Sample records for nanocrystalline zno particles

  1. Synthesis of nanocrystalline ZnO thin films by electron beam evaporation

    NASA Astrophysics Data System (ADS)

    Kondkar, V.; Rukade, D.; Bhattacharyya, V.

    2018-05-01

    Nanocrystalline ZnO thin films have potential for applications in variety of optoelectronic devices. In the present study, nanocrystalline thin films of ZnO are grown on fused silica substrate using electron beam (e-beam) evaporation technique. Phase identification is carried out using Glancing angle X-ray diffraction (GAXRD) and Raman spectroscopy. Ultraviolet-Visible (UV-Vis) spectroscopic analysis is carried out to calculate energy band gap of the ZnO film. Surface morphology of the film is investigated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). Highly quality nanocrystalline thin films of hexagonal wurtzite ZnO are synthesized using e-beam evaporation technique.

  2. Fabrication of GaN doped ZnO nanocrystallines by laser ablation.

    PubMed

    Gopalakrishnan, N; Shin, B C; Bhuvana, K P; Elanchezhiyan, J; Balasubramanian, T

    2008-08-01

    Here, we present the fabrication of pure and GaN doped ZnO nanocrystallines on Si(111) substrates by KrF excimer laser. The targets for the ablation have been prepared by conventional ceramic method. The fabricated nanocrystallines have been investigated by X-ray diffraction, photoluminescence and atomic force microscopy. The X-ray diffraction analysis shows that the crystalline size of pure ZnO is 36 nm and it is 41 nm while doped with 0.8 mol% of GaN due to best stoichiometry between Zn and O. Photoluminescence studies reveal that intense deep level emissions have been observed for pure ZnO and it has been suppressed for the GaN doped ZnO structures. The images of atomic force microscope show that the rms surface roughness is 27 nm for pure ZnO and the morphology is improved with decrease in rms roughness, 18 nm with fine crystallines while doped with 1 mol% GaN. The improved structural, optical and morphological properties of ZnO nanocrystalline due to GaN dopant have been discussed in detail.

  3. Nanocrystalline ZnO as a Visible Active Photocatalyst for the Degradation of Benzene-1,4-diol

    NASA Astrophysics Data System (ADS)

    Ramachandran, Saranya; Sivasamy, A.

    We have synthesized nanocrystalline ZnO by a simple precipitation method. The prepared ZnO was found to be highly phase pure and nanocrystalline hexagonal wurtzite structure. UV-Visible-DRS spectroscopy showed the material to have bandgap energy of 3.22eV. HR-SEM image revealed the material to be made up of distinct hexagonal particles with a highly porous surface. AFM analysis was employed to confirm the high surface roughness and porosity of the material. The photocatalytic activity of the prepared ZnO was evaluated by the degradation of benzene-1,4-diol (hydroquinone), under visible light irradiation. Preliminary experiments showed the catalyst to be effective at neutral pH with an optimum catalyst dosage of 4g/L. Kinetic studies showed the degradation reaction to follow pseudo-first-order kinetics. In the presence of commonly used industrial electrolytes, the catalyst exhibited a decrease in efficiency. Reusability studies showed the catalytic efficiency of ZnO to diminish marginally after the third cycle of reuse.

  4. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  5. Ultraviolet emission enhancement in ZnO thin films modified by nanocrystalline TiO2

    NASA Astrophysics Data System (ADS)

    Zheng, Gaige; Lu, Xi; Qian, Liming; Xian, Fenglin

    2017-05-01

    In this study, nanocrystalline TiO2 modified ZnO thin films were prepared by electron beam evaporation. The structural, morphological and optical properties of the samples were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-visible spectroscopy, fluorescence spectroscopy, respectively. The composition of the films was examined by energy dispersive X-ray spectroscopy (EDX). The photoluminescent spectrum shows that the pure ZnO thin film exhibits an ultraviolet (UV) emission peak and a strong green emission band. Surface analysis indicates that the ZnO thin film contains many oxygen vacancy defects on the surface. After the ZnO thin film is modified by the nanocrystalline TiO2 layer, the UV emission of ZnO is largely enhanced and the green emission is greatly suppressed, which suggests that the surface defects such as oxygen vacancies are passivated by the TiO2 capping layer. As for the UV emission enhancement of the ZnO thin film, the optimized thickness of the TiO2 capping layer is ∼16 nm. When the thickness is larger than 16 nm, the UV emission of the ZnO thin film will decrease because the TiO2 capping layer absorbs most of the excitation energy. The UV emission enhancement in the nanocrystalline TiO2 modified ZnO thin film can be attributed to surface passivation and flat band effect.

  6. Enhanced luminescence in Eu-doped ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Keigo, E-mail: ksuzuki@murata.com; Murayama, Koji; Tanaka, Nobuhiko

    We found an enhancement of Eu{sup 3+} emissions in Eu-doped ZnO nanocrystalline films fabricated by microemulsion method. The Eu{sup 3+} emission intensities were increased by reducing annealing temperatures from 633 K to 533 K. One possible explanation for this phenomenon is that the size reduction enhances the energy transfer from ZnO nanoparticles to Eu{sup 3+} ions. Also, the shift of the charge-transfer band into the low-energy side of the absorption edge is found to be crucial, which seems to expedite the energy transfer from O atoms to Eu{sup 3+} ions. These findings will be useful for the material design of Eu-doped ZnOmore » phosphors.« less

  7. Structural, Optical, and Photocatalytic Properties of Quasi-One-Dimensional Nanocrystalline ZnO, ZnOC:nC Composites, and C-doped ZnO

    NASA Astrophysics Data System (ADS)

    Shalaeva, E. V.; Gyrdasova, O. I.; Krasilnikov, V. N.; Melkozerova, M. A.; Baklanova, I. V.; Buldakova, L. Yu.

    Various thermolysis rotes of zinc glicolate complexes are considered for the synthesis of quasi-one-dimensional nanostructured aggregates ZnO and Zn-O-C used as photocatalysts. Structural features of quasi-one-dimensional aggregates Zn-O-C and ZnO are investigated in detail. Transmission electron microscopy, Raman spectroscopy, and electron paramagnetic resonance spectroscopy methods demonstrate that the aggregates Zn-O-C have either composite structure (ZnO crystallites in amorphous carbon matrix) or a C-doped ZnO single-phase structure depending on heat treatment conditions, and that all the aggregates exhibit as a rule a tubular morphology, a nanocrystalline structure with a high specific surface area, and a high concentration of singly charged oxygen vacancies. The mechanism of the nanocrystalline structure formation is discussed and the effect of thermolysis condition on the formation of the textured structure of aggregates is investigated. The results of examination of the photocatalytic and optical absorption properties of the synthesized aggregates are presented. The photocatalytic activity for the hydroquinone oxidation reaction under ultraviolet and visible light increases in the series: the reference ZnO powder, quasi-one-dimensional ZnO, quasi-one-dimensional aggregates C-doped ZnO, and this tendency correlates with the reduction of the optical gap width. As a result of our studies, we have arrived at an important conclusion that thermal treatment of ZnO:nC composites allows a C-doped ZnO with high catalytic activity. This increasing photoactivity of C-doped ZnO aggregates is attributed to the optimal specific surface area and electron-energy spectrum restructuring to be produced owing to the presence of singly charged oxygen vacancies and carbon dissolved in the ZnO lattice.

  8. ZnO and MgZnO Nanocrystalline Flexible Films: Optical and Material Properties

    DOE PAGES

    Huso, Jesse; Morrison, John L.; Che, Hui; ...

    2011-01-01

    An emore » merging material for flexible UV applications is Mg x Zn 1 − x O which is capable of tunable bandgap and luminescence in the UV range of ~3.4 eV–7.4 eV depending on the composition x . Studies on the optical and material characteristics of ZnO and Mg 0.3 Zn 0.7 O nanocrystalline flexible films are presented. The analysis indicates that the ZnO and Mg 0.3 Zn 0.7 O have bandgaps of 3.34 eV and 4.02 eV, respectively. The photoluminescence (PL) of the ZnO film was found to exhibit a structural defect-related emission at ~3.316 eV inherent to the nanocrystalline morphology. The PL of the Mg 0.3 Zn 0.7 O film exhibits two broad peaks at 3.38 eV and at 3.95 eV that are discussed in terms of the solubility limit of the ZnO-MgO alloy system. Additionally, external deformation of the film did not have a significant impact on its properties as indicated by the Raman LO-mode behavior, making these films attractive for UV flexible applications.« less

  9. Impact of Substrate Types on Structure and Emission of ZnO Nanocrystalline Films

    NASA Astrophysics Data System (ADS)

    Ballardo Rodriguez, I. Ch.; El Filali, B.; Díaz Cano, A. I.; Torchynska, T. V.

    2018-02-01

    Zinc oxide (ZnO) films were simultaneously synthesized by an ultrasonic spray pyrolysis (USP) method on p-type Si (100), silicon carbide polytype [6H-SiC (0001)], porous 6H-SiC and amorphous glass substrates with the aim of studying the impact of substrate types on the structure and emission of ZnO nanocrystalline films. Porous silicon carbide (P-SiC) was prepared by the electrochemical anodization method at a constant potential of 20 V and etching time of 12 min. ZnO films grown on the SiC and P-SiC substrates are characterized by a wurtzite crystal structure with preferential growth along the (002) direction and with grain sizes of 90-180 and 70-160 nm, respectively. ZnO films grown on the Si substrate have just some small irregular hexagonal islands. The amorphous glass substrate did not promote the formation of any regular crystal forms. The obtained x-ray diffraction and photoluminescence (PL) results have shown that the better ZnO film crystallinity and high PL intensity of near-band edge emissions were achieved in the films grown on the porous SiC and SiC substrates. The preferential growth and crystalline nature of ZnO films on the SiC substrate have been discussed from the point of view of the lattice parameter compatibility between ZnO and SiC crystals.

  10. Antibacterial studies of ZnO nanoparticle coatings on nanocrystalline YSZ irradiated with femtosecond laser light

    NASA Astrophysics Data System (ADS)

    Alvarez, Crysthal; Garcia, Valeria; Cuando, Natanael; Aguilar, Guillermo

    2018-02-01

    Recently, efforts have been made to create a transparent ceramic cranial implant comprised of nanocrystalline yttriastabilized zirconia (nc-YSZ) that will provide optical access to the brain. This has been referred to as Window to the Brain (WttB) in the literature. WttB will allow the use of laser and photonic treatments and diagnostics in areas with difficult optical access in the brain. Nevertheless, infection is still one of the frequent cranial implant complications. In most cases a second surgery is required to replace the infected implant. To address potential infections in the WttB platform, we have studied the antibacterial effect of a Zinc Oxide (ZnO) nanoparticles coating on nc-YSZ. After coating with ZnO nanoparticles, the implant was irradiated with infrared femtosecond laser light. We synthesized ZnO nanoparticles through the Laser Ablation of Solids in Liquids (LASL) method, using a Zinc solid target in a liquid medium (water/acetone). Antibacterial coatings were obtained by air brush, using a precursor solution of ZnO nanoparticles in distilled water. Escherichia coli (E. coli) have been used as representative, clinical relevant bacteria to probe the antibacterial effect of the coating. Our previous studies suggested that the use of ZnO nanoparticles inhibit bacterial growth. Laser irradiation treatment alone also offers inhibition of bacterial growth, up to 70%. The incorporation of nanoparticles offers an additional 20% inhibition. Thus, this work represents the next step towards the development of a clinically-oriented transparent cranial implant.

  11. Characterization of ZnO nanoparticles grown in presence of Folic acid template

    PubMed Central

    2012-01-01

    Background ZnO nanoparticles (grown in the template of folic acid) are biologically useful, luminescent material. It can be used for multifunctional purposes, e.g., as biosensor, bioimaging, targeted drug delivery and as growth promoting medicine. Methods Sol–gel chemical method was used to develop the uniform ZnO nanoparticles, in a folic acid template at room temperature and pH ~ 7.5. Agglomeration of the particles was prevented due to surface charge density of folic acid in the medium. ZnO nanoparticle was further characterized by different physical methods. Results Nanocrystalline, wurtzite ZnO particles thus prepared show interesting structural as well as band gap properties due to capping with folic acid. Conclusions A rapid, easy and chemical preparative method for the growth of ZnO nanoparticles with important surface physical properties is discussed. Emphatically, after capping with folic acid, its photoluminescence properties are in the visible region. Therefore, the same can be used for monitoring local environmental properties of biosystems. PMID:22788841

  12. Hierarchical structures of ZnO spherical particles synthesized solvothermally

    NASA Astrophysics Data System (ADS)

    Saito, Noriko; Haneda, Hajime

    2011-12-01

    We review the solvothermal synthesis, using a mixture of ethylene glycol (EG) and water as the solvent, of zinc oxide (ZnO) particles having spherical and flower-like shapes and hierarchical nanostructures. The preparation conditions of the ZnO particles and the microscopic characterization of the morphology are summarized. We found the following three effects of the ratio of EG to water on the formation of hierarchical structures: (i) EG restricts the growth of ZnO microcrystals, (ii) EG promotes the self-assembly of small crystallites into spheroidal particles and (iii) the high water content of EG results in hollow spheres.

  13. Preparation of "Cauliflower-Like" ZnO Micron-Sized Particles.

    PubMed

    Gordon, Tamar; Grinblat, Judith; Margel, Shlomo

    2013-11-14

    Porous polydivinyl benzene (PDVB) microspheres of narrow size distribution were formed by a single-step swelling process of template uniform polystyrene microspheres with divinyl benzene (DVB), followed by polymerization of the DVB within the swollen template microspheres. The PDVB porous particles were then formed by dissolution of the template polystyrene polymer. Unique "cauliflower-like" ZnO microparticles were prepared by the entrapping of the ZnO precursor ZnCl₂ in the PDVB porous microspheres under vacuum, followed by calcination of the obtained ZnCl₂-PDVB microspheres in an air atmosphere. The morphology, crystallinity and fluorescence properties of those ZnO microparticles were characterized. This "cauliflower-like" shape ZnO particles is in contrast to a previous study demonstrated the preparation of spherical shaped porous ZnO and C-ZnO microparticles by a similar method, using zinc acetate (ZnAc) as a precursor. Two diverted synthesis mechanisms for those two different ZnO microparticles structures are proposed, based on studies of the distribution of each of the ZnO precursors within the PDVB microspheres.

  14. Efficient and Convenient Synthesis of 1,8-Dioxodecahydroacridine Derivatives Using Cu-Doped ZnO Nanocrystalline Powder as a Catalyst under Solvent-Free Conditions

    PubMed Central

    Alinezhad, Heshmatollah; Mohseni Tavakkoli, Sahar

    2013-01-01

    A simple and convenient one-step method for synthesis of acridines and their derivatives from condensation of aromatic aldehydes, cyclic diketones, and aryl amines using Cu-doped ZnO nanocrystalline powder as a catalyst is reported. The present protocol provides several advantages such as good yields, short reaction time, easy workup, and simplicity in operation. PMID:24294130

  15. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    NASA Astrophysics Data System (ADS)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  16. Synthesis of ZnO particles using water molecules generated in esterification reaction

    NASA Astrophysics Data System (ADS)

    Šarić, Ankica; Gotić, Marijan; Štefanić, Goran; Dražić, Goran

    2017-07-01

    Zinc oxide particles were synthesized without the addition of water by autoclaving (anhydrous) zinc acetate/alcohol and zinc acetate/acetic acid/alcohol solutions at 160 °C. The solvothermal synthesis was performed in ethanol or octanol. The structural, optical and morphological characteristics of ZnO particles were investigated by X-ray diffraction (XRD), UV-Vis spectroscopy, FE-SEM and TEM/STEM microscopy. 13C NMR spectroscopy revealed the presence of ester (ethyl- or octyl-acetate) in the supernatants which directly indicate the reaction mechanism. The formation of ester in this esterification reaction generated water molecule in situ, which hydrolyzed anhydrous zinc acetate and initiated nucleation and formation of ZnO. It was found that the size and shape of ZnO particles depend on the type of alcohol used as a solvent and on the presence of acetic acid in solution. The presence of ethanol in the ;pure; system without acetic acid favoured the formation of fine and uniform spherical ZnO nanoparticles (∼20 nm). With the addition of small amount of acetic acid the size of these small nanoparticles increased significantly up to a few hundred nanometers. The addition of small amount of acetic acid in the presence of octanol caused even more radical changes in the shape of ZnO particles, favouring the growth of huge rod-like particles (∼3 μm).

  17. Synthesis, characterization, and photocatalytic properties of nanocrystalline NZO thin films

    NASA Astrophysics Data System (ADS)

    Aryanto, D.; Hastuti, E.; Husniya, N.; Sudiro, T.; Nuryadin, B. W.

    2018-03-01

    Nanocrystalline Ni-doped ZnO (NZO) thin films were synthesized on glass substrate using sol-gel spin coating methods. The effect of annealing on the structural and optical properties of nanocrystalline thin film was studied using X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), UV-VIS spectrophotometry, and photoluminescence (PL). The results showed that the annealing temperature strongly influenced the physical properties of nanocrystalline NZO thin films. The photocatalytic properties of nanocrystalline NZO thin films were evaluated using an aqueous solution of Rhodamine-B. The photocatalytic activity of nanocrystalline NZO thin films increased with the increase of annealing temperature. The results indicated that the structure, morphology, and band gap energy of nanocrystalline NZO thin films played an important role in photocatalytic activity.

  18. Characterization of synthetic nanocrystalline mackinawite: crystal structure, particle size, and specific surface area

    PubMed Central

    Jeong, Hoon Y.; Lee, Jun H.; Hayes, Kim F.

    2010-01-01

    Iron sulfide was synthesized by reacting aqueous solutions of sodium sulfide and ferrous chloride for 3 days. By X-ray powder diffraction (XRPD), the resultant phase was determined to be primarily nanocrystalline mackinawite (space group: P4/nmm) with unit cell parameters a = b = 3.67 Å and c = 5.20 Å. Iron K-edge XAS analysis also indicated the dominance of mackinawite. Lattice expansion of synthetic mackinawite was observed along the c-axis relative to well-crystalline mackinawite. Compared with relatively short-aged phase, the mackinawite prepared here was composed of larger crystallites with less elongated lattice spacings. The direct observation of lattice fringes by HR-TEM verified the applicability of Bragg diffraction in determining the lattice parameters of nanocrystalline mackinawite from XRPD patterns. Estimated particle size and external specific surface area (SSAext) of nanocrystalline mackinawite varied significantly with the methods used. The use of Scherrer equation for measuring crystallite size based on XRPD patterns is limited by uncertainty of the Scherrer constant (K) due to the presence of polydisperse particles. The presence of polycrystalline particles may also lead to inaccurate particle size estimation by Scherrer equation, given that crystallite and particle sizes are not equivalent. The TEM observation yielded the smallest SSAext of 103 m2/g. This measurement was not representative of dispersed particles due to particle aggregation from drying during sample preparation. In contrast, EGME method and PCS measurement yielded higher SSAext (276–345 m2/g by EGME and 424 ± 130 m2/g by PCS). These were in reasonable agreement with those previously measured by the methods insensitive to particle aggregation. PMID:21085620

  19. Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells

    NASA Astrophysics Data System (ADS)

    Lin, Weisheng; Xu, Yi; Huang, Chuan-Chin; Ma, Yinfa; Shannon, Katie B.; Chen, Da-Ren; Huang, Yue-Wern

    2009-01-01

    This is the first comprehensive study to evaluate the cytotoxicity, biochemical mechanisms of toxicity, and oxidative DNA damage caused by exposing human bronchoalveolar carcinoma-derived cells (A549) to 70 and 420 nm ZnO particles. Particles of either size significantly reduced cell viability in a dose- and time-dependent manner within a rather narrow dosage range. Particle mass-based dosimetry and particle-specific surface area-based dosimetry yielded two distinct patterns of cytotoxicity in both 70 and 420 nm ZnO particles. Elevated levels of reactive oxygen species (ROS) resulted in intracellular oxidative stress, lipid peroxidation, cell membrane leakage, and oxidative DNA damage. The protective effect of N-acetylcysteine on ZnO-induced cytotoxicity further implicated oxidative stress in the cytotoxicity. Free Zn2+ and metal impurities were not major contributors of ROS induction as indicated by limited free Zn2+ cytotoxicity, extent of Zn2+ dissociation in the cell culture medium, and inductively-coupled plasma-mass spectrometry metal analysis. We conclude that (1) exposure to both sizes of ZnO particles leads to dose- and time-dependent cytotoxicity reflected in oxidative stress, lipid peroxidation, cell membrane damage, and oxidative DNA damage, (2) ZnO particles exhibit a much steeper dose-response pattern unseen in other metal oxides, and (3) neither free Zn2+ nor metal impurity in the ZnO particle samples is the cause of cytotoxicity.

  20. Initial stage corrosion of nanocrystalline copper particles and thin films

    NASA Astrophysics Data System (ADS)

    Tao, Weimin

    1997-12-01

    density associated with mass transport of ions in the oxide layer. A hypothesis is developed that the high corrosion rate of the nanocrystalline copper is closely associated with the structure of the copper oxide layer. Therefore, a high "apparent" exchange current density for the nanocrystalline copper is associated with the high angle grain boundary structure in the initial oxide layer. Additional structure analysis was also carried out: (a) High resolution TEM imaging has provided a cross sectional view of the epitaxial interface between nanocrystalline copper and copper (I) oxide and explicitly discloses the presence of interface defects such as misfit dislocations. Based on this observation, a mechanism was proposed to explain the Cu/Cusb2O interface misfit accommodation. This appears to be the first time this interface has been directly examined. (b) A nanocrystalline analogue to a cross-section of Gwathmey's copper single crystal sphere was revealed by high resolution TEM imaging. A partially oxidized nanocrystalline copper particle is used to examine the variation of the Cu/Cusb2O orientation relationship with respect to changes in surface orientation. A new orientation relationship, Cu (011) //Cusb2O (11), ˜ Cu(011)//Cusb2O(111), was found for the oxidation of nanocrystalline copper.

  1. Physicochemical properties of surface charge-modified ZnO nanoparticles with different particle sizes

    PubMed Central

    Kim, Kyoung-Min; Choi, Mun-Hyoung; Lee, Jong-Kwon; Jeong, Jayoung; Kim, Yu-Ri; Kim, Meyoung-Kon; Paek, Seung-Min; Oh, Jae-Min

    2014-01-01

    In this study, four types of standardized ZnO nanoparticles were prepared for assessment of their potential biological risk. Powder-phased ZnO nanoparticles with different particle sizes (20 nm and 100 nm) were coated with citrate or L-serine to induce a negative or positive surface charge, respectively. The four types of coated ZnO nanoparticles were subjected to physicochemical evaluation according to the guidelines published by the Organisation for Economic Cooperation and Development. All four samples had a well crystallized Wurtzite phase, with particle sizes of ∼30 nm and ∼70 nm after coating with organic molecules. The coating agents were determined to have attached to the ZnO surfaces through either electrostatic interaction or partial coordination bonding. Electrokinetic measurements showed that the surface charges of the ZnO nanoparticles were successfully modified to be negative (about −40 mV) or positive (about +25 mV). Although all the four types of ZnO nanoparticles showed some agglomeration when suspended in water according to dynamic light scattering analysis, they had clearly distinguishable particle size and surface charge parameters and well defined physicochemical properties. PMID:25565825

  2. Encapsulation of ZnO particles by metal fluorides: Towards an application as transparent insulating coatings for windows

    NASA Astrophysics Data System (ADS)

    Trenque, Isabelle; Mornet, Stéphane; Duguet, Etienne; Majimel, Jérôme; Brüll, Annelise; Teinz, Katharina; Kemnitz, Erhard; Gaudon, Manuel

    2013-01-01

    Because ZnO is a promising candidate for getting efficient films or varnishes with thermal insulating abilities for windows applications, the effect of the encapsulation of ZnO particles in shells of low refractive index material on the improvement of the visible light transmission was investigated. ZnO-MgF2 core-shell particles were synthesized by deposition of fluoride sols on ZnO particles through a vacuum slip casting process like. The transmission behaviours were first indirectly studied by diffuse reflexion measurements on powder beds. Then, particle films were elaborated by a screen printing process which ensured direct transmission measurements. The encapsulation of ZnO particles with a coating shell of 1.3 wt.% of MgF2 improves the visible light transmission of 32%.

  3. Effect of Pre-Annealing on Thermal and Optical Properties of ZnO and Al-ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Saravanan, P.; Gnanavelbabu, A.; Pandiaraj, P.

    Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60∘C, a clear homogenous solution is heated to 100∘C for ethanol evaporation. Then the obtained precursor powder is annealed at 600∘C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359nm with an energy bandgap of 3.4eV. A peak obtained at 301nm with an energy bandgap of 4.12eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1wt.% and 2wt.% of Al in ZnO.

  4. Photocatalytic degradation of Orange G dye under solar light using nanocrystalline semiconductor metal oxide.

    PubMed

    Thennarasu, G; Kavithaa, S; Sivasamy, A

    2011-08-01

    The photocatalytic degradation of Orange G (OG) dye has been investigated using synthesised nanocrystalline ZnO as a photocatalyst and sunlight as the irradiation source. The formation of ZnO prepared from its precursor was confirmed through FT-IR and powder X-ray diffraction analyses. Surface morphology was characterised by scanning electron microscope and transmission electron microscope analysis. Band gap energy of synthesised nanocrystalline ZnO was calculated using diffuse reflectance spectroscopy (DRS). Different experimental parameters such as effects of pH, dye concentrations and mass of catalyst were standardised in order to achieve complete degradation of the dye molecules under solar light irradiation. The kinetics of oxidation of OG was also studied. The complete degradation of OG was evident after 90 min of irradiation at an initial pH of 6.86. The degradation of OG was confirmed by UV-Visible spectrophotometer, high-pressure liquid chromatography, ESI-Mass and chemical oxygen demand analyses. The adsorption of dye onto catalytic surface was analysed employing model equations such as Langmuir and Freundlich isotherms, and it was found that the Langmuir isotherm model best fitted the adsorption data. The solar photodegradation of OG followed pseudo-first-order kinetics. HPLC and ESI-Mass analyses of the degraded samples suggested that the dye molecules were readily degraded under solar irradiation with nanocrystalline ZnO.

  5. Synthesis and photocatalytic property of Zinc Oxide (ZnO) fine particle using flame spray pyrolysis method

    NASA Astrophysics Data System (ADS)

    Widiyandari, Hendri; Ayu Ketut Umiati, Ngurah; Dwi Herdianti, Rizki

    2018-05-01

    Advance oxidation process (AOP) using photocatalysis constitute a promising technology for the treatment of wastewaters containing non-easily removable organic compound. Zinc oxide (ZnO) is one of efficient photocatalyst materials. This research reported synthesis of ZnO fine particle from zinc nitrate hexahydrate using Flame Spray Pyrolysis (FSP) method. In this method, oxygen (O2) gas were used as oxidizer and LPG (liquid petroleum gas) were used as fuel. The effect of O2 gas flow rate during ZnO particle fabrication to the microstructure, optical and photocatalytic properties were systematically discussed. The photocatalytic activity of ZnO was tested for the degradation of amaranth dye with initial concentration of 10 ppm under irradiation of solar simulator. The rate of decrease in amaranth concentration was measured using UV-Visible spectrophotometer. The ZnO synthesized using FSP has a hexagonal crystalline structure. Scanning electron microscope images showed that ZnO has a spherical formed which was the mixture of solid and hollow particles. The optimum condition for amaranth degradation was shown by ZnO produced at a flow rate of 1.5 L/min which able to degrade amaranth dye up to 95,3 % at 75 minutes irradiation.

  6. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  7. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE PAGES

    Chang-Yong Nam; Stein, Aaron; Kisslinger, Kim; ...

    2015-11-17

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ~1019 cm -3 carrier density, and ~0.1 cm 2 V -1 s -1 electron mobility, reflecting highly nanocrystalline internal structure. The results demonstratemore » the potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  8. Nano/microstructure and optical properties of ZnO particles precipitated from zinc acetylacetonate

    NASA Astrophysics Data System (ADS)

    Petrović, Željka; Ristić, Mira; Musić, Svetozar; Fabián, Martin

    2015-06-01

    The influence of experimental conditions on the nano/microstructure and optical properties of ZnO particles produced by rapid hydrolysis of zinc acetylacetonate, followed by aging of the precipitation system at 160 °C, was investigated. Samples were characterized by XRD, FE scanning electron microscopy (FE-SEM), FT-IR, UV/Vis/NIR and photoluminescence (PL) spectroscopies. XRD patterns of all samples were assigned to the hexagonal ZnO phase (wurtzite-type), as well as the corresponding FT-IR spectra. FE-SEM inspection showed a high dependence of the ZnO nano/microstructure on the chemical composition of the reaction mixture and autoclaving time after the rapid hydrolysis of zinc acetylacetonate. Microstructural differences were noticed between C2H5OH/H2O and H2O media, as well as under the influence of NH4OH addition. Measurements of nanocrystallite sizes showed no significant preferential orientation in the (1 0 0) and (0 0 2) directions relative to the (1 0 1) and (1 1 0) directions. Somewhat smaller crystallite sizes were noticed for ZnO samples synthesized by adding the NH4OH solution. Dissolution/recrystallization of ZnO particles played an important role in the formation of different ZnO nano/microstructures. The band gap values for prepared ZnO samples were calculated on the basis of recorded UV/Vis spectra. PL spectra were recorded for ZnO samples in powder form and their suspensions in pure ethanol. Noticed differences are discussed.

  9. Electrical and structural properties of ZnO synthesized via infiltration of lithographically defined polymer templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Chang-Yong, E-mail: cynam@bnl.gov; Stein, Aaron; Kisslinger, Kim

    We investigate the electrical and structural properties of infiltration-synthesized ZnO. In-plane ZnO nanowire arrays with prescribed positional registrations are generated by infiltrating diethlyzinc and water vapor into lithographically defined SU-8 polymer templates and removing organic matrix by oxygen plasma ashing. Transmission electron microscopy reveals that homogeneously amorphous as-infiltrated polymer templates transform into highly nanocrystalline ZnO upon removal of organic matrix. Field-effect transistor device measurements show that the synthesized ZnO after thermal annealing displays a typical n-type behavior, ∼10{sup 19 }cm{sup −3} carrier density, and ∼0.1 cm{sup 2} V{sup −1} s{sup −1} electron mobility, reflecting highly nanocrystalline internal structure. The results demonstrate themore » potential application of infiltration synthesis in fabricating metal oxide electronic devices.« less

  10. Study of ZnO and Mg doped ZnO nanoparticles by sol-gel process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansari, Mohd Meenhaz, E-mail: meenhazphysics@gmail.com; Arshad, Mohd; Tripathi, Pushpendra

    Nano-crystalline undoped and Mg doped ZnO (Mg-ZnO) nanoparticles with compositional formula Mg{sub x}Zn{sub 1-x}O (x=0,1,3,5,7,10 and 12 %) were synthesized using sol-gel process. The XRD diffraction peaks match with the pattern of the standard hexagonal structure of ZnO that reveals the formation of hexagonal wurtzite structure in all samples. SEM images demonstrates clearly the formation of spherical ZnO nanoparticles, and change of the morphology of the nanoparticles with the concentration of the magnesium, which is in close agreement with that estimated by Scherer formula based on the XRD pattern. To investigate the doping effect on optical properties, the UV–VIS absorptionmore » spectra was obtained and the band gap of the samples calculated.« less

  11. Effects of serum on cytotoxicity of nano- and micro-sized ZnO particles

    NASA Astrophysics Data System (ADS)

    Hsiao, I.-Lun; Huang, Yuh-Jeen

    2013-09-01

    Although an increasing number of in vitro studies are being published regarding the cytotoxicity of nanomaterials, the components of the media for toxicity assays have often varied according to the needs of the scientists. Our aim for this study was to evaluate the influence of serum—in this case, fetal bovine serum—in a cell culture medium on the toxicity of nano-sized (50-70 nm) and micro-sized (<1 μm) ZnO on human lung epithelial cells (A549). The nano- and micro-sized ZnO both exhibited their highest toxicity when exposed to serum-free media, in contrast to exposure in media containing 5 or 10 % serum. This mainly comes not only from the fact that ZnO particles in the serum-free media have a higher dosage-per-cell ratio, which results from large aggregates of particles, rapid sedimentation, absence of protein protection, and lower cell growth rate, but also that extracellular Zn2+ release contributes to cytotoxicity. Although more extracellular Zn2+ release was observed in serum-containing media, it did not contribute to nano-ZnO cytotoxicity. Furthermore, non-dissolved particles underwent size-dependent particle agglomeration, resulting in size-dependent toxicity in both serum-containing and serum-free media. A low correlation between cytotoxicity and inflammation endpoints in the serum-free medium suggested that some signaling pathways were changed or induced. Since cell growth, transcription behavior for protein production, and physicochemical properties of ZnO particles all were altered in serum-free media, we recommend the use of a serum-containing medium when evaluating the cytotoxicity of NPs.

  12. Defect studies of thin ZnO films prepared by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Vlček, M.; Čížek, J.; Procházka, I.; Novotný, M.; Bulíř, J.; Lančok, J.; Anwand, W.; Brauer, G.; Mosnier, J.-P.

    2014-04-01

    Thin ZnO films were grown by pulsed laser deposition on four different substrates: sapphire (0 0 0 1), MgO (1 0 0), fused silica and nanocrystalline synthetic diamond. Defect studies by slow positron implantation spectroscopy (SPIS) revealed significantly higher concentration of defects in the studied films when compared to a bulk ZnO single crystal. The concentration of defects in the films deposited on single crystal sapphire and MgO substrates is higher than in the films deposited on amorphous fused silica substrate and nanocrystalline synthetic diamond. Furthermore, the effect of deposition temperature on film quality was investigated in ZnO films deposited on synthetic diamond substrates. Defect studies performed by SPIS revealed that the concentration of defects firstly decreases with increasing deposition temperature, but at too high deposition temperatures it increases again. The lowest concentration of defects was found in the film deposited at 450° C.

  13. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering.

    PubMed

    Dargatz, Benjamin; Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-04-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method.

  14. Improved compaction of ZnO nano-powder triggered by the presence of acetate and its effect on sintering

    PubMed Central

    Gonzalez-Julian, Jesus; Guillon, Olivier

    2015-01-01

    The retention of nanocrystallinity in dense ceramic materials is still a challenge, even with the application of external pressure during sintering. The compaction behavior of high purity and acetate enriched zinc oxide (ZnO) nano-powders was investigated. It was found that acetate in combination with water plays a key role during the compaction into green bodies at moderate temperatures. Application of constant pressure resulted in a homogeneous green body with superior packing density (86% of theoretical value) at moderate temperature (85 °C) in the presence of water. In contrast, no improvement in density could be achieved if pure ZnO powder was used. This compaction behavior offers superior packing of the particles, resulting in a high relative density of the consolidated compact with negligible coarsening. Dissolution accompanying creep diffusion based matter transport is suggested to strongly support reorientation of ZnO particles towards densities beyond the theoretical limit for packing of ideal monosized spheres. Finally, the sintering trajectory reveals that grain growth is retarded compared to conventional processing up to 90% of theoretical density. Moreover, nearly no radial shrinkage was observed after sinter-forging for bodies performed with this advanced processing method. PMID:27877777

  15. ZnO and TiO2 particles: a study on nanosafety and photoprotection

    NASA Astrophysics Data System (ADS)

    Popov, Alexey; Zhao, Xin; Zvyagin, Andrei; Lademann, Jürgen; Roberts, Michael; Sanchez, Washington; Priezzhev, Alexander; Myllylä, Risto

    2010-04-01

    Nanoparticles of titanium dioxide (TiO2) and zinc oxide (ZnO) are used in sunscreens as protective compounds against UV radiation. We investigate these particles from the viewpoint of nanosafety (penetration into skin in vivo, production of free radicals when UV-irradiated) as well as UV protection. We show that: a) even after multiple applications, the particles remain within stratum corneum (uppermost skin layer); b) the optimal sizes are 62 nm and 45 nm, respectively for TiO2 and ZnO particles for 310-nm light and, correspondingly, 122 and 140 nm - for 400-nm radiation; c) in general, small particles (25 nm in diameter) are more photoactive than the larger ones (400 nm in diameter); however, on the background if porcine skin in vitro this difference is not seen and is substantially surpassed by skin contribution into production of free radicals.

  16. Graphene oxide-modified ZnO particles: synthesis, characterization, and antibacterial properties

    PubMed Central

    Zhong, Linlin; Yun, Kyusik

    2015-01-01

    Nanosized ZnO particles with diameters of 15 nm were prepared with a solution precipitation method at low cost and high yield. The synthesis of the particles was functionalized by the organic solvent dimethylformamide, and the particles were covalently bonded to the surface of graphene oxide. The morphology of the graphene oxide sheets and ZnO particles was confirmed with field emission scanning electron microscopy and biological atomic force microscopy. Fourier transform infrared spectroscopy and X-ray diffraction were used to analyze the physical and chemical properties of the ZnO/graphene oxide composites that differed from those of the individual components. Enhanced electrochemical properties were detected with cyclic voltammetry, with a redox peak of the composites at 0.025 mV. Excellent antibacterial activity of ZnO/graphene oxide composites was observed with a microdilution method in which minimum inhibitory concentrations of 6.25 µg/mL for Escherichia coli and Salmonella typhimurium, 12.5 µg/mL for Bacillus subtilis, and 25 µg/mL for Enterococcus faecalis. After further study of the antibacterial mechanism, we concluded that a vast number of reactive oxygen species formed on the surface of composites, improving antibacterial properties. PMID:26347126

  17. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer.

    PubMed

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus

    2013-09-30

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  18. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    PubMed Central

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S.; Atif, Muhammad; Ansari, Anees A.; Willander, Magnus

    2013-01-01

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. PMID:28788336

  19. Facile chemical approach to ZnO submicrometer particles with controllable morphologies.

    PubMed

    Bardhan, Rizia; Wang, Hui; Tam, Felicia; Halas, Naomi J

    2007-05-22

    We have developed a simple wet-chemistry approach to fabricating ZnO submicrometer particles with unique morphologies including rings, bowls, hemispheres, and disks. The size and morphology of the particles can be conveniently tailored by varying the concentrations of the zinc precursor. The reaction temperature, pH, and concentration of ammonia are also found to play critical roles in directing the formation of these particle morphologies. These submicrometer particles exhibit strong white-light emission upon UV excitation as a result of the presence of surface defect states resulting from the fabrication method and synthesis conditions.

  20. Defect dynamics in Li substituted nanocrystalline ZnO: A spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, S.; Nambissan, P. M. G.; Thapa, S.; Mandal, K.

    2014-12-01

    Very recently, vacancy-type defects have been found to play a major role in stabilizing d0 ferromagnetism in various low dimensional ZnO systems. In this context, the evolution of vacancy-type defects within the ZnO nanocrystals due to the doping of ZnO by alkali metal lithium (Li) is investigated using X-ray photoelectron (XPS), photoluminescence (PL) and positron annihilation spectroscopy (PAS). Li-doping is found to have significant effects in modifying the vacancy-type defects, especially the Zn vacancy (VZn) defects within the ZnO lattice. XPS measurement indicated that initially the Li1+ ions substitute at Zn2+ sites, but when Li concentration exceeds 7 at%, excess Li starts to move through the interstitial sites. The increase in positron lifetime components and the lineshape S-parameter obtained from coincident Doppler broadening spectra with Li-doping indicated an enhancement of VZn defect concentration within the doped ZnO lattice. The vacancy type defects, initially of the predominant configuration VZn+O+Zn got reduced to neutral ZnO divacancies due to the partial recombination by the doped Li1+ ions but, when the doping concentration exceeded 7 at% and Li1+ ions started migrating to the interstitials, positron diffusion is partly impeded and this results in reduced probability of annihilation. PL spectra have shown intense green and yellow-orange emission due to the stabilization of a large number of VZn defects and Li substitutional (LiZn) defects respectively. Hence Li can be a very useful dopant in stabilizing and modifying significant amount of Zn vacancy-defects which can play a useful role in determining the material behavior.

  1. Synthesis of nano-sized ZnO particles by co-precipitation method with variation of heating time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro

    Zinc oxide powders have been synthesized by a co-precipitation method at low temperature (85 °C), using zinc acetate dihydrate, ammonia, hydrochloric acid solutions as the reactants. A number of process parameters such as reaction temperature, solution basicity or pH and heating time are the main factors affecting the morphology and physical properties of the ZnO nanostructures. In this work the effect of heating time on the morphology and particles size were studied. The as-synthesized ZnO powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD) techniques. The samples were also analyzed using Fourier transform infrared (FTIR). Rietveld refinementmore » of XRD data confirms that ZnO crystallizes in the hexagonal wurtzite structure with high degree of purity and the (101) plane predominant. The XRD results show that the average crystallite sizes were about 66, 27 and 12 nm for 3, 4 and 5 h of heating times, respectively. The XRD analysis indicated that a fraction of nano-sized ZnO powders were in the form of aggregates, which was also verified by TEM image. The TEM photograph demonstrated that the nano-sized ZnO particles were a pseudo-spherical shape.« less

  2. Electrical impedance spectroscopy of neutron-irradiated nanocrystalline silicon carbide (3C-SiC)

    NASA Astrophysics Data System (ADS)

    Huseynov, Elchin M.

    2018-01-01

    It the present work, impedance spectra of nanocrystalline 3C-SiC particles have been comparatively analyzed before and after neutron irradiation. Resonance states and shifts were observed at the impedance spectra of nanocrystalline 3C-SiC particles after neutron irradiation. Relaxation time has been calculated from interdependence of real and imaginary parts of impedance of nanocrystalline 3C-SiC particles. Calculated relaxation times have been investigated as a function of neutron irradiation period. Neutron transmutation (31P isotopes production) effects on the impedance spectra and relaxation times have been studied. Moreover, influence of agglomeration and amorphous transformation to the impedance spectra and relaxation times of nanocrystalline 3C-SiC particles have been investigated.

  3. Comparison of the in vitro and in vivo toxic effects of three sizes of zinc oxide (ZnO) particles using flounder gill (FG) cells and zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Han, Li; Zhai, Yanan; Liu, Yang; Hao, Linhua; Guo, Huarong

    2017-02-01

    Nano-sized zinc oxide (nZnO) particles are one kind of the most commonly used metal oxide nanoparticles (NPs). This study compared the cytotoxic and embryotoxic effects of three increasing sized ZnO particles (ϕ 30 nm, 80-150 nm and 2 μm) in the flounder gill (FG) cells and zebrafish embryos, and analyzed the contribution of size, agglomeration and released Zn2+ to the toxic effects. All the tested ZnO particles were found to be highly toxic to both FG cells and zebrafish embryos. They induced growth inhibition, LDH release, morphological changes and apoptosis in FG cells in a concentration-, size- and time-dependent manner. Moreover, the release of LDH from the exposed FG cells into the medium occurred before the observable morphological changes happened. The ultrasonication treatment and addition of serum favored the dispersion of ZnO particles and alleviated the agglomeration, thus significantly increased the corresponding cytotoxicity. The released Zn2+ ions from ZnO particles into the extracellular medium only partially contributed to the cytotoxicity. All the three sizes of ZnO particles tested induced developmental malformations, decrease of hatching rates and lethality in zebrafish embryos, but size- and concentration- dependent toxic effects were not so obvious as in FG cells possibly due to the easy aggregation of ZnO particles in freshwater. In conclusion, both FG cells and zebrafish embryos are sensitive bioassay systems for safety assessment of ZnO particles and the environmental release of ZnO particles should be closely monitored as far as the safety of aquatic organisms is concerned.

  4. Growth of raspberry-, prism- and flower-like ZnO particles using template-free low-temperature hydrothermal method and their application as humidity sensors

    NASA Astrophysics Data System (ADS)

    Pál, Edit; Hornok, Viktória; Kun, Robert; Chernyshev, Vladimir; Seemann, Torben; Dékány, Imre; Busse, Matthias

    2012-08-01

    Zinc oxide particles with different morphologies were prepared by hydrothermal method at 60-90 °C. The structure formation was controlled by the addition rate and temperature of hydrolyzing agent, while the particles size (10 nm-2.5 μm) was influenced by the preparation (hydrothermal) temperature. Scanning electron microscopy studies showed that raspberry-, prism- and flower-like ZnO particles were prepared, whose average size decreased with increasing reaction temperature. X-ray diffraction investigations confirmed that ZnO particles with hexagonal crystal structure formed in all syntheses. The raspberry-, prism- and flower-like ZnO particles showed a weak UV-emission in the range of 390-395 nm and strong visible emission with a maximum at 586, 593 and 598 nm, respectively. Morphology effect on electrical and water vapour sensing properties of ZnO samples was investigated by impedance spectroscopy and quartz crystal microbalance, respectively. The absolute impedance of raspberry-, prism- and flower-like ZnO particles was found to be strong dependent on the morphology. Space-charge-limited conductivity transport mechanism was proved by the oscillatory behaviour of impedance. Humidity sensor tests also revealed morphology and specific surface area dependency on the sensitivity and water vapour adsorption property.

  5. Synthesis of ZnO Nanocrystal-Graphene Composite by Mechanical Milling and Sonication-Assisted Exfoliation

    NASA Astrophysics Data System (ADS)

    Arora, Sweety; Srivastava, Chandan

    2017-02-01

    A ZnO nanocrystal-graphene composite was synthesized by a two-step method involving mechanical milling and sonication-assisted exfoliation. Zn metal powder was first ball-milled with graphite powder for 30 h in water medium. This ball-milled mixture was then subjected to exfoliation by sonication in the presence of sodium lauryl sulfate surfactant to produce graphene decorated with spherical agglomerates of ultrafine nanocrystalline ZnO. The presence of a few layers of graphene was confirmed by Raman spectroscopy and atomic force microscopy measurements. The size, phase identity and composition of the ZnO nanocrystals was determined by transmission electron microscopy measurements.

  6. Structure, morphology and optical properties of undoped and MN-doped ZnO(1-x)Sx nano-powders prepared by precipitation method

    NASA Astrophysics Data System (ADS)

    Dejene, F. B.; Onani, M. O.; Koao, L. F.; Wako, A. H.; Motloung, S. V.; Yihunie, M. T.

    2016-01-01

    The undoped and Mn-doped ZnO(1-x)Sx nano-powders were successfully synthesized by precipitation method without using any capping agent. Its structure, morphology, elemental analysis, optical and luminescence properties were determined by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), UV-vis spectroscopy (UV) and photoluminescence spectroscopy (PL). A typical SEM image of the un-doped ZnO(1-x)Sx nanoparticles exhibit flake like structures that changes to nearly spherical particles with Mn-doping. The XRD of undoped and Mn doped ZnO(1-x)Sx pattern reveals the formation of a product indexed to the hexagonal wurtzite phase of ZnS. The nanopowders have crystallite sizes estimated from XRD measurements were in the range of 10-20 nm. All the samples showed absorption maximum of ZnO(1-x)Sx at 271 nm and high transmittance in UV and visible region, respectively. The undoped ZnO(1-x)Sx nanoparticles show strong room-temperature photoluminescence with four emission bands centering at 338 nm, 384 nm, 448 nm and 705 nm that may originate to the impurity of ZnO(1-x)Sx, existence of oxide related defects. The calculated bandgap of the nanocrystalline ZnO(1-x)Sx showed a blue-shift with respect to the Mn-doping. The PL spectra of the Mn-doped samples exhibit a strong orange emission at around 594 nm attributed to the 4T1-6A1 transition of the Mn2+ ions.

  7. Aging of Nanocrystalline Mackinawite (FeS): Mineralogical and Physicochemical Properties

    NASA Astrophysics Data System (ADS)

    Jeong, H. Y.; Lee, H.

    2011-12-01

    Due to the extraordinary physical properties and high surface areas, nanocrystalline minerals have been widely investigated for their potential uses in treating contaminated groundwaters and surface waters. Most previous studies in this field have focused on either preparation of nanocrystalline minerals or measurement of their reactivity with environmental contaminants. Nanocrystalline minerals, due to the inherent thermodynamic instability, tend to change the physicochemical and mineralogical properties over time, usually resulting in the decreased reactivity. Thus, to better assess the long-term effectiveness of nanocrystalline minerals in field applications, such "aging" effects should be clearly delineated. In the present work, we have investigated the aging impact on nanocrystalline mackinawite (FeS), the ubiquitous Fe-bearing mineral in anoxic sulfidic sediments. Mackinawite (FeS) is known to be an effective scavenger for metal pollutants and a strong reducing reagent for chromate and chlorinated organic compounds. Our preliminary results indicate that nanocrystalline FeS ages via Ostwald ripening, particle aggregation, or mineralogical transformation. By X-ray diffraction (XRD) analysis, aging of nanocrystalline FeS via Ostwald ripening is found to be dominant at acidic pH. Cryogenic transmission electron microscopy (TEM) shows that particle aggregation is most evident at neutral pH. Transformation of nanosized FeS into a more thermodynamically stable greigite (Fe3S4) is observed in the presence of folic acid at acidic pH. The pH-dependent aging process may be linked with changes in the apparent solubility and surface charge of FeS with pH. The Ostwald ripening or particle aggregation of nanocrystalline FeS leads to the decrease surface area, thus causing the decreased reactivity. Given the less reactivity of greigite, the transformation of nanocrystalline FeS to greigite is also expected to result in the decreased reactivity.

  8. Probing defects in chemically synthesized ZnO nanostrucures by positron annihilation and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Chaudhuri, S. K.; Ghosh, Manoranjan; Das, D.; Raychaudhuri, A. K.

    2010-09-01

    The present article describes the size induced changes in the structural arrangement of intrinsic defects present in chemically synthesized ZnO nanoparticles of various sizes. Routine x-ray diffraction and transmission electron microscopy have been performed to determine the shapes and sizes of the nanocrystalline ZnO samples. Detailed studies using positron annihilation spectroscopy reveals the presence of zinc vacancy. Whereas analysis of photoluminescence results predict the signature of charged oxygen vacancies. The size induced changes in positron parameters as well as the photoluminescence properties, has shown contrasting or nonmonotonous trends as size varies from 4 to 85 nm. Small spherical particles below a critical size (˜23 nm) receive more positive surface charge due to the higher occupancy of the doubly charge oxygen vacancy as compared to the bigger nanostructures where singly charged oxygen vacancy predominates. This electronic alteration has been seen to trigger yet another interesting phenomenon, described as positron confinement inside nanoparticles. Finally, based on all the results, a model of the structural arrangement of the intrinsic defects in the present samples has been reconciled.

  9. Structural characterization of nanocrystalline cadmium sulphide powder prepared by solvent evaporation technique

    NASA Astrophysics Data System (ADS)

    Pandya, Samir; Tandel, Digisha; Chodavadiya, Nisarg

    2018-05-01

    CdS is one of the most important compounds in the II-VI group of semiconductor. There are numerous applications of CdS in the form of nanoparticles and nanocrystalline. Semiconductors nanoparticles (also known as quantum dots), belong to state of matter in the transition region between molecules and solids, have attracted a great deal of attention because of their unique electrical and optical properties, compared to bulk materials. In the field of optoelectronic, nanocrystalline form utilizes mostly in the field of catalysis and fluid technology. Considering these observations, presented work had been carried out, i.e. based on the nanocrystalline material preparation. In the present work CdS nano-crystalline powder was synthesized by a simple and cost effective chemical technique to grow cadmium sulphide (CdS) nanoparticles at 200 °C with different concentrations of cadmium. The synthesis parameters were optimized. The synthesized powder was structurally characterized by X-ray diffraction and particle size analyzer. In the XRD analysis, Micro-structural parameters such as lattice strain, dislocation density and crystallite size were analysed. The broadened diffraction peaks indicated nanocrystalline particles of the film material. In addition to that the size of the prepared particles was analyzed by particle size analyzer. The results show the average size of CdS particles ranging from 80 to 100 nm. The overall conclusion of the work can be very useful in the synthesis of nanocrystalline CdS powder.

  10. ZrO{sub 2}-ZnO composite thin films for humidity sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Velumani, M., E-mail: velumanimohan@gmail.com; Sivacoumar, R.; Alex, Z. C.

    2016-05-23

    ZrO{sub 2}-ZnO composite thin films were grown by reactive DC magnetron sputtering. X-ray diffraction studies reveal the composite nature of the films with separate ZnO and ZrO{sub 2} phase. Scanning electron microscopy studies confirm the nanocrystalline structure of the films. The films were studied for their impedometric relative humidity (RH) sensing characteristics. The complex impedance plot was fitted with a standard equivalent circuit consisting of an inter-granular resistance and a capacitance in parallel. The DC resistance was found to be decreasing with increase in RH.

  11. Growth and characterization of ZnO multipods on functional surfaces with different sizes and shapes of Ag particles

    NASA Astrophysics Data System (ADS)

    A, Kamalianfar; S, A. Halim; Mahmoud Godarz, Naseri; M, Navasery; Fasih, Ud Din; J, A. M. Zahedi; Kasra, Behzad; K, P. Lim; A Lavari, Monghadam; S, K. Chen

    2013-08-01

    Three-dimensional ZnO multipods are successfully synthesized on functional substrates using the vapor transport method in a quartz tube. The functional surfaces, which include two different distributions of Ag nanoparticles and a layer of commercial Ag nanowires, are coated onto silicon substrates before the growth of ZnO nanostructures. The structures and morphologies of the ZnO/Ag heterostructures are investigated using X-ray diffraction and field emission scanning electron microscopy. The sizes and shapes of the Ag particles affect the growth rates and initial nucleations of the ZnO structures, resulting in different numbers and shapes of multipods. They also influence the orientation and growth quality of the rods. The optical properties are studied by photoluminescence, UV-vis, and Raman spectroscopy. The results indicate that the surface plasmon resonance strongly depends on the sizes and shapes of the Ag particles.

  12. Optical Properties of ZnO-Alloyed Nanocrystalline Films

    DOE PAGES

    Che, Hui; Huso, Jesse; Morrison, John L.; ...

    2012-01-01

    ZnO is emore » merging as one of the materials of choice for UV applications. It has a deep excitonic energy level and a direct bandgap of ~3.4 eV. Alloying ZnO with certain atomic constituents adds new optical and electronic functionalities to ZnO. This paper presents research on M g x Z n 1 − x O and Z n S 1 − x O x nanocrystalline flexible films, which enable tunable optical properties in the deep-UV and in the visible range. The ZnO and Mg 0 .3 Zn 0 .7 O films were found to have bandgaps at 3.35 and 4.02 eV, respectively. The photoluminescence of the Mg 0 .3 Zn 0 .7 O exhibited a bandedge emission at 3.95 eV, and at lower energy 3.38 eV due to the limited solubility inherent to these alloys. ZnS 0 .76 O 0 .24 and ZnS 0 .16 O 0 .84 were found to have bandgaps at 3.21 and 2.65 eV, respectively. The effect of nitrogen doping on ZnS 0 .16 O 0 .84 is discussed in terms of the highly lattice mismatched nature of these alloys and the resulting valence-band modification.« less

  13. Photoinduced Effects in the ZnO Luminescence Spectra

    NASA Astrophysics Data System (ADS)

    Akopyan, I. Kh.; Labzovskaya, M. E.; Novikov, B. V.; Lisachenko, A. A.; Serov, A. Yu.; Filosofov, N. G.

    2018-02-01

    The effect of intense UV irradiation on the photoluminescence (PL) spectra of ZnO powders and nanocrystalline films obtained by atomic layer deposition (ALD) was investigated. At room temperature, the behavior of the spectra under continuous UV irradiation in multiple vacuum-atmosphere cycles was studied. The changes in the intensities of exciton radiation and radiation in the "green" band region, associated with the phenomena of oxygen photodesorption and photoadsorption, are discussed. In the temperature range of 5-300 K, the effect of strong UV irradiation on the near-edge luminescence spectrum of ZnO films was studied. The nature of a new line arising in the photoluminescence spectra of an irradiated film in the region of emission of bound excitons is discussed.

  14. Vertical resistivity in nanocrystalline ZnO and amorphous InGaZnO

    NASA Astrophysics Data System (ADS)

    McCandless, Jonathan P.; Leedy, Kevin D.; Schuette, Michael L.

    2018-02-01

    The goal is to gain additional insight into physical mechanisms and the role of microstructure on the formation of ohmic contacts and the reduction of contact resistance. We have measured a decreasing film resistivity in the vertical direction with increasing thickness of pulsed-laser deposited ZnO and IGZO. As the ZnO thickness increases from 122 nm to 441 nm, a reduction in resistivity from 3.29 Ω-cm to 0.364 Ω-cm occurred. The IGZO resistivity changes from 72.4 Ω-cm to 0.642 Ω-cm as the film is increased from 108nm to 219 nm. In the ZnO, the size of nanocolumnar grains increase with thickness resulting in fewer grain boundaries, and in the amorphous IGZO, the thicker region exhibits tunnel-like artifacts which may contribute to the reduced resistivity.

  15. Nanocrystalline Iron-Ore-Based Catalysts for Fischer-Tropsch Synthesis.

    PubMed

    Yong, Seok; Park, Ji Chan; Lee, Ho-Tae; Yang, Jung-Il; Hong, SungJun; Jung, Heon; Chun, Dong Hyun

    2016-02-01

    Nanocrystalline iron ore particles were fabricated by a wet-milling process using an Ultra Apex Mill, after which they were used as raw materials of iron-based catalysts for low-temperature Fischer-Tropsch synthesis (FTS) below 280 degrees C, which usually requires catalysts with a high surface area, a large pore volume, and a small crystallite size. The wet-milling process using the Ultra Apex Mill effectively destroyed the initial crystallite structure of the natural iron ores of several tens to hundreds of nanometers in size, resulting in the generation of nanocrystalline iron ore particles with a high surface area and a large pore volume. The iron-ore-based catalysts prepared from the nanocrystalline iron ore particles effectively catalyzed the low-temperature FTS, displaying a high CO conversion (about 90%) and good C5+ hydrocarbon productivity (about 0.22 g/g(cat)(-h)). This demonstrates the feasibility of using the iron-ore-based catalysts as inexpensive and disposable catalysts for the low-temperature FTS.

  16. Characterization of nanocrystalline ZnO:Al films by sol-gel spin coating method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gareso, P. L., E-mail: pgareso@gmail.com; Rauf, N., E-mail: pgareso@gmail.com; Juarlin, E., E-mail: pgareso@gmail.com

    2014-09-25

    Nanocrystalline ZnO films doped with aluminium by sol-gel spin coating method have been investigated using optical transmittance UV-Vis and X-ray diffraction (X-RD) measurements. ZnO films were prepared using zinc acetate dehydrate (Zn(CH{sub 3}COO){sub 2}@@‡2H{sub 2}O), ethanol, and diethanolamine (DEA) as a starting material, solvent, and stabilizer, respectively. For doped films, AlCl{sub 3} was added to the mixture. The ZnO:Al films were deposited on a transparent conductive oxide (TCO) substrate using spin coating technique at room temperature with a rate of 3000 rpm in 30 sec. The deposited films were annealed at various temperatures from 400°C to 600°C during 60 minutes.more » The transmittance UV-Vis measurement results showed that after annealing at 400°C, the energy band gap profile of nanocrystalline ZnO:Al film was a blue shift. This indicated that the band gap of ZnO:Al increased after annealing due to the increase of crystalline size. As the annealing temperature increased the bandgap energy was a constant. In addition to this, there was a small oscillation occurring after annealing compared to the as–grown samples. In the case of X-RD measurements, the crystalinity of the films were amorphous before annealing, and after annealing the crystalinity became enhance. Also, X-RD results showed that structure of nanocrystalline ZnO:Al films were hexagonal polycrystalline with lattice parameters are a = 3.290 Å and c = 5.2531 Å.« less

  17. Synthesis, characteristics and antimicrobial activity of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Janaki, A. Chinnammal; Sailatha, E.; Gunasekaran, S.

    2015-06-01

    The utilization of various plant resources for the bio synthesis of metallic nano particles is called green technology and it does not utilize any harmful protocols. Present study focuses on the green synthesis of ZnO nano particles by Zinc Carbonate and utilizing the bio-components of powder extract of dry ginger rhizome (Zingiber officinale). The ZnO nano crystallites of average size range of 23-26 nm have been synthesized by rapid, simple and eco friendly method. Zinc oxide nano particles were characterized by using X-ray diffraction (XRD), Scanning Electron Microscope (SEM), Energy Dispersive X-ray spectroscopy (EDX). FTIR spectra confirmed the adsorption of surfactant molecules at the surface of ZnO nanoparticles and the presence of ZnO bonding. Antimicrobial activity of ZnO nano particles was done by well diffusion method against pathogenic organisms like Klebsiella pneumonia, Staphylococcus aureus and Candida albicans and Penicillium notatum. It is observed that the ZnO synthesized in the process has the efficient antimicrobial activity.

  18. Effects of oxide distributed in grain boundaries on microstructure stability of nanocrystalline metals

    NASA Astrophysics Data System (ADS)

    Zhou, Kai; Li, Hui; Biao Pang, Jin; Wang, Zhu

    2013-06-01

    Nanocrystalline copper and zinc prepared by high-pressure compaction method have been studied by positron lifetime spectroscopy associated with X-ray diffraction. For nanocrystalline Cu, mean grain sizes of the samples decrease after being annealed at 900 °C and increase during aging at 180 °C, revealing that the atoms exchange between the two regions. The positron lifetime results indicate that the vacancy clusters formed in the annealing process are unstable and decomposed at the aging time below 6 hours. In addition, the partially oxidized surfaces of the nanoparticles hinder the grain growth during the ageing at 180 °C, and the vacancy clusters inside the disorder regions which are related to Cu2O need longer aging time to decompose. In the case of nanocrystalline Zn, the open volume defect (not larger than divacancy) is dominant according to the high relative intensity for the short positron lifetime (τ1). The oxide (ZnO) inside the grain boundaries has been found having an effect to hinder the decrease of average positron lifetime (τav) during the annealing, which probably indicates that the oxide stabilizes the microstructure of the grain boundaries. For both nanocrystalline copper and zinc, the oxides in grain boundaries enhance the thermal stability of the microstucture, in spite of their different crystal structures. This effect is very important for the nanocrystalline materials using as radiation resistant materials.

  19. [Chemical modification on the surface of nano-particles of ZnO and its characterization].

    PubMed

    Yu, Hai-yin; Du, Jun; Gu, Jia-shan; Guan, Ming-yun; Wu, Zheng-cui; Ling, Qing; Sun, Yi-min

    2004-02-01

    After nano-particles (ZnO) had been encapsulated by a kind of water-soluble cellulose Hydoxyl-Propyl-Methyl Cellulose (HPMC), then methyl methacrylate was grafted onto the surface of them. Thus the surface of nano-ZnO had been successfully modified. FTIR, DTA and TEM were utilized to confirm the results. FTIR shows that HPMC was adsorbed onto the surface of ZnO, and PMMA was also grafted onto its surface, DTA says that the heat stability of HPMC, HPMC-g-PMMA and ZnO/HPMC-g-PMMA increased greatly, TEM photo demonstrates that polymer adhered onto the surface of nano-ZnO which was encapsulated by a layer of film-like polymer.

  20. Composite tin and zinc oxide nanocrystalline particles for enhanced charge separation in sensitized degradation of dyes.

    PubMed

    Bandara, J; Tennakone, K; Jayatilaka, P P B

    2002-10-01

    Composite ZnO/SnO2 catalyst has been studied for the sensitized degradation of dyes e.g. Eosin Y (2', 4', 5', 7'-tetrabromofluorescein disodium salt) in relation to efficient charge separation properties of the catalyst. Improved photocatalytic activity was observed in the case of ZnO/SnO2 composite catalyst compared to the catalytic activity of ZnO, SnO2 or TiO2 powder. The suppression of charge recombination in the composite ZnO/SnO2 catalyst led to higher catalytic activity for the degradation of Eosin Y. Degradation of Eosin follows concomitant formation of CO2 and formation of CO2 followed a pseudo-first-order rate. Photoelectrochemical cells constructed using SnO2, ZnO, ZnO/SnO2 sensitized with Eosin Y showed V(oc) of 175, 306, 512 mV/cm2 and I(sc) of 50, 70, 200 microA/cm2 respectively. A higher irreversible degradation of Eosin Y and higher V(oc) observed on composite ZnO/SnO2 than ZnO and SnO2 separately can be considered as a proof of enhanced charge separation of ZnO/SnO2 catalyst. Eosin Y showed a higher emission decreases on ZnO/SnO2 composite than on individual ZnO, SnO2 or TiO2 indicating dominance of the charge injection process. Photoinjected electrons are tunneled from ZnO to SnO2 particles accumulating injected electrons in the conduction bands allowing wider separation of excited carriers.

  1. Nanocrystalline nickel ferrite particles synthesized by non-hydrolytic sol-gel method and their composite with biodegradable polymer.

    PubMed

    Yin, H; Casey, P S; Chow, G M

    2012-11-01

    Targeted drug delivery has been one of the most important biomedical applications for magnetic particles. Such applications require magnetic particles to have functionalized surfaces/surface coatings that facilitate their incorporation into a polymer matrix to produce a polymer composite. In this paper, nanocrystalline nickel ferrite particles with an oleic acid surface coating were synthesized using a non-hydrolytic sol-gel method and incorporated into a biodegradable polymer matrix, poly(D,L-lactide) PLA prepared using a double emulsion method. As-synthesized nickel ferrite particles had a multi-crystalline structure with chemically adsorbed oleic acid on their surface. After forming the PLA composite, nickel ferrite particles were encapsulated in PLA microspheres. At low nickel ferrite concentrations, composites showed very similar surface charges to that of PLA. The composites were magnetically responsive and increasing the nickel ferrite concentration was found to increase magnetization of the composite.

  2. Trioctylphosphine-assisted morphology control of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  3. Trioctylphosphine-assisted morphology control of ZnO nanoparticles.

    PubMed

    Hong, Yun-Kun; Cho, GeonHee; Park, YoonSu; Oh, Soong Ju; Ha, Don-Hyung

    2018-06-01

    This study investigates the morphological change in colloidal ZnO nanoparticles (NPs) synthesized with trioctylphosphine (TOP). The addition of TOP to the synthesis causes an evolution in the shape of ZnO NPs to tadpole-like particles from quasi-spherical particles at 300 °C. The total length of the tadpole-like ZnO NPs can be modified by controlling the molar ratio of TOP to oleylamine (OLAM). The tadpole-like particles are elongated as the concentration of TOP increased but decreased when the addition of TOP is excessive. These tadpole-like ZnO NPs transform to quasi-spherical NPs regardless of the amount of TOP at a reaction time of 3 h at 300 °C. At 200 °C, the effect of TOP on the ZnO NP synthesis differs from that at 300 °C. The ZnO NPs synthesized by controlling the molar ratios of surfactant ligands (TOP:OLAM = 2:100 and 70:100) at 200 °C share similar amorphous structures, while a crystalline ZnO phase is formed when the reaction time is 3 h. X-ray photoelectron spectroscopy analysis shows that TOP influences the oxidation of ZnO and suggests that a combination of OLAM and TOP plays a role in controlling the shape of ZnO NPs. These results provide critical insights to the utilization of TOP for a shape controlling ligand in ZnO NPs and suggest a new route to design oxide NPs.

  4. Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinatha, N.; Nair, K. G. M.; Angadi, Basavaraj

    2015-10-01

    We report on the microstructure, electronic structure and optical properties of nanocrystalline Zn1-xCoxO (x=0, 0.01, 0.03, 0.05 and 0.07) particles prepared by solution combustion technique using L-Valine as fuel. The detailed structural and micro-structural studies were carried out by XRD, HRTEM and TEM-SAED respectively, which confirms the formation of single phased, nano-sized particles. The electronic structure was determined through NEXAFS and atomic multiplet calculations/simulations performed for various symmetries and valence states of 'Co' to determine the valance state, symmetry and crystal field splitting. The correlations between the experimental NEXAFS spectra and atomic multiplet simulations, confirms that, 'Co' present is in the 2+ valence state and substituted at the 'Zn' site in tetrahedral symmetry with crystal field splitting, 10Dq =-0.6 eV. The optical properties and 'Co' induced defect formation of as-synthesized materials were examined by using diffuse reflectance and Photoluminescence spectroscopy, respectively. Red-shift of band gap energy (Eg) was observed in Zn1-xCoxO samples due to Co (0.58 Å) substitution at Zn (0.60 Å) site of the host ZnO. Also, in PL spectra, a prominent pre-edge peak corresponds to ultraviolet (UV) emission around 360-370 nm was observed with Co concentration along with near band edge emission (NBE) of the wide band gap ZnO and all samples show emission in the blue region.

  5. Structural, morphological and magnetic properties of pure and Ni-doped ZnO nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Undre, Pallavi G.; Birajdar, Shankar D.; Kathare, R. V.; Jadhav, K. M.

    2018-05-01

    In this work pure and Ni-doped ZnO nanoparticles have been prepared by sol-gel method. Influence of nickel doping on structural, morphological and magnetic properties of prepared nanoparticles was investigated by X-ray diffraction technique (XRD), Scanning electron microscopy (SEM) and Pulse field magnetic hysteresis loop. X-ray diffraction pattern shows the formation of a single phase with hexagonal wurtzite structure of both pure and Ni-doped ZnO nanoparticles. The lattice parameters `an' and `c' of Ni-doped ZnO is slightly less than that of pure ZnO nanoparticles. The crystalline size of prepared nanoparticles is found to be in 29 and 31 nm range. SEM technique used to examine the surface morphology of samples, SEM image confirms the nanocrystalline nature of present samples. From the pulse field hysteresis loop technique pure and Ni-doped ZnO nanoparticles show diamagnetic and ferromagnetic behavior at room temperature respectively.

  6. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    NASA Astrophysics Data System (ADS)

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-07-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles.

  7. Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis

    NASA Astrophysics Data System (ADS)

    Arunkumar, S.; Kumaravel, P.; Velmurugan, C.; Senthilkumar, V.

    2018-01-01

    The formulation of nanocrystalline NiTi shape memory alloys has potential effects in mechanical stimulation and medical implantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and microhardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fracturing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninterrupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to 93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline intermetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses.

  8. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.

    ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less

  9. Achieving highly-enhanced UV photoluminescence and its origin in ZnO nanocrystalline films

    DOE PAGES

    Thapa, Dinesh; Huso, Jesse; Morrison, John L.; ...

    2016-06-14

    ZnO is an efficient luminescent material in the UV-range ~3.4 eV with a wide range of applications in optical technologies. Sputtering is a cost-effective and relatively straightforward growth technique for ZnO films; however, most as-grown films are observed to contain intrinsic defects which can significantly diminish the desirable UV-emission. In this research the defect dynamics and optical properties of ZnO sputtered films were studied via post-growth annealing in Ar or O 2 ambient, with X-ray diffraction (XRD), imaging, transmission and Urbach analysis, Raman scattering, and photoluminescence (PL). The imaging, XRD, Raman and Urbach analyses indicate significant improvement in crystal morphologymore » and band-edge characteristics upon annealing, which is nearly independent of the annealing environment. The native defects specific to the as-grown films, which were analyzed via PL, are assigned to Zn i related centers that luminesce at 2.8 eV. Their presence is attributed to the nature of the sputtering growth technique, which supports Zn-rich growth conditions. After annealing, in either environment the 2.8 eV center diminished accompanied by morphology improvement, and the desirable UV-PL significantly increased. The O 2 ambient was found to introduce nominal O i centers while the Ar ambient was found to be the ideal environment for the enhancement of the UV-light emission: an enhancement of ~40 times was achieved. The increase in the UV-PL is attributed to the reduction of Zn i-related defects, the presence of which in ZnO provides a competing route to the UV emission. Also, the effect of the annealing was to decrease the compressive stress in the films. Lastly, the dominant UV-PL at the cold temperature regime is attributed to luminescent centers not associated with the usual excitons of ZnO, but rather to structural defects.« less

  10. Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study

    PubMed Central

    Padmavathy, Nagarajan; Vijayaraghavan, Rajagopalan

    2008-01-01

    In this study, we investigate the antibacterial activity of ZnO nanoparticles with various particle sizes. ZnO was prepared by the base hydrolysis of zinc acetate in a 2-propanol medium and also by a precipitation method using Zn(NO3)2 and NaOH. The products were characterized by x-ray diffraction (XRD) analysis, transmission electron microscopy (TEM) and photoluminescence (PL) spectroscopy. Bacteriological tests such as minimum inhibitory concentration (MIC) and disk diffusion were performed in Luria-Bertani and nutrient agar media on solid agar plates and in liquid broth systems using different concentrations of ZnO by a standard microbial method for the first time. Our bacteriological study showed the enhanced biocidal activity of ZnO nanoparticles compared with bulk ZnO in repeated experiments. This demonstrated that the bactericidal efficacy of ZnO nanoparticles increases with decreasing particle size. It is proposed that both the abrasiveness and the surface oxygen species of ZnO nanoparticles promote the biocidal properties of ZnO nanoparticles. PMID:27878001

  11. Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition

    NASA Astrophysics Data System (ADS)

    Hu, Ping; Pan, De-an; Wang, Xin-feng; Tian, Jian-jun; Wang, Jian; Zhang, Shen-gen; Volinsky, Alex A.

    2011-03-01

    Nanocrystalline ZnFe 2O 4 powder was prepared by the auto-combustion method using citric acid, acetic acid, carbamide and acrylic acid as fuel additives. Pure spinel zinc ferrite with the crystallite size of about 15 nm can be obtained by using acrylic acid as fuel additive. Samples prepared using other fuel additives contain ZnO impurities. In order to eliminate ZnO impurities, the sample prepared with citric acid as fuel additive was annealed at different temperatures up to 1000 °C in air and in argon. Annealed powders have pure ZnFe 2O 4 phase when annealing temperature is higher than 650 °C in air. Sample annealed at 650 °C in air is paramagnetic. However, annealed powders become a mixture of Fe 3O 4 and FeO after annealing at 1000 °C in argon atmosphere due to Zn volatility and the reduction reaction.

  12. Near band edge emission characteristics of sputtered nano-crystalline ZnO films

    NASA Astrophysics Data System (ADS)

    Kunj, Saurabh; Sreenivas, K.

    2016-05-01

    Sputtered zinc oxide (ZnO) thin films deposited on unheated glass substrate under different sputtering gas mixtures (Ar+O2) have been investigated using X-ray diffraction and photo luminescence spectroscopy. Earlier reported studies on ZnO films prepared by different techniques exhibit either a sharp/broad near band edge (NBE) emission peak depending on the crystalline quality of the film. In the present study zinc oxide films, grown on unheated substrates, are seen to possess a preferred (002) orientation with a microstructure consisting of clustered nano-sized crystallites. The splitting in the near band edge emission (NBE) into three characteristic peaks is attributed to quantum confinement effect, and is observed specifically under an excitation of 270 nm. Deep level emission (DLE) in the range 400 to 700 nm is not observed indicating absence of deep level radiative defects.

  13. REVIEW ARTICLE: Structure, microstructure and physical properties of ZnO based materials in various forms: bulk, thin film and nano

    NASA Astrophysics Data System (ADS)

    Singh, Shubra; Thiyagarajan, P.; Mohan Kant, K.; Anita, D.; Thirupathiah, S.; Rama, N.; Tiwari, Brajesh; Kottaisamy, M.; Ramachandra Rao, M. S.

    2007-10-01

    ZnO is a unique material that offers about a dozen different application possibilities. In spite of the fact that the ZnO lattice is amenable to metal ion doping (3d and 4f), the physics of doping in ZnO is not completely understood. This paper presents a review of previous research works on ZnO and also highlights results of our research activities on ZnO. The review pertains to the work on Al and Mg doping for conductivity and band gap tuning in ZnO followed by a report on transition metal (TM) ion doped ZnO. This review also highlights the work on the transport and optical studies of TM ion doped ZnO, nanostructured growth (ZnO polycrystalline and thin films) by different methods and the formation of unique nano- and microstructures obtained by pulsed laser deposition and chemical methods. This is followed by results on ZnO encapsulated Fe3O4 nanoparticles that show promising trends suitable for various applications. We have also reviewed the non-linear characteristic studies of ZnO based heterostructures followed by an analysis on the work carried out on ZnO based phosphors, which include mainly the nanocrystalline ZnO encapsulated SiO2, a new class of phosphor that is suitable for white light emission.

  14. Synthesis of ZnO Photocatalysts Using Various Surfactants

    NASA Astrophysics Data System (ADS)

    Yao, Chengli; Zhu, Jinmiao; Li, Hongying; Zheng, Bin; Wei, Yanxin

    2017-12-01

    Zinc oxide (ZnO) nanostructured materials have received significant attention because of their unique physicochemical and electronic properties. In particular, the functional properties of ZnO are owed to its morphology and defect structure. ZnO particles were successfully synthesized by chemical precipitation. CTAB (cetyltrimethylammonium bromide), BS-12 (dodecyl dimethyl betaine) and graphene oxide (GO) were selected as templates to induce the formation of ZnO, respectively. By varying the amount of surfactant added during the synthesis process, the structural properties and the crystalline phase of the synthesized nanospheres were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), ultraviolet and visible spectrophotometry (UV‒Vis). Simultaneously, photo catalytic degradation of Rhodamine B (RhB) was carried out under natural sunlight irradiation while ZnO or ZnO/GO particles were used as catalyst. GO is prone to induce formation of wurtzite hexagonal phase of ZnO. Compared with CTAB and BS-12, ZnO/GO composites had a remarkably photocatalytic degradation.

  15. Improved efficiency of ZnO hierarchical particle based dye sensitized solar cell by incorporating thin passivation layer in photo-anode

    NASA Astrophysics Data System (ADS)

    Das, Priyanka; Mondal, Biswanath; Mukherjee, Kalisadhan

    2018-01-01

    Present article describes the DSSC performances of photo-anodes prepared using hydrothermal route derived ZnO particles having dissimilar morphologies i.e. simple micro-rod and nano-tips decorated micro-rod. The surface of nano-tips decorated micro-rod is uneven and patterned which facilitate more dye adsorption and better scattering of the incident light resulting superior photo-conversion efficiency (PCE) ( η 1.09%) than micro-rod ZnO ( η 0.86%). To further improve the efficiency of nano-tips decorated micro-rod ZnO based DSSC, thin passivation layer of ZnO is introduced in the corresponding photo-anode and a higher PCE ( η 1.29%) is achieved. The compact thin passivation layer here expedites the transportation of photo-excited electrons, restricts the undesired recombination reactions and prevents the direct contact of electrolyte with conducting substrates. Attempt is made to understand the effect of passivation layer on the transportation kinetics of photo-excited electrons by analyzing the electrochemical impedance spectra of the developed cells.

  16. [Influence of different sol-gel system on the luminescence of nanocrystalline ZnO powder].

    PubMed

    Guo, Shu-xia; Zhang, Xing-tang; Zhang, Zhong-suo; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang

    2005-08-01

    ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of powder samples was examined by XRD and TEM. The results indicate that the two ZnO samples have the same crystal and energy band structure. Their photoluminescence (PL) spectra in ultraviolet region are analogous, but their photoluminescence (PL) spectra in visible region are different. The reason is that the two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.

  17. [Influence of different sol-gel systems on the luminescence of nanocrystalline ZnO powders].

    PubMed

    Guo, Shu-xia; Zhang, Zhong-suo; Zhang, Xing-tang; Zhao, Hui-ling; Li, Yun-cai; Huang, Ya-bin; Du, Zu-liang

    2005-11-01

    ZnO nanopowders were prepared by the sol-gel techniques with two kinds of solvent. Microstructure of the powdersamples was examined by XRD and TEM. The results indicate that two ZnO samples have the same crystal and energy band structure. Their photolurminescence (PL) spectra in the ultraviolet region are analogous, but their photoluminescence (PL) spectra in the visible region are different. The reason is that two kinds of solvent with different polarity result in the difference in configuration and distribution of the sample surface states in the two systems.

  18. Synthesis of Mesoporous Nanocrystalline Zirconia by Surfactant-Assisted Hydrothermal Approach.

    PubMed

    Nath, Soumav; Biswas, Ashik; Kour, Prachi P; Sarma, Loka S; Sur, Ujjal Kumar; Ankamwar, Balaprasad G

    2018-08-01

    In this paper, we have reported the chemical synthesis of thermally stable mesoporous nanocrystalline zirconia with high surface area using a surfactant-assisted hydrothermal approach. We have employed different type of surfactants such as CTAB, SDS and Triton X-100 in our synthesis. The synthesized nanocrystalline zirconia multistructures exhibit various morphologies such as rod, mortar-pestle with different particle sizes. We have characterized the zirconia multistructures by X-ray diffraction study, Field emission scanning electron microscopy, Attenuated total refection infrared spectroscopy, UV-Vis spectroscopy and photoluminescence spectroscopy. The thermal stability of as synthesized zirconia multistructures was studied by thermo gravimetric analysis, which shows the high thermal stability of nanocrystalline zirconia around 900 °C temperature.

  19. Nanocrystalline-to-amorphous transition in nanolaminates grown by low temperature atomic layer deposition and related mechanical properties

    NASA Astrophysics Data System (ADS)

    Raghavan, R.; Bechelany, M.; Parlinska, M.; Frey, D.; Mook, W. M.; Beyer, A.; Michler, J.; Utke, I.

    2012-05-01

    We report on a comprehensive structural and nanoindentation study of nanolaminates of Al2O3 and ZnO synthesized by atomic layer deposition (ALD). By reducing the bilayer thickness from 50 nm to below 1 nm, the nanocrystal size could be controlled in the nanolaminate structure. The softer and more compliant response of the multilayers as compared to the single layers of Al2O3 and ZnO is attributed to the structural change from nanocrystalline to amorphous at smaller bilayer thicknesses. It is also shown that ALD is a unique technique for studying the inverse Hall-Petch softening mechanism (E. Voce and D. Tabor, J. Inst. Metals 79(12), 465 (1951)) related to grain size effects in nanomaterials.

  20. Spectroscopic Study of Deep Level Emissions from Acceptor Defects in ZnO Thin Films with Oxygen Rich Stoichiometry

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.

    2013-10-01

    This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.

  1. Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors.

    PubMed

    Huang, Heh-Chang; Hsieh, Tsung-Eong

    2010-07-23

    ZnO particles with an average size of about 5 nm were prepared via a sol-gel chemical route and the silane coupling agent, (3-glycidyloxypropyl)-trimethoxysilane (GPTS), was adopted to enhance the dispersion of the ZnO nanoparticles in ethyl glycol (EG) solution. A ZnO surface potential as high as 66 mV was observed and a sedimentation test showed that the ZnO precursor solution remains transparent for six months of storage, elucidating the success of surface modification on ZnO nanoparticles. The ZnO thin films were then prepared by spin coating the precursor solution on a Si wafer and annealing treatments at temperatures up to 500 degrees C were performed for subsequent preparation of ZnO thin film transistors (TFTs). Microstructure characterization revealed that the coalescence of ZnO nanoparticles occurs at temperatures as low as 200 degrees C to result in a highly uniform, nearly pore-free layer. However, annealing at higher temperatures was required to remove organic residues in the ZnO layer for satisfactory device performance. The 500 degrees C-annealed ZnO TFT sample exhibited the best electrical properties with on/off ratio = 10(5), threshold voltage = 17.1 V and mobility (micro) = 0.104 cm(2) V(-1) s(-1).

  2. Comparative in vitro genotoxicity study of ZnO nanoparticles, ZnO macroparticles and ZnCl2 to MDCK kidney cells: Size matters.

    PubMed

    Kononenko, Veno; Repar, Neža; Marušič, Nika; Drašler, Barbara; Romih, Tea; Hočevar, Samo; Drobne, Damjana

    2017-04-01

    In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl 2 as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays. Additionally, the activities of both catalase (CAT) and glutathione S-transferase (GST) were evaluated in order to examine the potential impairment of cellular stress-defence capacity. The amount of dissolved Zn ions from ZnO NPs in the cell culture medium was evaluated by an optimized voltammetric method. The results showed that all the tested zinc compounds induced similar concentration-dependent cytotoxicity, but only ZnO NPs significantly elevated DNA and chromosomal damage, which was accompanied by a reduction of GST and CAT activity. Although Zn ion release from ZnO NPs in cell culture medium was significant, our results show that this reason alone cannot explain the ZnO genotoxicity seen in this experiment. We discuss that genotoxicity of ZnO NPs depends on the particle size, which determines the physical principles of their dissolution and cellular internalisation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Maple leaf (Acer sp.) extract mediated green process for the functionalization of ZnO powders with silver nanoparticles.

    PubMed

    Vivekanandhan, Singaravelu; Schreiber, Makoto; Mason, Cynthia; Mohanty, Amar Kumar; Misra, Manjusri

    2014-01-01

    The functionalization of ZnO powders with silver nanoparticles (AgNPs) through a novel maple leaf extract mediated biological process was demonstrated. Maple leaf extract was found to be a very effective bioreduction agent for the reduction of silver ions. The reduction rate of Ag(+) into Ag(0) was found to be much faster than other previously reported bioreduction rates and was comparable to the reduction rates obtained through chemical means. The functionalization of ZnO particles with silver nanoparticles through maple leaf extract mediated bioreduction of silver was investigated through UV-visible spectrophotometry, transmission electron microscopy (TEM), and X-ray diffraction analysis. It was found that the ZnO particles were coated with silver nanoparticles 5-20 nm in diameter. The photocatalytic ability of the ZnO particles functionalized with silver nanoparticles was found to be significantly improved compared to the photocatalytic ability of the neat ZnO particles. The silver functionalized ZnO particles reached 90% degradation of the dye an hour before the neat ZnO particles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Solvothermal synthesis of nanocrystalline TiO 2 in toluene with surfactant

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Choi, Byung-Chun; Seo, Hyo-Jin

    2003-10-01

    Synthesis of narrow-dispersed nanocrystalline TiO 2 was investigated by surfactant-aided solvothermal synthetic method in toluene solutions. Titanium isopropoxide (TIP) was used as precursor, which was decomposed at high temperature in the surfactant-dissolved solution. After the solution was thermally treated at 250°C for 20 h in an autoclave, low-dispersed TiO 2 nanocrystalline particles with average size of <6 nm were synthesized. When sufficient amount of TIP or surfactant was added in the solution, long dumbbell-shaped nanorods were formed, which may be due to the oriented growth of particles along [0 0 1] axis. Characterization of products was investigated by X-ray diffraction and transmission electron microscopy.

  5. The properties of ZnO nanofluids and the role of H2O2 in the disinfection activity against Escherichia coli.

    PubMed

    Zhang, Lingling; Li, Yu; Liu, Xiaoming; Zhao, Lihua; Ding, Yulong; Povey, Malcolm; Cang, Daqiang

    2013-08-01

    This work investigates the disinfection property of ZnO nanofluids, focusing on H2O2 production and the disinfection activities of ZnO suspensions with different particles/aggregates. The possible disinfection mechanisms of ZnO suspensions are analysed. In this work, a medium mill was used to produce ZnO suspensions with different sizes of particles/aggregates. During the milling process, five ZnO suspension samples (A-E) were produced. X-ray Diffraction (XRD) and Dynamic Light Scattering (DLS) analyses revealed that after milling, the size of ZnO particles/aggregates in the suspensions decreased. Disinfection tests, H2O2 detection assays and fluorescent analyses were used to explore the disinfection activities and mechanism of ZnO suspensions. Disinfection tests results showed that all the produced ZnO suspension exhibited disinfection activity against Escherichia coli. ZnO suspensions with smaller particles/aggregates showed better disinfection activities. The presence of H2O2 in ZnO suspension was analysed. The H2O2 detection assay suggested that there is 1 μM H2O2 in 0.2 g/l ZnO Sample A, while there was no H2O2 present in ZnO Sample E. Though results showed that there was no H2O2 present in ZnO Sample E, Sample E with a size of 93 nm showed the best disinfection activities. Fluorescence tests detected that the interaction between E. coli lipid vesicles and ZnO Sample E was much faster and more efficient. This study firstly demonstrated that ZnO suspensions with different particles/aggregates produced different amount of H2O2. Results suggested that H2O2 is responsible for the disinfection activity of larger ZnO particles/aggregates while the interaction between smaller ZnO particles/aggregates and vesicle lipids is responsible for the disinfection activity of smaller ZnO particles/aggregates. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  6. Synthesis of Single Crystalline ZnO Nanoparticles by Salt-Assisted Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Panatarani, Camellia; Lenggoro, I. Wuled; Okuyama, Kikuo

    2003-04-01

    LiNO3 was used as a shield in the preparation of single crystalline ZnO particles by a spray pyrolysis process in order to prevent agglomeration and enhance the crystallinity of the ZnO. LiNO3 was added to a precursor solution of zinc acetate dihydrate prior to its atomization by means of an ultrasonic transducer. Agglomerate-free particles having a mean particle size of 26 nm were successfully obtained after washing the product. X-ray diffractometry, field-emission scanning electron micrograph and transmission electron micrograph data indicate that the size and morphology of ZnO were strongly influenced by the operating temperature used and the residence time of the particle in the reactor.

  7. The Synthesis of Photocatalyst Material ZnO using the Simple Sonication Method

    NASA Astrophysics Data System (ADS)

    Faradis, R.; Azizah, E. N.; Marella, S. D.; Aini, N.; Prasetyo, A.

    2018-03-01

    ZnO is well known as photocatalyst material therefore potentially to applied in many purposes. The particle size of photocatalyst material influenced the catalytic activities. In this research, ZnO was synthesized using the simple sonication method to obtain the the smaller particle with sonication time variation respectively: 30, 60, 160, 360 minute. X-ray diffraction data showed that the synthesized material have wurtzite structure with space group P63 mc. The synthesized ZnO with 30 minutes sonication time produced the smallest particle size and have the lowest band gap energy (2.79 eV). The photocatalytic test at methylene blue also showed that the optimum activity was gained from ZnO which synthesized at 30 minute sonication time (degradation percentage of metylene blue is 77.93%).

  8. Pure and Mg-doped self-assembled ZnO nano-particles for the enhanced photocatalytic degradation of 4-chlorophenol.

    PubMed

    Selvam, N Clament Sagaya; Narayanan, S; Kennedy, L John; Vijaya, J Judith

    2013-10-01

    A novel self-assembled pure and Mg doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction, high resolution scanning electron microscopy, high resolution transmission electron microscopy, diffuse reflectance spectroscopy and photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts showed high crystallinity with a uniform size distribution of the NPs. The degradation of cholorphenols is highly mandatory in today's scenario as they are affecting the environment adversely. Thus, the photocatalytic degradation of 4-chlorophenol (4-CP), a potent endocrine disrupting chemical in aqueous medium was investigated by both pure and Mg-doped ZnO NPs under UV-light irradiation in the present study. The influence of the Mg content on the structure, morphology, PL character and photocatalytic activity of ZnO NPs were investigated systematically. Furthermore,the effect of different parameters such as 4-CP concentration, photocatalyst amount, pH and UV-light wavelength on the resulting photocatalytic activity was investigated.

  9. Effects of optical band gap energy, band tail energy and particle shape on photocatalytic activities of different ZnO nanostructures prepared by a hydrothermal method

    NASA Astrophysics Data System (ADS)

    Klubnuan, Sarunya; Suwanboon, Sumetha; Amornpitoksuk, Pongsaton

    2016-03-01

    The dependence of the crystallite size and the band tail energy on the optical properties, particle shape and oxygen vacancy of different ZnO nanostructures to catalyse photocatalytic degradation was investigated. The ZnO nanoplatelets and mesh-like ZnO lamellae were synthesized from the PEO19-b-PPO3 modified zinc acetate dihydrate using aqueous KOH and CO(NH2)2 solutions, respectively via a hydrothermal method. The band tail energy of the ZnO nanostructures had more influence on the band gap energy than the crystallite size. The photocatalytic degradation of methylene blue increased as a function of the irradiation time, the amount of oxygen vacancy and the intensity of the (0 0 0 2) plane. The ZnO nanoplatelets exhibited a better photocatalytic degradation of methylene blue than the mesh-like ZnO lamellae due to the migration of the photoelectrons and holes to the (0 0 0 1) and (0 0 0 -1) planes, respectively under the internal electric field, that resulted in the enhancement of the photocatalytic activities.

  10. Preparation, structural and luminescent properties of nanocrystalline ZnO films doped Ag by close space sublimation method

    NASA Astrophysics Data System (ADS)

    Khomchenko, Viktoriya; Mazin, Mikhail; Sopinskyy, Mykola; Lytvyn, Oksana; Dan'ko, Viktor; Piryatinskii, Yurii; Demydiuk, Pavlo

    2018-05-01

    The simple way for silver doping of ZnO films is presented. The ZnO films were prepared by reactive rf-magnetron sputtering on silicon and sapphire substrates. Ag doping is carried out by sublimation of the Ag source located at close space at atmospheric pressure in air. Then the ZnO and ZnO-Ag films were annealed in wet media. The microstructure and optical properties of the films were compared and studied by atomic force microscopy (AFM), X-ray diffraction (XRD), photoluminescence (PL) and cathodoluminescence (CL). XRD results indicated that all the ZnO films have a polycrystalline hexagonal structure and a preferred orientation with the c-axis perpendicular to the substrate. The annealing and Ag doping promote increasing grain's sizes and modification of grain size distribution. The effect of substrate temperature, substrate type, Ag doping and post-growth annealing of the films was studied by PL spectroscopy. The effect of Ag doping was obvious and identical for all the films, namely the wide visible bands of PL spectra are suppressed by Ag doping. The intensity of ultraviolet band increased 15 times as compared to their reference films on sapphire substrate. The ultraviolet/visible emission ratio was 20. The full width at half maximum (FWHM) for a 380 nm band was 14 nm, which is comparable with that of epitaxial ZnO. The data implies the high quality of ZnO-Ag films. Possible mechanisms to enhance UV emission are discussed.

  11. Deposition and characterization of ZnSe nanocrystalline thin films

    NASA Astrophysics Data System (ADS)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  12. Transparent nanocrystalline ZnO and ZnO:Al coatings obtained through ZnS sols

    NASA Astrophysics Data System (ADS)

    Kolobkova, E. V.; Evstropiev, S. K.; Nikonorov, N. V.; Vasilyev, V. N.; Evstropyev, K. S.

    2017-11-01

    Thin and uniform ZnO and ZnO:Al coatings were prepared on glass surfaces by using film-forming colloidal solutions containing small ZnS nanoparticles and polyvinylpyrrolidone as a polymer stabilizer. Film-forming ZnS sols were synthesized in the mixed water-propanol-2 solutions by chemical reaction between zinc nitrate and sodium sulfide. The addition of modifying component such as Al(NO3)3 into the film-forming solutions allows one to obtain thin and uniform ZnO:Al coatings. An increase in the sodium sulfide content in film-forming solutions leads to the growth of light absorption in the UV. The evolution of a coating material at all technological stages from the ZnS sols up to the transparent ZnO and ZnO:Al2O3 coatings (the latter kind being denoted further, in accord with a common practice, by ZnO:Al) was studied using the optical spectroscopy, XRD analysis, DSC-TGA, and SEM methods. The chemical processes of decomposing salts and the polymer occur by heating the intermediate composite ZnS/polyvinylpyrrolidone coatings in the 280-500 °C temperature range. Experimental data show that the ZnO and ZnO:Al coatings prepared consist of the slightly elongated oxide nanoparticles. These coatings fully cover the glass surface and demonstrate a high transparency in the UV and visible.

  13. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, Richard W.; Nieman, G. William; Weertman, Julia R.

    1994-01-01

    A method for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material.

  14. Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity.

    PubMed

    Ates, Mehmet; Daniels, James; Arslan, Zikri; Farah, Ibrahim O; Rivera, Hilsamar Félix

    2013-01-01

    Brine shrimp (Artemia salina) larvae were exposed to different sizes of zinc (Zn) and zinc oxide (ZnO) nanoparticles (NPs) to evaluate their toxicity in marine aquatic ecosystems. Acute exposure was conducted in seawater with 10, 50 and 100 mg L(-1) concentrations of the NPs for 24 h and 96 h. Phase contrast microscope images confirmed the accumulation of the NPs inside the guts. Artemia were unable to eliminate the ingested particles, which was thought to be due to the formation of massive particles in the guts. Although the suspensions of the NPs did not exhibit any significant acute toxicity within 24 h, mortalities increased remarkably in 96 h and escalated with increasing concentration of NP suspension to 42% for Zn NPs (40-60 nm) (LC50∼ 100 mg L(-1)) and to about 34% for ZnO NPs (10-30 nm) (LC50 > 100 mg L(-1)). The suspensions of Zn NPs were more toxic to Artemia than those of ZnO NPs under comparable regimes. This effect was attributed to higher Zn(2+) levels (ca. up to 8.9 mg L(-1)) released to the medium from Zn NPs in comparison to that measured in the suspensions of ZnO NPs (ca. 5.5 mg L(-1)). In addition, the size of the nanopowders appeared to contribute to the observed toxicities. Although the suspensions possessed aggregates of comparable sizes, smaller Zn NPs (40-60 nm) were relatively more toxic than larger Zn NPs (80-100 nm). Likewise, the suspensions of 10-30 nm ZnO NPs caused higher toxicity than those of 200 nm ZnO NPs. Lipid peroxidation levels were substantially higher in 96 h (p < 0.05), indicating that the toxic effects were due to the oxidative stress.

  15. The chemical and catalytic properties of nanocrystalline metal oxides prepared through modified sol-gel synthesis

    NASA Astrophysics Data System (ADS)

    Carnes, Corrie Leigh

    The goal of this research was to synthesize, characterize and study the chemical properties of nanocrystalline metal oxides. Nanocrystalline (NC) ZnO, CuO, NiO, Al2O3, and the binary Al2O 3/MgO and ZnO/CuO were prepared through modified sol gel methods. These NC metal oxides were studied in comparison to the commercial (CM) metal oxides. The samples were characterized by XRD, TGA, FTIR, BET, and TEM. The NC samples were all accompanied by a significant increase in surface area and decrease in crystallite size. Several chemical reactions were studied to compare the NC samples to the CM samples. One of the reactions involved a high temperature reaction between carbon tetrachloride and the oxide to form carbon dioxide and the corresponding metal chloride. A similar high temperature reaction was conducted between the metal oxide and hydrogen sulfide to form water and the corresponding metal sulfide. A room temperature gas phase adsorption was studied where SO2 was adsorbed onto the oxide. A liquid phase adsorption conducted at room temperature was the destructive adsorption of paraoxon (a toxic insecticide). In all reactions the NC samples exhibited greater activity, destroying or adsorbing a larger amount of the toxins compared to the CM samples. To better study surface area effects catalytic reactions were also studied. The catalysis of methanol was studied over the nanocrystalline ZnO, CuO, NiO, and ZnO/CuO samples in comparison to their commercial counterparts. In most cases the NC samples proved to be more active catalysts, having higher percent conversions and turnover numbers. A second catalytic reaction was also studied, this reaction was investigated to look at the support effects. The catalysis of cyclopropane to propane was studied over Pt and Co catalysts. These catalysts were supported onto NC and CM alumina by impregnation. By observing differences in the catalytic behavior, support effects have become apparent.

  16. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  17. Long-term exposure of rapeseed (Brassica napus L.) to ZnO nanoparticles: anatomical and ultrastructural responses.

    PubMed

    Mousavi Kouhi, Seyed Mousa; Lahouti, Mehrdad; Ganjeali, Ali; Entezari, Mohammad H

    2015-07-01

    Rapid development of nanotechnology in recent years has raised concerns about nanoparticle (NPs) release into the environment and its adverse effects on living organisms. The present study is the first comprehensive report on the anatomical and ultrastructural changes of a variety of cells after long-term exposure of plant to NPs or bulk material particles (BPs). Light and electron microscopy revealed some anatomical and ultrastructural modifications of the different types of cell in the root and leaf, induced by both types of treatment. Zinc oxide (ZnO) BPs-induced modifications were surprisingly more than those induced by ZnO NPs. The modifications induced by ZnO BPs or ZnO NPs were almost similar to those induced by excess Zn. Zn content of the root and leaf of both ZnO NPs- and ZnO BPs-treated plants was severely increased, where the increase was greater in the plants treated with ZnO BPs. Overall, these results indicate that the modifications induced by ZnO particles can be attributed, at least partly, to the Zn(2+) dissolution by ZnO particles rather than their absorption by root and their subsequent effects.

  18. Nanocrystalline ceramic materials

    DOEpatents

    Siegel, R.W.; Nieman, G.W.; Weertman, J.R.

    1994-06-14

    A method is disclosed for preparing a treated nanocrystalline metallic material. The method of preparation includes providing a starting nanocrystalline metallic material with a grain size less than about 35 nm, compacting the starting nanocrystalline metallic material in an inert atmosphere and annealing the compacted metallic material at a temperature less than about one-half the melting point of the metallic material. 19 figs.

  19. Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-04-01

    The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.

  20. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    PubMed Central

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-01-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions. PMID:27094203

  1. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae

    NASA Astrophysics Data System (ADS)

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-01

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te (particle) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs’ nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te (particle) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te (ion) efficiently determined the NPs toxicity associated with released ions.

  2. The neglected nano-specific toxicity of ZnO nanoparticles in the yeast Saccharomyces cerevisiae.

    PubMed

    Zhang, Weicheng; Bao, Shaopan; Fang, Tao

    2016-04-20

    Nanoparticles (NPs) with unique physicochemical properties induce nano-specific (excess) toxicity in organisms compared with their bulk counterparts. Evaluation and consideration of nano-specific toxicity are meaningful for the safe design and environmental risk assessment of NPs. However, ZnO NPs have been reported to lack excess toxicity for diverse organisms. In the present study, the nano-specific toxicity of ZnO NPs was evaluated in the yeast Saccharomyces cerevisiae. Nano-specific toxicity of ZnO NPs was not observed in the wild type yeast. However, the ZnO NPs induced very similar nano-specific toxicities in the three mutants with comparable log Te ((particle)) values (0.64 vs 0.65 vs 0.62), suggesting that the mutants were more sensitive and specific for the NPs' nano-specific toxicity. The toxic effects in the yeast were slightly attributable to dissolved zinc ions from the ZnO (nano or bulk) particles. Oxidative damage and mechanical damage contributed to the toxic effect of the ZnO particles. The mechanism of mechanical damage is proposed to be an inherent characteristic underlying the nano-specific toxicity in the mutants. The log Te ((particle)) was a useful parameter for evaluation of NPs nano-specific toxicity, whereas log Te ((ion)) efficiently determined the NPs toxicity associated with released ions.

  3. Synthesis and characterization of Ni doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Gedam, P. P.; Ganorkar, R. P.; Mahure, M. A.; Pahurkar, V. G.; Muley, G. G.

    2018-05-01

    In this paper, we present synthesis of L-valine assisted surface modification of Ni doped ZnO nanoparticles (NPs) using chemical precipitation method. Samples were calcined at 500oC for 2h. Uncalcined and calcined samples were characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM) and ultraviolet-visible (UV-vis) spectroscopy. Ni doped ZnO NPs with average particle size of 8 nm have been successfully obtained using L-valine as surface modifying agent. Increase in the particle size was observed after the calcination. XRD and TEM studies confirmed the purity, surface morphology and hexagonal wurtzite crystal structure of ZnO NPs. UV-vis spectroscopy indicated the blue shift of excitons absorption wavelength and surface modification by L-valine.

  4. On the formation of nanocrystalline active zinc oxide from zinc hydroxide carbonate

    NASA Astrophysics Data System (ADS)

    Moezzi, Amir; Cortie, Michael; Dowd, Annette; McDonagh, Andrew

    2014-04-01

    The decomposition of zinc hydroxide carbonate, Zn5(CO3)2(OH)6 (ZHC), into the high surface area form of ZnO known as "active zinc oxide" is examined. In particular, the nucleation and evolution of the ZnO nanocrystals is of interest as the size of these particles controls the activity of the product. The decomposition process was studied using X-ray diffraction, thermogravimetric analysis, scanning electron microscopy, transmission electron microscopy and BET surface area measurements. At about 240 °C ZHC decomposes to porous ZnO in a single step. The product material has a specific surface area in the range of 47-65 m2 g-1 and initially has a crystallite size that is of the order of 10 nm. A further increase in temperature, however, causes the particles to coarsen to over 25 nm in diameter. In principle, the coarsening phenomenon may be interrupted to control the particle size.

  5. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  6. Silver film on nanocrystalline TiO{sub 2} support: Photocatalytic and antimicrobial ability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukoje, Ivana D., E-mail: ivanav@vinca.rs; Tomašević-Ilić, Tijana D., E-mail: tommashev@gmail.com; Zarubica, Aleksandra R., E-mail: zarubica2000@yahoo.com

    Highlights: • Simple photocatalytic rout for deposition of Ag on nanocrystalline TiO{sub 2} films. • High antibactericidal efficiency of deposited Ag on TiO{sub 2} support. • Improved photocatalytic performance of TiO{sub 2} films in the presence of deposited Ag. - Abstract: Nanocrystalline TiO{sub 2} films were prepared on glass slides by the dip coating technique using colloidal solutions consisting of 4.5 nm particles as a precursor. Photoirradiation of nanocrystalline TiO{sub 2} film modified with alanine that covalently binds to the surface of TiO{sub 2} and at the same time chelate silver ions induced formation of metallic silver film. Optical andmore » morphological properties of thin silver films on nanocrystalline TiO{sub 2} support were studied by absorption spectroscopy and atomic force microscopy. Improvement of photocatalytic performance of nanocrystalline TiO{sub 2} films after deposition of silver was observed in degradation reaction of crystal violet. Antimicrobial ability of deposited silver films on nanocrystalline TiO{sub 2} support was tested in dark as a function of time against Escherichia coli, Staphylococcus aureus, and Candida albicans. The silver films ensured maximum cells reduction of both bacteria, while the fungi reduction reached satisfactory 98.45% after 24 h of contact.« less

  7. Mechanical properties of nanocrystalline cobalt

    NASA Astrophysics Data System (ADS)

    Karimpoor, Amir A.; Erb, Uwe

    2006-05-01

    Due to their excellent wear and corrosion properties, nanocrystalline cobalt and several cobalt alloys made by electrodeposition are currently being developed as environmentally benign replacement coatings for hard chromium electrodeposits. The focus of this study is on the mechanical properties of nanocrystalline cobalt, which are currently not well understood. A comparison is presented for hardness, tensile properties, Charpy impact properties and fracture surface analysis of both nanocrystalline (grain size: 12 nm) and conventional polycrystalline (grain size: 4.8 m) cobalt. It is shown that the hardness and tensile strength of nanocrystalline cobalt is 2-3 times higher than for polycrystalline cobalt. However, in contrast to other nanocrystalline materials tested previously, nanocrystalline cobalt retains considerable ductility with elongation to fracture values up to 7%.

  8. [Raman studies of nanocrystalline BaTiO3 ceramics].

    PubMed

    Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui

    2008-12-01

    High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.

  9. Synthesis of nanocrystalline TiO 2 in toluene by a solvothermal route

    NASA Astrophysics Data System (ADS)

    Kim, Chung-Sik; Moon, Byung Kee; Park, Jong-Ho; Tae Chung, Su; Son, Se-Mo

    2003-07-01

    A solvothermal synthetic method to TiO 2 nanoparticles has been investigated in toluene solutions with titanium isopropoxide (TIP) as precursor. Weight ratios of precursor to solvent prepared in the mixture are 5/100, 10/100, 20/100, 30/100 and 40/100. At the weight ratio of 10/100, 20/100 and 30/100, TiO 2 nanocrystalline particles were obtained after synthesis at 250°C for 3 h in an autoclave. X-ray diffraction and tranmission electron microscopy shows that the product has uniform anatase structure with average particle size below 20 nm. As the composition of TIP in the solution increases, the particle size of TiO 2 powder tends to increase. At 5/100 and 40/100, however, pale yellow colloidal solution is obtained after synthesis and crystalline phase of TiO 2 is not produced. The specific surface area of the TiO 2 nanocrystalline powder was also investigated using BET surface area analyzer.

  10. Effect of ultrasonic treatment and temperature on nanocrystalline TiO 2

    NASA Astrophysics Data System (ADS)

    Kim, D. H.; Ryu, H. W.; Moon, J. H.; Kim, J.

    Nanocrystalline TiO 2 particles were precipitated from the ethanol solution of titanium isopropoxide (Ti(O- iPr) 4) and H 2O 2 by refluxing at 80 °C for 48 h. The obtained particles were filtered and dried at 100 °C for 12 h. The dried powder itself, the sample with heating at 400 °C, and the sample with ultrasonically treating were prepared to investigate the effects of post treatments on materials characteristics and electrochemical properties of nanocrystalline TiO 2. The X-ray diffraction patterns of all of the samples were fitted well to the anatase phase. The field emission-TEM image of as-prepared sample shows a uniform spherical morphology with 5 nm particle size and the sample heated at 400 °C shows slightly increased particle size of about 10 nm while maintaining spherical shape. The sample treated with ultrasonic for 5 h or more at room temperature shows high aspect ratio particle shape with an average diameter of 5 nm and a length of 20 nm. According to the results of the electrochemical testing, as-prepared sample, the sample heated at 400 °C for 3 h, and the sample treated with ultrasonic show initial capacities of 270, 310 and 340 mAh g -1, respectively.

  11. Zinc Vacancy Formation and its Effect on the Conductivity of ZnO

    NASA Astrophysics Data System (ADS)

    Khan, Enamul; Weber, Marc; Langford, Steve; Dickinson, Tom

    2010-03-01

    Exposing single crystal ZnO to 193-nm ArF excimer laser radiation can produce metallic zinc nanoparticles along the surface. The particle production mechanism appears to involve interstitial-vacancy pair formation in the near-surface bulk. Conductivity measurements made with one probe inside the laser spot and the other outside show evidence for rectifying behavior. Positron annihilation spectroscopy confirms the presence of Zn vacancies. We suggest that Zn vacancies are a possible source of p-type behavior in irradiated ZnO. Quadrupole mass spectroscopy shows that both oxygen and zinc are emitted during irradiation. Electron-hole pair production has previously been invoked to account for particle desorption from ZnO during UV illumination. Our results suggest that preexisting and laser-generated defects play a critical role in particle desorption and Zn vacancy formation.

  12. Size control mechanism of ZnO nanoparticles obtained in microwave solvothermal synthesis

    NASA Astrophysics Data System (ADS)

    Wojnarowicz, Jacek; Chudoba, Tadeusz; Koltsov, Iwona; Gierlotka, Stanislaw; Dworakowska, Sylwia; Lojkowski, Witold

    2018-02-01

    The aim of the paper is to explain the mechanism of zinc oxide (ZnO) nanoparticle (NP) size control, which enables the size control of ZnO NPs obtained in microwave solvothermal synthesis (MSS) within the size range between circa 20 and 120 nm through the control of water content in the solution of zinc acetate in ethylene glycol. Heavy water was used in the tests. The mechanism of ZnO NPs size control was explained, discussed and experimentally verified. The discovery and investigation of this mechanism was possible by tracking the fate of water molecules during the whole synthesis process. All the synthesis products were identified. It was indicated that the MSS of ZnO NPs proceeded through the formation and conversion of intermediates such as Zn5(OH)8(CH3COO)2 · xH2O. Esters and H2O were the by-products of the MSS reaction of ZnO NPs. We justified that the esterification reaction is the decisive stage that is a prerequisite of the formation of ZnO NPs. The following parameters of the obtained ZnO NPs and of the intermediate were determined: pycnometric density, specific surface area, phase purity, average particles size, particles size distribution and chemical composition. The ZnO NPs morphology and structure were determined using scanning electron microscopy.

  13. Nanostructured ZnO films with various morphologies prepared by ultrasonic spray pyrolysis and its growing process

    NASA Astrophysics Data System (ADS)

    Ma, H. L.; Liu, Z. W.; Zeng, D. C.; Zhong, M. L.; Yu, H. Y.; Mikmekova, E.

    2013-10-01

    Nanostructured ZnO films were prepared by the ultrasonic spray pyrolysis method using Zn(CH3COO)2·2H2O as a precursor. The effects of substrate temperature (Ts) on the morphology and properties were systematically studied. As the Ts increased from 430 °C to 610 °C, the morphology of the film transforms from closed packed nanosheets to dense nanocrystalline film and then to hexagonal nanorod array. The dense film formed at a temperature of 550 °C has the lowest electric resistivity and highest carrier concentration. The optical transmittance for all prepared samples was higher than 90%. The photoluminescence (PL) properties varied with the Ts due to the internal defect difference. The growth mechanism of ZnO film involves island growth and diffusion, which was evident by observing the samples prepared at various times.

  14. Synthesis and characterization of ZnO nanostructures using palm olein as biotemplate

    PubMed Central

    2013-01-01

    Background A green approach to synthesize nanomaterials using biotemplates has been subjected to intense research due to several advantages. Palm olein as a biotemplate offers the benefits of eco-friendliness, low-cost and scale-up for large scale production. Therefore, the effect of palm olein on morphology and surface properties of ZnO nanostructures were investigated. Results The results indicate that palm olein as a biotemplate can be used to modify the shape and size of ZnO particles synthesized by hydrothermal method. Different morphology including flake-, flower- and three dimensional star-like structures were obtained. FTIR study indicated the reaction between carboxyl group of palm olein and zinc species had taken place. Specific surface area enhanced while no considerable change were observed in optical properties. Conclusion Phase-pure ZnO particles were successfully synthesized using palm olein as soft biotemplating agent by hydrothermal method. The physico-chemical properties of the resulting ZnO particles can be tuned using the ratio of palm olein to Zn cation. PMID:23601826

  15. High-energy ball milling technique for ZnO nanoparticles as antibacterial material

    PubMed Central

    Salah, Numan; Habib, Sami S; Khan, Zishan H; Memic, Adnan; Azam, Ameer; Alarfaj, Esam; Zahed, Nabeel; Al-Hamedi, Salim

    2011-01-01

    Nanoparticles of zinc oxide (ZnO) are increasingly recognized for their utility in biological applications. In this study, the high-energy ball milling (HEBM) technique was used to produce nanoparticles of ZnO from its microcrystalline powder. Four samples were ball milled for 2, 10, 20, and 50 hours, respectively. The structural and optical modifications induced in the ‘as synthesized’ nanomaterials were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), and photoluminescence emission spectra (PL). SEM and TEM results show a gradual decrease in particle size from around 600 to ∼30 nm, with increased milling time. The initial microstructures had random shapes, while the final shape became quite spherical. XRD analysis showed ZnO in a hexagonal structure, broadening in the diffracted peaks and going from larger to smaller particles along with a relaxation in the lattice constant c. The value of c was found to increase from 5.204 to 5.217 Å with a decrease in particle size (600 to ∼30 nm). PL result showed a new band at around 365 nm, whose intensity is found to increase as the particles size decreases. These remarkable structural and optical modifications induced in ZnO nanoparticles might prove useful for various applications. The increase in c value is an important factor for increasing the antibacterial effects of ZnO, suggesting that the HEBM technique is quite suitable for producing these nanoparticles for this purpose. PMID:21720499

  16. Preparation of nanocrystalline TiN coated cubic boron nitride powders by a sol-gel process.

    PubMed

    Park, Hee S; Umer, M Adeel; Ryu, Ho J; Hong, Soon H

    2011-01-01

    Cubic boron nitride (cBN) particles coated with 20 wt% nanocrystalline TiN were prepared by coating the surface of cBN particles with TiO2, followed by nitridation with NH3 gas at 900 degrees C. Coating of TiO2 on cBN powders was accomplished by a sol-gel process from a solution of titanium (IV) isopropoxide and anhydrous ethanol. An amorphous TiO(x) layer of 50 nm thickness was homogenously formed on the surface of the cBN particles by the sol-gel process. The amorphous layer was then crystallized to an anatase TiO2 phase through calcination in air at 400 degrees C. The crystallized TiO2 layer was 50 nm in thickness, and the size of TiO2 particles comprising the layer was nearly 10 nm. The TiO2 on cBN surfaces was completely converted into nanocrystalline TiN of uniform particles 20 nm in size on cBN particles by nitridation under flowing NH3 gas.

  17. ZnO nanoparticles and their acarbose-capped nanohybrids as inhibitors for human salivary amylase.

    PubMed

    Shaik, Firdoz; Kumar, Anil

    2017-04-01

    The authors report a controlled synthesis of biocompatible ZnO and acarbose-capped nanohybrids, and examined the inhibition activities of these nanosystems with human salivary α -amylase (HSA) activity. XRD measurements reveal ZnO present in wurtzite phase with hexagonal structure. The average size of ZnO particles for the two studied nanosystems was estimated to lie between 10 to 12 nm using Scherrer equation. These particles depict the onset of absorption at about 320 nm and the band-gap emission at about 370 nm, which are fairly blue shifted as compared with the bulk ZnO and have been understood due to the size quantisation effect. The inhibitory action of thioglycerol capped ZnO nanoparticles (SP1) and acarbose drug (used for diabetes type II) capped ZnO (SP2) for HSA was observed to 61 and72%, respectively. The inhibition activity of the SP1 alone was found to be very similar to that of acarbose and the coating of these particles with drug (SP2) demonstrated an enhancement in inhibition activity of the enzyme by about 30%. From the inhibition studies, it is confirmed that these nanosystems showed better inhibition activity at physiological temperature and pH. These nanosystems are projected to have potential applications in diabetes type II control.

  18. Evaluation of anti-microbial activities of ZnO, citric acid and a mixture of both against Propionibacterium acnes.

    PubMed

    Bae, J Y; Park, S N

    2016-12-01

    In this study, anti-microbial activities of ZnO of three different particle sizes of citric acid (CA) and of mixtures of ZnO and CA were confirmed against Propionibacterium acnes. ZnO with the smallest particle size showed relatively high anti-microbial activity by disc diffusion assay and broth macrodilution assay. The mixtures of ZnO and CA also showed relatively high anti-microbial activity when the particle size of ZnO was the smallest. Furthermore, anti-microbial activities of ZnO, CA and the mixtures of ZnO and CA were compared through the checkerboard assay. The results indicated that a 1 : 1 ratio of ZnO and CA resulted in the highest anti-microbial activity. The substances were confirmed to have synergic anti-microbial effects. With the time-kill curve assay, the mixture of ZnO-containing CA reduced the surviving microbial content the most after 24 h. The results of our study suggest that ZnO may not only be an anti-microbial ingredient for the prevention of and treatment of acne. The results of our study suggest that ZnO may be an anti-microbial ingredient for the prevention of and treatment of acne when mixed with CA. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Comparative study on the physical properties of transition metal-doped (Co, Ni, Fe, and Mn) ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Azab, A. A.; Ateia, Ebtesam E.; Esmail, S. A.

    2018-07-01

    Nano-crystalline of TM-doped ZnO with general formula Zn0.97TM0.03O (TM: Mn, Fe, Co, and Ni) was prepared using sol-gel method. The dependence of crystal structure, morphology, and optical and magnetic properties on the type of transition metals was investigated. The XRD investigation of pure and TM-doped ZnO nanoparticles samples confirms the formation of single-phase hexagonal wurtzite structure. The estimated crystallite sizes are found in the range of 17 and 38 nm for the doped and pure samples, respectively. The obtained data suggest that the dopant type plays a vital role in the physical properties of the investigated samples. The optical band-gap energy Eg has been calculated from near infrared (NIR) and visible (VIS) reflectance spectra using the Kubelka-Munk function. Minimum value of 2.398 eV and maximum one of 3.29 eV were obtained for Manganese-doped ZnO and pure ZnO, respectively. The analysis of XRD and VSM of the samples confirms that the observed room-temperature (RT) ferromagnetism can be attributed to an intrinsic property of doped material sample and not due to formation of any secondary phase. The magnetic results show that Mn is the most effective dopant for producing ferromagnetism in nanoparticles of ZnO.

  20. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    NASA Astrophysics Data System (ADS)

    Ding, Ling; Zhang, Ruixue; Fan, Louzhen

    2013-02-01

    A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO.

  1. Biologically inspired rosette nanotubes and nanocrystalline hydroxyapatite hydrogel nanocomposites as improved bone substitutes

    NASA Astrophysics Data System (ADS)

    Zhang, Lijie; Rodriguez, Jose; Raez, Jose; Myles, Andrew J.; Fenniri, Hicham; Webster, Thomas J.

    2009-04-01

    Today, bone diseases such as bone fractures, osteoporosis and bone cancer represent a common and significant public health problem. The design of biomimetic bone tissue engineering materials that could restore and improve damaged bone tissues provides exciting opportunities to solve the numerous problems associated with traditional orthopedic implants. Therefore, the objective of this in vitro study was to create a biomimetic orthopedic hydrogel nanocomposite based on the self-assembly properties of helical rosette nanotubes (HRNs), the osteoconductive properties of nanocrystalline hydroxyapatite (HA), and the biocompatible properties of hydrogels (specifically, poly(2-hydroxyethyl methacrylate), pHEMA). HRNs are self-assembled nanomaterials that are formed from synthetic DNA base analogs in water to mimic the helical nanostructure of collagen in bone. In this study, different geometries of nanocrystalline HA were controlled by either hydrothermal or sintering methods. 2 and 10 wt% nanocrystalline HA particles were well dispersed into HRN hydrogels using ultrasonication. The nanocrystalline HA and nanocrystalline HA/HRN hydrogels were characterized by x-ray diffraction, transmission electron microscopy, and scanning electron microscopy. Mechanical testing studies revealed that the well dispersed nanocrystalline HA in HRN hydrogels possessed improved mechanical properties compared to hydrogel controls. In addition, the results of this study provided the first evidence that the combination of either 2 or 10 wt% nanocrystalline HA and 0.01 mg ml-1 HRNs in hydrogels greatly increased osteoblast (bone-forming cell) adhesion up to 236% compared to hydrogel controls. Moreover, this study showed that HRNs stimulated HA nucleation and mineralization along their main axis in a way that is very reminiscent of the HA/collagen assembly pattern in natural bone. In summary, the presently observed excellent properties of the biomimetic nanocrystalline HA/HRN hydrogel composites

  2. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum

    NASA Astrophysics Data System (ADS)

    Mukherjee, P.; Roy, M.; Mandal, B. P.; Dey, G. K.; Mukherjee, P. K.; Ghatak, J.; Tyagi, A. K.; Kale, S. P.

    2008-02-01

    A controlled and up-scalable biosynthetic route to nanocrystalline silver particles with well-defined morphology using cell-free aqueous filtrate of a non-pathogenic and commercially viable biocontrol agent Trichoderma asperellum is being reported for the first time. A transparent solution of the cell-free filtrate of Trichoderma asperellum containing 1 mM AgNO3 turns progressively dark brown within 5 d of incubation at 25 °C. The kinetics of the reaction was studied using UV-vis spectroscopy. An intense surface plasmon resonance band at ~410 nm in the UV-vis spectrum clearly reveals the formation of silver nanoparticles. The size of the silver particles using TEM and XRD studies is found to be in the range 13-18 nm. These nanoparticles are found to be highly stable and even after prolonged storage for over 6 months they do not show significant aggregation. A plausible mechanism behind the formation of silver nanoparticles and their stabilization via capping has been investigated using FTIR and surface-enhanced resonance Raman spectroscopy.

  3. New insights into the adsorption of 3-(trimethoxysilyl)propylmethacrylate on hydroxylated ZnO nanopowders.

    PubMed

    Bressy, Christine; Ngo, Van Giang; Ziarelli, Fabio; Margaillan, André

    2012-02-14

    Functionalization of zinc oxide (ZnO) nano-objects by silane grafting is an attractive method to provide nanostructured materials with a variety of surface properties. Active hydroxyl groups on the oxide surface are one of the causes governing the interfacial bond strength in nanohybrid particles. Here, "as-prepared" and commercially available zinc oxide nanopowders with a wide range of surface hydroxyl density were functionalized by a well-known polymerizable silane coupling agent, i.e., 3-(trimethoxysilyl)propylmethacrylate (MPS). Fourier transform infrared (FTIR) and solid-state (13)C and (29)Si nuclear magnetic resonance (NMR) spectroscopic investigations demonstrated that the silane coupling agent was fully hydrolyzed and linked to the hydroxyl groups already present on the particle surface through covalent and hydrogen bonds. Due to a basic catalyzed condensation of MPS with water, a siloxane layer was shown to be anchored to the nanoparticles through mono- and tridentate structures. Quantitative investigations were performed by thermogravimetric (TGA) and elemental analyses. The amount of silane linked to ZnO particles was shown to be affected by the amount of isolated hydroxyl groups available to react on the particle surface. For as-prepared ZnO nanoparticles, the number of isolated and available hydroxyl groups per square nanometer was up to 3 times higher than the one found on commercially available ZnO nanoparticles, leading to higher amounts of polymerizable silane agent linked to the surface. The MPS molecules were shown to be mainly oriented perpendicular to the oxide surface for all the as-prepared ZnO nanoparticles, whereas a parallel orientation was found for the preheated commercially ZnO nanopowders. In addition, ZnO nanoparticles were shown to be hydrophobized by the MPS treatment with water contact angles higher than 60°.

  4. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of polyacrylamide on morphology and electromagnetic properties of chrysanthemum-like ZnO particles

    NASA Astrophysics Data System (ADS)

    Yan, Jun-Feng; Zhang, Zhi-Yong; You, Tian-Gui; Zhao, Wu; Yun, Jiang-Ni; Zhang, Fu-Chun

    2009-10-01

    Through hydrothermal process, the chrysanthemum-like ZnO particles are prepared with zinc acetate dihydrate (Zn(CH3COO)2·2H2O) and sodium hydroxide (NaOH) used as main resources under the different concentrations of surfactant polyacrylamide (PAM). The microstructure, morphology and the electromagnetic properties of the as-prepared products are characterized by high-resolution transmissïon electron microscopy (HRTEM), field emission environment scanning electron microscope (FEESEM) and microwave vector network analyzer, respectively. The experimental results indicate that the as-prepared products are ZnO single crystalline with hexagona wurtzite structure, that the values of slenderness ratio Ld are different in different PAM concentrations, and that the good magnetic loss property is found in the ZnO products, and the average magnetic loss tangent tan δu increases with PAM concentration increasing, while the dielectric loss tangent tan δe decreases.

  5. Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia).

    PubMed

    Bhuvaneshwari, M; Iswarya, V; Vishnu, S; Chandrasekaran, N; Mukherjee, Amitava

    2018-07-01

    The rapid increase in production and usage of ZnO particles in recent years has instigated the concerns regarding their plausible effects on the environment. Current study explores the trophic transfer potential of ZnO particles of different sizes (50, 100 nm and bulk particles) from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia) and the contribution of ZnO (ions) (effect of dissolved Zn ions that remain in test medium after separation NPs) to the overall toxicity of ZnO (total) (impact of both particle and dissolved Zn ions). Toxicity and uptake of ZnO (total) and ZnO (ions) in algae were found to be dependent on the concentration and particle size. Feeding of Zn accumulated algae (517 ± 28, 354.7 ± 61 and 291 ± 20 µg/g dry wt.) post-exposure to 61 µM of ZnO (total) of 50, 100 nm and bulk ZnO particles caused a significant decrease in the survival (15-20%) of daphnia. A significant amount of Zn accumulation was observed in daphnia even after the 48 h depuration period. Biomagnification factor was found to be nearly 1 for all the sizes of ZnO particles tested. For 50 nm ZnO, the BMF was higher when compared to other two sizes, reaching the mean value of 1.06 ± 0.01 at 61 µM. Further analysis revealed that the dietary uptake of different sizes of ZnO particles caused ultra-structural damages and degradation of internal organs in daphnia. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Photocatalytic removal of doxycycline from aqueous solution using ZnO nano-particles: a comparison between UV-C and visible light.

    PubMed

    Pourmoslemi, Shabnam; Mohammadi, Ali; Kobarfard, Farzad; Amini, Mohsen

    2016-10-01

    Zinc oxide nano-particles were synthesized, characterized and used for photocatalytic degradation of doxycycline using UV-C and visible light. Effects of several operational factors including initial pH of antibiotic solution, initial antibiotic concentration and ZnO nano-particles loading amount were investigated. Comparing photocatalytic degradation and mineralization of doxycycline under UV-C and visible light showed successful application of the method under both light sources. However, reaction rate was higher under UV-C irradiation, which degraded doxycycline almost completely in 5 hours, and 68% mineralization was achieved. Synthesized ZnO nano-particles were successfully applied for photocatalytic degradation of doxycycline in a pharmaceutical wastewater sample. The process was fitted to the pseudo first order kinetic model with rate constants in the range of 6-22(×10 -3 ) mg L -1 min -1 with respect to initial concentration of doxycycline under UV-C irradiation. The Langmuir-Hinshelwood model was also employed for describing the photocatalytic reaction with surface reaction kinetic constant k c and equilibrium adsorption constant K LH values calculated as 0.12 mg L -1 min -1 and 2.2 L mg -1 , respectively. Degradation of doxycycline was followed by UV-visible spectroscopy and a validated stability indicating high-performance liquid chromatography method that was developed using stressed samples of doxycycline and could selectively determine doxycycline in the presence of its degradation products. Mass spectrometry was used for determining final degradation products.

  7. Electrochemical route to the synthesis of ZnO microstructures: its nestlike structure and holding of Ag particles

    PubMed Central

    2013-01-01

    Abstract A simple and facile electrochemical route was developed for the shape-selective synthesis of large-scaled series of ZnO microstructures, including petal, flower, sphere, nest and clew aggregates of ZnO laminas at room temperature. This route is based on sodium citrate-directed crystallization. In the system, sodium citrate can greatly promote ZnO to nucleate and directly grow by selectively capping the specific ZnO facets because of its excellent adsorption ability. The morphology of ZnO is tuned by readily adjusting the concentration of sodium citrate and the electrodeposition time. Among the series structures, the remarkable ZnO nestlike structure can be used as a container to hold not only the interlaced ZnO laminas but also Ag nanoparticles in the center. The special heterostructures of nestlike ZnO holding Ag nanoparticles were found to display the superior properties on the surface-enhanced Raman scattering. This work has signified an important methodology to produce a wide assortment of desired microstructures of ZnO. PACS 81 Materials science 81.07.-b nanoscale materials and structures Fabrication Characterization 81.15.-z Methods of deposition of films Coatings Film growth and epitaxy. PMID:23414592

  8. Transparent Conducting Oxides for Infrared Plasmonic Waveguides: ZnO (Preprint)

    DTIC Science & Technology

    2014-01-15

    dependence of mobility (µ) on thickness (d). 15. SUBJECT TERMS microcavity; polariton ; strong coupling; ZnO 16. SECURITY CLASSIFICATION OF: 17...dimensions below the diffraction limit. Keywords: microcavity; polariton ; strong coupling; ZnO INTRODUCTION The field of plasmonics has received...optical computing and chips, enhanced signal detectors, etc3. Surface plasmon polaritons (SPPs) are quasi-particles or excitations that result from

  9. Superparamagnetic nanocrystalline ZnFe2O4 with a very high Curie temperature.

    PubMed

    Deka, Sasanka; Joy, P A

    2008-08-01

    Studies on the magnetic properties of nanocrystalline ZnFe2O4 synthesized by an autocombustion method are reported. Superparamagnetic behavior is observed for the nanocrystalline materials with particle sizes of 8 nm and 17 nm, with superparamagnetic blocking temperatures of 65 K and 75 K, respectively. Magnetic hysteresis with very large coercivities of 533 Oe and 325 Oe, respectively, are observed at 12 K. Studies on the temperature variation of the magnetization above room temperature indicate that the Curie temperature is as high as approximately 800 K when compared to the paramagnetic nature of bulk zinc ferrite at room temperature.

  10. Organozinc Precursor-Derived Crystalline ZnO Nanoparticles: Synthesis, Characterization and Their Spectroscopic Properties.

    PubMed

    Liang, Yucang; Wicker, Susanne; Wang, Xiao; Erichsen, Egil Severin; Fu, Feng

    2018-01-04

    Crystalline ZnO -ROH and ZnO -OR (R = Me, Et, i Pr, n Bu) nanoparticles (NPs) have been successfully synthesized by the thermal decomposition of in-situ-formed organozinc complexes Zn(OR)₂ deriving from the reaction of Zn[N(SiMe₃)₂]₂ with ROH and of the freshly prepared Zn(OR)₂ under an identical condition, respectively. With increasing carbon chain length of alkyl alcohol, the thermal decomposition temperature and dispersibility of in-situ-formed intermediate zinc alkoxides in oleylamine markedly influenced the particle sizes of ZnO -ROH and its shape (sphere, plate-like aggregations), while a strong diffraction peak-broadening effect is observed with decreasing particle size. For ZnO -OR NPs, different particle sizes and various morphologies (hollow sphere or cuboid-like rod, solid sphere) are also observed. As a comparison, the calcination of the fresh-prepared Zn(OR)₂ generated ZnO -R NPs possessing the particle sizes of 5.4~34.1 nm. All crystalline ZnO nanoparticles are characterized using X-ray diffraction analysis, electron microscopy and solid-state ¹H and 13 C nuclear magnetic resonance (NMR) spectroscopy. The size effect caused by confinement of electrons' movement and the defect centres caused by unpaired electrons on oxygen vacancies or ionized impurity heteroatoms in the crystal lattices are monitored by UV-visible spectroscopy, electron paramagnetic resonance (EPR) and photoluminescent (PL) spectroscopy, respectively. Based on the types of defects determined by EPR signals and correspondingly defect-induced probably appeared PL peak position compared to actual obtained PL spectra, we find that it is difficult to establish a direct relationship between defect types and PL peak position, revealing the complication of the formation of defect types and photoluminescence properties.

  11. Method to grow pure nanocrystalline diamond films at low temperatures and high deposition rates

    DOEpatents

    Carlisle, John A [Plainfield, IL; Gruen, Dieter M [Downers Grove, IL; Auciello, Orlando [Bolingbrook, IL; Xiao, Xingcheng [Woodridge, IL

    2009-07-07

    A method of depositing nanocrystalline diamond film on a substrate at a rate of not less than about 0.2 microns/hour at a substrate temperature less than about 500.degree. C. The method includes seeding the substrate surface with nanocrystalline diamond powder to an areal density of not less than about 10.sup.10sites/cm.sup.2, and contacting the seeded substrate surface with a gas of about 99% by volume of an inert gas other than helium and about 1% by volume of methane or hydrogen and one or more of acetylene, fullerene and anthracene in the presence of a microwave induced plasma while maintaining the substrate temperature less than about 500.degree. C. to deposit nanocrystalline diamond on the seeded substrate surface at a rate not less than about 0.2 microns/hour. Coatings of nanocrystalline diamond with average particle diameters of less than about 20 nanometers can be deposited with thermal budgets of 500.degree. C.-4 hours or less onto a variety of substrates such as MEMS devices.

  12. Preparation and Characterization of ZnO Nanoparticles Supported on Amorphous SiO2

    PubMed Central

    Chen, Ying; Ding, Hao; Sun, Sijia

    2017-01-01

    In order to reduce the primary particle size of zinc oxide (ZnO) and eliminate the agglomeration phenomenon to form a monodisperse state, Zn2+ was loaded on the surface of amorphous silica (SiO2) by the hydrogen bond association between hydroxyl groups in the hydrothermal process. After calcining the precursors, dehydration condensation among hydroxyl groups occurred and ZnO nanoparticles supported on amorphous SiO2 (ZnO–SiO2) were prepared. Furthermore, the SEM and TEM observations showed that ZnO nanoparticles with a particle size of 3–8 nm were uniformly and dispersedly loaded on the surface of amorphous SiO2. Compared with pure ZnO, ZnO–SiO2 showed a much better antibacterial performance in the minimum inhibitory concentration (MIC) test and the antibacterial properties of the paint adding ZnO–SiO2 composite. PMID:28796157

  13. Effect of ultrafine zinc oxide (ZnO) nanoparticles on induction of oral tolerance in mice.

    PubMed

    Matsumura, Misa; Takasu, Nobuo; Nagata, Masafumi; Nakamura, Kazuichi; Kawai, Motoyuki; Yoshino, Shin

    2010-01-01

    Ultrafine nanoparticles of zinc oxide (ZnO) recently became available as a substitute for larger-size fine ZnO particles. However, the biological activity of ultrafine ZnO currently remains undefined. In the present study, we investigated the effect of ultrafine ZnO on oral tolerance that plays an important role in the prevention of food allergy. Oral tolerance was induced in mice by a single oral administration (i.e., gavage) of 25 mg of ovalbumin (OVA) 5 days prior to a subcutaneous immunization with OVA (Day 0). Varying doses of ultrafine (diameter: approximately 21 nm) as well as fine (diameter: < 5 microm) ZnO particles were given orally at the same time during the OVA gavage. The results indicated that a single oral administration of OVA was followed by significant decreases in serum anti-OVA IgG, IgG(1), IgG(2a), and IgE antibodies and in the proliferative responses to the antigen by these hosts' spleen cells. The decreases in these immune responses to OVA were associated with a marked suppression of secretion of interferon (IFN)gamma, interleukin (IL)-5, and IL-17 by these lymphoid cells. Treatment with either ultrafine or fine ZnO failed to affect the oral OVA-induced suppression of antigen-specific IgG, IgG(1), IgG(2a), and IgE production or lymphoid cell proliferation. The suppression induced by the oral OVA upon secretion of IFN gamma, IL-5, and IL-17 was also unaffected by either size of ZnO. These results indicate that ultrafine particles of ZnO do not appear to modulate the induction of oral tolerance in mice.

  14. Size-controlled synthesis of ZnO quantum dots in microreactors

    NASA Astrophysics Data System (ADS)

    Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël

    2014-04-01

    In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35 °C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).

  15. Study on silver doped and undoped ZnO thin films working as capacitive sensor

    NASA Astrophysics Data System (ADS)

    Kiran, S.; Kumar, N. Santhosh; Kumar, S. K. Naveen

    2013-06-01

    Nanomaterials have been found to exhibit interesting properties like good conductivity, piezoelectricity, high band gap etc. among those metal oxide family, Zinc Oxide has become a material of interest among scientific community. In this paper, we present a method of fabricating capacitive sensors, in which Silver doped ZnO and pure ZnO nanoparticles act as active layer. For the synthesis of the nanoparticle, we followed biosynthesis method and wet chemical method for Ag and Ag doped ZnO nanoparticles respectively. Characterization has been done for both the particles. The XRD pattern taken for the Ag Doped ZnO nanoparticles confirmed the average size of the particles to be 15nm. AFM image of the sample is taken by doping on Silicon wafer. Also we have presented the results of CV characteristics and IV characteristics of the capacitive sensor.

  16. Thermally Stable Nanocrystalline Steel

    NASA Astrophysics Data System (ADS)

    Hulme-Smith, Christopher Neil; Ooi, Shgh Woei; Bhadeshia, Harshad K. D. H.

    2017-10-01

    Two novel nanocrystalline steels were designed to withstand elevated temperatures without catastrophic microstructural changes. In the most successful alloy, a large quantity of nickel was added to stabilize austenite and allow a reduction in the carbon content. A 50 kg cast of the novel alloy was produced and used to verify the formation of nanocrystalline bainite. Synchrotron X-ray diffractometry using in situ heating showed that austenite was able to survive more than 1 hour at 773 K (500 °C) and subsequent cooling to ambient temperature. This is the first reported nanocrystalline steel with high-temperature capability.

  17. Synthesis, characterization and photocatalysis enhancement of Eu2O3-ZnO mixed oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mohamed, W. S.; Abu-Dief, Ahmed M.

    2018-05-01

    Pure ZnO nanoparticles (NPs) and mixed Eu2O3 and ZnO NPs with different Eu2O3 ratios (5%, 10%, and 15%) were synthesized by a precipitation method under optimum conditions. The synthesized samples were characterized by means of X-ray diffraction, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy, and UV-vis diffuse reflectance spectroscopy. The as-synthesized ZnO NPs exhibit high phase purity and a highly crystalline wurtzite ZnO structure. The mixed Eu2O3 and ZnO NPs exhibit a Eu2O3 zinc blend phase in addition to the wurtzite phase of pure ZnO, confirming the high purity and good crystallinity of the as-synthesized samples. The high-purity formation of ZnO and Eu2O3 phases was confirmed by FTIR and Raman spectra. Microstructural analysis by SEM and TEM confirmed the sphere-like morphology with different particle sizes (29-40 nm) of the as-synthesized samples. The photocatalytic activities of pure ZnO NPs and mixed Eu2O3 and ZnO NPs for the degradation of methylene blue were evaluated under ultraviolet (UV) irradiation. The results show that Eu2O3 plays an important role in the enhancement of the photocatalytic properties of ZnO NPs. We found that mixed 5% Eu2O3 and ZnO NPs exhibit the highest photocatalytic activity (degradation efficiency of 96.5% after 180 min of UV irradiation) as compared with pure ZnO NPs (degradation efficiency of 80.3% after 180 min of UV irradiation). The increased photocatalytic activity of the optimum mixed Eu2O3 and ZnO NPs is due to the high crystallinity, high surface area with small particle size, and narrow energy gap.

  18. Eu-doped ZnO nanoparticles: Sonochemical synthesis, characterization, and sonocatalytic application.

    PubMed

    Khataee, Alireza; Karimi, Atefeh; Zarei, Mahmoud; Joo, Sang Woo

    2015-03-30

    Undoped and europium (III)-doped ZnO nanoparticles were prepared by a sonochemical method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) analysis. The crystalline sizes of undoped and 3% Eu-doped ZnO were found to be 16.04 and 8.22nm, respectively. The particle size of Eu-doped ZnO nanoparticles was much smaller than that of pure ZnO. The synthesized nanocatalysts were used for the sonocatalytic degradation of Acid Red 17. Among the Eu-doped ZnO catalysts, 3% Eu-doped ZnO nanoparticles showed the highest sonocatalytic activity. The effects of various parameters such as catalyst loading, initial dye concentration, pH, ultrasonic power, the effect of oxidizing agents, and the presence of anions were investigated. The produced intermediates of the sonocatalytic process were monitored by GC-Mass (GC-MS) spectrometry. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Efficient Second-Harmonic Generation in Nanocrystalline Silicon Nanoparticles.

    PubMed

    Makarov, Sergey V; Petrov, Mihail I; Zywietz, Urs; Milichko, Valentin; Zuev, Dmitry; Lopanitsyna, Natalia; Kuksin, Alexey; Mukhin, Ivan; Zograf, George; Ubyivovk, Evgeniy; Smirnova, Daria A; Starikov, Sergey; Chichkov, Boris N; Kivshar, Yuri S

    2017-05-10

    Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.

  20. Superhydrophobic surfaces using selected zinc oxide microrod growth on ink-jetted patterns.

    PubMed

    Myint, Myo Tay Zar; Kitsomboonloha, Rungrot; Baruah, Sunandan; Dutta, Joydeep

    2011-02-15

    The synthesis and properties of superhydrophobic surfaces based on binary surface topography made of zinc oxide (ZnO) microrod-decorated micropatterns are reported. ZnO is intrinsically hydrophilic but can be utilized to create hydrophobic surfaces by creating artificial roughness via microstructuring. Micron scale patterns consisting of nanocrystalline ZnO seed particles were applied to glass substrates with a modified ink-jet printer. Microrods were then grown on the patterns by a hydrothermal process without any further chemical modification. Water contact angle (WCA)(1) up to 153° was achieved. Different micro array patterned surfaces with varying response of static contact angle or sessile droplet analysis are reported. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation.

    PubMed

    Khanjani, Somayeh; Morsali, Ali; Joo, Sang W

    2013-03-01

    Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX). Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Nanocrystalline NiNd0.01Fe1.99O4 as a gas sensor

    NASA Astrophysics Data System (ADS)

    Shinde, Tukaram J.; Gadkari, Ashok B.; Jadhav, Sarjerao R.; Kumar, Surender; Dalawai, Sanjeev P.; Vasambekar, Pramod N.

    2015-06-01

    Nanocrystalline NiNd0.01Fe1.99O4 has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl2, LPG and C2H5OH. It was observed that NiNd0.01Fe1.99O4 is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.

  3. ZnO core spike particles and nano-networks and their wide range of applications

    NASA Astrophysics Data System (ADS)

    Wille, S.; Mishra, Y. K.; Gedamu, D.; Kaps, S.; Jin, X.; Koschine, T.; Bathnagar, A.; Adelung, R.

    2011-05-01

    In our approach we are producing a polymer composite material with ZnO core spike particles as concave fillers. The core spike particles are synthesized by a high throughput method. Using PDMS (Polydimethylsiloxane) as a matrix material the core spike particles achieve not only a high mechanical reinforcement but also influence other material properties in a very interesting way, making such a composite very interesting for a wide range of applications. In a very similar synthesis route a nanoscopic ZnO-network is produced. As a ceramic this network can withstand high temperatures like 1300 K. In addition this material is quite elastic. To find a material with these two properties is a really difficult task, as polymers tend to decompose already at lower temperatures and metals melt. Especially under ambient conditions, often oxygen creates a problem for metals at these temperatures. If this material is at the same time a semiconductor, it has a high potential as a multifunctional material. Ceramic or classical semiconductors like III-V or IIVI type are high temperature stable, but typically brittle. This is different on the nanoscale. Even semiconductor wires like silicon with a very small diameter do not easily built up enough stress that leads to a failure while being bent, because in a first order approximation the maximum stress of a fiber scales with its diameter.

  4. Improvement of Flame-made ZnO Nanoparticulate Thick Film Morphology for Ethanol Sensing

    PubMed Central

    Liewhiran, Chaikarn; Phanichphantandast, Sukon

    2007-01-01

    ZnO nanoparticles were produced by flame spray pyrolysis using zinc naphthenate as a precursor dissolved in toluene/acetonitrile (80/20 vol%). The particles properties were analyzed by XRD, BET. The ZnO particle size and morphology was observed by SEM and HR-TEM revealing spheroidal, hexagonal, and rod-like morphologies. The crystallite sizes of ZnO spheroidal and hexagonal particles ranged from 10-20 nm. ZnO nanorods were ranged from 10-20 nm in width and 20-50 nm in length. Sensing films were produced by mixing the nanoparticles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The morphology of the sensing films was analyzed by optical microscopy and SEM analysis. Cracking of the sensing films during annealing process was improved by varying the heating conditions. The gas sensing of ethanol (25-250 ppm) was studied at 400 °C in dry air containing SiC as the fluidized particles. The oxidation of ethanol on the surface of the semiconductor was confirmed by mass spectroscopy (MS). The effect of micro-cracks was quantitatively accounted for as a provider of extra exposed edges. The sensitivity decreased notably with increasing crack of sensing films. It can be observed that crack widths were reduced with decreasing heating rates. Crack-free of thick (5 μm) ZnO films evidently showed higher sensor signal and faster response times (within seconds) than cracked sensor. The sensor signal increased and the response time decreased with increasing ethanol concentration.

  5. In Situ Study on the Evolution of Multimodal Particle Size Distributions of ZnO Quantum Dots: Some General Rules for the Occurrence of Multimodalities.

    PubMed

    Schindler, Torben; Walter, Johannes; Peukert, Wolfgang; Segets, Doris; Unruh, Tobias

    2015-12-10

    Properties of small semiconductor nanoparticles (NPs) are strongly governed by their size. Precise characterization is a key requirement for tailored dispersities and thus for high-quality devices. Results of a careful analysis of particle size distributions (PSDs) of ZnO are presented combining advantages of UV/vis absorption spectroscopy, analytical ultracentrifugation, and small-angle X-ray scattering (SAXS). Our study reveals that careful cross-validation of these different methods is mandatory to end up with reliable resolution. PSDs of ZnO NPs are multimodal on a size range of 2-8 nm, a finding that is not yet sufficiently addressed. In the second part of our work the evolution of PSDs was studied using in situ SAXS. General principles for the appearance of multimodalities covering a temperature range between 15 and 45 °C were found which are solely determined by the aging state indicated by the size of the medium-sized fraction. Whenever this fraction exceeds a critical diameter, a new multimodality is identified, independent of the particular time-temperature combination. A fraction of larger particles aggregates first before a fraction of smaller particles is detected. Fixed multimodalities have not yet been addressed adequately and could only be evidenced due to careful size analysis.

  6. Synthesis Structural and Optical Properties Of (Co, Al) co-doped ZnO Nano Particles

    NASA Astrophysics Data System (ADS)

    Swapna, P.; Venkatramana Reddy, S.

    2018-02-01

    We prepared (Co, Al) co-doped ZnO nanostructures using the method chemical co-precipitation successfully, at room temperature using PEG (Poly ethylene glycol) as stabilizing agent. Samples are prepared with different concentrations by keeping aluminium at 5 mol percent constant and varying the concentration of cobalt from 1 to 5 mol percent. After the preparation all the samples are carefully subjected to characterizations such as XRD, SEM with EDS, TEM, PL and UV-VIS-NIR. XRD pattern shows that all the samples possess hexagonal wurtzite crystal structure having no secondary phases pertaining to Al or cobalt, which shows successful dissolution of the dopents. TEM results shows the accurate size of particles and is confirmed the XRD data. SEM images of all the samples shows that particles are in nearly spherical shape, EDS spectrum reveals that incorporation of cobalt and aluminum in host lattice. PL spectrum shows that all the samples containing two prominent peaks centered at 420 nm and 446 nm. UV-VIS-NIR spectra has shown three absorptions peaks in the range of wavelength 550 nm to 700 nm, which are ascribed as typical d-d transitions of cobalt ions.

  7. Study of magnetic and electrical properties of nanocrystalline Mn doped NiO.

    PubMed

    Raja, S Philip; Venkateswaran, C

    2011-03-01

    Diluted Magnetic Semiconductors (DMS) are intensively explored in recent years for its applications in spintronics, which is expected to revolutionize the present day information technology. Nanocrystalline Mn doped NiO samples were prepared using chemical co-precipitation method with an aim to realize room temperature ferromagnetism. Phase formation of the samples was studied using X-ray diffraction-Rietveld analysis. Scanning electron microscopy and Energy dispersive X-ray analysis results reveal the nanocrystalline nature of the samples, agglomeration of the particles, considerable particle size distribution and the near stoichiometry. Thermomagnetic curves confirm the single-phase formation of the samples up to 1% doping of Mn. Vibrating Sample Magnetometer measurements indicate the absence of ferromagnetism at room temperature. This may be due to the low concentration of Mn2+ ions having weak indirect coupling with Ni2+ ions. The lack of free carriers is also expected to be the reason for the absence of ferromagnetism, which is in agreement with the results of resistivity measurements using impedance spectroscopy. Arrhenius plot shows the presence of two thermally activated regions and the activation energy for the nanocrystalline Mn doped sample was found to be greater than that of undoped NiO. This is attributed to the doping effect of Mn. However, the dielectric constant of the samples was found to be of the same order of magnitude very much comparable with that of undoped NiO.

  8. Complete transformation of ZnO and CuO nanoparticles in ...

    EPA Pesticide Factsheets

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO4- exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO4 was added. Likewise, Cu XANES spectra for CuO and CuSO4-exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticulates is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles. Although a number of studies have discussed the transformation of nanoparticles during

  9. Synthesis of stable ZnO nanocolloids with enhanced optical limiting properties via simple solution method

    NASA Astrophysics Data System (ADS)

    Ramya, M.; Nideep, T. K.; Vijesh, K. R.; Nampoori, V. P. N.; Kailasnath, M.

    2018-07-01

    In present work, we report the synthesis of stable ZnO nanocolloids through a simple solution method which exhibit enhanced optical limiting threshold. The influences of reaction temperature on the crystal structure as well as linear and nonlinear optical properties of prepared ZnO nanoparticles were carried out. The XRD and Raman analysis reveal that the prepared ZnO nanoparticles retain the hexagonal wurtzite crystal structure. HRTEM analysis confirms the effect of reaction temperature, solvent effect on crystallinity as well as nanostructure of ZnO nanoparticles. It has been found that crystallinity and average diameter increase with reaction temperature where ethylene glycol act as both solvent and growth inhibiter. EDS spectra shows formation of pure ZnO nanoparticles. The direct energy band gap of the nanoparticles increases with decrease in particle size due to quantum confinement effect. The third order nonlinear optical properties of ZnO nanoparticles were investigated by z scan technique using a frequency doubled Nd-YAG nanosecond laser at 532 nm wavelength. The z-scan result reveals that the prepared ZnO nanoparticles exhibit self - defocusing nonlinearity. The two photon absorption coefficient and third - order nonlinear optical susceptibility increases with increasing particle size. The third-order susceptibility of the ZnO nanoparticles is found to be in the order of 10-10 esu, which is at least three order magnitude greater than the bulk ZnO. The optical limiting threshold of the nanoparticles varies in the range of 54 to 17 MW/cm2. The results suggest that ZnO nanoparticles considered as a promising candidates for the future photonic devices.

  10. Disorder induced semiconductor to metal transition and modifications of grain boundaries in nanocrystalline zinc oxide thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Fouran; Kumar, Vinod; Chaudhary, Babloo

    2012-10-01

    This paper report on the disorder induced semiconductor to metal transition (SMT) and modifications of grain boundaries in nanocrystalline zinc oxide thin film. Disorder is induced using energetic ion irradiation. It eliminates the possibility of impurities induced transition. However, it is revealed that some critical concentration of defects is needed for inducing such kind of SMT at certain critical temperature. Above room temperature, the current-voltage characteristics in reverse bias attributes some interesting phenomenon, such as electric field induced charge transfer, charge trapping, and diffusion of defects. The transition is explained by the defects induced disorder and strain in ZnO crystallitesmore » created by high density of electronic excitations.« less

  11. ZnO nanostructures with different morphology for enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Peter, I. John; Praveen, E.; Vignesh, G.; Nithiananthi, P.

    2017-12-01

    ZnO nanomaterials of different morphologies have been synthesized and the effect of morphology on Photocatalytic activity on natural dye has been investigated. Crystalline size and lattice strain of the synthesized particles are determined by XRD analysis and Williamson-Hall (W-H) method respectively. All other important physical parameters such as strain, stress and energy density values are also calculated using W-H analysis using different models such as uniform deformation model, uniform deformation stress model and uniform deformation energy density model. A shift in the peak of FTIR spectrum of ZnO is observed due to morphology effects. The SEM analysis reveals that the synthesized ZnO nanoparticles appear as flake, rod and dot. ZnO quantum dot exhibits higher photocatalytic activity comparing to the other morphologies. Larger surface area, high adsorption rate, large charge separation and the slow recombination of electrons/holes in ZnO dots establish dots as favorable morphology for good photocatalysis. Among the three, ZnO quantum dot shows three-times enhancement in the kinetic rate constants of photocatalysis. The results confirm that availability of specific (active) surface area, photocatalytic potential and quantum confinement of photo-induced carriers differ with morphology.

  12. Indium doped ZnO nano-powders prepared by RF thermal plasma treatment of In2O3 and ZnO

    NASA Astrophysics Data System (ADS)

    Lee, Mi-Yeon; Song, Min-Kyung; Seo, Jun-Ho; Kim, Min-Ho

    2015-06-01

    Indium doped ZnO nano-powders were synthesized by the RF thermal plasma treatment of In2O3 and ZnO. For this purpose, micron-sized ZnO powder was mixed with In2O3 powder at the In/Zn ratios of 0.0, 1.2, and 2.4 at. % by ball milling for 1 h, after which the mixtures were injected into RF thermal plasma generated at the plate power level of ˜140 kV A. As observed from the field emission scanning electron microscopy (FE-SEM) images of the RF plasma-treated powders, hexagonal prism-shaped nano-crystals were mainly obtained along with multi-pod type nano-particles, where the number of multi-pods decreased with increasing In/Zn ratios. In addition, the X-ray diffraction (XRD) data for the as-treated nano-powders showed the diffraction peaks for the In2O3 present in the precursor mixture to disappear, while the crystalline peaks for the single phase of ZnO structure shifted toward lower Bragg angles. In the UV-vis absorption spectra of the as-treated powders, redshifts were also observed with increases of the In/Zn ratios. Together with the FE-SEM images and the XRD data, the redshifts were indicative of the doping process of ZnO with indium, which took place during the RF thermal plasma treatment of In2O3 and ZnO.

  13. Structure and optical properties of ZnO with silver nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyadov, N. M., E-mail: nik061287@mail.ru; Gumarov, A. I.; Kashapov, R. N.

    Textured nanocrystalline ZnO thin films are synthesized by ion beam assisted deposition. According to X-ray diffraction data, the crystallite size is ∼25 nm. Thin (∼15 nm) ZnO layers containing Ag nanoparticles are formed in a thin surface region of the films by the implantation of Ag ions with an energy of 30 keV and a dose in the range (0.25–1) × 10{sup 17} ion/cm{sup 2}. The structure and optical properties of the layers are studied. Histograms of the size distribution of Ag nanoparticles are obtained. The average size of the Ag nanoparticles varies from 0.5 to 1.5–2 nm depending onmore » the Ag-ion implantation dose. The optical transmittance of the samples in the visible and ultraviolet regions increases, as the implantation dose is increased. The spectra of the absorption coefficient of the implanted films are calculated in the context of the (absorbing film)/(transparent substrate) model. It is found that the main changes in the optical-density spectra occur in the region of ∼380 nm, in which the major contribution to absorption is made by Ag nanoparticles smaller than 0.75 nm in diameter. In this spectral region, absorption gradually decreases, as the Ag-ion irradiation dose is increased. This is attributed to an increase in the average size of the Ag nanoparticles. It is established that the broad surface-plasmon-resonance absorption bands typical of nanocomposite ZnO films with Ag nanoparticles synthesized by ion implantation are defined by the fact that the size of the nanoparticles formed does not exceed 1.5–2 nm.« less

  14. Influence of C or In buffer layer on photoluminescence behaviour of ultrathin ZnO film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saravanan, K., E-mail: saravanan@igcar.gov.in; Jayalakshmi, G.; Krishnan, R.

    We study the effect of the indium or carbon buffer layer on the photoluminescence (PL) property of ZnO ultrathin films deposited on a Si(100) substrate. The surface morphology of the films obtained using scanning tunnelling microscopy shows spherical shaped ZnO nanoparticles of size ∼8 nm in ZnO/C/Si and ∼22 nm in ZnO/Si samples, while the ZnO/In/Si sample shows elliptical shaped ZnO particles. Further, the ZnO/C/Si sample shows densely packed ZnO nanoparticles in comparison with other samples. Strong band edge emission has been observed in the presence of In or C buffer layer, whereas the ZnO/Si sample exhibits poor PL emission. The influencemore » of C and In buffer layers on the PL behaviour of ZnO films is studied in detail using temperature dependent PL measurements in the range of 4 K–300 K. The ZnO/C/Si sample exhibits a multi-fold enhancement in the PL emission intensity with well-resolved free and bound exciton emission lines. Our experimental results imply that the ZnO films deposited on the C buffer layer showed higher particle density and better exciton emission desired for optoelectronic applications.« less

  15. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, X. D., E-mail: renxd@mail.ujs.edu.cn; Liu, R.; Zheng, L. M.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphousmore » carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.« less

  16. Nanocrystalline ZnCO3-A novel sorbent for low-temperature removal of H2S.

    PubMed

    Balichard, Kevin; Nyikeine, Camille; Bezverkhyy, Igor

    2014-01-15

    The reactivity of a nanocrystalline ZnCO3 toward H2S (0.2vol% in N2/H2 mixture) at 140-180°C was characterized by thermal gravimetric analysis and by breakthrough curves measurements. We have found that under used conditions transformation of ZnCO3 into ZnS is complete and the rate determining step of the sulfidation is the surface reaction. Such behavior is in strike contrast with that of ZnO whose sulfidation is severely limited by diffusion. The higher reactivity of ZnCO3 in comparison with ZnO is attributed to the different microstructure of ZnS layer formed in these materials after a partial sulfidation. As in ZnO-ZnS transformation the molar volume increases (from 14.5 to 23.8cm(3)/mol), a continuous protective ZnS layer is formed hampering the access of H2S to the non reacted ZnO core. By contrast, in ZnCO3-ZnS transformation the molar volume decreases (from 27.9 to 23.8cm(3)/mol), which produces a discontinuous non-protective ZnS layer enabling a complete transformation of ZnCO3 even at 140°C. The higher reactivity of ZnCO3 results in a considerable increase of the breakthrough sulfur capacity of the carbonate in comparison with oxide. The material has therefore a good potential for being used as a disposable sorbent for H2S capture at low temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Physical Characterization of Orthorhombic AgInS2 Nanocrystalline Thin Films

    NASA Astrophysics Data System (ADS)

    El Zawawi, I. K.; Mahdy, Manal A.

    2017-11-01

    Nanocrystalline thin films of AgInS2 were synthesized using an inert gas condensation technique. The grazing incident in-plane x-ray diffraction technique was used to detect the crystal structure of the deposited and annealed thin films. The results confirmed that the as-deposited film shows an amorphous behavior and that the annealed film has a single phase crystallized in an orthorhombic structure. The orthorhombic structure and particle size were detected using high-resolution transmission electron microscopy. The particle size ( P_{{s}}) estimated from micrograph images of the nanocrystalline films were increased from 6 nm to 12 nm as the film thickness increased from 11 nm to 110 nm. Accordingly, increasing the film thickness up to 110 nm reflects varying the optical band gap from 2.75 eV to 2.1 eV. The photocurrent measurements were studied where the fast rise and decay of the photocurrent are governed by the recombination mechanism. The electrical conductivity behavior was demonstrated by two transition mechanisms: extrinsic transition for a low-temperature range (300-400 K) and intrinsic transition for the high-temperature region above 400 K.

  18. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings.

    PubMed

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; Guo, Yunxia; Sun, Xin; Gao, Wei

    2017-08-10

    In this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomic percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.

  19. Influence of Weak External Magnetic Field on Amorphous and Nanocrystalline Fe-based Alloys

    NASA Astrophysics Data System (ADS)

    Degmová, J.; Sitek, J.

    2010-07-01

    Nanoperm, Hitperm and Finamet amorphous and nanocrystalline alloys were measured by Mössbauer spectrometry in a weak external magnetic field of 0.5 T. It was shown that the most sensitive parameters of Mössbauer spectra are the intensities of the 2nd and the 5th lines. Rather small changes were observed also in the case of internal magnetic field values. The spectrum of nanocrystalline Nanoperm showed the increase in A23 parameter (ratio of line intensities) from 2.4 to 3.7 and decrease of internal magnetic field from 20 to 19 T for amorphous subspectrum under the influence of magnetic field. Spectrum of nanocrystalline Finemet shown decrease in A23 parameter from 3.5 to 2.6 almost without a change in the internal magnetic field value. In the case of amorphous Nanoperm and Finemet samples, the changes are almost negligible. Hitperm alloy showed the highest sensitivity to the weak magnetic field, when the A23 parameter increased from 0.4 to 2.5 in the external magnetic fields. The A23 parameter of crystalline subspectrum increased from 2.7 to 3.8 and the value of internal magnetic field corresponding to amorphous subspectrum increased from 22 to 24 T. The behavior of nanocrystalline alloys under weak external magnetic field was analyzed within the three-level relaxation model of magnetic dynamics in an assembly of single-domain particles.

  20. Spectroscopic and fiber optic ethanol sensing properties Gd doped ZnO nanoparticles.

    PubMed

    Noel, J L; Udayabhaskar, R; Renganathan, B; Muthu Mariappan, S; Sastikumar, D; Karthikeyan, B

    2014-11-11

    We report the structural, optical and gas sensing properties of prepared pure and Gd doped ZnO nanoparticles through solgel method at moderate temperature. Structural studies are carried out by X-ray diffraction method confirms hexagonal wurtzite structure and doping induced changes in lattice parameters is observed. Optical absorption spectral studies shows red shift in the absorption peak corresponds to band-gap from 3.42 eV to 3.05 eV and broad absorption in the visible range after Gd doping is observed. Scanning electron microscopic studies shows increase in particle size where the particle diameters increase from few nm to micrometers after Gd doping. The clad modified ethanol fiber-optic sensor studies for ethanol sensing exhibits best sensitivity for the 3% Gd doped ZnO nanoparticles and the sensitivity get lowered incase of higher percentage of Gd doped ZnO sample. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Nanocrystalline zirconia can be amorphized by ion irradiation.

    PubMed

    Meldrum, A; Boatner, L A; Ewing, R C

    2002-01-14

    Nanocrystalline composites are finding applications in high-radiation environments due to their excellent mechanical and electronic properties. We show, however, that at the smallest particle sizes, radiation damage effects can be so strongly enhanced that under the right conditions, materials that have never been made amorphous can become highly susceptible to irradiation-induced amorphization. Because light-weight, high-strength nanocomposites are potential materials for spacecraft shielding and sensor systems, these fundamental results have significant implications for the design and selection of materials to be used in environments where a large ion flux will be encountered.

  2. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  3. Water-repellent coatings prepared by modification of ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Chakradhar, R. P. S.; Dinesh Kumar, V.

    Superhydrophobic coatings with a static water contact angle (WCA) > 150° were prepared by modifying ZnO nanoparticles with stearic acid (ZnO@SA). ZnO nanoparticles of size ˜14 nm were prepared by solution combustion method. X-ray diffraction (XRD) studies reveal that as prepared ZnO has hexagonal wurtzite structure whereas the modified coatings convert to zinc stearate. Field emission scanning electron micrographs (FE-SEM) show the dual morphology of the coatings exhibiting both particles and flakes. The flakes are highly fluffy in nature with voids and nanopores. Fourier transformed infrared (FTIR) spectrum shows the stearate ion co-ordinates with Zn2+ in the bidentate form. The surface properties such as surface free energy (γp) and work of adhesion (W) of the unmodified and modified ZnO coatings have been evaluated. The electron paramagnetic resonance (EPR) spectroscopy reveals that surface defects play a major role in the wetting behavior.

  4. Fabrication of ZnO nanoparticles based sensitive methanol sensor and efficient photocatalyst

    NASA Astrophysics Data System (ADS)

    Faisal, M.; Khan, Sher Bahadar; Rahman, Mohammed M.; Jamal, Aslam; Abdullah, M. M.

    2012-07-01

    ZnO nanoparticles (NPs) were prepared by hydrothermal treatment with starting materials (zinc chloride and urea) in the presence of ammonium hydroxide and characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and UV-vis spectroscopy. The synthesized nanoparticles are crystalline with wurtzite hexagonal phase having average particle size in the range of 80-130 nm. Photocatalytic activity of the prepared ZnO NPs was evaluated by the degradation of methylene blue and almost complete degradation (91.0%) takes place within 85 min of irradiation time. Prepared ZnO nanostructures possessed high photocatalytic activity when compared with TiO2-UV100. Additionally, the sensing properties of the ZnO films were investigated for various concentrations of methanol in liquid phase by simple I-V technique at room conditions. It was observed that ZnO thin film exhibits good sensitivity (0.9554 μA cm-2 mM-1) towards detection of methanol at room conditions.

  5. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Kang, Tianshu; Guan, Rongfa; Chen, Xiaoqiang; Song, Yijuan; Jiang, Han; Zhao, Jin

    2013-11-01

    There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications.

  6. Effect of synthesized ZnO nanoparticles on thermal conductivity and mechanical properties of natural rubber

    NASA Astrophysics Data System (ADS)

    Suntako, R.

    2018-01-01

    Zinc oxide (ZnO) is widely used in rubber industry as a cure activator for rubber vulcanization. In this work, comparison of cure characteristic, mechanical properties, thermal conductivity and volume swell testing in oil no.1 and oil no.3 between natural rubber (NR) filled synthesized ZnO nanoparticles (sZnO) by precipitation method and NR filled conventional ZnO (cZnO). The particle size of sZnO is 41.50 nm and specific area of 27.92 m2/g, the particle size of cZnO is 312.92 nm and specific surface area of 1.35 m2/g. It has been found that NR filled sZnO not only improves rubber mechanical properties, volume swell testing but also improves thermal conductivity and better than NR filled cZnO. Thermal conductivity of NR filled sZnO increases by 10.34%, 12.90% and 20.00%, respectively when compared with NR filled cZnO in same loading content (various concentrations of ZnO at 5, 8 and 10 parts per hundred parts of rubber). This is due to small particle size and large specific surface area of sZnO which lead to an increase in crosslinking in rubber chain and enhance heat transfer performance.

  7. Synthesis of ZnO and Zn nanoparticles in microwave plasma and their deposition on glass slides.

    PubMed

    Irzh, Alexander; Genish, Isaschar; Klein, Lior; Solovyov, Leonid A; Gedanken, Aharon

    2010-04-20

    This work represents a new method to synthesis of ZnO and/or Zn nanoparticles by means of microwave plasma whose electrons are the reducing agents. Glass quadratic slides sized 2.5 x 2.5 cm were coated by ZnO and/or Zn particles whose sizes ranged from a few micrometers to approximately 20 nm. The size of the particles can be controlled by the type of the precursor and its concentration. In the current paper, the mechanism of the reactions of ZnO and/or Zn formation was proposed. Longer plasma irradiation and lower precursor concentration favor the fabrication of metallic Zn nanoparticles. The nature of the precursor's ion (acetate, nitrate, or chloride) is also of importance in determining the composition of the product. The glass slides coated by ZnO and/or Zn nanoparticles were characterized by HR-SEM, HR-TEM, AFM, XRD, ESR, contact angle and diffuse reflectance spectroscopy (DRS).

  8. Solid state consolidation nanocrystalline copper-tungsten using cold spray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hall, Aaron Christopher; Sarobol, Pylin; Argibay, Nicolas

    It is well known that nanostructured metals can exhibit significantly improved properties compared to metals with conventional grain size. Unfortunately, nanocrystalline metals typically are not thermodynamically stable and exhibit rapid grain growth at moderate temperatures. This severely limits their processing and use, making them impractical for most engineering applications. Recent work has shown that a number of thermodynamically stable nanocrystalline metal alloys exist. These alloys have been prepared as powders using severe plastic deformation (e.g. ball milling) processes. Consolidation of these powders without compromise of their nanocrystalline microstructure is a critical step to enabling their use as engineering materials. Wemore » demonstrate solid-state consolidation of ball milled copper-tantalum nanocrystalline metal powder using cold spray. Unfortunately, the nanocrystalline copper-tantalum powder that was consolidated did not contain the thermodynamically stable copper-tantalum nanostructure. Nevertheless, this does this demonstrates a pathway to preparation of bulk thermodynamically stable nanocrystalline copper-tantalum. Furthermore, it demonstrates a pathway to additive manufacturing (3D printing) of nanocrystalline copper-tantalum. Additive manufacturing of thermodynamically stable nanocrystalline metals is attractive because it enables maximum flexibility and efficiency in the use of these unique materials.« less

  9. Blue emitting ZnO nanostructures grown through cellulose bio-templates.

    PubMed

    Oudhia, Anjali; Sharma, Savita; Kulkarni, Pragya; Kumar, Rajesh

    2016-06-01

    This paper presents a green and cost-effective recipe for the synthesis of blue-emitting ZnO nanoparticles (NPs) using cellulose bio-templates. Azadirachta indica (neem) leaf extract prepared in different solvents were used as biological templates to produce nanostructures of wurtzite ZnO with a particle size ~12-36 nm. A cellulose-driven capping mechanism is used to describe the morphology of ZnO NPs. The scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infra-red (FTIR) and photoluminescence (PL) studies showed that solvents affect the growth process and the capping mechanism of bio-template severely. Structural changes in ZnO NPs were evident with variation in pH, dielectric constants (DC) and boiling points (BP) of solvents. Furthermore, an energy band model is proposed to explain the origin of the blue emission in the as-obtained ZnO NPs. PL excitation studies and the theoretical enthalpy values of individual defects were used to establish the association between the interstitial-zinc-related defect levels and the blue emission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires.

    PubMed

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-16

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g -1 at a scan rate of 20 mV s -1 , which is almost twice that of ZnO NWs (191.5 F g -1 ). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g -1 at a current density of 1.33 A g -1 with an energy density of 25.2 W h kg -1 at the power density of 896.44 W kg -1 . In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  11. Morphology engineering of ZnO nanostructures for high performance supercapacitors: enhanced electrochemistry of ZnO nanocones compared to ZnO nanowires

    NASA Astrophysics Data System (ADS)

    He, Xiaoli; Yoo, Joung Eun; Lee, Min Ho; Bae, Joonho

    2017-06-01

    In this work, the morphology of ZnO nanostructures is engineered to demonstrate enhanced supercapacitor characteristics of ZnO nanocones (NCs) compared to ZnO nanowires (NWs). ZnO NCs are obtained by chemically etching ZnO NWs. Electrochemical characteristics of ZnO NCs and NWs are extensively investigated to demonstrate morphology dependent capacitive performance of one dimensional ZnO nanostructures. Cyclic voltammetry measurements on these two kinds of electrodes in a three-electrode cell confirms that ZnO NCs exhibit a high specific capacitance of 378.5 F g-1 at a scan rate of 20 mV s-1, which is almost twice that of ZnO NWs (191.5 F g-1). The charge-discharge and electrochemical impedance spectroscopy measurements also clearly result in enhanced capacitive performance of NCs as evidenced by higher specific capacitances and lower internal resistance. Asymmetric supercapacitors are fabricated using activated carbon (AC) as the negative electrode and ZnO NWs and NCs as positive electrodes. The ZnO NC⫽AC can deliver a maximum specific capacitance of 126 F g-1 at a current density of 1.33 A g-1 with an energy density of 25.2 W h kg-1 at the power density of 896.44 W kg-1. In contrast, ZnO NW⫽AC displays 63% of the capacitance obtained from the ZnO NC⫽AC supercapacitor. The enhanced performance of NCs is attributed to the higher surface area of ZnO nanostructures after the morphology is altered from NWs to NCs.

  12. Patterned Well-Aligned ZnO Nanorods Assisted with Polystyrene Monolayer by Oxygen Plasma Treatment.

    PubMed

    Choi, Hyun Ji; Lee, Yong-Min; Yu, Jung-Hoon; Hwang, Ki-Hwan; Boo, Jin-Hyo

    2016-08-05

    Zinc oxide is known as a promising material for sensing devices due to its piezoelectric properties. In particular, the alignment of ZnO nanostructures into ordered nanoarrays is expected to improve the device sensitivity due to the large surface area which can be utilized to capture significant quantities of gas particles. However, ZnO nanorods are difficult to grow on the quartz substrate with well-ordered shape. So, we investigated nanostructures by adjusting the interval distance of the arranged ZnO nanorods using polystyrene (PS) spheres of various sizes (800 nm, 1300 nm and 1600 nm). In addition, oxygen plasma treatment was used to specify the nucleation site of round, patterned ZnO nanorod growth. Therefore, ZnO nanorods were grown on a quartz substrate with a patterned polystyrene monolayer by the hydrothermal method after oxygen plasma treatment. The obtained ZnO nanostructures were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscope (FE-SEM).

  13. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution.

    PubMed

    Ma, Hongbo; Wallis, Lindsay K; Diamond, Steve; Li, Shibin; Canas-Carrell, Jaclyn; Parra, Amanda

    2014-10-01

    The present study investigated the impact of solar UV radiation on ZnO nanoparticle toxicity through photocatalytic ROS generation and photo-induced dissolution. Toxicity of ZnO nanoparticles to Daphnia magna was examined under laboratory light versus simulated solar UV radiation (SSR). Photocatalytic ROS generation and particle dissolution were measured on a time-course basis. Two toxicity mitigation assays using CaCl2 and N-acetylcysteine were performed to differentiate the relative importance of these two modes of action. Enhanced ZnO nanoparticle toxicity under SSR was in parallel with photocatalytic ROS generation and enhanced particle dissolution. Toxicity mitigation by CaCl2 to a less extent under SSR than under lab light demonstrates the role of ROS generation in ZnO toxicity. Toxicity mitigation by N-acetylcysteine under both irradiation conditions confirms the role of particle dissolution and ROS generation. These findings demonstrate the importance of considering environmental solar UV radiation when assessing ZnO nanoparticle toxicity and risk in aquatic systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Physicochemical and photocatalytic studies of Ln3+- ZnO for water disinfection and wastewater treatment applications

    NASA Astrophysics Data System (ADS)

    Ibrahim, Marwa M.; Asal, Saad

    2017-12-01

    In the present work, x mol Ln3+ modified ZnO Nano-particles (Ln = Sm3+, Eu3+ and Gd3+ ions; x = 0.008, 0.015, 0.025, 0.03 and 0.05) were synthesized by precipitation method. These Nano-particles are characterized by different advanced techniques; such as X-ray diffraction (XRD), transmission electron microscope (TEM), energy dispersive spectroscopic (EDX), UV-Visible diffuse reflectance, and fluorescence (FL) spectroscopy. Doping by lanthanides improves the crystal, surface area, porosity, morphology, as well as the optical adsorption and emission of UV light properties of the prepared photo-catalysts. Photo-catalytic activity for the prepared Nano-materials was determined using both, fluorescent probe and dye methods. Results showed that the highly active Nano-particle is 0.025 Gd3+-ZnO. The highly active sample (0.025 mol Gd3+- ZnO) successfully mineralized textile dye and real refractory wastewater samples under sunlight illumination using CPC photo-reactor. Prepared photo-catalysts were also applied for water disinfection.

  15. Advanced thermopower wave in novel ZnO nanostructures/fuel composite.

    PubMed

    Lee, Kang Yeol; Hwang, Hayoung; Choi, Wonjoon

    2014-09-10

    Thermopower wave is a new concept of energy conversion from chemical to thermal to electrical energy, produced from the chemical reaction in well-designed hybrid structures between nanomaterials and combustible fuels. The enhancement and optimization of energy generation is essential to make it useful for future applications. In this study, we demonstrate that simple solution-based synthesized zinc oxide (ZnO) nanostructures, such as nanorods and nanoparticles are capable of generating high output voltage from thermopower waves. In particular, an astonishing improvement in the output voltage (up to 3 V; average 2.3 V) was achieved in a ZnO nanorods-based composite film with a solid fuel (collodion, 5% nitrocellulose), which generated an exothermic chemical reaction. Detailed analyses of thermopower waves in ZnO nanorods- and cube-like nanoparticles-based hybrid composites have been reported in which nanostructures, output voltage profile, wave propagation velocities, and surface temperature have been characterized. The average combustion velocities for a ZnO nanorods/fuel and a ZnO cube-like nanoparticles/fuel composites were 40.3 and 30.0 mm/s, while the average output voltages for these composites were 2.3 and 1.73 V. The high output voltage was attributed to the amplified temperature in intermixed composite of ZnO nanostructures and fuel due to the confined diffusive heat transfer in nanostructures. Moreover, the extended interfacial areas between ZnO nanorods and fuel induced large amplification in the dynamic change of the chemical potential, and it resulted in the enhanced output voltage. The differences of reaction velocity and the output voltage between ZnO nanorods- and ZnO cube-like nanoparticles-based composites were attributed to variations in electron mobility and grain boundary, as well as thermal conductivities of ZnO nanorods and particles. Understanding this astonishing increase and the variation of the output voltage and reaction velocity, precise

  16. Sonocatalytic degradation of some dyestuffs and comparison of catalytic activities of nano-sized TiO2, nano-sized ZnO and composite TiO2/ZnO powders under ultrasonic irradiation.

    PubMed

    Wang, Jun; Jiang, Zhe; Zhang, Liqun; Kang, Pingli; Xie, Yingpeng; Lv, Yanhui; Xu, Rui; Zhang, Xiangdong

    2009-02-01

    Here, a novel sonocatalyst, composite TiO2/ZnO powder, was prepared through the combination of nano-sized TiO2 and ZnO powders. Because of the appropriate adsorbability to organic pollutants and special crystal interphase between TiO2 and ZnO particles, the composite TiO2/ZnO powder exhibits a high sonocatalytic activity under ultrasonic irradiation during the degradation of acid red B. Especially, the sonocatalytic activity of composite TiO2/ZnO powder with 4:1 molar proportion treated at 500 degrees C for 50 min showed obvious improvement compared with pure nano-sized TiO2 and ZnO powders. When the experimental conditions such as 10mg/L acid red B concentration, 1.0 g/L catalyst addition amount, pH=7.0, 20 degrees C system temperature, 100 min ultrasonic time and 50 mL total volume were adopted, the satisfactory degradation ratio and rate were obtained. All experiments indicate that the sonocatalytic method using composite TiO2/ZnO powder may be a more advisable choice for the treatments of non- or low-transparent organic wastewaters in future.

  17. Single-crystalline twinned ZnO nanoleaf structure via a facile hydrothermal process.

    PubMed

    Qiu, Jijun; Lil, Xiaomin; Gao, Xiangdong; Gan, Xiaoyan; He, Weizhen; Kim, Hyung-Kook; Hwang, Yoon-Hwae

    2011-03-01

    A single-crystalline twinned ZnO nanostructure with a 2-dimensional leaf-like morphology (nanoleaves) was synthesized using a facile hydrothermal strategy. The ZnO nanoleaves had 2-fold symmetric branches, which were identified by the existence of an inversion domain boundary (IDB) along the [2110] growth direction of the ribbon-like stems with both side surfaces of the stems terminated with a chemically active Zn-(0001) plane. A proposed growth mechanism suggested that the formation of IDB and the leaf-like shape are related to the dissolution of seed particles on the substrate surfaces and an OH- shielding effect in solution, respectively. Optical measurements revealed visible emission, suggesting the possession of defects in the as-grown and annealed ZnO nanoleaves. In addition, various ZnO nanostructures were synthesized by simply controlling the fabrication conditions.

  18. Diffusion, swelling, cross linkage study and mechanical properties of ZnO doped PVA/NaAlg blend polymer nanocomposite

    NASA Astrophysics Data System (ADS)

    Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Hegde, Shreedatta; Sagar, Rohan N.

    2018-04-01

    ZnO nano particles were synthesized using a chemical precipitation method. Pure and ZnO nano particle doped PVA-NaAlg blend composite films were prepared using solution casing method. Structural information of these composites was studied using FTIR. Diffusion kinetics of these polymer blend composite were studied using Flory-Huggins theory. Using these diffusion studies, cross-linking density and swelling properties of the films were analyzed. Mechanical properties of these composite are also studied.

  19. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuxin; Cheng, Guang; Tay, See Leng

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  20. Effects of Bi Addition on the Microstructure and Mechanical Properties of Nanocrystalline Ag Coatings

    DOE PAGES

    Wang, Yuxin; Cheng, Guang; Tay, See Leng; ...

    2017-08-10

    Here in this study we investigated the effects of Bi addition on the microstructure and mechanical properties of an electrodeposited nanocrystalline Ag coating. Microstructural features were investigated with transmission electron microscopy (TEM). The results indicate that the addition of Bi introduced nanometer-scale Ag-Bi solid solution particles and more internal defects to the initial Ag microstructures. The anisotropic elastic-plastic properties of the Ag nanocrystalline coating with and without Bi addition were examined with nanoindentation experiments in conjunction with the recently-developed inverse method. The results indicate that the as-deposited nanocrystalline Ag coating contained high mechanical anisotropy. With the addition of 1 atomicmore » percent (at%) Bi, the anisotropy within Ag-Bi coating was very small, and yield strength of the nanocrystalline Ag-Bi alloy in both longitudinal and transverse directions were improved by over 100% compared to that of Ag. On the other hand, the strain-hardening exponent of Ag-Bi was reduced to 0.055 from the original 0.16 of the Ag coating. Furthermore, the addition of Bi only slightly increased the electrical resistivity of the Ag-Bi coating in comparison to Ag. Lastly, results of our study indicate that Bi addition is a promising method for improving the mechanical and physical performances of Ag coating for electrical contacts.« less

  1. Study of ZnO nanoparticles: Antibacterial property and light depolarization property using light scattering tool

    NASA Astrophysics Data System (ADS)

    Roy, Sanchita; Barua, Nilakshi; Buragohain, Alak K.; Ahmed, Gazi A.

    2013-03-01

    Investigations on treatment of ZnO nanoparticles on Staphylococcus aureus MTCC 737 strain was essentially made by using standard biochemical method. The anti-microbial assay against S. aureus, and time kill assay revealed the anti-bacterial activity of ZnO nanoparticles. We have substantiated this property of ZnO nanoparticles and light depolarization property by using light scattering tool. Light scattering measurements were carried out for ZnO, S. aureus, and ZnO treated S. aureus as a function of scattering angle at 543.5 and 632.8 nm wavelengths. This was done in order to find the scattering profile of the consequent product after the action of ZnO nanoparticles on bacteria by means of light scattering tool. S. aureus treated with ZnO nanoparticles showed closer agreement of the scattering profiles at both the wavelengths, however, the scattering profiles of ZnO nanoparticles and untreated S. aureus significantly varied for the two different laser wavelengths. It was also observed that there was higher intensity of scattering from all S. aureus treated with ZnO particles compared to the untreated ones. In our work, we have studied ZnO nanoparticles and the possibility of observing its anti-bacterial activity by using light scattering tool.

  2. Micromechanics Modeling of Fracture in Nanocrystalline Metals

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Piascik, R. S.; Raju, I. S.; Harris, C. E.

    2002-01-01

    Nanocrystalline metals have very high theoretical strength, but suffer from a lack of ductility and toughness. Therefore, it is critical to understand the mechanisms of deformation and fracture of these materials before their full potential can be achieved. Because classical fracture mechanics is based on the comparison of computed fracture parameters, such as stress intlmsity factors, to their empirically determined critical values, it does not adequately describe the fundamental physics of fracture required to predict the behavior of nanocrystalline metals. Thus, micromechanics-based techniques must be considered to quanti@ the physical processes of deformation and fracture within nanocrystalline metals. This paper discusses hndamental physicsbased modeling strategies that may be useful for the prediction Iof deformation, crack formation and crack growth within nanocrystalline metals.

  3. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution.

    PubMed

    Pipan-Tkalec, Ziva; Drobne, Damjana; Jemec, Anita; Romih, Tea; Zidar, Primoz; Bele, Marjan

    2010-03-10

    A number of reports on potential toxicity of nanoparticles are available, but there is still a lack of knowledge concerning bioaccumulation. The aim of this work was to investigate how different sources of zinc, such as uncoated and unmodified ZnO nanoparticles, ZnCl(2) in solution, and macropowder ZnO influence the bioaccumulation of this metal in the terrestrial isopod Porcellio scaber. After exposure to different sources of Zn in the diet, the amount of assimilated Zn in whole body, the efficiency of zinc assimilation, and bioaccumulation factors (BAFs) were assessed. The bioaccumulation potential of Zn was found to be the same regardless of Zn source. The amount of assimilated Zn and BAF were dose-dependent, and Zn assimilation efficiency was independent of exposure concentrations. The Zn assimilation capacity was found to be up to 16% of ingested Zn. It is known that as much as approximately 20% of Zn can be accreted from ZnO particles by dissolution. We conclude that bioaccumulation of Zn in isopods exposed to particulate ZnO depends most probably on Zn dissolution from ZnO particles and not on bioaccumulation of particulate ZnO.

  4. Hybrid processing and anisotropic sintering shrinkage in textured ZnO ceramics

    PubMed Central

    Keskinbora, Kahraman; Suzuki, Tohru S; Ozgur Ozer, I; Sakka, Yoshio; Suvaci, Ender

    2010-01-01

    We have studied the combined effects of the templated grain growth and magnetic alignment processes on sintering, anisotropic sintering shrinkage, microstructure development and texture in ZnO ceramics. Suspensions of 0–10 vol % ZnO template particles were slip cast in a 12 T rotating magnetic field. Sintering and texture characteristics were investigated via thermomechanical analysis and electron backscatter diffraction, respectively. Sintering as well as texture characteristics depend on template concentration. For the studied ZnO system, there is a critical template concentration (2 vol % in this study) above which densification is limited by the templates owing to constrained sintering. Below this limit, the densification is enhanced and the anisotropic shrinkage is reduced, which is attributed to densifying characteristics of the templates. PMID:27877373

  5. Growth Kinetics and Modeling of ZnO Nanoparticles

    ERIC Educational Resources Information Center

    Hale, Penny S.; Maddox, Leone M.; Shapter, Joe G.; Voelcker, Nico H.; Ford, Michael J.; Waclawik, Eric R.

    2005-01-01

    The technique for producing quantum-sized zinc oxide (ZnO) particles is much safer than a technique that used hydrogen sulfide gas to produce cadmium sulfide and zinc sulfide nanoparticles. A further advantage of this method is the ability to sample the solution over time and hence determine the growth kinetics.

  6. A dual-colored bio-marker made of doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.

    2008-08-01

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  7. Impact of ZnO and Ag Nanoparticles on Bacterial Growth and Viability

    NASA Astrophysics Data System (ADS)

    Olson, M. S.; Digiovanni, K. A.

    2007-12-01

    Hundreds of consumer products containing nanomaterials are currently available in the U.S., including computers, clothing, cosmetics, sports equipment, medical devices and product packaging. Metallic nanoparticles can be embedded in or coated on product surfaces to provide antimicrobial, deodorizing, and stain- resistant properties. Although these products have the potential to provide significant benefit to the user, the impact of these products on the environment remains largely unknown. The purpose of this project is to study the effect of metallic nanoparticles released to the environment on bacterial growth and viability. Inhibition of bacterial growth was tested by adding doses of suspended ZnO and Ag nanoparticles into luria broth prior to inoculation of Escherichia coli cells. ZnO particles (approximately 40 nm) were obtained commercially and Ag particles (12-14 nm) were fabricated by reduction of silver nitrate with sodium borohydride. Toxicity assays were performed to test the viability of E. coli cells exposed to both ZnO and Ag nanoparticles using the LIVE/DEAD BacLight bacterial viability kit (Invitrogen). Live cells stain green whereas cells with compromised membranes that are considered dead or dying stain red. Cells were first grown, stained, and exposed to varying doses of metallic nanoparticles, and then bacterial viability was measured hourly using fluorescence microscopy. Results indicate that both ZnO and Ag nanoparticles inhibit the growth of E. coli in liquid media. Preliminary results from toxicity assays confirm the toxic effect of ZnO and Ag nanoparticles on active cell cultures. Calculated death rates resulting from analyses of toxicity studies will be presented.

  8. THERMALLY STABLE NANOCRYSTALLINE TIO2 PHOTOCATALYSTS SYNTHESIZED VIA SOL-GEL METHODS MODIFIED WITH IONIC LIQUID AND SURFACTANT MOLECULES

    EPA Science Inventory

    Recently, sol-gel methods employing ionic liquids (ILs) have shown significant implications for the synthesis of well-defined nanostructured inorganic materials. Herein, we synthesized nanocrystalline TiO2 particles via an alkoxide sol-gel method employing a water-immi...

  9. Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil.

    PubMed

    Waalewijn-Kool, Pauline L; Diez Ortiz, Maria; van Gestel, Cornelis A M

    2012-10-01

    Due to the difficulty in dispersing some engineered nanomaterials in exposure media, realizing homogeneous distributions of nanoparticles (NP) in soil may pose major challenges. The present study investigated the distribution of zinc oxide (ZnO) NP (30 nm) and non-nano ZnO (200 nm) in natural soil using two different spiking procedures, i.e. as dry powder and as suspension in soil extract. Both spiking procedures showed a good recovery (>85 %) of zinc and based on total zinc concentrations no difference was found between the two spiking methods. Both spiking procedures resulted in a fairly homogeneous distribution of the ZnO particles in soil, as evidenced by the low variation in total zinc concentration between replicate samples (<12 % in most cases). Survival of Folsomia candida in soil spiked at concentrations up to 6,400 mg Zn kg(-1) d.w. was not affected for both compounds. Reproduction was reduced in a concentration-dependent manner with EC50 values of 3,159 and 2,914 mg Zn kg(-1) d.w. for 30 and 200 nm ZnO spiked as dry powder and 3,593 and 5,633 mg Zn kg(-1) d.w. introduced as suspension. Toxicity of ZnO at 30 and 200 nm did not differ. We conclude that the ZnO particle toxicity is not size related and that the spiking of the soil with ZnO as dry powder or as a suspension in soil extract does not affect its toxicity to F. candida.

  10. Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO

    PubMed Central

    2014-01-01

    In this work we investigate the mechanism of Zn oxidation with CO2 and/or H2O to produce solar derived fuels (CO and/or H2) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO2 and H2O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al2O3 at 350–400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded Al2O3 diluent. PMID:26692637

  11. Mechanism of Zn Particle Oxidation by H2O and CO2 in the Presence of ZnO.

    PubMed

    Weibel, David; Jovanovic, Zoran R; Gálvez, Elena; Steinfeld, Aldo

    2014-11-25

    In this work we investigate the mechanism of Zn oxidation with CO 2 and/or H 2 O to produce solar derived fuels (CO and/or H 2 ) as part of the Zn/ZnO thermochemical redox cycle. It has been observed that the ZnO contamination of Zn produced by solar thermal reduction of ZnO (solar Zn) facilitates oxidation of the metallic Zn by CO 2 and H 2 O, allowing for nearly complete conversion at temperatures as low as 350 °C. Reaching the same reaction extent starting with pure Zn requires considerably higher temperatures which imposes use of unconventional hard-to-operate reaction configurations utilizing Zn as vapor. The mechanism of this enhancement is investigated by studying the oxidation of solid Zn diluted with ZnO or Al 2 O 3 at 350-400 °C utilizing thermogravimetry. It is found that ZnO acts as the site for the oxidation of Zn originating from the vapor phase, thereby serving as a sink for Zn vapor and maintaining the driving force for sustainable Zn sublimation. As this Zn sublimation competes with the growth of an impervious ZnO scale over the surface of the remaining solid Zn, the presence of the ZnO increases the reaction extent according to the magnitude of its surface area. This mechanism is supported by energy-dispersive X-ray (EDX) spectroscopy, revealing a substantial deposition of produced ZnO over the surface of the ZnO-seeded Al 2 O 3 diluent.

  12. The SL-assisted synthesis of hierarchical ZnO nanostructures and their enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Miao, Ting-Ting; Guo, Yuan-Ru; Pan, Qing-Jiang

    2013-06-01

    Hierarchical ZnO nanoparticle-bar, nanomesh-lamina, and quasi-nanosphere structures have been successfully synthesized by the precipitation method with assistance of sodium lignosulphonate (SL). It is shown that the obtained ZnO nanomaterials are well crystallized and possess hexagonal wurtzite structure after calcination. Morphologies of ZnO with particle sizes ranging from 50 to 200 nm can be fabricated by tuning the SL amount in our synthetic route. Plenty of pores have been observed both in nanoparticle-bar and nanomesh-lamina ZnO. This may provide scaffold microenvironments to enhance their photocatalytic activity. It is evident that the synthesized ZnO exhibits good photocatalytic activity of degrading methylene blue, even under a very low-power UV illumination, which allows for the treatment of wastewater containing organic pollutants in an effective way. Among our synthesized nanomaterials, the nanomesh-lamina ZnO has the highest photodegradation efficiency, achieving nearly 100 % degradation only within 1.5 h (UV irradiation power of 12 W). As these ZnO nanomaterials are simply synthesized using SL which is a pulp industry by-product and their intrinsic hierarchical nanostructures show outstanding photocatalytic behavior, we expect the present controllable, environment-friendly, and cost-effective approach to be applied in the synthesis of small-sized ZnO materials.

  13. Physical and electrochemical properties of ZnO films fabricated from highly cathodic electrodeposition potentials

    NASA Astrophysics Data System (ADS)

    Ismail, Abdul Hadi; Abdullah, Abdul Halim; Sulaiman, Yusran

    2017-03-01

    The physical and electrochemical properties of zinc oxide (ZnO) film electrode that were prepared electrochemically were studied. ZnO was electrodeposited on ITO glass substrate by applying three different highly cathodic potentials (-1.3 V, -1.5 V, -1.7 V) in a solution containing 70 mM of Zn(NO3)2.xH2O and 0.1 M KCl with bath temperatures of 70 °C and 80 °C. The presence of ZnO was asserted from XRD analysis where the corresponding peaks in the spectra were assigned. SEM images revealed the plate-like hexagonal morphology of ZnO which is in agreement with the XRD analysis. The areal capacitance of the ZnO was observed to increase when the applied electrodeposition potential is increased from -1.3 V to -1.5 V. However, the areal capacitance is found to decrease when the applied electrodeposition potential is further increased to -1.7 V. The resistance of charge transfer (Rct) of the ZnO decreased when the applied electrodeposition potential varies from -1.3 V to -1.7 V due to the decreased particle size of ZnO when more cathodic electrodeposition potential is applied.

  14. Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} as a gas sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shinde, Tukaram J., E-mail: pshindetj@yahoo.co.in; Gadkari, Ashok B.; Jadhav, Sarjerao R.

    2015-06-24

    Nanocrystalline NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} has been synthesized by oxalate co-precipitation method and was characterized by X-ray diffraction technique. X-ray diffraction analysis confirms the formation of single phase cubic spinel structure. Crystallite size of the ferrite lies in the nano-particle range. The gas sensing properties of nanocrystalline ferrite were studied for gases like Cl{sub 2}, LPG and C{sub 2}H{sub 5}OH. It was observed that NiNd{sub 0.01}Fe{sub 1.99}O{sub 4} is more sensitive towards chlorine followed by LPG at an operating temperature 277 °C compared to ethanol.

  15. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Widiyastuti, W., E-mail: widi@chem-eng.its.ac.id; Machmudah, Siti; Kusdianto,

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changingmore » the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.« less

  16. Characteristics of ZnO nanostructures synthesized by sonochemical reaction: Effects of continuous and pulse waves

    NASA Astrophysics Data System (ADS)

    Widiyastuti, W.; Machmudah, Siti; Kusdianto, Nurtono, Tantular; Winardi, Sugeng

    2015-12-01

    Nanostructured ZnO was synthesized by a sonochemical reaction. Ultrasonic irradiation were set up in continuous, pulse in 3 seconds on and a second off (on:off=3:1), and pulse in 2 seconds on and a second off (on:off=2:1) wave modes for 1.5 hours. The characteristics of particles generated by these modes such as morphology, crystallinity, FTIR, photoluminescence, and photocatalytic activity to degrade methylene blue were compared. Zinc nitrate and ammonia water-based solutions were selected as chemicals without the addition of other surfactants. The morphology of the generated ZnO particles could be tuned from flower-like, needle- or hairy-like, and spherical structures by changing the mode of ultrasonic irradiation from continuous, on:off=3:1, and on:off=2:1 modes, respectively. The generated particles indicated that a wurtzite structure of ZnO in a hexagonal phase was formed. The crystalline sizes of particles generated in continuous, on:off=3:1, and on:off=2:1 modes were 28, 27, 24 nm. A similar position of reduction peak of FTIR in all samples indicated that no differences in particles chemical bonding characteristics. Photoluminescence intensity was also decreased with changes the wave mode from continuous to pulse. Photocatalytic activity was also evaluated resulting in particles synthesized by continuous mode had the highest methylene blue degradation degree following by on:off=3:1, and on:off=2:1 modes.

  17. Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application

    PubMed Central

    Lee, Eunha; Benayad, Anass; Shin, Taeho; Lee, HyungIk; Ko, Dong-Su; Kim, Tae Sang; Son, Kyoung Seok; Ryu, Myungkwan; Jeon, Sanghun; Park, Gyeong-Su

    2014-01-01

    Interest in oxide semiconductors stems from benefits, primarily their ease of process, relatively high mobility (0.3–10 cm2/vs), and wide-bandgap. However, for practical future electronic devices, the channel mobility should be further increased over 50 cm2/vs and wide-bandgap is not suitable for photo/image sensor applications. The incorporation of nitrogen into ZnO semiconductor can be tailored to increase channel mobility, enhance the optical absorption for whole visible light and form uniform micro-structure, satisfying the desirable attributes essential for high performance transistor and visible light photo-sensors on large area platform. Here, we present electronic, optical and microstructural properties of ZnON, a composite of Zn3N2 and ZnO. Well-optimized ZnON material presents high mobility exceeding 100 cm2V−1s−1, the band-gap of 1.3 eV and nanocrystalline structure with multiphase. We found that mobility, microstructure, electronic structure, band-gap and trap properties of ZnON are varied with nitrogen concentration in ZnO. Accordingly, the performance of ZnON-based device can be adjustable to meet the requisite of both switch device and image-sensor potentials. These results demonstrate how device and material attributes of ZnON can be optimized for new device strategies in display technology and we expect the ZnON will be applicable to a wide range of imaging/display devices. PMID:24824778

  18. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    NASA Astrophysics Data System (ADS)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490

  19. Method of making nanocrystalline alpha alumina

    DOEpatents

    Siegel, Richard W.; Hahn, Horst; Eastman, Jeffrey A.

    1992-01-01

    Method of making selected phases of nanocrystalline ceramic materials. Various methods of controlling the production of nanocrystalline alpha alumina and titanium oxygen phases are described. Control of the gas atmosphere and use of particular oxidation treatments give rise to the ability to control the particular phases provided in the aluminum/oxygen and titanium/oxygen system.

  20. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    PubMed Central

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-01-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from −1.62 GPa to −0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption. PMID:28233827

  1. Internal stress induced natural self-chemisorption of ZnO nanostructured films

    NASA Astrophysics Data System (ADS)

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-01

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  2. Internal stress induced natural self-chemisorption of ZnO nanostructured films.

    PubMed

    Chi, Po-Wei; Su, Chih-Wei; Wei, Da-Hua

    2017-02-24

    The energetic particles bombardment can produce large internal stress in the zinc oxide (ZnO) thin film, and it can be used to intentionally modify the surface characteristics of ZnO films. In this article, we observed that the internal stress increased from -1.62 GPa to -0.33 GPa, and the naturally wettability of the textured ZnO nanostructured films changed from hydrophobicity to hydrophilicity. According to analysis of surface chemical states, the naturally controllable wetting behavior can be attributed to hydrocarbon adsorbates on the nanostructured film surface, which is caused by tunable internal stress. On the other hand, the interfacial water molecules near the surface of ZnO nanostructured films have been identified as hydrophobic hydrogen structure by Fourier transform infrared/attenuated total reflection. Moreover, a remarkable near-band-edge emission peak shifting also can be observed in PL spectra due to the transition of internal stress state. Furthermore, our present ZnO nanostructured films also exhibited excellent transparency over 80% with a wise surface wetting switched from hydrophobic to hydrophilic states after exposing in ultraviolet (UV) surroundings. Our work demonstrated that the internal stress of the thin film not only induced natural wettability transition of ZnO nanostructured films, but also in turn affected the surface properties such as surface chemisorption.

  3. Alternating current transport and dielectric relaxation of nanocrystalline graphene oxide

    NASA Astrophysics Data System (ADS)

    Zedan, I. T.; El-Menyawy, E. M.

    2018-07-01

    Graphene oxide (GO) has been synthesized from natural graphite using modified Hummer's method and is subjected to sonication for 1 h. X-ray diffraction (XRD) showed that the prepared GO has nanocrystalline structure with particle size of about 5 nm and high-resolution transmission electron microscope showed that it had a layered structure. The nanocrystalline GO powder was pressed as a disk and the alternating current (AC) electrical conductivity, σAC, and dielectric properties have been investigated in the frequency range 50Hz-5 MHz and temperature range 298-523K using parallel plate spectroscopic technique. Analysis of σ AC as a function of frequency shows that the relation follows Jonscher's universal law with frequency exponent decreases with increasing temperature in which the correlated barrier hopping model is applicable to describe the behavior. The dielectric constant and dielectric loss are studied as functions of frequency and temperature. The dielectric modulus formalism is used for describing the relaxation process in which the relaxation time and its activation energy were evaluated.

  4. Simple chemical synthesis of novel ZnO nanostructures: Role of counter ions

    NASA Astrophysics Data System (ADS)

    Pudukudy, Manoj; Yaakob, Zahira

    2014-04-01

    This article reports the synthesis, characterisation and photocatalytic activity of novel ZnO nanostructures prepared via the thermal decomposition of hydrozincite. Hydrozincites were obtained by the conventional precipitation route using different zinc salts such as acetate, nitrate, chloride and sulphate. The effect of counter ions (CH3COO-, Cl-, NO3-, and SO42-) on the structural, textural, morphological and optical properties was investigated. Various characterisations depicted the active role of counter ions in the properties of ZnO. Hexagonal wurtzite structure of ZnO with fine crystalline size was obvious from the XRD results, irrespective of the counter ions. Electron microscopic images indicated the role of counter ions in the surface and internal morphology of ZnO nanomaterials. Special coral like agglomerated morphology of elongated particles with high porosity was observed for the ZnO prepared from acetate precursor. Spherical, elongated and irregular shaped bigger lumps of ZnO nanoparticles with various novel morphologies were resulted for the sulphate, nitrate and chloride precursors respectively. Highly ordered porous micro disc like morphology was noted for the ZnO samples prepared from the sulphate and nitrate salts. Photoluminescence spectra showed the characteristic blue and green emission bands, depicting the presence of large crystal defects and high oxygen vacancies in the samples. Photocatalytic activity of the as-prepared ZnO catalysts was examined by the degradation of methylene blue under UV light irradiation. Degradation results indicated their substantial activity with respect to the counter ions. ZnO prepared from the acetate precursor showed highest photoactivity due to its high surface area, special morphology and high oxygen vacancies.

  5. Optical absorption and photoluminescence study of nanocrystalline Zn0.92M0.08O (M: Li & Gd)

    NASA Astrophysics Data System (ADS)

    Punia, Khushboo; Lal, Ganesh; Kumar, Sudhish

    2018-05-01

    Nanocrystalline samples of Zn0.92Li0.08O and Zn0.92Gd0.08O have been synthesized using citrate sol-gel route without post synthesis annealing and characterized using powder X-ray diffraction (XRD), UV-Vis-NIR and Photoluminescence spectroscopic measurements. Analysis of XRD pattern and PL spectra revealed single phase formation of the nanocrystalline Zn0.92Li0.08O and Zn0.92Gd0.08O in the wurtzite type hexagonal structure with intrinsic crystal and surface defects. UV-Vis-NIR optical absorption measurements show that the maximum photo absorption occurs below 600nm in the UV& visible band. The estimated values of band gap energy were found to be 2.53eV and 2.73eV for Zn0.92Li0.08O and Zn0.92Gd0.08O respectively. The photoluminescence spectra excited at the wavelength 325nm displays two broad peaks in the UV and visible bands centered at ˜416 nm & ˜602 nm for Zn0.92Gd0.08O and ˜406nm & ˜598nm for Zn0.92Li0.08O. Both Gd and Li doping in ZnO leads to considerable decrease in the optical band gap energy and red shifting of the UV emission band towards the visible band.

  6. Synthesis of nanocrystalline α - Zn 2SiO 4 at ZnO-porous silicon interface: Phase transition study

    NASA Astrophysics Data System (ADS)

    Singh, R. G.; Singh, Fouran; Mehra, R. M.; Kanjilal, D.; Agarwal, V.

    2011-05-01

    Thermal annealing induced formation of nanocrystalline Zinc silicate (α-Zn 2SiO 4) at the interface of ZnO-porous silicon (PSi) nanocomposites is reported. The PSi templates were formed by electrochemical anodization of p-type (100) Si and ZnO crystallites were deposited on the PSi surface by a Sol-gel spin coating process. The formation of α-Zn 2SiO 4 is confirmed by glancing angle X-ray diffraction and Fourier transform infrared spectroscopy studies. The presence of intense yellow-green emission also confirms the formation of α-Zn 2SiO 4. The mechanism of silicate phase formation at the ZnO-PSi interface and the origin of various photoluminescence (PL) bands are discussed in view of its potential applications in advanced optoelectronic devices.

  7. The Bulk Nanocrystalline zn Produced by Mechanical Attrition

    NASA Astrophysics Data System (ADS)

    Zhu, X. K.; Zhao, K. Y.; Li, C. J.; Tao, J. M.; Chan, T. L.; Koch, C. C.

    The purpose of experiment was to produce bulk nanocrystalline Zn by mechanical attrition. The bulk nanocrystalline Zn produced by mechanical attrition was studied. The microstructural evolution during cryomilling and subsequent room temperature milling was characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). In this paper, Nanocrystalline Zn was produced by insitu consolidation of Zn elemental powder using mechanical attrition at liquid nitrogen and room temperature. For the samples studied, the longest elongation of 65% and highest stress of 200 MPa is obtained in nanocrystalline Zn during tensile testing at the condition of strain rate (10-3 sec-1) and 20°C which is equal to 0.43 Tm (Tm is the melting temperature of pure Zn).

  8. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S.

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemicalmore » experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.« less

  9. Comparative optical studies of ZnO and ZnO-TiO2 - Metal oxide nanoparticle

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, R. Vanathi; Asvini, V.; Kumar, P. Praveen; Ravichandran, K.

    2018-05-01

    A comparative study was carried out to show the enhancement in optical activity of bimetal oxide nanoparticle (ZnO - TiO2) than metal oxide nanoparticle (ZnO), which can preferably be used for optical applications. The samples were prepared by wet chemical method and crystalline structure of the samples as hexagonal - primitive for ZnO and tetragonal - bcc for ZnO-TiO2 was confirmed by XRD measurements. The average grain size of ZnO - 19.89nm and ZnO-TiO2- 49.89 nm was calculated by Debye- Scherrer formula. The structure and particle size of the sample was analyzed by FESEM images. The direct band gap energy of ZnO (3.9eV) and ZnO - TiO2(4.68eV) was calculated by Kubelka-Munk Function, from which it is clear that the band gap energy increases in bimetal oxide to a desired level than in its pure form. The photoluminescence study shows that the emitted wavelength of the samples lies exactly around the visible region.

  10. Qualitative and quantitative differentiation of gases using ZnO thin film gas sensors and pattern recognition analysis.

    PubMed

    Pati, Sumati; Maity, A; Banerji, P; Majumder, S B

    2014-04-07

    In the present work we have grown highly textured, ultra-thin, nano-crystalline zinc oxide thin films using a metal organic chemical vapor deposition technique and addressed their selectivity towards hydrogen, carbon dioxide and methane gas sensing. Structural and microstructural characteristics of the synthesized films were investigated utilizing X-ray diffraction and electron microscopy techniques respectively. Using a dynamic flow gas sensing measurement set up, the sensing characteristics of these films were investigated as a function of gas concentration (10-1660 ppm) and operating temperature (250-380 °C). ZnO thin film sensing elements were found to be sensitive to all of these gases. Thus at a sensor operating temperature of ~300 °C, the response% of the ZnO thin films were ~68, 59, and 52% for hydrogen, carbon monoxide and methane gases respectively. The data matrices extracted from first Fourier transform analyses (FFT) of the conductance transients were used as input parameters in a linear unsupervised principal component analysis (PCA) pattern recognition technique. We have demonstrated that FFT combined with PCA is an excellent tool for the differentiation of these reducing gases.

  11. Doping induced c-axis oriented growth of transparent ZnO thin film

    NASA Astrophysics Data System (ADS)

    Mistry, Bhaumik V.; Joshi, U. S.

    2018-04-01

    c-Axis oriented In doped ZnO (IZO) transparent conducting thin films were optimized on glass substrate using sol gel spin coating method. The Indium content in ZnO was varied systematically and the structural parameters were studied. Along with the crystallographic properties, the optoelectronic and electrical properties of IZO thin films were investigated in detail. The IZO thin films revealed hexagonal wurtzite structure. It was found that In doping in ZnO promotes the c-axis oriented growth of the thin films deposited on amorphous substrate. The particle size of the IZO films were increase as doping content increases from 2% to 5%. The 2% In doped ZnO film show electrical resistivity of 0.11 Ω cm, which is far better than the reported value for ZnO thin film. Better than 75% average optical transmission was estimated in the wavelength range from 400-800 nm. Systematic variartions in the electron concentration and band gap was observed with increasing In doping. Note worthy finding is that, with suitable amount of In doping improves not only transparency and conductivity but also improves the preferred orientation of the oxide thin film.

  12. Photoactivity of N-doped ZnO nanoparticles in oxidative and reductive reactions

    NASA Astrophysics Data System (ADS)

    Oliveira, Jéssica A.; Nogueira, André E.; Gonçalves, Maria C. P.; Paris, Elaine C.; Ribeiro, Caue; Poirier, Gael Y.; Giraldi, Tania R.

    2018-03-01

    N-doped ZnO is a prospective material for photocatalytic reactions. However, only oxidative paths are well investigated in the literature. This paper describes a comparative study about ZnO and ZnO:N potential for oxidative and reductive reactions, probed by rhodamine B dye photodegradation and CO2 photoreduction. The materials were prepared by the polymeric precursor method, using urea as a nitrogen source, and different heat treatments were used to observe their effects on surface decontamination, crystallinity, particle sizes and shapes, and photocatalytic performance. ZnO and ZnO:N presented a wurtzite crystalline structure and nanometric-scale particles. Samples submitted to higher temperatures showed lower specific surface areas, but higher crystallinity and lower contents of species adsorbed on their surfaces. On the other hand, the photocatalysts annealed in shorter times presented smaller crystallite sizes and lower crystallinity. These factors influenced the photoactivity in both conditions, i.e., oxidation and reduction reactions, under the ultraviolet and visible light, indicating that structural factors influenced the adequate charge separation and consequent photocatalytic activity since the as-synthesized samples were versatile photocatalysts in both redox reactions.

  13. Low-Temperature Synthesis of Superconducting Nanocrystalline MgB 2

    DOE PAGES

    Lu, Jun; Xiao, Zhili; Lin, Qiyin; ...

    2010-01-01

    Magnesium diboride (MgB 2 ) is considered a promising material for practical application in superconducting devices, with a transition temperature near 40 K. In the present paper, nanocrystalline MgB 2 with an average particle size of approximately 70 nm is synthesized by reacting LiBH 4 with MgH 2 at temperatures as low as 450 ° C. This synthesis approach successfully bypasses the usage of either elemental boron or toxic diborane gas. The superconductivity of the nanostructures is confirmed by magnetization measurements, showing a superconducting critical temperature of 38.7 K.

  14. Sputtered deposited nanocrystalline ZnO films: A correlation between electrical, optical and microstructural properties

    NASA Astrophysics Data System (ADS)

    Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.

    2005-05-01

    Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.

  15. Effect of Eu3+ doping on the structural, morphological and luminescence properties ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Vinoditha, U.; Balakrishna, K. M.; Sarojini, B. K.; Narayana, B.; Kumara, K.

    2018-05-01

    Pure and Eu3+ ions (1, 3, 5 atomic wt%) doped ZnO nanostructures are synthesized by a surfactant assisted hydrothermal method. The effect of doping concentrations on structural, morphological and optical properties of ZnO nanostructures is studied. The XRD analysis shows good crystallinity and the phase purity of the ZnO nanostructures. A shift in the standard Zn-O stretching mode after Eu3+ doping is observed in the FTIR spectra. The images of FESEM demonstrate the morphological variations from hexagonal nanorods to nanoflowers on varying the dopant concentrations. Substitution of Eu3+ ions into Zn2+ sites is confirmed by EDX analysis. The dominance of particle shape over the UV-Visible absorption properties of the prepared samples is noticed. The photoluminescence (PL) emission of undoped and doped ZnO nanostructures show dominant near band edge emission (NBE) in the UV region and minor defect induced deep level emissions in the visible region.

  16. Structural and electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles synthesized by hydrothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlazan, P.; Ursu, D.H.; Irina-Moisescu, C.

    TiO{sub 2}/ZnO core–shell nanoparticles were successfully synthesized by hydrothermal method in two stages: first stage is the hydrothermal synthesis of ZnO nanoparticles and second stage the obtained ZnO nanoparticles are encapsulated in TiO{sub 2}. The obtained ZnO, TiO{sub 2} and TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of X-ray diffraction, transmission electron microscopy, Brunauer, Emmett, Teller and resistance measurements. X-ray diffraction analysis revealed the presence of both, TiO{sub 2} and ZnO phases in TiO{sub 2}/ZnO core–shell nanoparticles. According to transmission electron microscopy images, ZnO nanoparticles have hexagonal shapes, TiO{sub 2} nanoparticles have a spherical shape, and TiO{sub 2}/ZnO core–shellmore » nanoparticles present agglomerates and the shape of particles is not well defined. The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about 101 meV. - Graphical abstract: Display Omitted - Highlights: • TiO{sub 2}/ZnO core–shell nanoparticles were synthesized by hydrothermal method. • TiO{sub 2}/ZnO core–shell nanoparticles were investigated by means of XRD, TEM and BET. • Electrical properties of TiO{sub 2}/ZnO core–shell nanoparticles were investigated. • The activation energy of TiO{sub 2}/ZnO core–shell nanoparticles was about E{sub a} = 101 meV.« less

  17. Growth of ZnO nanorods on stainless steel wire using chemical vapour deposition and their photocatalytic activity.

    PubMed

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I(uv)/I(vis) ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics.

  18. Growth of ZnO Nanorods on Stainless Steel Wire Using Chemical Vapour Deposition and Their Photocatalytic Activity

    PubMed Central

    Abd Aziz, Siti Nor Qurratu Aini; Pung, Swee-Yong; Ramli, Nurul Najiah; Lockman, Zainovia

    2014-01-01

    The photodegradation efficiency of ZnO nanoparticles in removal of organic pollutants deteriorates over time as a high percentage of the nanoparticles can be drained away by water during the wastewater treatment. This problem can be solved by growing the ZnO nanorods on stainless steel wire. In this work, ZnO nanorods were successfully grown on stainless steel wire by chemical vapour deposition. The SAED analysis indicates that ZnO nanorod is a single crystal and is preferentially grown in [0001] direction. The deconvoluted O 1s peak at 531.5 eV in XPS analysis is associated with oxygen deficient, revealing that the ZnO nanorods contain many oxygen vacancies. This observation is further supported by the finding of the small I uv/I vis ratio, that is, ~1 in the photoluminescence analysis. The growth of ZnO nanorods on stainless steel wire was governed by vapour-solid mechanism as there were no Fe particles observed at the tips of the nanorods. The photodegradation of Rhodamine B solution by ZnO nanorods followed the first-order kinetics. PMID:24587716

  19. The local strength of individual alumina particles

    NASA Astrophysics Data System (ADS)

    Pejchal, Václav; Fornabaio, Marta; Žagar, Goran; Mortensen, Andreas

    2017-12-01

    We implement the C-shaped sample test method and micro-cantilever beam testing to measure the local strength of microscopic, low-aspect-ratio ceramic particles, namely high-purity vapor grown α-alumina Sumicorundum® particles 15-30 μm in diameter, known to be attractive reinforcing particles for aluminum. Individual particles are shaped by focused ion beam micromachining so as to probe in tension a portion of the particle surface that is left unaffected by ion-milling. Mechanical testing of C-shaped specimens is done ex-situ using a nanoindentation apparatus, and in the SEM using an in-situ nanomechanical testing system for micro-cantilever beams. The strength is evaluated for each individual specimen using bespoke finite element simulation. Results show that, provided the particle surface is free of readily observable defects such as pores, twins or grain boundaries and their associated grooves, the particles can achieve local strength values that approach those of high-perfection single-crystal alumina whiskers, on the order of 10 GPa, outperforming high-strength nanocrystalline alumina fibers and nano-thick alumina platelets used in bio-inspired composites. It is also shown that by far the most harmful defects are grain boundaries, leading to the general conclusion that alumina particles must be single-crystalline or alternatively nanocrystalline to fully develop their potential as a strong reinforcing phase in composite materials.

  20. Investigation of zinc oxide particles in cosmetic products by means of centrifugal and asymmetrical flow field-flow fractionation.

    PubMed

    Sogne, Vanessa; Meier, Florian; Klein, Thorsten; Contado, Catia

    2017-09-15

    The dimensional characterization of insoluble, inorganic particles, such as zinc oxide ZnO, dispersed in cosmetic or pharmaceutical formulations, is of great interest considering the current need of declaring the possible presence of nanomaterials on the label of commercial products. This work compares the separation abilities of Centrifugal- and Asymmetrical Flow Field-Flow Fractionation techniques (CF3 and AF4, respectively), equipped with UV-vis, MALS and DLS detectors, in size sorting ZnO particles, both as pristine powders and after their extraction from cosmetic matrices. ZnO particles, bare and superficially modified with triethoxycaprylyl silane, were used as test materials. To identify the most suitable procedure necessary to isolate the ZnO particles from the cosmetic matrix, two O/W and two W/O emulsions were formulated on purpose. The suspensions, containing the extracted particles ZnO, were separated by both Field-Flow Fractionation (FFF) techniques to establish a common analysis protocol, applicable for the analysis of ZnO particles extracted from three commercial products, sold in Europe for the baby skin care. Key aspects of this study were the selection of an appropriate dispersing agent enabling the particles to stay in stable suspensions (>24h)and the use of multiple detectors (UV-vis, MALS and DLS) coupled on-line with the FFF channels, to determine the particle dimensions without using the retention parameters. Between the two FFF techniques, CF3 revealed to be the most robust one, able to sort all suspensions created in this work. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods

    NASA Astrophysics Data System (ADS)

    Khan, G. R.; Khan, R. A.

    2015-07-01

    For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.

  2. Salts affect the interaction of ZnO or CuO nanoparticles with wheat.

    PubMed

    Stewart, Jacob; Hansen, Trevor; McLean, Joan E; McManus, Paul; Das, Siddhartha; Britt, David W; Anderson, Anne J; Dimkpa, Christian O

    2015-09-01

    Exposure to nanoparticles (NPs) that release metals with potential phytotoxicity could pose problems in agriculture. The authors of the present study used growth in a model growth matrix, sand, to examine the influence of 5 mmol/kg of Na, K, or Ca (added as Cl salts) and root exudates on transformation and changes to the bioactivity of copper(II) oxide (CuO) and zinc oxide (ZnO) NPs on wheat. These salt levels are found in saline agricultural soils. After 14 d of seedling growth, particles with crystallinity typical of CuO or ZnO remained in the aqueous fraction from the sand; particles had negative surface charges that differed with NP type and salt, but salt did not alter particle agglomeration. Reduction in shoot and root elongation and lateral root induction by ZnO NPs were mitigated by all salts. However, whereas Na and K promoted Zn loading into shoots, Ca reduced loading, suggesting that competition with Zn ions for uptake occurred. With CuO NPs, plant growth and loading was modified equally by all salts, consistent with major interaction with the plant with CuO rather than Cu ions. Thus, for both NPs, loading into plant tissues was not solely dependent on ion solubility. These findings indicated that salts in agricultural soils could modify the phytotoxicity of NPs. © 2015 SETAC.

  3. Iron sand - ZnO based materials of natural origin for dye decolorization under sunlight irradiation

    NASA Astrophysics Data System (ADS)

    Salprima Yudha, S.; Angasa, Eka; Fitriani, Dyah; Falahudin, Aswin

    2017-03-01

    A mixed iron sand - ZnO materials was prepared by heating a mixture of natural iron sand and ZnO at 900 °C for 5 hours. XRD study of the sample revealed that, in the mixed iron sand - ZnO present some minor peaks that similar with XRD pattern of γ-Fe2O3 and/or Fe3O4. Observation of the sample using SEM, showed a compact morpholgy and almost homogenenous in particles size. In purpose to evaluate the ability of this materials for textile dying wastewater treatment, a study on rhodamine B decolorization was carried out as a reperesentative.

  4. Synthesis of hollow ZnO microspheres by an integrated autoclave and pyrolysis process.

    PubMed

    Duan, Jinxia; Huang, Xintang; Wang, Enke; Ai, Hanhua

    2006-03-28

    Hollow zinc oxide microspheres have been synthesized from a micro ZnBr2·2H2O precursor obtained by an autoclave process in bromoform steam at 220 °C /2.5 MPa. Field-emission scanning electron microscropy (FE-SEM) and transmission electron microscopy (TEM) show that the products are about 1.0 µm single crystal spherical particles with hollow interiors, partly open surfaces and walls self-assembled by ZnO nanoparticles. X-ray diffraction (XRD) analysis shows that the as-prepared ZnO hollow spheres are of a hexagonal phase structure. A possible formation mechanism is suggested on the basis of the shape evolution of ZnO nanostructures observed by SEM and TEM. The room-temperature photoluminescence (PL) spectrum shows UV emission around 386 nm and weak green emission peaks indicating that there are few defects in the single crystal grains of the ZnO microspheres.

  5. Nano-sized ZnO powders prepared by co-precipitation method with various pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwaningsih, S. Y., E-mail: sriyanisaputri@gmail.com; Pratapa, S.; Triwikantoro,

    2016-04-19

    In this work, nano-sized ZnO powders have been synthesized by the co-precipitation method with Zn(CH3COOH)2.2H2O, HCl, and NH3.H2O as raw materials in various pH ranging from 8 to 10. The purity, microstructure, chemical group analysis, morphology of the prepared ZnO powders were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR), energy dispersive X-ray spectrometry (EDX), and scanning electron microscope (SEM), respectively. Rietveld refinement of XRD data showed that ZnO crystallizes in the wurtzite structure with high purity. The obtained powders were nano-sized particles with the average crystallite size about 17.9 ± 2.1 nm synthesized with pH of 9.5, atmore » 85°C, and stirring time of 6 h. The SEM results have visualied the morphology of ZnO nanoparticles with spherical-like shape. The effect of processing conditions on morphology of ZnO was also discussed.« less

  6. Dendrite-Free Nanocrystalline Zinc Electrodeposition from an Ionic Liquid Containing Nickel Triflate for Rechargeable Zn-Based Batteries.

    PubMed

    Liu, Zhen; Cui, Tong; Pulletikurthi, Giridhar; Lahiri, Abhishek; Carstens, Timo; Olschewski, Mark; Endres, Frank

    2016-02-18

    Metallic zinc is a promising anode material for rechargeable Zn-based batteries. However, the dendritic growth of zinc has prevented practical applications. Herein it is demonstrated that dendrite-free zinc deposits with a nanocrystalline structure can be obtained by using nickel triflate as an additive in a zinc triflate containing ionic liquid. The formation of a thin layer of Zn-Ni alloy (η- and γ-phases) on the surface and in the initial stages of deposition along with the formation of an interfacial layer on the electrode strongly affect the nucleation and growth of zinc. A well-defined and uniform nanocrystalline zinc deposit with particle sizes of about 25 nm was obtained in the presence of Ni(II) . Further, it is shown that the nanocrystalline Zn exhibits a high cycling stability even after 50 deposition/stripping cycles. This strategy of introducing an inorganic metal salt in ionic liquid electrolytes can be considered as an efficient way to obtain dendrite-free zinc. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Studies on the sensing behaviour of nanocrystalline CuGa(2)O(4) towards hydrogen, liquefied petroleum gas and ammonia.

    PubMed

    Biswas, Soumya Kanti; Sarkar, Arpita; Pathak, Amita; Pramanik, Panchanan

    2010-06-15

    In the present article, the gas sensing behaviour of nanocrystalline CuGa(2)O(4) towards H(2), liquefied petroleum gas (LPG) and NH(3) has been reported for the first time. Nanocrystalline powders of CuGa(2)O(4) having average particle sizes in the range of 30-60nm have been prepared through thermal decomposition of an aqueous precursor solution comprising copper nitrate, gallium nitrate and triethanol amine (TEA), followed by calcination at 750 degrees C for 2h. The synthesized nanocrystalline CuGa(2)O(4) powders have been characterised through X-ray diffraction (XRD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM) study, energy dispersive X-ray (EDX) analysis and BET (Brunauer-Emmett-Teller) surface area measurement. The synthesized CuGa(2)O(4) having spinel structure with specific surface area of 40m(2)/g exhibits maximum sensitivity towards H(2), LPG, and NH(3) at 350 degrees C.

  8. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter.

    PubMed

    Moghaddasi, Sahar; Fotovat, Amir; Khoshgoftarmanesh, Amir Hossein; Karimzadeh, F; Khazaei, Hamid Reza; Khorassani, Reza

    2017-10-01

    There is a gap of knowledge for the fate, effects and bioavailability of coated and uncoated ZnO nanoparticles (NPs) in soil. Moreover, little is known about the effects of soil properties on effects of NPs on plants. In this study, the availability ZnO NPs in two soils with different organic matter content (one treated with cow manure (CM) and the other as untreated) was compared with their bulk particles. Results showed that coated and uncoated ZnO NPs can be more bioaccessible than their bulk counterpart and despite their more positive effects at low concentration (< 100mgkg -1 ), they were more phytotoxic for plants compared to the bulk ZnO particles at high concentration (1000mgkg -1 ) in the soil untreated with CM. The concentration of 1000mgkg -1 of ZnO NPs, decreased shoot dry biomass (52%) in the soil untreated with CM but increased shoot dry biomass (35%) in CM-treated soil compared to their bulk counterpart. In general, plants in the CM-treated soil showed higher Zn concentration in their tissues compared with those in untreated soil. The difference in shoot Zn concentration between CM-treated and untreated soil for NPs treatments was more than bulk particles treatment. This different percentage at 100mgkg -1 of bulk particles was 20.6% and for coated and uncoated NPs were 37% and 32%, respectively. Generally, the distribution of ZnO among Zn fractions in soil (exchangeable, the metal bound to carbonates, Fe-Mn oxides, organic matter and silicate minerals and the residual fraction) changed based on applied Zn concentration, Zn source and soil organic matter content. The root tip deformation under high concentration of NPs (1000mgkg -1 treatment ) was observed by light microscopy in plants at the soil untreated with CM. It seems that root tip deformation is one of the specific effects of NPs which in turn inhibits plant growth and nutrients uptake by root. The transmission electron microcopy image showed the aggregation of NPs inside the plant cytoplasm

  9. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process

    NASA Astrophysics Data System (ADS)

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-01

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc)2·nH2O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc)2·nH2O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals ( 5 to 15 nm) with high specific surface area of 88 m2/g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H2O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc)2·nH2O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc)2·nH2O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc)2·nH2O and EG has been proposed.

  10. Dermal absorption and short-term biological impact in hairless mice from sunscreens containing zinc oxide nano- or larger particles

    PubMed Central

    Oytam, Yalchin; Kirby, Jason K.; Gomez-Fernandez, Laura; Baxter, Brent; McCall, Maxine J.

    2014-01-01

    Previous studies have shown no, or very limited, skin penetration of metal oxide nanoparticles following topical application of sunscreens, yet concerns remain about their safety compared to larger particles. Here, we assessed the comparative dermal absorption of a traceable form of Zn (68Zn) from 68ZnO nano-sized and larger particles in sunscreens. Sunscreens were applied to the backs of virgin or pregnant hairless mice over four days. Control groups received topical applications of the sunscreen formulation containing no ZnO particles, or no treatment. Major organs were assessed for changes in 68Zn/64Zn ratios, 68Zn tracer and total Zn concentrations. Short-term biological impact was assessed by measuring levels of serum amyloid A in blood, and by performing whole-genome transcriptional profiling on livers from each group. Increased concentrations of 68Zn tracer were detected in internal organs of mice receiving topical applications of 68ZnO (nano-sized and larger particles), as well as in fetal livers from treated dams, compared with controls. Furthermore, concentrations of 68Zn in organs of virgin mice treated with sunscreen containing 68ZnO nanoparticles were found to be significantly higher than in mice treated with sunscreen containing larger 68ZnO particles. However, no ZnO-mediated change in total Zn concentration in any of the major organs was observed. Thus, despite 68Zn absorption, which may have been in the form of soluble 68Zn species or 68ZnO particles (not known), Zn homeostasis was largely maintained, and the presence of ZnO particles in sunscreen did not elicit an adverse biological response in the mice following short-term topical applications. PMID:24266363

  11. Nanocrystalline LaOx/NiO composite as high performance electrodes for supercapacitors.

    PubMed

    Du, Guo; Zeng, Zifan; Xiao, Bangqing; Wang, Dengzhi; Yuan, Yuan; Zhu, Xiaohong; Zhu, Jiliang

    2017-12-21

    Nanocrystalline LaO x /NiO composite electrodes were synthesized via two types of facile cathodic electrodeposition methods onto nickel foam followed by thermal annealing without any binders. Scanning electron microscopy and transmission electron microscopy investigation revealed that LaO x nanocrystalline particles with an average diameter of 50 nm are uniformly distributed in the NiO layer or alternately deposited with the NiO layer onto the substrate. It is speculated that LaO x particles can participate in the faradaic reaction directly and offer more redox sites. Besides this, the unique Ni/La layered structure facilitates the diffusion of ions and retards the electrode polarization, thus leading to a better rate capability and cycling stability of NiO. As a result, the obtained electrodes display very competitive electrochemical performance (a specific capacitance of 1238 F g -1 at a current density of 0.5 A g -1 , excellent rate capability of 86% of the original capacitance at 10 A g -1 and excellent cycling stability of 93% capacitance after 10 000 cycles). In addition, asymmetric coin devices were assembled using LaO x /NiO as the positive electrode and active carbon as the negative electrode. The assembled asymmetric devices demonstrate a high energy density of 13.12 W h kg -1 at a power density of 90.72 W kg -1 .

  12. Effect of annealing temperature on the photoluminescence and scintillation properties of ZnO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurudirek, Sinem V.; Menkara, H.; Klein, Benjamin D. B.

    2018-01-01

    The effect of the annealing to enhance the photoluminescence (PL) and scintillation properties, as determined by pulse height distribution of alpha particle irradiation, has been investigated for solution grown ZnO nanorods For this investigation the ZnO nanorod arrays were grown on glass for 22 h at 95 ◦ C as a substrate using a solution based hydrothermal technique. The samples were first annealed for different times (30, 60, 90 and 120 min) at 300 ◦ C and then at different temperatures (100 ◦ C–600 ◦ C) in order to determine the optimum annealing time and temperature, respectively. Before annealing, themore » ZnO nanorod arrays showed a broad yellow–orange visible and near-band gap UV emission peaks. After annealing in a forming gas atmosphere, the intensity of the sub-band gap PL was significantly reduced and the near-band gap PL emission intensity correspondingly increased (especially at temperatures higher than 100 ◦ C). Based on the ratio of the peak intensity ratio before and after annealing, it was concluded that samples at 350 ◦ C for 90 min resulted in the best near-band gap PL emission. Similarly, the analysis of the pulse height spectrum resulting from alpha particles revealed that ZnO nanorod arrays similarly annealed at 350 ◦ C for 90 min exhibited the highest scintillation response.« less

  13. Template-assisted formation of microsized nanocrystalline CeO2 tubes and their catalytic performance in the carboxylation of methanol

    PubMed Central

    Naumann, Meike; Schäfer, Christian; Brandner, Armin; Hofmann, Heiko J; Claus, Peter

    2011-01-01

    Summary Polymethylmethacrylate (PMMA)/ceria composite fibres were synthesized by using a sequential combination of polymer electrospinning, spray-coating with a sol, and a final calcination step to yield microstructured ceria tubes, which are composed of nanocrystalline ceria particles. The PMMA template is removed from the organic/inorganic hybrid material by radio frequency (rf) plasma etching followed by calcination of the ceramic green-body fibres. Microsized ceria (CeO2) tubes, with a diameter of ca. 0.75 µm, composed of nanocrystalline agglomerated ceria particles were thus obtained. The 1-D ceramic ceria material was characterized by X-ray diffraction, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV–vis and photoluminescence spectroscopy (PL), as well as thermogravimetric analysis (TGA). Its catalytic performance was studied in the direct carboxylation of methanol with carbon dioxide leading to dimethyl carbonate [(CH3O)2CO, DMC], which is widely employed as a phosgene and dimethyl sulfate substitute, and as well as a fuel additive. PMID:22259761

  14. Diffraction Studies of the Atomic Vibrations of Bulk and Surface Atoms in the Reciprocal and Real Spaces of Nanocrystalline SiC

    NASA Technical Reports Server (NTRS)

    Stelmakh, S.; Grzanka, E.; Weber, H.-P.; Vogel, S.; Palosz, B.; Palosz, B.

    2004-01-01

    To describe and evaluate the vibrational properties of nanoparticles it is necessary to distinguish between the surface and the core of the particles. Theoretical calculations show that vibrational density of states of the inner atoms of nanograins is similar to bulk material but shifted to higher energies which can be explained by the fact that the gain core is stressed (hardened) due to the presence of internal pressure. Theoretical calculations also show that there is a difference between vibrational properties of a crystal lattice of the grain interior in isolated particles and in a dense (sintered) nanocrystalline material. This is probably due to a coupling of the modes inside the grains via the grain boundaries in dense nanocrystalline bodies. We examined strains present in the surface shell based on examination of diamond and Sic nanocrystals in reciprocal (Bragg-type scattering) and real (PDF analysis) space analysis of neutron diffraction data. Recently we examined the atomic thermal motions in nanocrystalline Sic based on the assumption of a simple Einstein model for uncorrelated atomic notions. According to this model, the Bragg intensity is attenuated as a function of scattering angle by the Debye-Waller factor. Based on this assumption overall temperature factors were determined from the Wilson plots.

  15. Formation, transformation and superhydrophobicity of compound surfactant-assisted aligned ZnO nanoplatelets

    NASA Astrophysics Data System (ADS)

    Xue, Mingshan; Xu, Tao; Xie, Xiaolin; Ou, Junfei; Wang, Fajun; Li, Wen

    2015-11-01

    Synthesis and understanding of hierarchically nanostructured materials are significant for exploring peculiar functional properties and underlying applications. In this study, the self-assembly formation and detailed transformation process of ZnO nanoplatelets grown by hydrothermal methods with the addition of compound surfactants (CTAB and Tween-20) have been investigated. The initial growth of ZnO nanoplatelets as well as the subsequent formation of bilayer nanorod arrays and divergent nanocone arrays on the surface and side face of these nanoplatelets were found. Compared with the formation of bulk/block crystals without the case of surfactants, the addition of compound surfactants into zinc nitrate solution is responsible for the self-assembly processes of ZnO because of the effective role of CTAB in decreasing the degree of crystallinity and the positive effect of Tween-20 on decreasing the particle size owing to the space hindered effect. As-formed hierarchically micro-nanostructured ZnO exhibits superhydrophobicity without any chemical modification, which can make water droplets suspend on the air film trapped between the nanoplatelet and nanoplatelet as well as between nanocone and nanocone.

  16. Magnetic properties of FeCuNbSiB nanocrystalline alloy powder cores using ball-milled powder

    NASA Astrophysics Data System (ADS)

    Kim, G. H.; Noh, T. H.; Choi, G. B.; Kim, K. Y.

    2003-05-01

    Cold-pressed nanocrystalline powder cores were fabricated using powders of nanocrystalline ribbons which were ball milled for short time. Their magnetic properties at high frequency were measured. The powder size ranges from 20 to 850 μm and the contents of the glass binder are between 1 and 8 wt %. For cores composed of large particles of 300-850 μm with 5 wt % glass binder, we obtained a stable permeability of 100 up to 800 kHz, a maximum level 31 of quality factor at frequency of 50 kHz, and 320 mW/cm3 core loss at f=50 kHz and Bm=0.1 T. This is mainly due to the good soft magnetic properties of the powders and the higher insulation of powder cores which cause low eddy current losses.

  17. Intrinsic and extrinsic doping of ZnO and ZnO alloys

    NASA Astrophysics Data System (ADS)

    Ellmer, Klaus; Bikowski, André

    2016-10-01

    In this article the doping of the oxidic compound semiconductor ZnO is reviewed with special emphasis on n-type doping. ZnO naturally exhibits n-type conductivity, which is used in the application of highly doped n-type ZnO as a transparent electrode, for instance in thin film solar cells. For prospective application of ZnO in other electronic devices (LEDs, UV photodetectors or power devices) p-type doping is required, which has been reported only minimally. Highly n-type doped ZnO can be prepared by doping with the group IIIB elements B, Al, Ga, and In, which act as shallow donors according to the simple hydrogen-like substitutional donor model of Bethe (1942 Theory of the Boundary Layer of Crystal Rectifiers (Boston, MA: MIT Rad Lab.)). Group IIIA elements (Sc, Y, La etc) are also known to act as shallow donors in ZnO, similarly explainable by the shallow donor model of Bethe. Some reports showed that even group IVA (Ti, Zr, Hf) and IVB (Si, Ge) elements can be used to prepare highly doped ZnO films—which, however, can no longer be explained by the simple hydrogen-like substitutional donor model. More probably, these elements form defect complexes that act as shallow donors in ZnO. On the other hand, group V elements on oxygen lattice sites (N, P, As, and Sb), which were viewed for a long time as typical shallow acceptors, behave instead as deep acceptors, preventing high hole concentrations in ZnO at room temperature. Also, ‘self’-compensation, i.e. the formation of a large number of intrinsic donors at high acceptor concentrations seems to counteract the p-type doping of ZnO. At donor concentrations above about 1020 cm-3, the electrical activation of the dopant elements is often less than 100%, especially in polycrystalline thin films. Reasons for the electrical deactivation of the dopant atoms are (i) the formation of dopant-defect complexes, (ii) the compensation of the electrons by acceptors (Oi, VZn) or (iii) the formation of secondary phases, for

  18. Preferential cytotoxicity of ZnO nanoparticle towards cervical cancer cells induced by ROS-mediated apoptosis and cell cycle arrest for cancer therapy

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd

    2016-08-01

    The present study aimed to synthesize multifunctional ZnO-NP samples, namely ZnO-20, ZnO-40, and ZnO-80 nm, using different approaches, to be used as efficient anticancer agents. Systematic characterizations revealed their particle sizes and demonstrated nanostructures of nanorods (ZnO-80 nm) and nanogranules (ZnO-20 and ZnO-40 nm). They exhibited significant ( p < 0.05) toxicity to HeLa cancer cells. HeLa cell viabilities at 1 mM dose reduced to 37, 32, 15 %, by ZnO-80, ZnO-40, and ZnO-20 nm, respectively, at 48 h. However, the same dose exerted different effects of 79.6, 76, and 75 % on L929 normal cells at 48 h. Measurement of reactive oxygen species (ROS) showed a considerable ROS yields on HeLa cells by all samples with a pronounced percentage (50 %) displayed by ZnO-20 nm. Moreover, ROS-mediated apoptosis induction and blocked cell cycle progression in the S, G2/M, and G0/G1 phases significantly ( p < 0.05). Apoptosis induction was further confirmed by DNA fragmentation and Hoechst-PI costained images viewed under fluorescence microscope. Additionally, morphological changes of HeLa cells visualized under light microscope showed assortment of cell death involved shrinkage, vacuolization and apoptotic bodies' formation. Most importantly, results exposed the impact of size and morphology of ZnO samples on their toxicity to Hela cells mediated mainly by ROS production. ZnO-20 nm in disk form with its nanogranule shape and smallest particle size was the most toxic sample, followed by ZnO-40 nm and then ZnO-80 nm. An additional proposed mechanism contributed in the cell death herein was ZnO decomposition producing zinc ions (Zn2+) into the acidic cancer microenvironment due to the smaller sizes of ZnO-NPs. This mechanism has been adopted in the literatures as a size-dependent phenomenon. The emerged findings were suggested to provide new platforms in the development of therapeutics as selective agents to the fatal cervical cancer, and to benefit from the

  19. Effect of an Electrochemically Oxidized ZnO Seed Layer on ZnO Nanorods Grown by using Electrodeposition

    NASA Astrophysics Data System (ADS)

    Jeon, Woosung; Leem, Jae-Young

    2018-05-01

    ZnO nanorods were prepared on a Si substrate with and without a ZnO seed layer formed by electro-oxidation to investigate the effect of the seed layer on their growth. The ZnO nanorods grown on the ZnO seed layer had top surfaces that were flat whereas those grown without it had rough top surfaces, as observed in field-emission scanning electron microscopy images. In the Xray diffraction analysis, all ZnO nanorods showed preferential orientation with the (002) plane. In the case of ZnO nanorods prepared with a ZnO seed layer, the residual stress decreased, and the full width at half maximum of the ZnO (002) plane peak decreased. The photoluminescence spectra show a strong and narrow near-band-edge emission peak and high near-band-edge emission to deep-level emission peak ratio for the ZnO nanorods prepared with the seed layer. With respect to the photoresponse properties, the ZnO nanorods grown with the ZnO seed layer showed higher responsivity and faster rise/decay curves than those grown without it. Thus, the ZnO seed layer formed by electro-oxidation improves the structural, optical, and photoresponse properties of the ZnO nanorods formed on it. This method could serve as a new route for improving the properties of optoelectronic devices.

  20. Round-patterned ZnO nanostructure coated with siloxane-based polymer for nerve agent detection

    NASA Astrophysics Data System (ADS)

    Choi, Hyun Ji; Lee, Ji Won; Jeong, Dong-Cheol; Ha, Seonggyun; Song, Changsik; Boo, Jin-Hyo

    2018-01-01

    The alignment of zinc oxide (ZnO) nanostructures is expected to improve device sensitivities due to large surface areas which can be utilized to capture significant quantities of gas particles. In this study, we investigated patterned ZnO nanorods modified with polystyrene monolayers synthesized directly onto a quartz crystal microbalance (QCM) cell to increase the coating surface area of the sensing material. Also, we designed and synthesized a siloxane-based polymer (S1 polymer) as a sensing material. The patterned ZnO nanorods coated with S1 polymers were fabricated and used for the detection of dimethyl methylphosphonate (DMMP). The resonance frequency of QCM was shifted due to the adsorption and desorption of a compound at the surface of the modified electrodes. We have synthesized an S1 polymer that exhibited high sensitivity to DMMP. The patterned ZnO nanorods coated with the polymer also exhibited improved sensitivity due to an enhanced surface area capable of adsorbing more DMMP vapor.

  1. Fabrication and Characterization of ZnO Nano-Clips by the Polyol-Mediated Process.

    PubMed

    Wang, Mei; Li, Ai-Dong; Kong, Ji-Zhou; Gong, You-Pin; Zhao, Chao; Tang, Yue-Feng; Wu, Di

    2018-02-09

    ZnO nano-clips with better monodispersion were prepared successfully using zinc acetate hydrate (Zn(OAc) 2 ·nH 2 O) as Zn source and ethylene glycol (EG) as solvent by a simple solution-based route-polyol process. The effect of solution concentration on the formation of ZnO nano-clips has been investigated deeply. We first prove that the 0.01 M Zn(OAc) 2 ·nH 2 O can react with EG without added water or alkaline, producing ZnO nano-clips with polycrystalline wurtzite structure at 170 °C. As-synthesized ZnO nano-clips contain a lot of aggregated nanocrystals (~ 5 to 15 nm) with high specific surface area of 88 m 2 /g. The shapes of ZnO nano-clips basically keep constant with improved crystallinity after annealing at 400-600 °C. The lower solution concentration and slight amount of H 2 O play a decisive role in ZnO nano-clip formation. When the solution concentration is ≤ 0.0125 M, the complexing and polymerization reactions between Zn(OAc) 2 ·nH 2 O and EG predominate, mainly elaborating ZnO nano-clips. When the solution concentration is ≥ 0.015 M, the alcoholysis and polycondensation reactions of Zn(OAc) 2 ·nH 2 O and EG become dominant, leading to ZnO particle formation with spherical and elliptical shapes. The possible growth mechanism based on a competition between complexing and alcoholysis of Zn(OAc) 2 ·nH 2 O and EG has been proposed.

  2. Nanocrystalline heterojunction materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2003-07-15

    Mesoporous nanocrystalline titanium dioxide heterojunction materials are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  3. Synthesis of Nano-Crystalline Gamma-TiAl Materials

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J.; Vasquez, Peter

    2003-01-01

    One of the principal problems with nano-crystalline materials is producing them in quantities and sizes large enough for valid mechanical property evaluation. The purpose of this study was to explore an innovative method for producing nano-crystalline gamma-TiAl bulk materials using high energy ball milling and brief secondary processes. Nano-crystalline powder feedstock was produced using a Fritsch P4(TM) vario-planetary ball mill recently installed at NASA-LaRC. The high energy ball milling process employed tungsten carbide tooling (vials and balls) and no process control agents to minimize contamination. In a collaborative effort, two approaches were investigated, namely mechanical alloying of elemental powders and attrition milling of pre-alloyed powders. The objective was to subsequently use RF plasma spray deposition and short cycle vacuum hot pressing in order to effect consolidation while retaining nano-crystalline structure in bulk material. Results and discussion of the work performed to date are presented.

  4. Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.

    PubMed

    Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John

    2014-03-01

    A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.

  5. Influence of Dispersant and Heat Treatment on the Morphology of Nanocrystalline Hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Pan, Yusong; Xiong, Dangsheng

    2010-10-01

    Natural biological hard tissues are biocomposites of proteins and hydroxyapatite (HA) with superior strength. Nanometer scale HAp is the key material to manufacture bone substitute. In this work, nano-sized HA particles were synthesized by a wet method using orthophosphoric acid and calcium hydroxide as raw materials. The prepared nanocrystalline HAp was characterized for its phase purity and nano-scale morphological structure by XRD, TEM, and FTIR. The influences of heat treatment temperature and dispersant on the properties of HAp were also investigated. The results indicated that nano-particles were pure single-phase HAp with a diameter of 25-70 nm and length of 50-180 nm depending on heat treatment temperature. The morphology and crystallite size of HAp change with heat treatment temperature. After heat treating, the crystallinity of these nano-particles increased and its morphology transformed from needle-like to sphere-like structure. The dispersant is beneficial to prevent the growth of HA particles and provide a uniform particle size distribution. Moreover, the HAp tends to form small agglomerates in the absence of dispersant.

  6. Citrus maxima (Pomelo) juice mediated eco-friendly synthesis of ZnO nanoparticles: Applications to photocatalytic, electrochemical sensor and antibacterial activities

    NASA Astrophysics Data System (ADS)

    Pavithra, N. S.; Lingaraju, K.; Raghu, G. K.; Nagaraju, G.

    2017-10-01

    In the present work, Zinc oxide nanoparticles (ZnO Nps) have been successfully prepared through a simple, effective and low cost solution combustion method using Zn (NO3)2·6H2O as an oxidizer, chakkota (Common name = Pomelo) fruit juice as novel fuel. X-ray diffraction pattern indicates the hexagonal wurtzite structure with average crystallite size of 22 nm. ZnO Nps were characterized with the aid of different spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Photoluminescence and UV-Visible spectroscopy. FTIR shows characteristic ZnO vibrational mode at 393 cm- 1. SEM images show that the particles are agglomerated. TEM image shows the size of the particles are about 10-20 nm. Further, in order to establish practical applicability of the synthesized ZnO Nps, photocatalytic degradation of methylene blue (MB) dye as a model system was studied in presence of UV (665 nm) light. In addition to this, the antibacterial activity was screen against 3 bacterial strains and electrochemical sensor performance towards the quantification of dopamine at nano molar concentrations was also explored.

  7. Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts

    PubMed Central

    2014-01-01

    To research the relationship of micro-structures and antibacterial properties of the titanium-doped ZnO powders and probe their antibacterial mechanism, titanium-doped ZnO powders with different shapes and sizes were prepared from different zinc salts by alcohothermal method. The ZnO powders were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED), and the antibacterial activities of titanium-doped ZnO powders on Escherichia coli and Staphylococcus aureus were evaluated. Furthermore, the tested strains were characterized by SEM, and the electrical conductance variation trend of the bacterial suspension was characterized. The results indicate that the morphologies of the powders are different due to preparation from different zinc salts. The XRD results manifest that the samples synthesized from zinc acetate, zinc nitrate, and zinc chloride are zincite ZnO, and the sample synthesized from zinc sulfate is the mixture of ZnO, ZnTiO3, and ZnSO4 · 3Zn (OH)2 crystal. UV-vis spectra show that the absorption edges of the titanium-doped ZnO powders are red shifted to more than 400 nm which are prepared from zinc acetate, zinc nitrate, and zinc chloride. The antibacterial activity of titanium-doped ZnO powders synthesized from zinc chloride is optimal, and its minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) are lower than 0.25 g L−1. Likewise, when the bacteria are treated by ZnO powders synthesized from zinc chloride, the bacterial cells are damaged most seriously, and the electrical conductance increment of bacterial suspension is slightly high. It can be inferred that the antibacterial properties of the titanium-doped ZnO powders are relevant to the microstructure, particle size, and the crystal. The powders can damage the

  8. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  9. Biosynthesis and characterization of ZnO nanoparticles using the aqueous leaf extract of Imperata cylindrica L.

    NASA Astrophysics Data System (ADS)

    Saputra, I. S.; Yulizar, Y.

    2017-04-01

    ZnO nanoparticles (ZnO NPs) were biosynthesized.The growth was observed by a sol-gel method. ZnO were successfully formed through the reaction of zinc nitrate tetrahydrate Zn(NO3)2.4H2O precursor with aqueous leaf extract of Imperata cylindrica L (ICL). The structural and optical properties of ZnO were investigated. The as-synthesized products were characterized by UV-Visible (UV-Vis), UV diffuse reflectance spectroscopy (UV-DRS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). UV-Vis absorption data showed hydrolysis and characteristic of absorption peak at 300 nm of Zn(OH)2. UV-DRS confirmed that ZnO NPs has the indirect band gap at 3.13 eV. FTIR spectrum revealed the functional groups and indicated the presence of protein as the capping and stabilizing agent on the ZnO surface. Powder XRD studies indicated the formation of pure wurtzite hexagonal structure with particle size of 11.9 nm. The detailed morphological and structural characterizations revealed that the synthesized products were hexagonal nanochip.

  10. Improvement of diamond-like carbon electrochemical corrosion resistance by addition of nanocrystalline diamond.

    PubMed

    Marciano, F R; Almeida, E C; Bonetti, L F; Corat, E J; Trava-Airoldi, V J

    2010-02-15

    Nanocrystalline diamond (NCD) particles were incorporated into diamond-like carbon (DLC) films in order to investigate NCD-DLC electrochemical corrosion resistance. The films were grown over 304 stainless steel using plasma-enhanced chemical vapor deposition. NCD particles were incorporated into DLC during the deposition process. The investigation of NCD-DLC electrochemical corrosion behavior was performed using potentiodynamic polarization against NaCl. NCD-DLC films presented more negative corrosion potential and lower anodic and cathodic current densities. The electrochemical analysis indicated that NCD-DLC films present superior impedance and polarization resistance compared to the pure DLC, which indicate that they are promising corrosion protective coatings in aggressive solutions. Copyright 2009 Elsevier Inc. All rights reserved.

  11. Effects of Palladium Loading on the Response of a Thick Film Flame-made ZnO Gas Sensor for Detection of Ethanol Vapor

    PubMed Central

    Liewhiran, Chaikarn; Phanichphant, Sukon

    2007-01-01

    ZnO nanoparticles doped with 0-5 mol% Pd were successfully produced in a single step by flame spray pyrolysis (FSP) using zinc naphthenate and palladium (II) acetylacetonate dissolved in toluene-acetonitrile (80:20 vol%) as precursors. The effect of Pd loading on the ethanol gas sensing performance of the ZnO nanoparticles and the crystalline sizes were investigated. The particle properties were analyzed by XRD, BET, AFM, SEM (EDS line scan mode), TEM, STEM, EDS, and CO-pulse chemisorption measurements. A trend of an increase in specific surface area of samples and a decrease in the dBET with increasing Pd concentrations was noted. ZnO nanoparticles were observed as particles presenting clear spheroidal, hexagonal and rod-like morphologies. The sizes of ZnO spheroidal and hexagonal particle crystallites were in the 10-20 nm range. ZnO nanorods were in the range of 10-20 nm in width and 20-50 nm in length. The size of Pd nanoparticles increased and Pd-dispersion% decreased with increasing Pd concentrations. The sensing films were produced by mixing the particles into an organic paste composed of terpineol and ethyl cellulose as a vehicle binder. The paste was doctor-bladed onto Al2O3 substrates interdigitated with Au electrodes. The film morphology was analyzed by SEM and EDS analyses. The gas sensing of ethanol (25-250 ppm) was studied in dry air at 400°C. The oxidation of ethanol on the sensing surface of the semiconductor was confirmed by MS. A well-dispersed of 1 mol%Pd/ZnO films showed the highest sensitivity and the fastest response time (within seconds).

  12. Topically applied ZnO nanoparticles suppress allergen induced skin inflammation but induce vigorous IgE production in the atopic dermatitis mouse model

    PubMed Central

    2014-01-01

    Background Metal oxide nanoparticles such as ZnO are used in sunscreens as they improve their optical properties against the UV-light that causes dermal damage and skin cancer. However, the hazardous properties of the particles used as UV-filters in the sunscreens and applied to the skin have remained uncharacterized. Methods Here we investigated whether different sized ZnO particles would be able to penetrate injured skin and injured allergic skin in the mouse atopic dermatitis model after repeated topical application of ZnO particles. Nano-sized ZnO (nZnO) and bulk-sized ZnO (bZnO) were applied to mechanically damaged mouse skin with or without allergen/superantigen sensitization. Allergen/superantigen sensitization evokes local inflammation and allergy in the skin and is used as a disease model of atopic dermatitis (AD). Results Our results demonstrate that only nZnO is able to reach into the deep layers of the allergic skin whereas bZnO stays in the upper layers of both damaged and allergic skin. In addition, both types of particles diminish the local skin inflammation induced in the mouse model of AD; however, nZnO has a higher potential to suppress the local effects. In addition, especially nZnO induces systemic production of IgE antibodies, evidence of allergy promoting adjuvant properties for topically applied nZnO. Conclusions These results provide new hazard characterization data about the metal oxide nanoparticles commonly used in cosmetic products and provide new insights into the dermal exposure and hazard assessment of these materials in injured skin. PMID:25123235

  13. Al-doped ZnO seed layer-dependent crystallographic control of ZnO nanorods by using electrochemical deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Hyo-Soo; Choi, Nak-Jung; Kim, Kyoung-Bo

    Highlights: • Polar and semipolar ZnO NRs were successfully achieved by hydrothermal synthesis. • Semipolar and polar ZnO NRs were grown on ZnO and AZO/m-sapphire, respectively. • Al % of AZO/m-sapphire enhanced the lateral growth rate of polar ZnO NRs. - Abstract: We investigated the effect of an Al-doped ZnO film on the crystallographic direction of ZnO nanorods (NRs) using electrochemical deposition. From high-solution X-ray diffraction measurements, the crystallographic plane of ZnO NRs grown on (1 0 0) ZnO/m-plane sapphire was (1 0 1). The surface grain size of the (100) Al-doped ZnO (AZO) film decreased with increasing Al contentmore » in the ZnO seed layer, implying that the Al dopant accelerated the three-dimensional (3D) growth of the AZO film. In addition, it was found that with increasing Al doping concentration of the AZO seed layer, the crystal orientation of the ZnO NRs grown on the AZO seed layer changed from [1 0 1] to [0 0 1]. With increasing Al content of the nonpolar (1 0 0) AZO seed layer, the small surface grains with a few crystallographic planes of the AZO film changed from semipolar (1 0 1) ZnO NRs to polar (0 0 1) ZnO NRs due to the increase of the vertical [0 0 1] growth rate of the ZnO NRs owing to excellent electrical properties.« less

  14. Application of micro- and nanocrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Sotnikova, Yu S.; Demina, T. S.; Istomin, A. V.; Goncharuk, G. P.; Grandfils, Ch; Akopova, T. A.; Zelenetskii, A. N.; Babayevsky, P. G.

    2018-04-01

    Micro- and nanocrystalline forms of cellulose were extracted from flax stalks and evaluated in terms of their applicability for various materials science tasks. It was revealed that both form of cellulose had anisometric morphology with length of 27.1 μm and 159 nm; diameter of 8.7 μm and 85 nm, respectively. They were used as reinforcing fillers for fabrication of composite films based on hydroxyethylcellulose. Film-forming and mechanical properties of the composite materials were significantly varied in dependence on filler content (0–10 wt.%) and size. As a second option of micro- and nanocrystalline cellulose application, a study of their effectiveness as stabilizing agents for oil/water Pickering emulsions was carried out. In contrast to micron-sized cellulose the nanocrystalline form appeared to be successful in the process of CH2Cl2/water interface stabilization and fabrication of polylactide microparticles via oil/water Pickering emulsion solvent evaporation technique.

  15. EGCG assisted green synthesis of ZnO nanopowders: Photodegradative, antimicrobial and antioxidant activities

    NASA Astrophysics Data System (ADS)

    Suresh, D.; Udayabhanu; Nethravathi, P. C.; Lingaraju, K.; Rajanaika, H.; Sharma, S. C.; Nagabhushana, H.

    2015-02-01

    Zinc oxide nanopowders were synthesized by solution combustion method using Epigallocatechin gallate (EGCG) a tea catechin as fuel. The structure and morphology of the product was characterized by Powder X-ray Diffraction, Scanning Electron Microscopy, photoluminescence and UV-Visible spectroscopy. The nanopowders (Nps) were subjected to photocatalytic and biological activities such as antimicrobial and antioxidant studies. PXRD patterns demonstrate that the formed product belongs to hexagonal wurtzite system. SEM images show that the particles are agglomerated to form sponge like structure and the average crystallite sizes were found to be ∼10-20 nm. PL spectra exhibit broad and strong peak at 590 nm due to the Zn-vacancies, and O-vacancies. The prepared ZnO Nps exhibit excellent photocatalytic activity for the photodegradation of malachite green (MG) and methylene blue (MB) indicating that the ZnO NPs are potential photocatalytic semiconductor materials. ZnO NPs exhibit significant bactericidal activity against Klebsiella aerogenes, Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus using the agar well diffusion method. Furthermore, the ZnO nano powders show good antioxidant activity by potentially scavenging DPPH radicals. The study successfully demonstrates synthesis of ZnO NPs by simple ecofriendly route employing EGCG as fuel that exhibit superior photodegradative, antibacterial and antioxidant activities.

  16. Investigations of Nanocrystalline Alloy Electrospark Coating Made of Nanocrystalline Alloy Based on 5БДCP Ferrum

    NASA Astrophysics Data System (ADS)

    Kolomeichenko, A. V.; Kuznetsov, I. S.; Izmaylov, A. Yu; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes the properties of wear resistant electrospark coating made of nanocrystalline alloy of type 5БДCP (Finemet). It is proved that electrospark coating has nanocrystalline structure which is like amorphous matrix with nanocrystals α - Fe. Coating thickness is 33 μm, micro-hardness is 8461 - 11357 MPa, wear resistance is 0,55×104s/g. Coating ofnanocrystalline alloy of type 5БДCP can be used to increase wear resistance of machinery working surfaces.

  17. Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition

    DTIC Science & Technology

    2014-11-01

    Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition by Tiffany Ngo ARL-TN-0643...November 2014 Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by Cryogenic Attrition Tiffany Ngo Weapons and...3. DATES COVERED (From - To) August 2014 4. TITLE AND SUBTITLE Characterization of Nanocrystalline Aluminum Alloy 5083 Powders Produced by

  18. Nanocrystalline (U0.5Ce0.5)O2±x solid solutions through citrate gel-combustion

    NASA Astrophysics Data System (ADS)

    Maji, D.; Ananthasivan, K.; Venkata Krishnan, R.; Balakrishnan, S.; Amirthapandian, S.; Joseph, Kitheri; Dasgupta, Arup

    2018-04-01

    Nanocrystalline powders of (U0.5Ce0.5)O2±x solid solutions were synthesized in bulk (100-200 g) through the citrate gel combustion. The fuel (citric acid) to oxidant (nitrate) mole ratio (R) was varied from 0.1 to 1.0. Two independent lots of the products obtained through the gel-combustion were calcined at 973 K in air and in a mixture of argon containing 8% H2 respectively. All these powders were characterized for their bulk density, X-ray crystallite size, specific surface area, size distribution of the particles, porosity as well as residual carbon. The morphology and microstructures of these powders were studied by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) respectively. Nanocrystalline single phase fluorite solid solutions having a typical crystallite size of about (7-15 nm) were obtained. These powders were highly porous comprising cuboidal flaky agglomerates. The combustion mixture with an 'R' value of 0.25 was found to undergo volume combustion and was found to yield a product that was distinctly different. The systematic investigation on synthesis and characterization of nanocrystalline UCeO2 is reported for the first time.

  19. Magneto-optical properties of α-Fe2O3@ZnO nanocomposites prepared by the high energy ball-milling technique

    NASA Astrophysics Data System (ADS)

    Chaudhury, Chandana Roy; Roychowdhury, Anirban; Das, Anusree; Das, Dipankar

    2016-05-01

    Magnetic-fluorescent nanocomposites (NCs) with 10 wt% of α-Fe2O3 in ZnO have been prepared by the high energy ball-milling. The crystallite sizes of α-Fe2O3 and ZnO in the NCs are found to vary from 65 nm to 20 nm and 47 nm to 15 nm respectively as milling time is increased from 2 to 30 h. XRD analysis confirms presence of α-Fe2O3 and ZnO in pure form in all the NCs. UV-vis study of the NCs shows a continuous blue-shift of the absorption peak and a steady increase of band gap of ZnO with increasing milling duration that are assigned to decreasing particle size of ZnO in the NCs. Photoluminescence (PL) spectra of the NCs reveal three weak emission bands in the visible region at 421, 445 and 485 nm along with the strong near band edge emission at 391 nm. These weak emission bands are attributed to different defect - related energy levels e.g. Zn-vacancy, Zn interstitial and oxygen vacancy. Dc and ac magnetization measurements show presence of weakly interacting superparamagnetic (SPM) α-Fe2O3 particles in the NCs. 57Fe-Mössbauer study confirms presence of SPM hematite in the sample milled for 30 h. Positron annihilation lifetime measurements indicate presence of cation vacancies in ZnO nanostructures confirming results of PL studies.

  20. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    PubMed Central

    Dorozhkin, Sergey V.

    2009-01-01

    Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites) of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  1. Nanocrystalline cellulose from coir fiber: preparation, properties, and applications

    USDA-ARS?s Scientific Manuscript database

    Nanocrystalline cellulose derived from various botanical sources offers unique and potentially useful characteristics. In principle, any cellulosic material can be considered as a potential source of a nanocrystalline material, including crops, crop residues, and agroindustrial wastes. Because of t...

  2. Nanocrystalline Heterojunction Materials

    DOEpatents

    Elder, Scott H.; Su, Yali; Gao, Yufei; Heald, Steve M.

    2004-02-03

    Mesoporous nanocrystalline titanium dioxide heterojunction materials and methods of making the same are disclosed. In one disclosed embodiment, materials comprising a core of titanium dioxide and a shell of a molybdenum oxide exhibit a decrease in their photoadsorption energy as the size of the titanium dioxide core decreases.

  3. Efficiency of Nb-Doped ZnO Nanoparticles Electrode for Dye-Sensitized Solar Cells Application

    NASA Astrophysics Data System (ADS)

    Anuntahirunrat, Jirapat; Sung, Youl-Moon; Pooyodying, Pattarapon

    2017-09-01

    The technological of Dye-sensitized solar cells (DSSCs) had been improved for several years. Due to its simplicity and low cost materials with belonging to the part of thin films solar cells. DSSCs have numerous advantages and benefits among the other types of solar cells. Many of the DSSC devices had use organic chemical that produce by specific method to use as thin film electrodes. The organic chemical that widely use to establish thin film electrodes are Zinc Oxide (ZnO), Titanium Dioxide (TiO2) and many other chemical substances. Zinc oxide (ZnO) nanoparticles had been used in DSSCs applications as thin film electrodes. Nanoparticles are a part of nanomaterials that are defined as a single particles 1-100 nm in diameter. From a few year ZnO widely used in DSSC applications because of its optical, electrical and many others properties. In particular, the unique properties and utility of ZnO structure. However the efficiency of ZnO nanoparticles based solar cells can be improved by doped various foreign impurity to change the structures and properties. Niobium (Nb) had been use as a dopant of metal oxide thin films. Using specification method to doped the ZnO nanoparticles thin film can improved the efficiencies of DSSCs. The efficiencies of Nb-doped ZnO can be compared by doping 0 at wt% to 5 at wt% in ZnO nanoparticles thin films that prepared by the spin coating method. The thin film electrodes doped with 3 at wt% represent a maximum efficiencies with the lowest resistivity of 8.95×10-4 Ω·cm.

  4. Influence of surface and finite size effects on the structural and magnetic properties of nanocrystalline lanthanum strontium perovskite manganites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Žvátora, Pavel; Veverka, Miroslav; Veverka, Pavel

    2013-08-15

    Syntheses of nanocrystalline perovskite phases of the general formula La{sub 1−x}Sr{sub x}MnO{sub 3+δ} were carried out employing sol–gel technique followed by thermal treatment at 700–900 °C under oxygen flow. The prepared samples exhibit a rhombohedral structure with space group R3{sup ¯}c in the whole investigated range of composition 0.20≤x≤0.45. The studies were aimed at the chemical composition including oxygen stoichiometry and extrinsic properties, i.e. size of the particles, both influencing the resulting structural and magnetic properties. The oxygen stoichiometry was determined by chemical analysis revealing oxygen excess in most of the studied phases. The excess was particularly high for themore » samples with the smallest crystallites (12–28 nm) while comparative bulk materials showed moderate non-stoichiometry. These differences are tentatively attributed to the surface effects in view of the volume fraction occupied by the upper layer whose atomic composition does not comply with the ideal bulk stoichiometry. - Graphical abstract: Evolution of the particle size with annealing temperature in the nanocrystalline La{sub 0.70}Sr{sub 0.30}MnO{sub 3+δ} phase. Display Omitted - Highlights: • The magnetic behaviour of nanocrystalline La{sub 1−x}Sr{sub x}MnO{sub 3+δ} phases was analyzed on the basis of their crystal structure, chemical composition and size of the particles. • Their Curie temperature and magnetization are markedly affected by finite size and surface effects. • The oxygen excess observed in the La{sub 1−x}Sr{sub x}MnO{sub 3+δ} nanoparticles might be generated by the surface layer with deviated oxygen stoichiometry.« less

  5. Low intensity, continuous wave photodoping of ZnO quantum dots - photon energy and particle size effects.

    PubMed

    Aguirre, Matías E; Municoy, S; Grela, M A; Colussi, A J

    2017-02-08

    The unique properties of semiconductor quantum dots (QDs) have found application in the conversion of solar to chemical energy. How the relative rates of the redox processes that control QD photon efficiencies depend on the particle radius (r) and photon energy (E λ ), however, is not fully understood. Here, we address these issues and report the quantum yields (Φs) of interfacial charge transfer and electron doping in ZnO QDs capped with ethylene glycol (EG) as a function of r and E λ in the presence and absence of methyl viologen (MV 2+ ) as an electron acceptor, respectively. We found that Φs for the oxidation of EG are independent of E λ and photon fluence (φ λ ), but markedly increase with r. The independence of Φs on φ λ ensures that QDs are never populated by more than one electron-hole pair, thereby excluding Auger-type terminations. We show that these findings are consistent with the operation of an interfacial redox process that involves thermalized carriers in the Marcus inverted region. In the absence of MV 2+ , QDs accumulate electrons up to limiting volumetric densities ρ e,∞ that depend sigmoidally on excess photon energy E* = E λ - E BG (r), where E BG (r) is the r-dependent bandgap energy. The maximum electron densities: ρ ev,∞ ∼ 4 × 10 20 cm -3 , are reached at E* > 0.5 eV, independent of the particle radius.

  6. Methods for preparation of nanocrystalline rare earth phosphates for lighting applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comanzo, Holly Ann; Manoharan, Mohan; Martins Loureiro, Sergio Paulo

    Disclosed here are methods for the preparation of optionally activated nanocrystalline rare earth phosphates. The optionally activated nanocrystalline rare earth phosphates may be used as one or more of quantum-splitting phosphor, visible-light emitting phosphor, vacuum-UV absorbing phosphor, and UV-emitting phosphor. Also disclosed herein are discharge lamps comprising the optionally activated nanocrystalline rare earth phosphates provided by these methods.

  7. ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues.

    PubMed

    Bocca, Beatrice; Caimi, Stefano; Senofonte, Oreste; Alimonti, Alessandro; Petrucci, Francesco

    2018-07-15

    This study sought to develop analytical methods to characterize titanium dioxide (TiO 2 ) and zinc oxide (ZnO) nanoparticles (NPs), including the particle size distribution and concentration, in cream and spray sunscreens with different sun protection factor (SPF). The Single Particle Inductively Coupled Plasma-Mass Spectrometry (SP ICP-MS) was used as screening and fast method to determine particles size and number. The Asymmetric Flow-Field Flow Fractionation (AF4-FFF) as a pre-separation technique was on-line coupled to the Multi-Angle Light Scattering (MALS) and ICP-MS to determine particle size distributions and size dependent multi-elemental concentration. Both methods were optimized in sunscreens in terms of recovery, repeatability, limit of detection and linear dynamic range. Results showed that sunscreens contained TiO 2 particles with an average size of ≤107 nm and also a minor number of ZnO particles sized ≤98 nm. The higher fraction of particles <100 nm was observed in sunscreens with SPF 50+ (ca. 80%); the lower percentage (12-35%) in sunscreens with lower SPF values. Also the higher TiO 2 (up to 24% weight) and ZnO (ca. 0.25% weight) concentrations were found in formulations of SPF 50+. Creamy sunscreens could be considered safe containing TiO 2 and ZnO NPs less than the maximum allowable concentration of 25% weight as set by the European legislation. On the contrary, spray products required additional considerations with regard to the potential inhalation of NPs. The developed methods can contribute to the actual demand for regulatory control and safety assessment of metallic NPs in consumers' products. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Structural and photoluminescence properties of Ce, Dy, Er-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jayachandraiah, C.; Kumar, K. Siva; Krishnaiah, G., E-mail: ginnerik@gmail.com

    2015-06-24

    Undoped ZnO and rare earth elements (Ce, Dy and Er with 2 at. %) doped nanoparticles were synthesized by wet chemical co-precipitation method at 90°C with Polyvinylpyrrolidone (PVP) as capping agent. The structural, morphological, compositional and photoluminescence studies were performed with X-ray diffraction (XRD), Transmission electron microscopy (TEM), Energy dispersive spectroscopy (EDS), FTIR spectroscopy and Photoluminescence (PL) respectively. XRD results revealed hexagonal wurtzite structure with average particle size around 18 nm - 14 nm and are compatible with TEM results. EDS confirm the incorporation of Ce, Dy and Er elements into the host ZnO matrix and is validated by FTIR analysis. PLmore » studies showed a broad intensive emission peak at 558 nm in all the samples. The intensity for Er- doped ZnO found maximum with additional Er shoulder peaks at 516nm and 538 nm. No Ce, Dy emission centers were found in spectra.« less

  9. Nanocrystalline cerium oxide materials for solid fuel cell systems

    DOEpatents

    Brinkman, Kyle S

    2015-05-05

    Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.

  10. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  11. Decreased Dissolution of ZnO by Iron Doping Yields Nanoparticles with Reduced Toxicity in the Rodent Lung and Zebrafish Embryos

    PubMed Central

    Xia, Tian; Zhao, Yan; Sager, Tina; George, Saji; Pokhrel, Suman; Li, Ning; Schoenfeld, David; Meng, Huan; Lin, Sijie; Wang, Xiang; Wang, Meiying; Ji, Zhaoxia; Zink, Jeffrey I.; Mädler, Lutz; Castranova, Vincent; Lin, Shuo; Nel, Andre E.

    2014-01-01

    We have recently shown that the dissolution of ZnO nanoparticles and Zn2+ shedding leads to a series of sub-lethal and lethal toxicological responses at cellular level that can be alleviated by iron-doping. Iron-doping changes the particle matrix and slows the rate of particle dissolution. To determine whether iron doping of ZnO also leads to lesser toxic effects in vivo, toxicity studies were performed in rodent and zebrafish models. First, we synthesized a fresh batch of ZnO nanoparticles doped with 1–10 wt % of Fe. These particles were extensively characterized to confirm their doping status, reduced rate of dissolution in an exposure medium and reduced toxicity in a cellular screen. Subsequent studies compared the effects of undoped to doped particles in the rat lung, mouse lung and the zebrafish embryo. The zebrafish studies looked at embryo hatching and mortality rates as well as the generation of morphological defects, while the endpoints in the rodent lung included an assessment of inflammatory cell infiltrates, LDH release and cytokine levels in the bronchoalveolar lavage fluid. Iron doping, similar to the effect of the metal chelator, DTPA, interfered in the inhibitory effects of Zn2+ on zebrafish hatching. In the oropharyngeal aspiration model in the mouse, iron doping was associated with decreased polymorphonuclear cell counts and IL-6 mRNA production. Doped particles also elicited decreased heme oxygenase 1 expression in the murine lung. In the intratracheal instillation studies in the rat, Fe-doping was associated with decreased polymorphonuclear cell counts, LDH and albumin levels. All considered, the above data show that Fe-doping is a possible safe design strategy for preventing ZnO toxicity in animals and the environment. PMID:21250651

  12. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  13. Fatigue stress concentration and notch sensitivity in nanocrystalline metals

    DOE PAGES

    Furnish, Timothy A.; Boyce, Brad L.; Sharon, John A.; ...

    2016-03-11

    Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni–40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension–tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zonesmore » underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. Furthermore, the onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.« less

  14. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing.

    PubMed

    Ivask, Angela; Scheckel, Kirk G; Kapruwan, Pankaj; Stone, Vicki; Yin, Hong; Voelcker, Nicolas H; Lombi, Enzo

    2017-03-01

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge structure (XANES) spectroscopy results revealed that Zn speciation profiles of 30 nm and 80 nm ZnO nanoparticles, and ZnSO 4 - exposed cells were almost identical with the prevailing species being Zn-cysteine. This suggests that ZnO nanoparticles are rapidly transformed during a standard in vitro toxicological assay, and are sequestered intracellularly, analogously to soluble Zn. Complete transformation of ZnO in the test conditions was further supported by almost identical Zn spectra in medium to which ZnO nanoparticles or ZnSO 4 was added. Likewise, Cu XANES spectra for CuO and CuSO 4 -exposed cells and cell culture media were similar. These results together with our observation on similar toxicological profiles of ZnO and soluble Zn, and CuO and soluble Cu, underline the importance of dissolution and subsequent transformation of ZnO and CuO nanoparticles during toxicological testing and provide evidence that the nano-specific effect of ZnO and CuO nanoparticles is negligible in this system. We strongly suggest to account for this aspect when interpreting the toxicological results of ZnO and CuO nanoparticles.

  15. The Phase Relations in the In 2O 3-Al 2ZnO 4-ZnO System at 1350°C

    NASA Astrophysics Data System (ADS)

    Nakamura, Masaki; Kimizuka, Noboru; Mohri, Takahiko; Isobe, Mitsumasa

    1993-08-01

    Phase relations in the In 2O 3-Al 2ZnO 4-ZnO system at 1350°C are determined by a classical quenching method. This system consists of In 2O 3, Al 2ZnO 4, ZnO, and homologous phases InAlO 3(ZnO) m ( m = 2, 3, …) having solid solutions with LuFeO 3(ZnO) m-type crystal structures. These solid solution ranges are as follows: In 1+ x1Al 1- x1O 3(ZnO) 2 ( x1 = 0.70)-In 1+ x2Al 1- x2O 3(ZnO) 2 ( x2 = 0.316-0.320), In 2O 3(ZnO) 3-In 1+ xAl 1- xO 3(ZnO) 3 ( x = 0.230), In 2O 3(ZnO) 4-In 1+ xAl 1- xO 3(ZnO) 4 ( x = 0.15-0.16), In 2O 3(ZnO) 5-In 1+ xAl 1- xO 3(ZnO) 5 ( x = 0.116-0.130), In 2O 3(ZnO) 6-In 1+ xAl 1- xO 3(ZnO) 6 ( x = 0.000-0.111), In 2O 3(ZnO) 7-In 1+ xAl 1- xO 3(ZnO) 7 ( x = 0.08), In 2O 3(ZnO) 8-In 1+ xAl 1- xO 3(ZnO) 8 ( x: undetermined), and In 2O 3(ZnO) m-InAlO 3(ZnO) m ( m = 9, 10, 11, 13, 15, 17, and 19). The space groups of these homologous phases belong to R3¯ m for m = odd or P6 3/ mmc for m = even. Their crystal structures, In 1+ xAl 1- xO 3(ZnO) m (0 < x < 1), consist of three kinds of layers: an InO 1.5 layer, an (In xAl 1- xZn)O 2.5 layer, and ZnO layers. A comparison of the phase relations in the In 2O 3- M2ZnO 4-ZnO systems ( M = Fe, Ga, or Al) is made and their characteristic features are discussed in terms of the ionic radii and site preferences of the M cations.

  16. Ga2O3 and GaN nanocrystalline film: reverse micelle assisted solvothermal synthesis and characterization.

    PubMed

    Sinha, Godhuli; Ganguli, Dibyendu; Chaudhuri, Subhadra

    2008-03-01

    Gallium oxide (beta-Ga2O3) nanoparticles were successfully deposited on quartz glass substrates using sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/n-hexane/ethylene glycol monomethyl ether (EGME) reverse micelle-mediated solvothermal process with different omega values. The mean diameter of Ga2O3 particles was approximately 2-3 nm and found to be approximately independent of omega values of the reverse micelles. However, when the Ga2O3 nanocrystalline films were nitrided at 900 degrees C under flowing NH3 atmosphere for 1 h, the mean diameter of the resulted gallium nitride (wurtzite-GaN) nanoparticles varied from 3-9 nm. Both nanocrystalline films of Ga2O3 and GaN were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, UV-vis spectroscopy and photoluminescence in order to study their chemical and physical properties explicitly.

  17. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    PubMed

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Inhibiting the oxidation of diamond during preparing the vitrified dental grinding tools by depositing a ZnO coating using direct urea precipitation method.

    PubMed

    Wang, Yanhui; Yuan, Yungang; Cheng, Xiaozhe; Li, Xiaohu; Zang, Jianbing; Lu, Jing; Yu, Yiqing; Xu, Xipeng

    2015-08-01

    Oxidation of diamond during the manufacturing of vitrified dental grinding tools would reduce the strength and sharpness of tools. Zinc oxide (ZnO) coating was deposited on diamond particles by urea precipitation method to protect diamond in borosilicate glass. The FESEM results showed that the ZnO coating was formed by plate-shaped particles. According to the TG results, the onset oxidation temperature of the ZnO-coated diamond was about 70 °C higher than the pristine diamond. The EDS results showed that ZnO diffused into the borosilicate glass during sintering. As the result, the bending strength of the composites containing ZnO-coated diamond was increased by 24% compared to that of the composites containing pristine diamond. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Responses of human cells to ZnO nanoparticles: a gene transcription study†

    PubMed Central

    Moos, Philip J.; Olszewski, Kyle; Honeggar, Matthew; Cassidy, Pamela; Leachman, Sancy; Woessner, David; Cutler, N. Shane; Veranth, John M.

    2013-01-01

    The gene transcript profile responses to metal oxide nanoparticles was studied using human cell lines derived from the colon and skin tumors. Much of the research on nanoparticle toxicology has focused on models of inhalation and intact skin exposure, and effects of ingestion exposure and application to diseased skin are relatively unknown. Powders of nominally nanosized SiO2, TiO2, ZnO and Fe2O3 were chosen because these substances are widely used in consumer products. The four oxides were evaluated using colon-derived cell lines, RKO and CaCo-2, and ZnO and TiO2 were evaluated further using skin-derived cell lines HaCaT and SK Mel-28. ZnO induced the most notable gene transcription changes, even though this material was applied at the lowest concentration. Nano-sized and conventional ZnO induced similar responses suggesting common mechanisms of action. The results showed neither a non-specific response pattern common to all substances nor synergy of the particles with TNF-α cotreatment. The response to ZnO was not consistent with a pronounced proinflammatory signature, but involved changes in metal metabolism, chaperonin proteins, and protein folding genes. This response was observed in all cell lines when ZnO was in contact with the human cells. When the cells were exposed to soluble Zn, the genes involved in metal metabolism were induced but the genes involved in protein refoldling were unaffected. This provides some of the first data on the effects of commercial metal oxide nanoparticles on human colon-derived and skin-derived cells. PMID:21769377

  20. One-dimensional ZnO nanostructures.

    PubMed

    Jayadevan, K P; Tseng, T Y

    2012-06-01

    The wide-gap semiconductor ZnO with nanostructures such as nanoparticle, nanorod, nanowire, nanobelt, nanotube has high potential for a variety of applications. This article reviews the fundamentals of one-dimensional ZnO nanostructures, including processing, structure, property, application and their processing-microstructure-property correlation. Various fabrication methods of the ZnO nanostructures including vapor-liquid-solid process, vapor-solid growth, solution growth, solvothermal growth, template-assisted growth and self-assembly are introduced. The characterization and properties of the ZnO nanostructures are described. The possible applications of these nanostructures are also discussed.

  1. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    NASA Astrophysics Data System (ADS)

    Fatimah, Is; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    2016-02-01

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particle sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.

  2. Some aspects of pulsed laser deposition of Si nanocrystalline films

    NASA Astrophysics Data System (ADS)

    Polyakov, B.; Petruhins, A.; Butikova, J.; Kuzmin, A.; Tale, I.

    2009-11-01

    Nanocrystalline silicon films were deposited by a picosecond laser ablation on different substrates in vacuum at room temperature. A nanocrystalline structure of the films was evidenced by atomic force microscopy (AFM), optical and Raman spectroscopies. A blue shift of the absorption edge was observed in optical absorption spectra, and a decrease of the optical phonon energy at the Brillouin zone centre was detected by Raman scattering. Early stages of nanocrystalline film formation on mica and HOPG substrates were studied by AFM. Mechanism of nanocrystal growth on substrate is discussed. in here

  3. Electrodeposition of Nanocrystalline Co-P Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2009-09-02

    Electrodeposition  of Nanocrystalline Co‐P  Coatings as a Hard Chrome Alternative Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden...AND SUBTITLE Electrodeposition of Nanocrystalline Co‐P Coatings as a Hard Chrome Alternative 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...Defense Conference – 2 September 2009 Conventional  Electrodeposits Polycrystalline (10‐100 µm) Electrodeposited Nanocrystalline Materials Pulsed

  4. Structural, optical and magnetic behaviour of nanocrystalline Volborthite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arvind, Hemant K., E-mail: hemantarvind@gmail.com; Kumar, Sudhish, E-mail: skmlsu@gmail.com; Kalal, Sangeeta

    2016-05-06

    Nanocrystalline sample of Volborthite (Copper Pyrovanadate: Cu{sub 3}V{sub 2} (OH){sub 2}O{sub 7}.2H{sub 2}O) has been synthesized using wet chemical route and characterized by XRD, SEM, FTIR, UV-Vis-NIR spectroscopic and magnetization measurements. Room temperature X-ray diffraction analysis confirms the single phase monoclinic structure and nanocrystalline nature of Volborthite. The UV-Visible optical absorption spectrum displays two broad absorption peaks in the range of 200-350 nm and 400-1000 nm. The direct band gap is found to be E{sub g}= ∼2.74 eV. Bulk Volborthite was reported to be a natural frustrated antiferromagnet, however our nanocrystalline Volborthite display week ferromagnetic hysteresis loop with very small coercivity andmore » retentivity at room temperature.« less

  5. A comparative analysis of green synthesis approach starch capped metal oxides (ZnO & CdO) nanoparticles and its bacterial activity

    NASA Astrophysics Data System (ADS)

    Vidhya, K.; Devarajan, V. P.; Viswanathan, C.; Nataraj, D.; Bhoopathi, G.

    2013-06-01

    In this study, we have investigated the bacterial activity of starch capped ZnO & CdO NPs. The NPs were prepared through green technique under room temperature and then obtained samples were characterized by using XRD and PL techniques. XRD pattern confirms the crystal nature it shows hexagonal structure for ZnO NPs and monoclinic structure for CdO NPs and their average particle size is ±20 nm. Further, the optical properties of NPs were investigated using PL technique in which the starch capped ZnO NPs shows maximum emission at 440 nm whereas starch capped CdO NPs shows maximum emission at 545 nm. Finally, toxic test was performed with E.coli bacteria and their results were investigated. Hence, starch capped ZnO NPs induced less killing effect when compared with starch capped CdO NPs. Therefore, we conclude that the starch capped ZnO NPs may be less toxic to microorganisms when compared with starch capped CdO NPs. In addition, starch capped ZnO NPs is also suitable for anti-microbial activity.

  6. Highly sensitive NO2 sensor using brush-coated ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    This work reports the sensing properties of a ZnO nanoparticle (NP) based gas sensor. A sol-gel method was used for the synthesis of ZnO nanoparticles, and a brush coating technique for applying these in a thick film over the gold electrode. The structural properties of the ZnO film so developed have been studied using energy dispersive x-ray spectroscopy (EDS), x-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM), revealing a hexagonal wurtzite structure having particle size of ~25 to ~110 nm and roughness of ~136.303 nm. The sensitivity of the sensor to NO2, H2, CO, ethanol and propanol gases in the temperature range from 150 to 350 °C has been tested. Among all these gases, sensitivity to NO2 was found to be highest, at around fifty times greater than the next highest sensitivity, for ethanol gas. The sensor’s response to NO2 gas has been measured at ~945.12%/ppt (parts per thousand), with fast response time and recovery time at operating temperature 280 °C. The obtained result has been discussed with the help of surface and subsurface adsorption and desorption of NO2 molecules at the available trap sites (oxygen ions) on the ZnO nanoparticle surface. This sensor also exhibits excellent repeatability.

  7. Electron paramagnetic resonance in Cu-doped ZnO

    NASA Astrophysics Data System (ADS)

    Buchheit, R.; Acosta-Humánez, F.; Almanza, O.

    2016-04-01

    In this work, ZnO and Cu-doped ZnO nanoparticles (Zn1-xCuxO, x = 3%), with a calcination temperature of 500∘C were synthesized using the sol-gel method. The particles were analyzed using atomic absorption spectroscopy (AAS), X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) at X-band, measurement in a temperature range from 90 K to room temperature. AAS confirmed a good correspondence between the experimental doping concentration and the theoretical value. XRD reveals the presence of ZnO phase in hexagonal wurtzite structure and a nanoparticle size for the samples synthesized. EPR spectroscopy shows the presence of point defects in both samples with g-values of g = 1.959 for shallow donors and g = 2.004 for ionized vacancies. It is important when these materials are required have been used as catalysts, as suggested that it is not necessary prepare them at higher temperature. A simulation of the Cu EPR signal using an anisotropic spin Hamiltonian was performed and showed good coincidence with the experimental spectra. It was shown that Cu2+ ions enter interstitial octahedral sites of orthorhombic symmetry in the wurtzite crystal structure. Temperature dependence of the EPR linewidth and signal intensity shows a paramagnetic behavior of the sample in the measurement range. A Néel temperature TN = 78 ± 19 K was determined.

  8. Effect of aging on ZnO and nitrogen doped P-Type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Bhunia, S.

    2012-06-01

    The withholding of p-type conductivity in as-prepared and 3% nitrogen (N) doped zinc oxide (ZnO) even after 2 months of preparation was systematically studied. The films were grown on glass substrates by pulsed laser deposition (PLD) at 350 °C under different conditions, viz. under vacuum and at oxygen (O) ambience using 2000 laser pulses. In O ambience for as-prepared ZnO the carrier concentration reduces and mobility increases with increasing number of laser shots. The resistivity of as-prepared and 3% N-doped ZnO is found to increase with reduction in hole concentration after 60 days of aging while maintaining its p-type conductivity irrespective of growth condition. AFM and electrical properties showed aging effect on the doped and undoped samples. For as-prepared ZnO, with time, O migration makes the film high resistive by reducing free electron concentrations. But for N-doped p-type ZnO, O-migration, metastable N and hydrogen atom present in the source induced instability in structure makes it less conducting p-type.

  9. Microstructural studies of nanocrystalline α-alumina powder produced from Al13-cluster

    NASA Astrophysics Data System (ADS)

    Harun Al Rashid Megat Ahmad, Megat; Aziz Mohamed, Abdul; Ibrahim, Azmi; Seman Mahmood, Che; Giri Rachman Putra, Edy; Jamro, Rafhayudi; Kasim, Razali; Rawi Muhammad Zin, Muhammad

    2007-12-01

    Nanocrystalline alumina powder was produced from calcinations of Al13-oxalate precipitates at 1100 °C. A nearly normal distribution of agglomerated alumina powder was obtained with an average particle size of about 1 μm. XRD measurement confirmed that the alumina produced was of high purity and crystalline α-phase. Microstructural features of both the precipitates and alumina obtained were studied using the small angle neutron scattering (SANS) technique. SANS examinations show the formation of microstructures in the alumina powder of mass fractals type with dimension of ˜2.8 indicative of low intra-granular porosity.

  10. Structural, optical, and LED characteristics of ZnO and Al doped ZnO thin films

    NASA Astrophysics Data System (ADS)

    Sandeep, K. M.; Bhat, Shreesha; Dharmaprakash, S. M.

    2017-05-01

    ZnO (pristine) and Al doped ZnO (AZO) films were prepared using sol-gel spin coating method. The XRD analysis showed the enhanced compressive stress in AZO film. The presence of extended states below the conduction band edge in AZO accounts for the redshift in optical bandgap. The PL spectra of AZO showed significant blue emission due to the carrier recombination from defect states. The TRPL curves showed the dominant DAP recombination in ZnO film, whereas defect related recombination in Al doped ZnO film. Color parameters viz: the dominant wavelength, color coordinates (x,y), color purity, luminous efficiency and correlated color temperature (CCT) of ZnO and AZO films are calculated using 1931 (CIE) diagram. Further, a strong blue emission with color purity more than 96% is observed in both the films. The enhanced blue emission in AZO significantly increased the luminous efficiency (22.8%) compared to ZnO film (10.8%). The prepared films may be used as blue phosphors in white light generation.

  11. Selectivity shifting behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires sensors

    NASA Astrophysics Data System (ADS)

    Arafat, M. M.; Ong, J. Y.; Haseeb, A. S. M. A.

    2018-03-01

    In this research, the gas sensing behavior of Pd nanoparticles loaded zinc stannate/zinc oxide (Zn2SnO4/ZnO) nanowires were investigated. The Zn2SnO4/ZnO nanowires were grown on Au interdigitated alumina substrate by carbon assisted thermal evaporation process. Pd nanoparticles were loaded on the Zn2SnO4/ZnO nanowires by wet reduction process. The nanowires were characterized by X-ray diffractometer, field emission scanning electron microscope and energy dispersive X-ray spectroscope. The Zn2SnO4/ZnO and Pd nanoparticles loaded Zn2SnO4/ZnO nanowires were investigated for detecting H2, H2S and C2H5OH gases in N2 background. Results revealed that the average diameter and length of as-grown Zn2SnO4/ZnO nanowires were 74 nm and 30 μm, respectively. During wet reduction process,Pd particles having size of 20-60 nm were evenly distributed on the Zn2SnO4/ZnO nanowires. The Zn2SnO4/ZnO nanowires based sensors showed selective response towards C2H5OH whereas Pd nanoparticles loaded Zn2SnO4/ZnO nanowires showed selective response towards H2. The recovery time of the sensors reduced with Pd loading on Zn2SnO4/ZnO nanowires. A mechanism is proposed to elucidate the gas sensing mechanism of Pd nanoparticles loaded Zn2SnO4/ZnO nanowires.

  12. Effect of Annealing Temperature on Structural and Optical Properties of Sol-Gel-Derived ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Arif, Mohd.; Sanger, Amit; Vilarinho, Paula M.; Singh, Arun

    2018-04-01

    Nanocrystalline ZnO thin films were deposited on glass substrate via sol-gel dip-coating technique then annealed at 300°C, 400°C, and 500°C for 1 h. Their optical, structural, and morphological properties were studied using ultraviolet-visible (UV-Vis) spectrophotometry, x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). XRD diffraction revealed that the crystalline nature of the thin films increased with increasing annealing temperature. The c-axis orientation improved, and the grain size increased, as indicated by increased intensity of the (002) plane peak at 2θ = 34.42° corresponding to hexagonal ZnO crystal. The average crystallite size of the thin films ranged from 13 nm to 23 nm. Increasing the annealing temperature resulted in larger crystallite size and higher crystallinity with increased surface roughness. The grain size according to SEM analysis was in good agreement with the x-ray diffraction data. The optical bandgap of the thin films narrowed with increasing annealing temperature, lying in the range of 3.14 eV to 3.02 eV. The transmission of the thin films was as high as 94% within the visible region. The thickness of the thin films was 400 nm, as measured by ellipsometry, after annealing at the different temperatures of 300°C, 400°C, and 500°C.

  13. A facile sol-gel synthesis of impurity-free nanocrystalline titania.

    PubMed

    Vinogradov, Alexandr V; Ermakova, Al'ena V; Butman, Mikhail F; Hey-Hawkins, Evamarie; Vinogradov, Vladimir V

    2014-06-14

    This paper reports an original technique that provides a highly pure crystalline sol of titania with controllable particle size by ultrasonic activation of the hydrolysis products of titanium isopropoxide in an aqueous medium at a near-neutral pH, which is potentially promising in impurity-sensitive electronics and biochemical engineering. Optimal conditions (H2O/TIP ratio, sonication time, etc.) for preparation of stable nanocrystalline titania sol were adopted. A new mechanism of regulation of aggregation and polycondensation under ultrasonic irradiation is proposed. Entrapment of human serum albumin (HSA) in the formed porous titania matrix results in high thermal stability of the protein dopants: the denaturation temperature of HSA is shifted by 31 °C.

  14. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells.

    PubMed

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1 -/- BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity.

  15. Involvement of PINK1/parkin-mediated mitophagy in ZnO nanoparticle-induced toxicity in BV-2 cells

    PubMed Central

    Wei, Limin; Wang, Jianfeng; Chen, Aijie; Liu, Jia; Feng, Xiaoli; Shao, Longquan

    2017-01-01

    With the increasing application of zinc oxide nanoparticles (ZnO NPs) in biological materials, the neurotoxicity caused by these particles has raised serious concerns. However, the underlying molecular mechanisms of the toxic effect of ZnO NPs on brain cells remain unclear. Mitochondrial damage has been reported to be a factor in the toxicity of ZnO NPs. PINK1/parkin-mediated mitophagy is a newly emerging additional function of autophagy that selectively degrades impaired mitochondria. Here, a PINK1 gene knockdown BV-2 cell model was established to determine whether PINK1/parkin-mediated mitophagy was involved in ZnO NP-induced toxicity in BV-2 cells. The expression of total parkin, mito-parkin, cyto-parkin, and PINK1 both in wild type and PINK1−/− BV-2 cells was evaluated using Western blot analysis after the cells were exposed to 10 μg/mL of 50 nm ZnO NPs for 2, 4, 8, 12, and 24 h. The findings suggested that the downregulation of PINK1 resulted in a significant reduction in the survival rate after ZnO NP exposure compared with that of control cells. ZnO NPs were found to induce the transportation of parkin from the cytoplasm to the mitochondria, implying the involvement of mitophagy in ZnO NP-induced toxicity. The deletion of the PINK1 gene inhibited the recruitment of parkin to the mitochondria, causing failure of the cell to trigger mitophagy. The present study demonstrated that apart from autophagy, PINK1/parkin-mediated mitophagy plays a protective role in ZnO NP-induced cytotoxicity. PMID:28331313

  16. Atomistic Interface Dynamics in Sn-Catalyzed Growth of Wurtzite and Zinc-Blende ZnO Nanowires.

    PubMed

    Jia, Shuangfeng; Hu, Shuaishuai; Zheng, He; Wei, Yanjie; Meng, Shuang; Sheng, Huaping; Liu, Huihui; Zhou, Siyuan; Zhao, Dongshan; Wang, Jianbo

    2018-06-11

    Unraveling the phase selection mechanisms of semiconductor nanowires (NWs) is critical for the applications in future advanced nanodevices. In this study, the atomistic vapor-solid-liquid growth processes of Sn-catalyzed wurtzite (WZ) and zinc blende (ZB) ZnO are directly revealed based on the in situ transmission electron microscopy. The growth kinetics of WZ and ZB crystal phases in ZnO appear markedly different in terms of the NW-droplet interface, whereas the nucleation site as determined by the contact angle ϕ between the seed particle and the NW is found to be crucial for tuning the NW structure through combined experimental and theoretical investigations. These results offer an atomic-scale view into the dynamic growth process of ZnO NW, which has implications for the phase-controllable synthesis of II-VI compounds and heterostructures with tunable band structures.

  17. Thermal Stability of Nanocrystalline Alloys by Solute Additions and A Thermodynamic Modeling

    NASA Astrophysics Data System (ADS)

    Saber, Mostafa

    Nanocrystalline alloys show superior properties due to their exceptional microstructure. Thermal stability of these materials is a critical aspect. It is well known that grain boundaries in nanocrystalline microstructures cause a significant increase in the total free energy of the system. A driving force provided to reduce this excess free energy can cause grain growth. The presence of a solute addition within a nanocrystalline alloy can lead to the thermal stability. Kinetic and thermodynamic stabilization are the two basic mechanisms with which stability of a nanoscale grain size can be achieved at high temperatures. The basis of this thesis is to study the effect of solute addition on thermal stability of nanocrystalline alloys. The objective is to determine the effect of Zr addition on the thermal stability of mechanically alloyed nanocrysatillne Fe-Cr and Fe-Ni alloys. In Fe-Cr-Zr alloy system, nanoscale grain size stabilization was maintained up to 900 °C by adding 2 at% Zr. Kinetic pinning by intermetallic particles in the nanoscale range was identified as a primary mechanism of thermal stabilization. In addition to the grain size strengthening, intermetallic particles also contribute to strengthening mechanisms. The analysis of microhardness, XRD data, and measured grain sizes from TEM micrographs suggested that both thermodynamic and kinetic mechanisms are possible mechanisms. It was found that alpha → gamma phase transformation in Fe-Cr-Zr system does not influence the grain size stabilization. In the Fe-Ni-Zr alloy system, it was shown that the grain growth in Fe-8Ni-1Zr alloy is much less than that of pure Fe and Fe-8Ni alloy at elevated temperatures. The microstructure of the ternary Fe-8Ni-1Zr alloy remains in the nanoscale range up to 700 °C. Using an in-situ TEM study, it was determined that drastic grain growth occurs when the alpha → gamma phase transformation occurs. Accordingly, there can be a synergistic relationship between grain growth

  18. The enhancement of photovoltaic parameters in dye-sensitized solar cells of nano-crystalline SnO2 by incorporating with large SrTiO3 particles.

    PubMed

    Aponsu, G M L P; Wijayarathna, T R C K; Perera, I K; Perera, V P S; Siriwardhana, A C P K

    2013-05-15

    In this paper, the performance of nano-porous electrodes made of a composite material of SrTiO3 and SnO2 are compared with those made of bare SnO2. When these particular devices are analyzed in a comparative mode the results confirmed the enhancement of photovoltaic parameters in the former device. The performance of respective cells were examined by several methods including I-V characteristic measurements, photocurrent action spectra, dark I-V measurements, Mott-Schottky measurements and X-ray diffraction measurements. Even though such improvements in this particular cell could be explicated by the formation of a potential energy barrier of SrTiO3 particles of comparably large width at the SrTiO3/SnO2 interface, the passivation of voids in the SnO2 film by SrTiO3 particles to a certain extent could not be totally ruled out. Besides, high energetic electrons injected by dye molecules move more credibly through mini-bands formed in the chain of nano-crystalline SnO2 particles to the back contact. The blocking of the recombination path and the shifting up of the uppermost electron occupied level of SnO2 accompanying the conduction band edge in the SrTiO3/SnO2 composite film, may have lead to the observed enhancement of the fill factor and photovoltage, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Structure and Properties of Al and Ga- Doped ZnO

    NASA Astrophysics Data System (ADS)

    Temizer, Namik Kemal

    Recently there is tremendous interest in Transparent conducting oxide (TCO) research due to the unlimited and exciting application areas. Current research is mostly focused on finding alternative low cost and sustainable materials in order to replace indium tin oxide (ITO), which caused serious concern due to the increasing cost of indium and chemical stability issues of ITO. The primary aim of this research is to develop alternative TCO materials with superior properties in order to increase the efficiency in optoelectronic applications, as well as to study the properties of these materials to fully characterize them. We have grown Al and Ga-doped ZnO films with an optimized composition under different deposition conditions in order to understand the effect of processing parameters on the film properties. We report a detailed investigation on the structure-property correlations in Ga and Al codoped ZnO films on c-sapphire substrates where the thin film microstructure varies from nanocrystalline to single crystal. We have achieved highly epitaxial films with very high optical transmittance (close to 90%) and low resistivity (˜110muO-cm) values. The films grown in an ambient oxygen partial pressure (PO2 ) of 50 mTorr and at growth temperatures from room temperature to 600°C showed semiconducting behavior, whereas samples grown at a Po2 of 1 mTorr showed metallic nature. The most striking feature is the occurrence of resistivity minima at relatively high temperatures around 110 K in films deposited at high temperatures. The structure-property correlations reveal that point defects play an important role in modifying the structural, optical, electrical and magnetic properties and such changes in physical properties are controlled predominantly by the defect content. To gain a better understanding of the conduction processes in doped ZnO thin films, we have studied the temperature variation of resistivity of some selected samples that showed some interesting behavior

  20. Enhanced Dibutyl Phthalate Sensing Performance of a Quartz Crystal Microbalance Coated with Au-Decorated ZnO Porous Microspheres

    PubMed Central

    Zhang, Kaihuan; Fan, Guokang; Hu, Ruifen; Li, Guang

    2015-01-01

    Noble metals addition on nanostructured metal oxides is an attractive way to enhance gas sensing properties. Herein, hierarchical zinc oxide (ZnO) porous microspheres decorated with cubic gold particles (Au particles) were synthesized using a facile hydrothermal method. The as-prepared Au-decorated ZnO was then utilized as the sensing film of a gas sensor based on a quartz crystal microbalance (QCM). This fabricated sensor was applied to detect dibutyl phthalate (DBP), which is a widely used plasticizer, and its coating load was optimized. When tested at room temperature, the sensor exhibited a high sensitivity of 38.10 Hz/ppb to DBP in a low concentration range from 2 ppb to 30 ppb and the calculated theoretical detection limit is below 1 ppb. It maintains good repeatability as well as long-term stability. Compared with the undecorated ZnO based QCM, the Au-decorated one achieved a 1.62-time enhancement in sensitivity to DBP, and the selectivity was also improved. According to the experimental results, Au-functionalized ZnO porous microspheres displayed superior sensing performance towards DBP, indicating its potential use in monitoring plasticizers in the gaseous state. Moreover, Au decoration of porous metal oxide nanostructures is proved to be an effective approach for enhancing the gas sensing properties and the corresponding mechanism was investigated. PMID:26343661

  1. A detailed study on Sn4+ doped ZnO for enhanced photocatalytic degradation

    NASA Astrophysics Data System (ADS)

    Beura, Rosalin; Pachaiappan, R.; Thangadurai, P.

    2018-03-01

    The samples of Sn4+ doped (1, 5, 10, 15, 20 & 30%) ZnO nanostructures were synthesized by a low temperature hydrothermal method. Structural analysis by XRD and Raman spectroscopy showed the hexagonal wurtzite phase of ZnO and the formation of a secondary phase Zn2SnO4 beyond 10% doping of Sn4+. Microstructural analysis by TEM also confirmed the wurtzite ZnO with rod as well as particle like structure. Presence of various functional groups (sbnd OH, sbnd CH, Znsbnd O) were confirmed by FTIR. Optical properties were studied by UV-vis absorption, photoluminescence emission spectroscopies and lifetime measurement. Band gap of the undoped and Sn4+ doped ZnO were analyzed by Tauc plot and it was observed that the band gap of the materials had slightly decreased from 3.2 to 3.16 eV and again increased to 3.23 eV with respect to the increase in the doping concentration from 1 to 30%. A significant change was also noticed in the photoluminescence emission properties of ZnO i.e. increase in the intensity of NBE emission and decrease in DLE, on subject to Sn4+ doping. Average PL lifetime had increased from 29.45 ns for ZnO to 30.62 ns upon 1% Sn ion doping in ZnO. Electrical properties studied by solid state impedance spectroscopy showed that the conductivity had increased by one order of magnitude (from 7.48×10-8 to 2.21×10-7 S/cm) on Sn4+ doping. Photocatalytic experiments were performed on methyl orange (MO) as a model industrial dye under UV light irradiation for different irradiation times. The optimum Sn4+ content in order to achieve highest photocatalytic activity was found to be 1% Sn 4+ doping. The enhancement was achieved due to a decrease in the band gap favoring the generation of electron-hole pairs and the enhanced PL life time that delays the recombination of these charge carrier formation. The third reason was that the increased electrical conductivity that indicated the faster charge transfer in this material to enhance the photocatalytic activity. The Sn

  2. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles.

    PubMed

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-08-19

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c -axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role.

  3. Hydrothermal Growth of Vertically Aligned ZnO Nanorods Using a Biocomposite Seed Layer of ZnO Nanoparticles

    PubMed Central

    Ibupoto, Zafar Hussain; Khun, Kimleang; Eriksson, Martin; AlSalhi, Mohammad; Atif, Muhammad; Ansari, Anees; Willander, Magnus

    2013-01-01

    Well aligned ZnO nanorods have been prepared by a low temperature aqueous chemical growth method, using a biocomposite seed layer of ZnO nanoparticles prepared in starch and cellulose bio polymers. The effect of different concentrations of biocomposite seed layer on the alignment of ZnO nanorods has been investigated. ZnO nanorods grown on a gold-coated glass substrate have been characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. These techniques have shown that the ZnO nanorods are well aligned and perpendicular to the substrate, and grown with a high density and uniformity on the substrate. Moreover, ZnO nanorods can be grown with an orientation along the c-axis of the substrate and exhibit a wurtzite crystal structure with a dominant (002) peak in an XRD spectrum and possessed a high crystal quality. A photoluminescence (PL) spectroscopy study of the ZnO nanorods has revealed a conventional near band edge ultraviolet emission, along with emission in the visible part of the electromagnetic spectrum due to defect emission. This study provides an alternative method for the fabrication of well aligned ZnO nanorods. This method can be helpful in improving the performance of devices where alignment plays a significant role. PMID:28811454

  4. The influence of ZnO incorporation on the aqueous leaching characteristics of a borosilicate glass

    NASA Astrophysics Data System (ADS)

    Vance, E. R.; Gregg, D. J.; Karatchevtseva, I.; Griffiths, G. J.; Olufson, K.; Rees, Gregory J.; Hanna, John V.

    2017-10-01

    With increasing ZnO content, short term aqueous durability enhancement of all elements in borosilicate glasses containing 1.0 and 3.85 wt% ZnO was evident in 7-day PCT-B tests. In 14-day MCC-1 type leach tests conducted at 90 °C, surface alteration was very clear in the undoped glass via the formation of strongly altered amorphous material which tended to spall off the surface. No sign of crystallinity was detected by grazing incidence X-ray diffraction or electron microscopy of the surface layers and the surface material was very rich in silica. For the ZnO-bearing glasses, significant growth of particles following PCT leaching for 7 days was observed, due to a build-up of surface ZnO-containing Si-rich material and possible agglomeration. This alteration layer was also observed in MCC-1 type experiments in which cross-section SEM-EDS data were obtained. Raman, infrared and 11B and 29Si MAS NMR spectroscopy showed only slight changes in boron speciation on the addition of up to 9.1 wt% ZnO. Bulk positron annihilation lifetime spectra (PALS) of glasses containing 0-3.85 wt% ZnO could be analysed with three distinct lifetimes and also showed only slight differences. These results indicate that the basic glass structure was essentially not influenced by the ZnO content and that the passivation of the alteration layer is promoted by ZnO content.

  5. A facile synthesis of mesoporous Pdsbnd ZnO nanocomposites as efficient chemical sensor

    NASA Astrophysics Data System (ADS)

    Ismail, Adel A.; Harraz, Farid A.; Faisal, M.; El-Toni, Ahmed Mohamed; Al-Hajry, A.; Al-Assiri, M. S.

    2016-07-01

    Mesoporous ZnO was synthesized through the sol-gel method in the presence of triblock co-polymer Pluronic (F-127) template as the structure directing agent. Palladium nanoparticles were photochemically reduced and deposited onto mesoporous ZnO to obtain 1 wt.% Pd/ZnO nanocomposite. Structural and morphological analysis revealed high homogeneity and monodispersity of Pd nanoclusters with small particle sizes ∼ 2-5 nm onto mesoporous ZnO. The electrochemical detection of ethanol in aqueous solutions was conducted at the newly developed Pd/ZnO modified glassy carbon electrode (GCE) by the current-potential (IV) and cyclic voltammetry (CV) techniques and compared with bare GCE or pure ZnO. The presence of Pd dopant greatly enhances the sensitivity of ZnO, and the obtained mesoporous Pd/ZnO sensor has an excellent performance for precision detection of ethanol in aqueous solution with low concentration. The sensitivity was found to be 33.08 μAcm-2 mM-1 at lower concentration zone (0.05-0.8 mM) and 2.13 μAcm-2 mM-1 at higher concentration zone (0.8-12 mM), with a limit of detection (LOD) 19.2 μM. The kinetics study of ethanol oxidation revealed a characteristic feature for a mixed surface and diffusion-controlled process. These excellent sensing characteristics make the mesoporous Pd/ZnO nanocomposite a good candidate for the production of high-performance electrochemical sensors at low ethanol concentration in aqueous solution.

  6. Influences of Co doping on the structural and optical properties of ZnO nanostructured

    NASA Astrophysics Data System (ADS)

    Majeed Khan, M. A.; Wasi Khan, M.; Alhoshan, Mansour; Alsalhi, M. S.; Aldwayyan, A. S.

    2010-07-01

    Pure and Co-doped ZnO nanostructured samples have been synthesized by a chemical route. We have studied the structural and optical properties of the samples by using X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), field-emission transmission electron microscope (FETEM), energy-dispersive X-ray (EDX) analysis and UV-VIS spectroscopy. The XRD patterns show that all the samples are hexagonal wurtzite structures. Changes in crystallite size due to mechanical activation were also determined from X-ray measurements. These results were correlated with changes in particle size followed by SEM and TEM. The average crystallite sizes obtained from XRD were between 20 to 25 nm. The TEM images showed the average particle size of undoped ZnO nanostructure was about 20 nm whereas the smallest average grain size at 3% Co was about 15 nm. Optical parameters such as absorption coefficient ( α), energy band gap ( E g ), the refractive index ( n), and dielectric constants ( σ) have been determined using different methods.

  7. Miniaturized accelerometer made with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Song, Sangho; Kim, Jeong Woong; Kim, Hyun Chan; Yun, Youngmin; Kim, Jaehwan

    2017-04-01

    Miniaturized accelerometer is required in many applications, such as, robotics, haptic devices, gyroscopes, simulators and mobile devices. ZnO is an essential semiconductor material with wide direct band gap, thermal stability and piezoelectricity. Especially, well aligned ZnO nanowire is appropriate for piezoelectric applications since it can produce high electrical signal under mechanical load. To miniaturize accelerometer, an aligned ZnO nanowire is adopted to implement active piezoelectric layer of the accelerometer and copper is chosen for the head mass. To grow ZnO nanowire on the copper head mass, hydrothermal synthesis is conducted and the effect of ZnO nanowire length on the accelerometer performance is investigated. Refresh hydrothermal synthesis can increase the length of ZnO nanowire. The performance of the fabricated ZnO accelerometers is compared with a commercial accelerometer. Sensitivity and linearity of the fabricated accelerometers are investigated.

  8. Method to produce nanocrystalline powders of oxide-based phosphors for lighting applications

    DOEpatents

    Loureiro, Sergio Paulo Martins; Setlur, Anant Achyut; Williams, Darryl Stephen; Manoharan, Mohan; Srivastava, Alok Mani

    2007-12-25

    Some embodiments of the present invention are directed toward nanocrystalline oxide-based phosphor materials, and methods for making same. Typically, such methods comprise a steric entrapment route for converting precursors into such phosphor material. In some embodiments, the nanocrystalline oxide-based phosphor materials are quantum splitting phosphors. In some or other embodiments, such nanocrystalline oxide based phosphor materials provide reduced scattering, leading to greater efficiency, when used in lighting applications.

  9. Methylcellulose-Directed Synthesis of Nanocrystalline Zeolite NaA with High CO₂ Uptake.

    PubMed

    Shakarova, Dilshod; Ojuva, Arto; Bergström, Lennart; Akhtar, Farid

    2014-07-28

    Zeolite NaA nanocrystals with a narrow particle size distribution were prepared by template-free hydrothermal synthesis in thermo-reversible methylcellulose gels. The effects of the amount of methylcellulose, crystallization time and hydrothermal treatment temperature on the crystallinity and particle size distribution of the zeolite NaA nanocrystals were investigated. We found that the thermogelation of methylcellulose in the alkaline Na₂O-SiO₂-Al₂O₃-H₂O system played an important role in controlling the particle size. The synthesized zeolite nanocrystals are highly crystalline, as demonstrated by X-ray diffraction (XRD), and scanning electron microscopy (SEM) shows that the nanocrystals can also display a well-defined facetted morphology. Gas adsorption studies on the synthesized nanocrystalline zeolite NaA showed that nanocrystals with a size of 100 nm displayed a high CO₂ uptake capacity (4.9 mmol/g at 293 K at 100 kPa) and a relatively rapid uptake rate compared to commercially available, micron-sized particles. Low-cost nanosized zeolite adsorbents with a high and rapid uptake are important for large scale gas separation processes, e.g., carbon capture from flue gas.

  10. Temperature- and frequency-dependent dielectric behaviors of insulator/semiconductor (Al2O3/ZnO) nanolaminates with various ZnO thicknesses

    NASA Astrophysics Data System (ADS)

    Li, Jin; Bi, Xiaofang

    2016-07-01

    Al2O3/ZnO nanolaminates (NLs) with various ZnO sublayer thicknesses were prepared by atomic layer deposition. The Al2O3 sublayers are characterized as amorphous and the ZnO sublayers have an oriented polycrystalline structure. As the ZnO thickness decreases to a certain value, each NL exhibits a critical temperature at which its dielectric constant starts to rise quickly. Moreover, this temperature increases as the ZnO thickness is decreased further. On the other hand, the permittivity demonstrates a large value of several hundred at a frequency  ⩽1000 Hz, followed by a steplike decrease at a higher frequency. The change in the cut-off frequency with ZnO thickness is characterized by a hook function. It is revealed that the Coulomb confinement effect becomes predominant in the dielectric behaviors of the NLs with very thin ZnO. As the ZnO thickness decreases to about the same as or even smaller than the Bohr radius of ZnO, a great change in the carrier concentration and effective mass of ZnO is induced, which is shown to be responsible for the peculiar dielectric behaviors of Al2O3/ZnO with very thin ZnO. These findings provide insight into the prevailing mechanisms to optimize the dielectric properties of semiconductor/insulator laminates with nanoscale sublayer thickness.

  11. Nanocrystalline Aluminum Truss Cores for Lightweight Sandwich Structures

    NASA Astrophysics Data System (ADS)

    Schaedler, Tobias A.; Chan, Lisa J.; Clough, Eric C.; Stilke, Morgan A.; Hundley, Jacob M.; Masur, Lawrence J.

    2017-12-01

    Substitution of conventional honeycomb composite sandwich structures with lighter alternatives has the potential to reduce the mass of future vehicles. Here we demonstrate nanocrystalline aluminum-manganese truss cores that achieve 2-4 times higher strength than aluminum alloy 5056 honeycombs of the same density. The scalable fabrication approach starts with additive manufacturing of polymer templates, followed by electrodeposition of nanocrystalline Al-Mn alloy, removal of the polymer, and facesheet integration. This facilitates curved and net-shaped sandwich structures, as well as co-curing of the facesheets, which eliminates the need for extra adhesive. The nanocrystalline Al-Mn alloy thin-film material exhibits high strength and ductility and can be converted into a three-dimensional hollow truss structure with this approach. Ultra-lightweight sandwich structures are of interest for a range of applications in aerospace, such as fairings, wings, and flaps, as well as for the automotive and sports industries.

  12. Three-dimensional analysis by electron diffraction methods of nanocrystalline materials.

    PubMed

    Gammer, Christoph; Mangler, Clemens; Karnthaler, Hans-Peter; Rentenberger, Christian

    2011-12-01

    To analyze nanocrystalline structures quantitatively in 3D, a novel method is presented based on electron diffraction. It allows determination of the average size and morphology of the coherently scattering domains (CSD) in a straightforward way without the need to prepare multiple sections. The method is applicable to all kinds of bulk nanocrystalline materials. As an example, the average size of the CSD in nanocrystalline FeAl made by severe plastic deformation is determined in 3D. Assuming ellipsoidal CSD, it is deduced that the CSD have a width of 19 ± 2 nm, a length of 18 ± 1 nm, and a height of 10 ± 1 nm.

  13. Investigating the Thermal and Phase Stability of Nanocrystalline Ni-W Produced by Electrodeposition, Sputtering, and Mechanical Alloying

    NASA Astrophysics Data System (ADS)

    Marvel, Christopher Jonathan

    diffusivity calculations conceptually suggested that increasing W alloying concentrations can decrease the grain growth rate. The strongest evidence of grain growth stagnation was via nanoscale oxide particle drag in highly contaminated electrodeposited alloys. Interestingly, W-segregation was also detected to the oxide phase boundaries and revealed a potential indirect mechanism of thermal stability. The phase stability of pure and contaminated Ni-W alloys was investigated with density functional theory. Primarily, the calculations suggested that the intermetallic phases NiW and NiW2 are thermodynamically unstable, meaning the binary phase diagram is incorrect, but the ternary carbides Ni 6W6C and Ni2W4C are stable. Several Ni-W binary and Ni-W-C ternary phase diagrams were constructed using a simplified CALPHAD approach to improve the understanding of Ni-W phase stability. Lastly, it was determined that the fabrication process greatly influences the impurity types and concentrations of the alloys, and therefore greatly dictate which thermal stability mechanisms are active. Mechanically alloyed samples were found to be the most resistant to grain growth. The findings of this research will hopefully guide future efforts to design more thermally stable nanocrystalline alloys. The link between phase stability and grain growth behavior of Ni-W was thoroughly discussed, as well as the dependence of bulk fabrication processing on the contamination found in the alloys. Ultimately, this research has greatly expanded the general understanding of nanocrystalline Ni-W microstructures, and it is likely that similar phenomena occur in other nanocrystalline systems.

  14. Screen-Printing of ZnO Nanostructures from Sol-Gel Solutions for Their Application in Dye-Sensitized Solar Cells.

    PubMed

    Sarkar, Kuhu; Braden, Erik V; Bonke, Shannon A; Bach, Udo; Müller-Buschbaum, Peter

    2015-08-24

    Diblock copolymers have been used in sol-gel synthesis to successfully tailor the nanoscale morphology of thin ZnO films. As the fabrication of several-micron-thick mesoporous films such as those required in dye-sensitized solar cells (DSSCs) was difficult with this approach, we exploited the benefits of diblock-copolymer-directed synthesis that made it compatible with screen printing. The simple conversion of the diblock copolymer ZnO precursor sol to a screen-printing paste was not possible as it resulted in poor film properties. To overcome this problem, an alternative route is proposed in which the diblock copolymer ZnO precursor sol is first blade coated and calcined, then converted to a screen-printing paste. This allows the benefits of diblock-copolymer-directed particle formation to be compatible with printing methods. The morphologies of the ZnO nanostructures were studied by SEM and correlated with the current density-voltage characteristics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Flower-like ZnO nanorod arrays grown on HF-etched Si (111): constraining relation between ZnO seed layer and Si (111)

    NASA Astrophysics Data System (ADS)

    Brahma, Sanjaya; Liu, C.-W.; Huang, R.-J.; Chang, S.-J.; Lo, K.-Y.

    2015-11-01

    We demonstrate the formation of self-assembled homogenous flower-like ZnO nanorods over a ZnO seed layer deposited on a HF-etched Si (111) substrate. The typical flower-like morphology of ZnO nanorod arrays is ascribed to the formation of the island-like seed layer which is deposited by the drop method followed by annealing at 300 °C. The island-like ZnO seed layer consists of larger ZnO grains, and is built by constraining of the Si (111) surface due to pattern matching. Pattern matching of Si with ZnO determines the shape and size of the seed layer and this controls the final morphology of ZnO nanorods to be either flower like or vertically aligned. The high quality of the island-like ZnO seed layer enhances the diameter and length of ZnO nanorods. Besides, while the amorphous layer formed during the annealing process would influence the strained ZnO grain, that subsequent amorphous layer will not block the constraining between the ZnO grain and the substrate.

  16. Nanocrystalline copper films are never flat

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaopu; Han, Jian; Plombon, John J.; Sutton, Adrian P.; Srolovitz, David J.; Boland, John J.

    2017-07-01

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy.

  17. Nano ZnO embedded in Chitosan matrix for vibration sensor application

    NASA Astrophysics Data System (ADS)

    Praveen, E.; Murugan, S.; Jayakumar, K.

    2015-06-01

    Biopolymer Chitosan is embedded with various concentration of ZnO nano particle and such a bio-nano composite electret has been fabricated by casting method. The morphological, structural, optical and electrical characterization of the bio-nano composite electret film have been carried out. Isolation and piezoelectric measurements of bio-nano composite have also been carried out indicating the possibility of using it as a mechanical sensor element.

  18. Syntheses of nanocrystalline BaTiO3 and their optical properties

    NASA Astrophysics Data System (ADS)

    Yu, J.; Chu, J.; Zhang, M.

    Stoichiometric and titanium-excess nanocrystalline barium titanates were synthesized using a hydrothermal process at various hydrothermal temperatures and with further heat treatment at 500 °C and 900 °C. Owing to the different process conditions, the excess titanium exists in different states and configurations within the nanocrystalline BaTiO3 matrix; this was demonstrated by X-ray diffraction, Raman scattering, and photoluminescence. In these nanocrystalline BaTiO3, the 590, 571, 543 and 694 nm light emission bands were observed; mechanisms leading to such emissions were also discussed.

  19. Effect of Microwave Radiation Power on the Size of Aggregates of ZnO NPs Prepared Using Microwave Solvothermal Synthesis

    PubMed Central

    Chudoba, Tadeusz; Gierlotka, Stanisław; Lojkowski, Witold

    2018-01-01

    This paper reports the possibility of changing the size of zinc oxide nanoparticles (ZnO NPs) aggregates through a change of synthesis parameters. The effect of the changed power of microwave heating on the properties of ZnO NPs obtained by the microwave solvothermal synthesis from zinc acetate dissolved in ethylene glycol was tested for the first time. It was found that the size of ZnO aggregates ranged from 60 to 120 nm depending on the power of microwave radiation used in the synthesis of ZnO NPs. The increase in the microwave radiation power resulted in the reduction of the total synthesis time with simultaneous preservation of the constant size and shape of single ZnO NPs, which were synthesized at a pressure of 4 bar. All the obtained ZnO NPs samples were composed of homogeneous spherical particles that were single crystals with an average size of 27 ± 3 nm with a developed specific surface area of 40 m2/g and the skeleton density of 5.18 ± 0.03 g/cm3. A model of a mechanism explaining the correlation between the size of aggregates and the power of microwaves was proposed. This method of controlling the average size of ZnO NPs aggregates is presented for the first time and similar investigations are not found in the literature. PMID:29783651

  20. Distinctive glial and neuronal interfacing on nanocrystalline diamond.

    PubMed

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth.

  1. Distinctive Glial and Neuronal Interfacing on Nanocrystalline Diamond

    PubMed Central

    Bendali, Amel; Agnès, Charles; Meffert, Simone; Forster, Valérie; Bongrain, Alexandre; Arnault, Jean-Charles; Sahel, José-Alain; Offenhäusser, Andreas; Bergonzo, Philippe; Picaud, Serge

    2014-01-01

    Direct electrode/neuron interfacing is a key challenge to achieve high resolution of neuronal stimulation required for visual prostheses. Neuronal interfacing on biomaterials commonly requires the presence of glial cells and/or protein coating. Nanocrystalline diamond is a highly mechanically stable biomaterial with a remarkably large potential window for the electrical stimulation of tissues. Using adult retinal cell cultures from rats, we found that glial cells and retinal neurons grew equally well on glass and nanocrystalline diamond. The use of a protein coating increased cell survival, particularly for glial cells. However, bipolar neurons appeared to grow even in direct contact with bare diamond. We investigated whether the presence of glial cells contributed to this direct neuron/diamond interface, by using purified adult retinal ganglion cells to seed diamond and glass surfaces with and without protein coatings. Surprisingly, these fully differentiated spiking neurons survived better on nanocrystalline diamond without any protein coating. This greater survival was indicated by larger cell numbers and the presence of longer neurites. When a protein pattern was drawn on diamond, neurons did not grow preferentially on the coated area, by contrast to their behavior on a patterned glass. This study highlights the interesting biocompatibility properties of nanocrystalline diamond, allowing direct neuronal interfacing, whereas a protein coating was required for glial cell growth. PMID:24664111

  2. Biocompatible nanocrystalline natural bonelike carbonated hydroxyapatite synthesized by mechanical alloying in a record minimum time.

    PubMed

    Lala, S; Brahmachari, S; Das, P K; Das, D; Kar, T; Pradhan, S K

    2014-09-01

    Single phase nanocrystalline biocompatible A-type carbonated hydroxyapatite (A-cHAp) powder has been synthesized by mechanical alloying the stoichiometric mixture of CaCO3 and CaHPO4.2H2O powders in open air at room temperature within 2h of milling. The A-type carbonation in HAp is confirmed by FTIR analysis. Structural and microstructure parameters of as-milled powders are obtained from both Rietveld's powder structure refinement analysis and transmission electron microscopy. Size and lattice strain of nanocrystalline HAp particles are found to be anisotropic in nature. Mechanical alloying causes amorphization of a part of crystalline A-cHAp which is analogous to native bone mineral. Some primary bond lengths of as-milled samples are critically measured. MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay test reveals high percentage of cell viability and hence confirms the biocompatibility of the sample. The overall results indicate that the processed A-cHAp has a chemical composition very close to that of biological apatite. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Comparative study of textured and epitaxial ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Wrobel, J. M.; Jeong, H. M.; Miceli, P. F.; White, H. W.

    2000-06-01

    ZnO films were synthesized by pulsed laser deposition (PLD) on GaAs and α-Al 2O 3 substrates. The properties of ZnO films on GaAs and α-Al 2O 3 have been investigated to determine the differences between epitaxial and textured ZnO films. ZnO films on GaAs show very strong emission features associated with exciton transitions as do ZnO films on α-Al 2O 3, while the crystalline structural qualities for ZnO films on α-Al 2O 3 are much better than those for ZnO films on GaAs. The properties of ZnO films are studied by comparing highly oriented, textured ZnO films on GaAs with epitaxial ZnO films on α-Al 2O 3 synthesized along the c-axis.

  4. Methods for producing monodispersed particles of barium titanate

    DOEpatents

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  5. Extreme creep resistance in a microstructurally stable nanocrystalline alloy

    NASA Astrophysics Data System (ADS)

    Darling, K. A.; Rajagopalan, M.; Komarasamy, M.; Bhatia, M. A.; Hornbuckle, B. C.; Mishra, R. S.; Solanki, K. N.

    2016-09-01

    Nanocrystalline metals, with a mean grain size of less than 100 nanometres, have greater room-temperature strength than their coarse-grained equivalents, in part owing to a large reduction in grain size. However, this high strength generally comes with substantial losses in other mechanical properties, such as creep resistance, which limits their practical utility; for example, creep rates in nanocrystalline copper are about four orders of magnitude higher than those in typical coarse-grained copper. The degradation of creep resistance in nanocrystalline materials is in part due to an increase in the volume fraction of grain boundaries, which lack long-range crystalline order and lead to processes such as diffusional creep, sliding and rotation. Here we show that nanocrystalline copper-tantalum alloys possess an unprecedented combination of properties: high strength combined with extremely high-temperature creep resistance, while maintaining mechanical and thermal stability. Precursory work on this family of immiscible alloys has previously highlighted their thermo-mechanical stability and strength, which has motivated their study under more extreme conditions, such as creep. We find a steady-state creep rate of less than 10-6 per second—six to eight orders of magnitude lower than most nanocrystalline metals—at various temperatures between 0.5 and 0.64 times the melting temperature of the matrix (1,356 kelvin) under an applied stress ranging from 0.85 per cent to 1.2 per cent of the shear modulus. The unusual combination of properties in our nanocrystalline alloy is achieved via a processing route that creates distinct nanoclusters of atoms that pin grain boundaries within the alloy. This pinning improves the kinetic stability of the grains by increasing the energy barrier for grain-boundary sliding and rotation and by inhibiting grain coarsening, under extremely long-term creep conditions. Our processing approach should enable the development of

  6. Nanocrystalline ordered vanadium carbide: Superlattice and nanostructure

    NASA Astrophysics Data System (ADS)

    Kurlov, A. S.; Gusev, A. I.; Gerasimov, E. Yu.; Bobrikov, I. A.; Balagurov, A. M.; Rempel, A. A.

    2016-02-01

    The crystal structure, micro- and nanostructure of coarse- and nanocrystalline powders of ordered vanadium carbide V8C7 have been examined by X-ray and neutron diffraction and electron microscopy methods. The synthesized coarse-crystalline powder of ordered vanadium carbide has flower-like morphology. It was established that the real ordered phase has the composition V8C7-δ (δ ≅ 0.03) deviating from perfect stoichiometric composition V8C7. The vanadium atoms forming the octahedral environment □V6 of vacant sites in V8C7-δ are displaced towards the vacancy □. The presence of carbon onion-like structures was found in the vanadium carbide powders with a small content of free (uncombined) carbon. The nanopowders of V8C7-δ carbide with average particle size of 20-30 nm produced by high-energy milling of coarse-crystalline powder retain the crystal structure of the initial powder, but differ in the lattice deformation distortion anisotropy.

  7. Acceptors in ZnO

    DOE PAGES

    Mccluskey, Matthew D.; Corolewski, Caleb; Lv, Jinpeng; ...

    2015-03-21

    Zinc oxide (ZnO) has potential for a range of applications in the area of optoelectronics. The quest for p-type ZnO has focused much attention on acceptors. In this paper, Cu, N, and Li acceptor impurities are discussed. Experimental evidence shows that these point defects have acceptor levels 3.2, 1.5, and 0.8 eV above the valence-band maximum, respectively. The levels are deep because the ZnO valence band is quite low compared to conventional, non-oxide semiconductors. Using MoO2 contacts, the electrical resistivity of ZnO:Li was measured and showed behavior consistent with bulk hole conduction for temperatures above 400 K. A photoluminescence peakmore » in ZnO nanocrystals has been attributed to an acceptor, which may involve a zinc vacancy. High field (W-band) electron paramagnetic resonance measurements on the nanocrystals revealed an axial center with g = 2.0033 and g = 2.0075, along with an isotropic center at g = 2.0053.« less

  8. Plane shock loading on mono- and nano-crystalline silicon carbide

    NASA Astrophysics Data System (ADS)

    Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya

    2018-03-01

    The understanding of the nanoscale mechanisms of shock damage and failure in SiC is essential for its application in effective and damage tolerant coatings. We use molecular-dynamics simulations to investigate the shock properties of 3C-SiC along low-index crystallographic directions and in nanocrystalline samples with 5 nm and 10 nm grain sizes. The predicted Hugoniot in the particle velocity range of 0.1 km/s-6.0 km/s agrees well with experimental data. The shock response transitions from elastic to plastic, predominantly deformation twinning, to structural transformation to the rock-salt phase. The predicted strengths from 12.3 to 30.9 GPa, at the Hugoniot elastic limit, are in excellent agreement with experimental data.

  9. Theory and Device Modeling for Nano-Structured Transistor Channels

    DTIC Science & Technology

    2011-06-01

    zinc oxide ( ZnO ) thin film transistors ( TFTs ) that contain nanocrystalline grains on the order of ~20nm. The authors of ref. 1 present results...problem in order to determine the threshold voltage. 15. SUBJECT TERMS nano-structured transistor , mesoscopic, zinc oxide , ZnO , field-effect...and R. Neidhard, “Microwave ZnO Thin - Film Transistors ”, IEEE Electron Dev. Lett. 29, 1024 (2008); doi: 10.1109/LED.2008.2001635.

  10. Luminescence and related properties of nanocrystalline porous silicon

    NASA Astrophysics Data System (ADS)

    Koshida, N.

    This document is part of subvolume C3 'Optical Properties' of volume 34 'Semiconductor quantum structures' of Landolt-Börnstein, Group III, Condensed Matter, on the optical properties of quantum structures based on group IV semiconductors. It discusses luminescence and related properties of nanocrystalline porous silicon. Topics include an overview of nanostructured silicon, its fabrication technology, and properties of nanocrystalline porous silicon such as confinement effects, photoluminescence, electroluminesce, carrier charging effects, ballistic transport and emission, and thermally induced acoustic emission.

  11. Electrochemical modification of properties of ZnO films

    NASA Astrophysics Data System (ADS)

    Abe, Koji; Okubo, Takamasa; Ishikawa, Hirohito

    2017-12-01

    The properties of Al-doped ZnO films and Li- and Al-doped ZnO films were modified by electrochemical treatment. A constant current was applied between a ZnO film and a Pt electrode in an electrolyte solution. The sheet resistance of the ZnO film increased and decreased depending on the direction of current flow during the electrochemical treatment. When the ZnO film was used as a cathode (forward biased condition), the sheet resistance of the ZnO film decreased with increasing treatment time. The optical bandgap of the H2-annealed ZnO film also depended on the direction of current flow and increased under the forward biased condition. The electrochemical treatment caused the Burstein-Moss effect.

  12. Gigacycle fatigue behavior by ultrasonic nanocrystalline surface modification.

    PubMed

    Ahn, D G; Amanov, A; Cho, I S; Shin, K S; Pyoun, Y S; Lee, C S; Park, I G

    2012-07-01

    Nanocrystalline surface layer up to 84 microm in thick is produced on a specimen made of Al6061-T6 alloy by means of surface treatment called ultrasonic nanocrystalline surface modification (UNSM) technique. The refined grain size is produced in the top-layer and it is increased with increasing depth from the top surface. Vickers microhardness measurement for each nanocrystalline surface layer is performed and measurement results showed that the microhardness is increased from 116 HV up to 150 HV, respectively. In this study, fatigue behavior of Al6061-T6 alloy was studied up to 10(7)-10(9) cycles by using a newly developed ultrasonic fatigue testing (UFT) rig. The fatigue results of the UNSM-treated Al6061-T6 alloy specimens were compared with those of the untreated specimens. The microstructure of the untreated and UNSM-treated specimens was characterized by means of scanning electron microscopey (SEM) and transmission electron microscopey (TEM).

  13. N doped ZnO and ZnO nanorods based p-n homojunction fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mohua; Thangavel, R.; Asokan, K.

    2018-05-01

    Nitrogen (N) doped and undoped Zinc Oxide (ZnO) nanorod p-n homojunctions were fabricated by ion implantation method. The structural and optical characterizations showed that the N atoms doped into the ZnO crystal lattice. The UV-Vis absorption spectra revealed shift in optical absorption edge towards higher wavelength with ion implantation on ZnO, which attributed N acceptor levels above the valence band. The current-voltage (I-V) measurements exhibit a typical semiconductor rectification characteristic indicating the electrical conductivity of the N-doped ZnO nanorod have p-type conductivity. Moreover, a high photocurrent response has been observed with these p-n homojunctions.

  14. Local structure analysis of diluted magnetic semiconductor Co and Al co-doped ZnO nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyodo, K.; Morimoto, S.; Yamazaki, T.

    2016-02-01

    In this study, Co and Al ions co-doped ZnO nanoparticles (Zn(Al, Co)O NPs) were prepared by our original chemical preparation method. The obtained samples prepared by this method, were encapsulated in amorphous SiO{sub 2}. X-ray diffraction (XRD) results showed Zn(Al, Co)O NPs had a single-phase nature with hexagonal wurtzite structure. These particle sizes could be controlled to be approximately 30 nm. We investigate the effect that the increase in the carrier has on the magnetization by doping Al to Co-doped ZnO NPs. The local structures were qualitatively analyzed using X-ray absorption fine structure (XAFS) measurements.

  15. Enabling antibacterial coating via bioinspired mineralization of nanostructured ZnO on fabrics under mild conditions.

    PubMed

    Manna, Joydeb; Begum, Gousia; Kumar, K Pranay; Misra, Sunil; Rana, Rohit K

    2013-05-22

    Herein, we present an environmentally benign method capable of mineralization and deposition of nanomaterials to introduce antibacterial functionalities into cotton fabrics under mild conditions. Similar to the way in which many naturally occurring biominerals evolve around the living organism under ambient conditions, this technique enables flexible substrates like the cotton fabric to be coated with inorganic-based functional materials. Specifically, our strategy involves the use of long-chain polyamines known to be responsible in certain biomineralization processes, to nucleate, organize, and deposit nanostructured ZnO on cotton bandage in an aqueous solution under mild conditions of room temperature and neutral pH. The ZnO-coated cotton bandages as characterized by SEM, confocal micro-Raman spectroscopy, XRD, UV-DRS, and fluorescence microscopy demonstrate the importance of polyamine in generating a stable and uniform coating of spindle-shaped ZnO particles on individual threads of the fabric. As the coating process requires only mild conditions, it avoids any adverse effect on the thermal and mechanical properties of the substrate. Furthermore, the ZnO particles on cotton fabric show efficient antibacterial activity against both gram-positive and gram-negetive bacteria. Therefore, the developed polyamine mediated bioinspired coating method provides not only a facile and "green" synthesis for coating on flexible substrate but also the fabrication of antibacterial enabled materials for healthcare applications.

  16. Covalent attachment and growth of nanocrystalline films of photocatalytic TiOF2

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Lv, Fujian; Xiao, Shengxiong; Bian, Zhenfeng; Buntkowsky, Gerd; Nuckolls, Colin; Li, Hexing

    2014-11-01

    This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation.This manuscript describes a synthesis of nanocrystalline TiOF2 film. The nanocrystalline TiOF2 becomes chemically attached to the surface of the glass slide. These films are robust and can be recycled as photocatalysts for the degradation of organic dyes and solvents. These films also have significant antibacterial properties upon irradiation. Electronic supplementary information (ESI) available: Methods for sample preparation, characterization and Fig. S1-S8. See DOI: 10.1039/c4nr05598e

  17. Does doping with aluminum alter the effects of ZnO nanoparticles on the metabolism of soil pseudomonads?

    PubMed

    Fang, Tommy; Watson, Jean-Luc; Goodman, Jordan; Dimkpa, Christian O; Martineau, Nicole; Das, Siddhartha; McLean, Joan E; Britt, David W; Anderson, Anne J

    2013-02-22

    Doping of ZnO nanoparticles (NPs) is being used to increase their commercialization in the optical and semiconductor fields. This paper addresses whether doping with Al alters how ZnO NPs at nonlethal levels modifies the metabolism of soil-borne pseudomonads which are beneficial in performing bioremediation or promoting plant growth. The differences in X-ray diffraction (XRD) patterns, observed between commercial ZnO and Al-doped ZnO NPs indicated the aluminum was present as Al NPs. Both particles aggregated in the bacterial growth medium and formed colloids of different surface charges. They had similar effects on bacterial metabolism: rapid, dose-dependent loss in light output indicative of temporary toxicity in a biosensor constructed in Pseudomonas putida KT2440; increased production of a fluorescent pyoverdine-type siderophore, and decreased levels of indole acetic acid and phenazines in Pseudomonas chlororaphis O6. Solubilization of Zn and Al from the NPs contributed to these responses to different extents. These findings indicate that Al-doping of the ZnO NPs did not reduce the ability of the NPs to alter bacterial metabolism in ways that could influence performance of the pseudomonads in their soil environment. Copyright © 2012. Published by Elsevier GmbH.

  18. Effects of surface morphology of ZnO seed layers on growth of ZnO nanostructures prepared by hydrothermal method and annealing.

    PubMed

    Yim, Kwang Gug; Kim, Min Su; Leem, Jae-Young

    2013-05-01

    ZnO nanostructures were grown on Si (111) substrates by a hydrothermal method. Prior to growing the ZnO nanostructures, ZnO seed layers with different post-heat temperatures were prepared by a spin-coating process. Then, the ZnO nanostructures were annealed at 500 degrees C for 20 min under an Ar atmosphere. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and photoluminescence (PL) were carried out at room temperature (RT) to investigate the structural and optical properties of the as-grown and annealed ZnO nanostructures. The surface morphologies of the seed layers changed from a smooth surface to a mountain chain-like structure as the post-heating temperatures increased. The as-grown and annealed ZnO nanostructures exhibited a strong (002) diffraction peak. Compared to the as-grown ZnO nanostructures, the annealed ZnO nanostructures exhibited significantly strong enhancement in the PL intensity ratio by almost a factor of 2.

  19. Designing of silk and ZnO based antibacterial and noncytotoxic bionanocomposite films and study of their mechanical and UV absorption behavior.

    PubMed

    Kiro, Anamika; Bajpai, Jaya; Bajpai, A K

    2017-01-01

    Bionanocomposites of sericin and polyvinyl alcohol (PVA) were prepared by solution casting method and zinc oxide nanoparticles were impregnated within the polymer blend matrix through homogenous phase reaction between zinc chloride and sodium hydroxide at high temperature following an ex-situ co-precipitation method. The prepared bionanocomposites were characterized using Fourier Transform Infrared Spectroscopy, X-ray diffraction, Field Emission Scanning Electron Microscopy, Transmission Electron Microscopy and Atomic Force Microscopy techniques. The presence of characteristic groups of sericin and ZnO nanoparticles was ascertained by the FTIR spectra. XRD analysis confirmed the impregnation of ZnO nanoparticles and sericin within the PVA matrix. XRD and FESEM of the bionanocomposites provided information about their semicrystalline nature, crystallite size of the particles, and irregular rough surfaces. The TEM confirmed the size of ZnO particles to be in the nanometer range. AFM confirmed the platykurtic nature of the surface while the negative surface skewness shows the predominance of valleys over peaks suggesting for the planar nature of the surface of the bionanocomposites. UV absorption properties of bionanocomposite films were determined by UV absorption spectroscopy. UV absorption increased with increasing amount of ZnO nanoparticles in the nanocomposites. Sericin was found to absorb UV-C radiations between 200-290nm which is mainly due to aromatic amino acids like tryptophan, tyrosine and phenylalanine. The ZnO nanoparticles and sericin protein showed antimicrobial properties as evident from the inhibition zones obtained against Staphylococcus aureus and Escherichia coli. The bionanocomposite was found to be noncytotoxic which was proved by in vitro cytotoxicity test. Microhardness of bionanocomposite films increased with increase in the amount of ZnO nanoparticles in the sericin and PVA matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Preparation and characterization of undoped and cobalt doped ZnO for antimicrobial use.

    PubMed

    Stoica, Angelica Oprea; Andronescu, Ecaterina; Ghitulica, Cristina Daniela; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Popa, Marcela; Chifiriuc, Mariana Carmen

    2016-08-30

    The objective of this study was to carry out the synthesis by sol-gel method of undoped and cobalt doped ZnO, with different cobalt concentrations (0.5-5mol%), using as stabilizer monoethanolamine (MEA) in a molar ratio ZnO:MEA=1:2. The dry gel was thermally treated at 500°C/5h, respectively at 1100°C/30min. All the thermal treated samples were of wurtzite type with an hexagonal structure. The doping with Co(2+) induced change of lattice parameters and of crystallite size, proving the successful interleaving of Co(2+) into the ZnO lattice. From the morphological point of view, the thermal treatment at 1100°C/30min led to a higher degree of compactness of the ZnO granules. At 500°C/5h there were formed polyhedral or spherical nanometric particles (25-50nm) which have been agglomerated into aggregates with sizes over 1μm. From the biological point of view, the quantitative analyses of antimicrobial activity have shown that the ZnO doped with cobalt has inhibited the ability of the Bacillus subtilis and Escherichia coli bacterial strains to colonize the inert substrate and therefore, can be used in the design of new antimicrobial strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Synthesis and Characterization of ZNO/MN Nanocomposite by using Sol-Gel Method

    NASA Astrophysics Data System (ADS)

    Ningsih, S. K. W.; Bahrizal, B.; Nasra, E.; Nizar, U. K.; Farisya, R.

    2018-04-01

    Zink oxide doped Mn nanocomposites were synthesized by simple sol-gel method at low temperature by using combination of aquadest with methanol as the solvent and ethylene glycol as the additive. Zink acetate dehydrate and manganese chloride tetrahydrate were used as the precursors. Composition dopants were 1,3,5,and 7%. The crystals were formed by drying at 110°C for 1 hour, after which they were heated at ± 500°C for 2 hours. The as-prepared ZnO/Mn nanocomposites were characterized by X-ray diffraction (XRD) and UV Diffuse Reflectance Spectrometer (UVDRS). The XRD patterns of the ZnO nanocrystals showed that they are mostly hexagonal wurtzite with specific peaks at 2θ = 31, 34, 36, 47, 56, 63, 66 dan 69. The sizes of the ZnO doped Mn particles produced with 1%, 3%, 5% and 7% were18-95; 17-87; 18-96 19-98 nm, respectively. UVDRS analysis showed that the band gap of the ZnO were 2,60; 2,90; 2,99 dan 3,01 eV for 1%, 3%, 5% and 7% Mn respectively.

  2. Direct Coating of Nanocrystalline Diamond on Steel

    NASA Astrophysics Data System (ADS)

    Tsugawa, Kazuo; Kawaki, Shyunsuke; Ishihara, Masatou; Hasegawa, Masataka

    2012-09-01

    Nanocrystalline diamond films have been successfully deposited on stainless steel substrates without any substrate pretreatments to promote diamond nucleation, including the formation of interlayers. A low-temperature growth technique, 400 °C or lower, in microwave plasma chemical vapor deposition using a surface-wave plasma has cleared up problems in diamond growth on ferrous materials, such as the surface graphitization, long incubation time, substrate softening, and poor adhesion. The deposited nanocrystalline diamond films on stainless steel exhibit good adhesion and tribological properties, such as a high wear resistance, a low friction coefficient, and a low aggression strength, at room temperature in air without lubrication.

  3. Demonstration of a 100-kWth high-temperature solar thermochemical reactor pilot plant for ZnO dissociation

    NASA Astrophysics Data System (ADS)

    Koepf, E.; Villasmil, W.; Meier, A.

    2016-05-01

    Solar thermochemical H2O and CO2 splitting is a viable pathway towards sustainable and large-scale production of synthetic fuels. A reactor pilot plant for the solar-driven thermal dissociation of ZnO into metallic Zn has been successfully developed at the Paul Scherrer Institute (PSI). Promising experimental results from the 100-kWth ZnO pilot plant were obtained in 2014 during two prolonged experimental campaigns in a high flux solar simulator at PSI and a 1-MW solar furnace in Odeillo, France. Between March and June the pilot plant was mounted in the solar simulator and in-situ flow-visualization experiments were conducted in order to prevent particle-laden fluid flows near the window from attenuating transparency by blocking incoming radiation. Window flow patterns were successfully characterized, and it was demonstrated that particle transport could be controlled and suppressed completely. These results enabled the successful operation of the reactor between August and October when on-sun experiments were conducted in the solar furnace in order to demonstrate the pilot plant technology and characterize its performance. The reactor was operated for over 97 hours at temperatures as high as 2064 K; over 28 kg of ZnO was dissociated at reaction rates as high as 28 g/min.

  4. Influence of Frequency-Dependent Dielectric Loss on Electrorheology of Surface Modified ZnO Nanofluids

    NASA Astrophysics Data System (ADS)

    Zaid, H. M.; Adil, M.; Lee, KC; Latiff, N. R. A.

    2018-05-01

    The shear dependent viscosity change in dielectric nanofluids under the applied electric field, provide potentials for prospect applications especially in enhanced oil recovery. When nanofluids are activated by an applied electric field, it behaves as a non-Newtonian fluid under electrorheological effect (ER) by creating the chains of nanoparticles. In this research, the effect of dielectric loss on the electrorheological characteristic of dielectric nanofluids (NFs) was studied, corresponding to the applied frequency of 167 and 18.8 MHz. For this purpose, electrorheological characteristics of ZnO (55.7 and 117.1 nm) nanofluids with various nanoparticles (NPs) concentration (0.1, 0.05, 0.01 wt. %) were measured. The measurement was done via solenoid based EM transmitter under salt water as a propagation medium. The result shows that the applied electric field caused an apparent increase on the relative viscosity of ZnO NFs due to electrorheological effect. However, the relative viscosity shows a higher increment at 167 MHz due to the greater dielectric loss, compared to 18.8 MHz. The high dielectric loss allows the dipole moments to rotationally polarize at the interfaces of nanoparticles, which create stronger chains that align with the applied electric field. Additionally, the relative viscosity demonstrated an increment with the increase in particle size of ZnO nanoparticles from 55.7 to 117.1 nm. While the viscosity of nanofluid also indicated the high dependence on particle loading.

  5. Photoluminescent ZnO Nanoparticles and Their Biological Applications

    PubMed Central

    Zhang, Zheng-Yong; Xiong, Huan-Ming

    2015-01-01

    During the past decades, numerous achievements concerning luminescent zinc oxide nanoparticles (ZnO NPs) have been reported due to their improved luminescence and good biocompatibility. The photoluminescence of ZnO NPs usually contains two parts, the exciton-related ultraviolet (UV) emission and the defect-related visible emission. With respect to the visible emission, many routes have been developed to synthesize and functionalize ZnO NPs for the applications in detecting metal ions and biomolecules, biological fluorescence imaging, nonlinear multiphoton imaging, and fluorescence lifetime imaging. As the biological applications of ZnO NPs develop rapidly, the toxicity of ZnO NPs has attracted more and more attention because ZnO can produce the reactive oxygen species (ROS) and release Zn2+ ions. Just as a coin has two sides, both the drug delivery and the antibacterial effects of ZnO NPs become attractive at the same time. Hence, in this review, we will focus on the progress in the synthetic methods, luminescent properties, and biological applications of ZnO NPs.

  6. ZnO Schottky barriers and Ohmic contacts

    NASA Astrophysics Data System (ADS)

    Brillson, Leonard J.; Lu, Yicheng

    2011-06-01

    ZnO has emerged as a promising candidate for optoelectronic and microelectronic applications, whose development requires greater understanding and control of their electronic contacts. The rapid pace of ZnO research over the past decade has yielded considerable new information on the nature of ZnO interfaces with metals. Work on ZnO contacts over the past decade has now been carried out on high quality material, nearly free from complicating factors such as impurities, morphological and native point defects. Based on the high quality bulk and thin film crystals now available, ZnO exhibits a range of systematic interface electronic structure that can be understood at the atomic scale. Here we provide a comprehensive review of Schottky barrier and ohmic contacts including work extending over the past half century. For Schottky barriers, these results span the nature of ZnO surface charge transfer, the roles of surface cleaning, crystal quality, chemical interactions, and defect formation. For ohmic contacts, these studies encompass the nature of metal-specific interactions, the role of annealing, multilayered contacts, alloyed contacts, metallization schemes for state-of-the-art contacts, and their application to n-type versus p-type ZnO. Both ZnO Schottky barriers and ohmic contacts show a wide range of phenomena and electronic behavior, which can all be directly tied to chemical and structural changes on an atomic scale.

  7. Bulk Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    DTIC Science & Technology

    2014-05-13

    nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and...the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta...approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are

  8. Synthesis of ZnO nanorods and observation of resistive switching memory in ZnO based polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Nair, Manjula G.; Malakar, Meenakshi; Mohapatra, Saumya R.; Chowdhury, Avijit

    2018-05-01

    This research reports the observation of bipolar resistive switching memory in ZnO nanorod based polymer nanocomposites. We synthesized ZnO nanorods by wet-chemical method and characterized them using XRD, UV-VIS spectroscopy and SEM. The synthesized materials have hexagonal ZnO phase with grain size of 24 nm and having strong orientation along (101) direction as observed from XRD. The SEM micrograph confirms the formation of ZnO nanorods with diameter in the range of 10 to 20 nm and length of the order of 1 µm. From optical absorption spectra the band gap is estimated to be 2.42 eV. ZnO nanorods were dispersed in PVDF-HFP polymer matrix to prepare the nanocomposite. This nanocomposite was used as active layer in the devices having sandwich structure of ITO/PVDF-HFP+ZnO nanorods/Al. Bipolar non-volatile memory was observed with ON-OFF resistance ratio of the order of 103 and with a wide voltage window of 2.3V. The switching mechanism could be due to the trapping and de-trapping of electrons by the ZnO nanorods in the nanocomposite during ON and OFF states respectively.

  9. Electrode characteristics of nanocrystalline AB{sub 5} compounds prepared by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Z.; Chen, Z.; Zhou, D.

    1998-10-01

    Nanocrystalline LaNi{sub 5} and LaNi{sub 4.5}Si{sub 0.5} synthesized by mechanical alloying were used as negative materials for Ni-MH batteries. It was found that the electrodes prepared with the nanocrystalline powders had similar discharge capacities, better activation behaviors, and longer cycle lifetimes, compared with the negative electrode prepared with polycrystalline coarse-grained LaNi{sub 5} alloy. The properties of the electrodes prepared with these nanocrystalline materials were attributed to the structural characteristics of the compounds caused by mechanical alloying.

  10. Carbon-coated ZnO mat passivation by atomic-layer-deposited HfO2 as an anode material for lithium-ion batteries.

    PubMed

    Jung, Mi-Hee

    2017-11-01

    ZnO has had little consideration as an anode material in lithium-ion batteries compared with other transition-metal oxides due to its inherent poor electrical conductivity and large volume expansion upon cycling and pulverization of ZnO-based electrodes. A logical design and facile synthesis of ZnO with well-controlled particle sizes and a specific morphology is essential to improving the performance of ZnO in lithium-ion batteries. In this paper, a simple approach is reported that uses a cation surfactant and a chelating agent to synthesize three-dimensional hierarchical nanostructured carbon-coated ZnO mats, in which the ZnO mats are composed of stacked individual ZnO nanowires and form well-defined nanoporous structures with high surface areas. In order to improve the performance of lithium-ion batteries, HfO 2 is deposited on the carbon-coated ZnO mat electrode via atomic layer deposition. Lithium-ion battery devices based on the carbon-coated ZnO mat passivation by atomic layer deposited HfO 2 exhibit an excellent initial discharge and charge capacities of 2684.01 and 963.21mAhg -1 , respectively, at a current density of 100mAg -1 in the voltage range of 0.01-3V. They also exhibit cycle stability after 125 cycles with a capacity of 740mAhg -1 and a remarkable rate capability. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Effect of precursor solutions on ZnO film via solution precursor plasma spray and corresponding gas sensing performances

    NASA Astrophysics Data System (ADS)

    Yu, Z. X.; Ma, Y. Z.; Zhao, Y. L.; Huang, J. B.; Wang, W. Z.; Moliere, M.; Liao, H. L.

    2017-08-01

    Solution precursor plasma spraying (SPPS) as a novel thermal spray method was employed to deposit nano-structured ZnO thin film using different formulations of the precursor solution. This article focuses on the influence of the solution composition on the preferential orientation of crystal growth, on crystal size and surface morphology of the resulting ZnO films. The trend of preferential growth along (002) lattice plane of ZnO film was studied by slow scanning X-ray diffraction using a specific coefficient P(002). It appears that the thermal spray process promotes the buildup of ZnO films preferentially oriented along the c-axis. The shape of single particle tends to change from round shaped beads to hexagonal plates by increasing the volume ratio of ethanol in the solvent. Both cauliflower and honeycomb-like surface morphologies featuring high specific surface area and roughness were obtained through the SPPS process by varying solution composition. These ZnO films are hydrophobic with contact angle as high as 136°, which is seemingly associated with micro reliefs developing high surface specific area. Then the gas sensing performances of ZnO films preferentially oriented along (002) face were tentatively predicted using the "first principle calculation method" and were compared with those of conventional films that are mainly oriented along the (101) face. The (002) face displays better hydrogen adsorption capability than the (101) face with much larger resulting changes in electrical resistance. In conclusion, the c-axis oriented ZnO films obtained through SSPS have favorable performances to be used as sensitive layer in gas sensing applications.

  12. Synthesis of p-type ZnO films

    NASA Astrophysics Data System (ADS)

    Ryu, Y. R.; Zhu, S.; Look, D. C.; Wrobel, J. M.; Jeong, H. M.; White, H. W.

    2000-06-01

    p-Type ZnO obtained by arsenic (As) doping is reported for the first time. Arsenic-doped ZnO (ZnO : As) films have been deposited on (0 0 1)-GaAs substrates by pulsed laser ablation. The process of synthesizing p-type ZnO : As films was performed in an ambient gas of ultra-pure (99.999%) oxygen. The ambient gas pressure was 35 mTorr with the substrate temperature in the range 300-450°C. ZnO films grown at 400°C and 450°C are p-type and As is a good acceptor. The acceptor peak is located at 3.32 eV and its binding energy is about 100 meV. Acceptor concentrations of As atoms in ZnO films were in the range from high 10 17 to high 10 21 atoms/cm 3 as determined by secondary ion mass spectroscopy (SIMS) and Hall effect measurements.

  13. ZnO Nanostructures for Tissue Engineering Applications

    PubMed Central

    Laurenti, Marco; Cauda, Valentina

    2017-01-01

    This review focuses on the most recent applications of zinc oxide (ZnO) nanostructures for tissue engineering. ZnO is one of the most investigated metal oxides, thanks to its multifunctional properties coupled with the ease of preparing various morphologies, such as nanowires, nanorods, and nanoparticles. Most ZnO applications are based on its semiconducting, catalytic and piezoelectric properties. However, several works have highlighted that ZnO nanostructures may successfully promote the growth, proliferation and differentiation of several cell lines, in combination with the rise of promising antibacterial activities. In particular, osteogenesis and angiogenesis have been effectively demonstrated in numerous cases. Such peculiarities have been observed both for pure nanostructured ZnO scaffolds as well as for three-dimensional ZnO-based hybrid composite scaffolds, fabricated by additive manufacturing technologies. Therefore, all these findings suggest that ZnO nanostructures represent a powerful tool in promoting the acceleration of diverse biological processes, finally leading to the formation of new living tissue useful for organ repair. PMID:29113133

  14. Effect of mechanical alloying and heat treatment on the behavior of fe - 28% al - 5% cr powder with nanocrystalline structure

    NASA Astrophysics Data System (ADS)

    Tang, W. M.; Liu, H. L.; Wang, Y. X.; Xu, G. O.; Zheng, Z. X.

    2012-05-01

    Nanocrystalline powders of alloy Fe - 28% Al - 5% Cr (at.%) obtained by mechanical alloying from powdered iron, aluminum, and preliminarily alloyed Fe - 20% Cr are studied. The chemical composition is shown to be homogenized. The changes in the structure and in the morphology of the particles in the process of ball milling and subsequent heat treatment are determined. The alloying is shown to occur by the mechanism of continuous diffusion mixing.

  15. Highly textured and transparent RF sputtered Eu2O3 doped ZnO films

    PubMed Central

    Sreedharan, Remadevi Sreeja; Ganesan, Vedachalaiyer; Sudarsanakumar, Chellappan Pillai; Bhavsar, Kaushalkumar; Prabhu, Radhakrishna; Mahadevan Pillai, Vellara Pappukutty Pillai

    2015-01-01

    Background Zinc oxide (ZnO) is a wide, direct band gap II-VI oxide semiconductor. ZnO has large exciton binding energy at room temperature, and it is a good host material for obtaining visible and infrared emission of various rare-earth ions. Methods Europium oxide (Eu2O3) doped ZnO films are prepared on quartz substrate using radio frequency (RF) magnetron sputtering with doping concentrations 0, 0.5, 1, 3 and 5 wt%. The films are annealed in air at a temperature of 773 K for 2 hours. The annealed films are characterized using X-ray diffraction (XRD), micro-Raman spectroscopy, atomic force microscopy, ultraviolet (UV)-visible spectroscopy and photoluminescence (PL) spectroscopy. Results XRD patterns show that the films are highly c-axis oriented exhibiting hexagonalwurtzite structure of ZnO. Particle size calculations using Debye-Scherrer formula show that average crystalline size is in the range 15–22 nm showing the nanostructured nature of the films. The observation of low- and high-frequency E2 modes in the Raman spectra supports the hexagonal wurtzite structure of ZnO in the films. The surface morphology of the Eu2O3 doped films presents dense distribution of grains. The films show good transparency in the visible region. The band gaps of the films are evaluated using Tauc plot model. Optical constants such as refractive index, dielectric constant, loss factor, and so on are calculated using the transmittance data. The PL spectra show both UV and visible emissions. Conclusion Highly textured, transparent, luminescent Eu2O3 doped ZnO films have been synthesized using RF magnetron sputtering. The good optical and structural properties and intense luminescence in the ultraviolet and visible regions from the films suggest their suitability for optoelectronic applications. PMID:25765728

  16. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    NASA Astrophysics Data System (ADS)

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-04-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm-1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls.

  17. Complex and oriented ZnO nanostructures.

    PubMed

    Tian, Zhengrong R; Voigt, James A; Liu, Jun; McKenzie, Bonnie; McDermott, Matthew J; Rodriguez, Mark A; Konishi, Hiromi; Xu, Huifang

    2003-12-01

    Extended and oriented nanostructures are desirable for many applications, but direct fabrication of complex nanostructures with controlled crystalline morphology, orientation and surface architectures remains a significant challenge. Here we report a low-temperature, environmentally benign, solution-based approach for the preparation of complex and oriented ZnO nanostructures, and the systematic modification of their crystal morphology. Using controlled seeded growth and citrate anions that selectively adsorb on ZnO basal planes as the structure-directing agent, we prepared large arrays of oriented ZnO nanorods with controlled aspect ratios, complex film morphologies made of oriented nanocolumns and nanoplates (remarkably similar to biomineral structures in red abalone shells) and complex bilayers showing in situ column-to-rod morphological transitions. The advantages of some of these ZnO structures for photocatalytic decompositions of volatile organic compounds were demonstrated. The novel ZnO nanostructures are expected to have great potential for sensing, catalysis, optical emission, piezoelectric transduction, and actuations.

  18. ZnO nanoparticles and organic chemical UV-filters are equally well tolerated by human immune cells.

    PubMed

    O'Keefe, Sean J; Feltis, Bryce N; Piva, Terrence J; Turney, Terence W; Wright, Paul F A

    2016-11-01

    An important part of assessing the toxic potential of nanoparticles for specific applications should be the direct comparison of biological activities with those of alternative materials for the same application. Nanoparticulate inorganic ultraviolet (UV) filters, such as zinc oxide (ZnO), are commonly incorporated into transparent sunscreen and cosmetic formulations. However, concerns have been raised about potential unwanted effects, despite their negligible skin penetration and inherent advantages over organic chemical UV-filters. To provide useful application-relevant assessments of their potential hazard with/without UVA co-exposure, we directly compared cytotoxic and immune response profiles of human THP-1 monocytic cells to ZnO nanoparticles (30 nm) with bulk ZnO particulates (200 nm) and five conventional organic chemical UV-filters - butylmethoxydibenzoylmethane (avobenzone), octylmethoxycinnamate, octylsalicylate, homosalate and 4-methylbenzylidene camphor. High exposure concentrations of both organic and particulate UV-filters were required to cause cytotoxicity in monocyte and macrophage cultures after 24 h. Co-exposure with UVA (6.7 J/cm(2)) did not alter cytotoxicity profiles. Particle surface area-based dose responses showed that ZnO NPs were better tolerated than bulk ZnO. Organic and particulate UV-filters increased apoptosis at similar doses. Only particulates increased the generation of reactive oxygen species. Interleukin-8 (IL-8) release was increased by all particulates, avobenzone, homosalate and octylsalicylate. IL-1β release was only increased in macrophages by exposure to avobenzone and homosalate. In conclusion, direct effects were caused in monocytes and macrophages at similar concentrations of both organic UV-filters and ZnO nanoparticulates - indicating that their intrinsic cytotoxicity is similar. With their lower skin penetration, ZnO nanoparticles are expected to have lower bioactivity when used in sunscreens.

  19. "Bulk" Nanocrystalline Metals: Review of the Current State of the Art and Future Opportunities for Copper and Copper Alloys

    NASA Astrophysics Data System (ADS)

    Tschopp, M. A.; Murdoch, H. A.; Kecskes, L. J.; Darling, K. A.

    2014-06-01

    It is a new beginning for innovative fundamental and applied science in nanocrystalline materials. Many of the processing and consolidation challenges that have haunted nanocrystalline materials are now more fully understood, opening the doors for bulk nanocrystalline materials and parts to be produced. While challenges remain, recent advances in experimental, computational, and theoretical capability have allowed for bulk specimens that have heretofore been pursued only on a limited basis. This article discusses the methodology for synthesis and consolidation of bulk nanocrystalline materials using mechanical alloying, the alloy development and synthesis process for stabilizing these materials at elevated temperatures, and the physical and mechanical properties of nanocrystalline materials with a focus throughout on nanocrystalline copper and a nanocrystalline Cu-Ta system, consolidated via equal channel angular extrusion, with properties rivaling that of nanocrystalline pure Ta. Moreover, modeling and simulation approaches as well as experimental results for grain growth, grain boundary processes, and deformation mechanisms in nanocrystalline copper are briefly reviewed and discussed. Integrating experiments and computational materials science for synthesizing bulk nanocrystalline materials can bring about the next generation of ultrahigh strength materials for defense and energy applications.

  20. Optical properties of P ion implanted ZnO

    NASA Astrophysics Data System (ADS)

    Pong, Bao-Jen; Chou, Bo-Wei; Pan, Ching-Jen; Tsao, Fu-Chun; Chi, Gou-Chung

    2006-02-01

    Red and green emissions are observed from P ion implanted ZnO. Red emission at ~680 nm (1.82 eV) is associated with the donor-acceptor pair (DAP) transition, where the corresponding donor and acceptor are interstitial zinc (Zn i) and interstitial oxygen (O i), respectively. Green emission at ~ 516 nm (2.40 eV) is associated with the transition between the conduction band and antisite oxygen (O Zn). Green emission at ~516nm (2.403 eV) was observed for ZnO annealed at 800 oC under ambient oxygen, whereas, it was not visible when it was annealed in ambient nitrogen. Hence, the green emission is most likely not related to oxygen vacancies on ZnO sample, which might be related to the cleanliness of ZnO surface, a detailed study is in progress. The observed micro-strain is larger for N ion implanted ZnO than that for P ion implanted ZnO. It is attributed to the larger straggle of N ion implanted ZnO than that of P ion implanted ZnO. Similar phenomenon is also observed in Be and Mg ion implanted GaN.

  1. The result of synthesis analysis of the powder TiO{sub 2}/ZnO as a layer of electrodes for dye sensitized solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retnaningsih, Lilis, E-mail: lilisretna@gmail.com; Muliani, Lia

    2016-04-19

    This study has been conducted synthesis of TiO{sub 2} nanoparticle powders and ZnO nanoparticle powder into a paste to be in this research, dye-sensitive solar cells (DSSC) was produced by TiO{sub 2} nanopowder and ZnO nanopowder synthesis to make paste that is applied as electrode. This electrode works based on photon absorbed by dye and transferred to different composition of TiO{sub 2}/ ZnO particle. Properties of DSSC are affected by fabrication method, parameter and dimension of TiO{sub 2} / ZnO nanoparticles, technique and composition of TiO{sub 2} / ZnO paste preparation is important to get the higher performance of DSSC.more » Doctor blade is a method for electrode coating on glass substrate. The electrode was immersed into dye solution of Z907 and ethanol. From the experiment, the effect of TiO{sub 2} and ZnO nanopowder mixture for electrode was investigated. XRD characterization show anatase and rutile phase, which sintered TiO{sub 2}/ZnO has intensity more than 11,000. SEM characterization shows the composition of 20% TiO{sub 2} / 80% ZnO has better porosity. Higher efficiency that is investigated by I-V measurement using Sun Simulator.« less

  2. An investigation on the preparation of nanocrystalline hydrous zirconia from zirconium tungstate

    NASA Astrophysics Data System (ADS)

    Antunes, M.; Perottoni, C. A.; Gouvêa, D.; Machado, G.; Zorzi, J. E.

    2018-02-01

    Hydrous nanocrystalline zirconia was prepared from an unusual precursor—the bimetallic oxide zirconium tungstate (ZrW2O8)—in alkaline medium. Different experimental conditions (NaOH concentration, time and temperature) were used to investigate the effects on crystallographic, morphological, chemical and thermal characteristics of the products. The resulting materials are composed of particles with a crystal structure similar to that of cubic ZrO2 (or a mixture of tetragonal and cubic phases, depending on the synthesis conditions), with particle size around 5 nm and crystallites around 3 nm in diameter. These particles form high surface area agglomerates, exhibiting mesoporosity and capacity for adsorption of water and carbon dioxide. The synthesis mechanism appears to be constituted, first, by a chemical substitution reaction between the WO4 tetrahedra and hydroxyl ions, with subsequent solubilization of the structure. Indeed, excess hydroxyls in the medium form colloidal zirconium ions which polymerize/condense, generating crystalline nuclei in a process facilitated by heterogeneous nucleation and supersaturation. The presence of residual tungsten in all samples appears to be a key element for stabilizing the size and crystalline structure of the materials produced.

  3. Creation of hydrophobic surfaces using a paint containing functionalized oxide particles

    NASA Astrophysics Data System (ADS)

    Sino, Paul Albert L.; Herrera, Marvin U.; Balela, Mary Donnabelle L.

    2017-05-01

    Hydrophobic surfaces were created by coating various substrates (aluminum sheet, soda-lime glass, silicon carbide polishing paper, glass with double-sided adhesive) with paint containing functionalized oxide particles. The paint was created by functionalizing oxide particles (ground ZnO, TiO2 nanoparticles, or TiO2 microparticles) with fluorosilane molecules in absolute ethanol. Water contact angle of samples shows that the coated substrate becomes hydrophobic (water contact angle ≥ 90°). Among the oxides that were used, ground ZnO yielded contact angle exemplifying superhydrophobicity (water contact angle ≥ 150°). Scanning electron micrograph of paint-containing TiO2 nanoparticles shows rough functionalized oxides structures which probably increase the hydrophobicity of the surface.

  4. Biosynthesised ZnO : Dy3+ nanoparticles: Biodiesel properties and reusable catalyst for N-formylation of aromatic amines with formic acid

    NASA Astrophysics Data System (ADS)

    Reddy Yadav, L. S.; Raghavendra, M.; Sudheer Kumar, K. H.; Dhananjaya, N.; Nagaraju, G.

    2018-04-01

    ZnO nanoparticles doped with trivalent dysprosium ions (Dy3+) were prepared through the green combustion technique using E. tirucalli plant latex as a fuel. The fundamental and optical properties of the samples are examined via the X-ray diffraction, FTIR, UV-visible analytical methods and morphology by scanning electron microscope and transmission electron microscope. Rietveld refinement results show that the ZnO : Dy3+ were crystallized in the wurtzite hexagonal structure with space group P63mc (No. 186). The average particle size of ZnO : Dy3+ prepared with the different concentration of latex was found to be in the range 30-38nm, which is also confirmed by TEM analysis. A rapid and convenient method for the one-pot preparation of N-formamide derivatives aromatic amines and amino acid esters has been developed using Dy3+ doped ZnO as a catalytic agent. This method provides an efficient and much improved modification over reported protocols regarding yield, clean and work-up procedure milder reaction conditions. In this work, Pongamiapinnata oil was recycled for the preparation of biodiesel via Dy3+ doped ZnO as a catalytic agent.

  5. Structural, optical and photo-catalytic activity of nanocrystalline NiO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Ghamdi, Attieh A.; Abdel-wahab, M. Sh., E-mail: mshabaan90@yahoo.com; Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef

    2016-03-15

    Highlights: • Synthesis of nanocrystalline NiO thin films with different thicknesses using DC magnetron sputtering technique. • Effect of film thickness and particle size on photo-catalytic degradation of methyl green dye under UV light was studied. • The deposited NiO thin films are efficient, stable and possess high photo-catalytic activity upon reuse. - Abstract: Physical deposition of nanocrystalline nickel oxide (NiO) thin films with different thickness 30, 50 and 80 nm have been done on glass substrate by DC magnetron sputtering technique and varying the deposition time from 600, 900 to 1200 s. The results of surface morphology and opticalmore » characterization of these films obtained using different characterization techniques such as X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), photoluminescence (PL) and UV–vis spectrophotometry provide important information like formation of distinct nanostructures in different films and its effect on their optical band gap which has decreased from 3.74 to 3.37 eV as the film thickness increases. Most importantly these films have shown very high stability and a specialty to be recycled without much loss of their photo-catalytic activity, when tested as photo-catalysts for the degradation of methyl green dye (MG) from the wastewater under the exposure of 18 W energy of UV lamp.« less

  6. Growth characteristics of nanocrystalline silicon films fabricated by using chlorinated precursors at low temperatures.

    PubMed

    Huang, Rui; Ding, Honglin; Song, Jie; Guo, Yanqing; Wang, Xiang; Lin, Xuanying

    2010-11-01

    We employed plasma enhanced chemical vapor deposition technique to fabricate nanocrystalline Si films at a low temperature of 250 degrees C by using SiCl4 and H2 as source gases. The evolution of microstructure of the films with deposition periods shows that nanocrystalline Si can be directly grown on amorphous substrate at the initial growth process, which is in contrast to the growth behavior observed in the SiH4/H2 system. Furthermore, it is interesting to find that the area density of nanocrystalline Si as well as grain size can be controlled by modulating the concentration of SiCl4. By decreasing the SiCl4 concentration, the area density of nanocrystalline Si can be enhanced up to 10(11) cm(-2), while the grain size is shown to decrease down to 10 nm. It is suggested that Cl plays an important role in the low-temperature growth of nanocrystalline Si.

  7. In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumoniae

    PubMed Central

    Hameed, Abdulrahman Syedahamed Haja; Karthikeyan, Chandrasekaran; Ahamed, Abdulazees Parveez; Thajuddin, Nooruddin; Alharbi, Naiyf S.; Alharbi, Sulaiman Ali; Ravi, Ganasan

    2016-01-01

    Pure ZnO and Neodymium (Nd) doped ZnO nanoparticles (NPs) were synthesized by the co-precipitation method. The synthesized nanoparticles retained the wurtzite hexagonal structure. From FESEM studies, ZnO and Nd doped ZnO NPs showed nanorod and nanoflower like morphology respectively. The FT-IR spectra confirmed the Zn-O stretching bands at 422 and 451 cm−1 for ZnO and Nd doped ZnO NPs respectively. From the UV-VIS spectroscopic measurement, the excitonic peaks were found around 373 nm and 380 nm for the respective samples. The photoluminescence measurements revealed that the broad emission was composed of ten different bands due to zinc vacancies, oxygen vacancies and surface defects. The antibacterial studies performed against extended spectrum β-lactamases (ESBLs) producing strains of Escherichia coli and Klebsiella pneumoniae showed that the Nd doped ZnO NPs possessed a greater antibacterial effect than the pure ZnO NPs. From confocal laser scanning microscopic (CLSM) analysis, the apoptotic nature of the cells was confirmed by the cell shrinkage, disorganization of cell wall and cell membrane and dead cell of the bacteria. SEM analysis revealed the existence of bacterial loss of viability due to an impairment of cell membrane integrity, which was highly consistent with the damage of cell walls. PMID:27071382

  8. Grain Size Threshold for Enhanced Irradiation Resistance in Nanocrystalline and Ultrafine Tungsten

    DOE PAGES

    El Atwani, Osman; Hinks, Jonathan; Greaves, Graeme; ...

    2017-02-21

    Nanocrystalline metals are considered highly radiation-resistant materials due to their large grain boundary areas. Here, the existence of a grain size threshold for enhanced irradiation resistance in high-temperature helium-irradiated nanocrystalline and ultrafine tungsten is demonstrated. Average bubble density, projected bubble area and the corresponding change in volume were measured via transmission electron microscopy and plotted as a function of grain size for two ion fluences. Nanocrystalline grains of less than 35 nm size possess ~10–20 times lower change in volume than ultrafine grains and this is discussed in terms of the grain boundaries defect sink efficiency.

  9. Reactive Ball Milling to Fabricate Nanocrystalline Titanium Nitride Powders and Their Subsequent Consolidation Using SPS

    NASA Astrophysics Data System (ADS)

    El-Eskandarany, M. Sherif

    2017-05-01

    The room-temperature reactive ball milling (RBM) approach was employed to synthesize nanostructured fcc-titanium nitride (TiN) powders, starting from milling hcp-titanium (Ti) powders under 10 bar of a nitrogen gas atmosphere, using a roller mill. During the first and intermediate stage of milling, the agglomerated Ti powders were continuously disintegrated into smaller particles with fresh surfaces. Increasing the RBM time led to an increase in the active-fresh surfaces of Ti, resulting increasing of the mole fraction of TiN against unreacted hcp-Ti. Toward the end of the RBM time (20 h), ultrafine spherical powder (with particles 0.5 μm in diameter) of the fcc-TiN phase was obtained, composed of nanocrystalline grains with an average diameter of 8 nm. The samples obtained after different stages of RBM time were consolidated under vacuum at 1600 °C into cylindrical bulk compacts of 20 mm diameter, using spark plasma sintering technique. These compacts that maintained their nanocrystalline characteristics with an average grain size of 56 nm in diameter, possessed high relative density (above 99% of the theoretical density). The Vickers hardness of the as-consolidated TiN was measured and found to be 22.9 GPa. The modulus of elasticity and shear modulus of bulk TiN were measured by a nondestructive test and found to be 384 and 189 GPa, respectively. In addition, the coefficient of friction of the end-product TiN bulk sample was measured and found to be 0.35.

  10. Ensemble modeling of very small ZnO nanoparticles.

    PubMed

    Niederdraenk, Franziska; Seufert, Knud; Stahl, Andreas; Bhalerao-Panajkar, Rohini S; Marathe, Sonali; Kulkarni, Sulabha K; Neder, Reinhard B; Kumpf, Christian

    2011-01-14

    The detailed structural characterization of nanoparticles is a very important issue since it enables a precise understanding of their electronic, optical and magnetic properties. Here we introduce a new method for modeling the structure of very small particles by means of powder X-ray diffraction. Using thioglycerol-capped ZnO nanoparticles with a diameter of less than 3 nm as an example we demonstrate that our ensemble modeling method is superior to standard XRD methods like, e.g., Rietveld refinement. Besides fundamental properties (size, anisotropic shape and atomic structure) more sophisticated properties like imperfections in the lattice, a size distribution as well as strain and relaxation effects in the particles and-in particular-at their surface (surface relaxation effects) can be obtained. Ensemble properties, i.e., distributions of the particle size and other properties, can also be investigated which makes this method superior to imaging techniques like (high resolution) transmission electron microscopy or atomic force microscopy, in particular for very small nanoparticles. For the particles under study an excellent agreement of calculated and experimental X-ray diffraction patterns could be obtained with an ensemble of anisotropic polyhedral particles of three dominant sizes, wurtzite structure and a significant relaxation of Zn atoms close to the surface.

  11. Controlling the size and optical properties of ZnO nanoparticles by capping with SiO{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, K. Sowri, E-mail: sowribabuk@gmail.com; Reddy, A. Ramachandra; Reddy, K. Venugopal

    Graphical abstract: - Highlights: • Small and uniform sized ZnO nanoparticles were obtained with SiO{sub 2} coating. • ZnO and ZnO–SiO{sub 2} nanocomposite exhibited excitation wavelength dependent PL. • Maximum UV emission intensity was obtained with 353 nm excitation wavelength. • Excitation processes in SiO{sub 2} were also contributed to the UV intensity. • It was found that oxygen vacancies and interstitials enhanced with SiO{sub 2} coating. - Abstract: The size and shape of the ZnO nanoparticles synthesized through sol–gel method were controlled by capping with SiO{sub 2}. X-ray diffraction (XRD) and field emission scanning electron microscope (FE-SEM) and Highmore » Resolution Transmission Electron Microscope (HR-TEM) results demonstrated that the particle growth of the ZnO nanoparticles has been restricted to 5 nm with SiO{sub 2} capping. As a result, the absorption spectra of ZnO nanoparticles capped with SiO{sub 2} got blue shifted (toward lower wavelength side) due to strong quantum confinement effects. BET (Brunauer–Emmet–Teller) surface area pore size analyzer results showed that surface area of samples increased monotonously with increase of SiO{sub 2} concentration. It was observed that the absorption spectra of ZnO capped with SiO{sub 2} broadened with increase of SiO{sub 2} concentration. Absorption and photoluminescence excitation results (PLE) confirmed that this broadening is due to the absorption of non-bridging oxygen hole centers (NBOHC) of SiO{sub 2}. These results also indicated that ZnO nanoparticles capped with SiO{sub 2} are insensitive to Raman scattering. Maximum UV emission intensity was achieved with 353 nm excitation wavelength compared to 320 nm in ZnO as well as in SiO{sub 2} capped ZnO nanoparticles. Furthermore, there is an enhancement in the intensities of emission peaks related to oxygen vacancies and interstitials with SiO{sub 2} capping. The enhancement in the UV intensity is attributed to the surface

  12. Effect of culture medium on toxic effect of ZnO nanoparticles to freshwater microalgae

    NASA Astrophysics Data System (ADS)

    Aravantinou, Andriana F.; Tsarpali, Vasiliki; Dailianis, Stefanos; Manariotis, Ioannis D.

    2014-05-01

    The widely use of nanoparticles (NPs) in many products, is increasing over time. The release of NPs into the environment may affect ecosystems, and therefore it is essential to study their impact on aquatic organisms. The aim of this work was to investigate the effect of zinc oxide (ZnO) NPs on microalgae, cultured in different mediums. Chlorococcum sp. and Scenedesmus rubescens were used as freshwater microalgae model species in order to investigate the toxic effects of ZnO NPs. Microalgae species exposed to ZnO NPs concentrations varying from 0.081 to 810 mg/L for different periods of time (24 to 96 h) and two different culture mediums. The aggregation level and particle size distribution of NPs were also determined during the experiments. The experimental results revealed significant differences on algae growth rates depending on the selected culture medium. Specifically, the toxic effect of ZnO NPs in Chlorococcum sp. was higher in cultures with 1/3N BG-11 medium than in BBM medium, despite the fact that the dissolved zinc concentration was higher in BBM medium. On the other hand, Scenedesmus rubescens exhibited the exact opposite behavior, with the highest toxic effect in cultures with BBM medium. Both species growth was significantly affected by the exposure time, the NPs concentrations, and mainly the culture medium.

  13. Influence of Dopants in ZnO Films on Defects

    NASA Astrophysics Data System (ADS)

    Peng, Cheng-Xiao; Weng, Hui-Min; Zhang, Yang; Ma, Xing-Ping; Ye, Bang-Jiao

    2008-12-01

    The influence of dopants in ZnO films on defects is investigated by slow positron annihilation technique. The results show S that parameters meet SAl > Sun > SAg for Al-doped ZnO films, undoped and Ag-doped ZnO films. Zinc vacancies are found in all ZnO films with different dopants. According to S parameter and the same defect type, it can be induced that the zinc vacancy concentration is the highest in the Al-doped ZnO film, and it is the least in the Ag-doped ZnO film. When Al atoms are doped in the ZnO films grown on silicon substrates, Zn vacancies increase as compared to the undoped and Ag-doped ZnO films. The dopant concentration could determine the position of Fermi level in materials, while defect formation energy of zinc vacancy strongly depends on the position of Fermi level, so its concentration varies with dopant element and dopant concentration.

  14. Multifunctional transparent ZnO nanorod films.

    PubMed

    Kwak, Geunjae; Jung, Sungmook; Yong, Kijung

    2011-03-18

    Transparent ZnO nanorod (NR) films that exhibit extreme wetting states (either superhydrophilicity or superhydrophobicity through surface chemical modification), high transmittance, UV protection and antireflection have been prepared via the facile ammonia hydrothermal method. The periodic 1D ZnO NR arrays showed extreme wetting states as well as antireflection properties due to their unique surface structure and prevented the UVA region from penetrating the substrate due to the unique material property of ZnO. Because of the simple, time-efficient and low temperature preparation process, ZnO NR films with useful functionalities are promising for fabrication of highly light transmissive, antireflective, UV protective, antifogging and self-cleaning optical materials to be used for optical devices and photovoltaic energy devices.

  15. Effect of ZnO seed layer on the morphology and optical properties of ZnO nanorods grown on GaN buffer layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, R., E-mail: rajunandi@iitb.ac.in; Mohan, S., E-mail: rajunandi@iitb.ac.in; Major, S. S.

    2014-04-24

    ZnO nanorods were grown by chemical bath deposition on sputtered, polycrystalline GaN buffer layers with and without ZnO seed layer. Scanning electron microscopy and X-ray diffraction show that the ZnO nanorods on GaN buffer layers are not vertically well aligned. Photoluminescence spectrum of ZnO nanorods grown on GaN buffer layer, however exhibits a much stronger near-band-edge emission and negligible defect emission, compared to the nanorods grown on ZnO buffer layer. These features are attributed to gallium incorporation at the ZnO-GaN interface. The introduction of a thin (25 nm) ZnO seed layer on GaN buffer layer significantly improves the morphology andmore » vertical alignment of ZnO-NRs without sacrificing the high optical quality of ZnO nanorods on GaN buffer layer. The presence of a thick (200 nm) ZnO seed layer completely masks the effect of the underlying GaN buffer layer on the morphology and optical properties of nanorods.« less

  16. A Nanocrystalline Fe2O3 Film Anode Prepared by Pulsed Laser Deposition for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Teng, Xiaoling; Qin, Youzhi; Wang, Xia; Li, Hongsen; Shang, Xiantao; Fan, Shuting; Li, Qiang; Xu, Jie; Cao, Derang; Li, Shandong

    2018-02-01

    Nanocrystalline Fe2O3 thin films are deposited directly on the conduct substrates by pulsed laser deposition as anode materials for lithium-ion batteries. We demonstrate the well-designed Fe2O3 film electrodes are capable of excellent high-rate performance (510 mAh g- 1 at high current density of 15,000 mA g- 1) and superior cycling stability (905 mAh g- 1 at 100 mA g- 1 after 200 cycles), which are among the best reported state-of-the-art Fe2O3 anode materials. The outstanding lithium storage performances of the as-synthesized nanocrystalline Fe2O3 film are attributed to the advanced nanostructured architecture, which not only provides fast kinetics by the shortened lithium-ion diffusion lengths but also prolongs cycling life by preventing nanosized Fe2O3 particle agglomeration. The electrochemical performance results suggest that this novel Fe2O3 thin film is a promising anode material for all-solid-state thin film batteries.

  17. Nanocrystalline copper films are never flat.

    PubMed

    Zhang, Xiaopu; Han, Jian; Plombon, John J; Sutton, Adrian P; Srolovitz, David J; Boland, John J

    2017-07-28

    We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  18. Hot pressing of nanocrystalline tantalum using high frequency induction heating and pulse plasma sintering

    NASA Astrophysics Data System (ADS)

    Jakubowicz, J.; Adamek, G.; Sopata, M.; Koper, J. K.; Siwak, P.

    2017-12-01

    The paper presents the results of nanocrystalline powder tantalum consolidation using hot pressing. The authors used two different heating techniques during hot pressing: high-frequency induction heating (HFIH) and pulse plasma sintering (PPS). A comparison of the structure, microstructure, mechanical properties and corrosion resistance of the bulk nanocrystalline tantalum obtained in both techniques was performed. The nanocrystalline powder was made to start from the microcrystalline one using the high-energy ball milling process. The nanocrystalline powder was hot-pressed at 1000 °C, whereas, for comparison, the microcrystalline powder was hot pressed up to 1500 °C for proper consolidation. The authors found that during hot pressing, the powder partially reacts with the graphite die covered by boron nitride, which facilitated punches and powder displacement in the die during densification. Tantalum carbide and boride in the nanocrystalline material was found, which can improve the mechanical properties. The hardness of the HFIH and PPS nanocrystalline tantalum was as high as 625 and 615 HV, respectively. The microstructure was more uniform in the PPS nanomaterial. The corrosion resistance in both cases deteriorated, in comparison to the microcrystalline material, while the PPS material corrosion resistance was slightly better than that of the HFIH one.

  19. Down-top nanofabrication of binary (CdO)x (ZnO)1-x nanoparticles and their antibacterial activity.

    PubMed

    Al-Hada, Naif Mohammed; Mohamed Kamari, Halimah; Abdullah, Che Azurahanim Che; Saion, Elias; Shaari, Abdul H; Talib, Zainal Abidin; Matori, Khamirul Amin

    2017-01-01

    In the present study, binary oxide (cadmium oxide [CdO]) x (zinc oxide [ZnO]) 1-x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO) x (ZnO) 1-x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO) x (ZnO) 1-x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO) x (ZnO) 1-x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV-visible reflectance spectra were used to determine the optical band gap through the Kubelka-Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (-ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175.

  20. Structural studies of ZnO nanostructures by varying the deposition parameters

    NASA Astrophysics Data System (ADS)

    Yunus, S. H. A.; Sahdan, M. Z.; Ichimura, M.; Supee, A.; Rahim, S.

    2017-01-01

    The effect of Zinc Oxide (ZnO) thin film on the growth of ZnO nanorods (NRs) was investigated. The structures of ZnO NRs were synthesized by chemical bath deposition (CBD) method in aqueous solution of N2O6Zn.6H2O and C6H12N4 at 90°C of deposition temperature. One of the ZnO NRs samples was deposited on a ZnO seed layer coated on a glass substrate to investigate the properties of ZnO NRs without receiving effect of other materials. Next, for diode application, the ZnO NRs was deposited on tin monosulfide (SnS) coated on indium-tin-oxide (ITO) coated glass substrate (SnS/ITO). The next, the ZnO structural properties were studied from surface morphology, X-ray diffractometer (XRD) spectra, and chemical composition by using field emission scanning electron microscope (FESEM), XRD and energy dispersive X-ray Spectroscopy (EDX). The growth of ZnO NRs on ZnO seed layer was investigated by ZnO seed layer condition while the growth of ZnO NRs on SnS/ITO was investigated by deposition time and deposition temperature parameters. From FESEM images, aligned ZnO NRs were obtained, and the diameters of ZnO NRs were 0.024-3.94 µm. The SnS thin film was affected by the diameter of ZnO NRs which are the ZnO NRs grow on SnS thin films has a larger diameter compared to ZnO NRs grow on ZnO seed layer. Besides that, all of ZnO peaks observed from XRD corresponding to the wurzite structure and preferentially oriented along the c-axis. In addition, EDX shows a high composition of zinc (Zn) and oxygen (O) signals, which indicated that the NRs are indeed made up of Zn and O.

  1. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells.

    PubMed

    Genç, Hatice; Barutca, Banu; Koparal, A Tansu; Özöğüt, Uğurcan; Şahin, Yücel; Suvacı, Ender

    2018-03-01

    Recently, designed platelet shaped micron particles that are composed of nano primary particles, called MicNo (=Micron+naNo) particles, have been developed to exploit the benefits of nano size, while removing the adverse effects of nanoparticles. It has been shown that MicNo-ZnO particles exhibit both micron and nanosized particle characteristics. Although physical and chemical properties of MicNo-ZnO particles have been studied, their biocompatibility has not yet been evaluated. Accordingly, the research objective of this study was to evaluate in vitro cytotoxicity, genotoxicity and phototoxicity behaviors of designed MicNo-ZnO particles over human epidermal keratinocyte (HaCaT) cells. MicNo-ZnO particles exhibit much less cytotoxicity with IC 50 concentrations between 40 and 50μg/ml, genotoxicity above 40μg/ml and lower photo genotoxicity under UVA on HaCaT than the ZnO nanoparticles. Although their chemistries are the same, the source of this difference in toxicity values may be attributed to size differences between the particles that are probably due to their ability to penetrate into the cells. In the present study, the expansive and detailed in vitro toxicity tests show that the biocompatibility of MicNo-ZnO particles is much better than that of the ZnO nanoparticles. Consequently, MicNo-ZnO particles can be considered an important active ingredient alternative for sunscreen applications due to their safer characteristics with respect to ZnO nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Synthesis and properties of nanocrystalline copper indium oxide thin films deposited by Rf magnetron sputtering.

    PubMed

    Singh, Mandeep; Singh, V N; Mehta, B R

    2008-08-01

    Nanocrystalline copper indium oxide (CuInO2) thin films with particle size ranging from 25 nm to 71 nm have been synthesized from a composite target using reactive Rf magnetron sputtering technique. X-ray photoelectron spectroscopy (XPS) combined with glancing angle X-ray diffraction (GAXRD) analysis confirmed the presence of delafossite CuInO2 phase in these films. The optical absorption studies show the presence of two direct band gaps at 3.3 and 4.3 eV, respectively. The resistance versus temperature measurements show thermally activated hopping with activation energy of 0.84 eV to be the conduction mechanism.

  3. Polymer blend of PLA/PHBV based bionanocomposites reinforced with nanocrystalline cellulose for potential application as packaging material.

    PubMed

    Dasan, Y K; Bhat, A H; Ahmad, Faiz

    2017-02-10

    The current research discusses the development of poly (lactic acid) (PLA) and poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) reinforced nanocrystalline cellulose bionanocomposites. The nanocrystalline cellulose was derived from waste oil palm empty fruit bunch fiber by acid hydrolysis process. The resulting nanocrystalline cellulose suspension was then surface functionalized by TEMPO-mediated oxidation and solvent exchange process. Furthermore, the PLA/PHBV/nanocrystalline cellulose bionanocomposites were produced by solvent casting method. The effect of the addition of nanocrystalline cellulose on structural, morphology, mechanical and barrier properties of bionanocomposites was investigated. The results revealed that the developed bionanocomposites showed improved mechanical properties and decrease in oxygen permeability rate. Therefore, the developed bio-based composite incorporated with an optimal composition of nanocrystalline cellulose exhibits properties as compared to the polymer blend. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Gd{sup 3+} incorporated ZnO nanoparticles: A versatile material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Surender, E-mail: surender40@gmail.com; Sahare, P.D.

    Graphical abstract: - Highlights: • Chemically synthesized Gd{sup 3+} doped ZnO nanoparticles. • The broad visible emission of the ZnO is dependent on the surface defects and can be tailored by Gd{sup 3+} doing. • PL and magnetic properties are modified by Gd{sup 3+} doping. • Photocatalysis experiment reveals that the ZnO: Gd{sup 3+} degrades the Rh B dye faster than the undoped ZnO. - Abstract: Gd{sup 3+} doped ZnO nanoparticles are synthesized by wet chemical route method and investigated through structural, optical, magnetic and photocatalytic properties. Transmission Electron Microscopy technique has been performed on undoped and Gd{sup 3+} dopedmore » ZnO nanoparticles. X-ray diffraction, X-ray photoelectron spectroscopy and Raman analyses are carried out in order to examine the desired phase formation and substitution of Gd{sup 3+} in the ZnO matrix. Gd{sup 3+} doped ZnO nanoparticles show enhanced photoluminescent and ferromagnetic properties as compared to undoped ZnO. The broad visible emission of ZnO is found to be largely dependent on the surface defects and these surface defects can be tailored by Gd{sup 3+} doping concentration. Furthermore, Gd{sup 3+} doped ZnO nanoparticles also show improved photocatalytic properties as compared with undoped ZnO nanoparticles under ultraviolet irradiation.« less

  5. Framework Stability of Nanocrystalline NaY in Aqueous Solution at Varying pH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petushkov, Anton; Freeman, Jasmine; Larsen, Sarah C.

    Nanocrystalline zeolites (with crystal sizes of less than 50 nm) are versatile, porous nanomaterials with potential applications in a broad range of areas including bifunctional catalysis, drug delivery, environmental protection, and sensing, to name a few. The characterization of the properties of nanocrystalline zeolites on a fundamental level is critical to the realization of these innovative applications. Nanocrystalline zeolites have unique surface chemistry that is distinct from conventional microcrystalline zeolite materials and that will result in novel applications. In the proposed work, magnetic resonance techniques (solid state nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR)) will be used tomore » elucidate the structure and reactivity of nanocrystalline zeolites and to motivate bifunctional applications. Density functional theory (DFT) calculations will enhance data interpretation through chemical shift, quadrupole coupling constant, g-value and hyperfine calculations.« less

  6. Physical properties of antiferromagnetic Mn doped ZnO samples: Role of impurity phase

    NASA Astrophysics Data System (ADS)

    Neogi, S. K.; Karmakar, R.; Misra, A. K.; Banerjee, A.; Das, D.; Bandyopadhyay, S.

    2013-11-01

    Structural, morphological, optical, and magnetic properties of nanocrystalline Zn1-xMnxO samples (x=0.01, 0.02, 0.04, 0.06, 0.08 and 0.10) prepared by the sol-gel route are studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), UV-visible absorption spectroscopy, Superconducting quantum interference device (SQUID) magnetometry and positron annihilation lifetime spectroscopy (PALS). XRD confirms formation of wurzite structure in all the Mn-substituted samples. A systematic increase in lattice constants and decrease in grain size have been observed with increase in manganese doping concentration up to 6 at% in the ZnO structure. An impurity phase (ZnMnO3) has been detected when percentage of Mn concentration is 6 at% or higher. The optical band gap of the Mn-substituted ZnO samples decrease with increase in doping concentration of manganese whereas the width of the localized states increases. The antiferromagnetic exchange interaction is strong in the samples for 2 and 4 at% of Mn doping but it reduces when the doping level increases from 6 at% and further. Positron life time components τ1 and τ2 are found to decrease when concentration of the dopant exceeds 6 at%. The changes in magnetic properties as well as positron annihilation parameters at higher manganese concentration have been assigned as due to the formation of impurity phase. Single phase structure has been observed up to 6 at% of Mn doping. Impurity phase has been developed above 6 at% of Mn doping. Antiferromagnetic and paramagnetic interactions are present in the samples. Defect parameters show sharp fall as Mn concentration above 6 at%. The magnetic and defect properties are modified by the formation of impurity phase.

  7. Surface potential driven dissolution phenomena of [0 0 0 1]-oriented ZnO nanorods grown from ZnO and Pt seed layers

    NASA Astrophysics Data System (ADS)

    Seo, Youngmi; Kim, Jung Hyeun

    2011-06-01

    Highly oriented ZnO nanorods are synthesized hydrothermally on ZnO and Pt seed layers, and they are dissolved in KOH solution. The rods grown on ZnO seed layer show uniform dissolution, but those grown on Pt seed layer are rod-selectively dissolved. The ZnO nanorods from both seed layers show the same crystalline structure through XRD and Raman spectrometer data. However, the surface potential analysis reveals big difference for ZnO and Pt seed cases. The surface potential distribution is very uniform for the ZnO seed case, but it is much fluctuated on the Pt seed case. It suggests that the rod-selective dissolution phenomena on Pt seed case are likely due to the surface energy difference.

  8. Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative

    DTIC Science & Technology

    2014-11-01

    1 ASETSDefense 2014 Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative Ruben A. Prado, CEF...COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Electrodeposition of Nanocrystalline Cobalt Phosphorous Coatings as a Hard Chrome Alternative...coatings as a Hard Chrome (EHC) electroplating alternative for DoD manufacturing and repair. – Fully define deposition parameters and properties

  9. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    NASA Astrophysics Data System (ADS)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  10. Synthesis and characterization of ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anilkumar, T. S., E-mail: anil24march@gmail.com; Girija, M. L., E-mail: girija.ml.grt1@gmail.com; Venkatesh, J., E-mail: phph9502@yahoo.com

    2016-05-06

    Zinc oxide (ZnO) Thin films were deposited on glass substrate using Spin coating method. Zinc acetate dehydrate, Carbinol and Mono-ethanolamine were used as the precursor, solvent and stabilizer respectively to prepare ZnO Thin-films. The molar ratio of Monoethanolamine to Zinc acetate was maintained as approximately 1. The thickness of the films was determined by Interference technique. The optical properties of the films were studied by UV Vis-Spectrophotometer. From transmittance and absorbance curve, the energy band gap of ZnO is found out. Electrical Conductivity measurements of ZnO are carried out by two probe method and Activation energy for the electrical conductivitymore » of ZnO are found out. The crystal structure and orientation of the films were analyzed by XRD. The XRD patterns show that the ZnO films are polycrystalline with wurtzite hexagonal structure.« less

  11. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts

    NASA Astrophysics Data System (ADS)

    Ding, Jun; Guo, Ding; Deng, Chengji; Zhu, Hongxi; Yu, Chao

    2017-06-01

    A novel molten salt synthetic route has been developed to prepare nanocrystalline zirconium carbide (ZrC) coatings on flake graphite at 900 °C, using Zr powder and flake graphite as the source materials in a static argon atmosphere, along with molten salts as the media. The effects of different molten salt media, the sintered temperature, and the heat preservation time on the phase and microstructure of the synthetic materials were investigated. The ZrC coatings formed on the flake graphite were uniform and composed of nanosized particles (30-50 nm). With an increase in the reaction temperature, the ZrC nanosized particles were more denser, and the heat preservation time and thickness of the ZrC coating also increased accordingly. Electron microscopy was used to observe the ZrC coatings on the flake graphite, indicating that a "template mechanism" played an important role during the molten salt synthesis.

  12. Model for temperature-dependent magnetization of nanocrystalline materials

    NASA Astrophysics Data System (ADS)

    Bian, Q.; Niewczas, M.

    2015-01-01

    A magnetization model of nanocrystalline materials incorporating intragrain anisotropies, intergrain interactions, and texture effects has been extended to include the thermal fluctuations. The method relies on the stochastic Landau-Lifshitz-Gilbert theory of magnetization dynamics and permits to study the magnetic properties of nanocrystalline materials at arbitrary temperature below the Currie temperature. The model has been used to determine the intergrain exchange constant and grain boundary anisotropy constant of nanocrystalline Ni at 100 K and 298 K. It is found that the thermal fluctuations suppress the strength of the intergrain exchange coupling and also reduce the grain boundary anisotropy. In comparison with its value at 2 K, the interparticle exchange constant decreases by 16% and 42% and the grain boundary anisotropy constant decreases by 28% and 40% at 100 K and 298 K, respectively. An application of the model to study the grain size-dependent magnetization indicates that when the thermal activation energy is comparable to the free energy of grains, the decrease in the grain size leads to the decrease in the magnetic permeability and saturation magnetization. The mechanism by which the grain size influences the magnetic properties of nc-Ni is discussed.

  13. Preparation of high-quality ultrathin transmission electron microscopy specimens of a nanocrystalline metallic powder.

    PubMed

    Riedl, Thomas; Gemming, Thomas; Mickel, Christine; Eymann, Konrad; Kirchner, Alexander; Kieback, Bernd

    2012-06-01

    This article explores the achievable transmission electron microscopy specimen thickness and quality by using three different preparation methods in the case of a high-strength nanocrystalline Cu-Nb powder alloy. Low specimen thickness is essential for spatially resolved analyses of the grains in nanocrystalline materials. We have found that single-sided as well as double-sided low-angle Ar ion milling of the Cu-Nb powders embedded into epoxy resin produced wedge-shaped particles of very low thickness (<10 nm) near the edge. By means of a modified focused ion beam lift-out technique generating holes in the lamella interior large micrometer-sized electron-transparent regions were obtained. However, this lamella displayed a higher thickness at the rim of ≥30 nm. Limiting factors for the observed thicknesses are discussed including ion damage depths, backscattering, and surface roughness, which depend on ion type, energy, current density, and specimen motion. Finally, sections cut by ultramicrotomy at low stroke rate and low set thickness offered vast, several tens of square micrometers uniformly thin regions of ∼10-nm minimum thickness. As major drawbacks, we have detected a thin coating on the sections consisting of epoxy deployed as the embedding material and considerable nanoscale thickness variations. Copyright © 2011 Wiley Periodicals, Inc.

  14. Electrochemical synthesis of one-dimensional ZnO nanostructures on ZnO seed layer for DSSC applications

    NASA Astrophysics Data System (ADS)

    Marimuthu, T.; Anandhan, N.; Thangamuthu, R.

    2018-01-01

    Electrochemical deposition of vertically aligned zinc oxide (ZnO) nanorods were prepared on ZnO seeded fluorine doped tin oxide (FTO) substrate in the solutions consisting of different concentrations of hexamethylenetetramine (HMTA). The electrochemical, structural, morphological, vibrational and optical properties were characterized by cyclic voltammetry (CV), X-ray diffraction (XRD), scanning electron microscope (SEM), Raman spectroscopy and photoluminescence (PL) spectroscopy, respectively. CV curves confirm that metallic zinc phase is not deposited as the HMTA concentration is about 9 mM in a deposition solution. XRD patterns of the as-prepared films show that the increasing HMTA concentrations from 0 mM to 9 mM not only increase the formation of zinc hydrate chloride (Zn5(OH)8Cl2·H2O) but also decrease and finally disappear the metallic Zn deposition. After the as-prepared films annealed at 450 ° C, the crystalline phases of Zn and Zn5(OH)8Cl2·H2O are completely converted to ZnO hexagonal wurtzite phase with high intense growth (002) plane orientation. SEM images support that the vertical growth of ZnO nanostructures (nanorods and petals) with a few flowers is found to be in the cordillera structure as the films are deposited in the solutions consisting of 3 mM, 6 mM and 9 mM HMTA respectively. Raman and PL spectra confirm that the ZnO film deposited in the solution consisting of 9 mM HMTA has a higher crystalline nature with lesser atomic defects and is also higher c-axis growth than that of other films deposited in the solutions consisting of 0 mM, 3 mM and 6 mM, respectively. UV-vis absorbance spectra corroborate that the ZnO film deposited in the solution consisting of 9 mM HMTA shows a high dye absorbance as compared with other films. The efficiency of DSSCs based on ZnO photoanodes deposited in the solutions consisting of 0 mM and 9 mM HMTA was 1.79 and 3.75%, respectively. Electrochemical impedance spectra revealed that DSSC based on ZnO photoanode

  15. Theory of copper impurities in ZnO

    NASA Astrophysics Data System (ADS)

    Lyons, John; Alkauskas, Audrius; Janotti, Anderson; van de Walle, Chris G.

    Due to its connection to deep luminescence signals and its potential use as an acceptor dopant, copper has been one the most studied impurities in ZnO. From experiment, copper incorporating on the Zn site (CuZn) is known to lead to an acceptor level residing near the conduction band of ZnO, making CuZn an exceedingly deep acceptor. CuZn in ZnO has also long been linked with broad 2.4 eV green luminescence (GL) signals. In this work we explore the electrical and optical properties of Cu in ZnO using density functional theory (DFT). Due to the limitations of traditional forms of DFT, an accurate theoretical description of the electrical and optical properties of such deep centers has been difficult to achieve. Here we employ a screened hybrid density functional (HSE) to calculate the properties of Cu in ZnO. We determine the thermodynamic transition levels associated with CuZn in ZnO as well as the associated luminescence lineshapes of characteristic optical transitions. We find that HSE-calculated optical transitions are in close agreement with experimental studies. This work was supported in part by NSF and by ARO.

  16. Multifunctionality of nanocrystalline lanthanum ferrite

    NASA Astrophysics Data System (ADS)

    Rai, Atma; Thakur, Awalendra K.

    2016-05-01

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ˜42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ˜3.45 m2/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanum ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO3.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.

  17. Multifunctionality of nanocrystalline lanthanum ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Atma, E-mail: atma@iitp.ac.in; Thakur, Awalendra K.; Centre for Energy and Environment, Indian Institute of Technology Patna 800013 India

    2016-05-06

    Nanocrystalline lanthanum ferrite has been synthesized by adopting modified Pechini route. No evidence of impurity or secondary phase has been detected up to the detection of error limit of X-ray diffractometer (XRD). Rietveld refinement of X-ray diffraction pattern reveals orthorhombic crystal system with space group Pnma (62).Crystallite size and lattice strain was found to be ∼42.8nm and 0.306% respectively. Optical band gap was found to be 2.109 eV, by UV-Visible diffused reflectance spectrum (DRS). Brunauer-Emmet-Teller (BET) surface area was found to be ∼3.45 m{sup 2}/g. Magnetization-hysteresis (M-H) loop was recorded at room temperature (300K) reveals weak ferromagnetism in Nanocrystalline lanthanummore » ferrite. The weak ferromagnetism in lanthanum ferrite is due to the uncompensated antiferromagnetic spin ordering. Ferroelectric loop hysteresis observed at room temperature at 100Hz depicts the presence of ferroelectric ordering in LaFeO{sub 3}.Simultanious presence of magnetic and ferroelectric ordering at room temperature makes it suitable candidate of Multiferroic family.« less

  18. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.

    PubMed

    Sedlacik, Michal; Pavlinek, Vladimir; Peer, Petra; Filip, Petr

    2014-05-14

    Magnetic nanoparticles of spinel nanocrystalline cobalt ferrite were synthesized via the sol-gel method and subsequent annealing. The influence of the annealing temperature on the structure, magnetic properties, and magnetorheological effect was investigated. The finite crystallite size of the particles, determined by X-ray diffraction and the particle size observed via transmission electron microscopy, increased with the annealing temperature. The magnetic properties observed via a vibrating sample magnetometer showed that an increase in the annealing temperature leads to the increase in the magnetization saturation and, in contrast, a decrease in the coercivity. The effect of annealing on the magnetic properties of ferrite particles has been explained by the recrystallization process at high temperatures. This resulted in grain size growth and a decrease in an imposed stress relating to defects in the crystal lattice structure of the nanoparticles. The magnetorheological characteristics of suspensions of ferrite particles in silicone oil were measured using a rotational rheometer equipped with a magnetic field generator in both steady shear and small-strain oscillatory regimes. The magnetorheological performance expressed as a relative increase in the magnetoviscosity appeared to be significantly higher for suspensions of particles annealed at 1000 °C.

  19. ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector

    NASA Astrophysics Data System (ADS)

    Farhat, O. F.; Halim, M. M.; Ahmed, Naser M.; Qaeed, M. A.

    2016-12-01

    In this study, ZnO nanofibers (ZnO NFs) were successfully grown for the first time on Teflon substrates using CBD technique. The well-aligned ZnO nanorods (ZnO NRs) were transformed to ZnO nanofibers (NFs) by varying growth temperature and growth time. The high intensity and distinct growth orientation of peaks observed in the XRD spectra of the NFs indicate high crystal quality. The field emission scanning electron microscopy (FESEM) revealed high density of small diameter sized and long ZnO nanofibers (NFs) that are distributed in random directions. Raman analyses revealed a high E2 (high) peak at 436 nm, which indicates the wurtzite structure of ZnO. A flexible ZnO nanofiber (NFs)-based metal-semiconductor-metal UV detector was fabricated and analyzed for photo response and sensitivity under low power illumination (375 nm, 1.5 mW/cm2). The results showed a sensitivity of 4045% which can be considered a relatively high response and baseline recovery for UV detection.

  20. Effects of Chromium Dopant on Ultraviolet Photoresponsivity of ZnO Nanorods

    NASA Astrophysics Data System (ADS)

    Mokhtari, S.; Safa, S.; Khayatian, A.; Azimirad, R.

    2017-07-01

    Structural and optical properties of bare ZnO nanorods, ZnO-encapsulated ZnO nanorods, and Cr-doped ZnO-encapsulated ZnO nanorods have been investigated. Encapsulated ZnO nanorods were grown using a simple two-stage method in which ZnO nanorods were first grown on a glass substrate directly from a hydrothermal bath, then encapsulated with a thin layer of Cr-doped ZnO by dip coating. Comparative study of x-ray diffraction patterns showed that Cr was successfully incorporated into the shell layer of ZnO nanorods. Moreover, energy-dispersive x-ray spectroscopy confirmed presence of Cr in this sample. It was observed that the thickness of the shell layer around the core of the ZnO nanorods was at least about 20 nm. Transmission electron microscopy of bare ZnO nanorods revealed single-crystalline structure. Based on optical results, both the encapsulation process and addition of Cr dopant decreased the optical bandgap of the samples. Indeed, the optical bandgap values of Cr-doped ZnO-encapsulated ZnO nanorods, ZnO-encapsulated ZnO nanorods, and bare ZnO nanorods were 2.89 eV, 3.15 eV, and 3.34 eV, respectively. The ultraviolet (UV) parameters demonstrated that incorporation of Cr dopant into the shell layer of ZnO nanorods considerably facilitated formation and transportation of photogenerated carriers, optimizing their performance as a practical UV detector. As a result, the photocurrent of the Cr-doped ZnO-encapsulated ZnO nanorods was the highest (0.6 mA), compared with ZnO-encapsulated ZnO nanorods and bare ZnO nanorods (0.21 mA and 0.06 mA, respectively).

  1. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  2. Comparison of high pressure homogenization and stirred bead milling for the production of nano-crystalline suspensions.

    PubMed

    Nakach, Mostafa; Authelin, Jean-René; Perrin, Marc-Antoine; Lakkireddy, Harivardhan Reddy

    2018-05-19

    Currently, the two technologies primarily used for the manufacturing of nano-crystalline suspensions using top down process (i.e. wet milling) are high pressure homogenization (HPH) and stirred bead milling (SBM). These two technologies are based upon different mechanisms, i.e., cavitation forces for HPH and shear forces for stirred bead milling. In this article, the HPH and SBM technologies are compared in terms of the impact of the suspension composition the process parameters and the technological configuration on milling performances and physical quality of the suspensions produced. The data suggested that both HPH and SBM are suitable for producing nano-crystalline suspensions, although SBM appeared more efficient than HPH, since the limit of milling (d 50 ) for SBM was found to be lower than that obtained with HPH (100 nm vs 200 nm). For both these technologies, regardless of the process parameters used for milling and the scale of manufacturing, the relationship of d 90 versus d 50 could be described by a unique master curve (technology signature of milling pathway) outlining that the HPH leads to more uniform particle size distribution as compared to SBM. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Improved electron injection in spin coated Alq3 incorporated ZnO thin film in the device for solution processed OLEDs

    NASA Astrophysics Data System (ADS)

    Dasi, Gnyaneshwar; Ramarajan, R.; Thangaraju, Kuppusamy

    2018-04-01

    We deposit tris-(8-hydroxyquinoline)aluminum (Alq3) incorporated zinc oxide (ZnO) thin films by spin coating method under the normal ambient. It showed the higher transmittance (90% at 550 nm) when compared to that (80% at 550 nm) of spin coated pure ZnO film. SEM studies show that the Alq3 incorporation in ZnO film also enhances the formation of small sized particles arranged in the network of wrinkles on the surface. XRD reveals the improved crystalline properties upon Alq3 inclusion. We fabricate the electron-only devices (EODs) with the structure of ITO/spin coated ZnO:Alq3 as ETL/Alq3 interlayer/LiF/Al. The device showed the higher electron current density of 2.75 mA/cm2 at 12V when compared to that (0.82 mA/cm2 at 12V) of the device using pure ZnO ETL. The device results show that it will be useful to fabricate the low-cost solution processed OLEDs for future lighting and display applications.

  4. Down-top nanofabrication of binary (CdO)x (ZnO)1–x nanoparticles and their antibacterial activity

    PubMed Central

    Al-Hada, Naif Mohammed; Mohamed Kamari, Halimah; Abdullah, Che Azurahanim Che; Saion, Elias; Shaari, Abdul H; Talib, Zainal Abidin; Matori, Khamirul Amin

    2017-01-01

    In the present study, binary oxide (cadmium oxide [CdO])x (zinc oxide [ZnO])1–x nanoparticles (NPs) at different concentrations of precursor in calcination temperature were prepared using thermal treatment technique. Cadmium and zinc nitrates (source of cadmium and zinc) with polyvinylpyrrolidone (capping agent) have been used to prepare (CdO)x (ZnO)1–x NPs samples. The sample was characterized by X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive X-ray (EDX), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. XRD patterns analysis revealed that NPs were formed after calcination, which showed a cubic and hexagonal crystalline structure of (CdO)x (ZnO)1–x NPs. The phase analysis using EDX spectroscopy and FTIR spectroscopy confirmed the presence of Cd and Zn as the original compounds of prepared (CdO)x (ZnO)1–x NP samples. The average particle size of the samples increased from 14 to 33 nm as the concentration of precursor increased from x=0.20 to x=0.80, as observed by TEM results. The surface composition and valance state of the prepared product NPs were determined by X-ray photoelectron spectroscopy (XPS) analyses. Diffuse UV–visible reflectance spectra were used to determine the optical band gap through the Kubelka–Munk equation; the energy band gap was found to decrease for CdO from 2.92 to 2.82 eV and for ZnO from 3.22 to 3.11 eV with increasing x value. Additionally, photoluminescence (PL) spectra revealed that the intensity in PL increased with an increase in particle size. In addition, the antibacterial activity of binary oxide NP was carried out in vitro against Escherichia coli ATCC 25922 Gram (−ve), Salmonella choleraesuis ATCC 10708, and Bacillus subtilis UPMC 1175 Gram (+ve). This study indicated that the zone of inhibition of 21 mm has good antibacterial activity toward the Gram-positive B. subtilis UPMC 1175. PMID:29200844

  5. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J.

    2014-07-01

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry.

  6. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility.

    PubMed

    Liu, Wenwen; Su, Penglei; Chen, Su; Wang, Na; Ma, Yuanping; Liu, Yiran; Wang, Jinshu; Zhang, Zhenting; Li, Hongyi; Webster, Thomas J

    2014-08-07

    To endow titanium (Ti) with antibacterial properties, different concentrations of zinc oxide (ZnO) nanoparticles were decorated on anodized titanium dioxide (TiO2) nanotubes by a simple hydrothermal treatment method. The particle sizes of ZnO, which were evenly distributed and tightly adherent to the walls of the Ti nanotubes, ranged from 20-50 nm. Results from this study showed that Zn was released from the TiO2 nanotubes in a constant, slow, and biologically inspired manner. Importantly, the results showed that the ZnO decorated TiO2 nanotubular samples inhibited Streptococcus mutants and Porphyromonas gingivalis growth compared to control unmodified Ti samples. Specifically, S. mutants and P. gingivalis growth were both reduced 45-85% on the ZnO decorated Ti samples compared to Ti controls after 7 days of culture. When examining the mechanism of action, it has been further found for the first time that the ZnO decorated Ti samples inhibited the expression of Streptococcus mutans bacterial adhesion genes. Lastly, the results showed that the same samples which decreased bacterial growth the most (0.015 M precursor Zn(NO3)2 samples) did not inhibit mesenchymal stem cell growth compared to Ti controls for up to 7 days. In summary, results from this study showed that compared to plain TiO2 nanotubes, TiO2 decorated with 0.015 M ZnO provided unprecedented antibacterial properties while maintaining the stem cell proliferation capacity necessary for enhancing the use of Ti in numerous medical applications, particularly in dentistry.

  7. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    NASA Astrophysics Data System (ADS)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  8. Complete transformation of ZnO and CuO nanoparticles in culture medium and lymphocyte cells during toxicity testing

    EPA Science Inventory

    Here, we present evidence on complete transformation of ZnO and CuO nanoparticles, which are among the most heavily studied metal oxide particles, during 24 h in vitro toxicological testing with human T-lymphocytes. Synchrotron radiation-based X-ray absorption near edge st...

  9. Chemical Sensing Applications of ZnO Nanomaterials

    PubMed Central

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  10. Arsenic sorption by nanocrystalline magnetite: an example of environmentally promising interface with geosphere.

    PubMed

    Bujňáková, Z; Baláž, P; Zorkovská, A; Sayagués, M J; Kováč, J; Timko, M

    2013-11-15

    In this paper, the sorption of arsenic onto nanocrystalline magnetite mineral Fe3O4 was studied in a model system. Nanocrystalline magnetite was produced by mechanical activation in a planetary ball mill from natural microcrystalline magnetite. As a consequence of milling, the specific surface area increased from 0.1m(2)/g to 11.9 m(2)/g and the surface site concentration enhanced from 2.2 sites/nm(2) to 8.4 sites/nm(2). These changes in surface properties of magnetite lead to the enhancement of arsenic removal from model system. The best sorption ability was achieved with magnetite sample activated for 90 min. In this case the sample was able to absorb around 4 mg/g. The structural changes of magnetite were also observed and the new hematite phase was detected after 120 min of milling. A good correlation between the decreasing particle size, increasing specific surface area and reduction of saturation magnetization was found. In desorption study, KOH and NaOH were found as the best eluents where more than 70% of arsenic was released back into the solution. The principal novelty of the paper is that mineral magnetite, truly one nature's gift can be used after "smart" milling (mechanical activation) as an effective arsenic sorbent. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Fast synthesize ZnO quantum dots via ultrasonic method.

    PubMed

    Yang, Weimin; Zhang, Bing; Ding, Nan; Ding, Wenhao; Wang, Lixi; Yu, Mingxun; Zhang, Qitu

    2016-05-01

    Green emission ZnO quantum dots were synthesized by an ultrasonic sol-gel method. The ZnO quantum dots were synthesized in various ultrasonic temperature and time. Photoluminescence properties of these ZnO quantum dots were measured. Time-resolved photoluminescence decay spectra were also taken to discover the change of defects amount during the reaction. Both ultrasonic temperature and time could affect the type and amount of defects in ZnO quantum dots. Total defects of ZnO quantum dots decreased with the increasing of ultrasonic temperature and time. The dangling bonds defects disappeared faster than the optical defects. Types of optical defects first changed from oxygen interstitial defects to oxygen vacancy and zinc interstitial defects. Then transformed back to oxygen interstitial defects again. The sizes of ZnO quantum dots would be controlled by both ultrasonic temperature and time as well. That is, with the increasing of ultrasonic temperature and time, the sizes of ZnO quantum dots first decreased then increased. Moreover, concentrated raw materials solution brought larger sizes and more optical defects of ZnO quantum dots. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Nanocarbon Allotropes-Graphene and Nanocrystalline Diamond-Promote Cell Proliferation.

    PubMed

    Verdanova, Martina; Rezek, Bohuslav; Broz, Antonin; Ukraintsev, Egor; Babchenko, Oleg; Artemenko, Anna; Izak, Tibor; Kromka, Alexander; Kalbac, Martin; Hubalek Kalbacova, Marie

    2016-05-01

    Two profoundly different carbon allotropes - nanocrystalline diamond and graphene - are of considerable interest from the viewpoint of a wide range of biomedical applications including implant coating, drug and gene delivery, cancer therapy, and biosensing. Osteoblast adhesion and proliferation on nanocrystalline diamond and graphene are compared under various conditions such as differences in wettability, topography, and the presence or absence of protein interlayers between cells and the substrate. The materials are characterized in detail by means of scanning electron microscopy, atomic force microscopy, photoelectron spectroscopy, Raman spectroscopy, and contact angle measurements. In vitro experiments have revealed a significantly higher degree of cell proliferation on graphene than on nanocrystalline diamond and a tissue culture polystyrene control material. Proliferation is promoted, in particular, by hydrophobic graphene with a large number of nanoscale wrinkles independent of the presence of a protein interlayer, i.e., substrate fouling is not a problematic issue in this respect. Nanowrinkled hydrophobic graphene, thus, exhibits superior characteristics for those biomedical applications where high cell proliferation is required under differing conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Influence of voids distribution on the deformation behavior of nanocrystalline palladium

    NASA Astrophysics Data System (ADS)

    Bachurin, D. V.

    2018-07-01

    Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.

  14. Electrode characteristics of nanocrystalline (Zr, Ti)(V, Cr, Ni) 2.41 compound

    NASA Astrophysics Data System (ADS)

    Majchrzycki, W.; Jurczyk, M.

    The electrochemical properties of nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 alloy, which has the hexagonal C14 type structure, have been investigated. This material has been prepared using mechanical alloying (MA) followed by annealing. The amorphous phase forms directly from the starting mixture of the elements, without other phase formation. Heating the MA samples at 1070 K for 0.5 h resulted in the creation of ordered alloy. This alloy was used as negative electrode for Ni-MH x battery. The electrochemical results show very little difference between the nanocrystalline and polycrystalline powders, as compared with the substantial difference between these and the amorphous powder. In the annealed nanocrystalline Zr 0.35Ti 0.65V 0.85Cr 0.26Ni 1.30 powders discharging capacities up to 150 mA h g -1 (at 160 mA g -1 discharging current) have been measured. The properties of nanocrystalline electrode were attributed to the structural characteristics of the compound caused by mechanical alloying.

  15. ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant.

    PubMed

    El-Kereti, Mohammed A; El-feky, Souad A; Khater, Mohammed S; Osman, Yasser A; El-sherbini, El-sayed A

    2013-12-01

    This study was conducted to evaluate the effectiveness of zinc nanofertilizer strategy on sweet basil yield, through alone application or combined with pre-sowing laser irradiation. Furthermore, evaluate the growth of plant and the level of active essential oil constituents. Zinc oxide (ZnO) nanoparticles (NPs) were synthesized, and transmission electron microscope revealed particle size of approximately 10.5-15.5 nm. ZnO NPs were applied to sweet basil plants by foliar spray at varying concentrations (10, 20 and 30 mg/L); He Ne laser of power 3mW was used for red light irradiation of sweet basil seeds for 2 min. exposure time. Total chlorophyll, total carbohydrate, essential oil levels, zinc content, plant height, branches/plant and fresh weight were measured. In general, the combined foliar spray application of ZnO nanofertilizer with pre-sowing He Ne laser irradiation showed more effectiveness than ZnO nanofertilizer alone and 20mg/L concentration gave the highest results of all measured traits. Statistical analysis (t-test) showed significant differences among the effects of the various concentrations of zinc oxide NPs on these attributes. The results showed an inverse relationship between the total carbohydrate content and the percentage of essential oil in the leaves. Together these findings support the usefulness and effectiveness of zinc oxide nanofertilizer and laser irradiation treatment to enhance the growth and yield of sweet basil plants. The article presents some promising patents on ZnO nanofertilizer and He Ne laser irradiation.

  16. Improving ultraviolet photodetection of ZnO nanorods by Cr doped ZnO encapsulation process

    NASA Astrophysics Data System (ADS)

    Safa, S.; Mokhtari, S.; Khayatian, A.; Azimirad, R.

    2018-04-01

    Encapsulated ZnO nanorods (NRs) with different Cr concentration (0-4.5 at.%) were prepared in two different steps. First, ZnO NRs were grown by hydrothermal method. Then, they were encapsulated by dip coating method. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy, and ultraviolet (UV)-visible spectrophotometer analyses. XRD analysis proved that Cr incorporated into the ZnO structure successfully. Based on optical analysis, band gap changes in the range of 2.74-3.84 eV. Finally, UV responses of all samples were deeply investigated. It revealed 0.5 at.% Cr doped sample had the most photocurrent (0.75 mA) and photoresponsivity (0.8 A/W) of all which were about three times greater than photocurrent and photoresponsivity of the undoped sample.

  17. Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability.

    PubMed

    Zou, Yu; Wheeler, Jeffrey M; Ma, Huan; Okle, Philipp; Spolenak, Ralph

    2017-03-08

    Metals with nanometer-scale grains or nanocrystalline metals exhibit high strengths at ambient conditions, yet their strengths substantially decrease with increasing temperature, rendering them unsuitable for usage at high temperatures. Here, we show that a nanocrystalline high-entropy alloy (HEA) retains an extraordinarily high yield strength over 5 GPa up to 600 °C, 1 order of magnitude higher than that of its coarse-grained form and 5 times higher than that of its single-crystalline equivalent. As a result, such nanostructured HEAs reveal strengthening figures of merit-normalized strength by the shear modulus above 1/50 and strength-to-density ratios above 0.4 MJ/kg, which are substantially higher than any previously reported values for nanocrystalline metals in the same homologous temperature range, as well as low strain-rate sensitivity of ∼0.005. Nanocrystalline HEAs with these properties represent a new class of nanomaterials for high-stress and high-temperature applications in aerospace, civilian infrastructure, and energy sectors.

  18. Surface Properties of a Nanocrystalline Fe-Ni-Nb-B Alloy After Neutron Irradiation

    NASA Astrophysics Data System (ADS)

    Pavùk, Milan; Sitek, Jozef; Sedlačková, Katarína

    2014-09-01

    The effect of neutron radiation on the surface properties of the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy was studied. Firstly, amorphous (Fe0.25Ni0.75)81Nb7B12 ribbon was brought by controlled annealing to the nanocrystalline state. After annealing, the samples of the nanocrystalline ribbon were irradiated in a nuclear reactor with neutron fluences of 1×1016cm-2 and 1 × 1017cm-2 . By utilizing the magnetic force microscopy (MFM), topography and a magnetic domain structure were recorded at the surface of the ribbon-shaped samples before and after irradiation with neutrons. The results indicate that in terms of surface the nanocrystalline (Fe0.25Ni0.75)81Nb7B12 alloy is radiation-resistant up to a neutron fluence of 1 × 1017cm-2 . The changes in topography observed for both irradiated samples are discussed

  19. Anchoring ZnO Nanoparticles in Nitrogen-Doped Graphene Sheets as a High-Performance Anode Material for Lithium-Ion Batteries.

    PubMed

    Yuan, Guanghui; Xiang, Jiming; Jin, Huafeng; Wu, Lizhou; Jin, Yanzi; Zhao, Yan

    2018-01-10

    A novel binary nanocomposite, ZnO/nitrogen-doped graphene (ZnO/NG), is synthesized via a facile solution method. In this prepared ZnO/NG composite, highly-crystalline ZnO nanoparticles with a size of about 10 nm are anchored uniformly on the N-doped graphene nanosheets. Electrochemical properties of the ZnO/NG composite as anode materials are systematically investigated in lithium-ion batteries. Specifically, the ZnO/NG composite can maintain the reversible specific discharge capacity at 870 mAh g -1 after 200 cycles at 100 mA g -1 . Besides the enhanced electronic conductivity provided by interlaced N-doped graphene nanosheets, the excellent lithium storage properties of the ZnO/NG composite can be due to nanosized structure of ZnO particles, shortening the Li⁺ diffusion distance, increasing reaction sites, and buffering the ZnO volume change during the charge/discharge process.

  20. Production of nanocrystalline metal powders via combustion reaction synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frye, John G.; Weil, Kenneth Scott; Lavender, Curt A.

    Nanocrystalline metal powders comprising tungsten, molybdenum, rhenium and/or niobium can be synthesized using a combustion reaction. Methods for synthesizing the nanocrystalline metal powders are characterized by forming a combustion synthesis solution by dissolving in water an oxidizer, a fuel, and a base-soluble, ammonium precursor of tungsten, molybdenum, rhenium, or niobium in amounts that yield a stoichiometric burn when combusted. The combustion synthesis solution is then heated to a temperature sufficient to substantially remove water and to initiate a self-sustaining combustion reaction. The resulting powder can be subsequently reduced to metal form by heating in a reducing gas environment.

  1. Grain growth in nanocrystalline iron and Fe-Al alloys

    NASA Astrophysics Data System (ADS)

    Mirzadeh, Hamed; Zomorodian, Amir

    2010-02-01

    The effects of the annealing temperature and time, cryomilling in liquid nitrogen, and the addition of aluminum powder on the thermal stability and grain growth behavior of nanocrystalline iron were modeled using the Artificial Neural Network (ANN) technique. The developed model can be used as a guide for the quantification of the grain growth by considering the effects of annealing temperature and time. The model also quantified the effect of Al on the thermal stability of cryomilled nanocrystalline Fe. The model results showed that the cryomilling of Fe has a tangible effect on the stabilization of the nanostructure.

  2. Chemical manipulation of oxygen vacancy and antibacterial activity in ZnO.

    PubMed

    V, Lakshmi Prasanna; Vijayaraghavan, Rajagopalan

    2017-08-01

    Pure and doped ZnO (cation and anion doping) compositions have been designed in order to manipulate oxygen vacancy and antibacterial activity of ZnO. In this connection, we have synthesized and characterized micron sized ZnO, N doped micron sized ZnO, nano ZnO, nano Na and La doped ZnO. The intrinsic vacancies in pure ZnO and the vacancies created by N and Na doping in ZnO have been confirmed by X-ray Photoelectron Spectroscopy(XPS) and Photoluminiscence Spectroscopy(PL). Reactive oxygen species (ROS) such as hydroxyl radicals, superoxide radicals and H 2 O 2 responsible for antibacterial activity have been estimated by PL, UV-Vis spectroscopy and KMnO 4 titrations respectively. It was found that nano Na doped ZnO releases highest amount of ROS followed by nano ZnO, micron N doped ZnO while micron ZnO releases the least amount of ROS. The concentration of vacancies follows the same sequence. This illustrates directly the correlation between ROS and oxygen vacancy in well designed pure and doped ZnO. For the first time, material design in terms of cation doping and anion doping to tune oxygen vacancies has been carried out. Interaction energy (E g ), between the bacteria and nanoparticles has been calculated based on Extended Derjaguin-Landau-Verwey-Overbeek (EDLVO) theory and is correlated with antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Electroless controllable growth of ZnO films and their morphology-dependent antimicrobial properties.

    PubMed

    Ruíz-Gómez, M A; Figueroa-Torres, M Z; Alonso-Lemus, I L; Vega-Becerra, O E; González-López, J R; Zaldívar-Cadena, A A

    2018-04-05

    An electroless deposition process was used to synthesize with a controlled morphology, polycrystalline ZnO on glass substrates as antimicrobial coatings. The influence of deposition temperature (T dep ) on the physicochemical and antimicrobial properties of the ZnO films was analyzed. The results indicated that a change in deposition temperature greatly affected the morphology and the degree of crystallinity of the films. Scanning electron microscope images show that the film surface is porous at a deposition temperature of 40 and 50 °C, whereas hexagonal-plate shaped morphology predominated at 60 °C and finally at 70 and 80 °C the films consisted of rod-like particles. The films showed good transparency in the visible region. All ZnO films presented notable antimicrobial activity against the gram-negative bacteria Escherichia coli (E. coli) and the gram-positive Staphylococcus aureus (S. aureus). It was found that the antimicrobial efficiency is strongly dependent on morphology and structural properties. The best antimicrobial performance was recorded for the films consisting of rod-like morphology with a high degree of crystallinity. The procedure used in this investigation is strongly recommended for the development of functional surfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Enhanced ultraviolet photo-response in Dy doped ZnO thin film

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Singh, Ranveer; Pandey, Praveen C.

    2018-02-01

    In the present work, a Dy doped ZnO thin film deposited by the spin coating method has been studied for its potential application in a ZnO based UV detector. The investigations on the structural property and surface morphology of the thin film ensure that the prepared samples are crystalline and exhibit a hexagonal crystal structure of ZnO. A small change in crystallite size has been observed due to Dy doping in ZnO. AFM analysis ascertains the grain growth and smooth surface of the thin films. The Dy doped ZnO thin film exhibits a significant enhancement in UV region absorption as compared to the pure ZnO thin film, which suggests that Dy doped ZnO can be used as a UV detector. Under UV irradiation of wavelength 325 nm, the photocurrent value of Dy doped ZnO is 105.54 μA at 4.5 V, which is 31 times greater than that of the un-doped ZnO thin film (3.39 μA). The calculated value of responsivity is found to increase significantly due to the incorporation of Dy in the ZnO lattice. The observed higher value of photocurrent and responsivity could be attributed to the substitution of Dy in the ZnO lattice, which enhances the conductivity, electron mobility, and defects in ZnO and benefits the UV sensing property.

  5. Hexagonal and prismatic nanowalled ZnO microboxes.

    PubMed

    Zhao, Fenghua; Lin, Wenjiao; Wu, Mingmei; Xu, Ningsheng; Yang, Xianfeng; Tian, Z Ryan; Su, Qiang

    2006-04-17

    We hereby report hydrothermal syntheses of new microstructures of semiconducting ZnO. Single-crystalline prismatic ZnO microboxes formed by nanowalls and hexagonal hollow microdisks closed by plates with micron-sized inorganic fullerene-like structures have been made in a base-free medium through a one-step hydrothermal synthesis with the help of n-butanol (NB). Structures and morphologies of the products were confirmed by results from powder X-ray diffraction and scanning electron microscopy. NB has been found to play a crucial role in the growth of these hollow structures. It is indicated that these hollow ZnO crystals were grown from redissolution of interiors. These ZnO microboxes exhibit a band emission in the visible range, implying the possession of a high content of defects.

  6. Manipulation of ZnO composition affecting electrical properties of MEH-PPV: ZnO nanocomposite thin film via spin coating for OLEDs application

    NASA Astrophysics Data System (ADS)

    Azhar, N. E. A.; Shariffudin, S. S.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    Recent investigations of the promising materials for optoelectronic have been demonstrated by introducing n-type inorganic material into conjugated polymer. Morphology, optical and electrical of nanocomposites thin films based on poly[2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and zinc oxide (ZnO) nanotetrapods with various ZnO composition (0 wt% to 0.4 wt%) have been investigated. The MEH-PPV: ZnO nanocomposite thin film was deposited using spin-coating method. Surface morphology was characterized using field emission scanning electron microscopy and shows the uniform dispersion of MEH-PPV and ZnO phases for sample deposited at 0.2 wt%. The photoluminescence (PL) spectra shows the visible emission intensities increased when the ZnO composition increased. The current-voltage (I-V) measurement shows the highest conductivity of nanocomposite thin film deposited at 0.2 wt% of ZnO is 7.40 × 10-1 S. cm-1. This study will provide better performance and suitable for optoelectronic device especially OLEDs application.

  7. Thermal conductivity of amorphous and nanocrystalline silicon films prepared by hot-wire chemical-vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jugdersuren, B.; Kearney, B. T.; Queen, D. R.

    We report 3..omega.. thermal conductivity measurements of amorphous and nanocrystalline silicon thin films from 85 to 300 K prepared by hot-wire chemical-vapor deposition, where the crystallinity of the films is controlled by the hydrogen dilution during growth. The thermal conductivity of the amorphous silicon film is in agreement with several previous reports of amorphous silicon prepared by a variety of deposition techniques. The thermal conductivity of the as-grown nanocrystalline silicon film is 70% higher and increases 35% more after an anneal at 600 degrees C. They all have similarly weak temperature dependence. Structural analysis shows that the as-grown nanocrystalline siliconmore » is approximately 60% crystalline, nanograins and grain boundaries included. The nanograins, averaging 9.1 nm in diameter in the as-grown film, are embedded in an amorphous matrix. The grain size increases to 9.7 nm upon annealing, accompanied by the disappearance of the amorphous phase. We extend the models of grain boundary scattering of phonons with two different non-Debye dispersion relations to explain our result of nanocrystalline silicon, confirming the strong grain size dependence of heat transport for nanocrystalline materials. However, the similarity in thermal conductivity between amorphous and nanocrystalline silicon suggests the heat transport mechanisms in both structures may not be as dissimilar as we currently understand.« less

  8. ZnO based potentiometric and amperometric nanosensors.

    PubMed

    Willander, Magnus; Khun, Kimleang; Ibupoto, Zafar Hussain

    2014-09-01

    The existence of nanomaterials provides the solid platform for sensing applications due to owing of high sensitivity and a low concentration limit of detection. More likely used nanomaterials for sensing applications includes gold nanoparticles, carbon nanotubes, magnetic nanoparticles such as Fe3O4, quantum dots and metal oxides etc. Recently nanomaterial and biological detection becomes an interdisciplinary field and is very much focussed by the researchers. Among metal oxides ZnO is largely considered due to its less toxic nature, biocompatible, cheap and easy to synthesis. ZnO nanomaterial is highly used for the chemical sensing, especially electrochemical sensing due to its fascinating properties such as high surface to volume ratio, atoxic, biosafe and biocompatible. Moreover, ZnO nanostructures exhibit unique features which could expose a suitable nanoenviroment for the immobilization of proteineous material such as enzymes, DNA, antibodies, etc. and in doing so it retains the biological efficiency of the immobilized bio sensitive material. The following review describes the two different coatings (i.e., ionophore and enzyme) on the surface of ZnO nanorods for the chemical sensing of zinc ion detection, thallium (I) ion detection, and L-lactic acid and the measurement of galactose molecules. ZnO nanorods provide the excellent transducing properties in the generation of strong electrical signals. Moreover, this review is very much focused on the applications of ZnO nanostructures in the sensing field.

  9. Structure and thermoelectric properties of Al-doped ZnO films prepared by thermal oxidization under high magnetic field

    NASA Astrophysics Data System (ADS)

    Liu, Shiying; Peng, Sunjuan; Ma, Jun; Li, Guojian; Qin, Xuesi; Li, Mengmeng; Wang, Qiang

    2017-04-01

    This paper studies the effects of high magnetic field (HMF) on the structure, optical and thermoelectric properties of the doped ZnO thin films. The results show that both Al dopant and application of HMF can affect the crystal structure, surface morphology, elemental distribution and so on. The particles of the thin films become small and regular by doping Al. The ZnO films oxidized from the Au/Zn bilayer have needle structure. The ZnO films oxidized from the Au/Zn-Al bilayer transform to spherical from hexagonal due to the application of HMF. The transmittance decreases with doping Al because of the opaque of Al element and decreases with the application of HMF due to the dense structure obtained under HMF. Electrical resistivity (ρ) of the ZnO films without Al decreases with increasing measurement temperature (T) and is about 1.5 × 10-3 Ω·m at 210 °C. However, the ρ of the Al-doped ZnO films is less than 10-5 Ω·m. The Seebeck coefficient (S) of the films oxidized from the Au/Zn-Al films reduces with increasing T. The S values oxidized under 0 T and 12 T conditions are 2.439 μV/K and -3.415 μV/K at 210 °C, respectively. Power factor reaches the maximum value (3.198 × 10-4 W/m·K2) at 210 °C for the film oxidized under 12 T condition. These results indicate that the Al dopant and the application of HMF can be used to control structure and thermoelectric properties of doped ZnO films.

  10. Electric field-assisted sintering of nanocrystalline hydroxyapatite for biomedical applications

    NASA Astrophysics Data System (ADS)

    Tran, Tien Bich

    As the main inorganic component of bone, hydroxyapatite (HA, Ca 10(PO4)6(OH)2) should be an ideal candidate in biomaterials selection. When grain sizes are in the nanometric regime, protein adsorption and cell adhesion are enhanced, while strength, hardness, and wear resistance are improved. Unfortunately, low phase stability, poor sinterability, and a tendency towards exaggerated grain coarsening challenge full densification of nanocrystalline hydroxyapatite by conventional sintering methods. The field-assisted sintering technique (FAST) has successfully consolidated a variety of nanocrystalline metals and ceramics in dramatically reduced times. The sintering enhancements observed during FAST can be attributed to thermal and athermal effects. The rapid heating rates (up to ˜1000ºC/min) afforded by FAST contribute a significant thermal effect. Since fast heating rates reduce powder exposure to sub-sintering temperatures, non-densifying surface diffusion is limited. The athermal effects of FAST are less well understood and can include plasma generation, dielectric breakdown, particle surface cleaning, grain boundary pinning, and space charge effects. Applying the field-assisted sintering technique to nanocrystalline hydroxyapatite yielded surprising results. Deviations from conventional densification behavior were observed, with dehydroxylation identified as the most deleterious process to densification as well as mechanical and biological performance. Since hydroxyapatite is not a stable phase at high temperatures and low water partial pressure atmospheres, desintering due to dehydroxylation-related pore formation became apparent during Stage III sintering. In fact, the degree of desintering and pore formation increased with the extent of Stage III sintering and grain growth. The atomic rearrangements taking place during grain boundary migration are believed to favor the formation of more-stable oxyapatite through hydroxyapatite dehydroxylation. This behavior was

  11. Defect evolution in ZnO and its effect on radiation tolerance.

    PubMed

    Lv, Jinpeng; Li, Xingji

    2018-05-03

    The origin of ZnO radiation resistance is fascinating but still unclear. Herein, we found that radiation tolerance of ZnO can be tuned by engineering intrinsic defects into the ZnO. The role played by native defects in the radiation tolerance of ZnO was systematically explored by carrying out N+ implantation on a set of home-grown ZnO nanocrystals with various lattice defect types and concentrations. Interestingly, decreasing the VO and Zni concentration significantly aggravated N+ radiation damage, indicating the presence of O-deficient defects to be the potential cause of the radiation hardness of ZnO. A similar phenomenon was also observed for H+-implanted ZnO. This work offers a new way to manipulate ZnO and endow it with desired physicochemical properties, and is expected to pave the way for its application in radiative environments.

  12. Crystallographic and magnetic properties of nanocrystalline perovskite structure SmFeO3 orthoferrite

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwini; Shen, Jingdong; Zhao, Huihui; Zhengjian, Qi; Li, Qi

    2018-05-01

    In this article, we present the structural and magnetic studies of pristine SmFeO3 nanocrystalline ceramic samples as sintered at temperature 850 °C and 1000 °C. X-ray powder diffraction data confirm the existence of single-phase nature with orthorhombic (Pbnm) structure of the samples. The SEM image reveals spherical particles with a size range of 60-130 nm for SFO-850 and SFO-1000 samples. X-ray absorption spectroscopy studies on Fe L3,2 and O K-edges of SmFeO3 sample revealed the homo-valence state of Fe in these materials. From magnetization studies it has been observed the materials exhibit ferromagnetic and antiferromagnetic (canted spin structure) sub-lattices, which results strong magnetic anisotropy in the system.

  13. Characterisation of Suspension Precipitated Nanocrystalline Hydroxyapatite Powders

    NASA Astrophysics Data System (ADS)

    Mallik, P. K.; Swain, P. K.; Patnaik, S. C.

    2016-02-01

    Hydroxyapatite (HA) is a well-known biomaterial for coating on femoral implants, filling of dental cavity and scaffold for tissue replacement. Hydroxyapatite possess limited load bearing capacity due to their brittleness. In this paper, the synthesis of nanocrystalline hydroxyapatite powders was prepared by dissolving calcium oxide in phosphoric acid, followed by addition of ammonia liquor in a beaker. The prepared solution was stirred by using magnetic stirrer operated at temperature of 80°C for an hour. This leads to the formation of hydroxyapatite precipitate. The precipitate was dried in oven for overnight at 100°C. The dried agglomerated precipitate was calcined at 800°C in conventional furnace for an hour. The influence of calcium oxide concentration and pH on the resulting precipitates was studied using BET, XRD and SEM. As result, a well-defined sub-rounded morphology of powders size of ∼41 nm was obtained with a salt concentration of 0.02 M. Finally, it can be concluded that small changes in the reaction conditions led to large changes in final size, shape and degree of aggregation of the hydroxyapatite particles.

  14. A ZnO nanowire resistive switch

    NASA Astrophysics Data System (ADS)

    Karthik, K. R. G.; Ramanujam Prabhakar, Rajiv; Hai, L.; Batabyal, Sudip K.; Huang, Y. Z.; Mhaisalkar, S. G.

    2013-09-01

    An individual ZnO nanowire resistive switch is evaluated with Pt/ZnO nanowire/Pt topology. A detailed DC I-V curve analysis is performed to bring both the conduction mechanism and the device characteristics to light. The device is further studied at various vacuum pressures to ascertain the presence of polar charges in ZnO nanowires as the phenomenon leading to the formation of the switch. The disappearance of the resistive switching is also analyzed with two kinds of fabrication approaches Focused Ion/Electron Beam involved in the making the device and a summary of both length and fabrication dependences of resistive switching in the ZnO nanowire is presented.

  15. Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids

    PubMed Central

    Singh, Brahma Nand; Rawat, Ajay Kumar Singh; Khan, Wasi; Naqvi, Alim H.; Singh, Braj Raj

    2014-01-01

    During the last several years, various chemical methods have been used for synthesis of a variety of metal nanoparticles. Most of these methods pose severe environmental problems and biological risks; therefore the present study reports a biological route for synthesis of zinc oxide nanoparticles using Pseudomonas aeruginosa rhamnolipids (RLs) (denoted as RL@ZnO) and their antioxidant property. Formation of stable RL@ZnO nanoparticles gave mostly spherical particles with a particle size ranging from 35 to 80 nm. The RL@ZnO nanoparticles were characterized by UV-visible (UV–vis) spectroscopy, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), and thermal gravimetric analysis. The UV–vis spectra presented a characteristic absorbance peak at ∼360 nm for synthesized RL@ZnO nanoparticles. The XRD spectrum showed that RL@ZnO nanoparticles are crystalline in nature and have typical wurtzite type polycrystals. Antioxidant potential of RL@ZnO nanoparticles was assessed through 2,2–diphenyl-1-picrylhydrazyl (DPPH), hydroxyl, and superoxide anion free radicals with varying concentration and time of the storage up to 15 months, while it was found to decline in bare ZnO nanoparticles. Similarly, the inhibitory effects on β-carotene oxidation and lipid peroxidation were also observed. These results elucidate the significance of P. aeruginosa RL as effective stabilizing agents to develop surface protective ZnO nanoparticles, which can be used as promising antioxidants in biological system. PMID:25187953

  16. Toward blue emission in ZnO based LED

    NASA Astrophysics Data System (ADS)

    Viana, Bruno; Pauporté, Thierry; Lupan, Oleg; Le Bahers, Tangui; Ciofini, Ilaria

    2012-03-01

    The bandgap engineering of ZnO nanowires by doping is of great importance for tunable light emitting diode (LED) applications. We present a combined experimental and computational study of ZnO doping with Cd or Cu atoms in the nanomaterial. Zn1-xTMxO (TM=Cu, Cd) nanowires have been epitaxially grown on magnesium-doped p-GaN by electrochemical deposition. The Zn1-xTMxO/p-GaN heterojunction was integrated in a LED structure. Nanowires act as the light emitters and waveguides. At room temperature, TM-doped ZnO based LEDs exhibit low-threshold emission voltage and electroluminescence emission shifted from ultraviolet to violet-blue spectral region compared to pure ZnO LEDs. The emission wavelength can be tuned by changing the transition metal (TM) content in the ZnO nanomaterial and the shift is discussed, including insights from DFT computational investigations.

  17. Ionic Conduction in Nanocrystalline Materials

    DTIC Science & Technology

    2000-02-10

    In the following, we review studies performed films prepared by a polymer precursor process on on stabilized zirconia ceramics with grain sizes alumina ... titania , is reviewed. While it remains too early to make firm conclusions, the following observations are made. Additives which contribute to ion blocking...Keywords: Ionic conductivity; Nanocrystalline; Zirconia; Ceria; Titania ; Defects 1. Introduction tivity by nearly two orders of magnitude [6]. Given the

  18. Investigation of ZnO Nanowire Interfaces for Multi-Scale Composites

    DTIC Science & Technology

    2012-03-06

    growth of zinc oxide ( ZnO ) nanowires on the surface of the...through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. The nanowires functionally grade the interface, improve bonding...bulk composite. This has been accomplished through the growth of zinc oxide ( ZnO ) nanowires on the surface of the reinforcing fibers. ZnO

  19. III-nitrides on oxygen- and zinc-face ZnO substrates

    NASA Astrophysics Data System (ADS)

    Namkoong, Gon; Burnham, Shawn; Lee, Kyoung-Keun; Trybus, Elaissa; Doolittle, W. Alan; Losurdo, Maria; Capezzuto, Pio; Bruno, Giovanni; Nemeth, Bill; Nause, Jeff

    2005-10-01

    The characteristics of III-nitrides grown on zinc- and oxygen-face ZnO by plasma-assisted molecular beam epitaxy were investigated. The reflection high-energy electron diffraction pattern indicates formation of a cubic phase at the interface between III-nitride and both Zn- and O-face ZnO. The polarity indicates that Zn-face ZnO leads to a single polarity, while O-face ZnO forms mixed polarity of III-nitrides. Furthermore, by using a vicinal ZnO substrate, the terrace-step growth of GaN was realized with a reduction by two orders of magnitude in the dislocation-related etch pit density to ˜108cm-2, while a dislocation density of ˜1010cm-2 was obtained on the on-axis ZnO substrates.

  20. Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yumei; Williams, Nolann G.; Tolic, Ana

    The majority of in vitro studies characterizing the impact of engineered nanoparticles (NPs) on cells that line the respiratory tract were conducted in cells exposed to NPs in suspension. This approach introduces processes that are unlikely to occur during inhaled NP exposures in vivo, such as the shedding of toxic doses of dissolved ions. ZnO NPs are used extensively and pose significant sources for human exposure. Exposures to airborne ZnO NPs can induce adverse effects, but the relevance of the dissolved Zn2+ to the observed effects in vivo is still unclear. Our goal was to mimic in vivo exposures tomore » airborne NPs and decipher the contribution of the intact NP from the contribution of the dissolved ions to airborne ZnO NP toxicity. We established the exposure of alveolar type II epithelial cells to aerosolized NPs at the air-liquid interface (ALI), and compared the impact of aerosolized ZnO NPs and NPs in suspension at the same cellular doses, measured as the number of particles per cell. By evaluating membrane integrity and cell viability 6 and 24 hours post exposure we found that aerosolized NPs induced toxicity at the ALI at doses that were in the same order of magnitude as doses required to induce toxicity in submersed cultures. In addition, distinct patterns of oxidative stress were observed in the two exposure systems. These observations unravel the ability of airborne ZnO NPs to induce toxicity without the contribution of dissolved Zn2+ and suggest distinct mechanisms at the ALI and in submersed cultures.« less

  1. Enhanced photoluminescence properties of Al doped ZnO films

    NASA Astrophysics Data System (ADS)

    Chen, H. X.; Ding, J. J.

    2018-01-01

    Al doped ZnO films are fabricated by radio frequency magnetron sputtering. In general, visible emission is related to various defects in ZnO films. However, too much defects will cause light emission quench. So it is still a controversial issue to control appropriate defect concentrations. In this paper, based on our previous results, appropriate Al doping concentration is chosen to introduce more both interstitial Zn and O vacancy defects, which is responsible for main visible emission of ZnO films. A strong emission band located at 405 nm and a long tail peak is observed in the samples. As Al is doped in ZnO films, the intensity of emission peaks increases. Zn interstitial might increase with the increasing Al3+ substitute because ZnO was a self-assembled oxide compound. So Zn interstitial defect concentration in Al doped ZnO films will increase greatly, which results in the intensity of emission peaks increases.

  2. Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Huang, Shen-Che; Lu, Chien-Cheng; Su, Wei-Ming; Weng, Chen-Yuan; Chen, Yi-Cian; Wang, Shing-Chung; Lu, Tien-Chang; Chen, Ching-Pang; Chen, Hsiang

    2018-01-01

    Three types of ZnO-based nanocomposites were fabricated consisting of 80-nm Au nanoparticles (NPs), a graphene layer, and ZnO nanorods (NRs). To investigate interactions between the ZnO NRs and Au nanoparticle, multiple material analysis techniques including field-emission scanning electron microscopy (FESEM), surface contact angle measurements, secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic characterizations were performed. Results indicate that incorporating a graphene layer could block the interaction between the ZnO NRs and the Au NPs. Furthermore, the Raman signal of the Au NPs could be enhanced by inserting a graphene layer on top of the ZnO NRs. Investigation of these graphene-incorporated nanocomposites would be helpful to future studies of the physical properties and Raman analysis of the ZnO-based nanostructure design.

  3. Characteristics of W Doped Nanocrystalline Carbon Films Prepared by Unbalanced Magnetron Sputtering.

    PubMed

    Park, Yong Seob; Park, Chul Min; Kim, Nam-Hoon; Kim, Jae-Moon

    2016-05-01

    Nanocrystalline tungsten doped carbon (WC) films were prepared by unbalanced magnetron sputtering. Tungsten was used as the doping material in carbon thin films with the aim of application as a contact strip in an electric railway. The structural, physical, and electrical properties of the fabricated WC films with various DC bias voltages were investigated. The films had a uniform and smooth surface. Hardness and frication characteristics of the films were improved, and the resistivity and sheet resistance decreased with increasing negative DC bias voltage. These results are associated with the nanocrystalline WC phase and sp(2) clusters in carbon networks increased by ion bombardment enhanced with increasing DC bias voltage. Consequently, the increase of sp(2) clusters containing WC nanocrystalline in the carbon films is attributed to the improvement in the physical and electrical properties.

  4. Isolation of bacterial cellulose nanocrystalline from pineapple peel waste: Optimization of acid concentration in the hydrolysis method

    NASA Astrophysics Data System (ADS)

    Anwar, Budiman; Rosyid, Nurul Huda; Effendi, Devi Bentia; Nandiyanto, Asep Bayu Dani; Mudzakir, Ahmad; Hidayat, Topik

    2016-02-01

    Isolation of needle-shaped bacterial cellulose nanocrystalline with a diameter of 16-64 nm, a fiber length of 258-806 nm, and a degree of crystallinity of 64% from pineapple peel waste using an acid hydrolysis process was investigated. Experimental showed that selective concentration of acid played important roles in isolating the bacterial cellulose nanocrystalline from the cellulose source. To achieve the successful isolation of bacterial cellulose nanocrystalline, various acid concentrations were tested. To confirm the effect of acid concentration on the successful isolation process, the reaction conditions were fixed at a temperature of 50°C, a hydrolysis time of 30 minutes, and a bacterial cellulose-to-acid ratio of 1:50. Pineapple peel waste was used as a model for a cellulose source because to the best of our knowledge, there is no report on the use of this raw material for producing bacterial cellulose nanocrystalline. In fact, this material can be used as an alternative for ecofriendly and cost-free cellulose sources. Therefore, understanding in how to isolate bacterial cellulose nanocrystalline from pineapple peel waste has the potential for large-scale production of inexpensive cellulose nanocrystalline.

  5. Fabrication of Semiconductor ZnO Nanostructures for Versatile SERS Application

    PubMed Central

    Yang, Lili; Yang, Yong; Ma, Yunfeng; Li, Shuai; Wei, Yuquan; Huang, Zhengren; Long, Nguyen Viet

    2017-01-01

    Since the initial discovery of surface-enhanced Raman scattering (SERS) in the 1970s, it has exhibited a huge potential application in many fields due to its outstanding advantages. Since the ultra-sensitive noble metallic nanostructures have increasingly exposed themselves as having some problems during application, semiconductors have been gradually exploited as one of the critical SERS substrate materials due to their distinctive advantages when compared with noble metals. ZnO is one of the most representative metallic oxide semiconductors with an abundant reserve, various and cost-effective fabrication techniques, as well as special physical and chemical properties. Thanks to the varied morphologies, size-dependent exciton, good chemical stability, a tunable band gap, carrier concentration, and stoichiometry, ZnO nanostructures have the potential to be exploited as SERS substrates. Moreover, other distinctive properties possessed by ZnO such as biocompatibility, photocatcalysis and self-cleaning, and gas- and chemo-sensitivity can be synergistically integrated and exerted with SERS activity to realize the multifunctional potential of ZnO substrates. In this review, we discuss the inevitable development trend of exploiting the potential semiconductor ZnO as a SERS substrate. After clarifying the root cause of the great disparity between the enhancement factor (EF) of noble metals and that of ZnO nanostructures, two specific methods are put forward to improve the SERS activity of ZnO, namely: elemental doping and combination of ZnO with noble metals. Then, we introduce a distinctive advantage of ZnO as SERS substrate and illustrate the necessity of reporting a meaningful average EF. We also summarize some fabrication methods for ZnO nanostructures with varied dimensions (0–3 dimensions). Finally, we present an overview of ZnO nanostructures for the versatile SERS application. PMID:29156600

  6. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  7. Improve oxidation resistance at high temperature by nanocrystalline surface layer

    NASA Astrophysics Data System (ADS)

    Xia, Z. X.; Zhang, C.; Huang, X. F.; Liu, W. B.; Yang, Z. G.

    2015-08-01

    An interesting change of scale sequence occurred during oxidation of nanocrystalline surface layer by means of a surface mechanical attrition treatment. The three-layer oxide structure from the surface towards the matrix is Fe3O4, spinel FeCr2O4 and corundum (Fe,Cr)2O3, which is different from the typical two-layer scale consisted of an Fe3O4 outer layer and an FeCr2O4 inner layer in conventional P91 steel. The diffusivity of Cr, Fe and O is enhanced concurrently in the nanocrystalline surface layer, which causes the fast oxidation in the initial oxidation stage. The formation of (Fe,Cr)2O3 inner layer would inhabit fast diffusion of alloy elements in the nanocrystalline surface layer of P91 steel in the later oxidation stage, and it causes a decrease in the parabolic oxidation rate compared with conventional specimens. This study provides a novel approach to improve the oxidation resistance of heat resistant steel without changing its Cr content.

  8. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  9. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  10. Bio-inspired ZnO nanoparticles from Ocimum tenuiflorum and their in vitro antioxidant activity

    NASA Astrophysics Data System (ADS)

    Sushma, N. John; Mahitha, B.; Mallikarjuna, K.; Raju, B. Deva Prasad

    2016-05-01

    Nanobiotechnology is emerging as a rapid growing field with its applications in nanoscience and technology for the purpose of built-up new materials at the nanoregime. Nanoparticles produced by plant extracts are more stable, and the rate of synthesis is faster than that in the case of other organisms. In this paper we report the biosynthesis of zinc oxide nanoparticles (ZnO NPs). Structural, morphological, particle size, and optical properties of the synthesized nanoparticles have been characterized by using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic-force microscopy, zeta potential, X-ray diffraction, and photoluminescence intensity. The UV-Vis spectrum showed an absorption peak at 380 nm that reflects surface plasmon resonance. The optical measurements were attributed to the band gap 3.19 eV at pH 12. The zeta potential value of -36.4 eV revealed the surface charge of green synthesized ZnO NPs. The antioxidant activity was estimated by both 1,1-diphenyl-2-picrylhydrazyl and reducing power assay. Green synthesized ZnO NPs showed maximum inhibition (65.23 %) and absorbance (0.6 a.u). This approach offers environmentally beneficial alternative by eliminating hazardous chemicals and promotes pollution prevention by the production of nanoparticles in their natural environment.

  11. Nanoparticle Self-Assembled Grain Like Curcumin Conjugated ZnO: Curcumin Conjugation Enhances Removal of Perylene, Fluoranthene, and Chrysene by ZnO

    PubMed Central

    Moussawi, Rasha N.; Patra, Digambara

    2016-01-01

    Curcumin conjugated ZnO, referred as Zn(cur)O, nanostructures have been successfully synthesized, these sub-micro grain-like structures are actually self-assemblies of individual needle-shaped nanoparticles. The nanostructures as synthesized possess the wurtzite hexagonal crystal structure of ZnO and exhibit very good crystalline quality. FT-Raman and TGA analysis establish that Zn(cur)O is different from curcumin anchored ZnO (ZnO@cur), which is prepared by physically adsorbing curcumin on ZnO surfaces. Chemically Zn(cur)O is more stable than ZnO@cur. Diffuse reflectance spectroscopy indicates Zn(cur)O have more impurities compared to ZnO@cur. The solid-state photoluminescence of Zn(cur)O has been investigated, which demonstrates that increase of curcumin concentration in Zn(cur)O suppresses visible emission of ZnO prepared through the same method, this implies filling ZnO defects by curcumin. However, at excitation wavelength 425 nm the emission is dominated by fluorescence from curcumin. The study reveals that Zn(cur)O can remove to a far extent high concentrations of perylene, fluoranthene, and chrysene faster than ZnO. The removal depends on the extent of curcumin conjugation and is found to be faster for PAHs having smaller number of aromatic rings, particularly, it is exceptional for fluoranthene with 93% removal after 10 minutes in the present conditions. The high rate of removal is related to photo-degradation and a mechanism has been proposed. PMID:27080002

  12. Comparative study of ZnO nanorods and thin films for chemical and biosensing applications and the development of ZnO nanorods based potentiometric strontium ion sensor

    NASA Astrophysics Data System (ADS)

    Khun, K.; Ibupoto, Z. H.; Chey, C. O.; Lu, Jun.; Nur, O.; Willander, M.

    2013-03-01

    In this study, the comparative study of ZnO nanorods and ZnO thin films were performed regarding the chemical and biosensing properties and also ZnO nanorods based strontium ion sensor is proposed. ZnO nanorods were grown on gold coated glass substrates by the hydrothermal growth method and the ZnO thin films were deposited by electro deposition technique. ZnO nanorods and thin films were characterised by field emission electron microscopy [FESEM] and X-ray diffraction [XRD] techniques and this study has shown that the grown nanostructures are highly dense, uniform and exhibited good crystal quality. Moreover, transmission electron microscopy [TEM] was used to investigate the quality of ZnO thin film and we observed that ZnO thin film was comprised of nano clusters. ZnO nanorods and thin films were functionalised with selective strontium ionophore salicylaldehyde thiosemicarbazone [ST] membrane, galactose oxidase, and lactate oxidase for the detection of strontium ion, galactose and L-lactic acid, respectively. The electrochemical response of both ZnO nanorods and thin films sensor devices was measured by using the potentiometric method. The strontium ion sensor has exhibited good characteristics with a sensitivity of 28.65 ± 0.52 mV/decade, for a wide range of concentrations from 1.00 × 10-6 to 5.00 × 10-2 M, selectivity, reproducibility, stability and fast response time of 10.00 s. The proposed strontium ion sensor was used as indicator electrode in the potentiometric titration of strontium ion versus ethylenediamine tetra acetic acid [EDTA]. This comparative study has shown that ZnO nanorods possessed better performance with high sensitivity and low limit of detection due to high surface area to volume ratio as compared to the flat surface of ZnO thin films.

  13. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M.

    2012-09-04

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  14. Self-composite comprised of nanocrystalline diamond and a non-diamond component useful for thermoelectric applications

    DOEpatents

    Gruen, Dieter M [Downers Grove, IL

    2009-08-11

    One provides nanocrystalline diamond material that comprises a plurality of substantially ordered diamond crystallites that are sized no larger than about 10 nanometers. One then disposes a non-diamond component within the nanocrystalline diamond material. By one approach this non-diamond component comprises an electrical conductor that is formed at the grain boundaries that separate the diamond crystallites from one another. The resultant nanowire is then able to exhibit a desired increase with respect to its ability to conduct electricity while also preserving the thermal conductivity behavior of the nanocrystalline diamond material.

  15. Synthesis of isotopically modified ZnO nanoparticles and their potential as nanotoxicity tracers

    USGS Publications Warehouse

    Dybowska, A.D.; Croteau, M.-N.; Misra, S.K.; Berhanu, D.; Luoma, S.N.; Christian, P.; O'Brien, P.; Valsami-Jones, E.

    2011-01-01

    Understanding the behavior of engineered nanoparticles in the environment and within organisms is perhaps the biggest obstacle to the safe development of nanotechnologies. Reliable tracing is a particular issue for nanoparticles such as ZnO, because Zn is an essential element and a common pollutant thus present at elevated background concentrations. We synthesized isotopically enriched (89.6%) with a rare isotope of Zn (67Zn) ZnO nanoparticles and measured the uptake of 67Zn by L. stagnalis exposed to diatoms amended with the particles. Stable isotope technique is sufficiently sensitive to determine the uptake of Zn at an exposure equivalent to lower concentration range (<15 ??g g-1). Without a tracer, detection of newly accumulated Zn is significant at Zn exposure concentration only above 5000 ??g g-1 which represents some of the most contaminated Zn conditions. Only by using a tracer we can study Zn uptake at a range of environmentally realistic exposure conditions. ?? 2010 Elsevier Ltd. All rights reserved.

  16. Inverter Circuits using Pentacene and ZnO Transistors

    NASA Astrophysics Data System (ADS)

    Iechi, Hiroyuki; Watanabe, Yasuyuki; Kudo, Kazuhiro

    2007-04-01

    We report two types of integrated circuits based on a pentacene static-induction transistor (SIT), a pentacene thin-film transistor (TFT) and a zinc oxide (ZnO) TFT. The operating characteristics of a p-p inverter using pentacene SITs and a complementary inverter using a p-channel pentacene TFT and an n-channel ZnO TFT are described. The basic operation of logic circuits at a low voltage was achieved for the first time using the pentacene SIT inverter and complementary circuits with hybrid inorganic and organic materials. Furthermore, we describe the electrical properties of the ZnO films depending on sputtering conditions, and the complementary circuits using ZnO and pentacene TFTs.

  17. Influence of solvents on the changes in structure, purity, and in vitro characteristics of green-synthesized ZnO nanoparticles from Costus igneus

    NASA Astrophysics Data System (ADS)

    Nandhini, G.; Suriyaprabha, R.; Maria Sheela Pauline, W.; Rajendran, V.; Aicher, Wilhelm Karl; Awitor, Oscar Komla

    2018-05-01

    The present study is intended to produce high-purity zinc oxide nanoparticles from the leaves of Costus igneus and zinc acetate precursor via sustainable methods by the tribulation with three different solvents (hot water, methanol, and acetone) for the extraction of plant compounds. While examining the physico-chemical characteristics of ZnO nanoparticles incurred by the catalysis of plant bioactive compounds extracted from different solvents, the hot water extract-based green synthesis process yields higher purity (99.89%) and smaller particle size (94 nm) than other solvents. The optimization of the solvents used for the green synthesis of nanoparticles renders key identification in appropriate extraction of bioactive compounds suitable for the nucleation/production of nanoparticles in addition to annealing temperature. The impregnable usage of ZnO nanoparticles in clinical applications is further confirmed based on the treatment of particles (1-10 mg ml-1) against Gram-positive (S. aureus and S. epidermis) and Gram-negative bacteria (E. coli and K. pneumoniae) with respect to their growth inhibition. An in-force growth inhibition against particular S. aureus and S. epidermis imparted by the low concentration of ZnO nanoparticles signifies the utilization and consumption of green-synthesized high-purity nanoparticles for therapeutic and cosmetic applications.

  18. Synthesis and characterization of nanocrystalline forsterite coated poly(L-lactide-co-β-malic acid) scaffolds for bone tissue engineering applications.

    PubMed

    Mozafari, M; Gholipourmalekabadi, M; Chauhan, N P S; Jalali, N; Asgari, S; Caicedoa, J C; Hamlekhan, A; Urbanska, A M

    2015-05-01

    In this research, after synthesizing poly(L-lactide-co-β-malic acid) (PLMA) copolymer, hybrid particles of ice and nanocrystalline forsterite (NF) as coating carriers were used to prepare NF-coated PLMA scaffolds. The porous NF-coated scaffolds were directly fabricated by a combined technique using porogen leaching and freeze-drying methods. The obtained results indicate that the scaffolds were structurally porous with NF particles on their surfaces. When compared to the uncoated scaffolds, the NF coating improved both mechanical properties as well as enhanced bioactivity of the scaffolds. In addition, in vitro biological response of the rat bone marrow stromal cells indicated that NF significantly increased the biocompatibility of NF-coated scaffolds compared with PLMA. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Photoluminescent properties of electrochemically synthetized ZnO nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gracia Jiménez, J.M.

    ZnO nanotubes were prepared by a sequential combination of electrochemical deposition, chemical attack and regeneration. ZnO nanocolumns were initially electrodeposited on conductive substrates and then converted into nanotubes by a process involving chemical etching and subsequent regrowth. The morphology of these ZnO nanocolumns and derived nanotubes was monitored by Scanning Electron Microscopy and their optical properties was studied by photoluminescence spectroscopy. Photoluminescence were measured as a function of temperature, from 6 to 300 K, for both nanocolumns and nanotubes. In order to study the behaviour of induced intrinsic defect all ZnO films were annealed in air at 400 °C andmore » their photoluminescent properties were also registered before and after annealing. The behaviour of photoluminescence is explained taking into account the contribution of different point defects. A band energy diagram related to intrinsic defects was proposed to describe the behaviour of photoluminescence spectra. - Highlights: •ZnO nanotubes were obtained after etching and regrowth of electrodeposited ZnO films. •Photoluminescence spectra contain two parts involving excitonic and defects transitions. •Annealing produces a blue shift in the PL peaks in both ZnO nanocolumns and nanotubes. •Etching causes a blue shift in PL peaks due to confinement effect in nanotubes walls.« less

  20. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  1. Transition from Irradiation-Induced Amorphization to Crystallization in Nanocrystalline Silicon Carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Weilin; Jiao, Liang; Wang, Haiyan

    2011-12-01

    Response to irradiation of nanocrystalline 3C-SiC is studied using 2 MeV Au+ ions near the critical temperature for amorphization and is compared to the behavior of its monocrystalline counterpart under the identical irradiation conditions. The irradiated samples have been characterized using in-situ ion channeling, ex-situ x-ray diffraction, and helium ion microscopy. Compared to monocrystalline 3C-SiC, a faster amorphization process in the nanocrystalline material (average grain size = 3.3 nm) is observed at 500 K. However, the nanograin grows with increasing ion fluence at 550 K and the grain size tends to saturate at high fluences. The striking contrast demonstrates amore » sharp transition from irradiation-induced interface-driven amorphization at 500 K to crystallization at 550 K. The results could show potential impacts of nanocrystalline SiC on nuclear fuel cladding and structural components of next-generation nuclear energy systems.« less

  2. Structure and magnetic properties of amorphous and nanocrystalline Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloys

    NASA Astrophysics Data System (ADS)

    Mitra, A.; Kim, H.-Y.; Louzguine, D. V.; Nishiyama, N.; Shen, B.; Inoue, A.

    2004-07-01

    Crystallisation behaviour and magnetic properties of as-spun and annealed Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy have been studied. The annealing was performed at 873 K for 15 min. XRD and TEM studies shows the formation of nanocrystalline α-(Fe,Co)(SiAl) particles with 7.5±2 nm in diameter dispersed in an amorphous matrix. The Curie temperature of the as-spun amorphous ribbon is 736 K. Saturation magnetisation of the annealed sample decreases at a rate of 0.5 emu/g/K in the measured temperature range of 300-1000 K. Excellent room temperature AC magnetic properties are achieved for the nanocrystalline sample. The low value of the imaginary part of the permeability and the high cut-off frequency (20 kHz) suggest that the eddy current contribution in the annealed materials is low. The coercivity of the annealed sample remains almost constant at 95 A/m up to the frequency of 20 kHz. High saturation magnetisation, high Curie temperature and excellent soft magnetic properties in the nanocrystalline state suggests that Fe 40Co 40Cu 0.5Zr 9Al 2Si 4B 4.5 alloy is a strong candidate for high temperature magnetic application.

  3. Tailoring surface and photocatalytic properties of ZnO and nitrogen-doped ZnO nanostructures using microwave-assisted facile hydrothermal synthesis

    NASA Astrophysics Data System (ADS)

    Rangel, R.; Cedeño, V.; Ramos-Corona, A.; Gutiérrez, R.; Alvarado-Gil, J. J.; Ares, O.; Bartolo-Pérez, P.; Quintana, P.

    2017-08-01

    Microwave hydrothermal synthesis, using an experimental 23 factorial design, was used to produce tunable ZnO nano- and microstructures, and their potential as photocatalysts was explored. Photocatalytic reactions were conducted in a microreactor batch system under UV and visible light irradiation, while monitoring methylene blue degradation, as a model system. The variables considered in the microwave reactor to produce ZnO nano- or microstructures, were time, NaOH concentration and synthesis temperature. It was found that, specific surface area and volume/surface area ratio were affected as a consequence of the synthesis conditions. In the second stage, the samples were plasma treated in a nitrogen atmosphere, with the purpose of introducing nitrogen into the ZnO crystalline structure. The central idea is to induce changes in the material structure as well as in its optical absorption, to make the plasma-treated material useful as photocatalyst in the visible region of the electromagnetic spectrum. Pristine ZnO and nitrogen-doped ZnO compounds were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), specific surface area (BET), XPS, and UV-Vis diffuse reflectance spectroscopy. The results show that the methodology presented in this work is effective in tailoring the specific surface area of the ZnO compounds and incorporation of nitrogen into their structure, factors which in turn, affect its photocatalytic behavior.

  4. Hydrothermal growth of ZnO nanowires on flexible fabric substrates

    NASA Astrophysics Data System (ADS)

    Hong, Gwang-Wook; Yun, Sang-Ho; Kim, Joo-Hyung

    2016-04-01

    ZnO nanowires (NWs) would provide significant enhancement in sensitivity due to high surface to volume ratio. We investigated the first methodical study on the quantitative relationship between the process parameters of solution concentration ratio, structure, and physical and properties of ZnO NWs grown on different flexible fabric surfaces. To develop a fundamental following concerning various substrates, we controlled the growth speed of ZnO NWs and nanowires on cotton surface with easy and moderate cost fabrication method. Using ammonium hydroxide as the reactant with zinc nitrate hexahydrate, ZnO NWs layer have been grown on metal layers, instead of seed layer. ZnO NWs fabrication was done on different fabric substrates such as wool, nylon and polypropylene (PP). After the ZnO NWs grown to each substrates, we coated insulating layer with polyurethane (PU) and ethyl cellulose for prevent external intervention. Detailed electrical characterization was subsequently performed to reveal the working characteristics of the hybrid fabric. For electrical verification of fabricated ZnO NWs, we implemented measurement impact test and material properties with FFT analyzer and LCR meter.

  5. Room temperature ferromagnetism in Cu doped ZnO

    NASA Astrophysics Data System (ADS)

    Ali, Nasir; Singh, Budhi; Khan, Zaheer Ahmed; Ghosh, Subhasis

    2018-05-01

    We report the room temperature ferromagnetism in 2% Cu doped ZnO films grown by RF magnetron sputtering in different argon and oxygen partial pressure. X-ray photoelectron spectroscopy was used to ascertain the oxidation states of Cu in ZnO. The presence of defects within Cu-doped ZnO films can be revealed by electron paramagnetic resonance. It has been observed that saturated magnetic moment increase as we increase the zinc vacancies during deposition.

  6. Microwave synthesis and photocatalytic activities of ZnO bipods with different aspect ratios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Fazhe; Zhao, Zengdian; Qiao, Xueliang, E-mail: xuelqiao@163.com

    2016-02-15

    Highlights: • We synthesized linked ZnO nanorods by a facile microwave method. • The effect of reaction parameters on ZnO was investigated. • ZnO bipods with different aspect ratios were prepared. • The photocatalytic performance of ZnO bipods was evaluated. - Abstract: Linked ZnO nanorods have been successfully prepared via a facile microwave method without any post-synthesis treatment. The X-ray diffraction (XRD) patterns indicated the precursor had completely transformed into the pure ZnO crystal. The images of field emitting scanning electron microscope (FESEM) and transmission electron microscope (TEM) showed that linked ZnO nanorods consisted predominantly of ZnO bipods. The formationmore » process of the ZnO bipods was clearly discussed. ZnO bipods with different aspect ratios have been obtained by tuning the concentrations of reagents and microwave power. Moreover, the photocatalytic performance of ZnO bipods with different aspect ratios for degradation of methylene blue was systematically evaluated. The results of photocatalytic experiments showed that the photocatalytic activity increased with the aspect ratios of ZnO bipods increased. The reason is that ZnO bipods with larger aspect ratio have higher surface area, which can absorb more MB molecules to react with ·OH radicals.« less

  7. The role of nanocrystalline binder metallic coating into WC after additive manufacturing

    NASA Astrophysics Data System (ADS)

    Cavaleiro, A. J.; Fernandes, C. M.; Farinha, A. R.; Gestel, C. V.; Jhabvala, J.; Boillat, E.; Senos, A. M. R.; Vieira, M. T.

    2018-01-01

    Tungsten carbide with microsized particle powders are commonly used embedded in a tough binder metal. The application of these composites is not limited to cutting tools, WC based material has been increasingly used in gaskets and other mechanical parts with complex geometries. Consequently, additive manufacturing processes as Selective Laser Sintering (SLS) might be the solution to overcome some of the manufacturing problems. However, the use of SLS leads to resolve the problems resulting from difference of physical properties between tungsten carbide and the metallic binder, such as laser absorbance and thermal conductivity. In this work, an original approach of powder surface modification was considered to prepare WC-metal composite powders and overcome these constraints, consisting on the sputter-coating of the WC particle surfaces with a nanocrystalline thin film of metallic binder material (stainless steel). The coating improves the thermal behavior and rheology of the WC particles and, at the same time, ensures a binder homogenous distribution. The feasibility of the SLS technology as manufacturing process for WC powder sputter-coated with 13 wt% stainless steel AISI 304L was explored with different laser power and scanning speed parameters. The SLS layers were characterized regarding elemental distribution, phase composition and morphology, and the results are discussed emphasizing the role of the coating on the consolidation process.

  8. The effect of ZnO nanoparticles on liver function in rats

    PubMed Central

    Tang, Hua-Qiao; Xu, Min; Rong, Qian; Jin, Ru-Wen; Liu, Qi-Ji; Li, Ying-Lun

    2016-01-01

    Zinc oxide (ZnO) is widely incorporated as a food additive in animal diets. In order to optimize the beneficial effects of ZnO and minimize any resultant environmental pollution, ZnO nanoparticles are often used for delivery of the zinc. However, the possible toxic effects of ZnO nanoparticles, including effects on cytochrome P450 (CYP450) enzymes, have not been evaluated. In this study, we investigated the effect of ZnO nanoparticles, in doses used in animal feeds, on CYP450 enzymes, liver and intestinal enzymes, liver and kidney histopathology, and hematologic indices in rats. We found that liver and kidney injury occurred when the concentrations of ZnO nanoparticles in feed were 300–600 mg/kg. Also, liver mRNA expression for constitutive androstane receptor was suppressed and mRNA expression for pregnane X receptor was induced when feed containing ZnO nanoparticles was given at a concentration of 600 mg/kg. Although the expression of mRNA for CYP 2C11 and 3A2 enzymes was induced by ZnO nanoparticles, the activities of CYP 2C11 and 3A2 were suppressed. While liver CYP 1A2 mRNA expression was suppressed, CYP 1A2 activity remained unchanged at all ZnO nanoparticle doses. Therefore, it has been concluded that ZnO nanoparticles, in the doses customarily added to animal feed, changed the indices of hematology and blood chemistry, altered the expression and activity of hepatic CYP enzymes, and induced pathological changes in liver and kidney tissues of rats. These findings suggest that greater attention needs to be paid to the toxic effects of ZnO nanoparticles in animal feed, with the possibility that the doses of ZnO should be reduced. PMID:27621621

  9. Comparative study on toxicity of ZnO and TiO2 nanoparticles on Artemia salina: effect of pre-UV-A and visible light irradiation.

    PubMed

    Bhuvaneshwari, M; Sagar, Bhawana; Doshi, Siddharth; Chandrasekaran, N; Mukherjee, Amitava

    2017-02-01

    This study evaluated the toxicity potential of ZnO and TiO 2 nanoparticles under pre-UV-A irradiation and visible light condition on Artemia salina. The nanoparticle suspension was prepared in seawater medium and exposed under pre-UV-A (0.23 mW/cm 2 ) and visible light (0.18 mW/cm 2 ) conditions. The aggregation profiles of both nanoparticles (NPs) and dissolution of ZnO NPs under both irradiation conditions at various kinetic intervals (1, 24, 48 h) were studied. The 48-h LC 50 values were found to be 27.62 and 71.63 mg/L for ZnO NPs and 117 and 120.9 mg/L for TiO 2 NPs under pre-UV-A and visible light conditions. ZnO NPs were found to be more toxic to A. salina as compared to TiO 2 NPs. The enhanced toxicity was observed under pre-UV-A-irradiated ZnO NPs, signifying its phototoxicity. Accumulation of ZnO and TiO 2 NPs into A. salina depends on the concentration of particles and type irradiations. Elimination of accumulated nanoparticles was also evident under both irradiation conditions. Other than ZnO NPs, the dissolved Zn 2+ also had a significant effect on toxicity and accumulation in A. salina. Increased catalase (CAT) activity in A. salina indicates the generation of oxidative stress due to NP interaction. Thus, this study provides an understanding of the toxicity of photoreactive ZnO and TiO 2 NPs as related to the effects of pre-UV-A and visible light irradiation.

  10. Synthesis of nano-crystalline hydroxyapatite and ammonium sulfate from phosphogypsum waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mousa, Sahar, E-mail: dollyriri@yahoo.com; King Abdulaziz University, Science and Art College, Chemistry Department, Rabigh Campus, P.O. Box:344, Postal code: 21911 Rabigh; Hanna, Adly

    2013-02-15

    Graphical abstract: TEM micrograph of dried HAP at 800 °C. -- Abstract: Phosphogypsum (PG) waste which is derived from phosphoric acid manufacture by using wet method was converted into hydroxyapatite (HAP) and ammonium sulfate. Very simple method was applied by reacting PG with phosphoric acid in alkaline medium with adjusting pH using ammonia solution. The obtained nano-HAP was dried at 80 °C and calcined at 600 °C and 900 °C for 2 h. Both of HAP and ammonium sulfate were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR) to study the structural evolution. The thermal behavior of nano-HAP wasmore » studied; the particle size and morphology were estimated by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM). All the results showed that HAP nano-crystalline and ammonium sulfate can successfully be produced from phosphogypsum waste.« less

  11. Correlation of structural properties with energy transfer of Eu-doped ZnO thin films prepared by sol-gel process and magnetron reactive sputtering

    PubMed Central

    Petersen, Julien; Brimont, Christelle; Gallart, Mathieu; Schmerber, Guy; Gilliot, Pierre; Ulhaq-Bouillet, Corinne; Rehspringer, Jean-Luc; Colis, Silviu; Becker, Claude; Slaoui, Abdelillah; Dinia, Aziz

    2010-01-01

    We investigated the structural and optical properties of Eu-doped ZnO thin films made by sol-gel technique and magnetron reactive sputtering on Si (100) substrate. The films elaborated by sol-gel process are polycrystalline while the films made by sputtering show a strongly textured growth along the c-axis. X-ray diffraction patterns and transmission electron microscopy analysis show that all samples are free of spurious phases. The presence of Eu2+ and Eu3+ into the ZnO matrix has been confirmed by x-ray photoemission spectroscopy. This means that a small fraction of Europium substitutes Zn2+ as Eu2+ into the ZnO matrix; the rest of Eu being in the trivalent state. This is probably due to the formation of Eu2O3 oxide at the surface of ZnO particles. This is at the origin of the strong photoluminescence band observed at 2 eV, which is characteristic of the 5D0→7F2 Eu3+ transition. In addition the photoluminescence excitonic spectra showed efficient energy transfer from the ZnO matrix to the Eu3+ ion, which is qualitatively similar for both films although the sputtered films have a better structural quality compared to the sol-gel process grown films. PMID:20644657

  12. The Role of ZnO Particle Size, Shape and Concentration on Liquid Crystal Order and Current-Voltage Properties for Potential Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Martinez-Miranda, Luz J.; Branch, Janelle; Thompson, Robert; Taylor, Jefferson W.; Salamanca-Riba, Lourdes

    2012-02-01

    We investigate the role order plays in the transfer of charges in ZnO nanoparticle - octylcyanobiphenyl (8CB) liquid crystal system for photovoltaic applications as well as the role the nominally 7x5x5nm^3 or 20x5x5nm^3 ZnO nanoparticles play in improving that order. Our results for the 5nm nanoparticles show an improvement in the alignment of the liquid crystal with increasing weight percentage of ZnO nanoparticles^1. Our results for the 7x5x5 nm^3 sample show that the current is larger than the current obtained for the 5 nm samples. We find that order is improved for concentrations close to 35% wt ZnO for both the 7x5x5 nm^3 and 20x5x5 nm^3. We have analyzed the X-ray scans for both the 7x5x5 and the 20x5x5 nm^3 samples. The signal corresponding to the liquid crystal aligned parallel to the substrate is much smaller than the peak corresponding to the liquid crystal aligned approximately at 70 with respect to the substrate for the 7x5x5 nm^3 sample whereas this same peak is comparable or more intense for the 20x5x5 nm^3 sample. 1. L. J. Mart'inez-Miranda, Kaitlin M. Traister, Iriselies Mel'endez-Rodr'iguez, and Lourdes Salamanca-Riba, Appl. Phys. Letts, 97, 223301 (2010).

  13. High Temperature Stable Nanocrystalline SiGe Thermoelectric Material

    NASA Technical Reports Server (NTRS)

    Yang, Sherwin (Inventor); Matejczyk, Daniel Edward (Inventor); Determan, William (Inventor)

    2013-01-01

    A method of forming a nanocomposite thermoelectric material having microstructural stability at temperatures greater than 1000 C. The method includes creating nanocrystalline powder by cryomilling. The method is particularly useful in forming SiGe alloy powder.

  14. In-situ TEM observation of the response of ultrafine- and nanocrystalline-grained tungsten to extreme irradiation environments

    PubMed Central

    El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.

    2014-01-01

    The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578

  15. Room temperature photoluminescence properties of ZnO nanorods grown by hydrothermal reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iwan, S., E-mail: iwan-sugihartono@unj.ac.id; Prodi Ilmu Material, Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok; Fauzia, Vivi

    Zinc oxide (ZnO) nanorods were fabricated by a hydrothermal reaction on silicon (Si) substrate at 95 °C for 6 hours. The ZnO seed layer was fabricated by depositing ZnO thin films on Si substrates by ultrasonic spray pyrolisis (USP). The annealing effects on crystal structure and optical properties of ZnO nanorods were investigated. The post-annealing treatment was performed at 800 °C with different environments. The annealed of ZnO nanorods were characterized by X-ray diffraction (XRD) and photoluminescence (PL) in order to analyze crystal structure and optical properties, respectively. The results show the orientations of [002], [101], [102], and [103] diffractionmore » peaks were observed and hexagonal wurtzite structure of ZnO nanorods were vertically grown on Si substrates. The room temperature PL spectra show ultra-violet (UV) and visible emissions. The annealed of ZnO nanorods in vacuum condition (3.8 × 10{sup −3} Torr) has dominant UV emission. Meanwhile, non-annealed of ZnO nanorods has dominant visible emission. It was expected that the annealed of ZnO in vacuum condition suppresses the existence of native defects in ZnO nanorods.« less

  16. Positron annihilation spectroscopy in doped p-type ZnO

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayanee; Sanyal, D.

    2011-07-01

    Positron annihilation lifetime (PAL) spectroscopy has been used to investigate the vacancy type defect of the Li and N doped ZnO. The mono-vacancies, shallow -vacancies and open volume defects have been found in both the Li and N doped ZnO. The mono-vacancies, shallow-vacancies and open volume defects increase in N-doped ZnO as the size of N is quite high compared to Li. Positron annihilation study showed that the doping above 1-3% Li and 3-4% N in ZnO are not required in order to achieve low resistivity, high hole concentration and good mobility.

  17. Stabilizing Nanocrystalline Oxide Nanofibers at Elevated Temperatures by Coating Nanoscale Surface Amorphous Films.

    PubMed

    Yao, Lei; Pan, Wei; Luo, Jian; Zhao, Xiaohui; Cheng, Jing; Nishijima, Hiroki

    2018-01-10

    Nanocrystalline materials often exhibit extraordinary mechanical and physical properties but their applications at elevated temperatures are impaired by the rapid grain growth. Moreover, the grain growth in nanocrystalline oxide nanofibers at high temperatures can occur at hundreds of degrees lower than that would occur in corresponding bulk nanocrystalline materials, which would eventually break the fibers. Herein, by characterizing a model system of scandia-stabilized zirconia using hot-stage in situ scanning transmission electron microscopy, we discover that the enhanced grain growth in nanofibers is initiated at the surface. Subsequently, we demonstrate that coating the fibers with nanometer-thick amorphous alumina layer can enhance their temperature stability by nearly 400 °C via suppressing the surface-initiated grain growth. Such a strategy can be effectively applied to other oxide nanofibers, such as samarium-doped ceria, yttrium-stabilized zirconia, and lanthanum molybdate. The nanocoatings also increase the flexibility of the oxide nanofibers and stabilize the high-temperature phases that have 10 times higher ionic conductivity. This study provides new insights into the surface-initiated grain growth in nanocrystalline oxide nanofibers and develops a facile yet innovative strategy to improve the high-temperature stability of nanofibers for a broad range of applications.

  18. Contrasting emission behaviour of phenanthroimidazole with ZnO nanoparticles.

    PubMed

    Karunakaran, C; Jayabharathi, J; Sathishkumar, R; Jayamoorthy, K; Vimal, K

    2013-11-01

    A new fluorophore 2-(4-fluorophenyl)-1-phenyl-1H-phenanthro [9,10-d]imidazole has been synthesized and characterized by spectroscopic techniques. Nanoparticulate ZnO enhances the fluorescence of the synthesised fluorophore. The absorption, fluorescence, lifetime, cyclic voltammetry and infrared studies reveal that fluorophore is attached to the surface of ZnO semiconductor. Photo-induced electron transfer (PET) explains the enhancement of fluorescence by nanoparticulate ZnO and the apparent binding constant has been obtained. Adsorption of the fluorophore on ZnO nanoparticle lowers the HOMO and LUMO energy levels of the fluorophore. The strong adsorption of the phenanthrimidazole derivative on the surface of ZnO nanocrystals is likely due to the chemical affinity of the nitrogen atom of the organic molecule to the zinc ion on the surface of nanocrystal. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Magneto-structural studies of sol-gel synthesized nanocrystalline manganese substituted nickel ferrites

    NASA Astrophysics Data System (ADS)

    Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.

    2016-11-01

    Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.

  20. Nanostructured ZnO - its challenging properties and potential for device applications

    NASA Astrophysics Data System (ADS)

    Dimova-Malinovska, D.

    2017-01-01

    Nanostructured ZnO possessing interesting structural and optical properties offers challenging opportunities for innovative applications. In this lecture the review of the optical and structural properties of ZnO nanostructured layers is presented. It is shown that they have a direct impact on the parameters of devices involving ZnO. An analysis of current trends in the photovoltaic (PV) field shows that improved light harvesting and efficiency of solar cells can be obtained by implementing nanostructured ZnO layers to process advanced solar cell structures. Because of amenability to doping, high chemical stability, sensitivity to different adsorbed gases, nontoxicity and low cost ZnO attracted much attention for application as gas sensors. The sensitivity of nano-grain ZnO gas elements is comparatively high because of the grain-size effect. Application of nanostructured ZnO for gas sensors and for increasing of light harvesting in solar cells is demonstrated.

  1. Evidence of a temperature transition for denuded zone formation in nanocrystalline Fe under He irradiation

    DOE PAGES

    El-Atwani, Osman; Nathaniel II, James E.; Leff, Asher C.; ...

    2016-10-18

    Nanocrystalline materials are radiation-tolerant materials’ candidates due to their high defect sink density. Here, nanocrystalline iron films were irradiated with 10 keV helium ions in situ in a transmission electron microscope at elevated temperatures. Grain-size-dependent bubble density changes and denuded zone occurrence were observed at 700 K, but not at 573 K. This transition, attributed to increased helium–vacancy migration at elevated temperatures, suggests that nanocrystalline microstructures are more resistant to swelling at 700 K due to decreased bubble density. Finally, denuded zone formation had no correlation with grain size and misorientation angle under the conditions studied.

  2. Rapid Polyol-Assisted Microwave Synthesis of Nanocrystalline LiFePO4/C Cathode for Lithium-Ion Batteries.

    PubMed

    Paul, Baboo Joseph; Gim, Jihyeon; Baek, Sora; Kang, Jungwon; Song, Jinju; Kim, Sungjin; Kim, Jaekook

    2015-08-01

    Nanocrystalline LiFePO4/C has been synthesized under a very short period of time (90 sec) using a polyol-assisted microwave heating synthesis technique. The X-ray diffraction (XRD) data indicates that the rapidly synthesized materials correspond to phase pure olivine. Post-annealing of the as-prepared sample at 600 °C in argon atmosphere yields highly crystalline LiFePO4/C. The morphology of the samples studied using scanning electron microscopy (SEM) reveals the presence of secondary particles formed from aggregation of primary particles in the range of 30-50 nm. Transmission electron microscopy (TEM) images reveal a thin carbon layer coating on the surface of the primary particle. The charge/discharge studies indicate that the as-prepared and annealed LiFePO4/C samples delivered initial discharge capacities of 126 and 160 mA h g-1, respectively, with good capacity retentions at 0.05 mA cm-2 current densities. The post-annealing process indeed improves the crystallinity of the LiFePO4 nanocrystals, which enhances the electrode performance of LiFePO4/C.

  3. ZnO for solar cell and thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chuanle; Ghods, Amirhossein; Yunghans, Kelcy L.; Saravade, Vishal G.; Patel, Paresh V.; Jiang, Xiaodong; Kucukgok, Bahadir; Lu, Na; Ferguson, Ian

    2017-03-01

    ZnO-based materials show promise in energy harvesting applications, such as piezoelectric, photovoltaic and thermoelectric. In this work, ZnO-based vertical Schottky barrier solar cells were fabricated by MOCVD de- position of ZnO thin films on ITO back ohmic contact, while Ag served as the top Schottky contact. Various rapid thermal annealing conditions were studied to modify the carrier density and crystal quality. Greater than 200 nm thick ZnO films formed polycrystalline crystal structure, and were used to demonstrate Schottky solar cells. I-V characterizations of the devices showed photovoltaic performance, but but need further development. This is the first demonstration of vertical Schottky barrier solar cell based on wide bandgap ZnO film. Thin film and bulk ZnO grown by MOCVD or melt growth were also investigated in regards to their room- temperature thermoelectric properties. The Seebeck coefficient of bulk ZnO was found to be much larger than that of thin film ZnO at room temperature due to the higher crystal quality in bulk materials. The Seebeck coefficients decrease while the carrier concentration increases due to the crystal defects caused by the charge carriers. The co-doped bulk Zn0:96Ga0:02Al0:02O showed enhanced power factors, lower thermal conductivities and promising ZT values in the whole temperature range (300-1300 K).

  4. Improved synthesis of fine zinc borate particles using seed crystals

    NASA Astrophysics Data System (ADS)

    Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim

    2009-03-01

    Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).

  5. Development of Nanocrystalline Zeolite Materials for the Decontamination of Chemical Warfare Agents

    DTIC Science & Technology

    2008-11-17

    phosphite (CH3O)2P(O)H or DMP. There is -40-20020406080100 In te ns ity ppm a) b) c) d) * ** ** ** * * 33 37 1225 9 Figure 6. 31P MAS NMR spectra...The main objective of this research is to use novel nanocrystalline zeolite materials synthesized in our laboratories for the decontamination of...nanocrystalline zeolite materials. In these studies, we have focused our attention on the decontamination of 2-CEES and DMMP, two simulants for mustard gas

  6. Theoretical prediction of low-density hexagonal ZnO hollow structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuoc, Vu Ngoc, E-mail: tuoc.vungoc@hust.edu.vn; Huan, Tran Doan; Thao, Nguyen Thi

    2016-10-14

    Along with wurtzite and zinc blende, zinc oxide (ZnO) has been found in a large number of polymorphs with substantially different properties and, hence, applications. Therefore, predicting and synthesizing new classes of ZnO polymorphs are of great significance and have been gaining considerable interest. Herein, we perform a density functional theory based tight-binding study, predicting several new series of ZnO hollow structures using the bottom-up approach. The geometry of the building blocks allows for obtaining a variety of hexagonal, low-density nanoporous, and flexible ZnO hollow structures. Their stability is discussed by means of the free energy computed within the lattice-dynamicsmore » approach. Our calculations also indicate that all the reported hollow structures are wide band gap semiconductors in the same fashion with bulk ZnO. The electronic band structures of the ZnO hollow structures are finally examined in detail.« less

  7. Defect-induced magnetic order in pure ZnO films

    NASA Astrophysics Data System (ADS)

    Khalid, M.; Ziese, M.; Setzer, A.; Esquinazi, P.; Lorenz, M.; Hochmuth, H.; Grundmann, M.; Spemann, D.; Butz, T.; Brauer, G.; Anwand, W.; Fischer, G.; Adeagbo, W. A.; Hergert, W.; Ernst, A.

    2009-07-01

    We have investigated the magnetic properties of pure ZnO thin films grown under N2 pressure on a -, c -, and r -plane Al2O3 substrates by pulsed-laser deposition. The substrate temperature and the N2 pressure were varied from room temperature to 570°C and from 0.007 to 1.0 mbar, respectively. The magnetic properties of bare substrates and ZnO films were investigated by SQUID magnetometry. ZnO films grown on c - and a -plane Al2O3 substrates did not show significant ferromagnetism. However, ZnO films grown on r -plane Al2O3 showed reproducible ferromagnetism at 300 K when grown at 300-400°C and 0.1-1.0 mbar N2 pressure. Positron annihilation spectroscopy measurements as well as density-functional theory calculations suggest that the ferromagnetism in ZnO films is related to Zn vacancies.

  8. [Smart drug delivery systems based on nanoscale ZnO].

    PubMed

    Huang, Xiao; Chen, Chun; Yi, Caixia; Zheng, Xi

    2018-04-01

    In view of the excellent biocompatibility as well as the low cost, nanoscale ZnO shows great potential for drug delivery application. Moreover, The charming character enable nanoscale ZnO some excellent features (e.g. dissolution in acid, ultrasonic permeability, microwave absorbing, hydrophobic/hydrophilic transition). All of that make nanoscale ZnO reasonable choices for smart drug delivery. In the recent decade, more and more studies have focused on controlling the drug release behavior via smart drug delivery systems based on nanoscale ZnO responsive to some certain stimuli. Herein, we review the recent exciting progress on the pH-responsive, ultrasound-responsive, microwave-responsive and UV-responsive nanoscale ZnO-based drug delivery systems. A brief introduction of the drug controlled release behavior and its effect of the drug delivery systems is presented. The biocompatibility of nanoscale ZnO is also discussed. Moreover, its development prospect is looked forward.

  9. Hydrodynamic fabrication of structurally gradient ZnO nanorods.

    PubMed

    Kim, Hyung Min; Youn, Jae Ryoun; Song, Young Seok

    2016-02-26

    We studied a new approach where structurally gradient nanostructures were fabricated by means of hydrodynamics. Zinc oxide (ZnO) nanorods were synthesized in a drag-driven rotational flow in a controlled manner. The structural characteristics of nanorods such as orientation and diameter were determined by momentum and mass transfer at the substrate surface. The nucleation of ZnO was induced by shear stress which plays a key role in determining the orientation of ZnO nanorods. The nucleation and growth of such nanostructures were modeled theoretically and analyzed numerically to understand the underlying physics of the fabrication of nanostructures controlled by hydrodynamics. The findings demonstrated that the precise control of momentum and mass transfer enabled the formation of ZnO nanorods with a structural gradient in diameter and orientation.

  10. Luminescence dynamics of bound exciton of hydrogen doped ZnO nanowires

    DOE PAGES

    Yoo, Jinkyoung; Yi, Gyu -Chul; Chon, Bonghwan; ...

    2016-04-11

    In this study, all-optical camera, converting X-rays into visible photons, is a promising strategy for high-performance X-ray imaging detector requiring high detection efficiency and ultrafast detector response time. Zinc oxide is a suitable material for all-optical camera due to its fast radiative recombination lifetime in sub-nanosecond regime and its radiation hardness. ZnO nanostructures have been considered as proper building blocks for ultrafast detectors with spatial resolution in sub-micrometer scale. To achieve remarkable enhancement of luminescence efficiency n-type doping in ZnO has been employed. However, luminescence dynamics of doped ZnO nanostructures have not been thoroughly investigated whereas undoped ZnO nanostructures havemore » been employed to study their luminescence dynamics. Here we report a study of luminescence dynamics of hydrogen doped ZnO nanowires obtained by hydrogen plasma treatment. Hydrogen doping in ZnO nanowires gives rise to significant increase in the near-band-edge emission of ZnO and decrease in averaged photoluminescence lifetime from 300 to 140 ps at 10 K. The effects of hydrogen doping on the luminescent characteristics of ZnO nanowires were changed by hydrogen doping process variables.« less

  11. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO

    NASA Astrophysics Data System (ADS)

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-01

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles’ green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  12. Luminescence of colloidal ZnO nanoparticles synthesized in alcohols and biological application of ZnO passivated by MgO.

    PubMed

    Sikora, Bożena; Fronc, Krzysztof; Kamińska, Izabela; Koper, Kamil; Stępień, Piotr; Elbaum, Danek

    2013-05-15

    This report presents the results of spectroscopic measurements of colloidal ZnO nanoparticles synthesized in various alcohols. Luminescence of colloidal ZnO was monitored under different reaction conditions to elucidate the mechanism of the visible emission. We performed the process in different alcohols, temperatures and reaction times for two different reactants: water and NaOH. Based on the presented and previously published results it is apparent that the luminescence of the nanoparticles is influenced by several competing phenomena: the formation of new nucleation centers, the growth of the nanoparticles and surface passivation. Superimposed on the above effects is a size dependent luminescence alteration resulting from the quantum confinement. The study contributes to our understanding of the origin of ZnO nanoparticles' green emission which is important in a rational design of fluorescent probes for nontoxic biological applications. The ZnO nanoparticles were coated with a magnesium oxide layer and introduced into a HeLa cancer cell.

  13. Grain growth behavior at absolute zero during nanocrystalline metal indentation

    NASA Astrophysics Data System (ADS)

    Sansoz, F.; Dupont, V.

    2006-09-01

    The authors show using atomistic simulations that stress-driven grain growth can be obtained in the athermal limit during nanocrystalline aluminum indentation. They find that the grain growth results from rotation of nanograins and propagation of shear bands. Together, these mechanisms are shown to lead to the unstable migration of grain boundaries via process of coupled motion. An analytical model is used to explain this behavior based on the atomic-level shear stress acting on the interfaces during the shear band propagation. This study sheds light on the atomic mechanism at play during the abnormal grain coarsening observed at low temperature in nanocrystalline metals.

  14. Green synthesis of ZnO nanoparticles via complex formation by using Curcuma longa extract

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fatimah, Is, E-mail: isfatimah@uii.ac.id; Yudha, Septian P.; Mutiara, Nur Afisa Lintang

    Synthesis of ZnO nanoparticles(NPs) were conducted via Zn(II) complex formation by using Curcuma longa extract as template. Curcuma longa extract has the ability to form zinc ions complex with curcumin as ligating agent. Study on synthesis was conducted by monitoring thermal degradation of the material. Successful formation of zinc oxide nanoparticles was confirmed by employing x-ray diffraction, surface area analysis and transmission electron microscopy(TEM) studies. From the XRD analysis it is denoted that ZnO in hexagonal wurtzite phase was formed and particle size was varied as varied temperature. The data are also confirmed by TEM analysis which shows the particlemore » sie at the range 20-80nm. The NPs exhibited excelent photocatalytic activity for methylene blue degradation and also significant antibacterial activity for Eschericia coli. The activity in methylene blue degradation was also confirmed from fast chemical oxygen demand (COD) reduction.« less

  15. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation.

    PubMed

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5-10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles.

  16. ZnO Nanoparticles Affect Bacillus subtilis Cell Growth and Biofilm Formation

    PubMed Central

    Hsueh, Yi-Huang; Ke, Wan-Ju; Hsieh, Chien-Te; Lin, Kuen-Song; Tzou, Dong-Ying; Chiang, Chao-Lung

    2015-01-01

    Zinc oxide nanoparticles (ZnO NPs) are an important antimicrobial additive in many industrial applications. However, mass-produced ZnO NPs are ultimately disposed of in the environment, which can threaten soil-dwelling microorganisms that play important roles in biodegradation, nutrient recycling, plant protection, and ecological balance. This study sought to understand how ZnO NPs affect Bacillus subtilis, a plant-beneficial bacterium ubiquitously found in soil. The impact of ZnO NPs on B. subtilis growth, FtsZ ring formation, cytosolic protein activity, and biofilm formation were assessed, and our results show that B. subtilis growth is inhibited by high concentrations of ZnO NPs (≥ 50 ppm), with cells exhibiting a prolonged lag phase and delayed medial FtsZ ring formation. RedoxSensor and Phag-GFP fluorescence data further show that at ZnO-NP concentrations above 50 ppm, B. subtilis reductase activity, membrane stability, and protein expression all decrease. SDS-PAGE Stains-All staining results and FT-IR data further demonstrate that ZnO NPs negatively affect exopolysaccharide production. Moreover, it was found that B. subtilis biofilm surface structures became smooth under ZnO-NP concentrations of only 5–10 ppm, with concentrations ≤ 25 ppm significantly reducing biofilm formation activity. XANES and EXAFS spectra analysis further confirmed the presence of ZnO in co-cultured B. subtilis cells, which suggests penetration of cell membranes by either ZnO NPs or toxic Zn+ ions from ionized ZnO NPs, the latter of which may be deionized to ZnO within bacterial cells. Together, these results demonstrate that ZnO NPs can affect B. subtilis viability through the inhibition of cell growth, cytosolic protein expression, and biofilm formation, and suggest that future ZnO-NP waste management strategies would do well to mitigate the potential environmental impact engendered by the disposal of these nanoparticles. PMID:26039692

  17. Nanocrystalline sp{sup 2} and sp{sup 3} carbons: CVD synthesis and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terranova, M. L.; Rossi, M.; Tamburri, E., E-mail: emanuela.tamburri@uniroma2.it

    The design and production of innovative materials based on nanocrystalline sp{sup 2}- and sp{sup 3}-coordinated carbons is presently a focus of the scientific community. We present a review of the nanostructures obtained in our labs using a series of synthetic routes, which make use of chemical vapor deposition (CVD) techniques for the selective production of non-planar graphitic nanostructures, nanocrystalline diamonds, and hybrid two-phase nanostructures.

  18. Mg-doped ZnO nanoparticles for efficient sunlight-driven photocatalysis.

    PubMed

    Etacheri, Vinodkumar; Roshan, Roshith; Kumar, Vishwanathan

    2012-05-01

    Magnesium-doped ZnO (ZMO) nanoparticles were synthesized through an oxalate coprecipitation method. Crystallization of ZMO upon thermal decomposition of the oxalate precursors was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD) techniques. XRD studies point toward a significant c-axis compression and reduced crystallite sizes for ZMO samples in contrast to undoped ZnO, which was further confirmed by HRSEM studies. X-ray photoelectron spectroscopy (XPS), UV/vis spectroscopy and photoluminescence (PL) spectroscopy were employed to establish the electronic and optical properties of these nanoparticles. (XPS) studies confirmed the substitution of Zn(2+) by Mg(2+), crystallization of MgO secondary phase, and increased Zn-O bond strengths in Mg-doped ZnO samples. Textural properties of these ZMO samples obtained at various calcination temperatures were superior in comparison to the undoped ZnO. In addition to this, ZMO samples exhibited a blue-shift in the near band edge photoluminescence (PL) emission, decrease of PL intensities and superior sunlight-induced photocatalytic decomposition of methylene blue in contrast to undoped ZnO. The most active photocatalyst 0.1-MgZnO obtained after calcination at 600 °C showed a 2-fold increase in photocatalytic activity compared to the undoped ZnO. Band gap widening, superior textural properties and efficient electron-hole separation were identified as the factors responsible for the enhanced sunlight-driven photocatalytic activities of Mg-doped ZnO nanoparticles.

  19. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results

  20. Application of ASTAR(TM)/Precession Electron Diffraction Technique to Quantitatively Study Defects in Nanocrystalline Metallic Materials

    NASA Astrophysics Data System (ADS)

    Ghamarian, Iman

    Nanocrystalline metallic materials have the potential to exhibit outstanding performance which leads to their usage in challenging applications such as coatings and biomedical implant devices. To optimize the performance of nanocrystalline metallic materials according to the desired applications, it is important to have a decent understanding of the structure, processing and properties of these materials. Various efforts have been made to correlate microstructure and properties of nanocrystalline metallic materials. Based on these research activities, it is noticed that microstructure and defects (e.g., dislocations and grain boundaries) play a key role in the behavior of these materials. Therefore, it is of great importance to establish methods to quantitatively study microstructures, defects and their interactions in nanocrystalline metallic materials. Since the mechanisms controlling the properties of nanocrystalline metallic materials occur at a very small length scale, it is fairly difficult to study them. Unfortunately, most of the characterization techniques used to explore these materials do not have the high enough spatial resolution required for the characterization of these materials. For instance, by applying complex profile-fitting algorithms to X-ray diffraction patterns, it is possible to get an estimation of the average grain size and the average dislocation density within a relatively large area. However, these average values are not enough for developing meticulous phenomenological models which are able to correlate microstructure and properties of nanocrystalline metallic materials. As another example, electron backscatter diffraction technique also cannot be used widely in the characterization of these materials due to problems such as relative poor spatial resolution (which is 90 nm) and the degradation of Kikuchi diffraction patterns in severely deformed nano-size grain metallic materials. In this study, ASTAR(TM)/precession electron