has also been studied.

  16. Investigation of nanocrystalline zinc chromite obtained by two soft chemical routes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gingasu, Dana; Mindru, Ioana, E-mail: imandru@yahoo.com; Culita, Daniela C.

    2014-01-01

    Graphical abstract: - Highlights: • Two soft chemical routes to synthesize zinc chromites are described. • Glycine is used as chelating agent (precursor method) and fuel (solution combustion method). • The synthesized chromites have crystallite size in the range of 18–27 nm. • An antiferromagnetic (AFM) transition is observed at about T{sub N} ∼ 18 K. - Abstract: Zinc chromite (ZnCr{sub 2}O{sub 4}) nanocrystalline powders were obtained by two different chemical routes: the precursor method and the solution combustion method involving glycine-nitrates. The complex compound precursors, [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COO){sub 8}]·9H{sub 2}O and [ZnCr{sub 2}(NH{sub 2}CH{sub 2}COOH){sub 4.5}]·(NO{sub 3}){sub 8}·6H{submore » 2}O, were characterized by chemical analysis, infrared spectroscopy (IR), ultraviolet–visible spectroscopy (UV–vis) and thermal analysis. The structure, morphology, surface chemistry and magnetic properties of ZnCr{sub 2}O{sub 4} powders were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), infrared and Raman spectroscopy (RS), ultraviolet–visible spectroscopy (UV–vis) and magnetic measurements. X-ray diffraction patterns indicated the chromite spinel phase with good crystallinity and an average crystallite size of approximately 18–27 nm. The band gap values ranged between 3.31 and 3.33 eV. The magnetic measurements indicated an antiferromagnetic transition at T{sub N} ∼ 17.5/18 K.« less

  17. Commissioning the SNO+ detector

    NASA Astrophysics Data System (ADS)

    Descamps, Freija; SNO+ Collaboration

    2016-09-01

    The SNO+ experiment is the successor to the Sudbury Neutrino Observatory (SNO), in which SNO's heavy water is replaced by approximately 780T of liquid scintillator (LAB). The combination of the 2km underground location, the use of ultra-clean materials and the high light-yield of the liquid scintillator means that a low background level and a low energy threshold can be achieved. This creates a new multipurpose neutrino detector with the potential to address a diverse set of physics goals, including the detection of reactor, solar, geo- and supernova neutrinos. A main physics goal of SNO+ is the search for neutrinoless double beta decay. By loading the liquid scintillator with 0.5% of natural Tellurium, resulting in about 1300kg of 130Te (isotopic abundance is slightly over 34%), a competitive sensitivity to the effective neutrino mass can be reached. This talk will present the status of the SNO+ detector, specifically the results and status of the detector commissioning with water.

  18. Investigations on structural and giant magneto impedance properties of Zn3(VO4)2 nanorods

    NASA Astrophysics Data System (ADS)

    Malaidurai, M.; Bulusu, Venkat; De, Sourodeep; Thangavel, R.

    2018-05-01

    In this paper, we successfully synthesized Zn3(VO4)2 novel nanorods by hydrothermal method. As mixed phase of Zn3(VO4)2 structural and phase transformations were monitored in crystal lattice with different ionic strength by X-ray diffraction(XRD). The Zn3(VO4)2 thin film formation validated through qualitative and quantitative analysis by FESEM and it is clearly depicted the formation of the Zn3(VO4)2 nanorods varied from ˜100nm in lengths and ˜30 nm in widths. The Zn precursor's anions directly influence the composition and shape of the resultant hydrated Zn3(VO4)2. Impedance analysis were closely studied with Impedance-Frequency characterization, which was then followed by a dielectric measurement. The analysis of GMI effect was carried out with the help of the model equivalent circuit at low frequencies, constant phase element (CPE). GMI effect and the sensitivity are calculated for the sample by appling magnetic field and driving frequency in order to analyze the giant magnetoimpedance resistance of grain boundaries for spintronics applications.

  19. Co0.6Zn0.4Cu0.2CdxFe1.8-xO4 (0.2 ⩽ x ⩽ 0.8) magnetic ferrite nano-particle: Synthesis, characterization and photo-catalytic degradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Bhukal, Santosh; Bansal, S.; Singhal, Sonal

    2014-02-01

    Cd2+ ion substituted nano-crystalline cobalt-zinc ferrites having chemical formula Co0.6Zn0.4Cu0.2CdxFe1.8-xO4 (x = 0.2, 0.4, 0.6 and 0.8) have been prepared using sol-gel auto-combustion method. The X-ray diffraction analysis confirmed the crystalline structure and phase purity of all the prepared nano-ferrites. The lattice constant was found to vary linearly from 8.360 Å to 8.390 Å for cadmium ion concentration from 0.2 to 0.8 in accordance with Vegard's law. Ionic radii of tetrahedral site (rA) and octahedral site (rB) was found to increase with increase in the cadmium ion concentration because of larger size of Cd2+ ion (0.97 Å) as compared to that of Fe3+ ion (0.67 Å). Vibrating sample magnetometer (VSM) results revealed that the saturation magnetization, coercivity and anisotropy constant decrease with increase in the cadmium concentration. The distribution of cations among A and B sites of the lattice was estimated by the magnetic moments which were calculated from the magnetic data. Moreover resistivity was found to be decrease with increase in the cadmium concentration. There was increase in drift mobility with increase in temperature because of the enhanced mobility of charge carriers due to thermal activation. Co0.6Zn0.4Cu0.2CdxFe1.8-xO4 showed good catalytic activity towards methyl orange and easily recovered by magnetic separation after the reaction. The photo-catalytic degradation was enhanced as the concentration of cadmium ion increased from 0.2 to 0.8 may be due to decrease in band gap with increase in Cd2+ ion concentration.

  20. (Zn, Mg)2GeO4:Mn2+ submicrorods as promising green phosphors for field emission displays: hydrothermal synthesis and luminescence properties.

    PubMed

    Shang, Mengmeng; Li, Guogang; Yang, Dongmei; Kang, Xiaojiao; Peng, Chong; Cheng, Ziyong; Lin, Jun

    2011-10-07

    (Zn(1-x-y)Mg(y))(2)GeO(4): xMn(2+) (y = 0-0.30; x = 0-0.035) phosphors with uniform submicrorod morphology were synthesized through a facile hydrothermal process. X-Ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence (PL), and cathodoluminescence (CL) spectroscopy were utilized to characterize the samples. SEM and TEM images indicate that Zn(2)GeO(4):Mn(2+) samples consist of submicrorods with lengths around 1-2 μm and diameters around 200-250 nm, respectively. The possible formation mechanism for Zn(2)GeO(4) submicrorods has been presented. PL and CL spectroscopic characterizations show that pure Zn(2)GeO(4) sample shows a blue emission due to defects, while Zn(2)GeO(4):Mn(2+) phosphors exhibit a green emission corresponding to the characteristic transition of Mn(2+) ((4)T(1)→(6)A(1)) under the excitation of UV and low-voltage electron beam. Compared with Zn(2)GeO(4):Mn(2+) sample prepared by solid-state reaction, Zn(2)GeO(4):Mn(2+) phosphors obtained by hydrothermal process followed by high temperature annealing show better luminescence properties. In addition, codoping Mg(2+) ions into the lattice to substitute for Zn(2+) ions can enhance both the PL and CL intensity of Zn(2)GeO(4):Mn(2+) phosphors. Furthermore, Zn(2)GeO(4):Mn(2+) phosphors exhibit more saturated green emission than the commercial FEDs phosphor ZnO:Zn, and it is expected that these phosphors are promising for application in field-emission displays.

  1. Ethanol chemiresistor with enhanced discriminative ability from acetone based on Sr-doped SnO2 nanofibers.

    PubMed

    Jiang, Ziqiao; Jiang, Tingting; Wang, Jinfeng; Wang, Zhaojie; Xu, Xiuru; Wang, Zongxin; Zhao, Rui; Li, Zhenyu; Wang, Ce

    2015-01-01

    We demonstrated a new metal oxides based chemiresistor (MOC), which exhibits fast response/recovery behavior, large sensitivity, and good selectivity to ethanol, enabled by Sr-doped SnO2 nanofibers via simple electrospinning and followed by calcination. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS) were carefully used to characterize their morphology, structure, and composition. The ethanol sensing performances based on Sr-doped SnO2 nanofibers were investigated. Comparing with the pristine SnO2 nanofibers, enhanced ethanol sensing performances (more rapid response/recovery behavior and larger response values) have been achieved owing to the basic SnO2 surface caused by Sr-doping, whereas the acetone sensing performances have been weakened. Thus, good discriminative ability to ethanol from acetone has been realized. Additionally, Sr-doped SnO2 nanofibers also exhibit good selectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Enhanced photo-, sono- and sonophotocatalysis of methylene blue via SnO2 nanoparticle supported on nanographene platelets (NGP)

    NASA Astrophysics Data System (ADS)

    Paramarta, V.; Taufik, A.; Saleh, R.

    2017-07-01

    In our previous study, we have reported the catalytic (photo- and sono-) performance of SnO2 nanoparticles in methylene blue (MB) removal from aqueous solution. In this study, SnO2/nanographene platelets (NGP) composites were fabricated by depositing SnO2 nanoparticle onto nanographene platelets surface to develop photo-, sono-, and sonophotocatalysts, SnO2 nanoparticle, and SnO2/NGP composites were successfully synthesized using the sol-gel and coprecipitation method, respectively. The nanographene platelets (NGP) content was varied from 5, 10, and 15 weight percentages (wt.%). The optical properties and thermal stability of the samples were characterized using X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), and Thermal Gravimetric Analysis (TGA). The catalytic ability of the samples was investigated using photo-, sono-, and sonophoto degradation of MB which was observed when nanographene platelets (NGP) were added into SnO2 nanocomposite. The photo-, sono- and sonophotocatalytic activities of SnO2/NGP composites on dyes were analyzed by measuring the change in absorbance of dyes under UV-spectrophotometer. The degradation of the organic dyes has been calculated by monitoring the degradation in concentration of the dyes before and after irradiation of UV light, ultrasound, and both of them respectively. The influence of other parameters such as catalyst dosage, pH, and scavenger have also been investigated. The results showed that SnO2/NGP composite with 10 weight percent (wt.%) has better catalytic performance than pure SnO2 nanoparticle. The reusability tests have also been done to ensure the stability of the used catalysts.

  4. [Preparation and transmissivity of ZnS nanocolumn thin films with glancing angle deposition technology].

    PubMed

    Lu, Li-Fang; Xu, Zheng; Zhang, Fu-Jun; Zhao, Su-Ling; Song, Dan-Dan; Li, Jun-Ming; Wang, Yong-Sheng; Xu, Xu-Rong

    2010-02-01

    Nanocrystalline ZnS thin films were fabricated by glancing angle deposition (GLAD) technology in an electron beam evaporation system. Deposition was carried out in the custom vacuum chamber at a base pressure 3 x 10(-4) Pa, and the deposition rate was fixed at 0.2 nm x s(-1). ZnS films were deposited on pieces of indium tin oxide (ITO) substrates when the oblique angle of the substrate relative to the incoming molecular flux was set to 0 degrees, 80 degrees and 85 degrees off the substrate normal respectively. X-ray diffraction (XRD) spectra and scanning electron microscope (SEM) images showed that ZnS nanocrystalline films were formed on the substrates at different oblique angle, but the nanocolumn structure was only formed under the situation of alpha = 80 degrees and 85 degrees. The dynamics during the deposition process of the ZnS films at alpha = 0 degrees, 80 degrees and 85 degrees was analyzed. The transmitted spectra of ZnS thin films deposited on ITO substrates showed that the ZnS nanocolumn thin films could enhance the transmissivity in visible range. The ZnS nanocolumn could be used into electroluminescence device, and it would enhance the luminous efficiency of the device.

  5. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2013-07-01

    Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 1021 cm-3, distribute preferentially along the film surface direction.

  6. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    NASA Astrophysics Data System (ADS)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  7. Promotional effect of surface hydroxyls on electrochemical reduction of CO 2 over SnO x/Sn electrode

    DOE PAGES

    Cui, Chaonan; Han, Jinyu; Zhu, Xinli; ...

    2016-01-16

    In this study, tin oxide (SnO x) formation on tin-based electrode surfaces during CO 2 electrochemical reduction can have a significant impact on the activity and selectivity of the reaction. In the present study, density functional theory (DFT) calculations have been performed to understand the role of SnO x in CO 2 reduction using a SnO monolayer on the Sn(112) surface as a model for SnO x. Water molecules have been treated explicitly and considered actively participating in the reaction. The results showed that H 2O dissociates on the perfect SnO monolayer into two hydroxyl groups symmetrically on the surface.more » CO 2 energetically prefers to react with the hydroxyl, forming a bicarbonate (HCO 3(t)*) intermediate, which can then be reduced to either formate (HCOO*) by hydrogenating the carbon atom or carboxyl (COOH*) by protonating the oxygen atom. Both steps involve a simultaneous Csingle bondO bond breaking. Further reduction of HCOO* species leads to the formation of formic acid in the acidic solution at pH < 4, while the COOH* will decompose to CO and H 2O via protonation. Whereas the oxygen vacancy (VO) in the oxide monolayer maybe formed by the reduction, it can be recovered by H 2O dissociation, resulting in two embedded hydroxyl groups. The results show that the hydroxylated surface with two symmetric hydroxyls is energetically more favorable for CO 2 reduction than the hydroxylated VO surface with two embedded hydroxyls. The reduction potential for the former has a limiting-potential of –0.20 V (RHE), lower than that for the latter (–0.74 V (RHE)). Compared to the pure Sn electrode, the formation of SnO x monolayer on the electrode under the operating conditions promotes CO 2 reduction more effectively by forming surface hydroxyls, thereby providing a new channel via COOH* to the CO formation, although formic acid is still the major reduction product.« less

  8. Zn₂SnO₄-Reduced Graphene Oxide Nanohybrids for Visible-Light-Driven Photocatalysis.

    PubMed

    Li, Hui; Wu, Xiang-Feng; Sun, Yang; Zhao, Ze-Hua; Zhang, Chen-Xu; Jia, Fan-Fan; Zhang, Han; Yu, Mai-Tuo; Yang, Xin-Yue

    2018-02-01

    Zn2SnO4-reduced graphene oxide photocatalysts were synthesized by using SnCl4 5H2O, Zn(NO3)2 · 6H2O and graphene oxide via hydrothermal process. The structure, morphology, specific surface area and photo response of the as-prepared nanocomposites were characterized by X-ray diffraction, Transmission electron microscopy, UV-vis diffuse reflectance spectra, Brunauer-emmett-teller surface area measurement and Photoluminescence emission spectra. Experimental results showed that the Zn2SnO4 nanoparticles, with 20-30 nm a size range, were uniformly dispersed on the surfaces of reduced graphene oxide. Moreover, the as-prepared Zn2SnO4-reduced graphene oxide photocatalysts exhibited enhanced photocatalytic activities for degradation of Rhodamine B compared to those of pure Zn2SnO4. When the amount of reduced graphene oxide was 4 wt%, it showed the highest photocatalytic efficiency of 99.7% for 240 min, and the photocatalytic efficiency was still 98.5% after it was recycled 4 times. It also possessed the band gap of 2.48 eV and specific surface area of 58.1 m2 g-1.

  9. Surface characterization of ZnO/ZnMn{sub 2}O{sub 4} and Cu/Mn{sub 3}O{sub 4} powders obtained by thermal degradation of heterobimetallic complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrault, Joeel, E-mail: joel.barrault@univ-poitiers.fr; Makhankova, Valeriya G., E-mail: leram@univ.kiev.ua; Khavryuchenko, Oleksiy V.

    2012-03-15

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06more » m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.« less

  10. The Application of Metal Oxide Nanomaterials for Chemical Sensor Development

    NASA Technical Reports Server (NTRS)

    Xu, Jennifer C.; Hunter, Gary W.; Evans, Laura J.; VanderWal, Randy L.; Berger, Gordon M.

    2007-01-01

    NASA Glenn Research Center (GRC) has been developing miniature chemical sensors for a variety of applications including fire detection, emissions monitoring, fuel leak detection, and environmental monitoring. Smart Lick and Stick sensor technology which integrates a sensor array, electronics, telemetry, and power into one microsystem are being developed. These microsystems require low power consumption for long-term aerospace applications. One approach to decreasing power consumption is the use of nanotechnology. Nanocrystalline tin oxide (SnO2) carbon monoxide (CO) sensors developed previously by this group have been successfully used for fire detection and emissions monitoring. This presentation will briefly review the overall NASA GRC chemical sensor program and discuss our further effort in nanotechnology applications. New carbon dioxide (CO2) sensing material using doped nanocrystalline SnO2 will be discussed. Nanocrystalline SnO2 coated solid electrolyte CO2 sensors and SnO2 nanorod and nanofiber hydrogen (H2) sensors operated at reduced or room temperatures will also be discussed.

  11. Effect of Aluminum Doping on the Nanocrystalline ZnS:Al3+ Films Fabricated on Heavily-Doped p-type Si(100) Substrates by Chemical Bath Deposition Method

    NASA Astrophysics Data System (ADS)

    Zhu, He-Jie; Liang, Yan; Gao, Xiao-Yong; Guo, Rui-Fang; Ji, Qiang-Min

    2015-06-01

    Intrinsic ZnS and aluminum-doped nanocrystalline ZnS (ZnS:Al3+) films with zinc-blende structure were fabricated on heavily-doped p-type Si(100) substrates by chemical bath deposition method. Influence of aluminum doping on the microstructure, and photoluminescent and electrical properties of the films, were intensively investigated. The average crystallite size of the films varying in the range of about 9.0 ˜ 35.0 nm initially increases and then decreases with aluminum doping contents, indicating that the crystallization of the films are initially enhanced and then weakened. The incorporation of Al3+ was confirmed from energy dispersive spectrometry and the induced microstrain in the films. Strong and stable visible emission band resulting from the defect-related light emission were observed for the intrinsic ZnS and ZnS:Al3+ films at room temperature. The photoluminescence related to the aluminum can annihilate due to the self-absorption of ZnS:Al3+ when the Al3+ content surpasses certain value. The variation of the resistivity of the films that initially reduces and then increases is mainly caused by the partial substitute for Zn2+ by Al3+ as well as the enhanced crystallization, and by the enhanced crystal boundary scattering, respectively.

  12. Growth of Fe2O3/SnO2 nanobelt arrays on iron foil for efficient photocatalytic degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Lei, Rui; Ni, Hongwei; Chen, Rongsheng; Zhang, Bowei; Zhan, Weiting; Li, Yang

    2017-04-01

    Tin(IV) oxide has been intensively employed in optoelectronic devices due to its excellent electrical and optical properties. But the high recombination rates of the photogenerated electron-hole pairs of SnO2 nanomaterials often results in low photocatalytic efficiency. Herein, we proposed a facile route to prepare a novel Fe2O3/SnO2 heterojunction structure. The nanobelt arrays grown on iron foil naturally form a Schottky-type contact and provide a direct pathway for the photogenerated excitons. Hence, the Fe2O3/SnO2 nanobelt arrays exhibit much improved photocatalytic performance with the degradation rate constant on the Fe2O3/SnO2 film of approximately 12 times to that of α-Fe2O3 nanobelt arrays.

  13. Highly sensitive nanostructure SnO2 based gas sensor for environmental pollutants

    NASA Astrophysics Data System (ADS)

    Korgaokar, Sushil; Moradiya, Meet; Prajapati, Om; Thakkar, Pranav; Pala, Jay; Savaliya, Chirag; Parikh, Sachin; Markna, J. H.

    2017-05-01

    A major quantity of pollutants are produced from industries and vehicles in the form of gas. New approaches are needed to solve well-known environmental pollutants like CO, CO2, NO2, SOx. Therefore detection with effective gas sensors is a vital part of pollution prevention efforts. There is a need to develop fast, rapid, cost-effective, highly sensitive, low power, and non-intrusive rugged sensors that can be easily installed. In the present study, nanostructured SnO2 used as a sensitive material in the devices and synthesized using hydrothermal process. The detailed development of the fabrication of SnO2 nanostructures gas sensor is described, which shows the remarkable change in the sensing properties with varying particle size. Additionally, we have used X-ray diffraction, scanning electron microscopy (SEM) for characterization and carefully examined the relative parameters like response magnitude (sensitivity) and selectivity of SnO2 nano structures with different particle size.

  14. [Effect of temperature on the structure of CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramics studied by Raman spectroscopy].

    PubMed

    Li, Bao-Wei; Ouyang, Shun-Li; Zhang, Xue-Feng; Jia, Xiao-Lin; Deng, Lei-Bo; Liu, Fang

    2014-07-01

    In the present paper, nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system was produced by melting method. The CaO-MgO-Al2O3-SiO2 nanocrystalline glass-ceramic was measured by Raman spectroscopy in the temperature range from -190 to 310 degrees C in order to study the effect of temperature on the structure of this system nanocrystalline glass-ceramics. The results showed that different non-bridge oxygen bond silicon-oxygen tetrahedron structural unit changes are not consistent with rising temperature. Further analyses indicated that: the SiO4 tetrahedron with 2 non-bridged oxygen (Q2), the SiO4 tetrahedron with 3 non-bridged oxygen (Q(1)), which are situated at the edge of the 3-D SiO4 tetrahedrons network, and the SiO4 tetrahedron with 4 non-bridged oxygen (Q(0)), which is situated outside the 3-D network all suffered a significant influence by the temperature change, which has been expressed as: shifts towards the high wave-number, increased bond force constants, and shortened bond lengths. This paper studied the influence of temperature on CMAS system nanocrystalline glass-ceramics using variable temperature Raman technology. It provides experiment basis to the research on external environment influence on CMAS system nanocrystalline glass-ceramics materials in terms of structure and performance. In addition, the research provides experimental basis for controlling the expansion coefficient of nanocrystalline glass-ceramic of CaO-MgO-Al2O3-SiO2 system.

  15. Two-stage epitaxial growth of vertically-aligned SnO 2 nano-rods on(001) ceria

    DOE PAGES

    Solovyov, Vyacheslav F.; Wu, Li-jun; Rupich, Martin W.; ...

    2014-09-20

    Growth of high-aspect ratio oriented tin oxide, SnO 2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO 2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO 2 deposit. Second, vertical SnO 2nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 μm long nano-rods with an average diameter of ≈20 nm.

  16. Scalable fabrication of SnO2 thin films sensitized with CuO islands for enhanced H2S gas sensing performance

    NASA Astrophysics Data System (ADS)

    Van Toan, Nguyen; Chien, Nguyen Viet; Van Duy, Nguyen; Vuong, Dang Duc; Lam, Nguyen Huu; Hoa, Nguyen Duc; Van Hieu, Nguyen; Chien, Nguyen Duc

    2015-01-01

    The detection of H2S, an important gaseous molecule that has been recently marked as a highly toxic environmental pollutant, has attracted increasing attention. We fabricate a wafer-scale SnO2 thin film sensitized with CuO islands using microelectronic technology for the improved detection of the highly toxic H2S gas. The SnO2-CuO island sensor exhibits significantly enhanced H2S gas response and reduced operating temperature. The thickness of CuO islands strongly influences H2S sensing characteristics, and the highest H2S gas response is observed with 20 nm-thick CuO islands. The response value (Ra/Rg) of the SnO2-CuO island sensor to 5 ppm H2S is as high as 128 at 200 °C and increases nearly 55-fold compared with that of the bare SnO2 thin film sensor. Meanwhile, the response of the SnO2-CuO island sensor to H2 (250 ppm), NH3 (250 ppm), CO (250 ppm), and LPG (1000 ppm) are low (1.3-2.5). The enhanced gas response and selectivity of the SnO2-CuO island sensor to H2S gas is explained by the sensitizing effect of CuO islands and the extension of electron depletion regions because of the formation of p-n junctions.

  17. Facile synthesis of ZnCo2O4/rGO nanocomposite for effective supercapacitor application

    NASA Astrophysics Data System (ADS)

    Mary, A. Juliet Christina; Bose, A. Chandra

    2017-05-01

    ZnCo2O4/rGO nanocompoite material gives the high specific capacitance value of 704.2 F/g at a current density of 0.75 A/g. rGO material provides the effective surface area for the composite which leads to better performance for supercapacitor application. Stability of ZnCo2O4/rGO nanocomposite was tested up to 400 cycles. ZnCo2O4/rGO nanocomposite is the suitable material for supercapacitor application.

  18. Behaviors of Zn2GeO4 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shu-Wen, Yang; Fang, Peng; Wen-Tao, Li; Qi-Wei, Hu; Xiao-Zhi, Yan; Li, Lei; Xiao-Dong, Li; Duan-Wei, He

    2016-07-01

    The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn-O-Ge and Ge-O-Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature. Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).

  19. Ag-NPs embedded in two novel Zn3/Zn5-cluster-based metal-organic frameworks for catalytic reduction of 2/3/4-nitrophenol.

    PubMed

    Wu, Xue-Qian; Huang, Dan-Dan; Zhou, Zhi-Hang; Dong, Wen-Wen; Wu, Ya-Pan; Zhao, Jun; Li, Dong-Sheng; Zhang, Qichun; Bu, Xianhui

    2017-02-21

    By utilizing symmetrical pentacarboxylate ligands, 3,5-di(2',5'-dicarboxylphenyl)benzoic acid (H 5 L1) and 3,5-di(2',4'-dicarboxylphenyl)benzoic acid (H 5 L2), two novel porous Zn-MOFs, [Zn 5 (μ 3 -H 2 O) 2 (L1) 2 ]·3DMA·4H 2 O (CTGU-3) and [Zn 3 (μ 3 -OH)L2(H 2 O) 3 ]·H 2 O (CTGU-4) have been synthesized under solvothermal conditions. CTGU-3 and CTGU-4 exhibit 3D microporous frameworks with flu and dia topologies and possess unique secondary building units [Zn 5 (μ 3 -H 2 O) 2 (RCO 2 ) 6 ] and [Zn 3 (μ 3 -OH)(RCO 2 ) 3 ], respectively. Such porous systems create a unique space or surface to accommodate Ag nanoparticles (Ag NPs), which could efficiently prevent Ag NPs from aggregation and leaching. In this work, two new Ag@Zn-MOF composites, denoted as Ag@CTGU, have been successfully fabricated through solution infiltration, for the reduction of nitrophenol. Compared with CTGU-4, CTGU-3 shows enhanced catalytic efficiency toward the reaction when it is used as a catalyst support of Ag NPs. Moreover, gas sorption and luminescence properties of two compounds were also investigated.

  20. Surface characterization of ZnO/ZnMn2O4 and Cu/Mn3O4 powders obtained by thermal degradation of heterobimetallic complexes

    NASA Astrophysics Data System (ADS)

    Barrault, Joël; Makhankova, Valeriya G.; Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N.; Ayrault, Philippe

    2012-03-01

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2'-bipyridyl by thermal degradation at relatively low (350 °C) temperature, it was possible to get either well defined spinel ZnMn2O4 over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn3O4) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33±0.2 and 9±0.06 m2 g-1 for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products.

  1. Label-free SnO2 nanowire FET biosensor for protein detection

    NASA Astrophysics Data System (ADS)

    Jakob, Markus H.; Dong, Bo; Gutsch, Sebastian; Chatelle, Claire; Krishnaraja, Abinaya; Weber, Wilfried; Zacharias, Margit

    2017-06-01

    Novel tin oxide field-effect-transistors (SnO2 NW-FET) for pH and protein detection applicable in the healthcare sector are reported. With a SnO2 NW-FET the proof-of-concept of a bio-sensing device is demonstrated using the carrier transport control of the FET channel by a (bio-) liquid modulated gate. Ultra-thin Al2O3 fabricated by a low temperature atomic layer deposition (ALD) process represents a sensitive layer to H+ ions safeguarding the nanowire at the same time. Successful pH sensitivity is demonstrated for pH ranging from 3 to 10. For protein detection, the SnO2 NW-FET is functionalized with a receptor molecule which specifically interacts with the protein of interest to be detected. The feasibility of this approach is demonstrated via the detection of a biotinylated protein using a NW-FET functionalized with streptavidin. An immediate label-free electronic read-out of the signal is shown. The well-established Enzyme-Linked Immunosorbent Assay (ELISA) method is used to determine the optimal experimental procedure which would enable molecular binding events to occur while being compatible with a final label-free electronic read-out on a NW-FET. Integration of the bottom-up fabricated SnO2 NW-FET pH- and biosensor into a microfluidic system (lab-on-a-chip) allows the automated analysis of small volumes in the 400 μl range as would be desired in portable on-site point-of-care (POC) devices for medical diagnosis.

  2. Employing linear tetranuclear [Zn4(COO)4(OH)2] clusters as building subunits to construct a new Zn(II) coordination polymer with tunable luminescent properties

    NASA Astrophysics Data System (ADS)

    Li, Wu-Wu; Zhang, Zun-Ting

    2016-02-01

    A new Zn(II) coordination polymer, [Zn2(btc) (biimpy) (OH)]n (1 H3btc = 1,3,5-benzenetricarboxylic acid, biimpy = 2,6-bis(1-imdazoly)pyridine) has been successfully synthesized and characterized by elemental analysis, powder single crystal X-ray diffraction analyses. Compound 1 features a 3D framework employing linear tetranuclear [Zn4(COO)4(OH)2] cluster as building subunits. Topological analysis reveals it represents a (3,10)-connected structural topology by viewing btc3-, linear tetranuclear clusters and biimpy as 3-connected nodes, 10-connected nodes, linear linkers, respectively. Moreover, the thermal stability and luminescent property of compound 1 have been well investigated.

  3. Aminoacid N-substituted 1,4,7-triazacyclononane and 1,4,7,10-tetraazacyclododecane Zn2+, Cd2+ and Cu2+ complexes. A preparative, potentiometric titration and NMR spectroscopic study.

    PubMed

    Plush, Sally E; Lincoln, Stephen F; Wainwright, Kevin P

    2004-05-07

    The pK(a)s and Zn2+, Cd2+ and Cu2+ complexation constants (K) for 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7-triazacyclononane, 1, 1,4,7-tris[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7-triazacyclononane, H(3)2, 1,4,7-tris[(2''S)-acetamido-2''-(methyl-3''-(1H-3-indolyl)propionate)]-1,4,7-triazacyclononane, 3, and 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(methyl-3''-phenylpropionate)]-1,4,7,10-tetraazacyclododecane, 4, 1,4,7,10-tetrakis[(2''S)-acetamido-2''-(1''-carboxy-3''-phenylpropane)]-1,4,7,10-tetraazacyclododecane, H(4)5, in 20 : 80 v/v water-methanol solution are reported. The pK(a)s within the potentiometric detection range for H(3)1(3+) = 8.69 and 3.59, for H(6)2(3+) = 9.06, 6.13, 4.93 and 4.52, H(3)3(3+) = 8.79 and 3.67, H(4)4(4+) = 8.50, 5.62 and 3.77 and for H(8)5(4+) = 9.89, 7.06, 5.53, 5.46, 4.44 and 4.26 where each tertiary amine nitrogen is protonated. The complexes of 1: [Zn(1)]2+(9.00), [Cd(1)]2+ (6.49), [Cd(H1)]3+ (4.54) and [Cu(1)]2+ (10.01) are characterized by the log(K/dm3 mol(-1)) values shown in parentheses. Analogous complexes are formed by 3 and 4: [Zn(3)]2+ (10.19), [Cd(3)]2+ (8.54), [Cu(3)]2+ (10.77), [Zn(4)]2+ (11.41) [Cd(4)]2+ (9.16), [Cd(H4)]3+ (6.16) and [Cu(4)]2+ (11.71). The tricarboxylic acid H(3)2 generates a greater variety of complexes as exemplified by: [Zn(2)-] (10.68) [Zn(H2)] (6.60) [Zn(H(2)2)+] (5.15), [Cd(2)](-) (4.99), [Cd(H2)] (4.64), [Cd(H2(2))]+ (3.99), [Cd(H(3)2)]2+ (3.55), [Cu(2)](-) (12.55) [Cu(H2)] (7.66), [Cu(H(2)2)]+ (5.54) and [Cu(2)2](4-) (3.23). The complexes of H(4)5 were insufficiently soluble to study in this way. The 1H and 13C NMR spectra of the ligands are consistent with formation of a predominant Zn2+ and Cd2+ Delta or Lambda diastereomer. The preparations of the new pendant arm macrocycles H(3)2, 3, 4 and H(4)5 are reported.

  4. Vacancy-Induced Ferromagnetism in SnO2 Nanocrystals: A Positron Annihilation Study

    NASA Astrophysics Data System (ADS)

    Chen, Zhi-Yuan; Chen, Zhi-Quan; Pan, Rui-Kun; Wang, Shao-Jie

    2013-02-01

    SnO2 nanopowders were pressed into pellets and annealed in air from 100 to 1400°C. Both XRD and Raman spectroscopy confirm that all annealed samples were single phase with a tetragonal rutile structure. Annealing induces an increase in the SnO2 grain size from 30 to 83 nm. Positron annihilation measurements reveal vacancy defects in the grain boundary region, and the interfacial defects remain stable after annealing below 400°C, then they are gradually recovered with increasing annealing temperature up to 1200°C. Room temperature ferromagnetism was observed for SnO2 nanocrystals annealed below 1200°C, and the magnetization decreases continuously with increasing annealing temperature. However, the ferromagnetism disappears at 1200°C annealing. This shows good coincidence with the recovery of interfacial defects in the nanocrystals, suggesting that the ferromagnetism is probably induced by vacancy defects in the interface region.

  5. Strain-induced optical band gap variation of SnO 2 films

    DOE PAGES

    Rus, Stefania Florina; Ward, Thomas Zac; Herklotz, Andreas

    2016-06-29

    In this paper, thickness dependent strain relaxation effects are utilized to study the impact of crystal anisotropy on the optical band gap of epitaxial SnO 2 films grown by pulsed laser deposition on (0001)-oriented sapphire substrates. An X-ray diffraction analysis reveals that all films are under tensile biaxial in-plane strain and that strain relaxation occurs with increasing thickness. Variable angle spectroscopic ellipsometry shows that the optical band gap of the SnO 2 films continuously increases with increasing film thickness. This increase in the band gap is linearly related to the strain state of the films, which indicates that the mainmore » origin of the band gap change is strain relaxation. The experimental observation is in excellent agreement with results from density functional theory for biaxial in-plane strain. Our research demonstrates that strain is an effective way to tune the band gap of SnO 2 films and suggests that strain engineering is an appealing route to tailor the optical properties of oxide semiconductors.« less

  6. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2018-06-01

    Eu-doped 70SiO2–23HfO2–7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦C, both, Eu2+ as well as Eu3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu3+ to Eu2+ takes place in such ZnO/HfO2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 65d \\to 4f 7 energy level transition of Eu2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm‑1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO2–23HfO2–7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  7. Effect of structural evolution of ZnO/HfO2 nanocrystals on Eu2+/Eu3+ emission in glass-ceramic waveguides for photonic applications.

    PubMed

    Ghosh, Subhabrata; Bhaktha B N, Shivakiran

    2018-06-01

    Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) glass-ceramic waveguides have been fabricated by sol-gel method as a function of heat-treatment temperatures for on-chip blue-light emitting source applications. Structural evolution of spherical ZnO and spherical as well as rod-like HfO 2 nanocrystalline structures have been observed with heat-treatments at different temperatures. Initially, in the as-prepared samples at 900 ◦ C, both, Eu 2+ as well as Eu 3+ ions are found to be present in the ternary matrix. With controlled heat-treatments of up to 1000 ◦ C for 2 h, local environment of Eu-ions become more crystalline in nature and the reduction of Eu 3+ to Eu 2+ takes place in such ZnO/HfO 2 crystalline environments. In these ternary glass-ceramic waveguides, heat-treated at higher temperatures, the blue-light emission characteristic, which is the signature of 4f 6 5d [Formula: see text] 4f 7 energy level transition of Eu 2+ ions is found to be greatly enhanced. The as-prepared glass-ceramic waveguides exhibit a propagation loss of 0.4 ± 0.2 dB cm -1 at 632.8 nm. Though the propagation losses increase with the growth of nanocrystals, the added functionalities achieved in the optimally heat-treated Eu-doped 70SiO 2 -23HfO 2 -7ZnO (mol%) waveguides, make them a viable functional optical material for the fabrication of on-chip blue-light emitting sources for integrated optic applications.

  8. From GaN to ZnGa(2)O(4) through a low-temperature process: nanotube and heterostructure arrays.

    PubMed

    Lu, Ming-Yen; Zhou, Xiang; Chiu, Cheng-Yao; Crawford, Samuel; Gradečak, Silvija

    2014-01-22

    We demonstrate a method to synthesize GaN-ZnGa2O4 core-shell nanowire and ZnGa2O4 nanotube arrays by a low-temperature hydrothermal process using GaN nanowires as templates. Transmission electron microscopy and X-ray photoelectron spectroscopy results show that a ZnGa2O4 shell forms on the surface of GaN nanowires and that the shell thickness is controlled by the time of the hydrothermal process and thus the concentration of Zn ions in the solution. Furthermore, ZnGa2O4 nanotube arrays were obtained by depleting the GaN core from GaN-ZnGa2O4 core-shell nanowire arrays during the reaction and subsequent etching with HCl. The GaN-ZnGa2O4 core-shell nanowires exhibit photoluminescence peaks centered at 2.60 and 2.90 eV attributed to the ZnGa2O4 shell, as well as peaks centered at 3.35 and 3.50 eV corresponding to the GaN core. We also demonstrate the synthesis of GaN-ZnGa2O4 heterojunction nanowires by a selective formation process as a simple route toward development of heterojunction nanodevices for optoelectronic applications.

  9. Facile fabrication of all-solid-state SnO2/NiCo2O4 biosensor for self-powered glucose detection

    NASA Astrophysics Data System (ADS)

    Cai, Bin; Mao, Weiwei; Ye, Zhizhen; Huang, Jingyun

    2016-09-01

    With increasing attention on daily diabetes management, we develop an all-solid-state self-powered glucose biosensor, with simultaneous solar energy conversion, electrochemical energy storage and glucose sensing. The SnO2 nanosheet arrays are used to obtain photogenerated electron-hole pairs, and rhombus-shaped NiCo2O4 nanorod arrays are developed for solar energy storage. A stable open circuit voltage ~0.58 V is obtained after being fully charged, which is a suitable voltage for the oxidation of glucose. The biosensor can work under two different modes without any external bias voltage, and both show large linear range and excellent selectivity. Under the sunlight, photocurrent shows a sensitive decrease upon different glucose additions. Meanwhile, in the dark condition, the open circuit voltage of the charged biosensor also exhibits a corresponding response to glucose.

  10. SNO+ Scintillator Purification and Assay

    NASA Astrophysics Data System (ADS)

    Ford, R.; Chen, M.; Chkvorets, O.; Hallman, D.; Vázquez-Jáuregui, E.

    2011-04-01

    We describe the R&D on the scintillator purification and assay methods and technology for the SNO+ neutrino and double-beta decay experiment. The SNO+ experiment is a replacement of the SNO heavy water with liquid scintillator comprised of 2 g/L PPO in linear alkylbenzene (LAB). During filling the LAB will be transported underground by rail car and purified by multi-stage distillation and steam stripping at a flow rate of 19 LPM. While the detector is operational the scintillator can be recirculated at 150 LPM (full detector volume in 4 days) to provide repurification as necessary by either water extraction (for Ra, K, Bi) or by functional metal scavenger columns (for Pb, Ra, Bi, Ac, Th) followed by steam stripping to remove noble gases and oxygen (Rn, O2, Kr, Ar). The metal scavenger columns also provide a method for scintillator assay for ex-situ measurement of the U and Th chain radioactivity. We have developed "natural" radioactive spikes of Pb and Ra in LAB and use these for purification testing. Lastly, we present the planned operating modes and purification strategies and the plant specifications and design.

  11. Junction Quality of SnO2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling.

    PubMed

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; Gorman, Brian P; Ye, Jichun; Jiang, Chun-Sheng; Yan, Yanfa; Al-Jassim, Mowafak M

    2017-11-08

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on the cross section of SnO 2 -based PS solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having an identical device structure: (1) cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; (2) cells with an intrinsic SnO 2 thin layer on the top of FTO as an effective ESL; and (3) cells with the SnO 2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2 -ESL < SnO 2 + SAM; this sequence explains the improvements of the fill factor (FF) and open-circuit voltage (V oc ). The improvement of the FF from the FTO to SnO 2 -ESL cells may result from the reduction in voltage loss at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding an SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. These nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO 2 -based ESL material quality and the ESL/PS interface.

  12. Two-stage epitaxial growth of vertically-aligned SnO2 nano-rods on (001) ceria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyov, VF; Wu, LJ; Rupich, MW

    2014-12-15

    Growth of high-aspect ratio oriented tin oxide, SnO2, nano-rods is complicated by a limited choice of matching substrates. We show that a (001) cerium oxide, CeO2, surface uniquely enables epitaxial growth of tin-oxide nano-rods via a two-stage process. First, (100) oriented nano-wires coat the ceria surface by lateral growth, forming a uniaxially-textured SnO2 deposit. Second, vertical SnO2 nano-rods nucleate on the deposit by homoepitaxy. We demonstrate growth of vertically oriented 1-2 mu m long nano-rods with an average diameter of approximate to 20 nm. 2014 Elsevier B.V. All rights reserved.

  13. Optical and superparamagnetic behavior of ZnFe2O4 nanoparticles

    NASA Astrophysics Data System (ADS)

    Lal, Ganesh; Punia, Khushboo; Dolia, S. N.; Kumar, Sudhish

    2018-05-01

    Nanoparticles of zinc ferrite have been synthesized using a low temperature citrate sol-gel route and characterized by powder X-ray diffraction (XRD), Raman & UV-Vis-NIR spectroscopic and SQUID magnetometry measurements. Analysis of XRD pattern and Raman spectrum confirmed that the synthesized ZnFe2O4 sample crystallizes in single phase fcc spinel ferrite structure and the average particle size of nanoparticles is estimated to 24nm. Optical absorption study shows that maximum photo absorption take place in the visible band and peaking in UV band at 206nm and the band gap energy is estimated to Eg = 2.1eV. Zero Field Cooled (ZFC) and Field Cooled (FC) modes of magnetization down to 5K and in fields up to 20kOe shows that ZnFe2O4 nanoparticles exhibits superparamagnetism with high magneto-crystalline anisotropy and high magnetization. Small difference of 9K between the separation temperature TS=˜30K and blocking temperature TB= 21K are suggestive of the formation of ferromagnetic clusters and a narrow particle size distribution of the nanoparticles in superparamagnetic ZnFe2O4 nanoparticles.

  14. Synthesis of porous SnO2 nanocubes via selective leaching and enhanced gas-sensing properties

    NASA Astrophysics Data System (ADS)

    Li, Yining; Wei, Qi; Song, Peng; Wang, Qi

    2016-01-01

    Porous micro-/nanostructures are of great interest in many current and emerging areas of technology. In this paper, porous SnO2 nanocubes have been successfully fabricated via a selective leaching strategy using CoSn(OH)6 as precursor. The structure and morphology of as-prepared samples were investigated by several techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric and differential scanning calorimeter analysis (TG⿿DSC), transmission electron microscopy (TEM) and N2 adsorption⿿desorption analyses. On the basis of those characterizations, the mechanism for the formation of porous SnO2 nanocubes has been proposed. Owing to the well-defined and uniform porous structures, porous SnO2 nanocubes possessing more adsorbent amount of analytic gas and accelerate the transmission speed so as to enhance the gas-sensing properties. Gas sensing investigation showed that the sensor based on porous SnO2 nanocubes exhibited high response, short response⿿recovery times and good selectivity to ethanol gas.

  15. Luminescence Characteristics of ZnGa2O4 Thick Film Doped with Mn2+ and Cr3+ at Various Sintering Temperatures

    NASA Astrophysics Data System (ADS)

    Cha, Jae Hyeok; Kim, Kyung Hwan; Park, Yong Seo; Kwon, Sang Jik; Choi, Hyung Wook

    2007-10-01

    ZnGa2O4 phosphor separately doped with Mn2+ and Cr3+ was synthesized by solid-state reaction, and thick films were deposited by screen printing. The X-ray diffraction (XRD) patterns of ZnGa2O4 phosphor thick films show a (311) main peak and a spinal phase. Uniform distribution and filled morphology of the doped ZnGa2O4 phosphor thick films were formed at the sintering temperature of 1100 °C. The CL spectrum of Mn2+-doped ZnGa2O4 shows the main peak of 512 nm green emission with the 4T1→6A1 transition of Mn2+ ions and the CL spectrum of Cr3+-doped ZnGa2O4 shows the main peak of 716 nm red emission with the 2E→4A2 transition of Cr3+ ions.

  16. Negative feedback regulation of TGF-beta signaling by the SnoN oncoprotein.

    PubMed

    Stroschein, S L; Wang, W; Zhou, S; Zhou, Q; Luo, K

    1999-10-22

    Smad proteins mediate transforming growth factor-beta (TGF-beta) signaling to regulate cell growth and differentiation. The SnoN oncoprotein was found to interact with Smad2 and Smad4 and to repress their abilities to activate transcription through recruitment of the transcriptional corepressor N-CoR. Immediately after TGF-beta stimulation, SnoN is rapidly degraded by the nuclear accumulation of Smad3, allowing the activation of TGF-beta target genes. By 2 hours, TGF-beta induces a marked increase in SnoN expression, resulting in termination of Smad-mediated transactivation. Thus, SnoN maintains the repressed state of TGF-beta-responsive genes in the absence of ligand and participates in negative feedback regulation of TGF-beta signaling.

  17. Cation/Anion Substitution in Cu2ZnSnS4 for Improved Photovoltaic Performance

    PubMed Central

    Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Jangid, Manoj K.; Bahadur, D.; Medhekar, N. V.; Aslam, M.

    2016-01-01

    Cations and anions are replaced with Fe, Mn, and Se in CZTS in order to control the formations of the secondary phase, the band gap, and the micro structure of Cu2ZnSnS4. We demonstrate a simplified synthesis strategy for a range of quaternary chalcogenide nanoparticles such as Cu2ZnSnS4 (CZTS), Cu2FeSnS4 (CFTS), Cu2MnSnS4 (CMTS), Cu2ZnSnSe4 (CZTSe), and Cu2ZnSn(S0.5Se0.5)4 (CZTSSe) by thermolysis of metal chloride precursors using long chain amine molecules. It is observed that the crystal structure, band gap and micro structure of the CZTS thin films are affected by the substitution of anion/cations. Moreover, secondary phases are not observed and grain sizes are enhanced significantly with selenium doping (grain size ~1 μm). The earth-abundant Cu2MSnS4/Se4 (M = Zn, Mn and Fe) nanoparticles have band gaps in the range of 1.04–1.51 eV with high optical-absorption coefficients (~104 cm−1) in the visible region. The power conversion efficiency of a CZTS solar cell is enhanced significantly, from 0.4% to 7.4% with selenium doping, within an active area of 1.1 ± 0.1 cm2. The observed changes in the device performance parameters might be ascribed to the variation of optical band gap and microstructure of the thin films. The performance of the device is at par with sputtered fabricated films, at similar scales. PMID:27748406

  18. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires.

    PubMed

    Hsu, Cheng-Liang; Lu, Ying-Ching

    2012-09-21

    This study investigates the feasibility of synthesizing high-density transparent Ga(2)O(3)/SnO(2):Ga core-shell nanowires on a sapphire substrate at 1000 °C by VLS. The doping Ga concentrations are 0.46, 1.07, 2.30 and 17.53 atomic%. The XRD spectrum and HR-TEM reveal Ga(2)O(3) and SnO(2) as having monoclinic and tetragonal rutile structures, respectively. Experimental results indicate that the XRD peak shift of SnO(2) to a larger angle increases with the increasing amount of Ga doping. According to the CL spectrum, SnO(2) and Ga(2)O(3) peak at approximately 528-568 nm and 422-424 nm, respectively. The maximum quantum efficiency of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 0.362%. The UV light on-off current contrast ratio of Ga(2)O(3)/SnO(2):Ga core-shell nanowires is around 1066.7 at a bias of 5 V. Moreover, the dynamic response of Ga(2)O(3)/SnO(2):Ga core-shell nanowires has an on-off current contrast ratio of around 16. Furthermore, the Ga(2)O(3) region functions similar to a capacitor and continues to accumulate SnO(2):Ga excited electrons under UV light exposure.

  19. A novel flexible room temperature ethanol gas sensor based on SnO2 doped poly-diallyldimethylammonium chloride.

    PubMed

    Zhan, Shuang; Li, Dongmei; Liang, Shengfa; Chen, Xin; Li, Xia

    2013-04-02

    A novel flexible room temperature ethanol gas sensor was fabricated and demonstrated in this paper. The polyimide (PI) substrate-based sensor was formed by depositing a mixture of SnO2 nanopowder and poly-diallyldimethylammonium chloride (PDDAC) on as-patterned interdigitated electrodes. PDDAC acted both as the binder, promoting the adhesion between SnO2 and the flexible PI substrate, and the dopant. We found that the response of SnO2-PDDAC sensor is significantly higher than that of SnO2 alone, indicating that the doping with PDDAC effectively improved the sensor performance. The SnO2-PDDAC sensor has a detection limit of 10 ppm at room temperature and shows good selectivity to ethanol, making it very suitable for monitoring drunken driving. The microstructures of the samples were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscope (TEM) and Fourier transform infrared spectra (FT-IR), and the sensing mechanism is also discussed in detail.

  20. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE PAGES

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun; ...

    2017-10-13

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  1. Junction Quality of SnO 2-Based Perovskite Solar Cells Investigated by Nanometer-Scale Electrical Potential Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Chuanxiao; Wang, Changlei; Ke, Weijun

    Electron-selective layers (ESLs) and hole-selective layers (HSLs) are critical in high-efficiency organic-inorganic lead halide perovskite (PS) solar cells for charge-carrier transport, separation, and collection. We developed a procedure to assess the quality of the ESL/PS junction by measuring potential distribution on cross-section of SnO 2-based perovskite solar cells using Kelvin probe force microscopy. Using the potential profiling, we compared three types of cells made of different ESLs but otherwise having identical device structure: cells with PS deposited directly on bare fluorine-doped SnO 2 (FTO)-coated glass; cells with an intrinsic SnO 2 thin layer on the top of FTO as anmore » effective ESL; and cells with the SnO2 ESL and adding a self-assembled monolayer (SAM) of fullerene. The results reveal two major potential drops or electric fields at the ESL/PS and PS/HSL interfaces. The electric-field ratio between the ESL/PS and PS/HSL interfaces increased in devices as follows: FTO < SnO 2-ESL < SnO 2+SAM; this sequence explains the improvements of fill factor (FF) and open-circuit voltage ( V oc). The improvement of FF from the FTO to SnO 2-ESL cells may result from the reduction in voltage lose at the PS/HSL back interface and the improvement of V oc from the prevention of hole recombination at the ESL/PS front interface. The further improvements with adding a SAM is caused by the defect passivation at the ESL/PS interface, and hence, improvement of the junction quality. Furthermore, these nanoelectrical findings suggest possibilities for improving the device performance by further optimizing the SnO2-based ESL material quality and the ESL/PS interface.« less

  2. Morphology-controlled construction of hierarchical hollow hybrid SnO2@TiO2 nanocapsules with outstanding lithium storage

    PubMed Central

    Zhou, Linzong; Guo, Hong; Li, Tingting; Chen, Weiwei; Liu, Lixiang; Qiao, Jinli; Zhang, Jiujun

    2015-01-01

    A novel synthesis containing microwave-assisted HCl etching reaction and precipitating reaction is employed to prepare hierarchical hollow SnO2@TiO2 nanocapsules for anode materials of Li-ion batteries. The intrinsic hollow nanostructure can shorten the lengths for both ionic and electronic transport, enlarge the electrode surface areas, and improving accommodation of the anode volume change during Li insertion/extraction cycling. The hybrid multi-elements in this material allow the volume change to take place in a stepwise manner during electrochemical cycling. In particular, the coating of TiO2 onto SnO2 can enhance the electronic conductivity of hollow SnO2 electrode. As a result, the as-prepared SnO2@TiO2 nanocapsule electrode exhibits a stably reversible capacity of 770 mA hg−1 at 1 C, and the capacity retention can keep over 96.1% after 200 cycles even at high current rates. This approach may shed light on a new avenue for the fast synthesis of hierarchical hollow nanocapsule functional materials for energy storage, catalyst and other new applications. PMID:26482415

  3. The activation energy for nanocrystalline diamond films deposited from an Ar/H2/CH4 hot-filament reactor.

    PubMed

    Barbosa, D C; Melo, L L; Trava-Airoldi, V J; Corat, E J

    2009-06-01

    In this work we have investigated the effect of substrate temperature on the growth rate and properties of nanocrystalline diamond thin films deposited by hot filament chemical vapor deposition (HFCVD). Mixtures of 0.5 vol% CH4 and 25 vol% H2 balanced with Ar at a pressure of 50 Torr and typical deposition time of 12 h. We present the measurement of the activation energy by accurately controlling the substrate temperature independently of other CVD parameters. Growth rates have been measured in the temperature range from 550 to 800 degrees C. Characterization techniques have involved Raman spectroscopy, high resolution X-ray difractometry and scanning electron microscopy. We also present a comparison with most activation energy for micro and nanocrystalline diamond determinations in the literature and propose that there is a common trend in most observations. The result obtained can be an evidence that the growth mechanism of NCD in HFCVD reactors is very similar to MCD growth.

  4. Hydrothermal synthesis of Mn-doped ZnCo2O4 electrode material for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Mary, A. Juliet Christina; Bose, A. Chandra

    2017-12-01

    Mn-doped ZnCo2O4 nanoparticle has been synthesized by hydrothermal method without adding any surfactants. Structural, morphological and electrochemical performances have been studied for the pure and various concentration of Mn-doped ZnCo2O4 nanoparticles. XRD and Raman studies demonstrate the crystalline structure of the material. Specific capacitance of the 10 wt% Mn doped ZnCo2O4 nanomaterial is analysed using the three-electrode system. 10 wt% Mn-doped ZnCo2O4 has a maximum capacitance of 707.4 F g-1 at a current density of 0.5 A g-1. Coulombic efficiency of the material is 96.3% for 500 cycles in the KOH electrolyte medium. A two-electrode device using 10 wt% Mn-doped ZnCo2O4 exhibits the highest specific capacitance of 6.5 F g-1 at a current density of 0.03 A g-1 which is the suitable material for supercapacitor application.

  5. Enhanced lithium storage in Fe2O3-SnO2-C nanocomposite anode with a breathable structure

    NASA Astrophysics Data System (ADS)

    Rahman, Md Mokhlesur; Glushenkov, Alexey M.; Ramireddy, Thrinathreddy; Tao, Tao; Chen, Ying

    2013-05-01

    A novel nanocomposite architecture of a Fe2O3-SnO2-C anode, based on clusters of Fe2O3 and SnO2 nanoparticles dispersed along the conductive chains of Super P Li™ carbon black (Timcal Ltd.), is presented as a breathable structure in this paper for lithium-ion batteries. The synthesis of the nanocomposite is achieved by combining a molten salt precipitation process and a ball milling method for the first time. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. Electrochemical results demonstrate that the reversible capacity of the composite anode is 1110 mA h g-1 at a current rate of 158 mA g-1 with only 31% of initial irreversible capacity in the first cycle. A high reversible capacity of 502 mA h g-1 (higher than the theoretical capacity of graphite, ~372 mA h g-1) can be obtained at a high current rate of 3950 mA g-1. The electrochemical performance is compared favourably with those of Fe2O3-SnO2 and Fe2O3-SnO2-C composite anodes for lithium-ion batteries reported in the literature. This work reports a promising method for the design and preparation of nanocomposite electrodes for lithium-ion batteries.A novel nanocomposite architecture of a Fe2O3-SnO2-C anode, based on clusters of Fe2O3 and SnO2 nanoparticles dispersed along the conductive chains of Super P Li™ carbon black (Timcal Ltd.), is presented as a breathable structure in this paper for lithium-ion batteries. The synthesis of the nanocomposite is achieved by combining a molten salt precipitation process and a ball milling method for the first time. The crystalline structure, morphology, and electrochemical characterization of the synthesised product are investigated systematically. Electrochemical results demonstrate that the reversible capacity of the composite anode is 1110 mA h g-1 at a current rate of 158 mA g-1 with only 31% of initial irreversible capacity in the first cycle. A high reversible capacity of 502 m

  6. Hierarchical nanostructured WO3-SnO2 for selective sensing of volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Nayak, Arpan Kumar; Ghosh, Ruma; Santra, Sumita; Guha, Prasanta Kumar; Pradhan, Debabrata

    2015-07-01

    It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and noble metal-doped oxides. In addition, the VOC selectivity is found to be highly temperature-dependent, with optimum performance obtained at 200 °C, 300 °C and 350 °C for ammonia, ethanol and acetone, respectively. The present results on the cost-effective noble metal-free WO3-SnO2 sensor could find potential application in human breath analysis by non-invasive detection.It remains a challenge to find a suitable gas sensing material that shows a high response and shows selectivity towards various gases simultaneously. Here, we report a mixed metal oxide WO3-SnO2 nanostructured material synthesized in situ by a simple, single-step, one-pot hydrothermal method at 200 °C in 12 h, and demonstrate its superior sensing behavior towards volatile organic compounds (VOCs) such as ammonia, ethanol and acetone. SnO2 nanoparticles with controlled size and density were uniformly grown on WO3 nanoplates by varying the tin precursor. The density of the SnO2 nanoparticles on the WO3 nanoplates plays a crucial role in the VOC selectivity. The responses of the present mixed metal oxides are found to be much higher than the previously reported results based on single/mixed oxides and

  7. Solvothermal synthesis of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor in water/diethylene glycol system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeshita, Satoru; Honda, Joji; Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp

    2012-05-15

    The influence of aging of the suspension containing the amorphous precusors on structural, compositional and photoluminescent properties is studied to understand the mechanism on the formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles during the solvothermal reaction in the water/diethylene glycol mixed solvent. Aging at 200 Degree-Sign C for 20 min forms the crystalline Zn{sub 2}GeO{sub 4} nanorods and then they grow up to {approx} 50 nm in mean length after aging for 240 min. Their interplanar spacing of (410) increases with increasing the aging time. The photoluminescence intensity corresponding to the d-d transition of Mn{sup 2+} increases with increasing themore » aging time up to 120 min, and then decreases after aging for 240 min. The photoluminescence lifetime decreases with increasing the aging time, indicating the locally concentrated Mn{sup 2+} ions. These results reveal that Mn{sup 2+} ions gradually replace Zn{sup 2+} ions near surface through repeating dissolusion and precipitation processes during prolonged aging after the complete crystallization of Zn{sub 2}GeO{sub 4}. - Graphical abstract: TEM images of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanoparticles aged at 200 Degree-Sign C for different aging times in the mixed solvent of water and diethylene glycol. Highlights: Black-Right-Pointing-Pointer Mechanism on formation of Zn{sub 2}GeO{sub 4}:Mn{sup 2+} nanophosphor under solvothermal condition. Black-Right-Pointing-Pointer Zn{sub 2}GeO{sub 4} nanorods crystallize via amorphous precursors. Black-Right-Pointing-Pointer Gradual substitution of Mn{sup 2+} during prolonged aging. Black-Right-Pointing-Pointer Such an inhomogeneous Mn{sup 2+} doping process results in concentration quenching.« less

  8. Experimental Study of Acid Treatment Toward Characterization of Structural, Optical, and Morphological Properties of TiO2-SnO2 Composite Thin Film

    NASA Astrophysics Data System (ADS)

    Fajar, M. N.; Hidayat, R.; Triwikantoro; Endarko

    2018-04-01

    The TiO2-SnO2 thin film with single and double-layer structure has successfully synthesized on FTO (Fluorine-doped Tin Oxide) substrate using the screen printing technique. The structural, optical, and morphological properties of the film were investigated by XRD, UV-Vis, and SEM, respectively. The results showed that the single and double-layer structure of TiO2-SnO2 thin film has mixed phase with a strong formation of casseritte phase. The acid treatment effect on TiO2-SnO2 thin film decreases the peak intensity of anatase phase formation and thin film’s absorbance values. The morphological study is also revealed that the single layer TiO2-SnO2 thin film had a more porous nature and decreased particle size distribution after acid treatment, while the double-layer TiO2-SnO2 thin film Eroded due to acid treatment.

  9. Solvothermal synthesis and structural characterization of a three-dimensional metal organic polymer [NaZn(1,2,4-BTC)] (1,2,4-BTC=1,2,4-benzenetricarboxylate)

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Shi, Zhan; Li, Guanghua; Fan, Yong; Fu, Wensheng; Feng, Shouhua

    2004-01-01

    A new three-dimensional metal-organic polymer, [NaZn(1,2,4-BTC)] (where 1,2,4-BTC=1,2,4-benzenetricarboxylate), has been prepared under solvothermal conditions and characterized by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P2 1/ c, with cell parameters: a=9.7706(4) Å, b=12.3549(5) Å, c=6.8897(3) Å, β=91.640(2)°, V=831.35(6) Å 3 and Z=4. In the three-dimensional structure of the compound, each Zn atom is five-coordinated in distorted trigonal bipyramidal geometry, while the sixfold coordination of Na corresponds to a slightly distorted triangular prism. The organic ligand, 1,2,4-BTC, shows a novel and unprecedented coordination mode: 11 bonds to 10 metals with each carboxylate function exhibiting different linkages. It remains stable when desolvated and when heated up to 410 °C.

  10. Vertical resistivity in nanocrystalline ZnO and amorphous InGaZnO

    NASA Astrophysics Data System (ADS)

    McCandless, Jonathan P.; Leedy, Kevin D.; Schuette, Michael L.

    2018-02-01

    The goal is to gain additional insight into physical mechanisms and the role of microstructure on the formation of ohmic contacts and the reduction of contact resistance. We have measured a decreasing film resistivity in the vertical direction with increasing thickness of pulsed-laser deposited ZnO and IGZO. As the ZnO thickness increases from 122 nm to 441 nm, a reduction in resistivity from 3.29 Ω-cm to 0.364 Ω-cm occurred. The IGZO resistivity changes from 72.4 Ω-cm to 0.642 Ω-cm as the film is increased from 108nm to 219 nm. In the ZnO, the size of nanocolumnar grains increase with thickness resulting in fewer grain boundaries, and in the amorphous IGZO, the thicker region exhibits tunnel-like artifacts which may contribute to the reduced resistivity.

  11. Synthesis of Stable Interfaces on SnO2 Surfaces for Charge-Transfer Applications

    NASA Astrophysics Data System (ADS)

    Benson, Michelle C.

    The commercial market for solar harvesting devices as an alternative energy source requires them to be both low-cost and efficient to replace or reduce the dependence on fossil fuel burning. Over the last few decades there has been promising efforts towards improving solar devices by using abundant and non-toxic metal oxide nanomaterials. One particular metal oxide of interest has been SnO2 due to its high electron mobility, wide-band gap, and aqueous stability. However SnO2 based solar cells have yet to reach efficiency values of other metal oxides, like TiO2. The advancement of SnO2 based devices is dependent on many factors, including improved methods of surface functionalization that can yield stable interfaces. This work explores the use of a versatile functionalization method through the use of the Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The CuAAC reaction is capable of producing electrochemically, photochemically, and electrocatalytically active surfaces on a variety of SnO2 materials. The resulting charge-transfer characteristics were investigated as well as an emphasis on understanding the stability of the resulting molecular linkage. We determined the CuAAC reaction is able to proceed through both azide-modified and alkyne-modified surfaces. The resulting charge-transfer properties showed that the molecular tether was capable of supporting charge separation at the interface. We also investigated the enhancement of electron injection upon the introduction of an ultra-thin ZrO2 coating on SnO2. Several complexes were used to fully understand the charge-transfer capabilities, including model systems of ferrocene and a ruthenium coordination complex, a ruthenium mononuclear water oxidation catalyst, and a commercial ruthenium based dye.

  12. SnO2 Nanostructures: Effect of Processing Parameters on Their Structural and Functional Properties

    NASA Astrophysics Data System (ADS)

    Dontsova, Tetiana A.; Nagirnyak, Svitlana V.; Zhorov, Vladyslav V.; Yasiievych, Yuriy V.

    2017-05-01

    Zero- and 1D (one-dimensional) tin (IV) oxide nanostructures have been synthesized by thermal evaporation method, and a comparison of their morphology, crystal structure, sorption properties, specific surface area, as well as electrical characteristics has been performed. Synthesized SnO2 nanomaterials were studied by X-ray diffraction, scanning and transmission electron microscopy (SEM and TEM), N2 sorption/desorption technique, IR spectroscopy and, in addition, their current-voltage characteristics have also been measured. The single crystalline structures were obtained both in case of 0D (zero-dimensional) SnO2 powders and in case of 0D nanofibers, as confirmed by electron diffraction of TEM. It was found that SnO2 synthesis parameters significantly affect materials' properties by contributing to the difference in morphology, texture formation, changes in IR spectra of 1D structure as compared to 0D powders, increases in the specific surface area of nanofibers, and the alteration of current-voltage characteristics 0D and 1D SnO2 nanostructures. It was established that gas sensors utilizing of 1D nanofibers significantly outperform those based on 0D powders by providing higher specific surface area and ohmic I-V characteristics.

  13. Multi-shelled ZnCo2O4 yolk-shell spheres for high-performance acetone gas sensor

    NASA Astrophysics Data System (ADS)

    Xiong, Ya; Zhu, Zongye; Ding, Degong; Lu, Wenbo; Xue, Qingzhong

    2018-06-01

    In the present study, multi-shelled ZnCo2O4 yolk-shell spheres have been successfully prepared by using carbonaceous microspheres as templates. It is found that the multi-shelled ZnCo2O4 yolk-shell spheres based sensor shows optimal sensing performances (response value of 38.2, response/recovery time of 19 s/71 s) toward 500 ppm acetone at 200 °C. In addition, this sensor exhibits a low detection limit of 0.5 ppm acetone (response value of 1.36) and a good selectivity toward hydrogen, methane, ethanol, ammonia and carbon dioxide. Furthermore, it is demonstrated that acetone gas response of multi-shelled ZnCo2O4 yolk-shell spheres is significantly better than that of ZnCo2O4 nanotubes and ZnCo2O4 nanosheets. High acetone response of the multi-shelled ZnCo2O4 yolk-shell spheres is attributed to the enhanced gas accessibility of the multi-shell morphology caused by the small crystalline size and high specific surface area while the short response/recovery time is mainly related to the rapid gas diffusion determined by the highly porous structure. Our work puts forward an exciting opportunity in designing various yolk-shelled structures for multipurpose applications.

  14. Analysis of electrical properties of heterojunction based on ZnIn2Se4

    NASA Astrophysics Data System (ADS)

    Attia, A. A.; Ali, H. A. M.; Salem, G. F.; Ismail, M. I.; Al-Harbi, F. F.

    2017-04-01

    Heterojunction of n-ZnIn2Se4/p-Si was fabricated using thermal evaporation of ZnIn2Se4 thin films of thickness 473 nm onto p-Si substrate at room temperature. The characteristics of current-voltage (I-V) for n-ZnIn2Se4/p-Si heterojunction were investigated at different temperatures ranged from 308 K to 363 K. The junction parameters namely are; rectification ratio (RR), series resistance (Rs), shunt resistance (Rsh) and diode ideality factor (n) were calculated from the analysis of I-V curves. The forward current showed two conduction mechanisms operating, which were the thermionic emission and the single trap space charge limited current in low (0 ≤ V ≤ 0.5 V) and high (V ≥ 0.7 V) ranges of voltage, respectively. The reverse current was due to the generation through Si rather than the ZnIn2Se4 film. The built-in voltage and the width of the depletion region were determined from the capacitance-voltage (C-V) measurements. The photovoltaic characteristics of the junction were also studied through the (I-V) measurements under illumination of 40 mW/cm2. The cell parameters; the short-circuit current, the open-circuit voltage and the fill factor were estimated at room temperature.

  15. UV Light-Driven Photodegradation of Methylene Blue by Using Mn0.5Zn0.5Fe2O4/SiO2 Nanocomposites

    NASA Astrophysics Data System (ADS)

    Indrayana, I. P. T.; Julian, T.; Suharyadi, E.

    2018-04-01

    The photodegradation activity of nanocomposites for 20 ppm methylene blue solution has been investigated in this work. Nanocomposites Mn0.5Zn0.5Fe2O4/SiO2 have been synthesized using coprecipitation method. The X-ray diffraction (XRD) pattern confirmed the formation of three phases in sample Mn0.5Zn0.5Fe2O4/SiO2 i.e., Mn0.5Zn0.5Fe2O4, Zn(OH)2, and SiO2. The appearance of SiO2 phase showed that the encapsulation process has been carried out. The calculated particles size of Mn0.5Zn0.5Fe2O4/SiO2 is greater than Mn0.5Zn0.5Fe2O4. Bonding analysis via vibrational spectra for Mn0.5Zn0.5Fe2O4/SiO2 confirmed the formation of bonds Me-O-Si stretching (2854.65 cm-1) and Si-O-Si asymmetric stretching (1026.13 cm-1). The optical gap energy of Mn0.5Zn0.5Fe2O4/SiO2 was smaller (2.70 eV) than Mn0.5Zn0.5Fe2O4 (3.04 eV) due to smaller lattice dislocation and microstrain that affect their electronic structure. The Mn0.5Zn0.5Fe2O4/SiO2 showed high photodegradation ability due to smaller optical gap energy and the appearance of SiO2 ligand that can easily attract dye molecules. The Mn0.5Zn0.5Fe2O4/SiO2 also showed high degradation activity even without UV light radiation. The result showed that photodegradation reaction doesn’t follow pseudo-first order kinetics.

  16. Enhanced magnetic properties in Mn0.6Zn0.4-xNixFe2O4 (x=0-0.4) nanoparticles

    NASA Astrophysics Data System (ADS)

    Mallesh, S.; Mandal, P.; Srinivas, V.

    2018-04-01

    Ni substituted MnZn ferrite fine particles were synthesized through sol-gel method. The structure, stability and magnetic properties have been investigated. Thermal stability of as-prepared (AP) particles is improved compared to that of Mn0.6Zn0.4Fe2O4 (MZF) ferrite particles. The as-prepared and samples annealed at 1200 °C exhibit pure spinel ferrite phase, while samples at intermediate temperatures (600 - 1000 °C) exhibit secondary phase of α-Fe2O3 along with ferrite phase. The Mn0.6Zn0.1Ni0.3Fe2O4 (Ni-MZF) sample shows significantly lower volume fraction of secondary phase compared to that of MZF. The observed magnetization of Ni-MZF is twice of that MZF samples. Present results suggest that a small amount (x=0.3) of Ni in place of nonmagnetic Zn in MZF significantly decreases the secondary phase fraction and improves the magnetic properties.

  17. Polymorphic one-dimensional (N2H4)2ZnTe: soluble precursors for the formation of hexagonal or cubic zinc telluride.

    PubMed

    Mitzi, David B

    2005-10-03

    Two hydrazine zinc(II) telluride polymorphs, (N2H4)2ZnTe, have been isolated, using ambient-temperature solution-based techniques, and the crystal structures determined: alpha-(N2H4)2ZnTe (1) [P21, a = 7.2157(4) Angstroms, b = 11.5439(6) Angstroms, c = 7.3909(4) Angstroms, beta = 101.296(1) degrees, Z = 4] and beta-(N2H4)2ZnTe (2) [Pn, a = 8.1301(5) Angstroms, b = 6.9580(5) Angstroms, c = 10.7380(7) Angstroms, beta = 91.703(1) degrees, Z = 4]. The zinc atoms in 1 and 2 are tetrahedrally bonded to two terminal hydrazine molecules and two bridging tellurium atoms, leading to the formation of extended one-dimensional (1-D) zinc telluride chains, with different chain conformations and packings distinguishing the two polymorphs. Thermal decomposition of (N2H4)2ZnTe first yields crystalline wurtzite (hexagonal) ZnTe at temperatures as low as 200 degrees C, followed by the more stable zinc blende (cubic) form at temperatures above 350 degrees C. The 1-D polymorphs are soluble in hydrazine and can be used as convenient precursors for the low-temperature solution processing of p-type ZnTe semiconducting films.

  18. Synthesis and stability of hetaerolite, ZnMn2O4, at 25°C

    USGS Publications Warehouse

    Hem, J.D.; Roberson, C.E.; Lind, C.J.

    1987-01-01

    A precipitate of nearly pure hetaerolite, ZnMn2O4, a spinel-structured analog of hausmannite, Mn3O4, was prepared by an irreversible wprecipitation of zinc with manganese at 25°C. The synthesis technique entailed constant slow addition of a dilute solution of Mn2+ and Zn2+ chlorides having a Mn/Zn ratio of 2:1 to a reaction vessel that initially contained distilled deionized water, maintained at a pH of 8.50 by addition of dilute NaOH by an automated pH stat, with continuous bubbling of CO2-free air. The solid was identified by means of X-ray diffraction and transmission electron microscopy and consisted of bipyramidal crystals generally less than 0.10 μm in diameter. Zn2+ ions are able to substitute extensively for Mn2+ ions that occupy tetrahedral sites in the hausmannite structure.Hetaerolite appears to be more stable than hausmannite with respect to spontaneous conversion to γMnOOH. The value of the standard free energy of formation of hetaerolite was estimated from the experimental data to be −289.4 ± 0.8 kcal per mole. Solids intermediate in composition between hetaerolite and hausmannite can be prepared by altering the Mn/Zn ratio in the feed solution.

  19. The electrical, optical, structural and thermoelectrical characterization of n- and p-type cobalt-doped SnO 2 transparent semiconducting films prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Bagheri-Mohagheghi, Mohammad-Mehdi; Shokooh-Saremi, Mehrdad

    2010-10-01

    The electrical, optical and structural properties of Cobalt (Co) doped SnO 2 transparent semiconducting thin films, deposited by the spray pyrolysis technique, have been studied. The SnO 2:Co films, with different Co-content, were deposited on glass substrates using an aqueous-ethanol solution consisting of tin and cobalt chlorides. X-ray diffraction studies showed that the SnO 2:Co films were polycrystalline only with tin oxide phases and preferential orientations along (1 1 0) and (2 1 1) planes and grain sizes in the range 19-82 nm. Optical transmittance spectra of the films showed high transparency ∼75-90% in the visible region, decreasing with increase in Co-doping. The optical absorption edge for undoped SnO 2 films was found to be 3.76 eV, while for higher Co-doped films shifted toward higher energies (shorter wavelengths) in the range 3.76-4.04 eV and then slowly decreased again to 4.03 eV. A change in sign of the Hall voltage and Seebeck coefficient was observed for a specific acceptor dopant level ∼11.4 at% in film and interpreted as a conversion from n-type to p-type conductivity. The thermoelectric electro-motive force (e.m.f.) of the films was measured in the temperature range 300-500 K and Seebeck coefficients were found in the range from -62 to +499 μVK -1 for various Co-doped SnO 2 films.

  20. Novel multifunctional NiFe2O4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    NASA Astrophysics Data System (ADS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-04-01

    Novel multifunctional NiFe2O4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV-vis DRS. The adsorption and photocatalytic performance of NiFe2O4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe2O4, NiFe2O4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g-1) of NiFe2O4/ZnO hybrids is higher than those of NiFe2O4, ZnO and mechanically mixed NiFe2O4/ZnO hybrids. The removal of congo red solution (20 mg L-1) by NiFe2O4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. rad OH and h+ play important roles in the decolorization of congo red solution by NiFe2O4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe2O4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO3- and Cl- anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe2O4/ZnO hybrids. Moreover, the magnetic NiFe2O4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  1. Requirement for the SnoN oncoprotein in transforming growth factor beta-induced oncogenic transformation of fibroblast cells.

    PubMed

    Zhu, Qingwei; Pearson-White, Sonia; Luo, Kunxin

    2005-12-01

    Transforming growth factor beta (TGF-beta) was originally identified by virtue of its ability to induce transformation of the AKR-2B and NRK fibroblasts but was later found to be a potent inhibitor of the growth of epithelial, endothelial, and lymphoid cells. Although the growth-inhibitory pathway of TGF-beta mediated by the Smad proteins is well studied, the signaling pathway leading to the transforming activity of TGF-beta in fibroblasts is not well understood. Here we show that SnoN, a member of the Ski family of oncoproteins, is required for TGF-beta-induced proliferation and transformation of AKR-2B and NRK fibroblasts. TGF-beta induces upregulation of snoN expression in both epithelial cells and fibroblasts through a common Smad-dependent mechanism. However, a strong and prolonged activation of snoN transcription that lasts for 8 to 24 h is detected only in these two fibroblast lines. This prolonged induction is mediated by Smad2 and appears to play an important role in the transformation of both AKR-2B and NRK cells. Reduction of snoN expression by small interfering RNA or shortening of the duration of snoN induction by a pharmacological inhibitor impaired TGF-beta-induced anchorage-independent growth of AKR-2B cells. Interestingly, Smad2 and Smad3 play opposite roles in regulating snoN expression in both fibroblasts and epithelial cells. The Smad2/Smad4 complex activates snoN transcription by direct binding to the TGF-beta-responsive element in the snoN promoter, while the Smad3/Smad4 complex inhibits it through a novel Smad inhibitory site. Mutations of Smad4 that render it defective in heterodimerization with Smad3, which are found in many human cancers, convert the activity of Smad3 on the snoN promoter from inhibitory to stimulatory, resulting in increased snoN expression in cancer cells. Thus, we demonstrate a novel role of SnoN in the transforming activity of TGF-beta in fibroblasts and also uncovered a mechanism for the elevated SnoN expression in

  2. Multi-yolk-shell SnO2/Co3Sn2@C Nanocubes with High Initial Coulombic Efficiency and Oxygen Reutilization for Lithium Storage.

    PubMed

    Su, Liwei; Xu, Yawei; Xie, Jian; Wang, Lianbang; Wang, Yuanhao

    2016-12-28

    The challenging problems of SnO 2 anode material for lithium ion batteries are the poor electronic conductivity and the low oxygen reutilization due to the irreversibility of Li 2 O generated in the initial discharge leading to a theoretical initial Coulombic efficiency (ICE) of only 52.4%. Different from these strategies, this work proposes a novel strategy to level up the oxygen reutilization in SnO 2 by introducing Co 3 Sn 2 nanoalloys which can release Co atoms to reversibly react with Li 2 O instead. According to this protocol, multi-yolk-shell SnO 2 /Co 3 Sn 2 @C nanocubes are designed and successfully prepared using hollow CoSn(OH) 6 nanocubes as precursors followed a hydrothermal carbon coating and calcination treatment. The unique multi-yolk-shell nanostructure offers adequate breathing space for the volumetric deformation during long-term cycling. Moreover, the removal of Li 2 O allows a high electronic conductivity and resultant rate performance. As a result, the efficient reutilization of oxygen enables a high ICE of 71.7% and a reversible capacity of 1003 mA h g -1 after 200 cycles at 100 mA g -1 . Cyclic voltammetry, cycling performance at different voltage windows, and X-ray photoelectron spectroscopy confirm the proposed mechanism. This strategy employing oxygen-poor metals or alloys provides a novel approach to enhance the oxygen reutilization in SnO 2 for higher reversibility.

  3. Influence of Annealing Temperature on the Characteristics of Nanocrystalline SnO2 Thin Films Produced by Sol-Gel and Chemical Bath Deposition for Gas Sensor Applications

    NASA Astrophysics Data System (ADS)

    Al-Jawad, Selma M. H.; Elttayf, Abdulhussain K.; Saber, Amel S.

    Pure nanocrystalline SnO2 films were grown on a clean glass substrate by using sol-gel dip coating and chemical bath deposition (CBD) techniques for gas sensor applications. The films were annealed in air at 300∘C, 400∘C, and 500∘C for 60min. The deposited films with a thickness of approximately 300 ± 20 nm were analyzed through X-ray diffraction, scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical absorption spectroscopy. Results revealed that the films produced by dip coating exhibited a tetragonal rutile structure and those produced by CBD showed a tetragonal rutile and orthorhombic structure. The crystalline sizes of the films produced by dip coating annealed at 300∘C, 400∘C, and 500∘C were 8, 14, and 22.34 nm and those for CBD films at these temperatures were 10, 15, and 22 nm, respectively. AFM and SEM results indicated that the average grain size increased as annealing temperature increased. The transmittance and absorbance spectra were then recorded at wavelengths ranging from 300nm to 1000nm. The films produced by both the methods yielded high transmission at visible regions. The optical band gap energy of dip-coated films also increased as annealing temperature increased. In particular, their optical band gap energies were 3.5, 3.75, and 3.87eV at 300∘C, 400∘C, and 500∘C, respectively. By comparison, the energy band gap of CBD-prepared films decreased as annealing temperature increased, and their corresponding band gaps were 3.95, 3.85, and 3.8eV at the specified annealing temperatures. The films were further investigated in terms of their sensing abilities for carbon monoxide (CO) gas at 50 ppm by measuring their sensitivity to this gas at different times and temperatures. Our results demonstrated that dip-coated and CBD-prepared films were highly sensitive to CO at 200∘C and 250∘C, respectively.

  4. Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} as a gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, Tukaram J., E-mail: pshindetj@yahoo.co.in; Gadkari, Ashok B.; Jadhav, Sarjerao R.

    2015-06-24

    Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl{sub 2}, LPG and C{sub 2}H{sub 5}OH. It was observed that NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.

  5. Transport of Zn(OH)4(-2) ions across a polyolefin microporous membrane

    NASA Astrophysics Data System (ADS)

    Krejci, Ivan; Vanysek, Peter; Trojanek, Antonin

    1993-04-01

    Transport of ZN(OH)4(2-) ions through modified microporous polypropylene membranes (Celgard 3401, 350140) was studied using polarography and conductometry. Soluble Nafion as an ion exchange modifying agent was applied to the membrane by several techniques. The influence of Nafion and a surfactant on transport of zinc ions through the membrane was studied. A relationship between membrane impedance and the rate of Zn(OH)4(2-) transport was found. The found correlation between conductivity, ion permeability and Nafion coverage suggests a suitable technique of membrane preparation to obtain desired zinc ion barrier properties.

  6. Mo-doped SnO2 mesoporous hollow structured spheres as anode materials for high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Xuekun; Li, Zhaoqiang; Zhang, Zhiwei; Li, Qun; Guo, Enyan; Wang, Chengxiang; Yin, Longwei

    2015-02-01

    We designed a facile infiltration route to synthesize mesoporous hollow structured Mo doped SnO2 using silica spheres as templates. It is observed that Mo is uniformly incorporated into SnO2 lattice in the form of Mo6+. The as-prepared mesoporous Mo-doped SnO2 LIBs anodes exhibit a significantly improved electrochemical performance with good cycling stability, high specific capacity and high rate capability. The mesoporous hollow Mo-doped SnO2 sample with 14 at% Mo doping content displays a specific capacity of 801 mA h g-1 after 60 cycles at a current density of 100 mA g-1, about 1.66 times higher than that of the pure SnO2 hollow sample. In addition, even if the current density is as high as 1600 mA g-1 after 60 cycles, it could still retain a stable specific capacity of 530 mA h g-1, exhibiting an extraordinary rate capability. The greatly improved electrochemical performance of the Mo-doped mesoporous hollow SnO2 sample could be attributed to the following factors. The large surface area and hollow structure can significantly enhance structural integrity by acting as mechanical buffer, effectively alleviating the volume changes generated during the lithiation/delithiation process. The incorporation of Mo into the lattice of SnO2 improves charge transfer kinetics and results in a faster Li+ diffusion rate during the charge-discharge process.

  7. Structural and spectral properties of undoped and tungsten doped Zn3(PO4)2ZnO nanopowders

    NASA Astrophysics Data System (ADS)

    Satyavathi, K.; Subba Rao, M.; Nagabhaskararao, Y.; Cole, Sandhya

    2018-01-01

    Pure and tungsten doped Zn3(PO4)2ZnO nanopowders (NPs) are prepared using sol-gel method. It has the longest track record of used in dentistry. It is used for cementation of inlays, crowns and orthodontic appliances. The systematic investigations like X-ray Diffraction (XRD), Scanning electron microscope (SEM) with energy dispersive X-ray (EDX) spectroscope, Transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Optical absorption, Photoluminescence (PL) and Electron Paramagnetic Resonance (EPR) spectroscopic techniques are carried out for the prepared NPs. XRD pattern reveals that the prepared samples are in crystalline nature in which Zn3(PO4)2 corresponding to monoclinic phase and ZnO corresponding to hexagonal wurtzite phase, the average crystallite size of prepared nanopowders is in the range of 20-30 nm. The lattice strain, lattice cell parameters, unit cell volume and dislocation density of the prepared NPs are also calculated. The morphology of the prepared NPs is analyzed with SEM and TEM images. The distribution of Zn, P, O and W species in the prepared samples are identified by the chemical composition mapping through EDX. IR spectra of prepared samples exhibit the characteristic sharp absorption band peaks. The sharp absorption bands observed in the region 1200-900 cm-1 are due to complex stretching of characteristic PO43- groups. The absorption spectra exhibit a broad band around 696 nm is recognized due to 2B2g → 2B1g (dxy → dx2- y2) transition of tungsten ions. The PL spectra exhibit four emission peaks in the visible region indicating the quantum-confinement-induced photoluminescence. The CIE chromaticity diagram suggests that the prepared NPs have good color purity. The EPR spectra indicate that the W5+ ions occupy octahedral site symmetry in the host lattice.

  8. Cd-free buffer layer materials on Cu2ZnSn(SxSe1-x)4: Band alignments with ZnO, ZnS, and In2S3

    NASA Astrophysics Data System (ADS)

    Barkhouse, D. Aaron R.; Haight, Richard; Sakai, Noriyuki; Hiroi, Homare; Sugimoto, Hiroki; Mitzi, David B.

    2012-05-01

    The heterojunctions formed between Cu2ZnSn(SxSe1-x)4 (CZTSSe) and three Cd-free n-type buffers, ZnS, ZnO, and In2S3, were studied using femtosecond ultraviolet photoemission and photovoltage spectroscopy. The electronic properties including the Fermi level location at the interface, band bending in the CZTSSe substrate, and valence and conduction band offsets were determined and correlated with device properties. We also describe a method for determining the band bending in the buffer layer and demonstrate this for the In2S3/CZTSSe system. The chemical bath deposited In2S3 buffer is found to have near optimal conduction band offset (0.15 eV), enabling the demonstration of Cd-free In2S3/CZTSSe solar cells with 7.6% power conversion efficiency.

  9. Synthesis of Cu{sub 2}ZnSnS{sub 4} nanoparticles and controlling the morphology with polyethylene glycol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rawat, Kusum; Department of Electronic Science, University of Delhi South Campus, Delhi 110021; Kim, Hee-Joon

    Highlights: • Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique. • First report on the effect of using polyethylene glycol as a structure directing agent on Cu{sub 2}ZnSnS{sub 4} nanoparticles. • The morphology of Cu{sub 2}ZnSnS{sub 4} nanoparticles changes into nanoflakes and nanorods structures with polyethylene glycol concentration. • Polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle film exhibits optical bandgap of 1.5 eV which is suitable for the application in solar cells. - Abstract: Cu{sub 2}ZnSnS{sub 4} nanoparticles were synthesized by wet chemical technique using metal thiourea precursor at 250 °C. The structural and morphological properties of asmore » grown nanoparticles have been characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. The influence of different concentration of polyethylene glycol as structure directing agent on the morphologies of Cu{sub 2}ZnSnS{sub 4} nanoparticles are investigated on thin films deposited by spin coating technique. The mean crystallite size of the Cu{sub 2}ZnSnS{sub 4} nanoparticles was found to improve with polyethylene glycol concentration. Scanning electron microscopy images of Cu{sub 2}ZnSnS{sub 4} revealed aggregated spherical shaped nanoparticles whereas the polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} nanoparticle films show nanoflakes and nanorods structures with increasing concentration of polyethylene glycol. Transmission electron microscopy analysis has also been performed to determine the size and structure of nanorods. UV–vis absorption spectroscopy shows the broad band absorption with optical bandgap of 1.50 eV for polyethylene glycol assisted Cu{sub 2}ZnSnS{sub 4} films.« less

  10. Characterization of dSnoN and its relationship to Decapentaplegic signaling in Drosophila.

    PubMed

    Barrio, Rosa; López-Varea, Ana; Casado, Mar; de Celis, Jose F

    2007-06-01

    Vertebrate members of the ski/snoN family of proto-oncogenes antagonize TGFbeta and BMP signaling in a variety of experimental situations. This activity of Ski/SnoN proteins is related to their ability to interact with Smads, the proteins acting as key mediators of the transcriptional response to the TGFbeta superfamily members. However, despite extensive efforts to identify the physiological roles of the Ski/SnoN proteins, it is not yet clear whether they participate in regulating Activin and/or BMP signaling during normal development. It is therefore crucial to examine their roles in vivo mostly because of the large number of known Ski/SnoN-interacting proteins and the association between the up-regulation of these genes and cancer progression. Here we characterize the Drosophila homolog to vertebrate ski and snoN genes. The Drosophila dSnoN protein retains the ability of its vertebrate counterparts to antagonize BMP signaling in vivo and in cultured cells. dSnoN does not interfere with Mad phosphorylation but it interacts genetically with Mad, Medea and dSmad2. Mutations in either the Smad2-3 or Smad4 putative binding sites of dSnoN prevent the antagonism of dSnoN towards Dpp signaling, although homozygous flies for these mutations or for a genetic deficiency of the locus are viable and have wings of normal size and pattern.

  11. Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage

    PubMed Central

    Ding, Liping; He, Shulian; Miao, Shiding; Jorgensen, Matthew R.; Leubner, Susanne; Yan, Chenglin; Hickey, Stephen G.; Eychmüller, Alexander; Xu, Jinzhang; Schmidt, Oliver G.

    2014-01-01

    Ultrasmall SnO2 nanocrystals as anode materials for lithium-ion batteries (LIBs) have been synthesized by bubbling an oxidizing gas into hot surfactant solutions containing Sn-oleate complexes. Annealing of the particles in N2 carbonifies the densely packed surface capping ligands resulting in carbon encapsulated SnO2 nanoparticles (SnO2/C). Carbon encapsulation can effectively buffer the volume changes during the lithiation/delithiation process. The assembled SnO2/C thus deliver extraordinarily high reversible capacity of 908 mA·h·g−1 at 0.5 C as well as excellent cycling performance in the LIBs. This method demonstrates the great potential of SnO2/C nanoparticles for the design of high power LIBs. PMID:24732294

  12. Ultrafast recombination dynamics in dye-sensitized SnO 2/TiO 2 core/shell films

    DOE PAGES

    Gish, Melissa K.; Lapides, Alexander M.; Brennaman, M. Kyle; ...

    2016-12-02

    In dye-sensitized photoelectrosynthesis cells (DSPECs), molecular chromophores and catalysts are integrated on a semiconductor surface to perform water oxidation or CO 2 reduction after a series of light-induced electron transfer events. Unfortunately, recombination of the charge separated state (CSS) is competitive with productive catalysis. To overcome this major obstacle, implementation of photoanodic core/shell films within these devices improve electrochemical behavior and slow recombination through the introduction of an energetic barrier between the semiconductor core and oxidized species on the surface. In this study, interfacial dynamics are investigated in SnO 2/TiO 2 core/shell films derivatized with a Ru(II)-polypyridyl chromophore ([RuII(bpy)2(4,4'-(PO 3Hmore » 2) 2bpy)] 2+, RuP) using transient absorption methods. Electron injection from the chromophore into the TiO 2 shell occurs within a few picoseconds after photoexcitation. Loss of the oxidized dye through recombination occurs across time scales spanning 10 orders of magnitude. The majority (60%) of charge recombination events occur shortly after injection (τ = 220 ps), while a small fraction (≤20%) of the oxidized chromophores persists for milliseconds. The lifetime of long-lived CSS depends exponentially on shell thickness, suggesting that the injected electrons reside in the SnO 2 core and must tunnel through the TiO 2 shell to recombine with oxidized dyes. While the core/shell architecture extends the lifetime in a small fraction of the CSS, making water oxidation possible, the subnanosecond recombination process has profound implications for the overall efficiencies of DSPECs.« less

  13. Enhanced gas sensing correlated with structural and optical properties of Cs-loaded SnO2 nanofilms

    NASA Astrophysics Data System (ADS)

    Elia Raine, P. J.; Arun George, P.; Balasundaram, O. N.; Varghese, T.

    2016-09-01

    The Cs-loaded SnO2 thin films were prepared by the spray pyrolysis technique and were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible spectroscopy, impedance spectroscopy and conductometric method. Investigations based on the structural, optical and electrical properties confirm an enhanced gas sensing potential of cesium-loaded tin oxide films. It is found that the tin oxide thin film doped with 4% Cs with a mean grain size of 20 nm at a deposition temperature of 350 ° C show a maximum sensor response of 97.5% for LPG consistently. It is also observed that the sensor response of Cs-doped SnO2 thin films depends on the dopant concentration and the deposition temperature of the film.

  14. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peña-Jiménez, Salvador, E-mail: zoid-9861@yahoo.com.mx; Gamboa-deBuen, Isabel, E-mail: gamboa@nucleares.unam.mx; Lárraga-Gutiérrez, José Manuel, E-mail: jose.larraga.gtz@gmail.com, E-mail: amanda.garcia.g@gmail.com

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (1×1×1 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurología y Neurocirugía (INNN). Thermoluminescent response as a function of dose wasmore » determined for doses in water between 0.5 and 3 Gy and two field sizes (2×2 cm2 and 10×10 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.« less

  15. Characterization of TLD-100 micro-cubes for use in small field dosimetry

    NASA Astrophysics Data System (ADS)

    Peña-Jiménez, Salvador; Lárraga-Gutiérrez, José Manuel; García-Garduño, Olivia Amanda; Gamboa-deBuen, Isabel

    2014-11-01

    At present there are no international regulations for the management of millimeter scale fields and there are no suggestions for a reference detector to perform the characterization and dose determination for unconventional radiation beams (small fields) so that the dosimetry of small fields remains an open research field worldwide because these fields are used in radiotherapy treatments. Sensitivity factors and reproducibility of TLD-100 micro-cubes (1×1×1 mm3) were determinate irradiating the dosimeters with a 6 MV beam in a linear accelerator dedicated to radiosurgery at the Instituto Nacional de Neurología y Neurocirugía (INNN). Thermoluminescent response as a function of dose was determined for doses in water between 0.5 and 3 Gy and two field sizes (2×2 cm2 and 10×10 cm2). It was found that the response is linear over the dose range studied and it does not depend on field size.

  16. Fabrication of Nanocomposites of SnO2 and MgAl2O4 for Gas Sensing Applications

    NASA Astrophysics Data System (ADS)

    Nithyavathy, N.; Arunmetha, S.; Vinoth, M.; Sriram, G.; Rajendran, V.

    2016-04-01

    Simple solid-state and sol-gel routes have been used to synthesize nanocomposites of tin oxide and magnesium aluminate at calcination temperature of 900 K for gas sensing applications. The effects of the surface structure of magnesium aluminate on the gas response for different concentrations of tin oxide addition were investigated for potential use in gas sensors. (SnO2) x doped in small amounts x into magnesium aluminate resulted in three nanocomposite samples MAS0.25, MAS0.50, and MAS0.75 for x = 0.25, 0.50, and 0.75, respectively, plus MgAl2O4 (MA) for x = 0. The response to different pressures of gases such as oxygen (O2), carbon monoxide (CO), and ethanol (C2H5OH) was quantitatively analyzed for all samples at different operating temperatures. The temperature was varied linearly by increasing the supply to a heating pad mounted below the sensor sample, regardless of the gas pressure inside the chamber. All the sample materials showed good response at different gas pressures (1 bar to 2 bar) and operating temperatures (300 K to 600 K). It was noted that the composite samples showed enhanced and fast response to gases, at both lower and higher operating temperatures, with detection of even the smallest change in gas pressure.

  17. Photocatalytic performance of Ag doped SnO2 nanoparticles modified with curcumin

    NASA Astrophysics Data System (ADS)

    Vignesh, K.; Hariharan, R.; Rajarajan, M.; Suganthi, A.

    2013-07-01

    Visible light active Ag doped SnO2 nanoparticles modified with curcumin (Cur-Ag-SnO2) have been prepared by a combined precipitation and chemical impregnation route. The optical properties, phase structures and morphologies of the as-prepared nanoparticles were characterized using UV-visible diffuse reflectance spectra (UV-vis-DRS), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). The surface area was measured by Brunauer. Emmett. Teller (B.E.T) analysis. Compared to bare SnO2, the surface modified photocatalysts (Ag-SnO2 and Cur-Ag-SnO2) showed a red shift in the visible region. The photocatalytic activity was monitored via the degradation of rose bengal (RB) dye and the results revealed that Cur-Ag-SnO2 shows better photocatalytic activity than that of Ag-SnO2 and SnO2. The superior photocatalytic activity of Cur-Ag-SnO2 could be attributed to the effective electron-hole separation by surface modification. The effect of photocatalyst concentration, initial dye concentration and electron scavenger on the photocatalytic activity was examined in detail. Furthermore, the antifungal activity of the photocatalysts and the reusability of Cur-Ag-SnO2 were tested.

  18. XAS study of chromium in Li 2MSiO 4 (M=Mg, Zn)

    NASA Astrophysics Data System (ADS)

    Jousseaume, C.; Ribot, F.; Kahn-Harari, A.; Vivien, D.; Villain, F.

    2003-01-01

    X-ray absorption spectroscopy (XAS) investigations at the Cr K-edge on Cr:Li 2MSiO 4 (M=Mg, Zn) have been performed to understand the exceptionally long fluorescence lifetime of Cr IV. Previous work has shown the simultaneous presence of three oxidation states Cr IV, Cr V and Cr VI. X-ray absorption near edge structure measurements confirm that Cr in Li 2MSiO 4 (M=Mg, Zn) single crystals is in tetrahedral coordination. They also reveal that Cr VI is the dominant species in Li 2MgSiO 4, and that Li 2ZnSiO 4 contains more Cr V than Li 2MgSiO 4. The extended X-ray absorption fine structure spectra of Cr:Li 2MgSiO 4 single crystals recorded at the Cr K-edge, are fitted with two types of Cr environments: the first one corresponds to oxygen atoms at a mean distance of 1.68 Å and the second to oxygen atoms at a mean distance of 2.07 Å. This second environment is attributed to Cr III in the minor parasitic phase LiCr IIIO 2. The first environment corresponds to Cr that substitutes silicon in the Li 2MgSiO 4 lattice in the silicon site if the cations sizes are considered.

  19. Comparison of the solar photocatalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) on 2,4-D degradation in a CPC reactor.

    PubMed

    Maya-Treviño, M L; Villanueva-Rodríguez, M; Guzmán-Mar, J L; Hinojosa-Reyes, L; Hernández-Ramírez, A

    2015-03-01

    In this work a comparative study of the catalytic activity of ZnO-Fe2O3 and ZnO-Fe(0) 0.5 wt% materials was carried out in the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) as a commercial formulation Hierbamina®, using a compound parabolic collector (CPC) reactor. The catalysts were synthesized by the sol-gel method and characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy. The textural properties of solids were determined from N2 adsorption isotherms using the Brunauer-Emmett-Teller (BET) method. The incorporation of Fe(0) onto ZnO was demonstrated by X-ray photoelectron spectroscopy analysis. The photocatalytic tests were performed at pH 7, using 10 mg L(-1) of herbicide and 0.5 g L(-1) of catalyst loading. The decay in herbicide concentration was followed by reversed-phase chromatography. A complete degradation of 2,4-D was achieved using ZnO-Fe(0) while 47% of herbicide removal was attained with ZnO-Fe2O3 mixed oxide for an accumulated energy QUV ≈ 2 kJ L(-1). The removal percentage of total organic carbon (TOC) during the solar photocatalytic process was superior using ZnO-Fe(0), achieving 45% compared to the 15% obtained with the mixed oxide catalyst.

  20. Effects of ZnSO4 and Zn-EDTA broadcast or banded to soil on Zn bioavailability in wheat (Triticum aestivum L.) and Zn fractions in soil.

    PubMed

    Zhao, Aiqing; Yang, Shu; Wang, Bini; Tian, Xiaohong; Zhang, Youlin

    2018-08-01

    Human Zn deficiency is prevalent in developing countries, and staple grains are commonly bio-fortified to increase their Zn contents. We measured Zn content, distribution, and bioavailability in calcareous soil and in wheat plants (Triticum aestivum L.) in Shaanxi Province, China, when either an organic Zn-ethylenediaminetetraacetate (Zn-EDTA) or an inorganic zinc sulfate heptahydrate (ZnSO 4 ·7H 2 O) Zn source was banded below the seedbed or broadcasted into soil. Compared with ZnSO 4 ·7H 2 O, Zn-EDTA fertilization produced higher Zn concentration and uptake in wheat plants. However, Zn bioavailability in grain remained low, with [phytate]/[Zn] ratio >15 and the resulting estimated dietary total absorbed zinc (TAZ) < 3 mg Zn/d. ZnSO 4 banded into soil had little short-term effect on grain Zn concentration but had a high residual effect and promoted the maintenance of a high concentration of the Zn fraction bound to loose organic matter (LOM-Zn) in rhizosphere soil. Both ZnSO 4 and Zn-EDTA were more efficient if uniformly mixed through the soil than if banded to soil. Both ZnSO 4 and Zn-EDTA had limited effects on Zn bioavailability in wheat plants due to the high rate of Zn fixation in this calcareous soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Quantifying point defects in Cu 2 ZnSn(S,Se) 4 thin films using resonant x-ray diffraction

    DOE PAGES

    Stone, Kevin H.; Christensen, Steven T.; Harvey, Steven P.; ...

    2016-10-17

    Cu 2ZnSn(S,Se)4 is an interesting, earth abundant photovoltaic material, but has suffered from low open circuit voltage. To better understand the film structure, we have measured resonant x-ray diffraction across the Cu and Zn K-edges for the device quality thin films of Cu 2ZnSnS4 (8.6% efficiency) and Cu 2ZnSn(S,Se)4 (3.5% efficiency). This approach allows for the confirmation of the underlying kesterite structure and quantification of the concentration of point defects and vacancies on the Cu, Zn, and Sn sublattices. Rietveld refinement of powder diffraction data collected at multiple energies is used to determine that there exists a high level ofmore » Cu Zn and Zn Cu defects on the 2c and 2d Wyckoff positions. We observe a significantly lower concentration of Zn Sn defects and Cu or Zn vacancies.« less

  2. Surfactant-assisted synthesis of polythiophene/Ni0.5Zn0.5Fe2-xCexO4 ferrite composites: study of structural, dielectric and magnetic properties for EMI-shielding applications.

    PubMed

    Dar, M Abdullah; Majid, Kowsar; Hanief Najar, Mohd; Kotnala, R K; Shah, Jyoti; Dhawan, S K; Farukh, M

    2017-04-19

    This work reports the exploitation of nanocrystalline Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite for potential application by designing quasi-spherical shaped polythiophene (PTH) composites via in situ emulsion polymerization. The structural, electronic, dielectric, magnetic, and electromagnetic interference (EMI) shielding properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites were investigated. Our results suggest that these properties could be optimized by modulating the concentration of x (composition) in the polymer matrix. Higher values of ε' and ε'' were obtained on composite formation, and could be due to the heterogeneity developed in the material. An enhancement in the value of saturation magnetization (123 emu g -1 for x = 0.04) and Curie temperature was obtained with Ce concentration, which is useful for high density recording purposes. A low value of saturation magnetization was obtained for the PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composite (36 emu g -1 for x = 0.04). This could be attributed to the non-magnetic nature of the polymer. A total shielding effectiveness (SE T = SE A + SE R ) up to 34 dB (≈99.9% attenuation) was recorded for PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 composites (x = 0.04) in a frequency range of 8.2-12.4 GHz (X-band), which surpasses the shielding criteria of SE T > 30 dB for commercial purposes. Such a material with high SE identifies its potential for making electromagnetic shields. The effect of Ce substitution on the microstructure, dielectric, impedance and magnetic properties of PTH/Ni 0.5 Zn 0.5 Fe 2-x Ce x O 4 ferrite composites was also investigated. X-ray diffraction analysis confirmed cubic spinel phase formation, and the broad reflection peaks indicated the formation of smaller sized particles. The smaller energy band gap (2.53 eV) of the composite indicated that this material could be used for photocatalysis in the visible region. Dielectric and impedance measurements were carried out in a frequency range of 8.2-12.4

  3. Fabrication and good ethanol sensing of biomorphic SnO2 with architecture hierarchy of butterfly wings.

    PubMed

    Song, Fang; Su, Huilan; Han, Jie; Zhang, Di; Chen, Zhixin

    2009-12-09

    Using super-hydrophobic butterfly wings as templates, we developed an aqueous sol-gel soakage process assisted by ethanol-wetting and followed by calcination to fabricate well-organized porous hierarchical SnO(2) with connective hollow interiors and thin mesoporous walls. The exquisite hierarchical architecture of SnO(2) is faithfully replicated from the lightweight skeleton of butterfly wings at the level from nano- to macro-scales. On the basis of the self-assembly of SnO(2) nanocrystallites with diameter around 7.0 nm, the interconnected tubes (lamellas), the fastigiated hollow tubers (pillars) and the double-layered substrates further construct the biomorphic hierarchical architecture. Benefiting from the small grain size and the unique hierarchical architecture, the biomorphic SnO(2) as an ethanol sensor exhibits high sensitivity (49.8 to 50 ppm ethanol), and fast response/recovery time (11/31 s to 50 ppm ethanol) even at relatively low working temperature (170 degrees C).

  4. Role of Cu in engineering the optical properties of SnO2 nanostructures: Structural, morphological and spectroscopic studies

    NASA Astrophysics Data System (ADS)

    Kumar, Virender; Singh, Kulwinder; Jain, Megha; Manju; Kumar, Akshay; Sharma, Jeewan; Vij, Ankush; Thakur, Anup

    2018-06-01

    We have carried out a systematic study to investigate the effect of Cu doping on the optical properties of SnO2 nanostructures synthesized by chemical route. Synthesized nanostructures were characterized using X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), High resolution transmission electron microscopy (HR-TEM), Energy dispersive X-ray spectroscopy, Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, UV-visible and Photoluminescence (PL) spectroscopy. The Rietveld refinement analysis of XRD patterns of Cu-doped SnO2 samples confirmed the formation of single phase tetragonal rutile structure, however some localized distortion was observed for 5 mol% Cu-doped SnO2. Crystallite size was found to decrease with increase in dopant concentration. FE-SEM images indicated change in morphology of samples with doping. HR-TEM images revealed that synthesized nanostructures were nearly spherical and average crystallite size was in the range 12-21 nm. Structural defects, crystallinity and size effects on doping were investigated by Raman spectroscopy and results were complemented by FTIR spectroscopy. Optical band gap of samples was estimated from reflectance spectra. We have shown that band gap of SnO2 can be engineered from 3.62 to 3.82 eV by Cu doping. PL emission intensity increased as the doping concentration increased, which can be attributed to the development of defect states in the forbidden transition region of band gap of SnO2 with doping. We have also proposed a band model owing to defect states in SnO2 to explain the observed PL in Cu doped SnO2 nanostructures.

  5. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    NASA Astrophysics Data System (ADS)

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-05-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g-1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment.

  6. Surfactant-free synthesis of octahedral ZnO/ZnFe2O4 heterostructure with ultrahigh and selective adsorption capacity of malachite green

    PubMed Central

    Liu, Jue; Zeng, Min; Yu, Ronghai

    2016-01-01

    A new octahedral ZnO/ZnFe2O4 heterostructure has been fabricated through a facile surfactant-free solvothermal method followed by thermal treatment. It exhibits a record-high adsorption capacity (up to 4983.0 mg·g−1) of malachite green (MG), which is a potentially harmful dye in prevalence and should be removed from wastewater and other aqueous solutions before discharging into the environment. The octahedral ZnO/ZnFe2O4 heterostructure also demonstrates strong selective adsorption towards MG from two kinds of mixed solutions: MG/methyl orange (MO) and MG/rhodamine B (RhB) mixtures, indicating its promise in water treatment. PMID:27142194

  7. The alcohol-sensing behaviour of SnO2 nanorods prepared by a facile solid state reaction

    NASA Astrophysics Data System (ADS)

    Gao, F.; Ren, X. P.; Wan, W. J.; Zhao, Y. P.; Li, Y. H.; Zhao, H. Y.

    2017-02-01

    SnO2 nanorods with the range of 12-85 nm in diameter were fabricated by a facile solid state reaction in the medium of NaCl-KCl mixture at room temperature and calcined at 600, 680, 760 and 840 oC, respectively. The XRD, TEM and XPS were employed to characterize the structure and morphology of the SnO2 nanorods. The influence of the calcination temperature on the gas sensing behaviour of the SnO2 nanorods with different diameter was investigated. The result showed that all the sensors had good response to alcohol. The response of the gracile nanorods prepared at a low calcined temperature demonstrated significantly better than the thick nanorods prepared at a high calcined temperature. The mechanism was attributed to the nonstoichiometric ratio of Sn/O and larger surface area of the gracile nanorods to enhance the oxygen surface adsorption.

  8. Effets de l'interaction avec l'oxygène sur le comportement de couches semi-conductrices de ZnO, SnO{2} et CdSe

    NASA Astrophysics Data System (ADS)

    Ain-Souya, A.; Ghers, M.; Haddad, A.; Tebib, W.; Rehamnia, R.; Messsalhi, A.; Bounouala, M.; Djouama, M. C.

    2005-05-01

    Les propriétés superficielles des matériaux solides diffèrent de celles du volume. A la surface, des défauts de différentes natures peuvent être présents. Ils permettent à la surface d'être interactive avec le milieu ambiant. Les multiples interactions entre les états de surface et des éléments du milieu extérieur peuvent modifier les propriétés superficielles. Ce travail étudie la régénération de couches semi-conductrices après adsorption isotherme d'oxygène à différentes températures effectuées entre 20 ° C et 300 ° C. Les matériaux qui ont servi à l'étude sont des couches de ZnO, SnO{2} et CdSe. Celles de CdSe ont été obtenues par co-évaporation, sous vide, de cadmium et de sélénium. Les échantillons de ZnO et SnO{2} ont été élaborés par oxydation, à des températures respectives de 450 ° C et 200 ° , de Zn et Sn déposés par électrolyse et par évaporation sous vide. Les matériaux évaporés ont été déposés sur des plaquettes en verre, les autres ont été électrodéposés sur des substrats métalliques. Les variations des propriétés électriques des couches ont été suivies par mesure de leur résistance électrique superficielle R. Les courbes LogR = f (103 /T (K)), relevées sous vide à différentes températures, sont caractéristiques d'un comportement de semi-conducteur. Des essais d'adsorption d'O{2} à différentes températures montrent des variations considérables de R. En effet, la chimisorption forte d'un gaz par une surface semi-conductrice est telle que l'échange électronique entre adsorbant et adsorbat provoque la formation d'une zone de charge d'espace modifiant la conduction superficielle. Les résultats mettent en évidence des domaines de température de plus haute sensibilité à l'oxygène. Pour le CdSe, certaines désorptions isothermes ont été suffisantes pour une régénération totale des échantillons. Les couches de ZnO ont souvent nécessité des désorptions programm

  9. Optical and Structural Properties of Zn2TiO4:Mn2+

    NASA Astrophysics Data System (ADS)

    Sosman, L. P.; López, A.; Camara, A. R.; Pedro, S. S.; Carvalho, I. C. S.; Cella, N.

    2017-12-01

    Polycrystalline Zn2TiO4 samples with Mn2+ doping level of 0%, 0.1%, 1.0%, and 5.0% have been produced by conventional solid-state method and their optical and structural properties investigated. Rietveld refinement of x-ray diffraction patterns revealed the formed phases and the crystallographic parameters. The chemical composition was obtained by x-ray fluorescence measurements. The optical properties were studied by photoluminescence, excitation, reflectance, and photoacoustic spectroscopy. All measurements were performed at room temperature. The photoluminescence spectrum of the pure sample (0% Mn2+) showed a band in the red region associated with Zn2TiO4, while the sample with 0.1% Mn2+ exhibited two bands, in the green and red spectral regions, assigned to Mn2+ ions at tetrahedral and octahedral sites. No emission was observed for the samples with 1.0% or 5.0% Mn2+. The excitation results for the sample with 0.1% Mn2+ ions showed characteristic peaks of Mn2+ transitions. Tanabe-Sugano theory was used to obtain the crystal field Dq, B, and C Racah parameters from the energy peak positions in the excitation spectrum of the sample with 0.1% Mn2+. Photoacoustic measurements revealed a broad band, characteristic of semiconductor materials, hiding the Mn2+ transitions.

  10. Structural, chemical and optical properties of SnO2 NPs obtained by three different synthesis routes

    NASA Astrophysics Data System (ADS)

    Drzymała, Elżbieta; Gruzeł, Grzegorz; Depciuch, Joanna; Budziak, Andrzej; Kowal, Andrzej; Parlinska-Wojtan, Magdalena

    2017-08-01

    Polyol (P), chemical precipitation (C) and microwave-assisted (M) syntheses were chosen to produce SnO2 nanoparticles with uniform size and minimum agglomeration. Their structural, chemical and optical properties were investigated using dynamic light scattering (DLS), scanning transmission electron microscopy (STEM), Raman, Fourier Transform Infrared (FTIR) using the Attenuated Total Reflectance (ATR) technique and Ultraviolet-Visible (UV-Vis) spectroscopies. STEM observations showed that the SnO2(P) and SnO2(C) nanoparticles (NPs) are combined into larger agglomerates with heterogeneous thickness, while the microwave-assisted NPs form a uniform thin layer across the TEM grid. The strongest agglomeration of the SnO2(C) NPs, observed by DLS, STEM and UV-Vis is explained by the very moderate amount of water present on the surface of the NPs identified by FTIR spectroscopy. High resolution STEM combined with SAED and X-ray diffraction (XRD) patterns confirmed the crystalline character of the NPs. In the nanoparticles from polyol synthesis, chlorine from the remains of metal precursors during reduction was detected by energy dispersive spectroscopy (EDS), contrary to the NPs obtained by the chemical precipitation and microwave-assisted methods. All three syntheses routes lead to small, 2-10 nm SnO2 NPs, which were the result of the low concentration of Cl ions in the solutions.

  11. Synthesis, characterization and crystal structure of a 1D thiocyanato bridged [Cu(en)2Zn(NCS)4]ṡH2O. Comparison of the three structures with the same [Cu(en)2Zn(NCS)4] unit - different in structural terms

    NASA Astrophysics Data System (ADS)

    Wrzeszcz, Grzegorz; Muzioł, Tadeusz M.; Tereba, Natalia

    2015-03-01

    In this paper we report the synthesis method and the structure of a one-dimensional thiocyanato bridged heterometallic compound, [Cu(en)2Zn(NCS)4]ṡH2O (1). Moreover, we compare the structure of (1) with the previously described structures of [Cu(en)2Zn(NCS)4]ṡ0.5H2O (2) and [Cu(en)2Zn(NCS)4]ṡCH3CN (3) Pryma et al. (2003) [7]. The compound (1) has been characterized by thermal decomposition, IR, Vis and EPR spectra, and magnetic studies. Structure has been determined by X-ray analysis. Described coordination polymer crystallizes in the orthorhombic Cmcm space group with a = 12.414(2), b = 10.3276(14), c = 14.967(2) Å, α = β = γ = 90°, V = 1918.8(5) Å3 and Z = 4. Each distorted tetrahedral zinc(II) centre (with N-bonded NCS-) links two tetragonally distorted octahedral copper(II) centres by two end-to-end thiocyanato bridges and vice versa forming a zigzag type of CuZn chain. The structures of (1), (2) and (3) differ in crystallographic system, space group and/or CuZn chain type as well as in details. Variable temperature magnetic susceptibility measurements show very weak antiferromagnetic interactions between the paramagnetic copper(II) ions for compound (1).

  12. The two-dimensional to three-dimensional transition structures of ZnCo2O4 for the application of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Jung, Mi-Hee

    2018-01-01

    We prepare the transition structure of ZnCo2O4 via transformation from two-dimensional (2D) nanosheets to three-dimensional (3D) microspheres with the solvothermal method. ZnCo2O4 nanocrystallites were produced from the reaction of zinc acetate and cobalt nitrate in the non-aqueous methanol solution. The oriented attachment of ZnCo2O4 nanocrystallites results in the formation of the 2D wrinkled-paper-like structure of ZnCo2O4. The 2D ZnCo2O4 nanosheet agglomerate spontaneously because there is no appropriate surfactant, and they have weak electrical double layers in the precursor solution. As the stacking of 2D ZnCo2O4 nanosheets increased, the aggregate of ZnCo2O4 nanosheet was transformed into the 3D ZnCo2O4 microspheres. The transition structure of the ZnCo2O4 was composed of the interconnected ZnCo2O4 nanoparticles, which results in a porous structure to accommodate the volume expansion of ZnCo2O4 structure during the charge process. The transition structure of ZnCo2O4 exhibits a remarkably high specific capacity and improved cycle performance. At a current density of 100 mA g-1, the transition structure of ZnCo2O4 exhibited excellent initial discharge specific capacity of 2094 mA h g-1. The discharge capacity maintain at 1296.91 mA h g-1 after 200 cycles. Even as current density reached to 2000 mA g-1, the average specific capacity still showed 606.88 mA hg-1.

  13. Eu-doped ZnO-HfO2 hybrid nanocrystal-embedded low-loss glass-ceramic waveguides

    NASA Astrophysics Data System (ADS)

    Ghosh, Subhabrata; N, Shivakiran Bhaktha B.

    2016-03-01

    We report on the sol-gel fabrication, using a dip-coating technique, of low-loss Eu-doped 70SiO2 -(30-x) HfO2-xZnO (x = 2, 5, 7 and 10 mol%) ternary glass-ceramic planar waveguides. Transmission electron microscopy and grazing incident x-ray diffraction experiments confirm the controlled growth of hybrid nanocrystals with an average size of 3 nm-25 nm, composed of ZnO encapsulated by a thin layer of nanocrystalline HfO2, with an increase of ZnO concentration from x = 2 mol% to 10 mol% in the SiO2-HfO2 composite matrix. The effect of crystallization on the local environment of Eu ions, doped in the ZnO-HfO2 hybrid nanocrystal-embedded glass-ceramic matrix, is studied using photoluminescence spectra, wherein an intense mixed-valence state (divalent as well as trivalent) emission of Eu ions is observed. The existence of Eu2+ and Eu3+ in the SiO2-HfO2-ZnO ternary matrix is confirmed by x-ray photoelectron spectroscopy. Importantly, the Eu{}2+,3+-doped ternary waveguides exhibit low propagation losses (0.3 ± 0.2 dB cm-1 at 632.8 nm) and optical transparency in the visible region of the electromagnetic spectrum, which makes ZnO-HfO2 nanocrystal-embedded SiO2-HfO2-ZnO waveguides a viable candidate for the development of on-chip, active, integrated optical devices.

  14. Narrowing the gap: from semiconductor to semimetal in the homologous series of rare-earth zinc arsenides RE(2-y)Zn4As4·n(REAs) and Mn-substituted derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs) (RE = La-Nd, Sm, Gd).

    PubMed

    Lin, Xinsong; Tabassum, Danisa; Mar, Arthur

    2015-12-14

    A homologous series of ternary rare-earth zinc arsenides, prepared by reactions of the elements at 750 °C, has been identified with the formula RE(2-y)Zn4As4·n(REAs) (n = 2, 3, 4) for various RE members. They adopt trigonal structures: RE(4-y)Zn4As6 (RE = La-Nd), space group R3̄m1, Z = 3; RE(5-y)Zn4As7 (RE = Pr, Nd, Sm, Gd), space group P3̄m1, Z = 1; RE(6-y)Zn4As8 (RE = La-Nd, Sm, Gd), space group R3̄m1, Z = 3. The Zn atoms can be partially substituted by Mn atoms, resulting in quaternary derivatives RE(2-y)Mn(x)Zn(4-x)As4·n(REAs). Single-crystal structures were determined for nine ternary and quaternary arsenides RE(2-y)M4As4·n(REAs) (M = Mn, Zn) as representative examples of these series. The structures are built by stacking close-packed nets of As atoms, sometimes in very long sequences, with RE atoms occupying octahedral sites and M atoms occupying tetrahedral sites, resulting in an intergrowth of [REAs] and [M2As2] slabs. The recurring feature of all members of the homologous series is a sandwich of [M2As2]-[REAs]-[M2As2] slabs, while rocksalt-type blocks of [REAs] increase in thickness between these sandwiches with higher n. Similar to the previously known related homologous series REM(2-x)As2·n(REAs) which is deficient in M, this new series RE(2-y)M4As4·n(REAs) exhibits deficiencies in RE to reduce the electron excess that would be present in the fully stoichiometric formulas. Enthalpic and entropic factors are considered to account for the differences in site deficiencies in these two homologous series. Band structure calculations indicate that the semiconducting behaviour of the parent n = 0 member (with CaAl2Si2-type structure) gradually evolves, through a narrowing of the gap between valence and conduction bands, to semimetallic behaviour as the number of [REAs] blocks increases, to the limit of n = ∞ for rocksalt-type REAs.

  15. Inducing tunable host luminescence in Zn2GeO4 tetrahedral materials via doping Cr3+

    NASA Astrophysics Data System (ADS)

    Bai, Qiongyu; Li, Panlai; Wang, Zhijun; Xu, Shuchao; Li, Ting; Yang, Zhiping; Xu, Zheng

    2018-06-01

    Zn2GeO4 consisting of tetrahedron, and it is a self-luminescent material due to the presence of the native defects and shows a bluish white emission excited by ultraviolet. Although Cr3+ doped in a tetrahedron generally cannot show luminescence, in this research, new defects are formed as Cr3+ doped in Zn2GeO4, hence a green emission band can be obtained. Meanwhile, the intensity of host emission is also decreased. Therefore, Zn2GeO4:Cr3+ are synthesized using a high-temperature solid-phase method. Thermoluminescence (TL) and luminescence decay curves are used to investigate the variation of native defects. The emission colour can be tuned from bluish white to green when Cr3+ doped in Zn2GeO4. This result has guidance for controlling the native emission of self-luminescent material.

  16. Boron Doped Nanocrystalline Film with Improved Work Function as a Buffer Layer in Thin Film Silicon Solar Cells.

    PubMed

    Park, Jinjoo; Shin, Chonghoon; Park, Hyeongsik; Jung, Junhee; Lee, Youn-Jung; Bong, Sungjae; Dao, Vinh Ai; Balaji, Nagarajan; Yi, Junsin

    2015-03-01

    We investigated thin film silicon solar cells with boron doped hydrogenated nanocrystalline silicon/ hydrogenated amorphous silicon oxide [p-type nc-Si:H/a-SiOx:H] layer. First, we researched the bandgap engineering of diborane (B2H6) doped wide bandgap hydrogenated nanocryslline silicon (p-type nc-Si:H) films, which have excellent electrical properties of high dark conductivity, and low activation energy. The films prepared with lower doping ratio and higher hydrogen dilution ratio had higher optical gap (Eg), with higher dark conductivity (σ(d)), and lower activation energy (Ea). We controlled Eg from 2.10 eV to 1.75 eV, with σ(d) from 1.1 S/cm to 7.59 x 10(-3) S/cm, and Ea from 0.040 eV to 0.128 eV. Next, we focused on the fabrication of thin film silicon solar cells. By inserting p-type nc-Si:H film into the thin film silicon solar cells, we achieved a remarkable increase in the built-in potential from 0.803 eV to 0.901 eV. By forming p-type nc-Si:H film between SnO2:F/ZnO:Al (30 nm) and p-type a-SiOx:H layer, the solar cell properties of open circuit voltage (Voc), short circuit current density (Jsc), and efficiency (η) were improved by 3.7%, 9.2%, and 9.8%, respectively.

  17. Derivation of force field parameters for SnO2-H2O surface systems from plane-wave density functional theory calculations.

    PubMed

    Bandura, A V; Sofo, J O; Kubicki, J D

    2006-04-27

    Plane-wave density functional theory (DFT-PW) calculations were performed on bulk SnO2 (cassiterite) and the (100), (110), (001), and (101) surfaces with and without H2O present. A classical interatomic force field has been developed to describe bulk SnO2 and SnO2-H2O surface interactions. Periodic density functional theory calculations using the program VASP (Kresse et al., 1996) and molecular cluster calculations using Gaussian 03 (Frisch et al., 2003) were used to derive the parametrization of the force field. The program GULP (Gale, 1997) was used to optimize parameters to reproduce experimental and ab initio results. The experimental crystal structure and elastic constants of SnO2 are reproduced reasonably well with the force field. Furthermore, surface atom relaxations and structures of adsorbed H2O molecules agree well between the ab initio and force field predictions. H2O addition above that required to form a monolayer results in consistent structures between the DFT-PW and classical force field results as well.

  18. Synthesis of monodispersed ZnAl{sub 2}O{sub 4} nanoparticles and their tribology properties as lubricant additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xiaoyun; Zheng, Shaohua; Zhang, Jun

    Graphical abstract: Display Omitted Highlights: ► The preparation of ZnAl{sub 2}O{sub 4} nanoparticles was realized by hydrothermal method. ► After surface modification, ZnAl{sub 2}O{sub 4} nanoparticles of narrow size distribution can disperse in lubricating oil stably. ► The modified ZnAl{sub 2}O{sub 4} nanoparticles as lubricating oil additives exhibit good tribology properties. -- Abstract: Monodispersed spherical zinc aluminate spinel (ZnAl{sub 2}O{sub 4}) nanoparticles were synthesized via a solvothermal method and modified by oleic acid in cyclohexanol solution. The nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and infrared spectrum (IR). The dispersion ability of nanoparticles in lubricant oilmore » was measured with optical absorbance spectrum. The results show that the modified nanoparticles are nearly monodispersed and can stably disperse in lubricant oil. The tribological properties of the ZnAl{sub 2}O{sub 4} nanoparticles as an additive in lubricant oil were evaluated with four-ball test and thrust-ring test. For comparison, ZnO and Al{sub 2}O{sub 3} nanoparticles as additive in lubricant oil were also tested respectively. The results show that ZnAl{sub 2}O{sub 4} nanoparticles exhibit better tribology properties in terms of anti-wear and anti-friction than ZnO or Al{sub 2}O{sub 3} nanoparticles. The anti-friction and anti-wear mechanisms were discussed and the lubricating effect of ZnAl{sub 2}O{sub 4} nanoparticles can be attributed to nano-bearings effect and tribo-sintering mechanism.« less

  19. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Shi, Song-Lin; Liu, Yong-Gang; Zhang, Jing-Yuan; Wang, Tai-Hong

    2009-10-01

    Well-dispersed SnO2 nanorods with diameter of 4-15 nm and length of 100-200 nm are synthesised through a hydrothermal route and their potential as anode materials in lithium-ion batteries is investigated. The observed initial discharge capacity is as high as 1778 mA·h/g, much higher than the theoretical value of the bulk SnO2 (1494 mA·h/g). During the following 15 cycles, the reversible capacity decreases from 929 to 576 mA·h/g with a fading rate of 3.5% per cycle. The fading mechanism is discussed. Serious capacity fading can be avoided by reducing the cycling voltages from 0.05-3.0 to 0.4-1.2 V. At the end, SnO2 nanorods with much smaller size are synthesized and their performance as anode materials is studied. The size effect on the electrochemical properties is briefly discussed.

  20. Thermally evaporated Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Wang, K.; Gunawan, O.; Todorov, T.; Shin, B.; Chey, S. J.; Bojarczuk, N. A.; Mitzi, D.; Guha, S.

    2010-10-01

    High efficiency Cu2ZnSnS4 solar cells have been fabricated on glass substrates by thermal evaporation of Cu, Zn, Sn, and S. Solar cells with up to 6.8% efficiency were obtained with absorber layer thicknesses less than 1 μm and annealing times in the minutes. Detailed electrical analysis of the devices indicate that the performance of the devices is limited by high series resistance, a "double diode" behavior of the current voltage characteristics, and an open circuit voltage that is limited by a carrier recombination process with an activation energy below the band gap of the material.

  1. Ancillary ligand-assisted assembly of C{sub 3}-symmetric 4,4′,4″-nitrilotribenzoic acid with divalent Zn{sup 2+} ions: Syntheses, topological structures, and photoluminescence properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Li-Ting; Niu, Yan-Fei; Han, Jie, E-mail: chan@ouhk.edu.hk

    4,4′,4″-nitrilotribenzoic acid (H{sub 3}L), a C{sub 3}-symmetric ligand, was found to self-assemble into two polymorphs driven by intermolecular hydrogen-bonding interactions. Reactions of this ligand with Zn{sup 2+} under solvothermal conditions resulted in four new coordination polymers bearing interesting structural motifs: [Zn{sub 2}(L){sub 2}(py){sub 2}]·2(H{sub 2}NMe{sub 2}){sup +}·DMF·2H{sub 2}O (1), [Zn{sub 2}(L)(H{sub 2}L)(bipy)]·1.5H{sub 2}O·Guest (2), [Zn{sub 2}(L){sub 2}(bipy)]·2(H{sub 2}NMe{sub 2}){sup +}·2DMF (3), and [Zn{sub 3}(L){sub 2}(bpa)]·2H{sub 2}O·Guest (4) (H{sub 3}L=4,4′,4′′-nitrilotribenzoic acid, DMF=dimethylformamide, py=pyridine, bipy=4,4′-bipyridine, bpa=1,2-bis(4-pyridyl)diazene). Single-crystal structural analysis revealed that compound 1 exhibits a rare example of twofold interpenetrating anionic 3D (3,3)-net framework containing helical channels, whereas in 2, the 3Dmore » pillar-layer structure generated from bipy-pillared Zn{sub 2}(L)(H{sub 2}L) layer is further reinforced by intermolecular hydrogen bonding among pairs of free –COOH units. Compound 3 shows an interesting entangled architecture of 2D→3D parallel polycatenation consisting five-coordinated Zn{sup 2+} ions. Compound 4 displays a 3D pillar-layer framework with trimeric Zn{sub 3}(CO{sub 2}){sub 6} serving as secondary building unit (SBU). The syntheses, structures, thermal stabilities, powder X-ray diffractions and solid-state photoluminescence properties for these crystalline materials have been carried out. In addition, supramolecular assembly of H{sub 3}L under solvothermal conditions will also be addressed. - Graphical abstract: Supramolecular assembly of 4,4′,4′′-nitrilotribenzoic acid and its ligand behavior toward Zn{sup 2+} were investigated, which exhibit two polymorphs of the free acid and four metal coordination polymers bearing interesting structural motifs. - Highlights: • Two polymorphs of H{sub 3}L showing different

  2. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  3. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE PAGES

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; ...

    2015-11-17

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  4. Animal Bone Supported SnO2 as Recyclable Photocatalyst for Degradation of Rhodamine B Dye.

    PubMed

    Wu, Yun; Wang, Hui; Cao, Mengdie; Zhang, Yichi; Cao, Feifei; Zheng, Xinsheng; Hu, Jinfei; Dong, Jiangshan; Xiao, Zhidong

    2015-09-01

    SnO2 nanoparticles supported on an animal bone which serves as inexpensive and environment-friendly natural products were developed by a facile hydrothermal approach. As a promising photocatalyst, the novel SnO2/porcine bone material exhibited high photocatalytic activity towards the degradation of rhodamine B (RhB) dye under UV-Vis irradiation. About 97.3% of RhB can be effectively decomposed by the catalysis with the SnO2/porcine bone in 90 min, while only 51.5% of RhB can be degraded by pure SnO2 nanoparticles. Moreover, the photocatalytic activity was incremental with the increase of cycle times in previous five cycles. It is mainly because the photocatalyst which has been used for several times possesses a stronger ability of light absorption and utilization compared to the fresh catalyst according to the results of the characterization and relative experiments. It is noteworthy that the animal bone support can improve the activity for the photocatalyst, which would provide further impetus to alternate synthesis strategies for photocatalysts and make the photocatalysis process faster, less expensive, and more environmentally friendly.

  5. Controllable synthesis of SnO2@carbon hollow sphere based on bi-functional metallo-organic molecule for high-performance anode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Li, Liuqing; Li, Zhaopeng; Zhong, Weihao; Liao, Haiyang; Li, Zhenghui

    2018-06-01

    Constructing hollow structure and nano-sized SnO2 particles are two normal strategies to improve lithium storage performance of SnO2-based electrode. But it is still challengeable to fabricate ultrasmall SnO2 embedded in carbon hollow sphere in a controllable way. Herein, we have synthesized a kind of SnO2@carbon hollow sphere via a confined Friedel-Crafts crosslinking of a novel metal-organic compound (triphenyltin chloride, named Sn-Ph) on the surface of SiO2 template. The as-prepared SnO2@carbon hollow sphere has 10 nm-sized SnO2 particles embedded in amorphous carbon wall. Furthermore, 100, 200 and 400 nm-sized SnO2@carbon hollow spheres can be obtained by regulating the size of SiO2 template. When they are applied in lithium-ion batteries, the carbon structure can act as barriers to protect SnO2 particles from pulverization, and hollow core stores electrolyte and very small SnO2 particles of 10 nm shorten the diffusion distance of lithium ions. Thus, SnO2@carbon hollow sphere presents superior electrochemical performance. The first discharge and charge capacities reach 1378.5 and 507.3 mAh g-1 respectively, and 100 cycles later, its capacity remains 501.2 mAh g-1, indicating a capacity retention of 98.8% (C100th/C2nd).

  6. Photocatalytic degradation of Orange G dye under solar light using nanocrystalline semiconductor metal oxide.

    PubMed

    Thennarasu, G; Kavithaa, S; Sivasamy, A

    2011-08-01

    The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses. Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation. The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV-Visible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses. The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.

  7. Solid-solution Zn(O,S) thin films: Potential alternative buffer layer for Cu2ZnSnS4 solar cells

    NASA Astrophysics Data System (ADS)

    Jani, Margi; Raval, Dhyey; Chavda, Arvind; Mukhopadhyay, Indrajit; Ray, Abhijit

    2018-05-01

    This report investigates the alternative buffer material as Zn(O,S) for chalcogenide Cu2ZnSnS4 (CZTS) solar cell application. Using the band gap tailoring (band bowing) properties of Zn(O,S) system, performance of CZTS solar cell is explore in the present study. Reducing the band offsets with the hetero-junction partners plays a deterministic role in the performance of the device using Zn(O,S) as buffer layer. The experimental performance of the device with the CZTS/Zn(O,S) film developed by Spray pyrolysis method and analyze using J-V characterization in dark and illuminated configuration. Device with the best achievable performance shows Voc of 150 mV and Jsc of 0.47 mA/cm2 has been presented with the possibility of application in the energy harvesting.

  8. Inorganic Photocatalytic Enhancement: Activated RhB Photodegradation by Surface Modification of SnO2 Nanocrystals with V2O5-like species

    PubMed Central

    Epifani, Mauro; Kaciulis, Saulius; Mezzi, Alessio; Altamura, Davide; Giannini, Cinzia; Díaz, Raül; Force, Carmen; Genç, Aziz; Arbiol, Jordi; Siciliano, Pietro; Comini, Elisabetta; Concina, Isabella

    2017-01-01

    SnO2 nanocrystals were prepared by precipitation in dodecylamine at 100 °C, then they were reacted with vanadium chloromethoxide in oleic acid at 250 °C. The resulting materials were heat-treated at various temperatures up to 650 °C for thermal stabilization, chemical purification and for studying the overall structural transformations. From the crossed use of various characterization techniques, it emerged that the as-prepared materials were constituted by cassiterite SnO2 nanocrystals with a surface modified by isolated V(IV) oxide species. After heat-treatment at 400 °C, the SnO2 nanocrystals were wrapped by layers composed of vanadium oxide (IV-V mixed oxidation state) and carbon residuals. After heating at 500 °C, only SnO2 cassiterite nanocrystals were obtained, with a mean size of 2.8 nm and wrapped by only V2O5-like species. The samples heat-treated at 500 °C were tested as RhB photodegradation catalysts. At 10−7 M concentration, all RhB was degraded within 1 h of reaction, at a much faster rate than all pure SnO2 materials reported until now. PMID:28300185

  9. Structural behavior of ZnCr 2S 4 spinel under pressure

    DOE PAGES

    Efthimiopoulos, I.; Lochbiler, T.; Tsurkan, V.; ...

    2016-12-15

    Here, the series of Cr-chalcogenide spinels ACr 2X 4 (A = Zn, Cd, Hg; X = S, Se) exhibits a rich phase diagram upon compression, as revealed by our recent investigations. There exist, however, some open questions regarding the role of cations in the observed structural transitions. In order to address these queries, we have performed X-ray diffraction and Raman spectroscopic studies on the ZnCr 2S 4 spinel up to 42 GPa, chosen mainly due to the similarity of the Zn 2+ and Cr 3+ cationic radii. Two reversible structural transitions were identified at 22 and 33 GPa, into a I4 1/ amd and an orthorhombic phase, respectively. Close comparison with the behavior of relevant Cr-spinels revealed that the structural transitions are mainly governed by the competition of the magnetic exchange interactions present in these systems, and not by steric effects. In addition, careful inspection of the starting Fdmore » $$\\bar{3}$$m phase revealed a previously unnoticed isostructural transition. The latter is intimately related to changes in the electronic properties of these systems, as evidenced by our Raman studies. Our results provide insights for tuning the physical and chemical properties of these materials, even under moderate compression, as well as promoting the understanding of similar pressure-induced effects in relevant systems.« less

  10. Electronic structure and magnetic properties of Ni-doped SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Mayuri; Kumar, Shalendra; Alvi, P. A.

    2018-05-01

    This paper reports the electronic structure and magnetic properties of Ni-doped SnO2 thin film which were grown on Si (100) substrate by PLD (pulse laser deposition) technique under oxygen partial pressure (PO2). For getting electronic structure and magnetic behavior, the films were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and DC magnetization measurements. The NEXAFS study at Ni L3,2 edge has been done to understand the local environment of Ni and Sn ions within SnO2 lattice. DC magnetization measurement shows that the saturation magnetization increases with the increase in substitution of Ni2+ ions in the system.

  11. Facile, low temperature synthesis of SnO2/reduced graphene oxide nanocomposite as anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Hou, Chau-Chung; Brahma, Sanjaya; Weng, Shao-Chieh; Chang, Chia-Chin; Huang, Jow-Lay

    2017-08-01

    We demonstrate a facile, single step, low temperature and energy efficient strategy for the synthesis of SnO2-reduced graphene oxide (RGO) nanocomposite where the crystallization of SnO2 nanoparticles and the reduction of graphene oxide takes place simultaneously by an in situ chemical reduction process. The electrochemical property of the SnO2-RGO composite prepared by using low concentrations of reducing agent shows better Li storage performance, good rate capability (378 mAh g-1 at 3200 mA g-1) and stable capacitance (522 mAh g-1 after 50 cycles). Increasing the reductant concentration lead to crystallization of high concentration of SnO2 nanoparticle aggregation and degrade the Li ion storage property.

  12. Hydrothermal synthesis of nanostructured SnO particles through crystal growth in the presence of gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uchiyama, Hiroaki, E-mail: h_uchi@kansai-u.ac.jp; Nakanishi, Shunsuke; Kozuka, Hiromitsu

    2014-09-15

    Crystalline SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in aqueous solutions containing gelatin at 150 °C for 24 h, where the morphologies of the SnO products changed from blocks to layered disks, stacked plates and unshaped aggregates with increasing amount of gelatin in the solutions. Such morphological changes of SnO particles were thought to be attributed to the suppression of the growth of SnO crystals by the adsorbed gelatin. - Graphical abstract: Nanostructured SnO particles were obtained from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment in gelatin solutions. - Highlights: • SnO particlesmore » were prepared from Sn{sub 6}O{sub 4}(OH){sub 4} by the hydrothermal treatment. • The adsorption of gelatin suppressed the growth of SnO crystals. • The shape of SnO particles depends on the amount of gelatin. • Blocks, disks, stacked plates and unshaped aggregates were obtained.« less

  13. Coexisting exchange bias effect and ferroelectricity in geometrically frustrated ZnCr2O4

    NASA Astrophysics Data System (ADS)

    Dey, J. K.; Majumdar, S.; Giri, S.

    2018-06-01

    Concomitant occurrence of exchange bias effect and ferroelectric order is revealed in antiferromagnetic spinel ZnCr2O4. The exchange bias effect is observed below antiferromagnetic Neél temperature (T N) with a reasonable value of exchange bias field ( Oe at 2 K). Intriguingly, the ratio is found unusually high as  ∼2.2, where H C is the coercivity. This indicates that large H C is not always primary for obtaining large exchange bias effect. Ferroelectric order is observed at T N, where non-centrosymmetric magnetic structure with space group associated with the magnetoelectric coupling correlates the ferroelectric order, proposing that, ZnCr2O4 is an improper multiferroic material. Rare occurrence of exchange bias effect and ferroelectric order in ZnCr2O4 attracts the community for fundamental interest and draws special attention in designing new materials for possible electric field control of exchange bias effect.

  14. Identification of a deleterious phase in photocatalyst based on Cd1 - xZnxS/Zn(OH)2 by simulated XRD patterns.

    PubMed

    Cherepanova, Svetlana; Markovskaya, Dina; Kozlova, Ekaterina

    2017-06-01

    The X-ray diffraction (XRD) pattern of a deleterious phase in the photocatalyst based on Cd 1 - x Zn x S/Zn(OH) 2 contains two relatively intense asymmetric peaks with d-spacings of 2.72 and 1.56 Å. Very small diffraction peaks with interplanar distances of (d) ≃ 8.01, 5.40, 4.09, 3.15, 2.49 and 1.35 Å are characteristic of this phase but not always observed. To identify this phase, the XRD patterns for sheet-like hydroxide β-Zn(OH) 2 and sheet-like hydrozincite Zn 5 (CO 3 ) 2 (OH) 6 as well as for turbostratic hydrozincite were simulated. It is shown that the XRD pattern calculated on the basis of the last model gives the best correspondence with experimental data. Distances between layers in the turbostratically disordered hydrozincite fluctuate around d ≃ 8.01 Å. This average layer-to-layer distance is significantly higher than the interlayer distance 6.77 Å in the ordered Zn 5 (CO 3 ) 2 (OH) 6 probably due to a deficiency of CO 3 2- anions, excess OH - and the presence of water molecules in the interlayers. It is shown by variable-temperature XRD and thermogravimetric analysis (TGA) that the nanocrystalline turbostratic nonstoichiometric hydrozincite-like phase is quite thermostable. It decomposes into ZnO in air above 473 K.

  15. Nanocrystalline CuInS2 And CuInSe2 via Low-Temperature Pyrolysis Of Single-Source Molecular Precursors

    NASA Technical Reports Server (NTRS)

    Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.

    2002-01-01

    Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of the material with the correct stoichiometry, as a nanocrystalline powder or a thin film. Nanocrystalline materials hold potential as components of next-generation Photovoltaic (PV) devices. Presented here are the syntheses of CuInS2 and CuInSe2 nanocrystals from the precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively. The size of the nanocrystals varies with the reaction temperature; a minimum of 200 C is required for the formation of the smallest CuInS2 crystals (approximately 1.6 nm diameter); at 300 C, crystals are approximately 7 nm.

  16. A highly sensitive ethanol sensor based on mesoporous ZnO-SnO2 nanofibers.

    PubMed

    Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan

    2009-02-18

    A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO-SnO(2) (m-Z-S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO(2)), and a mesoporous structure was observed in the m-Z-S nanofibers. The sensor performance of the prepared m-Z-S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3-500 ppm.

  17. Highly Sensitive H2S Sensor Based on the Metal-Catalyzed SnO2 Nanocolumns Fabricated by Glancing Angle Deposition

    PubMed Central

    Yoo, Kwang Soo; Han, Soo Deok; Moon, Hi Gyu; Yoon, Seok-Jin; Kang, Chong-Yun

    2015-01-01

    As highly sensitive H2S gas sensors, Au- and Ag-catalyzed SnO2 thin films with morphology-controlled nanostructures were fabricated by using e-beam evaporation in combination with the glancing angle deposition (GAD) technique. After annealing at 500 °C for 40 h, the sensors showed a polycrystalline phase with a porous, tilted columnar nanostructure. The gas sensitivities (S = Rgas/Rair) of Au and Ag-catalyzed SnO2 sensors fabricated by the GAD process were 0.009 and 0.015, respectively, under 5 ppm H2S at 300 °C, and the 90% response time was approximately 5 s. These sensors showed excellent sensitivities compared with the SnO2 thin film sensors that were deposited normally (glancing angle = 0°, S = 0.48). PMID:26134105

  18. Roles of cobalt doping on ethanol-sensing mechanisms of flame-spray-made SnO2 nanoparticles-electrolytically exfoliated graphene interfaces

    NASA Astrophysics Data System (ADS)

    Punginsang, Matawee; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Phokharatkul, Ditsayut; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2017-12-01

    In this work, the roles of cobalt (Co) and electrolytically exfoliated graphene additives on ethanol gas-sensing properties of flame-spray-made SnO2 nanoparticles were systematically studied. Structural characterizations indicated that Co dopants formed solid solution with SnO2 nanoparticles while multilayer graphene sheets were well dispersed within the Co-doped SnO2 matrix at low graphene loading contents. The sensing films were fabricated by a spin coating process and tested towards 50-1000 ppm ethanol at 150-400 °C. It was found that the response to 1000 ppm ethanol at the optimal working temperature of 350 °C was enhanced from 91 to 292 and to 803 by 0.5 wt% graphene loading and 0.5 wt% Co-doping, respectively. The combination of Co-doping and graphene loading with the same concentration of 0.5 wt% led to a synergistic enhancement of ethanol response to 2147 at 1000 ppm with a short response time of ∼0.9 s and fast recovery stabilization at 350 °C, proving the significance of dopant on the gas-sensing performances of graphene/SnO2 composites. Furthermore, the optimal sensor exhibited high ethanol selectivity against C3H6O, NO2, H2S, H2, CH4 and humidity. The mechanisms for the ethanol response enhancement were proposed on the basis of combinative effects of catalytic substitutional p-type Co dopants and active graphene-Co-doped SnO2 M-S junctions with highly accessible surface area of micropores and mesopores in the composites. Therefore, the graphene loaded Co-doped SnO2 sensor is highly potential for responsive and selective detection of ethanol vapor at ppm levels and may be practically useful for drunken driving applications.

  19. Crystal structure, energy transfer and tunable luminescence properties of Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphor

    NASA Astrophysics Data System (ADS)

    Ding, Chong; Tang, Wanjun

    2018-02-01

    Single-phased Ca8ZnCe(PO4)7:Eu2+,Mn2+ phosphors with whitlockite-type structure have been prepared via the combustion-assisted synthesis technique. The XRD pattern show that the as-obtained phosphors crystallize in a trigonal phase with space group of R-3c (161). Ca8ZnCe(PO4)7 host is full of sensitizers (Ce3+) and the Ce3+ emission at different lattice sites has been discussed. The efficient energy transfers from Ce3+ ions to Eu2+/Mn2+ ions and from Eu2+ to Mn2+ have been validated. Under UV excitation, the emitting color of Ca8ZnCe(PO4)7:Eu2+/Mn2+ samples can be modulated from violet blue to green and from violet blue to red-orange by the energy transfers of Ce3+→Eu2+ and Ce3+→Mn2+, respectively. Additionally, white emission has been obtained through adjusting the relative concentrations of Eu2+ and Mn2+ ions in the Ca8ZnCe(PO4)7 host under UV excitation. These results indicate that as-prepared Ca8ZnCe(PO4)7:Eu2+,Mn2+ may be a potential candidate as color-tunable white light-emitting phosphors.

  20. The selective catalytic reduction of NO with NH3 over a novel Ce-Sn-Ti mixed oxides catalyst: Promotional effect of SnO2

    NASA Astrophysics Data System (ADS)

    Yu, Ming'e.; Li, Caiting; Zeng, Guangming; Zhou, Yang; Zhang, Xunan; Xie, Yin'e.

    2015-07-01

    A series of novel catalysts (CexSny) for the selective catalytic reduction of NO by NH3 were prepared by the inverse co-precipitation method. The aim of this novel design was to improve the NO removal efficiency of CeTi by the introduction of SnO2. It was found that the Ce-Sn-Ti catalyst was much more active than Ce-Ti and the best Ce:Sn molar ratio was 2:1. Ce2Sn1 possessed a satisfied NO removal efficiency at low temperature (160-280 °C), while over 90% NO removal efficiency maintained in the temperature range of 280-400 °C at the gas hourly space velocity (GHSV) of 50,000 h-1. Besides, Ce2Sn1 kept a stable NO removal efficiency within a wide range of GHSV and a long period of reacting time. Meanwhile, Ce2Sn1 exhibited remarkable resistance to both respectively and simultaneously H2O and SO2 poisoning due to the introduction of SnO2. The promotional effect of SnO2 was studied by N2 adsorption-desorption, X-ray diffraction (XRD), Raman spectra, X-ray photoelectron spectroscopy (XPS) and H2 temperature programmed reduction (H2-TPR) for detail information. The characterization results revealed that the excellent catalytic performance of Ce2Sn1 was associated with the higher specific surface area, larger pore volume and poorer crystallization. Besides, the introduction of SnO2 could result in not only greater conversion of Ce4+ to Ce3+ but also the increase amount of chemisorbed oxygen, which are beneficial to improve the SCR activity. More importantly, a novel peak appearing at lower temperatures through the new redox equilibrium of 2Ce4+ + Sn2+ ↔ 2Ce3+ + Sn4+ and higher total H2 consumption can be obtained by the addition of SnO2. Finally, the possible reaction mechanism of the selective catalytic reduction over Ce2Sn1 was also proposed.

  1. Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties.

    PubMed

    Xi, Guangcheng; Ye, Jinhua

    2010-03-01

    A novel template- and surfactant-free low temperature solution-phase method has been successfully developed for the controlled synthesis of ultrathin SnO(2) single-crystalline nanorods for the first time. The ultrathin SnO(2) single-crystalline nanorods are 2.0 +/- 0.5 nm in diameter, which is smaller than its exciton Bohr radius. The ultrathin SnO(2) nanorods show a high specific area (191.5 m(2) g(-1)). Such a thin SnO(2) single-crystalline nanorod is new in the family of SnO(2) nanostrucures and presents a strong quantum confinement effect. Its formation depends on the reaction temperature as well as on the concentration of the urea solution. A nonclassical crystallization process, Ostwald ripening process followed by an oriented attachment mechanism, is proposed based on the detailed observations from a time-dependent crystal evolution process. Importantly, such structured SnO(2) has shown a strong structure-induced enhancement of gas-sensing properties and has exhibited greatly enhanced gas-sensing property for the detection of ethanol than that of other structured SnO(2), such as the powders of nanobelts and microrods. Moreover, these ultrathin SnO(2) nanorods exhibit excellent ability to remove organic pollutant in wastewater by enormous surface adsorption. These properties are mainly attributed to its higher surface-to-volume ratio and ultrathin diameter. This work provides a novel low temperature, green, and inexpensive pathway to the synthesis of ultrathin nanorods, offering a new material form for sensors, solar cells, catalysts, water treatments, and other applications.

  2. Sono- and photocatalytic activities of SnO2 nanoparticles for degradation of cationic and anionic dyes

    NASA Astrophysics Data System (ADS)

    Paramarta, Valentinus; Taufik, Ardiansyah; Munisa, Lusitra; Saleh, Rosari

    2017-01-01

    The current research work focuses on the catalytic activity of SnO2 nanoparticles (NPs) against degradation of both cationic dye (methylene blue) and anionic dye (Congo-red). SnO2 NPs were synthesized under the sol-gel method and were characterized by performing X-ray diffraction, Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM) Brunauer-Emmet-Teller (BET) surface area analysis and UV-Vis spectroscopy. The results demonstrate that SnO2 NPs has well crystalline structure with the crystallite size of 44 nm. The degradation of dyes was studied under ambient temperature using ultrasonicator and UV light, respectively. The sono- and photocatalytic activities of SnO2 NPs on dyes were analyzed by measuring the change in absorbance of dyes under UV-spectrophotometer. The degradation of the organic dyes has been calculated by monitoring the degradation in the concentration of the dyes before and after irradiation of ultrasonic and light, respectively. The influence of other parameters such as catalyst dosage, pH and scavenger have also been investigated. The catalytic activity is enhanced in the presence of ultrasonic irradiation. The degradation of both dyes follows pseudo-first order kinetics. The reusability tests have also been done to ensure the stability of the used catalysts. A reasonable mechanism of sono- and photocatalysis with SnO2 NPs has been proposed by correlating the active radical species involved with the physical properties of the as-synthesized samples.

  3. Photoelectrochemical enhancement of ZnO/BiVO4/ZnFe2O4/rare earth oxide hetero-nanostructures

    NASA Astrophysics Data System (ADS)

    She, Xuefeng; Zhang, Zhuo; Baek, Minki; Yong, Kijung

    2018-01-01

    Over the decades, researchers have made great efforts to turn the world into a cleaner place through efficient recycling of industrial waste and developing of green energy. Here we demonstrate a prototype heterostructure photoelectrochemical (PEC) cell fabricated using recycled industrial waste. ZnFe2O4 (ZFO) nanorod (NR) clusters were synthesized on the BiVO4@ZnO hetero-nanostructures using recycled rare earth oxide (REO) slags as Fe source. The NR-based PEC cell exhibited a significantly enhanced photon to hydrogen conversion efficiency over the entire UV and visible spectrum. Further study demonstrates that the photo-carrier separation and migration processes can be facilitated by the cascade band alignment of the heterostructure and the clustered nanostructure network. In addition, the life-time of the photo-carriers can be enhanced by the REO passivation layer, leading to a further increased PEC performance. Our results present a novel approach for high efficiency PEC cells, and offer great promises to the efficient recycling of industrial waste for clean renewable energy applications.

  4. Understanding the SNO+ Detector

    DOE PAGES

    Kamdin, K.

    2015-03-24

    SNO+, a large liquid scintillator experiment, is the successor of the Sudbury Neutrino Observatory (SNO) experiment. The scintillator volume will be loaded with large quantities of 130Te, an isotope that undergoes double beta decay, in order to search for neutrinoless double beta decay. In addition to this search, SNO+ has a broad physics program due to its sensitivity to solar and supernova neutrinos, as well as reactor and geo anti-neutrinos. SNO+ can also place competitive limits on certain modes of invisible nucleon decay during its first phase. The detector is currently undergoing commissioning in preparation for its first phase, inmore » which the detector is filled with ultra pure water. This will be followed by a pure scintillator phase, and then a Tellurium-loaded scintillator phase to search for neutrinoless double beta decay. Here we present the work done to model detector aging, which was first observed during SNO. The aging was found to reduce the optical response of the detector. We also describe early results from electronics calibration of SNO+.« less

  5. Template-free fabrication of graphene-wrapped mesoporous ZnMn2O4 nanorings as anode materials for lithium-ion batteries.

    PubMed

    Zhou, Weiwei; Wang, Dong; Zhao, Limin; Ding, Chunyan; Jia, Xingtao; Du, Yu; Wen, Guangwu; Wang, Huatao

    2017-06-16

    We rationally designed a facile two-step approach to synthesize ZnMn 2 O 4 @G composite anode material for lithium-ion batteries (LIBs), involving a template-free fabrication of ZnMn 2 O 4 nanorings and subsequent coating of graphene sheets. Notably, it is the first time that ring-like ZnMn 2 O 4 nanostructure is reported. Moreover, our system has been demonstrated to be quite powerful in producing ZnMn 2 O 4 nanorings regardless of the types of Zn and Mn-containing metal salts reactants. The well-known inside-out Ostwald ripening process is tentatively proposed to clarify the formation mechanism of the hollow nanorings. When evaluated as anode material for LIBs, the resulting ZnMn 2 O 4 @G hybrid displays significantly improved lithium-storage performance with high specific capacity, good rate capability, and excellent cyclability. After 500 cycles, the ZnMn 2 O 4 @G hybrid can still deliver a reversible capacity of 958 mAh g -1 at a current density of 200 mA g -1 , much higher than the theoretical capacity of 784 mAh g -1 for pure ZnMn 2 O 4 . The outstanding electrochemical performance should be reasonably ascribed to the synergistic interaction between hollow and porous ZnMn 2 O 4 nanorings and the three-dimensional interconnected graphene sheets.

  6. First principles studies of structure stability and lithium intercalation of ZnCo2 O4

    NASA Astrophysics Data System (ADS)

    Zhang, Yanning; Liu, Weiwei; Beijing Computational Science Research Center Team

    Among the metal oxides, which are the most widely investigated alternative anodes for use in lithium ion batteries (LIBs), binary and ternary transition metal oxides have received special attention due to their high capacity values. ZnCo2O4 is a promising candidate as anode for LIB, and one can expect a total capacity corresponding to 7.0 - 8.33 mol of recyclable Li per mole of ZnCo2O4. Here we studied the structural stability, electronic properties, lithium intercalation and diffusion barrier of ZnCo2O4 through density functional calculations. The calculated structural and energetic parameters are comparable with experiments. Our theoretical studies provide insights in understanding the mechanism of lithium ion displacement reactions in this ternary metal oxide.

  7. First principles calculations of stability and lithium intercalation potentials of ZnCo2O4

    NASA Astrophysics Data System (ADS)

    Yu, L. C.; Wu, J.; Liu, H.; Zhang, Y. N.

    2015-03-01

    Among the metal oxides, which are the most widely investigated alternative anodes for use in lithium ion batteries (LIBs), binary and ternary tin oxides have received special attention due to their high capacity values. ZnCo2O4 is a promising candidate as the anode material for LIB, and one can expect a total capacity corresponding to 7.0 - 8.33 mol of recyclable Li per mole of ZnCo2O4. Here we studied the structural stability, electronic properties, diffusion barrier and lithium intercalation potentials of ZnCo2O4 through density functional calculations. The calculated structural and energetic parameters are comparable with experiments. Our DFT studies provide insights in understanding the mechanism of lithium ion displacement reactions in this ternary metal oxide.

  8. Aerosol assisted chemical vapour deposition of gas sensitive SnO2 and Au-functionalised SnO2 nanorods via a non-catalysed vapour solid (VS) mechanism

    PubMed Central

    Vallejos, Stella; Selina, Soultana; Annanouch, Fatima Ezahra; Gràcia, Isabel; Llobet, Eduard; Blackman, Chris

    2016-01-01

    Tin oxide nanorods (NRs) are vapour synthesised at relatively lower temperatures than previously reported and without the need for substrate pre-treatment, via a vapour-solid mechanism enabled using an aerosol-assisted chemical vapour deposition method. Results demonstrate that the growth of SnO2 NRs is promoted by a compression of the nucleation rate parallel to the substrate and a decrease of the energy barrier for growth perpendicular to the substrate, which are controlled via the deposition conditions. This method provides both single-step formation of the SnO2 NRs and their integration with silicon micromachined platforms, but also allows for in-situ functionalization of the NRs with gold nanoparticles via co-deposition with a gold precursor. The functional properties are demonstrated for gas sensing, with microsensors using functionalised NRs demonstrating enhanced sensing properties towards H2 compared to those based on non-functionalised NRs. PMID:27334232

  9. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Chang-Yong, E-mail: cynam@bnl.gov; Stein, Aaron; Kisslinger, Kim

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ∼10{sup 19 }cm{sup −3} carrier density, and ∼0.1 cm{sup 2} V{sup −1} s{sup −1} electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate themore » potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  10. Characterization of Cu2ZnSnS4 thin films prepared by photo-chemical deposition

    NASA Astrophysics Data System (ADS)

    Moriya, Katsuhiko; Watabe, Jyunichi; Tanaka, Kunihiko; Uchiki, Hisao

    2006-09-01

    Cu2ZnSnS4 (CZTS) thin films were prepared by post-annealing films of metal sulfides of Cu2S, ZnS and SnS2 precursors deposited on soda-lime glass substrates by photo-chemical deposition (PCD) from aqueous solution containing CuSO4, ZnSO4, SnSO4 and Na2S2O3. In this study, sulfurization was employed to prepare high quality CZTS thin films. Deposited films of metal sulfides were annealed in a furnace in an atmosphere of N2 or N2+H2S(5%) at the temperature of 300°, 400° or 500 °C. The sulfured films showed X-ray diffraction peaks from (112), (220), and (312) planes of CZTS and the peaks became sharp by an increase in the sulfurization temperature. CZTS thin film annealed in atmosphere of N2 was S-poor. After annealing atmosphere was changed from N2 into N2+H2S(5%), the decrease of a composi- tional ratio of sulfur could be suppressed.

  11. Construction of two microporous metal-organic frameworks with flu and pyr topologies based on Zn4(μ3-OH)2(CO2)6 and Zn6(μ6-O)(CO2)6 secondary building units.

    PubMed

    Li, Xing-Jun; Jiang, Fei-Long; Wu, Ming-Yan; Chen, Lian; Qian, Jin-Jie; Zhou, Kang; Yuan, Da-Qiang; Hong, Mao-Chun

    2014-01-21

    By employment of a tripodal phosphoric carboxylate ligand, tris(4-carboxylphenyl)phosphine oxide (H3TPO), two novel porous metal-organic frameworks, namely, [Zn4(μ3-OH)2(TPO)2(H2O)2] (1) and [Zn6(μ6-O)(TPO)2](NO3)4·3H2O (2), have been synthesized by solvothermal methods. Complexes 1 and 2 exhibit three-dimensional microporous frameworks with flu and pyr topologies and possess rare butterfly-shaped Zn4(μ3-OH)2(CO2)6 and octahedral Zn6(μ6-O)(CO2)6 secondary building units, respectively. Large cavities and one-dimensional channels are observed in these two frameworks. Gas-sorption measurements indicate that complex 2 has a good H2 uptake capacity of 171.9 cm(3) g(-1) (1.53 wt %) at 77 K and 1.08 bar, and its ideal adsorbed solution theory calculation predicts highly selective adsorption of CO2 over N2 and CH4. Furthermore, complexes 1 and 2 exhibit excellent blue emission at room temperature.

  12. ZnO/p-GaN heterostructure for solar cells and the effect of ZnGa2O4 interlayer on their performance.

    PubMed

    Nam, Seung Yong; Choi, Yong Seok; Lee, Ju Ho; Park, Seong Ju; Lee, Jeong Yong; Lee, Dong Seon

    2013-01-01

    We report the usage of ZnO material as an alternative for n-GaN for realizing III-nitride based solar cell. The fabricated solar cell shows large turn-on voltage of around 8 volts and a rapid decrease of photocurrent at low bias voltage under darkness and 1-sun illumination conditions, respectively. This phenomenon can be attributed to the formation of high-resistive ultra-thin layers at the ZnO/ p-GaN junction interface during high temperature deposition. Transmission electron microscopy (TEM) studies carried out on the grown samples reveals that the ultra-thin layer consists of ZnGa2O4. It is found that the presence of insulating ZnGa2O4 film is detrimental in the performance of proposed heterostructure for solar cells.

  13. The effect of noble metal additives on the optimum operating temperature of SnO2 gas sensors

    NASA Astrophysics Data System (ADS)

    Mohammad-Yousefi, S.; Rahbarpour, S.; Ghafoorifard, H.

    2017-12-01

    The effect of Pd and Au additives on gas sensing properties of SnO2 was investigated. SnO2 pallets were fabricated and sintered at 900 °C for 90 minutes. Several nanometer layers of Pd and Au were deposited on separate SnO2 pallets and were intentionally dispersed into the SnO2 pallets by long heat treatment (400 °C for 1 Day). All metal loaded samples showed significant enhancement in response level and optimum operating temperature compare to pure SnO2 gas sensors. The amount of enhancement was strongly dependent on the material and the thickness of deposited metal layer. Studying butanol response showed that increasing the thickness of metal causes the response level to increase. Further thickness increase caused contrary effect and decreased the performance of sensors. Best results were achieved at 10 nm-thick Au and 7 nm-thick Pd. Generally, Pd-SnO2 samples demonstrated better performance than Au-SnO2 ones, however, Au-SnO2 samples were proved to be good candidate to sense reducing gases with lower hydrogen atoms in their formula. Given experimental results were also good evidence of chemical activity of gold and simply confirms the relation between chemical activity and gold particle size. Results were qualitatively described by gas diffusion theory and surface reactions take place on metal particles.The first section in your paper

  14. Epitaxy of Zn{sub 2}TiO{sub 4} (1 1 1) thin films on GaN (0 0 1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsiao, Chu-Yun; Wu, Jhih-Cheng; Shih, Chuan-Feng, E-mail: cfshih@mail.ncku.edu.tw

    2013-03-15

    Highlights: ► High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by sputtering. ► Oxygen atmosphere and post heat-treatment annealing effectively enhanced epitaxy. ► The epitaxial Zn{sub 2}TiO{sub 4} modifies the dielectric properties of ceramic oxide. - Abstract: High-permittivity spinel Zn{sub 2}TiO{sub 4} thin films were grown on GaN (0 0 1) by rf-sputtering. Grazing-angle, powder, and pole-figure X-ray diffractometries (XRD) were performed to identify the crystallinity and the preferred orientation of the Zn{sub 2}TiO{sub 4} films. Lattice image at the Zn{sub 2}TiO{sub 4} (1 1 1)/GaN (0 0 1) interface was obtained by high-resolutionmore » transmission-electron microscopy (HR-TEM). An oxygen atmosphere in sputtering and post heat-treatment using rapid thermal annealing effectively enhanced the epitaxy. The epitaxial relationship was determined from the XRD and HR-TEM results: (111){sub Zn{sub 2TiO{sub 4}}}||(001){sub GaN}, (202{sup ¯}){sub Zn{sub 2TiO{sub 4}}}||(110){sub GaN},and[21{sup ¯}1{sup ¯}]{sub Zn{sub 2TiO{sub 4}}}||[01{sup ¯}10]{sub GaN}. Finally, the relative permittivity, interfacial trap density and the flat-band voltage of the Zn{sub 2}TiO{sub 4} based capacitor were ∼18.9, 8.38 × 10{sup 11} eV{sup −1} cm{sup −2}, and 1.1 V, respectively, indicating the potential applications of the Zn{sub 2}TiO{sub 4} thin film to the GaN-based metal-oxide-semiconductor capacitor.« less

  15. Influence of particle size and water coverage on the thermodynamic properties of water confined on the surface of SnO2 cassiterite nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2011-01-01

    Inelastic neutron scattering (INS) data for SnO2 nanoparticles of three different sizes and varying hydration levels are presented. Data were recorded on five nanoparticle samples that had the following compositions: 2 nm SnO2*0.82H2O, 6 nm SnO2*0.055H2O, 6 nm SnO2*0.095H2O, 20 nm SnO2*0.072H2O, and 20 nm SnO2*0.092H2O. The isochoric heat capacity and vibrational entropy values at 298 K for the water confined on the surface of these nanoparticles were calculated from the vibrational density of states that were extracted from the INS data. This study has shown that the hydration level of the SnO2 nanoparticles influences the thermodynamic properties of themore » water layers and, most importantly, that there appears to be a critical size limit for SnO2 between 2 and 6 nm below which the particle size also affects these properties and above which it does not. These results have been compared with those for isostructural rutile-TiO2 nanoparticles [TiO2*0.22H2O and TiO2*0.37H2O], which indicated that water on the surface of TiO2 nanoparticles is more tightly bound and experiences a greater degree of restricted motion with respect to water on the surface of SnO2 nanoparticles. This is believed to be a consequence of the difference in chemical composition, and hence surface properties, of these metal oxide nanoparticles.« less

  16. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  17. In vitro corrosion behavior and in vivo biodegradation of biomedical β-Ca3(PO4)2/Mg-Zn composites.

    PubMed

    Yu, Kun; Chen, Liangjian; Zhao, Jun; Li, Shaojun; Dai, Yilong; Huang, Qiao; Yu, Zhiming

    2012-07-01

    In this study 5, 10 and 15% β-Ca(3)(PO(4))(2)/Mg-Zn composites were prepared through powder metallurgy methods, and their corrosion behavior and mechanical properties were studied in simulated body fluid (SBF) at 37°C. The 10% β-Ca(3)(PO(4))(2)/Mg-Zn composite was selected for cytocompatibility assessment and in vivo biodegradation testing. The results identified the α-Mg, MgZn and β-Ca(3)(PO(4))(2) phases in these sintered composites. The density and elastic modulus of the β-Ca(3)(PO(4))(2)/Mg-6% Zn composite match those of natural bone, and the strength is approximately double that of natural bone. The 10% β-Ca(3)(PO(4))(2)/Mg-6% Zn composites exhibit good corrosion resistance, as determined by a 30 day immersion test and electrochemical measurements in SBF at 37°C. The 10% β-Ca(3)(PO(4))(2)/Mg-6% Zn composite is safe for cellular applications, with a cytotoxicity grade of ∼0-1 against L929 cells in in vitro testing. The β-Ca(3)(PO(4))(2)/Mg-6% Zn composite also exhibits good biocompatibility with the tissue and the important visceral organs the heart, kidney and liver of experimental rabbits. The composite has a suitable degradation rate and improves the concrescence of a pre-broken bone. The corrosion products, such as Mg(OH)(2) and Ca(5)(PO(4))(6)(OH)(2), can improve the biocompatibility of the β-Ca(3)(PO(4))(2)/Mg-Zn composite. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Luminescence enhancement of (Sr1-x Mx )2 SiO4 :Eu2+ phosphors with M (Ca2+ /Zn2+ ) partial substitution for white light-emitting diodes.

    PubMed

    Wang, Yulong; Zhang, Wentao; Gao, Yang; Long, Jianping; Li, Junfeng

    2017-02-01

    Eu 2 + -doped Sr 2 SiO 4 phosphor with Ca 2 + /Zn 2 + substitution, (Sr 1-x M x ) 2 SiO 4 :Eu 2 + (M = Ca, Zn), was prepared using a high-temperature solid-state reaction method. The structure and luminescence properties of Ca 2 + /Zn 2 + partially substituted Sr 2 SiO 4 :Eu 2 + phosphors were investigated in detail. With Ca 2 + or Zn 2 + added to the silicate host, the crystal phase could be transformed between the α-form and the β-form of the Sr 2 SiO 4 structure. Under UV excitation at 367 nm, all samples exhibit a broad band emission from 420 to 680 nm due to the 4f 6 5d 1  → 4f 7 transition of Eu 2 + ions. The broad emission band consists of two peaks at 482 and 547 nm, which correspond to Eu 2 + ions occupying the ten-fold oxygen-coordinated Sr.(I) site and the nine-fold oxygen-coordinated Sr.(II) site, respectively. The luminescence properties, including the intensity and lifetime of Sr 2 SiO 4 :Eu 2 + phosphors, improved remarkably on Ca 2 + /Zn 2 + addition, and promote its application in white light-emitting diodes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Field-Driven Quantum Criticality in the Spinel Magnet ZnCr2 Se4

    NASA Astrophysics Data System (ADS)

    Gu, C. C.; Zhao, Z. Y.; Chen, X. L.; Lee, M.; Choi, E. S.; Han, Y. Y.; Ling, L. S.; Pi, L.; Zhang, Y. H.; Chen, G.; Yang, Z. R.; Zhou, H. D.; Sun, X. F.

    2018-04-01

    We report detailed dc and ac magnetic susceptibilities, specific heat, and thermal conductivity measurements on the frustrated magnet ZnCr2 Se4 . At low temperatures, with an increasing magnetic field, this spinel material goes through a series of spin state transitions from the helix spin state to the spiral spin state and then to the fully polarized state. Our results indicate a direct quantum phase transition from the spiral spin state to the fully polarized state. As the system approaches the quantum criticality, we find strong quantum fluctuations of the spins with behaviors such as an unconventional T2 -dependent specific heat and temperature-independent mean free path for the thermal transport. We complete the full phase diagram of ZnCr2 Se4 under the external magnetic field and propose the possibility of frustrated quantum criticality with extended densities of critical modes to account for the unusual low-energy excitations in the vicinity of the criticality. Our results reveal that ZnCr2 Se4 is a rare example of a 3D magnet exhibiting a field-driven quantum criticality with unconventional properties.

  20. CoFe2O4-TiO2 and CoFe2O4-ZnO thin film nanostructures elaborated from colloidal chemistry and atomic layer deposition.

    PubMed

    Clavel, Guylhaine; Marichy, Catherine; Willinger, Marc-Georg; Ravaine, Serge; Zitoun, David; Pinna, Nicola

    2010-12-07

    CoFe(2)O(4)-TiO(2) and CoFe(2)O(4)-ZnO nanoparticles/film composites were prepared from directed assembly of colloidal CoFe(2)O(4) in a Langmuir-Blodgett monolayer and atomic layer deposition (ALD) of an oxide (TiO(2) or ZnO). The combination of these two methods permits the use of well-defined nanoparticles from colloidal chemistry, their assembly on a large scale, and the control over the interface between a ferrimagnetic material (CoFe(2)O(4)) and a semiconductor (TiO(2) or ZnO). Using this approach, architectures can be assembled with a precise control from the Angstrom scale (ALD) to the micrometer scale (Langmuir-Blodgett film). The resulting heterostructures present well-calibrated thicknesses. Electron microscopy and magnetic measurement studies give evidence that the size of the nanoparticles and their intrinsic magnetic properties are not altered by the various steps involved in the synthesis process. Therefore, the approach is suitable to obtain a layered composite with a quasi-monodisperse layer of ferrimagnetic nanoparticles embedded in an ultrathin film of semiconducting material.

  1. Au nanoparticles/hollow molybdenum disulfide microcubes based biosensor for microRNA-21 detection coupled with duplex-specific nuclease and enzyme signal amplification.

    PubMed

    Shuai, Hong-Lei; Huang, Ke-Jing; Chen, Ying-Xu; Fang, Lin-Xia; Jia, Meng-Pei

    2017-03-15

    An ultrasensitive electrochemical biosensor for detecting microRNAs is fabricated based on hollow molybdenum disulfide (MoS 2 ) microcubes. Duplex-specific nuclease, enzyme and electrochemical-chemical-chemical redox cycling are used for signal amplification. Hollow MoS 2 microcubes constructed by ultrathin nanosheets are synthesized by a facile template-assisted strategy and used as supporting substrate. For biosensor assembling, biotinylated ssDNA capture probes are first immobilized on Au nanoparticles (AuNPs)/MoS 2 modified electrode in order to combine with streptavidin-conjugated alkaline phosphatase (SA-ALP). When capture probes hybridize with miRNAs, duplex-specific nuclease cleaves the formative duplexes. At the moment, the biotin group strips from the electrode surface and SA-ALP is incapacitated to attach onto electrode. Then, ascorbic acids induce the electrochemical-chemical-chemical redox cycling to produce electrochemical response in the presence of ferrocene methanol and tris (2-carboxyethyl) phosphine. Under optimum conditions, the proposed biosensor shows a good linear relationship between the current variation and logarithm of the microRNAs concentration ranging from 0.1fM to 0.1pM with a detection limit of 0.086fM (S/N=3). Furthermore, the biosensor is successfully applied to detect target miRNA-21 in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Resonant photoemission spectroscopic studies of SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Sunil; Chauhan, R. S.; Panchal, Gyanendra; Singh, C. P.; Dar, Tanveer A.; Phase, D. M.; Choudhary, R. J.

    2017-09-01

    We report the structural and electronic properties of single phase, polycrystalline rutile tetragonal SnO2 thin film grown on Si (100) substrate by pulsed laser deposition technique. X-ray photoelectron and resonant photoemission spectroscopic (RPES) studies divulge that Sn is present in 4+ (˜91%) valence state with a very small involvement of 2+ (˜9%) valence state at the surface. Valence band spectrum of the film shows prominent contribution due to the Sn4+ valence state. RPES measurements were performed in the Sn 4d→5p photo absorption region. This study shows that O-2p, Sn-5s, and Sn-5p partial density of states are the main contributions to the valence band of this material. The resonance behavior of these three contributions has been analyzed. Constant initial state versus photon energy plots suggest that the low binding energy feature at ˜2.8 eV results from the hybridization of the O-2p and mixed valence states of Sn, while remaining features at higher binding energies are due to the hybridization between O-2p (bonding) orbitals and Sn4+ valence state.

  3. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Reddy, M. Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A. M.

    2015-12-01

    With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g-1, 1255 mA h g-1 and 1360 mA h g-1 that decrease to 750 mA h g-1, 643 mA h g-1 and 560 mA h g-1 depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors

  4. A simulation study to improve the efficiency of ZnO1-xSx/Cu2ZnSn (Sy, Se1-y)4 solar cells by composition-ratio control

    NASA Astrophysics Data System (ADS)

    Sharbati, S.; Norouzzadeh, E.; Mohammadi, S.

    2018-04-01

    This work investigates the impact of the conduction-band offset (CBO) and valence band offset (VBO) on the performance of Zn (O, S)/Cu2ZnSn (S, Se)4 solar cells by numerical simulations. The band gap alignment at the buffer-CZTS layer interface are controlled by the sulfur-to-oxygen and sulfur-to-selenium ratios. The simulation results show that the high sulfur content in the Zn (O, S) layer makes a big offset in the conduction band and high oxygen content in the in the Zn (O, S) layer eventuates in large valence band offset, that descends Cu2ZnSn (S, Se)4 solar cell performance. We established an initial device model based on an experimental device with world record efficiencies of 12.6%. This study shows that most suitable heterojunction for ZnO1-xSx/Cu2ZnSn (Sy, Se1-y)4 solar cells is when sulfur content ranging 19%-50% in the Zn (O, S) and 30%-50% in the CZTSSe. The efficiency of Cu2ZnSn (S, Se)4 solar cells will be achieved to 14.3%.

  5. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.

    ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less

  6. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    DOE PAGES

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.; ...

    2016-06-14

    ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less

  7. Synthesis of SnO2versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wang, Hongkang; Lu, Xuan; Li, Longchao; Li, Beibei; Cao, Daxian; Wu, Qizhen; Li, Zhihui; Yang, Guang; Guo, Baolin; Niu, Chunming

    2016-03-01

    The design of tin-based anode materials (SnO2 or Sn) has become a major concern for lithium ion batteries (LIBs) owing to their different inherent characteristics. Herein, particulate SnO2 or Sn crystals coupled with porous N-doped carbon nanofibers (denoted as SnO2/PCNFs and Sn/PCNFs, respectively) are fabricated via the electrospinning method. The electrochemical behaviors of both SnO2/PCNFs and Sn/PCNFs are systematically investigated as anodes for LIBs. When coupled with porous carbon nanofibers, both SnO2 nanoparticles and Sn micro/nanoparticles display superior cycling and rate performances. SnO2/PCNFs and Sn/PCNFs deliver discharge capacities of 998 and 710 mA h g-1 after 140 cycles (at 100, 200, 500 and 1000 mA g-1 each for 10 cycles and then 100 cycles at 100 mA g-1), respectively. However, the Sn/PCNF electrodes show better cycling stability at higher current densities, delivering higher discharge capacities of 700 and 550 mA h g-1 than that of SnO2/PCNFs (685 and 424 mA h g-1) after 160 cycles at 200 and 500 mA g-1, respectively. The different superior electrochemical performance is attributed to the introduction of porous N-doped carbon nanofibers and their self-constructed networks, which, on the one hand, greatly decrease the charge-transfer resistance due to the high conductivity of N-doped carbon fibers; on the other hand, the porous carbon nanofibers with numerous voids and flexible one-dimensional (1D) structures efficiently alleviate the volume changes of SnO2 and Sn during the Li-Sn alloying-dealloying processes. Moreover, the discussion of the electrochemical behaviors of SnO2vs. Sn would provide new insights into the design of tin-based anode materials for practical applications, and the current strategy demonstrates great potential in the rational design of metallic tin-based anode materials.The design of tin-based anode materials (SnO2 or Sn) has become a major concern for lithium ion batteries (LIBs) owing to their different inherent

  8. Impurity optical absorption spectra of ZnGa 2Se 4:Ni 2+ single crystals

    NASA Astrophysics Data System (ADS)

    Kim, Wha-Tek; Jin, Moon-Seog; Cheon, Seung-Ho; Kim, Yong-Geun; Park, Byong-Seo

    1990-04-01

    The optical absorption of single crystals of ZnGa 2Se 4:Ni 2+ grown by the chemical transport reaction method was investigated in the temperature region 20-300 K. In the single crystals the impurity optical absorption peaks due to the transitions 3T1( 3F) → 3T2( 3F), 3T1( 3F) → 3A2( 3F) and 3T1( 3F) → 3T1( 3P) of the Ni 2+ ions sited in the host lattice of the ZnGa 2Se 4 single crystal with Td symmetry appeared at 4444, 7874 and 11 600 cm -1, respectively. The crystal-field parameter and the Racah parameter were given by Dq = 340 cm -1 and B = 615 cm -1, respectively. The peak due to the transition 3T1( 3F) → 3T1( 3P) split into four levels by first order spin-orbit-coupling effects of Ni 2+ ions in the lower temperature below 150 K. The spin-orbit-coupling parameter was found to be λ = -400 cm -1.

  9. Detection mechanism and characteristics of ZnO-based N2O sensors operating with photons

    NASA Astrophysics Data System (ADS)

    Jeong, T. S.; Yu, J. H.; Mo, H. S.; Kim, T. S.; Youn, C. J.; Hong, K. J.

    2013-11-01

    N2O sensors made with ZnO-based ZnCdO films were grown on Pyrex substrates by using the RF co-sputtering method. The structure of the N2O sensor was electrode/sensor/glass/illuminant. The mechanism of the photo-assisted oxidation and reduction process on the surface of the N2O sensors was investigated using light from a UV lamp and violet light emitting diode (LED). For photon exposure wavelengths of 365 and 405 nm, the sensitivity of the ZnO-based ZnCdO sensors was measured. From these measurements, the values of the sensitivity of the sensors with x = 0, 0.01, and 0.05 were found to be S = 1.44, 1.39, and 1.33 under LED light with a wavelength of 405 nm, respectively. These sensitivities were compared to those of SnO2 and WO3 materials measured at operating temperatures of 300-600 °C. Also, under exposure with UV light, the response times were observed to be 130 to 270 sec. These response times were slightly slower than that for the traditional method of thermal heating. However, they indicate that the described photon exposure method for N2O detection can replace the conventional heating mode. Consequently, we demonstrated that portable N2O sensors for room-temperature operation could be fabricated without thermal heating.

  10. Gas-sensing behaviour of ZnO/diamond nanostructures.

    PubMed

    Davydova, Marina; Laposa, Alexandr; Smarhak, Jiri; Kromka, Alexander; Neykova, Neda; Nahlik, Josef; Kroutil, Jiri; Drahokoupil, Jan; Voves, Jan

    2018-01-01

    Microstructured single- and double-layered sensor devices based on p-type hydrogen-terminated nanocrystalline diamond (NCD) films and/or n-type ZnO nanorods (NRs) have been obtained via a facile microwave-plasma-enhanced chemical vapour deposition process or a hydrothermal growth procedure. The morphology and crystal structure of the synthesized materials was analysed with scanning electron microscopy, X-ray diffraction measurements and Raman spectroscopy. The gas sensing properties of the sensors based on i) NCD films, ii) ZnO nanorods, and iii) hybrid ZnO NRs/NCD structures were evaluated with respect to oxidizing (i.e., NO 2 , CO 2 ) and reducing (i.e., NH 3 ) gases at 150 °C. The hybrid ZnO NRs/NCD sensor showed a remarkably enhanced NO 2 response compared to the ZnO NRs sensor. Further, inspired by this special hybrid structure, the simulation of interaction between the gas molecules (NO 2 and CO 2 ) and hybrid ZnO NRs/NCD sensor was studied using DFT calculations.

  11. Electrical and impedance spectroscopy analysis of sol-gel derived spin coated Cu2ZnSnS4 solar cell

    NASA Astrophysics Data System (ADS)

    Gupta, Goutam Kumar; Garg, Ashish; Dixit, Ambesh

    2018-01-01

    We carried out electrical and impedance studies on solution derived Al:ZnO/ZnO/CdS/Cu2ZnSnS4/Mo/Glass multilayered solar cell structures to understand their impact on photovoltaic performance. The Cu2ZnSnS4 layer is synthesized on a molybdenum (Mo) coated soda lime glass substrate as an absorber and characterized intensively to optimize the absorber physical properties. The optimized Cu2ZnSnS4 is p-type with 5.8 × 1017 cm-3 hole carrier concentration. The depletion width of the junction is around 20.5 nm and the diffusion capacitance is ˜35.5 nF for these devices. We observed relatively large minority carrier life time ˜23 μs for these structures using open voltage decay analysis. The measured Cu2ZnSnS4/MoS2 and Cu2ZnSnS4/CdS interface resistances are 7.6 kΩ and 12.5 kΩ, respectively. The spatial inhomogeneities are considered and the corresponding resistance is ˜11.4 kΩ. The impedance measurements suggest that in conjunction with series resistance ˜350 Ω, the interface and spatial inhomogeneity resistances also give a significant contribution to the photovoltaic performance.

  12. 1D Cu(OH)2 nanorod/2D SnO2 nanosheets core/shell structured array: Covering with graphene layer leads to excellent performances on lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Xia, Huicong; Zhang, Jianan; Chen, Zhimin; Xu, Qun

    2018-05-01

    A facile in-situ growth strategy is employ to achieving the two-dimensional SnO2 nanosheets/one-dimensional Cu(OH)2 nanorods nanoarchitecture on Cu foil current collector (SnO2/Cu(OH)2/Cu foil), follow by modification of a uniform layer of graphene (G). Confine with the graphene layer and unique one-dimensional/two-dimensional the nanoarchitecture, the remarkably enhance electrical conductivity and structural stability of G/SnO2/Cu(OH)2/Cu foil leads to a high reversible capacity of 1080.6 mAh g-1 at a current density of 200 mA g-1, much better than the samples without graphene (512.6 mAh g-1) and Cu(OH)2 nanorod (117.4 mAh g-1). Furthermore, G/SnO2/Cu(OH)2/Cu foil electrode shows high rate capacity (600.8 mAh g-1 at 1 A g-1) and excellent cycling stability (1057.1 mAh g-1 at 200 mA g-1 even after 500 cycles). This work highlights that increasing surface and interface effects with desirable three-dimensional nanoarchitecture can open a new avenue to electrochemical performance improvement in lithium-ion battery for SnO2-base anode.

  13. Metal organic frameworks-derived sensing material of SnO2/NiO composites for detection of triethylamine

    NASA Astrophysics Data System (ADS)

    Bai, Shouli; Liu, Chengyao; Luo, Ruixian; Chen, Aifan

    2018-04-01

    The SnO2/NiO composites were synthesized by hydrothermal followed by calcination using metal-organic framework (MOF) consisting of the ligand of p-benzene-dicarboxylic acid (PTA) and the Sn and Ni center ions as sacrificial templates. The structure and morphology of Sn/Ni-based MOF and SnO2/NiO composites were characterized by XRD, SEM, TEM, FT-IR, TG, XPS and Brunauer-Emmett-Teller analysis. Sensing experiments reveal that the SnO2/NiO composite with the molar ratio of 9:1 not only exhibits the highest response of 14.03 that is 3 times higher than pristine SnO2 to triethylamine at 70 °C, but also shows good selectivity. Such excellent performance is attributed to the MOF-driven strategy and the formation of p-n heterojunctions, because the metal ions can be highly dispersed and separated in the MOFs and can prevent the metal ions aggregation during the MOF decomposition process. The work is a novel route for synthesis of gas sensing material.

  14. Piper Ornatum and Piper Betle as Organic Dyes for TiO2 and SnO2 Dye Sensitized Solar Cells

    NASA Astrophysics Data System (ADS)

    Hayat, Azwar; Putra, A. Erwin E.; Amaliyah, Novriany; Hayase, Shuzi; Pandey, Shyam. S.

    2018-03-01

    Dye sensitized solar cell (DSSC) mimics the principle of natural photosynthesis are now currently investigated due to low manufacturing cost as compared to silicon based solar cells. In this report, we utilized Piper ornatum (PO) and Piper betle (PB) as sensitizer to fabricate low cost DSSCs. We compared the photovoltaic performance of both sensitizers with Titanium dioxide (TiO2) and Tin dioxide (SnO2) semiconductors. The results show that PO and PB dyes have higher Short circuit current (Jsc) when applied in SnO2 compared to standard TiO2 photo-anode film even though the Open circuit voltage (Voc) was hampered on SnO2 device. In conclusion, from the result, higher electron injections can be achieved by choosing appropriate semiconductors with band gap that match with dyes energy level as one of strategy for further low cost solar cell.

  15. NH3 molecule adsorption on spinel-type ZnFe2O4 surface: A DFT and experimental comparison study

    NASA Astrophysics Data System (ADS)

    Zou, Cong-yang; Ji, Wenchao; Shen, Zhemin; Tang, Qingli; Fan, Maohong

    2018-06-01

    Ammonia (NH3) is a caustic environment pollutant which contributes to haze formation and water pollution. Zinc ferrite (ZnFe2O4) exhibits good catalytic activity in NH3 removal. The density functional theory (DFT) was applied to explore the interaction mechanism of NH3 molecule adsorption on spinel-type ZnFe2O4 (1 1 0) surface with GGA-PW91 method in atomic and electronic level. The results indicated that NH3 molecule preferred to adsorb on surface Zn atom with the formation of H3Nsbnd Zn coordinate bond over ZnFe2O4 (1 1 0) surface. The H3Nsbnd Zn state was exothermic process with adsorption energy of -203.125 kJ/mol. About 0.157e were transferred from NH3 molecule to the surface which resulted in strong interaction. Higher activation degree occurred in H3Nsbnd Zn configuration with two Nsbnd H bonds elongated and NH3 structure became more flat on the surface. The PDOS change of NH3 molecule was consistent with the result of adsorption energy. It was concluded that s orbital of NH3 (N) and s, p orbitals of Zn atom overlapped at -0.619 Ha. The p orbital of NH3 (N) has interaction with d orbital of Zn atom suggesting the hybridization between them. Based on NH3 removal experimental and XPS spectra results, NH3sbnd ZnFe2O4 interaction was mainly depended on the coordination between Zn atom and NH3 molecule. The DFT calculations have deepened our understanding on NH3sbnd ZnFe2O4 interaction system.

  16. Enhanced thermoelectric property of oxygen deficient nickel doped SnO2 for high temperature application

    NASA Astrophysics Data System (ADS)

    Paulson, Anju; Sabeer, N. A. Muhammad; Pradyumnan, P. P.

    2018-04-01

    Motivated by the detailed investigation on the thermoelectric performance of oxide materials our work concentrated on the influence of acceptor dopants and defect density in the lattice plane for the enhancement of thermoelectric power. The series of Sn1‑x Nix O2 (0.01 ≤ x ≤ 0.05) compositions were prepared by solid state reaction mechanism and found that 3 atomic percentage Ni doped SnO2 can be considered as a good candidate due to its promising electrical and transport properties. Defect lattices were introduced in the sample and the deviation from oxygen stochiometry was ensured using photoluminescence measurement. High power factor was obtained for the 3 atomic percentage nickel doped SnO2 due to the effective number of charge carrier concentration and the depletion of oxygen rich layers. Defect centered and acceptor doped SnO2 lattice opens a new door for energy harvesting at higher temperatures.

  17. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires.

    PubMed

    Wu, Jyh Ming

    2010-06-11

    A p-type ethanol sensor with a response time of approximately 8.3 s at room temperature was produced by SnO(2):Sb nanowires. The electrical properties of p-type SnO(2) nanowires are stable with a hole concentration of 1.544 x 10(17) cm(-3) and a field-effect mobility of 22 cm(2) V(-2) S(-1). X-ray photoelectron spectroscopy (XPS) and Hall measurement revealed that as-synthesized nanowires exhibit p-type behavior. A comprehensive investigation of the p-type sensing mechanism is reported.

  18. Morphology and structure features of ZnAl{sub 2}O{sub 4} spinel nanoparticles prepared by matrix-isolation-assisted calcination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Xuelian, E-mail: xueliandu@126.com; Li, Liqiang; Zhang, Wenxing

    2015-01-15

    Graphical abstract: The substrate ZnO as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. High purity, well-dispersed, and single-crystal ZnAl{sub 2}O{sub 4} nanoparticles with 3.72 eV band gap were obtained. - Abstract: Well-dispersed ZnAl{sub 2}O{sub 4} spinel nanoparticles with an average crystalline size of 25.7 nm were synthesized successfully and easily by polymer-network and matrix-isolation-assisted calcination. The product microstructure and features were investigated by X-ray diffractometry, thermogravimetric and differential thermal analysis, Fourier transform-infrared spectroscopy, N{sub 2} adsorption–desorption isotherms, and energy dispersive X-ray spectra. The morphology andmore » optical performance of the as-prepared ZnAl{sub 2}O{sub 4} nanoparticles were characterized by scanning electron microscope, transmission electron microscopy, and photoluminescence spectrometer. Experimental results indicate that excess ZnO acted as the isolation medium is effective in preventing the sintering and agglomeration of ZnAl{sub 2}O{sub 4} nanoparticles, and it also prevents their contamination. Then, high purity and well-dispersed ZnAl{sub 2}O{sub 4} nanoparticles with single-crystal structure were obtained.« less

  19. Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

    PubMed Central

    Behera, Arjun; Kandi, Debasmita; Majhi, Sanjit Manohar

    2018-01-01

    ZnFe2O4 was fabricated by a simple solution-combustion method. The structural, optical and electronic properties are investigated by XRD, TEM, FESEM, UV–vis DRS, PL, FTIR and photocurrent measurements. The photocatalytic activity of the prepared material is studied with regard to the degradation of rhodamine B (Rh B) and Congo red under solar irradiation. The kinetic study showed that the material exhibits zeroth and first order reaction kinetics for the degradation of Rh B and Congo red, respectively. The photocatalytic behaviour of ZnFe2O4 was systematically studied as a function of the activation temperature. ZnFe2O4 prepared at 500 °C showed the highest activity in degrading Rh B and Congo red. The highest activity of ZnFe2O4-500 °C correlates well with the lowest PL intensity, highest photocurrent and lowest particle size. PMID:29515956

  20. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy

    PubMed Central

    Su, Qingmei; Wang, Shixin; Yao, Libing; Li, Haojie; Du, Gaohui; Ye, Huiqun; Fang, Yunzhang

    2016-01-01

    A family of mixed transition–metal oxides (MTMOs) has great potential for applications as anodes for lithium ion batteries (LIBs). However, the reaction mechanism of MTMOs anodes during lithiation/delithiation is remain unclear. Here, the lithiation/delithiation processes of ZnFe2O4 nanoparticles are observed dynamically using in situ transmission electron microscopy (TEM). Our results suggest that during the first lithiation process the ZnFe2O4 nanoparticles undergo a conversion process and generate a composite structure of 1–3 nm Fe and Zn nanograins within Li2O matrix. During the delithiation process, volume contraction and the conversion of Zn and Fe take place with the disappearance of Li2O, followed by the complete conversion to Fe2O3 and ZnO not the original phase ZnFe2O4. The following cycles are dominated by the full reversible phase conversion between Zn, Fe and ZnO, Fe2O3. The Fe valence evolution during cycles evidenced by electron energy–loss spectroscopy (EELS) techniques also exhibit the reversible conversion between Fe and Fe2O3 after the first lithiation, agreeing well with the in situ TEM results. Such in situ TEM observations provide valuable phenomenological insights into electrochemical reaction of MTMOs, which may help to optimize the composition of anode materials for further improved electrochemical performance. PMID:27306189