Science.gov

Sample records for nanoflare distribution generated

  1. A nanoflare distribution generated by repeated relaxations triggered by kink instability

    NASA Astrophysics Data System (ADS)

    Bareford, M. R.; Browning, P. K.; van der Linden, R. A. M.

    2010-10-01

    Context. It is thought likely that vast numbers of nanoflares are responsible for the corona having a temperature of millions of degrees. Current observational technologies lack the resolving power to confirm the nanoflare hypothesis. An alternative approach is to construct a magnetohydrodynamic coronal loop model that has the ability to predict nanoflare energy distributions. Aims: This paper presents the initial results generated by a coronal loop model that flares whenever it becomes unstable to an ideal MHD kink mode. A feature of the model is that it predicts heating events with a range of sizes, depending on where the instability threshold for linear kink modes is encountered. The aims are to calculate the distribution of event energies and to investigate whether kink instability can be predicted from a single parameter. Methods: The loop is represented as a straight line-tied cylinder. The twisting caused by random photospheric motions is captured by two parameters, representing the ratio of current density to field strength for specific regions of the loop. Instability onset is mapped as a closed boundary in the 2D parameter space. Dissipation of the loop's magnetic energy begins during the nonlinear stage of the instability, which develops as a consequence of current sheet reconnection. After flaring, the loop evolves to the state of lowest energy where, in accordance with relaxation theory, the ratio of current to field is constant throughout the loop and helicity is conserved. Results: There exists substantial variation in the radial magnetic twist profiles for the loop states along the instability threshold. These results suggest that instability cannot be predicted by any simple twist-derived property reaching a critical value. The model is applied such that the loop undergoes repeated episodes of instability followed by energy-releasing relaxation. Hence, an energy distribution of the nanoflares produced is collated. This paper also presents the

  2. Active region emission measure distributions and implications for nanoflare heating

    SciTech Connect

    Cargill, P. J.

    2014-03-20

    The temperature dependence of the emission measure (EM) in the core of active regions coronal loops is an important diagnostic of heating processes. Observations indicate that EM(T) ∼ T{sup a} below approximately 4 MK, with 2 < a < 5. Zero-dimensional hydrodynamic simulations of nanoflare trains are used to demonstrate the dependence of a on the time between individual nanoflares (T{sub N} ) and the distribution of nanoflare energies. If T{sub N} is greater than a few thousand seconds, a < 3. For smaller values, trains of equally spaced nanoflares cannot account for the observed range of a if the distribution of nanoflare energies is either constant, randomly distributed, or a power law. Power law distributions where there is a delay between consecutive nanoflares proportional to the energy of the second nanoflare do lead to the observed range of a. However, T{sub N} must then be of the order of hundreds to no more than a few thousand seconds. If a nanoflare leads to the relaxation of a stressed coronal field to a near-potential state, the time taken to build up the required magnetic energy is thus too long to account for the EM measurements. Instead, it is suggested that a nanoflare involves the relaxation from one stressed coronal state to another, dissipating only a small fraction of the available magnetic energy. A consequence is that nanoflare energies may be smaller than previously envisioned.

  3. Energy distribution of nanoflares in the quiet solar corona

    NASA Astrophysics Data System (ADS)

    Ulyanov, Artyom

    2012-07-01

    We present a detailed statistical analysis of flare-like events in low layer of solar corona detected with TESIS instrument onboard CORONAS-PHOTON satellite in 171 {Å} during high-cadence (5 sec) time-series. The estimated thermal energies of these small events amount to 10^{23} - 10^{26} erg. According to modern classification flare-like events with such energies are usually referred to as nanoflares. The big number of registered events (above 2000) allowed us to obtain precise distributions of geometric and physical parameters of nanoflares, the most intriguing being energy distribution. Following Aschwanden et al. (2000) and other authors we approximated the calculated energy distribution with a single power law slope: N(E)dE ˜ N^{-α}dE. The power law index was derived to be α = 2.4 ± 0.2, which is very close to the value reported by Krucker & Benz (1998): α ≈ 2.3 - 2.4. The total energy input from registered events constitute about 10^4 erg \\cdot cm^{-2} \\cdot s^{-1}, which is well beyond net losses in quiet corona (3 \\cdot 10^5 erg \\cdot cm^{-2} \\cdot s^{-1}). However, the value of α > 2 indicates that nanoflares with lower energies dominate over nanoflares with bigger energies and could contribute considerably to quiet corona heating.

  4. CAN A LONG NANOFLARE STORM EXPLAIN THE OBSERVED EMISSION MEASURE DISTRIBUTIONS IN ACTIVE REGION CORES?

    SciTech Connect

    Mulu-Moore, Fana M.; Winebarger, Amy R.; Warren, Harry P.

    2011-11-20

    All theories that attempt to explain the heating of the high-temperature plasma observed in the solar corona are based on short bursts of energy. The intensities and velocities measured in the cores of quiescent active regions, however, can be steady over many hours of observation. One heating scenario that has been proposed to reconcile such observations with impulsive heating models is the 'long nanoflare storm', where short-duration heating events occur infrequently on many sub-resolution strands; the emission of the strands is then averaged together to explain the observed steady structures. In this Letter, we examine the emission measure distribution predicted for such a long nanoflare storm by modeling an arcade of strands in an active region core. Comparisons of the computed emission measure distributions with recent observations indicate that the long nanoflare storm scenario implies greater than five times more 1 MK emission than is actually observed for all plausible combinations of loop lengths, heating rates, and abundances. We conjecture that if the plasma had 'super coronal' abundances, the model may be able to match the observations at low temperatures.

  5. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    SciTech Connect

    Che, H.; Goldstein, M. L.

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvén wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  6. Distribution of Nanoflares as Spatially Resolved Current Sheets in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Ng, C. S.; Lin, L.

    2014-05-01

    In a recent numerical study [Ng et al., Astrophys. J. 747, 109, 2012], based on a three-dimensional model of coronal heating using reduced magnetohydrodynamics, we have obtained scaling results of heating rate versus Lundquist number S based on a series of runs in which random photospheric motions are imposed for hundreds to thousands of Alfvén time in order to obtain converged statistical values. The heating rate found in these simulations saturates to a level that is independent of S in the high S limit and is consistent with the required level for coronal heating. In a previous study based on the total heating rate time series [Ng and Lin, AIP Conf. Proc. 1500, 38, 2012] in these simulations, we have also calculated heating events distributions, which are consistent with observations but do not support the nanoflares scenario [Parker, Astrophys. J. 330, 474, 1988]. This method has a limitation of not distinguishing individual heating events. We now extend this analysis to investigate the distribution of energy release events defined as spatially resolved current sheets [Lin et el., ASP Conf. Ser. 474, 159, 2013]. We report preliminary results and compare to results obtained using only time-series analysis.

  7. A nanoflare model of quiet Sun EUV emission

    NASA Astrophysics Data System (ADS)

    Pauluhn, A.; Solanki, S. K.

    2007-01-01

    Nanoflares have been proposed as the main source of heating of the solar corona. However, detecting them directly has so far proved elusive, and extrapolating to them from the properties of larger brightenings gives unreliable estimates of the power-law exponent α characterising their distribution. Here we take the approach of statistically modelling light curves representative of the quiet Sun as seen in EUV radiation. The basic assumption is that all quiet-Sun EUV emission is due to micro- and nanoflares, whose radiative energies display a power-law distribution. Radiance values in the quiet Sun follow a lognormal distribution. This is irrespective of whether the distribution is made over a spatial scan or over a time series. We show that these distributions can be reproduced by our simple model. By simultaneously fitting the radiance distribution function and the power spectrum obtained from the light curves emitted by transition region and coronal lines the power-law distribution of micro- and nanoflare brightenings is constrained. A good statistical match to the measurements is obtained for a steep power-law distribution of nanoflare energies, with power-law exponent α> 2. This is consistent with the dominant heat input to the corona being provided by nanoflares, i.e., by events with energies around 1023 erg. In order to reproduce the observed SUMER time series approximately 103 to 104 nanoflares are needed per second throughout the atmosphere of the quiet Sun (assuming the nanoflares to cover an average area of 1013 m2).

  8. Nanoflare activity in the solar chromosphere

    SciTech Connect

    Jess, D. B.; Mathioudakis, M.; Keys, P. H.

    2014-11-10

    We use ground-based images of high spatial and temporal resolution to search for evidence of nanoflare activity in the solar chromosphere. Through close examination of more than 1 × 10{sup 9} pixels in the immediate vicinity of an active region, we show that the distributions of observed intensity fluctuations have subtle asymmetries. A negative excess in the intensity fluctuations indicates that more pixels have fainter-than-average intensities compared with those that appear brighter than average. By employing Monte Carlo simulations, we reveal how the negative excess can be explained by a series of impulsive events, coupled with exponential decays, that are fractionally below the current resolving limits of low-noise equipment on high-resolution ground-based observatories. Importantly, our Monte Carlo simulations provide clear evidence that the intensity asymmetries cannot be explained by photon-counting statistics alone. A comparison to the coronal work of Terzo et al. suggests that nanoflare activity in the chromosphere is more readily occurring, with an impulsive event occurring every ∼360 s in a 10,000 km{sup 2} area of the chromosphere, some 50 times more events than a comparably sized region of the corona. As a result, nanoflare activity in the chromosphere is likely to play an important role in providing heat energy to this layer of the solar atmosphere.

  9. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  10. Are chromospheric nanoflares a primary source of coronal plasma?

    SciTech Connect

    Klimchuk, J. A.; Bradshaw, S. J. E-mail: stephen.bradshaw@rice.edu

    2014-08-10

    It has been suggested that the hot plasma of the solar corona comes primarily from impulsive heating events, or nanoflares, that occur in the lower atmosphere, either in the upper part of the ordinary chromosphere or at the tips of type II spicules. We test this idea with a series of hydrodynamic simulations. We find that synthetic Fe XII (195) and Fe XIV (274) line profiles generated from the simulations disagree dramatically with actual observations. The integrated line intensities are much too faint; the blueshifts are much too fast; the blue-red asymmetries are much too large; and the emission is confined to low altitudes. We conclude that chromospheric nanoflares are not a primary source of hot coronal plasma. Such events may play an important role in producing the chromosphere and powering its intense radiation, but they do not, in general, raise the temperature of the plasma to coronal values. Those cases where coronal temperatures are reached must be relatively uncommon. The observed profiles of Fe XII and Fe XIV come primarily from plasma that is heated in the corona itself, either by coronal nanoflares or a quasi-steady coronal heating process. Chromospheric nanoflares might play a role in generating waves that provide this coronal heating.

  11. "Hot" Non-flaring Plasmas in Active Region Cores Heated by Single Nanoflares

    NASA Astrophysics Data System (ADS)

    Barnes, Will Thomas; Cargill, Peter; Bradshaw, Stephen

    2016-05-01

    We use hydrodynamic modeling tools, including a two-fluid development of the EBTEL code, to investigate the properties expected of "hot" (i.e. between 106.7 and 107.2 K) non-flaring plasmas due to nanoflare heating in active regions. Here we focus on single nanoflares and show that while simple models predict an emission measure distribution extending well above 10 MK that is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium and, for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the "smoking gun" of nanoflare heating, lies between 1 MK and 10 MK. Signatures of the actual heating may be detectable in some instances.

  12. Influence of Multiple Ionization on Studies of Nanoflare Heated Plasmas

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2015-04-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. This, in turn, is determined by the corresponding rates for electron-impact ionization and recombination. Current CSD calculations for solar physics do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for solar physics is nanoflare heating. Recent work has attempted to predict the spectra of impulsively heated plasmas in order to identify diagnostics arising from non-equilibrium ionization that can constrain the nanoflare properties, but these calculations have ignored EIMI. Our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  13. CAN A NANOFLARE MODEL OF EXTREME-ULTRAVIOLET IRRADIANCES DESCRIBE THE HEATING OF THE SOLAR CORONA?

    SciTech Connect

    Tajfirouze, E.; Safari, H.

    2012-01-10

    Nanoflares, the basic units of impulsive energy release, may produce much of the solar background emission. Extrapolation of the energy frequency distribution of observed microflares, which follows a power law to lower energies, can give an estimation of the importance of nanoflares for heating the solar corona. If the power-law index is greater than 2, then the nanoflare contribution is dominant. We model a time series of extreme-ultraviolet emission radiance as random flares with a power-law exponent of the flare event distribution. The model is based on three key parameters: the flare rate, the flare duration, and the power-law exponent of the flare intensity frequency distribution. We use this model to simulate emission line radiance detected in 171 A, observed by Solar Terrestrial Relation Observatory/Extreme-Ultraviolet Imager and Solar Dynamics Observatory/Atmospheric Imaging Assembly. The observed light curves are matched with simulated light curves using an Artificial Neural Network, and the parameter values are determined across the active region, quiet Sun, and coronal hole. The damping rate of nanoflares is compared with the radiative losses cooling time. The effect of background emission, data cadence, and network sensitivity on the key parameters of the model is studied. Most of the observed light curves have a power-law exponent, {alpha}, greater than the critical value 2. At these sites, nanoflare heating could be significant.

  14. Investigation of relationships between parameters of solar nano-flares and solar activity

    NASA Astrophysics Data System (ADS)

    Safari, Hossein; Javaherian, Mohsen; Kaki, Bardia

    2016-07-01

    Solar flares are one of the important coronal events which are originated in solar magnetic activity. They release lots of energy during the interstellar medium, right after the trigger. Flare prediction can play main role in avoiding eventual damages on the Earth. Here, to interpret solar large-scale events (e.g., flares), we investigate relationships between small-scale events (nano-flares) and large-scale events (e.g., flares). In our method, by using simulations of nano-flares based on Monte Carlo method, the intensity time series of nano-flares are simulated. Then, the solar full disk images taken at 171 angstrom recorded by SDO/AIA are employed. Some parts of the solar disk (quiet Sun (QS), coronal holes (CHs), and active regions (ARs)) are cropped and the time series of these regions are extracted. To compare the simulated intensity time series of nano-flares with the intensity time series of real data extracted from different parts of the Sun, the artificial neural networks is employed. Therefore, we are able to extract physical parameters of nano-flares like both kick and decay rate lifetime, and the power of their power-law distributions. The procedure of variations in the power value of power-law distributions within QS, CH is similar to AR. Thus, by observing the small part of the Sun, we can follow the procedure of solar activity.

  15. Distributed generation systems model

    SciTech Connect

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  16. Evidence of Nanoflare Heating in Coronal Loops Observed with Hinolde-XRT and SDO-AIA

    NASA Technical Reports Server (NTRS)

    Lopez-Fuentes, M. C.; Klimchuk, James

    2013-01-01

    We study a series of coronal loop lightcurves from X-ray and EUV observations. In search for signatures of nanoflare heating, we analyze the statistical properties of the observed lightcurves and compare them with synthetic cases obtained with a 2D cellular-automaton model based on nanoflare heating driven by photospheric motions. Our analysis shows that the observed and the model lightcurves have similar statistical properties. The asymmetries observed in the distribution of the intensity fluctuations indicate the possible presence of widespread cooling processes in sub-resolution magnetic strands.

  17. Distributed generation hits market

    SciTech Connect

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  18. A nanoflare model for active region radiance: application of artificial neural networks

    NASA Astrophysics Data System (ADS)

    Bazarghan, M.; Safari, H.; Innes, D. E.; Karami, E.; Solanki, S. K.

    2008-12-01

    Context: Nanoflares are small impulsive bursts of energy that blend with and possibly make up much of the solar background emission. Determining their frequency and energy input is central to understanding the heating of the solar corona. One method is to extrapolate the energy frequency distribution of larger individually observed flares to lower energies. Only if the power law exponent is greater than 2 is it considered possible that nanoflares contribute significantly to the energy input. Aims: Time sequences of ultraviolet line radiances observed in the corona of an active region are modelled with the aim of determining the power law exponent of the nanoflare energy distribution. Methods: A simple nanoflare model based on three key parameters (the flare rate, the flare duration, and the power law exponent of the flare energy frequency distribution) is used to simulate emission line radiances from the ions Fe XIX, Ca XIII, and Si III, observed by SUMER in the corona of an active region as it rotates around the east limb of the Sun. Light curve pattern recognition by an Artificial Neural Network (ANN) scheme is used to determine the values. Results: The power law exponents, α≈2.8, 2.8, and 2.6 are obtained for Fe XIX, Ca XIII, and Si III respectively. Conclusions: The light curve simulations imply a power law exponent greater than the critical value of 2 for all ion species. This implies that if the energy of flare-like events is extrapolated to low energies, nanoflares could provide a significant contribution to the heating of active region coronae.

  19. Widespread Nanoflare Variability Detected with Hinode/XRT in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Reale, Fabio; Terzo, Sergio; Miceli, Marco; Klimchuk, James A.; Kano, Ryouhei; Tsuneta, Saku

    2011-01-01

    It is generally agreed that small impulsive energy bursts called nanoflares are responsible for at least some of the Sun s hot corona, but whether they are the explanation for most of the multi-million degree plasma has been a matter of ongoing debate. We here present evidence that nanoflares are widespread in an active region observed by the X-Ray Telescope on-board the Hinode mission. The distributions of intensity fluctuations have small but important asymmetries, whether taken from individual pixels, multi-pixel subregions, or the entire active region. Negative fluctuations (corresponding to reduced intensity) are greater in number but weaker in amplitude, so that the median fluctuation is negative compared to a mean of zero. Using Monte Carlo simulations, we show that only part of this asymmetry can be explained by Poisson photon statistics. The remainder is explainable with a tendency for exponentially decreasing intensity, such as would be expected from a cooling plasma produced, e.g., from a nanoflare. We suggest that nanoflares are a universal heating process within active regions.

  20. Nanoflare Heating of Solar and Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Klimchuk, James A.

    2010-01-01

    A combination of observational and theoretical evidence suggests that much, and perhaps most, of the Sun's corona is heated by small unresolved bursts of energy called nanoflares. It seems likely that stellar coronae are heated in a similar fashion. Kanoflares are here taken to mean any impulsive heating that occurs within a magnetic flux strand. Many mechanisms have this property, including waves, but we prefer Parker's picture of tangled magnetic fields. The tangling is caused by turbulent convection at the stellar surface, and magnetic energy is released when the stresses reach a critical level. We suggest that the mechanism of energy release is the "secondary instability" of electric current sheets that are present at the boundaries between misaligned strands. I will discuss the collective evidence for solar and stellar nanoflares and hopefully present new results from the Solar Dynamics Observatory that was just launched.

  1. Common origin of kinetic scale turbulence and the electron halo in the solar wind - Connection to nanoflares

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2016-03-01

    We summarize our recent studies on the origin of solar wind kinetic scale turbulence and electron halo in the electron velocity distribution function. Increasing observations of nanoflares and microscopic type III radio bursts strongly suggest that nanoflares and accelerated electron beams are common in the corona. Based on particle-in-cell simulations, we show that both the core-halo feature and kinetic scale turbulence observed in the solar wind can be produced by the nonlinear evolution of electron two-stream instability driven by nanoflare accelerated electron beams. The energy exchange between waves and particles reaches equilibrium in the inner corona and the key features of the turbulence and velocity distribution are preserved as the solar wind escapes into interplanetary space along open magnetic field lines. Observational tests of the model and future theoretical work are discussed.

  2. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  3. OBSERVING CORONAL NANOFLARES IN ACTIVE REGION MOSS

    SciTech Connect

    Testa, Paola; DeLuca, Ed; Golub, Leon; Korreck, Kelly; Weber, Mark; De Pontieu, Bart; Martinez-Sykora, Juan; Title, Alan; Hansteen, Viggo; Cirtain, Jonathan; Winebarger, Amy; Kobayashi, Ken; Kuzin, Sergey; Walsh, Robert; DeForest, Craig

    2013-06-10

    The High-resolution Coronal Imager (Hi-C) has provided Fe XII 193A images of the upper transition region moss at an unprecedented spatial ({approx}0.''3-0.''4) and temporal (5.5 s) resolution. The Hi-C observations show in some moss regions variability on timescales down to {approx}15 s, significantly shorter than the minute-scale variability typically found in previous observations of moss, therefore challenging the conclusion of moss being heated in a mostly steady manner. These rapid variability moss regions are located at the footpoints of bright hot coronal loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly in the 94 A channel, and by the Hinode/X-Ray Telescope. The configuration of these loops is highly dynamic, and suggestive of slipping reconnection. We interpret these events as signatures of heating events associated with reconnection occurring in the overlying hot coronal loops, i.e., coronal nanoflares. We estimate the order of magnitude of the energy in these events to be of at least a few 10{sup 23} erg, also supporting the nanoflare scenario. These Hi-C observations suggest that future observations at comparable high spatial and temporal resolution, with more extensive temperature coverage, are required to determine the exact characteristics of the heating mechanism(s).

  4. Nanoflare Heating of the Quiet Sun

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Klimchuk, J. A.

    2015-12-01

    How the solar corona is heated to temperatures of over 1 MK, while the photosphere below is only ~ 6000 K remains one of the outstanding problems in all of space science. Solving this problem is crucial for understanding Sun-Earth connections, and will provide new insight into universal processes such as magnetic reconnection and wave-particle interactions. We use a systematic technique to analyze the properties of coronal heating throughout the solar corona using data taken with the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. Our technique computes cooling times of the coronal plasma on a pixel-by-pixel basis and has the advantage that it analyzes all of the coronal emission, including the diffuse emission surrounding distinguishable coronal features. We have already applied this technique to 15 different active regions, and find clear evidence for dynamic heating and cooling cycles that are consistent with the 'impulsive nanoflare' scenario. What about the rest of the Solar corona? Whether the quiet Sun is heated in a similar or distinct manner from active regions is a matter of great debate. Here we apply our coronal heating analysis technique to quiet Sun locations. We find areas of quiet Sun locations that also undergo dynamic heating and cooling cycles, consistent with impulsive nanoflares. However, there are important characteristics that are distinct from those of active regions.

  5. Energy Dissipation in Magnetohydrodynamic Turbulence: Coherent Structures or Nanoflares?

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos; Tobias, Steven

    2014-10-01

    Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent, occurring mainly in current sheets. However, the question remains whether the overall energy dissipation is dominated by small (dissipation-scale) structures or by large (inertial-range) structures. To systematically investigate this question, we develop and apply a procedure to identify and characterize dissipative structures in numerical simulations of reduced MHD. We find that the probability distribution of energy dissipation rates exhibits a power law tail with index very close to the critical value of -2.0, indicating that structures of all intensities contribute equally to the overall energy dissipation. We then measure the characteristic spatial scales of structures using two methods: one based on the linear scales across the structure and the other based on the Minkowski functionals, which rigorously characterize the morphology of any shape. We find that energy dissipation is dominated by coherent structures with lengths and widths uniformly distributed across the inertial range, while thicknesses lie deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. The current sheets therefore exhibit features of both coherent structures and nanoflares.

  6. Energy dissipation in magnetohydrodynamic turbulence: coherent structures or 'nanoflares'?

    SciTech Connect

    Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos; Tobias, Steven M.

    2014-11-10

    We investigate the intermittency of energy dissipation in magnetohydrodynamic (MHD) turbulence by identifying dissipative structures and measuring their characteristic scales. We find that the probability distribution of energy dissipation rates exhibits a power-law tail with an index very close to the critical value of –2.0, which indicates that structures of all intensities contribute equally to energy dissipation. We find that energy dissipation is uniformly spread among coherent structures with lengths and widths in the inertial range. At the same time, these structures have thicknesses deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. This implies that in the limit of high Reynolds number, energy dissipation occurs in thin, tightly packed current sheets which nevertheless span a continuum of scales up to the system size, exhibiting features of both coherent structures and nanoflares previously conjectured as a coronal heating mechanism.

  7. Energy Dissipation in Magnetohydrodynamic Turbulence: Coherent Structures or "Nanoflares"?

    NASA Astrophysics Data System (ADS)

    Zhdankin, Vladimir; Boldyrev, Stanislav; Perez, Jean Carlos; Tobias, Steven M.

    2014-11-01

    We investigate the intermittency of energy dissipation in magnetohydrodynamic (MHD) turbulence by identifying dissipative structures and measuring their characteristic scales. We find that the probability distribution of energy dissipation rates exhibits a power-law tail with an index very close to the critical value of -2.0, which indicates that structures of all intensities contribute equally to energy dissipation. We find that energy dissipation is uniformly spread among coherent structures with lengths and widths in the inertial range. At the same time, these structures have thicknesses deep within the dissipative regime. As the Reynolds number is increased, structures become thinner and more numerous, while the energy dissipation continues to occur mainly in large-scale coherent structures. This implies that in the limit of high Reynolds number, energy dissipation occurs in thin, tightly packed current sheets which nevertheless span a continuum of scales up to the system size, exhibiting features of both coherent structures and nanoflares previously conjectured as a coronal heating mechanism.

  8. A NANOFLARE HEATING MODEL AND COMPARISON WITH OBSERVATIONS

    SciTech Connect

    Sakamoto, Yasushi; Tsuneta, Saku; Vekstein, Grigory

    2009-10-01

    A nanoflare-heated coronal loop model is developed based on the model of Vekstein and Katsukawa. We performed numerical simulations based on the model, and then compared the results with the Yohkoh/Soft X-ray Telescope (SXT) and Transition Region and Coronal Explorer (TRACE) observations. We found that the most significant difference between hot (>2 MK) SXT loops and cool (approx1 MK) TRACE loops is the energy of nanoflares and the magnetic field strength. Energy of individual nanoflares is 10{sup 24-25} erg for SXT loops, and 10{sup 23} erg for TRACE loops. This is derived from the observed intensity fluctuations. To observed mean intensities, we require the model SXT loops to have a stronger magnetic field than the TRACE loops, 40 G and 8 G, respectively. The model predicts two characteristic properties of nanoflare-heated coronal loops: (1) the SXT and TRACE light curves of a coronal loop show weak cross-correlation with a lag time corresponding to the cooling timescale. (2) SXT loops have a smaller volumetric filling factor than TRACE loops. We consider that this difference in the filling factor makes SXT loops look more diffuse than TRACE loops.

  9. Using a nano-flare probe to detect RNA in live donor cells prior to somatic cell nuclear transfer.

    PubMed

    Fu, Bo; Ren, Liang; Liu, Di; Ma, Jian-Zhang; An, Tie-Zhu; Yang, Xiu-Qin; Ma, Hong; Guo, Zhen-Hua; Zhu, Meng; Bai, Jing

    2016-01-01

    Many transgenes are silenced in mammalian cells (donor cells used for somatic cell nuclear transfer [SCNT]). Silencing correlated with a repressed chromatin structure or suppressed promoter, and it impeded the production of transgenic animals. Gene transcription studies in live cells are challenging because of the drawbacks of reverse-transcription polymerase chain reaction and fluorescence in situ hybridization. Nano-flare probes provide an effective approach to detect RNA in living cells. We used 18S RNA, a housekeeping gene, as a reference gene. This study aimed to establish a platform to detect RNA in single living donor cells using a Nano-flare probe prior to SCNT and to verify the safety and validity of the Nano-flare probe in order to provide a technical foundation for rescuing silenced transgenes in transgenic cloned embryos. We investigated cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts, characterized the distribution of the 18S RNA-Nano-flare probe in living cells and investigated the effect of the 18S RNA-Nano-flare probe on the development of cloned embryos after SCNT. The cytotoxic effect of the 18S RNA-Nano-flare probe on porcine fetal fibroblasts was dose-dependent, and 18S RNA was detected using the 18S RNA-Nano-flare probe. In addition, treating donor cells with 500 pM 18S RNA-Nano-flare probe did not have adverse effects on the development of SCNT embryos at the pre-implantation stage. In conclusion, we established a preliminary platform to detect RNA in live donor cells using a Nano-flare probe prior to SCNT. PMID:26109144

  10. Nanoflares, Spicules, and Other Small-Scale Dynamic Phenomena on the Sun

    NASA Technical Reports Server (NTRS)

    Klimchuk, James

    2010-01-01

    There is abundant evidence of highly dynamic phenomena occurring on very small scales in the solar atmosphere. For example, the observed pr operties of many coronal loops can only be explained if the loops are bundles of unresolved strands that are heated impulsively by nanoflares. Type II spicules recently discovered by Hinode are an example of small-scale impulsive events occurring in the chromosphere. The exist ence of these and other small-scale phenomena is not surprising given the highly structured nature of the magnetic field that is revealed by photospheric observations. Dynamic phenomena also occur on much lar ger scales, including coronal jets, flares, and CMEs. It is tempting to suggest that these different phenomena are all closely related and represent a continuous distribution of sizes and energies. However, this is a dangerous over simplification in my opinion. While it is tru e that the phenomena all involve "magnetic reconnection" (the changin g of field line connectivity) in some form, how this occurs depends s trongly on the magnetic geometry. A nanoflare resulting from the interaction of tangled magnetic strands within a confined coronal loop is much different from a major flare occurring at the current sheet form ed when a CME rips open an active region. I will review the evidence for ubiquitous small-scale dynamic phenomena on the Sun and discuss wh y different phenomena are not all fundamentally the same.

  11. Modelling nanoflares in active regions and implications for coronal heating mechanisms.

    PubMed

    Cargill, P J; Warren, H P; Bradshaw, S J

    2015-05-28

    Recent observations from the Hinode and Solar Dynamics Observatory spacecraft have provided major advances in understanding the heating of solar active regions (ARs). For ARs comprising many magnetic strands or sub-loops heated by small, impulsive events (nanoflares), it is suggested that (i) the time between individual nanoflares in a magnetic strand is 500-2000 s, (ii) a weak 'hot' component (more than 10(6.6) K) is present, and (iii) nanoflare energies may be as low as a few 10(23) ergs. These imply small heating events in a stressed coronal magnetic field, where the time between individual nanoflares on a strand is of order the cooling time. Modelling suggests that the observed properties are incompatible with nanoflare models that require long energy build-up (over 10 s of thousands of seconds) and with steady heating. PMID:25897093

  12. Modelling nanoflares in active regions and implications for coronal heating mechanisms

    PubMed Central

    Cargill, P. J.; Warren, H. P.; Bradshaw, S. J.

    2015-01-01

    Recent observations from the Hinode and Solar Dynamics Observatory spacecraft have provided major advances in understanding the heating of solar active regions (ARs). For ARs comprising many magnetic strands or sub-loops heated by small, impulsive events (nanoflares), it is suggested that (i) the time between individual nanoflares in a magnetic strand is 500–2000 s, (ii) a weak ‘hot’ component (more than 106.6 K) is present, and (iii) nanoflare energies may be as low as a few 1023 ergs. These imply small heating events in a stressed coronal magnetic field, where the time between individual nanoflares on a strand is of order the cooling time. Modelling suggests that the observed properties are incompatible with nanoflare models that require long energy build-up (over 10 s of thousands of seconds) and with steady heating. PMID:25897093

  13. Evidence of nonthermal particles in coronal loops heated impulsively by nanoflares.

    PubMed

    Testa, P; De Pontieu, B; Allred, J; Carlsson, M; Reale, F; Daw, A; Hansteen, V; Martinez-Sykora, J; Liu, W; DeLuca, E E; Golub, L; McKillop, S; Reeves, K; Saar, S; Tian, H; Lemen, J; Title, A; Boerner, P; Hurlburt, N; Tarbell, T D; Wuelser, J P; Kleint, L; Kankelborg, C; Jaeggli, S

    2014-10-17

    The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High-resolution observations with the Interface Region Imaging Spectrograph (IRIS) reveal rapid variability (~20 to 60 seconds) of intensity and velocity on small spatial scales (≲500 kilometers) at the footpoints of hot and dynamic coronal loops. The observations are consistent with numerical simulations of heating by beams of nonthermal electrons, which are generated in small impulsive (≲30 seconds) heating events called "coronal nanoflares." The accelerated electrons deposit a sizable fraction of their energy (≲10(25) erg) in the chromosphere and TR. Our analysis provides tight constraints on the properties of such electron beams and new diagnostics for their presence in the nonflaring corona. PMID:25324396

  14. DIAGNOSING THE TIME DEPENDENCE OF ACTIVE REGION CORE HEATING FROM THE EMISSION MEASURE. II. NANOFLARE TRAINS

    SciTech Connect

    Reep, J. W.; Bradshaw, S. J.; Klimchuk, J. A. E-mail: stephen.bradshaw@rice.edu

    2013-02-20

    The time dependence of heating in solar active regions can be studied by analyzing the slope of the emission measure distribution coolward of the peak. In a previous study we showed that low-frequency heating can account for 0% to 77% of active region core emission measures. We now turn our attention to heating by a finite succession of impulsive events for which the timescale between events on a single magnetic strand is shorter than the cooling timescale. We refer to this scenario as a 'nanoflare train' and explore a parameter space of heating and coronal loop properties with a hydrodynamic model. Our conclusions are (1) nanoflare trains are consistent with 86% to 100% of observed active region cores when uncertainties in the atomic data are properly accounted for; (2) steeper slopes are found for larger values of the ratio of the train duration {Delta} {sub H} to the post-train cooling and draining timescale {Delta} {sub C}, where {Delta} {sub H} depends on the number of heating events, the event duration and the time interval between successive events ({tau} {sub C}); (3) {tau} {sub C} may be diagnosed from the width of the hot component of the emission measure provided that the temperature bins are much smaller than 0.1 dex; (4) the slope of the emission measure alone is not sufficient to provide information about any timescale associated with heating-the length and density of the heated structure must be measured for {Delta} {sub H} to be uniquely extracted from the ratio {Delta} {sub H}/{Delta} {sub C}.

  15. Nanoflare vs Footpoint Heating : Observational Signatures

    NASA Technical Reports Server (NTRS)

    Winebarger, Amy; Alexander, Caroline; Lionello, Roberto; Linker, Jon; Mikic, Zoran; Downs, Cooper

    2015-01-01

    Time lag analysis shows very long time lags between all channel pairs. Impulsive heating cannot address these long time lags. 3D Simulations of footpoint heating shows a similar pattern of time lags (magnitude and distribution) to observations. Time lags and relative peak intensities may be able to differentiate between TNE and impulsive heating solutions. Adding a high temperature channel (like XRT Be-­thin) may improve diagnostics.

  16. Distributed generation - the fuel processing example

    SciTech Connect

    Victor, R.A.; Farris, P.J.; Maston, V.

    1996-12-31

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  17. Generating functions for generalized binomial distributions

    NASA Astrophysics Data System (ADS)

    Bergeron, H.; Curado, E. M. F.; Gazeau, J. P.; Rodrigues, Ligia M. C. S.

    2012-10-01

    In a recent article generalization of the binomial distribution associated with a sequence of positive numbers was examined. The analysis of the nonnegativeness of the formal probability distributions was a key point to allow to give them a statistical interpretation in terms of probabilities. In this article we present an approach based on generating functions that solves the previous difficulties. Our main theorem makes explicit the conditions under which those formal probability distributions are always non-negative. Therefore, the constraints of non-negativeness are automatically fulfilled giving a complete characterization in terms of generating functions. A large number of analytical examples becomes available.

  18. A Nanoflare-based Cellular Automaton Model and the Observed Properties of the Coronal Plasma

    NASA Astrophysics Data System (ADS)

    López Fuentes, Marcelo; Klimchuk, James A.

    2016-09-01

    We use the cellular automaton model described in López Fuentes & Klimchuk to study the evolution of coronal loop plasmas. The model, based on the idea of a critical misalignment angle in tangled magnetic fields, produces nanoflares of varying frequency with respect to the plasma cooling time. We compare the results of the model with active region (AR) observations obtained with the Hinode/XRT and SDO/AIA instruments. The comparison is based on the statistical properties of synthetic and observed loop light curves. Our results show that the model reproduces the main observational characteristics of the evolution of the plasma in AR coronal loops. The typical intensity fluctuations have amplitudes of 10%–15% both for the model and the observations. The sign of the skewness of the intensity distributions indicates the presence of cooling plasma in the loops. We also study the emission measure (EM) distribution predicted by the model and obtain slopes in log(EM) versus log(T) between 2.7 and 4.3, in agreement with published observational values.

  19. Voltage regulation in distribution networks with distributed generation

    NASA Astrophysics Data System (ADS)

    Blažič, B.; Uljanić, B.; Papič, I.

    2012-11-01

    The paper deals with the topic of voltage regulation in distribution networks with relatively high distributed energy resources (DER) penetration. The problem of voltage rise is described and different options for voltage regulation are given. The influence of DER on voltage profile and the effectiveness of the investigated solutions are evaluated by means of simulation in DIgSILENT. The simulated network is an actual distribution network in Slovenia with a relatively high penetration of distributed generation. Recommendations for voltage control in networks with DER penetration are given at the end.

  20. Electrical power systems for distributed generation

    SciTech Connect

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  1. Fluorescence Lifetime Imaging of Nanoflares for mRNA Detection in Living Cells.

    PubMed

    Shi, Jing; Zhou, Ming; Gong, Aihua; Li, Qijun; Wu, Qian; Cheng, Gary J; Yang, Mingyang; Sun, Yaocheng

    2016-02-16

    The expression level of tumor-related mRNA can reveal significant information about tumor progression and prognosis, so specific mRNA in cells provides an important approach for biological and disease studies. Here, fluorescence lifetime imaging of nanoflares in living cells was first employed to detect specific intracellular mRNA. We characterized the lifetime changes of the prepared nanoflares before and after the treatment of target mRNA and also compared the results with those of fluorescence intensity-based measurements both intracellularly and extracellularly. The nanoflares released the cy5-modified oligonucleotides and bound to the targets, resulting in a fluorescence lifetime lengthening. This work puts forward another dimension of detecting specific mRNA in cells and can also open new ways for detection of many other biomolecules. PMID:26813157

  2. Next generation distributed computing for cancer research.

    PubMed

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539

  3. Next Generation Distributed Computing for Cancer Research

    PubMed Central

    Agarwal, Pankaj; Owzar, Kouros

    2014-01-01

    Advances in next generation sequencing (NGS) and mass spectrometry (MS) technologies have provided many new opportunities and angles for extending the scope of translational cancer research while creating tremendous challenges in data management and analysis. The resulting informatics challenge is invariably not amenable to the use of traditional computing models. Recent advances in scalable computing and associated infrastructure, particularly distributed computing for Big Data, can provide solutions for addressing these challenges. In this review, the next generation of distributed computing technologies that can address these informatics problems is described from the perspective of three key components of a computational platform, namely computing, data storage and management, and networking. A broad overview of scalable computing is provided to set the context for a detailed description of Hadoop, a technology that is being rapidly adopted for large-scale distributed computing. A proof-of-concept Hadoop cluster, set up for performance benchmarking of NGS read alignment, is described as an example of how to work with Hadoop. Finally, Hadoop is compared with a number of other current technologies for distributed computing. PMID:25983539

  4. Next generation tools for genomic data generation, distribution, and visualization

    PubMed Central

    2010-01-01

    Background With the rapidly falling cost and availability of high throughput sequencing and microarray technologies, the bottleneck for effectively using genomic analysis in the laboratory and clinic is shifting to one of effectively managing, analyzing, and sharing genomic data. Results Here we present three open-source, platform independent, software tools for generating, analyzing, distributing, and visualizing genomic data. These include a next generation sequencing/microarray LIMS and analysis project center (GNomEx); an application for annotating and programmatically distributing genomic data using the community vetted DAS/2 data exchange protocol (GenoPub); and a standalone Java Swing application (GWrap) that makes cutting edge command line analysis tools available to those who prefer graphical user interfaces. Both GNomEx and GenoPub use the rich client Flex/Flash web browser interface to interact with Java classes and a relational database on a remote server. Both employ a public-private user-group security model enabling controlled distribution of patient and unpublished data alongside public resources. As such, they function as genomic data repositories that can be accessed manually or programmatically through DAS/2-enabled client applications such as the Integrated Genome Browser. Conclusions These tools have gained wide use in our core facilities, research laboratories and clinics and are freely available for non-profit use. See http://sourceforge.net/projects/gnomex/, http://sourceforge.net/projects/genoviz/, and http://sourceforge.net/projects/useq. PMID:20828407

  5. Pseudoabsence Generation Strategies for Species Distribution Models

    PubMed Central

    Hanberry, Brice B.; He, Hong S.; Palik, Brian J.

    2012-01-01

    Background Species distribution models require selection of species, study extent and spatial unit, statistical methods, variables, and assessment metrics. If absence data are not available, another important consideration is pseudoabsence generation. Different strategies for pseudoabsence generation can produce varying spatial representation of species. Methodology We considered model outcomes from four different strategies for generating pseudoabsences. We generating pseudoabsences randomly by 1) selection from the entire study extent, 2) a two-step process of selection first from the entire study extent, followed by selection for pseudoabsences from areas with predicted probability <25%, 3) selection from plots surveyed without detection of species presence, 4) a two-step process of selection first for pseudoabsences from plots surveyed without detection of species presence, followed by selection for pseudoabsences from the areas with predicted probability <25%. We used Random Forests as our statistical method and sixteen predictor variables to model tree species with at least 150 records from Forest Inventory and Analysis surveys in the Laurentian Mixed Forest province of Minnesota. Conclusions Pseudoabsence generation strategy completely affected the area predicted as present for species distribution models and may be one of the most influential determinants of models. All the pseudoabsence strategies produced mean AUC values of at least 0.87. More importantly than accuracy metrics, the two-step strategies over-predicted species presence, due to too much environmental distance between the pseudoabsences and recorded presences, whereas models based on random pseudoabsences under-predicted species presence, due to too little environmental distance between the pseudoabsences and recorded presences. Models using pseudoabsences from surveyed plots produced a balance between areas with high and low predicted probabilities and the strongest relationship between

  6. Network integration of distributed power generation

    NASA Astrophysics Data System (ADS)

    Dondi, Peter; Bayoumi, Deia; Haederli, Christoph; Julian, Danny; Suter, Marco

    The world-wide move to deregulation of the electricity and other energy markets, concerns about the environment, and advances in renewable and high efficiency technologies has led to major emphasis being placed on the use of small power generation units in a variety of forms. The paper reviews the position of distributed generation (DG, as these small units are called in comparison with central power plants) with respect to the installation and interconnection of such units with the classical grid infrastructure. In particular, the status of technical standards both in Europe and USA, possible ways to improve the interconnection situation, and also the need for decisions that provide a satisfactory position for the network operator (who remains responsible for the grid, its operation, maintenance and investment plans) are addressed.

  7. Next Generation Multimedia Distributed Data Base Systems

    NASA Technical Reports Server (NTRS)

    Pendleton, Stuart E.

    1997-01-01

    The paradigm of client/server computing is changing. The model of a server running a monolithic application and supporting clients at the desktop is giving way to a different model that blurs the line between client and server. We are on the verge of plunging into the next generation of computing technology--distributed object-oriented computing. This is not only a change in requirements but a change in opportunities, and requires a new way of thinking for Information System (IS) developers. The information system demands caused by global competition are requiring even more access to decision making tools. Simply, object-oriented technology has been developed to supersede the current design process of information systems which is not capable of handling next generation multimedia.

  8. Nonlinear harmonic generation in distributed optical klystrons

    SciTech Connect

    H.P. Freund; George R. Neil

    2001-12-01

    A distributed optical klystron has the potential for dramatically shortening the total interaction length in high-gain free-electron lasers (INP 77-59, Novosibirsk, 1977; Nucl. Instr. and Meth A 304 (1991) 463) in comparison to a single-wiggler-segment configuration. This shortening can be even more dramatic if a nonlinear harmonic generation mechanism is used to reach the desired wavelength. An example operating at a 4.5{angstrom} fundamental and a 1.5{angstrom} harmonic is discussed.

  9. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect

    2007-10-15

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  10. Distributed Generation with Heat Recovery and Storage

    SciTech Connect

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  11. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources

  12. SOFC combined cycle systems for distributed generation

    SciTech Connect

    Brown, R.A.

    1997-05-01

    The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

  13. Intelligent layered nanoflare: ``lab-on-a-nanoparticle'' for multiple DNA logic gate operations and efficient intracellular delivery

    NASA Astrophysics Data System (ADS)

    Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong

    2014-07-01

    DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology.DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a ``lab-on-a-nanoparticle'', the intelligent layered nanoflare could be engineered to perform a variety of

  14. NanoFlares for the detection, isolation, and culture of live tumor cells from human blood.

    PubMed

    Halo, Tiffany L; McMahon, Kaylin M; Angeloni, Nicholas L; Xu, Yilin; Wang, Wei; Chinen, Alyssa B; Malin, Dmitry; Strekalova, Elena; Cryns, Vincent L; Cheng, Chonghui; Mirkin, Chad A; Thaxton, C Shad

    2014-12-01

    Metastasis portends a poor prognosis for cancer patients. Primary tumor cells disseminate through the bloodstream before the appearance of detectable metastatic lesions. The analysis of cancer cells in blood—so-called circulating tumor cells (CTCs)—may provide unprecedented opportunities for metastatic risk assessment and investigation. NanoFlares are nanoconstructs that enable live-cell detection of intracellular mRNA. NanoFlares, when coupled with flow cytometry, can be used to fluorescently detect genetic markers of CTCs in the context of whole blood. They allow one to detect as few as 100 live cancer cells per mL of blood and subsequently culture those cells. This technique can also be used to detect CTCs in a murine model of metastatic breast cancer. As such, NanoFlares provide, to our knowledge, the first genetic-based approach for detecting, isolating, and characterizing live cancer cells from blood and may provide new opportunities for cancer diagnosis, prognosis, and personalized therapy. PMID:25404304

  15. The Transition Region Response to a Coronal Nanoflare: Forward Modeling and Observations in SDO/AIA

    NASA Astrophysics Data System (ADS)

    Viall, Nicholeen; Klimchuk, James A.

    2016-05-01

    The corona and transition region (TR) are fundamentally coupled through the processes of thermal conduction and mass exchange. Yet the temperature-dependent emissions from the two locations behave quite differently in the aftermath of an impulsive heating event such as a coronal nanoflare. In this presentation, we use results from the EBTEL hydrodynamics code to demonstrate that after a coronal nanoflare, the TR is multithermal and the emission at all temperatures responds in unison. This is in contrast to the coronal plasma, which cools sequentially, emitting first at higher temperatures and then at lower temperatures. We apply the time lag technique of Viall & Klimchuk (2012) to the simulated Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory emission and show that coronal plasma light curves exhibit post-nanoflare cooling time lags, while TR light curves show time lags of zero, as observed. We further demonstrate that time lags of zero, regardless of physical cause, do not indicate a lack of variability. Rather, strong variability must be present, and it must occur in unison in the different channels. Lastly, we show that the 'coronal' channels in AIA can be dominated by bright TR emission. When defined in a physically meaningful way, the TR reaches a temperature of roughly 60% the peak temperature in a flux tube. The TR resulting from impulsive heating can extend to 3 MK and higher, well within the range of the 'coronal' AIA channels.

  16. Nanoflare Evidence from Analysis of the X-Ray Variability of an Active Region Observed with Hinode/XRT

    NASA Technical Reports Server (NTRS)

    Terzo, S.; Reale, F.; Kano, R.; Tsuneta, S.; Klimchuk, J. A.

    2011-01-01

    The investigation of the heating mechanisms of the confined coronal plasma is still under intense debate. It is widely believed that the energy source for coronal heating is the magnetic energy stored in the solar corona. An unsolved problem is how this magnetic energy is converted into thermal energy of the confined coronal plasma. As Parker proposed in 1988 rapid pulses called nanoflares are among the best candidate mechanisms of magnetic energy release. Nowadays a challenging problem is to obtain evidence that such nanoflares are really at work. If small energy discharges (nanoflares) contribute in some way to coronal heating, they could be too small and frequent to be resolved as independent events. In this case, we would need to search for indirect evidence. The idea of this work is that, if the solar corona emission is sustained by repeated nanoflares, locally the X-ray emission may not be entirely constant but may show variations around the mean intensity. So the nanoflares may leave their signature on the light curves. Many authors (Shimizu & Tsuneta 1997; Vekstein & Katsukawa 2000; Katsukawa & Tsuneta 2001; Katsukawa 2003; Sakamoto et al. 2008) pointed out that a detailed analysis of intensity fluctuations of the coronal X-ray emission could give us information on these smallest flares. Following this hint we use this approach for the first time on Hinode data, searching, with statistical analysis, for small but systematic variability in noisy background light curves and their link to coronal heating models.

  17. Intelligent layered nanoflare: "lab-on-a-nanoparticle" for multiple DNA logic gate operations and efficient intracellular delivery.

    PubMed

    Yang, Bin; Zhang, Xiao-Bing; Kang, Li-Ping; Huang, Zhi-Mei; Shen, Guo-Li; Yu, Ru-Qin; Tan, Weihong

    2014-08-01

    DNA strand displacement cascades have been engineered to construct various fascinating DNA circuits. However, biological applications are limited by the insufficient cellular internalization of naked DNA structures, as well as the separated multicomponent feature. In this work, these problems are addressed by the development of a novel DNA nanodevice, termed intelligent layered nanoflare, which integrates DNA computing at the nanoscale, via the self-assembly of DNA flares on a single gold nanoparticle. As a "lab-on-a-nanoparticle", the intelligent layered nanoflare could be engineered to perform a variety of Boolean logic gate operations, including three basic logic gates, one three-input AND gate, and two complex logic operations, in a digital non-leaky way. In addition, the layered nanoflare can serve as a programmable strategy to sequentially tune the size of nanoparticles, as well as a new fingerprint spectrum technique for intelligent multiplex biosensing. More importantly, the nanoflare developed here can also act as a single entity for intracellular DNA logic gate delivery, without the need of commercial transfection agents or other auxiliary carriers. By incorporating DNA circuits on nanoparticles, the presented layered nanoflare will broaden the applications of DNA circuits in biological systems, and facilitate the development of DNA nanotechnology. PMID:24969570

  18. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect

    Ali, Sy; Moritz, Bob

    2001-09-01

    in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  19. THE TRANSITION REGION RESPONSE TO A CORONAL NANOFLARE: FORWARD MODELING AND OBSERVATIONS IN SDO/AIA

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2015-01-20

    The corona and transition region (TR) are fundamentally coupled through the processes of thermal conduction and mass exchange. It is not possible to understand one without the other. Yet the temperature-dependent emissions from the two locations behave quite differently in the aftermath of an impulsive heating event such as a coronal nanoflare. Whereas the corona cools sequentially, emitting first at higher temperatures and then at lower temperatures, the TR is multithermal and the emission at all temperatures responds in unison. We have previously applied the automated time lag technique of Viall and Klimchuk to disk observations of an active region (AR) made by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. Lines of sight passing through coronal plasma show clear evidence for post-nanoflare cooling, while lines of sight intersecting the TR footpoints of coronal strands show zero time lag. In this paper, we use the EBTEL hydrodynamics code to demonstrate that this is precisely the expected behavior when the corona is heated by nanoflares. We also apply the time lag technique for the first time to off-limb observations of an AR. Since TR emission is not present above the limb, the occurrence of zero time lags is greatly diminished, supporting the conclusion that zero time lags measured on the disk are due to TR plasma. Lastly, we show that the ''coronal'' channels in AIA can be dominated by bright TR emission. When defined in a physically meaningful way, the TR reaches a temperature of roughly 60% the peak temperature in a flux tube. The TR resulting from impulsive heating can extend to 3 MK and higher, well within the range of the ''coronal'' AIA channels.

  20. The Transition Region Response to a Coronal Nanoflare: Forward Modeling and Observations in SDO/AIA

    NASA Technical Reports Server (NTRS)

    Viall-Kepko, Nicholeen M.; Klimchuk, James A.

    2015-01-01

    The corona and transition region (TR) are fundamentally coupled through the processes of thermal conduction and mass exchange. It is not possible to understand one without the other. Yet the temperature-dependent emissions from the two locations behave quite differently in the aftermath of an impulsive heating event such as a coronal nanoflare. Whereas the corona cools sequentially, emitting first at higher temperatures and then at lower temperatures, the TR is multithermal and the emission at all temperatures responds in unison. We have previously applied the automated time lag technique of Viall & Klimchuk to disk observations of an active region (AR) made by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. Lines of sight passing through coronal plasma show clear evidence for post-nanoflare cooling, while lines of sight intersecting the TR footpoints of coronal strands show zero time lag. In this paper, we use the EBTEL hydrodynamics code to demonstrate that this is precisely the expected behavior when the corona is heated by nanoflares. We also apply the time lag technique for the first time to off-limb observations of an AR. Since TR emission is not present above the limb, the occurrence of zero time lags is greatly diminished, supporting the conclusion that zero time lags measured on the disk are due to TR plasma. Lastly, we show that the "coronal" channels in AIA can be dominated by bright TR emission. When defined in a physically meaningful way, the TR reaches a temperature of roughly 60% the peak temperature in a flux tube. The TR resulting from impulsive heating can extend to 3 MK and higher, well within the range of the "coronal" AIA channels.

  1. The Transition Region Response to a Coronal Nanoflare: Forward Modeling and Observations in SDO/AIA

    NASA Astrophysics Data System (ADS)

    Viall, Nicholeen M.; Klimchuk, James A.

    2015-01-01

    The corona and transition region (TR) are fundamentally coupled through the processes of thermal conduction and mass exchange. It is not possible to understand one without the other. Yet the temperature-dependent emissions from the two locations behave quite differently in the aftermath of an impulsive heating event such as a coronal nanoflare. Whereas the corona cools sequentially, emitting first at higher temperatures and then at lower temperatures, the TR is multithermal and the emission at all temperatures responds in unison. We have previously applied the automated time lag technique of Viall & Klimchuk to disk observations of an active region (AR) made by the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory. Lines of sight passing through coronal plasma show clear evidence for post-nanoflare cooling, while lines of sight intersecting the TR footpoints of coronal strands show zero time lag. In this paper, we use the EBTEL hydrodynamics code to demonstrate that this is precisely the expected behavior when the corona is heated by nanoflares. We also apply the time lag technique for the first time to off-limb observations of an AR. Since TR emission is not present above the limb, the occurrence of zero time lags is greatly diminished, supporting the conclusion that zero time lags measured on the disk are due to TR plasma. Lastly, we show that the ''coronal'' channels in AIA can be dominated by bright TR emission. When defined in a physically meaningful way, the TR reaches a temperature of roughly 60% the peak temperature in a flux tube. The TR resulting from impulsive heating can extend to 3 MK and higher, well within the range of the ''coronal'' AIA channels.

  2. Numerical Simulations of Nanoflares: PDFs of Released Energy, Waiting Times and Quiet- Sun Magnetic Field Elements

    NASA Astrophysics Data System (ADS)

    Egidi, A.; Viticchie`, B.; Berrilli, F.; Del Moro, D.

    2007-12-01

    A numerical model for nanoflares is proposed to describe probability density functions (PDF) and waiting time statistics of the emitted magnetic energy and to guess PDF of quiet-Sun magnetic field strength. In the simulation, footpoints of reconnecting magnetic loops are advected by photospheric flows computed via a n-body algorithm. The model simulates a system whose behavior is characterized by small scale (i.e., granulation) flows that interact to develop large organization scales (i.e., mesogranulation). Such spatio-temporal correlated flows, incessantly supply , remove and convey the passive magnetic footpoints onto the photospheric surface, triggering reconnections and magnetic field reconfigurations.

  3. IRIS diagnostics of non-thermal particles in coronal loops heated by nanoflares

    NASA Astrophysics Data System (ADS)

    Testa, P.; De Pontieu, B.; Allred, J. C.; Carlsson, M.; Reale, F.; Daw, A. N.

    2014-12-01

    The variability of emission of the "moss", i.e., the upper transition region (TR) layer of high pressure loops in active regions, provides stringent constraints on the characteristics of heating events. We will discuss the new coronal heating diagnostics provided by the Interface Region Imaging Spectrograph (IRIS) together with SDO/AIA. IRIS provides imaging and spectral observations of the solar chromosphere and transition region, at high spatial (0.166 arcsec/pix) and temporal (down to ~1s) resolution at FUV and NUV wavelengths. We discuss how simultaneous IRIS and AIA observations, together with loop modeling (with the RADYN code) including chromosphere, transition region and corona, allow us to study impulsive heating events (nanoflares) and the energy transport mechanism between the corona and the lower atmospheric layers (thermal conduction vs. beams of non-thermal particles). We will show how the modeling of rapid moss brightenings provides diagnostics for the presence and properties of non-thermal particles in nanoflares, which are below the detectability threshold of hard X-ray observations.

  4. PATTERNS OF NANOFLARE STORM HEATING EXHIBITED BY AN ACTIVE REGION OBSERVED WITH SOLAR DYNAMICS OBSERVATORY/ATMOSPHERIC IMAGING ASSEMBLY

    SciTech Connect

    Viall, Nicholeen M.; Klimchuk, James A.

    2011-09-01

    It is largely agreed that many coronal loops-those observed at a temperature of about 1 MK-are bundles of unresolved strands that are heated by storms of impulsive nanoflares. The nature of coronal heating in hotter loops and in the very important but largely ignored diffuse component of active regions is much less clear. Are these regions also heated impulsively, or is the heating quasi-steady? The spectacular new data from the Atmospheric Imaging Assembly (AIA) telescopes on the Solar Dynamics Observatory offer an excellent opportunity to address this question. We analyze the light curves of coronal loops and the diffuse corona in six different AIA channels and compare them with the predicted light curves from theoretical models. Light curves in the different AIA channels reach their peak intensities with predictable orderings as a function the nanoflare storm properties. We show that while some sets of light curves exhibit clear evidence of cooling after nanoflare storms, other cases are less straightforward to interpret. Complications arise because of line-of-sight integration through many different structures, the broadband nature of the AIA channels, and because physical properties can change substantially depending on the magnitude of the energy release. Nevertheless, the light curves exhibit predictable and understandable patterns consistent with impulsive nanoflare heating.

  5. Characteristics of Vector Surge Relays for Distributed Synchronous Generator Protection

    SciTech Connect

    Freitas, Walmir; Xu, Wilsun; Huang, Zhenyu; Vieira, Jose C.

    2007-02-28

    This work presented a detailed investigation on the performance characteristics if vector surge relays to detect islanding of distributed synchronous generators. A detection time versus active power imbalance curve is proposed to evaluate the relay performance. Computer simulations are used to obtain the performance curves. The concept of critical active power imbalance is introduced based on these curves. Main factors affecting the performance of the relays are analyzed. The factors investigated are voltage-dependent loads, load power factor, inertia constant of the generator, generator excitation system control mode, feeder length and R/X ratio as well as multi-distributed generators. The results are a useful guideline to evaluate the effectiveness of anti-islanding schemes based on vector surge relays for distributed generation applications.

  6. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  7. Distributed Pedagogical Leadership and Generative Dialogue in Educational Nodes

    ERIC Educational Resources Information Center

    Jappinen, Aini-Kristiina; Sarja, Anneli

    2012-01-01

    The article presents practices of distributed pedagogical leadership and generative dialogue as a tool with which management and personnel can better operate in the increasingly turbulent world of education. Distributed pedagogical leadership includes common characteristics of a professional learning community when the educational actors…

  8. Gendist: An R Package for Generated Probability Distribution Models

    PubMed Central

    Abu Bakar, Shaiful Anuar; Nadarajah, Saralees; ABSL Kamarul Adzhar, Zahrul Azmir; Mohamed, Ibrahim

    2016-01-01

    In this paper, we introduce the R package gendist that computes the probability density function, the cumulative distribution function, the quantile function and generates random values for several generated probability distribution models including the mixture model, the composite model, the folded model, the skewed symmetric model and the arc tan model. These models are extensively used in the literature and the R functions provided here are flexible enough to accommodate various univariate distributions found in other R packages. We also show its applications in graphing, estimation, simulation and risk measurements. PMID:27272043

  9. Time generation and distribution system for a military national synchronization

    NASA Astrophysics Data System (ADS)

    Mourier, V.

    1992-06-01

    The requirements, concept, and principle of a French air force time generation and distribution system are presented. The system provides homogeneous dating of events throughout the country. It generates and distributes time codes and precise frequency used for high precision measurements, telecommunications, etc. Accordingly the need is to provide on each operational site an accurate and stable time reference based on UTC time scale. The system consists of a common reference (GPS (Global Positioning System)) independent clocks and time distribution that provides time to all the user equipment on each operational site.

  10. Estimating probable flaw distributions in PWR steam generator tubes

    SciTech Connect

    Gorman, J.A.; Turner, A.P.L.

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses.

  11. Model-Driven Test Generation of Distributed Systems

    NASA Technical Reports Server (NTRS)

    Easwaran, Arvind; Hall, Brendan; Schweiker, Kevin

    2012-01-01

    This report describes a novel test generation technique for distributed systems. Utilizing formal models and formal verification tools, spe cifically the Symbolic Analysis Laboratory (SAL) tool-suite from SRI, we present techniques to generate concurrent test vectors for distrib uted systems. These are initially explored within an informal test validation context and later extended to achieve full MC/DC coverage of the TTEthernet protocol operating within a system-centric context.

  12. Distributed photovoltaic generation in residential distribution systems: Impacts on power quality and anti-islanding

    NASA Astrophysics Data System (ADS)

    Mitra, Parag

    The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.

  13. The generation of random variates from a relativistic Maxwellian distribution

    SciTech Connect

    Swisdak, M.

    2013-06-15

    A procedure for generating random variates from a relativistic Maxwellian distribution with arbitrary temperature and drift velocity is presented. The algorithm is based on the rejection method and can be used to initialize particle velocities in kinetic simulations of plasmas and gases.

  14. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    EIA Publications

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  15. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  16. Distributed Query Plan Generation Using Multiobjective Genetic Algorithm

    PubMed Central

    Panicker, Shina; Vijay Kumar, T. V.

    2014-01-01

    A distributed query processing strategy, which is a key performance determinant in accessing distributed databases, aims to minimize the total query processing cost. One way to achieve this is by generating efficient distributed query plans that involve fewer sites for processing a query. In the case of distributed relational databases, the number of possible query plans increases exponentially with respect to the number of relations accessed by the query and the number of sites where these relations reside. Consequently, computing optimal distributed query plans becomes a complex problem. This distributed query plan generation (DQPG) problem has already been addressed using single objective genetic algorithm, where the objective is to minimize the total query processing cost comprising the local processing cost (LPC) and the site-to-site communication cost (CC). In this paper, this DQPG problem is formulated and solved as a biobjective optimization problem with the two objectives being minimize total LPC and minimize total CC. These objectives are simultaneously optimized using a multiobjective genetic algorithm NSGA-II. Experimental comparison of the proposed NSGA-II based DQPG algorithm with the single objective genetic algorithm shows that the former performs comparatively better and converges quickly towards optimal solutions for an observed crossover and mutation probability. PMID:24963513

  17. Marginal capacity costs of electricity distribution and demand for distributed generation

    SciTech Connect

    Woo, Chi-Keung, Lloyd-Zanetti, D.; Orans, R.

    1995-12-31

    Marginal costs of electricity vary by time and location. Past researchers attributed these variations to factors related to electricity generation, transmission and distribution. Past authors, however, did not fully analyze the large variations in marginal distribution capacity costs (MDCC) by area and time. Thus, the objectives of this paper are as follows: (1) to show that large MDCC variations exist within a utility`s service territory; (2) to demonstrate inter-utility variations in MDCC; and (3) to demonstrate the usefulness of these costs in determining demand for distributed generation (DG). 27 refs., 3 figs., 2 tabs.

  18. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  19. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  20. Narrow-band generation in random distributed feedback fiber laser.

    PubMed

    Sugavanam, Srikanth; Tarasov, Nikita; Shu, Xuewen; Churkin, Dmitry V

    2013-07-15

    Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning. PMID:23938497

  1. Electron distribution function in a plasma generated by fission fragments

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.; Deese, J. E.

    1976-01-01

    A Boltzmann equation formulation is presented for the determination of the electron distribution function in a plasma generated by fission fragments. The formulation takes into consideration ambipolar diffusion, elastic and inelastic collisions, recombination and ionization, and allows for the fact that the primary electrons are not monoenergetic. Calculations for He in a tube coated with fissionable material shows that, over a wide pressure and neutron flux range, the distribution function is non-Maxwellian, but the electrons are essentially thermal. Moreover, about a third of the energy of the primary electrons is transferred into the inelastic levels of He. This fraction of energy transfer is almost independent of pressure and neutron flux.

  2. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  3. Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007

    SciTech Connect

    Davis, M. W.; Broadwater, R.; Hambrick, J.

    2007-07-01

    This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

  4. Unequal distribution of plastids during generative cell formation in Impatiens.

    PubMed

    van Went, J L

    1984-07-01

    This paper describes the unequal distribution of plastids in the developing microspores of Impatiens walleriana and Impatiens glandulifera which leads to the exclusion of plastids from the generative cell. During the development from young microspore to the onset of mitosis a change in the organization of the cytoplasm and distribution of organelles is gradually established. This includes the formation of vacuoles at the poles of the elongate-shaped microspores, the movement of the nucleus to a position near the microspore wall in the central part of the cell, and the accumulation of the plastids to a position near the wall at the opposite side of the cell. In Impatiens walleriana, the accumulated plastids are separated from each other by ER cisterns, and some mitochondria are also accumulated. In both Impatiens species, the portion of the microspore in which the generative cell will be formed is completely devoid of plastids at the time mitosis starts. PMID:24257638

  5. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  6. Distributed Generation System Characteristics and Costs in the Buildings Sector

    EIA Publications

    2013-01-01

    The Energy Information Administration (EIA) works with technology experts to project the cost and performance of future residential and commercial sector photovoltaic (PV) and small wind installations rather than developing technology projections in-house. These reports have always been available by request. By providing the reports online, EIA is increasing transparency for the assumptions used for our Annual Energy Outlook buildings sector distributed generation projections.

  7. The generation of side force by distributed suction

    NASA Astrophysics Data System (ADS)

    Roberts, Leonard; Hong, John

    1993-05-01

    This report provides an approximate analysis of the generation of side force on a cylinder placed horizontal to the flow direction by the application of distributed suction on the rearward side of the cylinder. Relationships are derived between the side force coefficients and the required suction coefficients necessary to maintain attached flow on one side of the cylinder, thereby inducing circulation around the cylinder and a corresponding side force.

  8. Distributed generation from biomass resources: Emerging potential for utilities

    SciTech Connect

    Whittier, J.; Haase, S.; Badger, P.C.

    1996-12-31

    Distributed generation (DG) offers potential to enhance the range of services provided by electric utilities. Competitive pressures experienced by the utility industry are sending simultaneous, and often conflicting, signals to planners concerned with busbar costs, market share and customer retention. DG technologies allow planners to address concurrent utility and customer concerns. DG will also open markets for additional commercial applications of diverse biomass technologies. Distributed generation offers multiple benefits both to utilities and to end users. Utilities may site new power production resources more readily and with lower capital costs and reduced financial risk than with larger power generation systems. Important benefits may accrue to the transmission and distribution (T&D) system including various forms of grid support (e.g., reduced line losses, voltage support, and power quality improvement), deferral of upgrades to substations, and provision of power in increments that match projected demand patterns. Other DG benefits may include assistance with customer waste disposal problems, fuel diversity, reduction in emissions of NO{sub x}, SO{sub x}, and CO{sub 2}, and increases in system reliability. Substantial changes in utility planning practices are required to accommodate DG. The utility must re-think planning procedures to begin from the customer and extend back to the system rather than beginning from comprehensive system planning at the power plant level. As competitive pressures encourage utilities to redefine business practices, DG may help to focus strategic responses to the market.

  9. Interconnecting Single-Phase Generation to the Utility Distribution System

    SciTech Connect

    Dugan, R.C.

    2001-12-05

    One potentially large source of underutilized distributed generation (DG) capacity exists in single-phase standby backup gensets on farms served from single-phase feeder laterals. Utilizing the excess capacity would require interconnecting to the utility system. Connecting single-phase gensets to the utility system presents some interesting technical issues that have not been previously investigated. This paper addresses several of the interconnection issues associated with this form of DG including voltage regulation, harmonics, overcurrent protection, and islanding. A significant amount of single-phase DG can be accommodated by the utility distribution system, but there are definite limitations due to the nature and location of the DG. These limitations may be more restrictive than is commonly assumed for three-phase DG installed on stronger parts of the electric distribution system.

  10. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  11. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  12. Operational maintenance data for power generation distribution and HVAC components

    SciTech Connect

    Hollis, H.D.; Hale, P.S. Jr.; Arno, R.G.; Briggs, S.J.

    1995-12-31

    This paper describes the culmination of a 24,000 man hour effort to collect operational and maintenance data on 239 power generation, power distribution and HVAC items, including gas turbine generators, diesel engine generators, switch gear assemblies, cables, boilers, piping, valves and chillers. This program was designed to determine the effects of new technology equipment, i.e., equipment installed after 1971, on availability. The central hypothesis was that this new equipment would exhibit a significant increase in availability, with corresponding decreases in required maintenance and the occurrence of failures. Information was obtained on a variety of commercial and industrial facility types (including office buildings, hospitals, water treatment facilities, prisons, utilities, manufacturing facilities, school universities and bank computer centers), with varying degrees of maintenance quality.

  13. DETECTING NANOFLARE HEATING EVENTS IN SUBARCSECOND INTER-MOSS LOOPS USING Hi-C

    SciTech Connect

    Winebarger, Amy R.; Moore, Ronald; Cirtain, Jonathan; Walsh, Robert W.; De Pontieu, Bart; Title, Alan; Hansteen, Viggo; Golub, Leon; Korreck, Kelly; Weber, Mark; Kobayashi, Ken; DeForest, Craig; Kuzin, Sergey

    2013-07-01

    The High-resolution Coronal Imager (Hi-C) flew aboard a NASA sounding rocket on 2012 July 11 and captured roughly 345 s of high-spatial and temporal resolution images of the solar corona in a narrowband 193 A channel. In this paper, we analyze a set of rapidly evolving loops that appear in an inter-moss region. We select six loops that both appear in and fade out of the Hi-C images during the short flight. From the Hi-C data, we determine the size and lifetimes of the loops and characterize whether these loops appear simultaneously along their length or first appear at one footpoint before appearing at the other. Using co-aligned, co-temporal data from multiple channels of the Atmospheric Imaging Assembly on the Solar Dynamics Observatory, we determine the temperature and density of the loops. We find the loops consist of cool ({approx}10{sup 5} K), dense ({approx}10{sup 10} cm{sup -3}) plasma. Their required thermal energy and their observed evolution suggest they result from impulsive heating similar in magnitude to nanoflares. Comparisons with advanced numerical simulations indicate that such dense, cold and short-lived loops are a natural consequence of impulsive magnetic energy release by reconnection of braided magnetic field at low heights in the solar atmosphere.

  14. Modeling Solar Coronal Bright-point Oscillations with Multiple Nanoflare Heated Loops

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, K.; Sarkar, Aveek

    2015-09-01

    Intensity oscillations of coronal bright points (BPs) have been studied for the past several years. It has been known for a while that these BPs are closed magnetic loop-like structures. However, the initiation of such intensity oscillations is still an enigma. There have been many suggestions to explain these oscillations, but so far modeling such BPs has not been explored. Using a multithreaded nanoflare heated loop model we study the behavior of such BPs in this work. We compute typical loop lengths of BPs using potential field-line extrapolation of available data, and set this as the length of our simulated loops. We produce intensity-like observables through forward modeling and analyze the intensity time series using wavelet analysis, as was done by previous observers. The result reveals similar intensity oscillation periods reported in past observations. It is suggested these oscillations are actually shock wave propagations along the loop. We also show that if one considers different background subtractions, one can extract adiabatic standing modes from the intensity time-series data as well, both from the observed and simulated data.

  15. The flow-chart loop: temperature, density, and cooling observables supporting nanoflare coronal heating models

    SciTech Connect

    Schmelz, J. T.; Pathak, S.; Dhaliwal, R. S.; Christian, G. M.; Fair, C. B.

    2014-11-10

    We have tested three controversial properties for a target loop observed with the Atmospheric Imaging Assembly: (1) overdense loops; (2) long-lifetime loops; and (3) multithermal loops. Our loop is overdense by a factor of about 10 compared to results expected from steady uniform heating models. If this were the only inconsistency, our loop could still be modeled as a single strand, but the density mismatch would imply that the heating must be impulsive. Moving on to the second observable, however, we find that the loop lifetime is at least an order of magnitude greater than the predicted cooling time. This implies that the loop cannot be composed of a single flux tube, even if the heating were dynamic, and must be multi-stranded. Finally, differential emission measure analysis shows that the cross-field temperature of the target loop is multithermal in the early and middle phases of its lifetime, but effectively isothermal before it fades from view. If these multithermal cooling results are found to be widespread, our results could resolve the original coronal loop controversy of 'isothermal' versus 'multithermal' cross-field temperatures. That is, the cross-field temperature is not always 'multithermal' nor is it always 'isothermal', but might change as the loop cools. We find that the existence and evolution of this loop is consistent with predictions of nanoflare heating.

  16. Next generation database relational solutions for ATLAS distributed computing

    NASA Astrophysics Data System (ADS)

    Dimitrov, G.; Maeno, T.; Garonne, V.; Atlas Collaboration

    2014-06-01

    The ATLAS Distributed Computing (ADC) project delivers production tools and services for ATLAS offline activities such as data placement and data processing on the Grid. The system has been capable of sustaining with high efficiency the needed computing activities during the first run of LHC data taking, and has demonstrated flexibility in reacting promptly to new challenges. Databases are a vital part of the whole ADC system. The Oracle Relational Database Management System (RDBMS) has been addressing a majority of the ADC database requirements for many years. Much expertise was gained through the years and without a doubt will be used as a good foundation for the next generation PanDA (Production ANd Distributed Analysis) and DDM (Distributed Data Management) systems. In this paper we present the current production ADC database solutions and notably the planned changes on the PanDA system, and the next generation ATLAS DDM system called Rucio. Significant work was performed on studying different solutions to arrive at the best relational and physical database model for performance and scalability in order to be ready for deployment and operation in 2014.

  17. The Value of Distributed Generation under Different TariffStructures

    SciTech Connect

    Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

    2006-05-31

    Distributed generation (DG) may play a key role in a modern energy system because it can improve energy efficiency. Reductions in the energy bill, and therefore DG attractiveness, depend on the electricity tariff structure; a system created before widespread adoption of distributed generation. Tariffs have been designed to recover costs equitably amongst customers with similar consumption patterns. Recently, electric utilities began to question the equity of this electricity pricing structure for standby service. In particular, the utilities do not feel that DG customers are paying their fair share of transmission and distribution costs - traditionally recovered through a volumetric($/kWh) mechanism - under existing tariff structures. In response, new tariff structures with higher fixed costs for DG have been implemented in New York and in California. This work analyzes the effects of different electricity tariff structures on DG adoption. First, the effects of the new standby tariffs in New York are analyzed in different regions. Next generalized tariffs are constructed, and the sensitivity to varying levels of the volumetric and the demand ($/kW, i.e. maximum rate) charge component are analyzed on New York's standard and standby tariff as well as California's standby tariff. As expected, DG profitability is reduced with standby tariffs, but often marginally. The new standby structures tend to promote smaller base load systems. The amount of time-of-day variability of volumetric pricing seems to have little effect on DG economics.

  18. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  19. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2004-01-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2004-07-04

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

  1. Small RNAs in angiosperms: sequence characteristics, distribution and generation.

    PubMed

    Chen, Dijun; Meng, Yijun; Ma, Xiaoxia; Mao, Chuanzao; Bai, Youhuang; Cao, Junjie; Gu, Haibin; Wu, Ping; Chen, Ming

    2010-06-01

    High-throughput sequencing (HTS) has opened up a new era for small RNA (sRNA) exploration. Using HTS data for a global survey of sRNAs in 26 angiosperms, elevated GC contents were detected in the monocots, whereas the 5(')-terminal compositions were quite uniform among the angiosperms. Chromosome-wide distribution patterns of sRNAs were investigated by using scrolling-window analysis. We performed de novo natural antisense transcript (NAT) prediction, and found that the overlapping regions of trans-NATs, but not cis-NATs, were hotspots for sRNA generation. One cis-NAT generates phased natural antisense short interfering RNAs (nat-siRNAs) specifically from flowers in Arabidopsis, while one in rice produces phased nat-siRNAs from grains, suggesting their organ-specific regulatory roles. PMID:20378553

  2. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  3. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  4. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  5. U.S. Distributed Generation Fuel Cell Program

    SciTech Connect

    Williams, Mark C.; Strakey, Joseph P.; Singhal, Subhash C.

    2004-05-14

    The Department of Energy (DOE) is the largest funder of fuel cell technology in the U.S. The DOE Office of Fossil Energy (FE) is developing high temperature fuel cells for distributed generation. It has funded the development of tubular solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) power systems operating at up to 60% efficiency on natural gas. The remarkable environmental performance of these fuel cells makes them likely candidates to help mitigate pollution. DOE is now pursuing more widely applicable solid oxide fuel cells for 2010 and beyond. DOE estimates that a 5 kW solid oxide fuel cell system can reach $400/kW at reasonable manufacturing volumes. SECA - the Solid State Energy Conversion Alliance - was formed by the National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) to accelerate the commercial readiness of planar and other solid oxide fuel cell systems utilizing 3-10 kW size modules by taking advantage of the projected economies of production from a mass customization approach. In addition, if the modular 3-10 kW size units can be ganged or scaled up to larger sizes with no increase in cost, then commercial, microgrid and other distributed generation markets will become attainable. Further scale-up and hybridization of SECA SOFCs with gas turbines could result in penetration of the bulk power market. This paper reviews the current status of the solid oxide and molten carbonate fuel cells in the U.S.

  6. A Study on a New Distribution System Planning with Considering Distributed Generators Installation

    NASA Astrophysics Data System (ADS)

    Koeda, Kazuhiko; Zoka, Yoshifumi; Ueyama, Teppei; Yorino, Naoto; Sasaki, Hiroshi

    This paper proposes a new framework of distribution system planning under the condition of mass installed Distributed Generators (DGs). At present, distribution system planners do not pay much attention to the interconnection of DGs. However, if some DGs can supply power instead of conventional power stations, they will give a significant impact. The planners will have a new option to build a network system plan without unnecessary investment to distribution networks. In this study, an objective function for distribution system planning is formulated to obtain maximum profits for utilities, and the authors discuss reduction of the utilities' investment cost and distribution system loss for installation of DGs. In addition, the authors propose a solution method using a genetic algorithm technique in order to find quasi-optimal solutions for large scale problems. Furthermore, the authors also discuss the connection tariff in order to increase the utilization rate of distribution networks. The advantage of the proposed method is demonstrated through several numerical simulations with successful results.

  7. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Generation and distribution system grounding. 111.05-17... Generation and distribution system grounding. The neutral of each grounded generation and distribution system must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power...

  8. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Generation and distribution system grounding. 111.05-17... Generation and distribution system grounding. The neutral of each grounded generation and distribution system must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power...

  9. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Generation and distribution system grounding. 111.05-17... Generation and distribution system grounding. The neutral of each grounded generation and distribution system must: (a) Be grounded at the generator switchboard, except the neutral of an emergency power...

  10. The Effect of Distributed Energy Resource Competition with Central Generation

    SciTech Connect

    Hadley, SW

    2003-12-10

    Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

  11. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  12. Performance Enhancement of Radial Distributed System with Distributed Generators by Reconfiguration Using Binary Firefly Algorithm

    NASA Astrophysics Data System (ADS)

    Rajalakshmi, N.; Padma Subramanian, D.; Thamizhavel, K.

    2015-03-01

    The extent of real power loss and voltage deviation associated with overloaded feeders in radial distribution system can be reduced by reconfiguration. Reconfiguration is normally achieved by changing the open/closed state of tie/sectionalizing switches. Finding optimal switch combination is a complicated problem as there are many switching combinations possible in a distribution system. Hence optimization techniques are finding greater importance in reducing the complexity of reconfiguration problem. This paper presents the application of firefly algorithm (FA) for optimal reconfiguration of radial distribution system with distributed generators (DG). The algorithm is tested on IEEE 33 bus system installed with DGs and the results are compared with binary genetic algorithm. It is found that binary FA is more effective than binary genetic algorithm in achieving real power loss reduction and improving voltage profile and hence enhancing the performance of radial distribution system. Results are found to be optimum when DGs are added to the test system, which proved the impact of DGs on distribution system.

  13. Determination Method for Optimal Installation of Active Filters in Distribution Network with Distributed Generation

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shoji; Hayashi, Yasuhiro; Matsuki, Junya; Kikuya, Hirotaka; Hojo, Masahide

    Recently, the harmonic troubles in a distribution network are worried in the background of the increase of the connection of distributed generation (DG) and the spread of the power electronics equipments. As one of the strategies, control the harmonic voltage by installing an active filter (AF) has been researched. In this paper, the authors propose a computation method to determine the optimal allocations, gains and installation number of AFs so as to minimize the maximum value of voltage total harmonic distortion (THD) for a distribution network with DGs. The developed method is based on particle swarm optimization (PSO) which is one of the nonlinear optimization methods. Especially, in this paper, the case where the harmonic voltage or the harmonic current in a distribution network is assumed by connecting many DGs through the inverters, and the authors propose a determination method of the optimal allocation and gain of AF that has the harmonic restrictive effect in the whole distribution network. Moreover, the authors propose also about a determination method of the necessary minimum installation number of AFs, by taking into consideration also about the case where the target value of harmonic suppression cannot be reached, by one set only of AF. In order to verify the validity and effectiveness of the proposed method, the numerical simulations are carried out by using an analytical model of distribution network with DGs.

  14. Distributed Generators Allocation in Radial Distribution Systems with Load Growth using Loss Sensitivity Approach

    NASA Astrophysics Data System (ADS)

    Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.

    2016-07-01

    Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.

  15. Synchronization of shift register generators in distributed sample scramblers

    NASA Astrophysics Data System (ADS)

    Kim, Seok Chang; Lee, Byeong Gi

    1994-02-01

    In this paper a theory is developed to support the synchronization of shift register generators (SRG) in the distributed sample scramblers (DSS). DSSs, recently introduced for the cell-based ATM scrambling, are identical to the frame synchronous scramblers (FSS) in scrambling and descrambling processes, but are different in synchronizing the descrambler SRG states. The paper provides a systematic solution to the DSS synchronization problem based on mathematical modelling. It first considers how to sample the SRG state information of scrambler for transmission. Then it discusses how to use the received SRG state samples for the synchronization of the SRG state of descrambler. Examples are attached at the end to demonstrate the developed theory in the cell-based ATM scrambling environment.

  16. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect

    Nguyen Minh

    2002-03-31

    This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

  17. Microwave pyrolysis of wheat straw: product distribution and generation mechanism.

    PubMed

    Zhao, Xiqiang; Wang, Wenlong; Liu, Hongzhen; Ma, Chunyuan; Song, Zhanlong

    2014-04-01

    Microwave pyrolysis of wheat straw is studied, combined with analysis of products, the distribution and generation pathway of products are investigated. Only a small amount of volatiles released when microwave pyrolysis of pure straw. Mixtures of adding CuO and Fe3O4 can pyrolyze, and the majority in pyrolysis products is in liquid-phase. Severe pyrolysis occur after adding carbon residue, the CO content in pyrolysis gas products is high, and the maximum volume content of H2 can exceed 35 vol.%. The high-temperature is helpful for increasing the yield of combustible gas in gaseous products, in particular the H2 production, but also helpful for improving the conversion of sample. Pyrolysis is carried out layer by layer from the inside to outside. As the internal material firstly pyrolyze and pyrolysis products released pass through the low temperature zone, the chance of occurrence of secondary reactions is reduced. PMID:24607465

  18. U.S. distributed generation fuel cell program

    NASA Astrophysics Data System (ADS)

    Williams, M. C.; Strakey, J. P.; Singhal, Subhash C.

    The Department of Energy (DOE) is the largest funder of fuel cell technology in the U.S. The Department of Energy—Office of Fossil Energy (FE) is developing high temperature fuel cells for distributed generation. It has funded the development of tubular solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) power systems operating at up to 60% efficiency on natural gas. The remarkable environmental performance of these fuel cells makes them likely candidates to help mitigate pollution. DOE is now pursuing more widely applicable solid oxide fuel cells for 2010 and beyond. DOE estimates that a 5 kW solid oxide fuel cell system can reach $400 per kW at reasonable manufacturing volumes. SECA—the Solid State Energy Conversion Alliance—was formed by the National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) to accelerate the commercial readiness of planar and other solid oxide fuel cell systems utilizing 3-10 kW size modules by taking advantage of the projected economies of production from a "mass customization" approach. In addition, if the modular 3-10 kW size units can be "ganged" or "scaled-up" to larger sizes with no increase in cost, then commercial, microgrid, and other distributed generation markets will become attainable. Further scale-up and hybridization of SECA SOFCs with gas turbines could result in penetration of the bulk power market. This paper reviews the current status of the solid oxide and molten carbonate fuel cells in the U.S.

  19. Distributed generation capabilities of the national energy modeling system

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the

  20. Pervasive faint Fe XIX emission from a solar active region observed with EUNIS-13: Evidence for nanoflare heating

    SciTech Connect

    Brosius, Jeffrey W.; Daw, Adrian N.; Rabin, D. M.

    2014-08-01

    We present spatially resolved EUV spectroscopic measurements of pervasive, faint Fe XIX 592.2 Å line emission in an active region observed during the 2013 April 23 flight of the Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectral resolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 Å (formed at temperature T ≈ 8.9 MK) and Fe XII at 592.6 Å (T ≈ 1.6 MK). The Fe XIX line emission, observed over an area in excess of 4920 arcsec{sup 2} (2.58 × 10{sup 9} km{sup 2}, more than 60% of the active region), provides strong evidence for the nanoflare heating model of the solar corona. No GOES events occurred in the region less than 2 hr before the rocket flight, but a microflare was observed north and east of the region with RHESSI and EUNIS during the flight. The absence of significant upward velocities anywhere in the region, particularly the microflare, indicates that the pervasive Fe XIX emission is not propelled outward from the microflare site, but is most likely attributed to localized heating (not necessarily due to reconnection) consistent with the nanoflare heating model of the solar corona. Assuming ionization equilibrium we estimate Fe XIX/Fe XII emission measure ratios of ∼0.076 just outside the AR core and ∼0.59 in the core.

  1. Low-cost distributed solar-thermal-electric power generation

    NASA Astrophysics Data System (ADS)

    Der Minassians, Artin; Aschenbach, Konrad H.; Sanders, Seth R.

    2004-01-01

    Due to their high relative cost, solar electric energy systems have yet to be exploited on a widespread basis. It is believed in the energy community that a technology similar to photovoltaic (PV), but offered at about $1/W would lead to widespread deployment at residential and commercial sites. This paper addresses the investigation and feasibility study of a low-cost solar thermal electricity generation technology, suitable for distributed deployment. Specifically, we discuss a system based on nonimaging solar concentrators, integrated with free-piston Stirling engine devices incorporating integrated electric generation. We target concentrator-collector operation at moderate temperatures, in the range of 125°C to 150°C. This temperature is consistent with use of optical concentrators with concentration ratios on the order of 1-2. These low ratio concentrators admit wide angles of radiation acceptance and are thus compatible with no diurnal tracking, and no or only a few seasonal adjustments. Thus, costs and reliability hazards associated with tracking hardware systems are avoided. Further, we note that in the intended application, there is no shortage of incident solar energy, but rather it is the capital cost of the solar-electric system that is most precious. Thus, we outline a strategy for exploiting solar resources in a cost constrained manner. The paper outlines design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only standard low-cost materials and manufacturing methods are required to realize such a machine.

  2. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect

    Faress Rahman; Nguyen Minh

    2003-07-01

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

  3. Investment and Upgrade in Distributed Generation under Uncertainty

    SciTech Connect

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  4. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  5. Air Quality Impact of Distributed Generation of Electricity

    NASA Astrophysics Data System (ADS)

    Jing, Qiguo

    This dissertation summarizes the results of a five-year investigation of the impact of distributed generation (DG) of electricity on air quality in urban areas. I focused on the impact of power plants with capacities of less than 50 MW, which is typical of DG units in urban areas. These power plants are modeled as buoyant emissions from stacks less than 10 m situated in the midst of urban buildings. Because existing dispersion models are not designed for such sources, the first step of the study involved the evaluation of AERMOD, USEPA's state-of-the art dispersion model, with data collected in a tracer study conducted in the vicinity of a DG unit. The second step of the study consisted of using AERMOD to compare the impact of DG penetration in the South Coast Air Basin of Los Angeles with the impact of replacing DG generation with expansion of current central power plant capacity. The third topic of my investigation is the development and application of a model to examine the impact of non-power plant sources in a large urban area such as Los Angeles. This model can be used to estimate the air quality impact of DG relative to other sources in an urban area. The first part of this dissertation describes a tracer study conducted in Palm Springs, CA. Concentrations observed during the nighttime experiments are generally higher than those measured during the daytime experiments. They fall off less rapidly with distance than during the daytime. AERMOD provides an adequate description of concentrations associated with the buoyant releases from the DG during the daytime when turbulence is controlled by convection induced by solar heating. However, AERMOD underestimates concentrations during the night when turbulence is generated by wind shear. Also, AERMOD predicts a decrease in concentrations with distance that is much more rapid than the relatively flat observed decrease. I have suggested modifications to AERMOD to improve the agreement between model estimates and

  6. Microgrids and distributed generation systems: Control, operation, coordination and planning

    NASA Astrophysics Data System (ADS)

    Che, Liang

    Distributed Energy Resources (DERs) which include distributed generations (DGs), distributed energy storage systems, and adjustable loads are key components in microgrid operations. A microgrid is a small electric power system integrated with on-site DERs to serve all or some portion of the local load and connected to the utility grid through the point of common coupling (PCC). Microgrids can operate in both grid-connected mode and island mode. The structure and components of hierarchical control for a microgrid at Illinois Institute of Technology (IIT) are discussed and analyzed. Case studies would address the reliable and economic operation of IIT microgrid. The simulation results of IIT microgrid operation demonstrate that the hierarchical control and the coordination strategy of distributed energy resources (DERs) is an effective way of optimizing the economic operation and the reliability of microgrids. The benefits and challenges of DC microgrids are addressed with a DC model for the IIT microgrid. We presented the hierarchical control strategy including the primary, secondary, and tertiary controls for economic operation and the resilience of a DC microgrid. The simulation results verify that the proposed coordinated strategy is an effective way of ensuring the resilient response of DC microgrids to emergencies and optimizing their economic operation at steady state. The concept and prototype of a community microgrid that interconnecting multiple microgrids in a community are proposed. Two works are conducted. For the coordination, novel three-level hierarchical coordination strategy to coordinate the optimal power exchanges among neighboring microgrids is proposed. For the planning, a multi-microgrid interconnection planning framework using probabilistic minimal cut-set (MCS) based iterative methodology is proposed for enhancing the economic, resilience, and reliability signals in multi-microgrid operations. The implementation of high-reliability microgrids

  7. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Generation and distribution system grounding. 111.05-17 Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING... Generation and distribution system grounding. The neutral of each grounded generation and distribution...

  8. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation.

    PubMed

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713

  9. Improved Quantum Artificial Fish Algorithm Application to Distributed Network Considering Distributed Generation

    PubMed Central

    Du, Tingsong; Hu, Yang; Ke, Xianting

    2015-01-01

    An improved quantum artificial fish swarm algorithm (IQAFSA) for solving distributed network programming considering distributed generation is proposed in this work. The IQAFSA based on quantum computing which has exponential acceleration for heuristic algorithm uses quantum bits to code artificial fish and quantum revolving gate, preying behavior, and following behavior and variation of quantum artificial fish to update the artificial fish for searching for optimal value. Then, we apply the proposed new algorithm, the quantum artificial fish swarm algorithm (QAFSA), the basic artificial fish swarm algorithm (BAFSA), and the global edition artificial fish swarm algorithm (GAFSA) to the simulation experiments for some typical test functions, respectively. The simulation results demonstrate that the proposed algorithm can escape from the local extremum effectively and has higher convergence speed and better accuracy. Finally, applying IQAFSA to distributed network problems and the simulation results for 33-bus radial distribution network system show that IQAFSA can get the minimum power loss after comparing with BAFSA, GAFSA, and QAFSA. PMID:26447713

  10. Distributed generation system using wind/photovoltaic/fuel cell

    NASA Astrophysics Data System (ADS)

    Buasri, Panhathai

    This dissertation investigates the performance and the operation of a distributed generation (DG) power system using wind/photovoltaic/fuel cell (W/PV/FC). The power system consists of a 2500 W photovoltaic array subsystem, a 500 W proton exchange membrane fuel cell (PEMFC) stack subsystem, 300 W wind turbine, 500 W wind turbine, and 1500 W wind energy conversion subsystems. To extract maximum power from the PV, a maximum power point tracker was designed and fabricated. A 4 kW single phase inverter was used to convert the DC voltage to AC voltage; also a 44 kWh battery bank was used to store energy and prevent fluctuation of the power output of the DG system. To connect the fuel cell to the batteries, a DC/DC controller was designed and fabricated. To monitor and study the performance of the DG system under variable conditions, a data acquisition system was designed and installed. The fuel cell subsystem performance was evaluated under standalone operation using a variable resistance and under interactive mode, connected to the batteries. The manufacturing data and the experimental data were used to develop an electrical circuit model to the fuel cell. Furthermore, harmonic analysis of the DG system was investigated. For an inverter, the AC voltage delivered to the grid changed depending on the time, load, and electronic equipment that was connected. The quality of the DG system was evaluated by investigating the harmonics generated by the power electronics converters. Finally, each individual subsystem of the DG system was modeled using the neuro-fuzzy approach. The model was used to predict the performance of the DG system under variable conditions, such as passing clouds and wind gust conditions. The steady-state behaviors of the model were validated by the experimental results under different operating conditions.

  11. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  12. GENERIC VERIFICATION PROTOCOL: DISTRIBUTED GENERATION AND COMBINED HEAT AND POWER FIELD TESTING PROTOCOL

    EPA Science Inventory

    This report is a generic verification protocol by which EPA’s Environmental Technology Verification program tests newly developed equipment for distributed generation of electric power, usually micro-turbine generators and internal combustion engine generators. The protocol will ...

  13. A stochastic evolutionary model generating a mixture of exponential distributions

    NASA Astrophysics Data System (ADS)

    Fenner, Trevor; Levene, Mark; Loizou, George

    2016-02-01

    Recent interest in human dynamics has stimulated the investigation of the stochastic processes that explain human behaviour in various contexts, such as mobile phone networks and social media. In this paper, we extend the stochastic urn-based model proposed in [T. Fenner, M. Levene, G. Loizou, J. Stat. Mech. 2015, P08015 (2015)] so that it can generate mixture models, in particular, a mixture of exponential distributions. The model is designed to capture the dynamics of survival analysis, traditionally employed in clinical trials, reliability analysis in engineering, and more recently in the analysis of large data sets recording human dynamics. The mixture modelling approach, which is relatively simple and well understood, is very effective in capturing heterogeneity in data. We provide empirical evidence for the validity of the model, using a data set of popular search engine queries collected over a period of 114 months. We show that the survival function of these queries is closely matched by the exponential mixture solution for our model.

  14. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  15. Brillouin Stokes comb generated in a distributed fiber Raman amplifier

    NASA Astrophysics Data System (ADS)

    Martins, Hugo F.; Marques, Manuel B.; Frazão, Orlando

    2011-05-01

    A Brillouin Stokes comb laser with increased flatness is reported. The feedback for the laser is provided by a distributed mirror combined with a narrowband seed laser. The Brillouin seed power and wavelength optimization is crucial in order to obtain a uniform power level between Stokes lines. The Brillouin seed must have a relatively large power and its wavelength must be located close to the Raman peak gain region. The flat-amplitude bandwidth is also determined by the choice of Raman pump wavelength. A flat-amplitude bandwidth of 34 nm from 1538 nm to 1572 nm is measured when Raman pump wavelength is set to 1455 nm. 425 uniform Brillouin Stokes lines with 0.08 nm spacing are generated across the wavelength range. The average signal-to-noise ratio of 15 dB is obtained for all the Brillouin Stokes lines. This type of laser can be used in optical communications as a multiwavelength source and also in metrology as a frequency ruler.

  16. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  17. Modeling and control of fuel cell based distributed generation systems

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo

    This dissertation presents circuit models and control algorithms of fuel cell based distributed generation systems (DGS) for two DGS topologies. In the first topology, each DGS unit utilizes a battery in parallel to the fuel cell in a standalone AC power plant and a grid-interconnection. In the second topology, a Z-source converter, which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC boost power converter in order to step up the DC-link voltage, is adopted for a standalone AC power supply. In Topology 1, two applications are studied: a standalone power generation (Single DGS Unit and Two DGS Units) and a grid-interconnection. First, dynamic model of the fuel cell is given based on electrochemical process. Second, two full-bridge DC to DC converters are adopted and their controllers are designed: an unidirectional full-bridge DC to DC boost converter for the fuel cell and a bidirectional full-bridge DC to DC buck/boost converter for the battery. Third, for a three-phase DC to AC inverter without or with a Delta/Y transformer, a discrete-time state space circuit model is given and two discrete-time feedback controllers are designed: voltage controller in the outer loop and current controller in the inner loop. And last, for load sharing of two DGS units and power flow control of two DGS units or the DGS connected to the grid, real and reactive power controllers are proposed. Particularly, for the grid-connected DGS application, a synchronization issue between an islanding mode and a paralleling mode to the grid is investigated, and two case studies are performed. To demonstrate the proposed circuit models and control strategies, simulation test-beds using Matlab/Simulink are constructed for each configuration of the fuel cell based DGS with a three-phase AC 120 V (L-N)/60 Hz/50 kVA and various simulation results are presented. In Topology 2, this dissertation presents system modeling, modified space

  18. Method and apparatus for anti-islanding protection of distributed generations

    DOEpatents

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  19. Voltage Control of Distribution Network with a Large Penetration of Photovoltaic Generations using FACTS Devices

    NASA Astrophysics Data System (ADS)

    Kondo, Taro; Baba, Jumpei; Yokoyama, Akihiko

    In recent years, there is a great deal of interest in distributed generations from viewpoints of environmental problem and energy saving measure. Thus, a lot of distributed generators will be connected to the distribution network in the future. However, increase of distributed generators, which convert natural energy into electric energy, is concerned on their adverse effects on distribution network. Therefore, control of distribution networks using Flexible AC Transmission System (FACTS) devices is considered in order to adjust the voltage profile, and as a result more distributed generations can be installed into the networks. In this paper, four types of FACTS devices, Static Synchronous Compensator (STATCOM), Static Synchronous Series Compensator (SSSC), Unified Power Flow Controller (UPFC) and self-commutated Back-To-Back converter (BTB), are analyzed by comparison of required minimum capacity of the inverters in a residential distribution network with a large penetration of photovoltaic generations.

  20. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  1. Metal-enhanced fluorescence-based core-shell Ag@SiO₂ nanoflares for affinity biosensing via target-induced structure switching of aptamer.

    PubMed

    Lu, Lu; Qian, Yunxia; Wang, Lihui; Ma, Keke; Zhang, Yaodong

    2014-02-12

    One of the great challenges in metal-enhanced fluorescence (MEF) technology is the achievement of distance modulation with nanometer accuracy between the fluorophore and metal surface to obtain maximum enhancement. We propose an MEF-based core-shell Ag@SiO2 nanoflare for distance control via the thickness of silica shell with cooperation of DNA hybridization. The nanoflare contains a 50 nm spherical silver nanoparticle (Ag NP) core, a 8 nm silica shell, and cyanine (Cy5)-labeled aptamer hybridized with a complementary DNA (cDNA) immobilized onto the shell surface. The formation of the Cy5-labeled aptamer/cDNA duplex on the Ag@SiO2 NP surface results in the confinement of Cy5 to the shell surface and an increase in the fluorescence of Cy5 with a 32-fold enhancement factor in bulk solution (signal-on). In the presence of affinity-binding targets, the Cy5-labeled aptamers confined onto the Ag@SiO2 NP surface dissociate from their cDNA into the solution because of structure switching. The target-induced release of aptamer leads to a reduction in the enhanced fluorescence signal of the labeled Cy5 moiety (signal-off). Thus, the nanoflare can be used as a sensor for target recognition. Using adenosine-5'-triphosphate (ATP) aptamer, detection of ATP has a linear response from 0 to 0.5 mM and a detection limit of 8 μM. With various types of DNA probes immobilized onto the core-shell Ag@SiO2 NPs, the MEF-based nanoflare has provided an effective platform for the detection and quantification of a broad range of analytes, such as mRNA regulation and detection, cell sorting, and gene profiling. PMID:24480015

  2. Building Big Flares: Constraining Generating Processes of Solar Flare Distributions

    NASA Astrophysics Data System (ADS)

    Wyse Jackson, T.; Kashyap, V.; McKillop, S.

    2015-12-01

    We address mechanisms which seek to explain the observed solar flare distribution, dN/dE ~ E1.8. We have compiled a comprehensive database, from GOES, NOAA, XRT, and AIA data, of solar flares and their characteristics, covering the year 2013. These datasets allow us to probe how stored magnetic energy is released over the course of an active region's evolution. We fit power-laws to flare distributions over various attribute groupings. For instance, we compare flares that occur before and after an active region reaches its maximum area, and show that the corresponding flare distributions are indistinguishable; thus, the processes that lead to magnetic reconnection are similar in both cases. A turnover in the distribution is not detectable at the energies accessible to our study, suggesting that a self-organized critical (SOC) process is a valid mechanism. However, we find changes in the distributions that suggest that the simple picture of an SOC where flares draw energy from an inexhaustible reservoir of stored magnetic energy is incomplete. Following the evolution of the flare distribution over the lifetimes of active regions, we find that the distribution flattens with time, and for larger active regions, and that a single power-law model is insufficient. This implies that flares that occur later in the lifetime of the active region tend towards higher energies. We conclude that the SOC process must have an upper bound. Increasing the scope of the study to include data from other years and more instruments will increase the robustness of these results. This work was supported by the NSF-REU Solar Physics Program at SAO, grant number AGS 1263241, NASA Contract NAS8-03060 to the Chandra X-ray Center and by NASA Hinode/XRT contract NNM07AB07C to SAO

  3. Parallel grid generation algorithm for distributed memory computers

    NASA Technical Reports Server (NTRS)

    Moitra, Stuti; Moitra, Anutosh

    1994-01-01

    A parallel grid-generation algorithm and its implementation on the Intel iPSC/860 computer are described. The grid-generation scheme is based on an algebraic formulation of homotopic relations. Methods for utilizing the inherent parallelism of the grid-generation scheme are described, and implementation of multiple levELs of parallelism on multiple instruction multiple data machines are indicated. The algorithm is capable of providing near orthogonality and spacing control at solid boundaries while requiring minimal interprocessor communications. Results obtained on the Intel hypercube for a blended wing-body configuration are used to demonstrate the effectiveness of the algorithm. Fortran implementations bAsed on the native programming model of the iPSC/860 computer and the Express system of software tools are reported. Computational gains in execution time speed-up ratios are given.

  4. A Test Generation Framework for Distributed Fault-Tolerant Algorithms

    NASA Technical Reports Server (NTRS)

    Goodloe, Alwyn; Bushnell, David; Miner, Paul; Pasareanu, Corina S.

    2009-01-01

    Heavyweight formal methods such as theorem proving have been successfully applied to the analysis of safety critical fault-tolerant systems. Typically, the models and proofs performed during such analysis do not inform the testing process of actual implementations. We propose a framework for generating test vectors from specifications written in the Prototype Verification System (PVS). The methodology uses a translator to produce a Java prototype from a PVS specification. Symbolic (Java) PathFinder is then employed to generate a collection of test cases. A small example is employed to illustrate how the framework can be used in practice.

  5. The Distribution of Active Force Generators Controls Mitotic Spindle Position

    NASA Astrophysics Data System (ADS)

    Grill, Stephan W.; Howard, Jonathon; Schäffer, Erik; Stelzer, Ernst H. K.; Hyman, Anthony A.

    2003-07-01

    During unequal cell divisions a mitotic spindle is eccentrically positioned before cell cleavage. To determine the basis of the net force imbalance that causes spindle displacement in one-cell Caenorhabditis elegans embryos, we fragmented centrosomes with an ultraviolet laser. Analysis of the mean and variance of fragment speeds suggests that the force imbalance is due to a larger number of force generators pulling on astral microtubules of the posterior aster relative to the anterior aster. Moreover, activation of heterotrimeric guanine nucleotide-binding protein (G protein) α subunits is required to generate these astral forces.

  6. Generating distributed forcing fields for spatial hydrologic modeling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial hydrologic modeling requires the development of distributed forcing fields of weather and precipitation. This is particularly difficult in mountainous regions of the western US, where measurement sites are limited and the landscape is dominated by complex terrain and variations in vegetatio...

  7. A NOVEL SOLAR THERMAL COMBINED CYCLE FOR DISTRIBUTED POWER GENERATION

    EPA Science Inventory

    Impacts of this work will be seen in the areas of energy, poverty alleviation, improvement of quality of health care provision and quality of life, business development, and education. We will be directly preventing installation of polluting diesel generators while improving ...

  8. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  9. 46 CFR 111.05-17 - Generation and distribution system grounding.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Generation and distribution system grounding. 111.05-17 Section 111.05-17 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Equipment Ground, Ground Detection, and Grounded Systems § 111.05-17 Generation and distribution...

  10. Control of dispatch dynamics for lowering the cost of distributed generation in the built environment

    NASA Astrophysics Data System (ADS)

    Flores, Robert Joseph

    Distributed generation can provide many benefits over traditional central generation such as increased reliability and efficiency while reducing emissions. Despite these potential benefits, distributed generation is generally not purchased unless it reduces energy costs. Economic dispatch strategies can be designed such that distributed generation technologies reduce overall facility energy costs. In this thesis, a microturbine generator is dispatched using different economic control strategies, reducing the cost of energy to the facility. Several industrial and commercial facilities are simulated using acquired electrical, heating, and cooling load data. Industrial and commercial utility rate structures are modeled after Southern California Edison and Southern California Gas Company tariffs and used to find energy costs for the simulated buildings and corresponding microturbine dispatch. Using these control strategies, building models, and utility rate models, a parametric study examining various generator characteristics is performed. An economic assessment of the distributed generation is then performed for both the microturbine generator and parametric study. Without the ability to export electricity to the grid, the economic value of distributed generation is limited to reducing the individual costs that make up the cost of energy for a building. Any economic dispatch strategy must be built to reduce these individual costs. While the ability of distributed generation to reduce cost depends of factors such as electrical efficiency and operations and maintenance cost, the building energy demand being serviced has a strong effect on cost reduction. Buildings with low load factors can accept distributed generation with higher operating costs (low electrical efficiency and/or high operations and maintenance cost) due to the value of demand reduction. As load factor increases, lower operating cost generators are desired due to a larger portion of the building load

  11. Generation of Finite Life Distributional Goodman Diagrams for Reliability Prediction

    NASA Technical Reports Server (NTRS)

    Kececioglu, D.; Guerrieri, W. N.

    1971-01-01

    The methodology of developing finite life distributional Goodman diagrams and surfaces is described for presenting allowable combinations of alternating stress and mean stress to the design engineer. The combined stress condition is that of an alternating bending stress and a constant shear stress. The finite life Goodman diagrams and surfaces are created from strength distributions developed at various ratios of alternating to mean stress at particular cycle life values. The conclusions indicate that the Von Mises-Hencky ellipse, for cycle life values above 1000 cycles, is an adequate model of the finite life Goodman diagram. In addition, suggestions are made which reduce the number of experimental data points required in a fatigue data acquisition program.

  12. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  13. Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation

    NASA Astrophysics Data System (ADS)

    El-Taher, A. E.; Harper, P.; Babin, S. A.; Churkin, D. V.; Podivilov, E. V.; Ania-Castanon, J. D.; Turitsyn, S. K.

    2011-02-01

    We experimentally demonstrate a Raman fiber laser based on multiple point-action fiber Bragg grating (FBG) reflectors and distributed feedback via Rayleigh scattering in a ~22 km long optical fiber. Twenty two lasing lines with spacing of ~100 GHz (close to ITU grid) in C-band are generated at Watts power level. In contrast to the normal cavity with competition between laser lines, the random distributed feedback cavity exhibits highly stable multiwavelength generation with a power-equalized uniform distribution which is almost independent on power. The current set up showing the capability of generating Raman gain of about 100-nm wide giving the possibility of multiwavelength generation at different bands.

  14. Ray tracing for point distribution in unstructured grid generation

    SciTech Connect

    Khamayseh, A.; Ortega, F.; Trease, H.

    1995-12-31

    We present a procedure by which grid points are generated on surfaces or within three-dimensional volumes to produce high quality unstructed grids for complex geometries. The virtue of this method is based on ray-tracing approach for curved polyhedra whose faces may lie on natural quadrics (planes, cylinders, cones, or spheres) or triangular faceted surfaces. We also present an efficient point location algorithm for identifying points relative to various regions with classification of inside/on/outside.

  15. Towards Manufacturing/Distribution Systems in the Next Generation

    NASA Astrophysics Data System (ADS)

    Koshimizu, Hiroyasu; Kaihara, Toshiya; Sawada, Hiroyuki

    Nowadays agile market is in common, and the fundamental technology supporting next-generation production system requires further development of machine and information technologies to establish “human technology” and a bridging of these technologies together. IMS-HUTOP project proposes a new product life cycle that respects the human nature of individuals, and establishes the elemental technologies necessary for acquiring, modelling and evaluating various human factors in an effort to achieve the HUTOP cycle. In this paper we propose a human centred KANSEI manufacturing system, which has been proposed in the IMS-HUTOP project with 5 work packages.

  16. Pit Distribution Design for Computer-Generated Waveguide Holography

    NASA Astrophysics Data System (ADS)

    Yagi, Shogo; Imai, Tadayuki; Ueno, Masahiro; Ohtani, Yoshimitsu; Endo, Masahiro; Kurokawa, Yoshiaki; Yoshikawa, Hiroshi; Watanabe, Toshifumi; Fukuda, Makoto

    2008-02-01

    Multilayered waveguide holography (MWH) is one of a number of page-oriented data multiplexing holographies that will be applied to optical data storage and three-dimensional (3D) moving images. While conventional volumetric holography using photopolymer or photorefractive materials requires page-by-page light exposure for recording, MWH media can be made by employing stamping and laminating technologies that are suitable for mass production. This makes devising an economical mastering technique for replicating holograms a key issue. In this paper, we discuss an approach to pit distribution design that enables us to replace expensive electron beam mastering with economical laser beam mastering. We propose an algorithm that avoids the overlapping of even comparatively large adjacent pits when we employ laser beam mastering. We also compensate for the angular dependence of the diffraction power, which strongly depends on pit shape, by introducing an enhancement profile so that a diffracted image has uniform intensity.

  17. New Development of Power Distribution System Resulting from Dispersed Generations and Current Interruption

    NASA Astrophysics Data System (ADS)

    Yokomizu, Yasunobu

    Dispersed generation systems, such as micro gas-turbines and fuel cells, have been installed on some of commercial facilities. Smaller dispersed generators like solar photovoltaics have been also located on the several of individual homes. The trends in the introduction of the these generation systems seem to continue in the future and to cause the power system to have the enormous number of the dispersed generation systems. The present report discusses the near-future power distribution systems.

  18. Real time testing of intelligent relays for synchronous distributed generation islanding detection

    NASA Astrophysics Data System (ADS)

    Zhuang, Davy

    As electric power systems continue to grow to meet ever-increasing energy demand, their security, reliability, and sustainability requirements also become more stringent. The deployment of distributed energy resources (DER), including generation and storage, in conventional passive distribution feeders, gives rise to integration problems involving protection and unintentional islanding. Distributed generators need to be islanded for safety reasons when disconnected or isolated from the main feeder as distributed generator islanding may create hazards to utility and third-party personnel, and possibly damage the distribution system infrastructure, including the distributed generators. This thesis compares several key performance indicators of a newly developed intelligent islanding detection relay, against islanding detection devices currently used by the industry. The intelligent relay employs multivariable analysis and data mining methods to arrive at decision trees that contain both the protection handles and the settings. A test methodology is developed to assess the performance of these intelligent relays on a real time simulation environment using a generic model based on a real-life distribution feeder. The methodology demonstrates the applicability and potential advantages of the intelligent relay, by running a large number of tests, reflecting a multitude of system operating conditions. The testing indicates that the intelligent relay often outperforms frequency, voltage and rate of change of frequency relays currently used for islanding detection, while respecting the islanding detection time constraints imposed by standing distributed generator interconnection guidelines.

  19. Size distributions of micro-bubbles generated by a pressurized dissolution method

    NASA Astrophysics Data System (ADS)

    Taya, C.; Maeda, Y.; Hosokawa, S.; Tomiyama, A.; Ito, Y.

    2012-03-01

    Size of micro-bubbles is widely distributed in the range of one to several hundreds micrometers and depends on generation methods, flow conditions and elapsed times after the bubble generation. Although a size distribution of micro-bubbles should be taken into account to improve accuracy in numerical simulations of flows with micro-bubbles, a variety of the size distribution makes it difficult to introduce the size distribution in the simulations. On the other hand, several models such as the Rosin-Rammler equation and the Nukiyama-Tanazawa equation have been proposed to represent the size distribution of particles or droplets. Applicability of these models to the size distribution of micro-bubbles has not been examined yet. In this study, we therefore measure size distribution of micro-bubbles generated by a pressurized dissolution method by using a phase Doppler anemometry (PDA), and investigate the applicability of the available models to the size distributions of micro-bubbles. Experimental apparatus consists of a pressurized tank in which air is dissolved in liquid under high pressure condition, a decompression nozzle in which micro-bubbles are generated due to pressure reduction, a rectangular duct and an upper tank. Experiments are conducted for several liquid volumetric fluxes in the decompression nozzle. Measurements are carried out at the downstream region of the decompression nozzle and in the upper tank. The experimental results indicate that (1) the Nukiyama-Tanasawa equation well represents the size distribution of micro-bubbles generated by the pressurized dissolution method, whereas the Rosin-Rammler equation fails in the representation, (2) the bubble size distribution of micro-bubbles can be evaluated by using the Nukiyama-Tanasawa equation without individual bubble diameters, when mean bubble diameter and skewness of the bubble distribution are given, and (3) an evaluation method of visibility based on the bubble size distribution and bubble

  20. The role of distributed generation (DG) in a restructured utility environment

    SciTech Connect

    Feibus, H.

    1999-07-01

    A major consequence of the restructuring of the electric utility industry is disintegration, by which the traditional integrated utility is spinning off its generation business and becoming a power distribution company, or distco. This company will be the remaining entity of the traditional electric utility that continues to be regulated. The world in which the distco functions is becoming a very different place. The distco will be called upon to deliver not only power, but a range of ancillary services, defined by the Federal Energy Regulatory Commission, including spinning reserves, voltage regulation, reactive power, energy imbalance and network stability, some of which may be obtained from the independent system operator, and some of which may be provided by the distco. In this environment the distco must maintain system reliability and provide service to the customer at the least cost. Meanwhile, restructuring is spawning a new generation of unregulated energy service companies that threaten to win the most attractive customers from the distco. Fortunately there is a new emerging generation of technologies, distributed resources, that provide options to the distco to help retain prime customers, by improving reliability and lowering costs. Specifically, distributed generation and storage systems if dispersed into the distribution system can provide these benefits, if generators with the right characteristics are selected, and the integration into the distribution system is done skillfully. The Electric Power Research Institute has estimated that new distributed generation may account for 30% of new generation. This presentation will include the characteristics of several distributed resources and identify potential benefits that can be obtained through the proper integration of distributed generation and storage systems.

  1. Combined Operation of AC and DC Distribution System with Distributed Generation Units

    NASA Astrophysics Data System (ADS)

    Noroozian, Reza; Abedi, Mehrdad; Gharehpetian, Gevorg

    2010-07-01

    This paper presents a DC distribution system which has been supplied by external AC systems as well as local DG units in order to demonstrate an overall solution to power quality issue. In this paper, the proposed operation method is demonstrated by simulation of power transfer between external AC systems, DG units, AC and DC loads. The power flow control in DC distribution system has been achieved by network converters and DG converters. Also, the mathematical model of the network, DG and load converters are obtained by using the average technique, which allows converter systems accurately simulated and control strategies for this converters is achieved. A suitable control strategy for network converters has been proposed that involves DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control technique has been proposed for DG converters. In this paper, a novel control system based on stationary and synchronously rotating reference frame has been proposed for load converters for supplying AC loads connected to the DC bus by balanced voltages. The several case studies have been studied based on proposed methods. The simulation results show that DC distribution systems including DG units can improve the power quality at the point of common coupling (PCC) in the power distribution system or industrial power system.

  2. Historical and Current U.S. Strategies for Boosting Distributed Generation

    SciTech Connect

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  3. Cryptographic random number generators for low-power distributed measurement system

    NASA Astrophysics Data System (ADS)

    Czernik, Pawel; Olszyna, Jakub

    2009-06-01

    In this paper we present the State of The Art in Cryptographic Random Number Generators (RNG). We provide analysis of every of the most popular types of RNGs such as linear generators (i.e. congruential, multiple recursive), non-linear generators (i.e. Quadratic, Blum-Blum-Shub) and cryptographic algorithms based (i.e. RSA generator, SHA-1 generator). Finally we choose solutions which are suitable to Distributed Measurement Systems (DMS) specific requirements according to cryptographic security, computational efficiency (throughput) and complexity of implementation (VHDL targeted at FPGA and ASIC devices). Strong asymmetry of computing power and memory capacity is taken into account in both software and hardware solutions.

  4. Size Distribution and Rate of Dust Generated During Grain Elevator Handling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dust generated during grain handling is an air pollutant that produces safety and health hazards. This study was conducted to characterize the particle size distribution (PSD) of dust generated during handling of wheat and shelled corn in the research elevator of the USDA Grain Marketing and Product...

  5. A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Schneider, A.; Gerke, H. H.

    2011-05-01

    Artificially-created hydrological catchments are characterized by sediment structures from technological construction processes that can potentially be important for modelling of flow and transport and for understanding initial soil and ecosystem development. The subsurface spatial structures of such catchments have not yet been sufficiently explored and described. Our objective was to develop a structure generator programme for modelling the 3-D spatial sediment distribution patterns depending on the technical earth-moving and deposition processes. For the development, the artificially-constructed hydrological catchment "Chicken Creek" located in Lower Lusatia, Germany, served as an example. The structure generator describes 3-D technological sediment distributions at two scales: (i) for a 2-D-vertical cross-section, texture and bulk density distributions are generated within individual spoil cones that result from mass dumping, particle segregation, and compaction and (ii) for the whole catchment area, the spoil cones are horizontally arranged along trajectories of mass dumping controlled by the belt stacker-machine relative to the catchment's clay layer topography. The generated 3-D texture and bulk density distributions are interpolated and visualized as a gridded 3-D-volume body using 3-D computer-aided design software. The generated subsurface sediment distribution for the Chicken Creek catchment was found to correspond to observed patterns although still without any calibration. Spatial aggregation and interpolation in the gridded volume body modified the generated distributions towards more uniform (unimodal) distributions and lower values of the standard deviations. After incorporating variations and pedotransfer approaches, generated sediment distributions can be used for deriving realizations of the 3-D hydraulic catchment structure.

  6. Technology survey of electrical power generation and distribution for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Redding, T. E.

    1975-01-01

    Candidate electrical generation power systems for the modular integrated utility systems (MIUS) program are described. Literature surveys were conducted to cover both conventional and exotic generators. Heat-recovery equipment associated with conventional power systems and supporting equipment are also discussed. Typical ranges of operating conditions and generating efficiencies are described. Power distribution is discussed briefly. Those systems that appear to be applicable to MIUS have been indicated, and the criteria for equipment selection are discussed.

  7. A FORTRAN program for generation of multivariate normally distributed random variables

    NASA Astrophysics Data System (ADS)

    Ghosh, Amitava; Kulatilake, Pinnaduwa H. S. W.

    The computer program given in this paper generates a set of values for each of the random variables which are distributed according to a multivariate normal distribution. It is written in FORTRAN 77 and is designed to run on a CYBER 175 computer. In generating a set of values, the program either can use actual data of the variables as input to estimate parameter values of the multivariate normal distribution or the parameter values of the multivariate normal distribution can be used directly as input to the program. The theory and the necessary algorithms for the generation are given in detail. Use of the program is illustrated through an example in soil engineering. Monte-Carlo simulation method is used for working out the example.

  8. A structure generator for modelling the initial sediment distribution of an artificial hydrologic catchment

    NASA Astrophysics Data System (ADS)

    Maurer, T.; Schneider, A.; Gerke, H. H.

    2011-12-01

    Artificially-created hydrological catchments are characterised by sediment structures from technological construction processes that can potentially be important for modelling of flow and transport and for understanding initial soil and ecosystem development. The subsurface spatial structures of such catchments have not yet been sufficiently explored and described. Our objective was to develop a structure generator programme for modelling the 3-D spatial distribution patterns of dumped sediments depending on the technical earth-moving and deposition processes. We are focussing in a first step on integrating sediment dumping, particle size, and bulk density modification processes on the catchment scale. For the model development, the artificially-constructed hydrological catchment "Chicken Creek" located in Lower Lusatia, Germany, served as an example. The structure generator describes 3-D technological sediment distributions at two scales: (i) for a 2-D-vertical cross-section, texture and bulk density distributions are generated within individual spoil cones that result from mass dumping, particle segregation, and compaction and (ii) for the whole catchment, the spoil cones are horizontally arranged along trajectories of mass dumping controlled by the belt stacker-machine relative to the catchment's clay layer topography. The generated 3-D texture and bulk density distributions are interpolated and visualised as a gridded 3-D-volume body using 3-D computer-aided design software. The generated subsurface sediment distribution for the Chicken Creek catchment was found to correspond to observed patterns already without calibration. Spatial aggregation and interpolation in the gridded volume body modified the generated distributions towards more uniform (unimodal) distributions and lower values of the standard deviations. The modelling approach is generally applicable to all situations where large masses of unconsolidated sediment are moved and dumped thereby allowing

  9. Eunis Observation of Pervasive Faint Fe XIX Line Emission from a Solar Active Region: Evidence for Coronal Heating By Nanoflares

    NASA Astrophysics Data System (ADS)

    Brosius, J. W.; Daw, A. N.; Rabin, D. M.

    2014-12-01

    We present spatially resolved EUV spectroscopic measurements ofpervasive, faint Fe XIX 592.2 A line emission in an active regionobserved during the 2013 April 23 flight of the Extreme UltravioletNormal Incidence Spectrograph (EUNIS-13) sounding rocket instrument. With cooled detectors, high sensitivity, and high spectralresolution, EUNIS-13 resolves the lines of Fe XIX at 592.2 A (formedat temperature T around 8.9 MK) and Fe XII at 592.6 A (T around 1.6MK). The Fe XIX line emission, observed over an area in excess of4920 square arcsec (2.58x10^9 square km, more than 60% of the activeregion), provides strong evidence for the nanoflare heating model ofthe solar corona. No GOES events occurred in the region less than 2hours before the rocket flight, but a microflare was observed northand east of the region with RHESSI and EUNIS during the flight. Theabsence of significant upward velocities anywhere in the region,particularly the microflare, indicates that the pervasive Fe XIXemission is not propelled outward from the microflare site, but ismost likely attributed to localized heating (due to reconnection,wave dissipation, or some other mechanism) consistent with thenanoflare heating model of the solar corona. We measure average FeXIX/Fe XII intensity ratios of 0.070 outside the AR core, 0.22 inarea of bright coronal emission (the area in which the Fe XIIintensity exceeds half its maximum observed value), and 0.55 in theregion's hot core. Using the CHIANTI atomic physics database andassuming ionization equilibrium, we estimate corresponding Fe XIX/FeXII emission measure ratios of about 0.076, 0.23 and 0.59. Theemission measure ratios must be viewed with caution in light oflingering uncertainties in the Fe XII contribution functions.EUNIS-13 was supported by the NASA Heliophysics Division through itsLow Cost Access to Space program.

  10. On the generation of log-Lévy distributions and extreme randomness

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo; Klafter, Joseph

    2011-10-01

    The log-normal distribution is prevalent across the sciences, as it emerges from the combination of multiplicative processes and the central limit theorem (CLT). The CLT, beyond yielding the normal distribution, also yields the class of Lévy distributions. The log-Lévy distributions are the Lévy counterparts of the log-normal distribution, they appear in the context of ultraslow diffusion processes, and they are categorized by Mandelbrot as belonging to the class of extreme randomness. In this paper, we present a natural stochastic growth model from which both the log-normal distribution and the log-Lévy distributions emerge universally—the former in the case of deterministic underlying setting, and the latter in the case of stochastic underlying setting. In particular, we establish a stochastic growth model which universally generates Mandelbrot’s extreme randomness.

  11. Perpendicular heating of electrons by upper hybrid waves generated by a ring distribution

    NASA Technical Reports Server (NTRS)

    Lin, C. S.; Menietti, J. D.; Wong, H. K.

    1990-01-01

    Satellite observations of electron conical distributions with enhanced fluxes just outside the loss cone suggest that telectrons have been heated perpendicularly to the magnetic field in the mid-altitude polar magnetosphere. To understand electron conical distributions, plasma simulations are conducted to examine an upper hybrid wave instability of a ring electron distribution perpendicular to the magnetic field in a cold electron background. The simulations indicate that both the cold and ring distributions are heated perpendicularly during the saturation stage. From the plasma data, a ring distribution can be identified as a trapped distribution function with an enhancement near 90-deg pitch angle in the phase space density plot. It is suggested that the ring distribution might provide an additional free energy source for generating upper hybrid waves associated with electron conical events.

  12. Optimal Placement of Distributed Generation Units in a Distribution System with Uncertain Topologies using Monte Carlo Simulation

    NASA Astrophysics Data System (ADS)

    Donadel, Clainer Bravin; Fardin, Jussara Farias; Encarnação, Lucas Frizera

    2015-10-01

    In the literature, several papers propose new methodologies to determine the optimal placement/sizing of medium size Distributed Generation Units (DGs), using heuristic algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). However, in all methodologies, the optimal placement solution is strongly dependent of network topologies. Therefore, a specific solution is valid only for a particular network topology. Furthermore, such methodologies does not consider the presence of small DGs, whose connection point cannot be defined by Distribution Network Operators (DNOs). In this paper it is proposed a new methodology to determine the optimal location of medium size DGs in a distribution system with uncertain topologies, considering the particular behavior of small DGs, using Monte Carlo Simulation.

  13. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    SciTech Connect

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  14. Future impacts of distributed power generation on ambient ozone and particulate matter concentrations in the San Joaquin Valley of California.

    PubMed

    Vutukuru, Satish; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald

    2011-12-01

    Distributed power generation-electricity generation that is produced by many small stationary power generators distributed throughout an urban air basin-has the potential to supply a significant portion of electricity in future years. As a result, distributed generation may lead to increased pollutant emissions within an urban air basin, which could adversely affect air quality. However, the use of combined heating and power with distributed generation may reduce the energy consumption for space heating and air conditioning, resulting in a net decrease of pollutant and greenhouse gas emissions. This work used a systematic approach based on land-use geographical information system data to determine the spatial and temporal distribution of distributed generation emissions in the San Joaquin Valley Air Basin of California and simulated the potential air quality impacts using state-of-the-art three-dimensional computer models. The evaluation of the potential market penetration of distributed generation focuses on the year 2023. In general, the air quality impacts of distributed generation were found to be small due to the restrictive 2007 California Air Resources Board air emission standards applied to all distributed generation units and due to the use of combined heating and power. Results suggest that if distributed generation units were allowed to emit at the current Best Available Control Technology standards (which are less restrictive than the 2007 California Air Resources Board standards), air quality impacts of distributed generation could compromise compliance with the federal 8-hr average ozone standard in the region. PMID:22263420

  15. Distributed Generation Planning using Peer Enhanced Multi-objective Teaching-Learning based Optimization in Distribution Networks

    NASA Astrophysics Data System (ADS)

    Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth

    2016-06-01

    In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.

  16. Industrial Use of Distributed Generation in Real-Time Energy and Ancillary Service Markets

    SciTech Connect

    Hudson, C.R.

    2001-10-24

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sections in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.

  17. An efficient algorithm for generating random number pairs drawn from a bivariate normal distribution

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1983-01-01

    An efficient algorithm for generating random number pairs from a bivariate normal distribution was developed. Any desired value of the two means, two standard deviations, and correlation coefficient can be selected. Theoretically the technique is exact and in practice its accuracy is limited only by the quality of the uniform distribution random number generator, inaccuracies in computer function evaluation, and arithmetic. A FORTRAN routine was written to check the algorithm and good accuracy was obtained. Some small errors in the correlation coefficient were observed to vary in a surprisingly regular manner. A simple model was developed which explained the qualities aspects of the errors.

  18. Historical and Current U.S. Strategies for Boosting Distributed Generation (Chinese Translation)

    SciTech Connect

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-08-01

    This is the Chinese translation of NREL/TP-6A20-64843. This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  19. THE COLD SHOULDER: EMISSION MEASURE DISTRIBUTIONS OF ACTIVE REGION CORES

    SciTech Connect

    Schmelz, J. T.; Pathak, S.

    2012-09-10

    The coronal heating mechanism for active region core loops is difficult to determine because these loops are often not resolved and cannot be studied individually. Rather, we concentrate on the 'inter-moss' areas between loop footpoints. We use observations from the Hinode EUV Imaging Spectrometer and the X-Ray Telescope to calculate the emission measure distributions of eight inter-moss areas in five different active regions. The combined data sets provide both high- and low-temperature constraints and ensure complete coverage in the temperature range appropriate for active regions. For AR 11113, the emission can be modeled with heating events that occur on timescales less than the cooling time. The loops in the core regions appear to be close to equilibrium and are consistent with steady heating. The other regions studied, however, appear to be dominated by nanoflare heating. Our results are consistent with the idea that active region age is an important parameter in determining whether steady or nanoflare heating is primarily responsible for the core emission, that is, older regions are more likely to be dominated by steady heating, while younger regions show more evidence of nanoflares.

  20. Influence of Multiple Ionization on Charge State Distributions

    NASA Astrophysics Data System (ADS)

    Hahn, Michael; Savin, Daniel Wolf

    2015-08-01

    The spectrum emitted by a plasma depends on the charge state distribution (CSD) of the gas. For collisionally ionized plasmas, the CSD is is determined by the corresponding rates for electron-impact ionization and recombination. In astrophysics, such plasmas are formed in stars, supernova remnants, galaxies, and galaxy clusters. Current CSD calculations generally do not account for electron-impact multiple ionization (EIMI), a process in which multiple electrons are ejected by a single electron-ion collision. We have estimated the EIMI cross sections for all charge states of iron using a combination of the available experimental data and semi-empirical formulae. We then modeled the CSD and observed the influence of EIMI compared to only including single ionization. One case of interest for astrophysics is nanoflare heating, which is a leading theory to explain the heating of the solar corona. In order to determine whether this theory can indeed explain coronal heating, spectroscopic measurements are being compared to model nanoflare spectra. Such models have attempted to predict the spectra of impulsively heated plasmas in which the CSD is time dependent. These nonequilbirium ionization calculations have so far ignored EIMI, but our findings suggest that EIMI can have a significant effect on the CSD of a nanoflare-heated plasma, changing the ion abundances by up to about 50%.

  1. Generating a uniform transverse distributed electron beam along a beam line

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiao-Hao

    2015-11-01

    It has been reported that transverse distribution shaping can help to further enhance the energy extraction efficiency in a terawatt, tapered X-ray free-electron laser. Thus, methods of creating and keeping an almost uniform transverse distributed (UTD) beam within undulators are required. This study shows that a UTD electron beam can be generated within evenly distributed drift sections where undulators can be placed, by means of octupoles and particular optics. A specific design is presented, and numerical simulations are performed to verify the proposed method. Supported by National Natural Science Foundation of China (11475202, 11405187) and Youth Innovation Promotion Association of Chinese Academy of Sciences (2015009)

  2. Implementation of a long range, distributed-volume, continuously variable turbulence generator.

    PubMed

    DiComo, Gregory; Helle, Michael; Peñano, Joe; Ting, Antonio; Schmitt-Sody, Andreas; Elle, Jennifer

    2016-07-01

    We have constructed a 180-m-long distributed, continuously variable atmospheric turbulence generator to study high-power laser beam propagation. This turbulence generator operates on the principle of free convection from a heated surface placed below the entire propagation path of the beam, similar to the situation in long-distance horizontal propagation for laser communications, power beaming, or directed energy applications. The turbulence produced by this generator has been characterized through constant-temperature anemometry, as well as by the scintillation of a low-power laser beam. PMID:27409209

  3. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  4. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 5 2014-07-01 2014-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  5. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 5 2011-07-01 2011-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  6. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 5 2012-07-01 2012-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  7. 29 CFR 1910.269 - Electric power generation, transmission, and distribution.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 5 2013-07-01 2013-07-01 false Electric power generation, transmission, and distribution. 1910.269 Section 1910.269 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Special Industries § 1910.269 Electric power...

  8. Distributed state-space generation of discrete-state stochastic models

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco; Gluckman, Joshua; Nicol, David

    1995-01-01

    High-level formalisms such as stochastic Petri nets can be used to model complex systems. Analysis of logical and numerical properties of these models of ten requires the generation and storage of the entire underlying state space. This imposes practical limitations on the types of systems which can be modeled. Because of the vast amount of memory consumed, we investigate distributed algorithms for the generation of state space graphs. The distributed construction allows us to take advantage of the combined memory readily available on a network of workstations. The key technical problem is to find effective methods for on-the-fly partitioning, so that the state space is evenly distributed among processors. In this paper we report on the implementation of a distributed state-space generator that may be linked to a number of existing system modeling tools. We discuss partitioning strategies in the context of Petri net models, and report on performance observed on a network of workstations, as well as on a distributed memory multi-computer.

  9. Parallel and distributed trajectory generation of redundant manipulators through cooperation and competition among subsystems.

    PubMed

    Tsuji, T; Nakayama, S; Ito, K

    1997-01-01

    Autonomous distributed control (ADC) is one of the most attractive approaches for more versatile and autonomous robot systems. The paper proposes a parallel and distributed trajectory generation method for redundant manipulators through cooperative and competitive interactions among subsystems composing the ADC that is based on a concept of virtual arms. The virtual arm has the same kinematic structure as the manipulator except that its end point is located on a joint or link of the manipulator. Then the redundant manipulator can be represented by a set of the virtual arms. Trajectory generation and point to point control of the redundant manipulator are discussed, and it is shown that the kinematic redundancy of the manipulator can be utilized positively in the generated trajectories by using the virtual arms. PMID:18255888

  10. Autonomous Decentralized Control of Supply and Demand by Inverter Based Distributed Generations in Isolated Microgrid

    NASA Astrophysics Data System (ADS)

    Shiki, Akira; Yokoyama, Akihiko; Baba, Jyunpei; Takano, Tomihiro; Gouda, Takahiro; Izui, Yoshio

    Recently, because of the environmental burden mitigation, energy conservations, energy security, and cost reductions, distributed generations are attracting our strong attention. These distributed generations (DGs) have been already installed to the distribution system, and much more DGs will be expected to be connected in the future. On the other hand, a new concept called “Microgrid” which is a small power supply network consisting of only DGs was proposed and some prototype projects are ongoing in Japan. The purpose of this paper is to develop the three-phase instantaneous valued digital simulator of microgrid consisting of a lot of inverter based DGs and to develop a supply and demand control method in isolated microgrid. First, microgrid is modeled using MATLAB/SIMULINK. We develop models of three-phase instantaneous valued inverter type CVCF generator, PQ specified generator, PV specified generator, PQ specified load as storage battery, photovoltaic generation, fuel cell and inverter load respectively. Then we propose an autonomous decentralized control method of supply and demand in isolated microgrid where storage batteries, fuel cells, photovoltaic generations and loads are connected. It is proposed here that the system frequency is used as a means to control DG output. By changing the frequency of the storage battery due to unbalance of supply and demand, all inverter based DGs detect the frequency fluctuation and change their own outputs. Finally, a new frequency control method in autonomous decentralized control of supply and demand is proposed. Though the frequency is used to transmit the information on the supply and demand unbalance to DGs, after the frequency plays the role, the frequency finally has to return to a standard value. To return the frequency to the standard value, the characteristic curve of the fuel cell is shifted in parallel. This control is carried out corresponding to the fluctuation of the load. The simulation shows that the

  11. Temperature Analysis of Coronal Loop Cross-Sections: Monolithic vs. Nanoflare Heating

    NASA Astrophysics Data System (ADS)

    Aschwanden, Markus J.; Boerner, P.

    2011-05-01

    We present a first systematic study on the cross-sectional temperature structure of coronal loops using the six coronal temperature filters of the Atmospheric Imaging Assembly (AIA) instrument on the Solar Dynamics Observatory (SDO). We analyze a sample of 100 loop snapshots measured at 10 different locations and 10 different times in active region NOAA 11089 on 2010 July 24, 21:00-22:00 UT. The cross-sectional flux profiles are measured and a cospatial background is subtracted in 6 filters in a temperature range of T ≈ 0.5-16 MK, and 4 different parameterizations of differential emission measure (DEM) distributions are fitted. We find that the reconstructed DEMs consist predominantly of narrowband peak temperature components with a thermal width of σlog(T) ≤ 0.11±0.02, close to the temperature resolution limit of the instrument, consistent with earlier triple-filter analysis from TRACE by Aschwanden and Nightingale (2005) and from EIS/Hinode by Warren et al. (2008) or Tripathi et al. (2009). We find that 66% of the loops could be fitted with a narrowband single-Gaussian DEM model, and 19% with a DEM consisting of two narrowband Gaussians (which mostly result from pairs of intersecting loops along the same line-of-sight). The mostly isothermal loop DEMs allow us also to derive an improved empirical response function of the AIA 94 [[Unable to Display Character: Ǻ

  12. Automatic generation of efficient array redistribution routines for distributed memory multicomputers

    NASA Technical Reports Server (NTRS)

    Ramaswamy, Shankar; Banerjee, Prithviraj

    1994-01-01

    Appropriate data distribution has been found to be critical for obtaining good performance on Distributed Memory Multicomputers like the CM-5, Intel Paragon and IBM SP-1. It has also been found that some programs need to change their distributions during execution for better performance (redistribution). This work focuses on automatically generating efficient routines for redistribution. We present a new mathematical representation for regular distributions called PITFALLS and then discuss algorithms for redistribution based on this representation. One of the significant contributions of this work is being able to handle arbitrary source and target processor sets while performing redistribution. Another important contribution is the ability to handle an arbitrary number of dimensions for the array involved in the redistribution in a scalable manner. Our implementation of these techniques is based on an MPI-like communication library. The results presented show the low overheads for our redistribution algorithm as compared to naive runtime methods.

  13. Anti-islanding Protection of Distributed Generation Using Rate of Change of Impedance

    NASA Astrophysics Data System (ADS)

    Shah, Pragnesh; Bhalja, Bhavesh

    2013-08-01

    Distributed Generation (DG), which is interlinked with distribution system, has inevitable effect on distribution system. Integrating DG with the utility network demands an anti-islanding scheme to protect the system. Failure to trip islanded generators can lead to problems such as threats to personnel safety, out-of-phase reclosing, and degradation of power quality. In this article, a new method for anti-islanding protection based on impedance monitoring of distribution network is carried out in presence of DG. The impedance measured between two phases is used to derive the rate of change of impedance (dz/dt), and its peak values are used for final trip decision. Test data are generated using PSCAD/EMTDC software package and the performance of the proposed method is evaluated in MatLab software. The simulation results show the effectiveness of the proposed scheme as it is capable to detect islanding condition accurately. Subsequently, it is also observed that the proposed scheme does not mal-operate during other disturbances such as short circuit and switching event.

  14. A formalism to generate probability distributions for performance-assessment modeling

    SciTech Connect

    Kaplan, P.G.

    1990-12-31

    A formalism is presented for generating probability distributions of parameters used in performance-assessment modeling. The formalism is used when data are either sparse or nonexistent. The appropriate distribution is a function of the known or estimated constraints and is chosen to maximize a quantity known as Shannon`s informational entropy. The formalism is applied to a parameter used in performance-assessment modeling. The functional form of the model that defines the parameter, data from the actual field site, and natural analog data are analyzed to estimate the constraints. A beta probability distribution of the example parameter is generated after finding four constraints. As an example of how the formalism is applied to the site characterization studies of Yucca Mountain, the distribution is generated for an input parameter in a performance-assessment model currently used to estimate compliance with disposal of high-level radioactive waste in geologic repositories, 10 CFR 60.113(a)(2), commonly known as the ground water travel time criterion. 8 refs., 2 figs.

  15. Optimal Capacity and Location Assessment of Natural Gas Fired Distributed Generation in Residential Areas

    NASA Astrophysics Data System (ADS)

    Khalil, Sarah My

    With ever increasing use of natural gas to generate electricity, installed natural gas fired microturbines are found in residential areas to generate electricity locally. This research work discusses a generalized methodology for assessing optimal capacity and locations for installing natural gas fired microturbines in a distribution residential network. The overall objective is to place microturbines to minimize the system power loss occurring in the electrical distribution network; in such a way that the electric feeder does not need any up-gradation. The IEEE 123 Node Test Feeder is selected as the test bed for validating the developed methodology. Three-phase unbalanced electric power flow is run in OpenDSS through COM server, and the gas distribution network is analyzed using GASWorkS. The continual sensitivity analysis methodology is developed to select multiple DG locations and annual simulation is run to minimize annual average losses. The proposed placement of microturbines must be feasible in the gas distribution network and should not result into gas pipeline reinforcement. The corresponding gas distribution network is developed in GASWorkS software, and nodal pressures of the gas system are checked for various cases to investigate if the existing gas distribution network can accommodate the penetration of selected microturbines. The results indicate the optimal locations suitable to place microturbines and capacity that can be accommodated by the system, based on the consideration of overall minimum annual average losses as well as the guarantee of nodal pressure provided by the gas distribution network. The proposed method is generalized and can be used for any IEEE test feeder or an actual residential distribution network.

  16. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development

  17. Thermodynamic method for generating random stress distributions on an earthquake fault

    USGS Publications Warehouse

    Barall, Michael; Harris, Ruth A.

    2012-01-01

    This report presents a new method for generating random stress distributions on an earthquake fault, suitable for use as initial conditions in a dynamic rupture simulation. The method employs concepts from thermodynamics and statistical mechanics. A pattern of fault slip is considered to be analogous to a micro-state of a thermodynamic system. The energy of the micro-state is taken to be the elastic energy stored in the surrounding medium. Then, the Boltzmann distribution gives the probability of a given pattern of fault slip and stress. We show how to decompose the system into independent degrees of freedom, which makes it computationally feasible to select a random state. However, due to the equipartition theorem, straightforward application of the Boltzmann distribution leads to a divergence which predicts infinite stress. To avoid equipartition, we show that the finite strength of the fault acts to restrict the possible states of the system. By analyzing a set of earthquake scaling relations, we derive a new formula for the expected power spectral density of the stress distribution, which allows us to construct a computer algorithm free of infinities. We then present a new technique for controlling the extent of the rupture by generating a random stress distribution thousands of times larger than the fault surface, and selecting a portion which, by chance, has a positive stress perturbation of the desired size. Finally, we present a new two-stage nucleation method that combines a small zone of forced rupture with a larger zone of reduced fracture energy.

  18. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  19. Cryptographically secure hardware random number generator dedicated for distributed measurement and control systems

    NASA Astrophysics Data System (ADS)

    Czernik, Pawel

    The chaotic signal generator based on the theory of nonlinear dynamical systems for applications in cryptographically secure distributed measurement and control systems with asymmetric resources is presented. This system was implemented on the basis of the physical chaotic electronic vibration generator in which the resonant circuit is composed of two capacitors, two resistors, coil and transistor, called the Colpitts oscillator. The presented system was designed, programmed and thoroughly tested in the term of cryptographic security in our laboratory, what there is the most important part of this publication. True cryptographic security was tested based on the author's software and the software environment called RDieHarder. The obtained results will be here presented and analyzed in detail with particular reference to the specificity of distributed measurement and control systems with asymmetric resources.

  20. An experimental study of the surface elevation probability distribution and statistics of wind-generated waves

    NASA Technical Reports Server (NTRS)

    Huang, N. E.; Long, S. R.

    1980-01-01

    Laboratory experiments were performed to measure the surface elevation probability density function and associated statistical properties for a wind-generated wave field. The laboratory data along with some limited field data were compared. The statistical properties of the surface elevation were processed for comparison with the results derived from the Longuet-Higgins (1963) theory. It is found that, even for the highly non-Gaussian cases, the distribution function proposed by Longuet-Higgins still gives good approximations.

  1. Effects on electrical distribution networks of dispersed power generation at high levels of connection penetration

    SciTech Connect

    Longrigg, P

    1983-07-01

    The advent and deployment of significant levels of photovoltaic and wind energy generation in the spatially dispersed mode (i.e., residential and intermediate load centers) may have deleterious effects upon existing protective relay equipment and its time-current coordination on radial distribution circuits to which power conditioning equipment may be connected for power sell-back purposes. The problems that may arise involve harmonic injection from power conditioning inverters that can affect protective relays and cause excessive voltage and current from induced series and parallel resonances on feeders and connected passive equipment. Voltage regulation, var requirements, and consumer metering can also be affected by this type of dispersed generation. The creation of islands of supply is also possible, particularly on rural supply systems. This paper deals mainly with the effects of harmonics and short-circuit currents from wind energy conversion systems (WECS) and photovoltaic (PV) systems upon the operating characteristics of distribution networks and relays and other protective equipment designed to ensure the safety and supply integrity of electrical utility networks. Traditionally, electrical supply networks have been designed for one-way power flow-from generation to load, with a balance maintained between the two by means of automatic generation and load-frequency controls. Dispersed generation, from renewables like WECS or PV or from nonrenewable resources, can change traditional power flow. These changes must be dealt with effectively if renewable energy resources are to be integrated into the utility distribution system. This paper gives insight into these problems and proposes some solutions.

  2. Intensity Distribution of Laser Induced Plasma Generated at Different Ambient Gas Preassure

    NASA Astrophysics Data System (ADS)

    Sarmiento, Rafael; Cabanzo, Rafael; Mejia-Ospino, Enrique

    2008-04-01

    In this work, intensity distributions of laser induced plasmas have been measured by emission with two-dimensional spatial resolution and temporal resolution. The plasmas have been generated on the surfaces of steel samples at different pressures of air and argon, in the ranges from l*10-6 to 680 Torr. We compare the features of the intensity spatial and temporal distribution in the two ambient studied here. We observed that the maxima values of intensity are obtained when the pressure is maxima. The features of intensity distribution show a significant change with the ambient and gas pressure. Also, we have measured how change the size of the plasma plume with the pressure at two different ambient.

  3. Limits and Economic Effects of Distributed PV Generation in North and South Carolina

    NASA Astrophysics Data System (ADS)

    Holt, Kyra Moore

    The variability of renewable sources, such as wind and solar, when integrated into the electrical system must be compensated by traditional generation sources in-order to maintain the constant balance of supply and demand required for grid stability. The goal of this study is to analyze the effects of increasing large levels of solar Photovoltaic (PV) penetration (in terms of a percentage of annual energy production) on a test grid with similar characteristics to the Duke Energy Carolinas (DEC) and Progress Energy Carolinas (PEC) regions of North and South Carolina. PV production is modeled entering the system at the distribution level and regional PV capacity is based on household density. A gridded hourly global horizontal irradiance (GHI) dataset is used to capture the variable nature of PV generation. A unit commitment model (UCM) is then used determine the hourly dispatch of generators based on generator parameters and costs to supply generation to meet demand. Annual modeled results for six different scenarios are evaluated to determine technical, environmental and economic effects of varying levels of distributed PV penetration on the system. This study finds that the main limiting factor for PV integration in the DEC and PEC balancing authority regions is defined by the large generating capacity of base-load nuclear plants within the system. This threshold starts to affect system stability at integration levels of 5.7%. System errors, defined by imbalances caused by over or under generation with respect to demand, are identified in the model however the validity of these errors in real world context needs further examination due to the lack of high frequency irradiance data and modeling limitations. Operational system costs decreased as expected with PV integration although further research is needed to explore the impacts of the capital costs required to achieve the penetration levels found in this study. PV system generation was found to mainly displace

  4. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  5. Characterization of holographically generated beams via phase retrieval based on Wigner distribution projections.

    PubMed

    Rodrigo, José A; Alieva, Tatiana; Cámara, Alejandro; Martínez-Matos, O; Cheben, Pavel; Calvo, María L

    2011-03-28

    In this work, we propose a robust and versatile approach for the characterization of the complex field amplitude of holographically generated coherent-scalar paraxial beams. For this purpose we apply an iterative algorithm that allows recovering the phase of the generated beam from the measurement of its Wigner distribution projections. Its performance is analyzed for beams of different symmetry: Laguerre-Gaussian, Hermite-Gaussian and spiral ones, which are obtained experimentally by a computer generated hologram (CGH) implemented on a programmable spatial light modulator (SLM). Using the same method we also study the quality of their holographic recording on a highly efficient photopolymerizable glass. The proposed approach is useful for the creation of adaptive CGH that takes into account the peculiarities of the SLM, as well as for the quality control of the holographic data storage. PMID:21451630

  6. Performance of marine power plant given generator, main and distribution switchboard failures

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Ram, Mangey

    2015-12-01

    Power generation is one of the most essential functions of any plant for continuous functioning without any interruption. A marine power plant (MPP) is in the same situation. In the present paper, the authors have tried to find the various reliability characteristics of a MPP. Using a marine power plant composed of two generators in which one of them is located at the stern and another at the bow, both associated to the main switch board (MSB). The distributive switch boards (DSB) receive power from the MSB through cables and their respective junctions. Given that arrangement, a working based transition state diagram has been generated. With the help of the Markov process, a number of intro-differential equations are formed and solved by Laplace transform. Various reliability characteristics are calculated and discussed with the help of graphs.

  7. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from

  8. The number distribution of neutrons and gammas generated in a multiplying sample

    SciTech Connect

    Enqvist, A.; Pozzi, S.; Pazsit, I.

    2006-07-01

    The subject of this paper is an analytical derivation of the full probability distribution of the number of neutrons and photons generated in a sample with internal multiplication by one internal source emission event, and its comparison with Monte Carlo calculations. We derive recursive analytic expressions for the probability distributions P(n) of neutrons and photons up to values of n for which P(n) is significant, as functions of the first collision probability p of the source neutrons. The derivation was performed by using the symbolic algebra code MATHEMATICA. With the introduction of a modified factorial moment of the number of fission neutrons and photons, the resulting expressions were brought to a formally equivalent form with those for the factorial moments of the searched probability distributions. The results were compared with Monte Carlo calculations, and excellent agreement was found between the analytical results and the simulations. The results show that the probability distributions change with increasing sample mass such that the 'bulk' of the distribution changes only slightly, but a tail develops for higher n values, which is the main reason for the increase of the factorial moments with increasing sample mass. (authors)

  9. Log-Cubic Method for Generation of Soil Particle Size Distribution Curve

    PubMed Central

    2013-01-01

    Particle size distribution (PSD) is a fundamental physical property of soils. Traditionally, the PSD curve was generated by hand from limited data of particle size analysis, which is subjective and may lead to significant uncertainty in the freehand PSD curve and graphically estimated cumulative particle percentages. To overcome these problems, a log-cubic method was proposed for the generation of PSD curve based on a monotone piecewise cubic interpolation method. The log-cubic method and commonly used log-linear and log-spline methods were evaluated by the leave-one-out cross-validation method for 394 soil samples extracted from UNSODA database. Mean error and root mean square error of the cross-validation show that the log-cubic method outperforms two other methods. What is more important, PSD curve generated by the log-cubic method meets essential requirements of a PSD curve, that is, passing through all measured data and being both smooth and monotone. The proposed log-cubic method provides an objective and reliable way to generate a PSD curve from limited soil particle analysis data. This method and the generated PSD curve can be used in the conversion of different soil texture schemes, assessment of grading pattern, and estimation of soil hydraulic parameters and erodibility factor. PMID:23766698

  10. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2011-11-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  11. A distributed big data storage and data mining framework for solar-generated electricity quantity forecasting

    NASA Astrophysics Data System (ADS)

    Wang, Jianzong; Chen, Yanjun; Hua, Rui; Wang, Peng; Fu, Jia

    2012-02-01

    Photovoltaic is a method of generating electrical power by converting solar radiation into direct current electricity using semiconductors that exhibit the photovoltaic effect. Photovoltaic power generation employs solar panels composed of a number of solar cells containing a photovoltaic material. Due to the growing demand for renewable energy sources, the manufacturing of solar cells and photovoltaic arrays has advanced considerably in recent years. Solar photovoltaics are growing rapidly, albeit from a small base, to a total global capacity of 40,000 MW at the end of 2010. More than 100 countries use solar photovoltaics. Driven by advances in technology and increases in manufacturing scale and sophistication, the cost of photovoltaic has declined steadily since the first solar cells were manufactured. Net metering and financial incentives, such as preferential feed-in tariffs for solar-generated electricity; have supported solar photovoltaics installations in many countries. However, the power that generated by solar photovoltaics is affected by the weather and other natural factors dramatically. To predict the photovoltaic energy accurately is of importance for the entire power intelligent dispatch in order to reduce the energy dissipation and maintain the security of power grid. In this paper, we have proposed a big data system--the Solar Photovoltaic Power Forecasting System, called SPPFS to calculate and predict the power according the real-time conditions. In this system, we utilized the distributed mixed database to speed up the rate of collecting, storing and analysis the meteorological data. In order to improve the accuracy of power prediction, the given neural network algorithm has been imported into SPPFS.By adopting abundant experiments, we shows that the framework can provide higher forecast accuracy-error rate less than 15% and obtain low latency of computing by deploying the mixed distributed database architecture for solar-generated electricity.

  12. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  13. Semi-empirical model for the generation of dose distributions produced by a scanning electron beam

    SciTech Connect

    Nath, R.; Gignac, C.E.; Agostinelli, A.G.; Rothberg, S.; Schulz, R.J.

    1980-01-01

    There are linear accelerators (Sagittaire and Saturne accelerators produced by Compagnie Generale de Radiologie (CGR/MeV) Corporation) which produce broad, flat electron fields by magnetically scanning the relatively narrow electron beam as it emerges from the accelerator vacuum system. A semi-empirical model, which mimics the scanning action of this type of accelerator, was developed for the generation of dose distributions in homogeneous media. The model employs the dose distributions of the scanning electron beams. These were measured with photographic film in a polystyrene phantom by turning off the magnetic scanning system. The mean deviation calculated from measured dose distributions is about 0.2%; a few points have deviations as large as 2 to 4% inside of the 50% isodose curve, but less than 8% outside of the 50% isodose curve. The model has been used to generate the electron beam library required by a modified version of a commercially-available computerized treatment-planning system. (The RAD-8 treatment planning system was purchased from the Digital Equipment Corporation. It is currently available from Electronic Music Industries (EMI), Ltd.)

  14. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  15. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ≈50 fs, 800 nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (≈90%) of small nanoparticles, and a residual part (≈10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  16. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation

    PubMed Central

    Miocinovic, Svjetlana; Lempka, Scott F.; Russo, Gary S.; Maks, Christopher B.; Butson, Christopher R.; Sakaie, Ken E.; Vitek, Jerrold L.; McIntyre, Cameron C.

    2008-01-01

    Deep brain stimulation (DBS) is an established therapy for the treatment of Parkinson’s disease and shows great promise for numerous other disorders. While the fundamental purpose of DBS is to modulate neural activity with electric fields, little is known about the actual voltage distribution generated in the brain by DBS electrodes and as a result it is difficult to accurately predict which brain areas are directly affected by the stimulation. The goal of this study was to characterize the spatial and temporal characteristics of the voltage distribution generated by DBS electrodes. We experimentally recorded voltages around active DBS electrodes in either a saline bath or implanted in the brain of a non-human primate. Recordings were made during voltage-controlled and current-controlled stimulation. The experimental findings were compared to volume conductor electric field models of DBS parameterized to match the different experiments. Three factors directly affected the experimental and theoretical voltage measurements: 1) DBS electrode impedance, primarily dictated by a voltage drop at the electrode-electrolyte interface and the conductivity of the tissue medium, 2) capacitive modulation of the stimulus waveform, and 3) inhomogeneity and anisotropy of the tissue medium. While the voltage distribution does not directly predict the neural response to DBS, the results of this study do provide foundational building blocks for understanding the electrical parameters of DBS and characterizing its effects on the nervous system. PMID:19118551

  17. Hardware random number generator base on monostable multivibrators dedicated for distributed measurement and control systems

    NASA Astrophysics Data System (ADS)

    Czernik, Pawel

    2013-10-01

    The hardware random number generator based on the 74121 monostable multivibrators for applications in cryptographically secure distributed measurement and control systems with asymmetric resources was presented. This device was implemented on the basis of the physical electronic vibration generator in which the circuit is composed of two "loop" 74121 monostable multivibrators, D flip-flop and external clock signal source. The clock signal, witch control D flip-flop was generated by a computer on one of the parallel port pins. There was presented programmed the author's acquisition process of random data from the measuring system to a computer. The presented system was designed, builded and thoroughly tested in the term of cryptographic security in our laboratory, what there is the most important part of this publication. Real cryptographic security was tested based on the author's software and the software environment called RDieHarder. The obtained results was here presented and analyzed in detail with particular reference to the specificity of distributed measurement and control systems with asymmetric resources.

  18. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2012-01-01

    Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores detailed surveys of stream base flow across a gauged, 23 km2 mountain watershed. Research objectives were (1) to relate spatial variability in base flow to fundamental elements of watershed structure, primarily topographic contributing area, and (2) to assess temporal changes in the spatial patterns of those relationships during a seasonal base flow recession. We analyzed spatiotemporal variability in base flow using (1) summer hydrographs at the study watershed outlet and 5 subwatershed outlets and (2) longitudinal series of discharge measurements every ~100 m along the streams of the 3 largest subwatersheds (1200 to 2600 m in valley length), repeated 2 to 3 times during base flow recession. Reaches within valley segments of 300 to 1200 m in length tended to demonstrate similar streamflow generation characteristics. Locations of transitions between these segments were consistent throughout the recession, and tended to be collocated with abrupt longitudinal transitions in valley slope or hillslope-riparian characteristics. Both within and among subwatersheds, correlation between the spatial distributions of streamflow and topographic contributing area decreased during the recession, suggesting a general decrease in the influence of topography on stream base flow contributions. As topographic controls on base flow evidently decreased, multiple aspects of subsurface structure were likely to have gained influence.

  19. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    SciTech Connect

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  20. Understanding Coronal Heating with Emission Measure Distributions

    NASA Technical Reports Server (NTRS)

    Klimchik, James A.; Tripathi, Durgesh; Bradshaw, Stephen J.; Mason, Helen E.

    2011-01-01

    It is widely believed that the cross-field spatial scale of coronal heating is small, so that the fundamental plasma structures (loop strands) are spatially unresolved. We therefore must appeal to diagnostic techniques that are not strongly affected by spatial averaging. One valuable observable is the emission measure distribution, EM(T), which indicates how much material is present at each temperature. Using data from the Extreme-ultraviolet Imaging Spectrograph on the Hinode mission, we have determined emission measure distributions in the cores of two active regions. The distributions have power law slopes of approximately 2.4 coolward of the peak. We compare these slopes, as well as the amount of emission measure at very high temperature, with the predictions of a series of models. The models assume impulsive heating (nanoflares) in unresolved strands and take full account of non equilibrium ionization. A variety of nanoflare properties and initial conditions are considered. We also comment on the selection of spectral lines for upcoming missions like Solar Orbiter.

  1. Unscheduled load flow effect due to large variation in the distributed generation in a subtransmission network

    NASA Astrophysics Data System (ADS)

    Islam, Mujahidul

    A sustainable energy delivery infrastructure implies the safe and reliable accommodation of large scale penetration of renewable sources in the power grid. In this dissertation it is assumed there will be no significant change in the power transmission and distribution structure currently in place; except in the operating strategy and regulatory policy. That is to say, with the same old structure, the path towards unveiling a high penetration of switching power converters in the power system will be challenging. Some of the dimensions of this challenge are power quality degradation, frequent false trips due to power system imbalance, and losses due to a large neutral current. The ultimate result is the reduced life of many power distribution components - transformers, switches and sophisticated loads. Numerous ancillary services are being developed and offered by the utility operators to mitigate these problems. These services will likely raise the system's operational cost, not only from the utility operators' end, but also reflected on the Independent System Operators and by the Regional Transmission Operators (RTO) due to an unforeseen backlash of frequent variation in the load-side generation or distributed generation. The North American transmission grid is an interconnected system similar to a large electrical circuit. This circuit was not planned but designed over 100 years. The natural laws of physics govern the power flow among loads and generators except where control mechanisms are installed. The control mechanism has not matured enough to withstand the high penetration of variable generators at uncontrolled distribution ends. Unlike a radial distribution system, mesh or loop networks can alleviate complex channels for real and reactive power flow. Significant variation in real power injection and absorption on the distribution side can emerge as a bias signal on the routing reactive power in some physical links or channels that are not distinguishable

  2. A New Method to Generate Micron-Sized AerosolS With Narrow Size Distribution

    NASA Astrophysics Data System (ADS)

    Gañón-Calvo, Alfonso; Barrero, Antonio

    1996-11-01

    Aerosols in the micron-size range with a remarkable monodisperse size distribution can be generated from the breaking up process of a capillary microjet. The size of the main droplets and satellites depend on the jet diameter, d_j, as well as the flow rate, Q, and liquid properties which eventually determine the jet`s breaking up. Therefore, the generation and control of capillary microjets is essential to produce sprays of small droplets with narrow size histograms. Electrosprays has been up to now one of the most successful techniques to produce monodisperse micron-size aerosols. As an alternative, we report here a new method, aerospray, to generate capillary micro jets which can compete against the electrospray for the production of aerosols of small droplets with very narrow size distribution. The method is outlined in the following. Liquid coming out from the exit of a capillary needle is sucked by means of a high speed gas stream (usually air) which flows throughout a hole separating two chambers at different pressures. Under certain parametric conditions of liquid properties, liquid and air flow rates, and geometric characteristics (needle and hole diameters, distance from the needle to the hole, etc), the liquid forms a steady capillary microjet of very small diameter which is speeded up an stabilized by the action of the viscous stresses at the gas liquid interface. The jet passes through the hole and goes out the outside chamber where eventually breaks up into microdroplets by varicose instabilities. Measurements from Laser-Doppler PDA Analizer of these aerosprays show that both the droplet size and its standard deviation are comparable to those obtained by electrospray techniques. On the other hand, using the aerospray, the standard deviation of the resulting droplet size distribution is of the order of those that can be obtained by ultrasonic atomization but the mean diameters can be more than one order of magnitude smaller.

  3. Optimal Allocation of Distributed Generation Minimizing Loss and Voltage Sag Problem-Using Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Goswami, S. K.

    2010-10-01

    In the present paper an attempt has been made to place the distributed generation at an optimal location so as to improve the technical as well as economical performance. Among technical issues the sag performance and the loss have been considered. Genetic algorithm method has been used as the optimization technique in this problem. For sag analysis the impact of 3-phase symmetrical short circuit faults is considered. Total load disturbed during the faults is considered as an indicator of sag performance. The solution algorithm is demonstrated on a 34 bus radial distribution system with some lateral branches. For simplicity only one DG of predefined capacity is considered. MATLAB has been used as the programming environment.

  4. Mitigation of Power Quality Problems in Grid-Interactive Distributed Generation System

    NASA Astrophysics Data System (ADS)

    Bhende, C. N.; Kalam, A.; Malla, S. G.

    2016-04-01

    Having an inter-tie between low/medium voltage grid and distributed generation (DG), both exposes to power quality (PQ) problems created by each other. This paper addresses various PQ problems arise due to integration of DG with grid. The major PQ problems are due to unbalanced and non-linear load connected at DG, unbalanced voltage variations on transmission line and unbalanced grid voltages which severely affect the performance of the system. To mitigate the above mentioned PQ problems, a novel integrated control of distribution static shunt compensator (DSTATCOM) is presented in this paper. DSTATCOM control helps in reducing the unbalance factor of PCC voltage. It also eliminates harmonics from line currents and makes them balanced. Moreover, DSTATCOM supplies the reactive power required by the load locally and hence, grid need not to supply the reactive power. To show the efficacy of the proposed controller, several operating conditions are considered and verified through simulation using MATLAB/SIMULINK.

  5. A Proton-Cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Vinas, A.; Jian, L. K.; Roberts, D. A.; O’Modhrain, S.; Gilbert, J. A.; Zurbuchen, T. H.

    2016-01-01

    We use audification of 0.092 seconds cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes greater than 0.1 nanoteslas near the ion gyrofrequency (approximately 0.1 hertz) with duration longer than 1 hour during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  6. A Proton-cyclotron Wave Storm Generated by Unstable Proton Distribution Functions in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Wicks, R. T.; Alexander, R. L.; Stevens, M.; Wilson, L. B., III; Moya, P. S.; Viñas, A.; Jian, L. K.; Roberts, D. A.; O'Modhrain, S.; Gilbert, J. A.; Zurbuchen, T. H.

    2016-03-01

    We use audification of 0.092 s cadence magnetometer data from the Wind spacecraft to identify waves with amplitudes \\gt 0.1 nT near the ion gyrofrequency (˜0.1 Hz) with duration longer than 1 hr during 2008. We present one of the most common types of event for a case study and find it to be a proton-cyclotron wave storm, coinciding with highly radial magnetic field and a suprathermal proton beam close in density to the core distribution itself. Using linear Vlasov analysis, we conclude that the long-duration, large-amplitude waves are generated by the instability of the proton distribution function. The origin of the beam is unknown, but the radial field period is found in the trailing edge of a fast solar wind stream and resembles other events thought to be caused by magnetic field footpoint motion or interchange reconnection between coronal holes and closed field lines in the corona.

  7. Stationary distribution of self-organized states and biological information generation

    PubMed Central

    Woo, Hyung Jun

    2013-01-01

    Self-organization, where spontaneous orderings occur under driven conditions, is one of the hallmarks of biological systems. We consider a statistical mechanical treatment of the biased distribution of such organized states, which become favored as a result of their catalytic activity under chemical driving forces. A generalization of the equilibrium canonical distribution describes the stationary state, which can be used to model shifts in conformational ensembles sampled by an enzyme in working conditions. The basic idea is applied to the process of biological information generation from random sequences of heteropolymers, where unfavorable Shannon entropy is overcome by the catalytic activities of selected genes. The ordering process is demonstrated with the genetic distance to a genotype with high catalytic activity as an order parameter. The resulting free energy can have multiple minima, corresponding to disordered and organized phases with first-order transitions between them. PMID:24281357

  8. Transverse circular-polarized Bessel beam generation by inward cylindrical aperture distribution.

    PubMed

    Pavone, S C; Ettorre, M; Casaletti, M; Albani, M

    2016-05-16

    In this paper the focusing capability of a radiating aperture implementing an inward cylindrical traveling wave tangential electric field distribution directed along a fixed polarization unit vector is investigated. In particular, it is shown that such an aperture distribution generates a non-diffractive Bessel beam whose transverse component (with respect to the normal of the radiating aperture) of the electric field takes the form of a zero-th order Bessel function. As a practical implementation of the theoretical analysis, a circular-polarized Bessel beam launcher, made by a radial parallel plate waveguide loaded with several slot pairs, arranged on a spiral pattern, is designed and optimized. The proposed launcher performance agrees with the theoretical model and exhibits an excellent polarization purity. PMID:27409933

  9. Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Lyu, Hongming; Lu, Qi; Huang, Yilin; Ma, Teng; Zhang, Jinyu; Wu, Xiaoming; Yu, Zhiping; Ren, Wencai; Cheng, Hui-Ming; Wu, Huaqiang; Qian, He

    2015-12-01

    Ever since its discovery, graphene bears great expectations in high frequency electronics due to its irreplaceably high carrier mobility. However, it has long been blamed for the weakness in generating gains, which seriously limits its pace of development. Distributed amplification, on the other hand, has successfully been used in conventional semiconductors to increase the amplifiers’ gain-bandwidth product. In this paper, distributed amplification is first applied to graphene. Transmission lines phase-synchronize paralleled graphene field-effect transistors (GFETs), combining the gain of each stage in an additive manner. Simulations were based on fabricated GFETs whose fT ranged from 8.5 GHz to 10.5 GHz and fmax from 12 GHz to 14 GHz. A simulated four-stage graphene distributed amplifier achieved up to 4 dB gain and 3.5 GHz bandwidth, which could be realized with future IC processes. A PCB level graphene distributed amplifier was fabricated as a proof of circuit concept.

  10. A distributed system for fast alignment of next-generation sequencing data

    PubMed Central

    Srimani, Jaydeep K.; Wu, Po-Yen; Phan, John H.; Wang, May D.

    2016-01-01

    We developed a scalable distributed computing system using the Berkeley Open Interface for Network Computing (BOINC) to align next-generation sequencing (NGS) data quickly and accurately. NGS technology is emerging as a promising platform for gene expression analysis due to its high sensitivity compared to traditional genomic microarray technology. However, despite the benefits, NGS datasets can be prohibitively large, requiring significant computing resources to obtain sequence alignment results. Moreover, as the data and alignment algorithms become more prevalent, it will become necessary to examine the effect of the multitude of alignment parameters on various NGS systems. We validate the distributed software system by (1) computing simple timing results to show the speed-up gained by using multiple computers, (2) optimizing alignment parameters using simulated NGS data, and (3) computing NGS expression levels for a single biological sample using optimal parameters and comparing these expression levels to that of a microarray sample. Results indicate that the distributed alignment system achieves approximately a linear speed-up and correctly distributes sequence data to and gathers alignment results from multiple compute clients.

  11. Graphene Distributed Amplifiers: Generating Desirable Gain for Graphene Field-Effect Transistors

    PubMed Central

    Lyu, Hongming; Lu, Qi; Huang, Yilin; Ma, Teng; Zhang, Jinyu; Wu, Xiaoming; Yu, Zhiping; Ren, Wencai; Cheng, Hui-Ming; Wu, Huaqiang; Qian, He

    2015-01-01

    Ever since its discovery, graphene bears great expectations in high frequency electronics due to its irreplaceably high carrier mobility. However, it has long been blamed for the weakness in generating gains, which seriously limits its pace of development. Distributed amplification, on the other hand, has successfully been used in conventional semiconductors to increase the amplifiers’ gain-bandwidth product. In this paper, distributed amplification is first applied to graphene. Transmission lines phase-synchronize paralleled graphene field-effect transistors (GFETs), combining the gain of each stage in an additive manner. Simulations were based on fabricated GFETs whose fT ranged from 8.5 GHz to 10.5 GHz and fmax from 12 GHz to 14 GHz. A simulated four-stage graphene distributed amplifier achieved up to 4 dB gain and 3.5 GHz bandwidth, which could be realized with future IC processes. A PCB level graphene distributed amplifier was fabricated as a proof of circuit concept. PMID:26634442

  12. Voltage distribution over capacitively coupled plasma electrode for atmospheric-pressure plasma generation

    PubMed Central

    2013-01-01

    When capacitively coupled plasma (CCP) is used to generate large-area plasma, the standing wave effect becomes significant, which results in the hindering of the uniform plasma process such as in a plasma etcher or plasma chemical vapor deposition. In this study, the transmission line modeling method is applied to calculate the voltage distribution over atmospheric-pressure CCP electrodes with the size of 1 m × 0.2 m. The measured plasma impedance in our previous study was used in the present calculation. The results of the calculations clearly showed the effects of excitation frequency and the impedance of the plasma on the form of the voltage distribution caused by the standing wave effect. In the case of 150 MHz frequency, the standing wave effect causes a drastic change in the voltage distribution via plasma ignition; however, the change is small for 13.56 MHz. It was also clarified that the power application position is important for obtaining a uniform voltage distribution. PMID:23634893

  13. Layer 1 VPN services in distributed next-generation SONET/SDH networks with inverse multiplexing

    NASA Astrophysics Data System (ADS)

    Ghani, N.; Muthalaly, M. V.; Benhaddou, D.; Alanqar, W.

    2006-05-01

    Advances in next-generation SONET/SDH along with GMPLS control architectures have enabled many new service provisioning capabilities. In particular, a key services paradigm is the emergent Layer 1 virtual private network (L1 VPN) framework, which allows multiple clients to utilize a common physical infrastructure and provision their own 'virtualized' circuit-switched networks. This precludes expensive infrastructure builds and increases resource utilization for carriers. Along these lines, a novel L1 VPN services resource management scheme for next-generation SONET/SDH networks is proposed that fully leverages advanced virtual concatenation and inverse multiplexing features. Additionally, both centralized and distributed GMPLS-based implementations are also tabled to support the proposed L1 VPN services model. Detailed performance analysis results are presented along with avenues for future research.

  14. Three dimensional potential and current distributions in a Hall generator with assumed velocity profiles

    NASA Technical Reports Server (NTRS)

    Stankiewicz, N.; Palmer, R. W.

    1972-01-01

    Three-dimensional potential and current distributions in a Faraday segmented MHD generator operating in the Hall mode are computed. Constant conductivity and a Hall parameter of 1.0 is assumed. The electric fields and currents are assumed to be coperiodic with the electrode structure. The flow is assumed to be fully developed and a family of power-law velocity profiles, ranging from parabolic to turbulent, is used to show the effect of the fullness of the velocity profile. Calculation of the square of the current density shows that nonequilibrium heating is not likely to occur along the boundaries. This seems to discount the idea that the generator insulating walls are regions of high conductivity and are therefore responsible for boundary-layer shorting, unless the shorting is a surface phenomenon on the insulating material.

  15. Automatic control system by power distribution in a power-generating reactor

    SciTech Connect

    Aleksakov, A.N.; Podlazov, L.N.; Ryabov, V.I.; Shevchenko, V.V.; Postnikov, V.V.

    1980-12-01

    The development of the theoretical principles of construction of these systems and of sufficiently detailed nonlinear dynamic numerical models of a power-generation unit with an RBMK reactor have allowed a consistent procedure to be produced for the engineering synthesis of an (local automated control) LAC-LEP (local emergency protection) system. The LAC system facilitates the shaping and maintenance of the desired power distribution in the whole volume of the reactor. In emergency situations, the LAC-LEP system qualitatively reduces the power to a safe level and effectively suppresses the power warpings in one-half of the reactor, which are characteristic for these reactors.

  16. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  17. Internal stress distribution for generating closure domains in laser-irradiated Fe–3%Si(110) steels

    SciTech Connect

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-05-07

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe–3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains.

  18. Quasi-distributed fiber Bragg grating temperature sensors for stator bars monitoring of large electric generators

    NASA Astrophysics Data System (ADS)

    Dreyer, Uilian J.; da Silva, Erlon V.; Biffe Di Renzo, André; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-05-01

    This work presents the application of a sensor based on quasi-distributed Fiber Bragg Gratings to monitor stator bars temperature of large electric generators. The applied FBG packaging method follows industrial standard procedures, and resulted in a robust and reliable sensing method, facilitating the future installation in the power plant. Experimental results are acquired in laboratory using the expected range of temperature values in the real machine. The measurement errors in the recorded results are within the calculated uncertainties and the time constant is shorter than what is obtained with conventional RTD for the same application.

  19. A Cost to Benefit Analysis of a Next Generation Electric Power Distribution System

    NASA Astrophysics Data System (ADS)

    Raman, Apurva

    This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast protection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs. Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this reflects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a

  20. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off

  1. Distributed processing method for arbitrary view generation in camera sensor network

    NASA Astrophysics Data System (ADS)

    Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki

    2003-05-01

    Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.

  2. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation

    PubMed Central

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  3. Generating the Local Oscillator "Locally" in Continuous-Variable Quantum Key Distribution Based on Coherent Detection

    NASA Astrophysics Data System (ADS)

    Qi, Bing; Lougovski, Pavel; Pooser, Raphael; Grice, Warren; Bobrek, Miljko

    2015-10-01

    Continuous-variable quantum key distribution (CV-QKD) protocols based on coherent detection have been studied extensively in both theory and experiment. In all the existing implementations of CV-QKD, both the quantum signal and the local oscillator (LO) are generated from the same laser and propagate through the insecure quantum channel. This arrangement may open security loopholes and limit the potential applications of CV-QKD. In this paper, we propose and demonstrate a pilot-aided feedforward data recovery scheme that enables reliable coherent detection using a "locally" generated LO. Using two independent commercial laser sources and a spool of 25-km optical fiber, we construct a coherent communication system. The variance of the phase noise introduced by the proposed scheme is measured to be 0.04 (rad2 ), which is small enough to enable secure key distribution. This technology also opens the door for other quantum communication protocols, such as the recently proposed measurement-device-independent CV-QKD, where independent light sources are employed by different users.

  4. An Efficacious Multi-Objective Fuzzy Linear Programming Approach for Optimal Power Flow Considering Distributed Generation.

    PubMed

    Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri

    2016-01-01

    This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783

  5. Study of the longitudinal distribution of power generated in a random distributed feedback Raman fibre laser with unidirectional pumping

    SciTech Connect

    Churkin, D V; El-Taher, A E; Vatnik, I D; Babin, Sergei A

    2012-09-30

    The longitudinal distribution of the Stokes-component power in a Raman fibre laser with a random distributed feedback and unidirectional pumping is measured. The fibre parameters (linear loss and Rayleigh backscattering coefficient) are calculated based on the distributions obtained. A numerical model is developed to describe the lasing power distribution. The simulation results are in good agreement with the experimental data. (optical fibres, lasers and amplifiers. properties and applications)

  6. Evolution of the angular distribution of laser-generated fast electrons due to resistive self-collimation

    SciTech Connect

    Robinson, A. P. L. Schmitz, H.

    2015-10-15

    The evolution of the angular distribution of laser-generated fast electrons propagating in dense plasmas is studied by 3D numerical simulations. As resistively generated magnetic fields can strongly influence and even pinch the fast electron beam, the question of the effect on the angular distribution is of considerable interest. It was conjectured that in the limit of strong collimation, there will only be minimal changes to the angular distribution, whereas the largest reduction in the angular distribution will occur where there is only modest pinching of the fast electron beam and the beam is able to expand considerably. The results of the numerical simulations indicate this conjecture.

  7. ZTEK`s ultra-high efficiency fuel cell/gas turbine system for distributed generation

    SciTech Connect

    Hsu, M.; Nathanson, D.; Bradshaw, D.T.

    1996-12-31

    Ztek`s Planar Solid Oxide Fuel Cell (SOFC) system has exceptional potential for utility electric power generation because of: simplicity of components construction, capability for low cost manufacturing, efficient recovery of very high quality by-product heat (up to 1000{degrees}C), and system integration simplicity. Utility applications of the Solid Oxide Fuel Cell are varied and include distributed generation units (sub-MW to 30MW capacity), repowering existing power plants (i.e. 30MW to 100MW), and multi-megawatt central power plants. A TVA/EPRI collaboration program involved functional testing of the advanced solid oxide fuel cell stacks and design scale-up for distributed power generation applications. The emphasis is on the engineering design of the utility modules which will be the building blocks for up to megawatt scale power plants. The program has two distinctive subprograms: Verification test on a 1 kW stack and 25kW module for utility demonstration. A 1 kW Planar SOFC stack was successfully operated for 15,000 hours as of December, 1995. Ztek began work on a 25kW SOFC Power System for TVA, which plans to install the 25kW SOFC at a host site for demonstration in 1997. The 25kW module is Ztek`s intended building block for the commercial use of the Planar SOFC. Systems of up to megawatt capacity can be obtained by packaging the modules in 2-dimensional or 3-dimensional arrays.

  8. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  9. Capital accumulation, income distribution and endogenous fertility in an overlapping generations general equilibrium model.

    PubMed

    Raut, L K

    1991-01-01

    A study is conducted in attempts to increase the understanding of the links between macroeconomic effects and causes of population growth in formulating policy. An overlapping generations general equilibrium model is employed aggregating household decisions about fertility, savings, and investment in the human capital of children with the objective of studying intertemporal relationships among population growth, income distribution, inter-generation social mobility, skill composition of the labor force, and household income. As a result of endogenous fertility, the equilibrium path attains steady state from the second generation. Income tax transfer, child taxation, and social security taxation policies are also examined in the paper. A structural explanation is given for the inverse household income-child quantity and negative child quality-quantity relationships seen in developing countries. In a Cobb-Douglas economy, these relationships hold in the short-run, potentially working over the long-run in other economies. Overall, the model shows that group interests may hinder emergence of perfect capital markets with private initiatives. Where developing countries are concerned, these results have strong implications for population policy. A policy mix of building good quality schools, or subsidizing rural education, introducing a formal social security program, and providing high-yield, risk-free investments, banking, and insurance services to the poor is recommended. PMID:12284076

  10. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  11. Emission Measure Distribution and Heating of Two Active Region Cores

    NASA Technical Reports Server (NTRS)

    Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2011-01-01

    Using data from the Extreme-ultraviolet Imaging Spectrometer aboard Hinode, we have studied the coronal plasma in the core of two active regions. Concentrating on the area between opposite polarity moss, we found emission measure distributions having an approximate power-law form EM/T(exp 2.4) from log T = 5.55 up to a peak at log T = 6.57. The observations are explained extremely well by a simple nanoflare model. However, in the absence of additional constraints, the observations could possibly also be explained by steady heating.

  12. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  13. Research and development on a distributed type solar thermal power generation plant

    NASA Astrophysics Data System (ADS)

    Sumida, I.; Tsukamoto, M.; Sakamoto, T.; Taki, T.; Sato, S.

    1983-12-01

    The R&D on a solar thermal power generation system of the plane parabolic type within the framework of the Japanese Sunshine Project is described. This system realizes high concentration of solar energy with a special concentrator module which combines 100 flat plate mirror heliostats of the central tower system with 5 parabolic troughs of the distributed system. A molten salt (KCl-LiCl) type thermal storage unit is used to superheat saturated steam supplied by accumulators to 300-350 C for 90 minutes after 5 hours of heat storage. Specifications and hydrodynamic characteristics for a 1000 kWe pilot plant in Nio, Kagawa, Japan, constructed in 1980 are given.

  14. Using SMES as a multi-purpose interface in power generation, transmission and distribution systems

    NASA Astrophysics Data System (ADS)

    Tam, Kwa-Sur; Zhang, X.; Yarali, A.

    The objectives are to introduce the concept of the multiterminal superconductive magnetic energy storage (MSMES) scheme and to show that new SMES applications and more SMES benefits to electric power systems can be realized by using MSMES. The authors show a schematic diagram of the conventional SMES system. The SMES magnet is charged and discharged through one dc/ac converter terminal and the SMES unit is connected as a shunt device to the ac power system. The authors show a schematic diagram of a three-terminal SMES system which is used to explain the principle of operation of a MSMES system. Potential applications of MSMES systems in power generation, transmission, and distribution systems are discussed.

  15. Transform-limited pulses generated by an actively Q-switched distributed fiber laser.

    PubMed

    Cuadrado-Laborde, C; Pérez-Millán, P; Andrés, M V; Díez, A; Cruz, J L; Barmenkov, Yu O

    2008-11-15

    A single-mode, transform-limited, actively Q-switched distributed-feedback fiber laser is presented, based on a new in-line acoustic pulse generator. Our technique permits a continuous adjustment of the repetition rate that modulates the Q factor of the cavity. Optical pulses of 800 mW peak power, 32 ns temporal width, and up to 20 kHz repetition rates were obtained. The measured linewidth demonstrates that these pulses are transform limited: 6 MHz for a train of pulses of 10 kHz repetition rate, 80 ns temporal width, and 60 mW peak power. Efficient excitation of spontaneous Brillouin scattering is demonstrated. PMID:19015677

  16. Velocity and temperature distributions of coal-slag layers on magnetohydrodynamic generators walls

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Smith, J. M.

    1977-01-01

    Approximate analytical expressions are derived for the velocity and temperature distributions in steady state coal slag deposits flowing over MHD generator walls. Effects of slag condensation and Joule heating are included in the analysis. The transport conditions and the slag temperature at the slag-gas interface are taken to be known parameters in the formulation. They are assumed to have been predetermined either experimentally or from the slag properties and the gas dynamic calculations of the free stream flow. The analysis assumes a power law velocity profile for the slag and accounts for the coupling between the energy and momentum conservation equations. Comparisons are made with the more exact numerical solutions to verify the accuracy of the results.

  17. Evaluation of Steadiness and Drop Size Distribution in Sprays Generated by Different Twin-Fluid Atomizers

    NASA Astrophysics Data System (ADS)

    Zaremba, Matouš; Mlkvik, Marek; Malý, Milan; Jedelský, Jan; Jícha, Miroslav

    2015-05-01

    Twin-fluid atomizers underwent a significant development during the last few decades. They are common in many industrial applications such as fuel spraying, melt atomization and food processing. This paper is focused on the evaluation of four different twin-fluid atomizers. The aim is to compare the quality of sprays generated by various atomizers with similar dimensions and in the same operating regimes. A phase- Doppler anemometry (PDA) and particle image velocimetry (PIV) were used to measure spray characteristics such as velocity and size of the droplets. Measured data were used to compare droplet size distribution and to evaluate steadiness of the spray. Visualisations were made to support measured data and to clarify the principles of primary atomization and its influence on the spray.

  18. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC.

    PubMed

    Gupta, D; Bolte, N; Gota, H; Hayashi, R; Kiyashko, V; Marsili, P; Morehouse, M; Primavera, S; Roche, T; Wessel, F

    2010-10-01

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field. PMID:21033923

  19. An optimization model for energy generation and distribution in a dynamic facility

    NASA Technical Reports Server (NTRS)

    Lansing, F. L.

    1981-01-01

    An analytical model is described using linear programming for the optimum generation and distribution of energy demands among competing energy resources and different economic criteria. The model, which will be used as a general engineering tool in the analysis of the Deep Space Network ground facility, considers several essential decisions for better design and operation. The decisions sought for the particular energy application include: the optimum time to build an assembly of elements, inclusion of a storage medium of some type, and the size or capacity of the elements that will minimize the total life-cycle cost over a given number of years. The model, which is structured in multiple time divisions, employ the decomposition principle for large-size matrices, the branch-and-bound method in mixed-integer programming, and the revised simplex technique for efficient and economic computer use.

  20. Bidirectional output stage matrix converter applied to a distributed generation system

    NASA Astrophysics Data System (ADS)

    Ortega, Manuel; Jurado, Francisco; Roa, Juan P.

    2012-08-01

    In this article a new bidirectional output stage ultra-sparse matrix converter (BOSUMC) is presented. This converter is designed for connecting a hybrid electrical system to a distributed generation network. The proposed converter comprises an input stage and an output stage with six bidirectional switches in such a way that both the input and output stages are linked with a DC link, which can be coupled to an electrolyser and a fuel cell. The converter allows the current to flow in both ways in its output stage, and if there is an excess of energy in the network, it can be transformed into electric direct current and later into hydrogen for its exploitation. For verifying the control algorithm of the BOSUMC, a laboratory prototype has been prepared using among other elements a Spectrum Digital eZdsp™ TMS320F2812 card.

  1. Neutron Tomography Using Mobile Neutron Generators for Assessment of Void Distributions in Thermal Hydraulic Test Loops

    NASA Astrophysics Data System (ADS)

    Andersson, P.; Bjelkenstedt, T.; Sundén, E. Andersson; Sjöstrand, H.; Jacobsson-Svärd, S.

    Detailed knowledge of the lateral distribution of steam (void) and water in a nuclear fuel assembly is of great value for nuclear reactor operators and fuel manufacturers, with consequences for both reactor safety and economy of operation. Therefore, nuclear relevant two-phase flows are being studied at dedicated thermal-hydraulic test loop, using two-phase flow systems ranging from simplified geometries such as heated circular pipes to full scale mock-ups of nuclear fuel assemblies. Neutron tomography (NT) has been suggested for assessment of the lateral distribution of steam and water in such test loops, motivated by a good ability of neutrons to penetrate the metallic structures of metal pipes and nuclear fuel rod mock-ups, as compared to e.g. conventional X-rays, while the liquid water simultaneously gives comparatively good contrast. However, these stationary test loops require the measurement setup to be mobile, which is often not the case for NT setups. Here, it is acknowledged that fast neutrons of 14 MeV from mobile neutron generators constitute a viable option for a mobile NT system. We present details of the development of neutron tomography for this purpose at the division of Applied Nuclear Physics at Uppsala University. Our concept contains a portable neutron generator, exploiting the fusion reaction of deuterium and tritium, and a detector with plastic scintillator elements designed to achieveadequate spatial and energy resolution, all mounted in a light-weight frame without collimators or bulky moderation to allow for a mobile instrument that can be moved about the stationary thermal hydraulic test sections. The detector system stores event-to-event pulse-height information to allow for discrimination based on the energy deposition in the scintillator elements.

  2. Influence of frequency detunings and form of the initial field distribution on parametric generation of radiation in a dynamic cavity

    NASA Astrophysics Data System (ADS)

    Rosanov, N. N.; Fedorov, E. G.

    2016-05-01

    Characteristics of parametric generation of an electromagnetic field in a cavity with oscillating mirrors have been calculated as functions of the oscillation frequency detuning from the resonant frequency for different types of frequency dependence of the cavity mirror reflectance. The influence of the initial field distribution in the cavity on the parametric generation efficiency is demonstrated.

  3. New method for generating breast models featuring glandular tissue spatial distribution

    NASA Astrophysics Data System (ADS)

    Paixão, L.; Oliveira, B. B.; Oliveira, M. A.; Teixeira, M. H. A.; Fonseca, T. C. F.; Nogueira, M. S.

    2016-02-01

    Mammography is the main radiographic technique used for breast imaging. A major concern with mammographic imaging is the risk of radiation-induced breast cancer due to the high sensitivity of breast tissue. The mean glandular dose (DG) is the dosimetric quantity widely accepted to characterize the risk of radiation induced cancer. Previous studies have concluded that DG depends not only on the breast glandular content but also on the spatial distribution of glandular tissue within the breast. In this work, a new method for generating computational breast models featuring skin composition and glandular tissue distribution from patients undergoing digital mammography is proposed. Such models allow a more accurate way of calculating individualized breast glandular doses taking into consideration the glandular tissue fraction. Sixteen breast models of four patients with different glandularity breasts were simulated and the results were compared with those obtained from recommended DG conversion factors. The results show that the internationally recommended conversion factors may be overestimating the mean glandular dose to less dense breasts and underestimating the mean glandular dose for denser breasts. The methodology described in this work constitutes a powerful tool for breast dosimetry, especially for risk studies.

  4. Using Python to generate AHPS-based precipitation simulations over CONUS using Amazon distributed computing

    NASA Astrophysics Data System (ADS)

    Machalek, P.; Kim, S. M.; Berry, R. D.; Liang, A.; Small, T.; Brevdo, E.; Kuznetsova, A.

    2012-12-01

    We describe how the Climate Corporation uses Python and Clojure, a language impleneted on top of Java, to generate climatological forecasts for precipitation based on the Advanced Hydrologic Prediction Service (AHPS) radar based daily precipitation measurements. A 2-year-long forecasts is generated on each of the ~650,000 CONUS land based 4-km AHPS grids by constructing 10,000 ensembles sampled from a 30-year reconstructed AHPS history for each grid. The spatial and temporal correlations between neighboring AHPS grids and the sampling of the analogues are handled by Python. The parallelization for all the 650,000 CONUS stations is further achieved by utilizing the MAP-REDUCE framework (http://code.google.com/edu/parallel/mapreduce-tutorial.html). Each full scale computational run requires hundreds of nodes with up to 8 processors each on the Amazon Elastic MapReduce (http://aws.amazon.com/elasticmapreduce/) distributed computing service resulting in 3 terabyte datasets. We further describe how we have productionalized a monthly run of the simulations process at full scale of the 4km AHPS grids and how the resultant terabyte sized datasets are handled.

  5. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  6. Intake fraction assessment of the air pollutant exposure implications of a shift toward distributed electricity generation

    NASA Astrophysics Data System (ADS)

    Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; W Nazaroff, William

    Small-scale, distributed electricity generation (DG) technologies have been promoted for their many benefits as compared to the traditional paradigm of large, centralized power plants. To evaluate the implications for human inhalation exposure resulting from a shift toward DG, we combined Gaussian plume modeling and a GIS-based inhalation exposure assessment of existing and hypothetical power-generation facilities in California. Twenty-five existing central stations (CSs) were analyzed and compared with hypothetical DG technologies deployed in the downtown areas of the 11 most populous cities in California. The intake fraction (iF) for primary pollutants was computed for populations living within 100 km of each source, using meteorological conditions typical of the long-term observational record and population, lifetime-average breathing rates. The iF (a dimensionless term representing the proportion of pollutant mass emitted by a source that is eventually inhaled) concisely expresses the source-to-intake relationship, is independent of the emissions characteristics of the plants assessed, and normalizes for the large scale differences between the two paradigms of electricity generation. The median iF for nonreactive primary pollutants emitted from the 25 CSs is 0.8 per million compared to 16 per million for the 11 DG units. The difference is partly attributable to the closer proximity of DG sources to densely populated areas as compared to typical CS facilities. In addition, the short stacks of DG sources emphasize near-source population exposure more than traditional CSs, and increase exposures during periods of low wind speed, low mixing height and stable atmospheric conditions. Strategies that could reduce the potential increase in air pollutant intake from DG include maximally utilizing waste heat in combined heat and power operations, increasing the release height of DG effluents and deploying DG technologies that do not emit air pollutants.

  7. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ► PAHs generation and distribution features of medical waste incineration are studied. ► More PAHs were found in fly ash than that in bottom ash. ► The highest proportion of PAHs consisted of the seven most carcinogenic ones. ► Increase of free oxygen molecule and burning temperature promote PAHs degradation. ► There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between

  8. A new method to generate a high-resolution global distribution map of lake chlorophyll

    USGS Publications Warehouse

    Sayers, Michael J; Grimm, Amanda G.; Shuchman, Robert A.; Deines, Andrew M.; Bunnell, David B.; Raymer, Zachary B; Rogers, Mark W.; Woelmer, Whitney; Bennion, David; Brooks, Colin N.; Whitley, Matthew A.; Warner, David M.; Mychek-Londer, Justin G.

    2015-01-01

    A new method was developed, evaluated, and applied to generate a global dataset of growing-season chlorophyll-a (chl) concentrations in 2011 for freshwater lakes. Chl observations from freshwater lakes are valuable for estimating lake productivity as well as assessing the role that these lakes play in carbon budgets. The standard 4 km NASA OceanColor L3 chlorophyll concentration products generated from MODIS and MERIS sensor data are not sufficiently representative of global chl values because these can only resolve larger lakes, which generally have lower chl concentrations than lakes of smaller surface area. Our new methodology utilizes the 300 m-resolution MERIS full-resolution full-swath (FRS) global dataset as input and does not rely on the land mask used to generate standard NASA products, which masks many lakes that are otherwise resolvable in MERIS imagery. The new method produced chl concentration values for 78,938 and 1,074 lakes in the northern and southern hemispheres, respectively. The mean chl for lakes visible in the MERIS composite was 19.2 ± 19.2, the median was 13.3, and the interquartile range was 3.90–28.6 mg m−3. The accuracy of the MERIS-derived values was assessed by comparison with temporally near-coincident and globally distributed in situmeasurements from the literature (n = 185, RMSE = 9.39, R2 = 0.72). This represents the first global-scale dataset of satellite-derived chl estimates for medium to large lakes.

  9. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based

  10. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Phase 1 Report

    SciTech Connect

    Not Available

    2003-04-01

    This report describes RealEnergy's evolving distributed generation command and control system, called the"Distributed Energy Information System" (DEIS). This system uses algorithms to determine how to operate distributed generation systems efficiently and profitably. The report describes the system and RealEnergy's experiences in installing and applying the system to manage distributed generators for commercial building applications.The report is divided into six tasks. The first five describe the DEIS; the sixth describes RE's regulatory and contractual obligations: Task 1: Define Information and Communications Requirements; Task 2: Develop Command and Control Algorithms for Optimal Dispatch; Task 3: Develop Codes and Modules for Optimal Dispatch Algorithms; Task 4: Test Codes Using Simulated Data; Task 5: Install and Test Energy Management Software; Task 6: Contractual and Regulatory Issues.

  11. The Common-origin of Kinetic Turbulence and Electron-Halo of Velocity Distribution Function in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2015-04-01

    Observations of solar wind show that the power spectra of magnetic fluctuations break from Kolmogorov scaling law at ion inertial length. In addition, the electron velocity distribution function of solar wind exhibits an isotropic halo. What causes the spectral break and electron halo are two puzzles in heliophysics. I present a new model (Che et al., PRL 112, 2014 and ApJL, 795, 2014) that accounts for both puzzles--the kinetic turbulence and electron halo of solar wind originate from the nanoflare-accelerated keV electron beams in the inner corona. With PIC simulations, we found that the keV electron beams drive strong two-stream instabilities. The nonlinear evolution of the two-stream instability gives rise to an isotropic electron halo, kinetic Alfvenic wave and whistler wave turbulence through forward and inverse energy cascades.The most important predictions of this model include: 1) the energy injection plateau in the magnetic power spectra; 2) the enhanced parallel electrostatic fluctuation in the solar wind; 3) the core-halo relative drift, a relic of the saturated two-stream instability; 4) the temperature ratio of core-halo is determined by the two-stream instability heating property and the core-halo density ratio. The generation of Langmuir waves can produce type III micro-radio bursts that resemble the well-studied type III bursts observed in solar flares.

  12. A Novel 500kW High-Speed Turbine PM Synchronous Generator Set for Distributed Power Generation

    NASA Astrophysics Data System (ADS)

    Wendt, Sven; Benecke, Frank; Güldner, Henry

    The paper presents a power generation system based on the cogeneration of heat and electricity with a novel high speed turbogenerator. The machine consists of a single stage steam turbine and a directly coupled permanent magnet synchronous generator in one constructional unit. A PWM IGBT rectifier is the load to the generator and a PWM IGBT three-phase four-wire inverter feeds the power into the low voltage mains. In order to increase the turbine efficiency at light load, variable speed operation of the turbogenerator is realized. Different control schemes for mains parallel operation and stand alone operation are presented. The control schemes allow for the use of a lookup table based control with a speed-power-characteristic or for the use of a maximum power point tracker. Measurement results from the successfully tested turbogenerator set are presented.

  13. Ultrasound pressure distributions generated by high frequency transducers in large reactors.

    PubMed

    Leong, Thomas; Coventry, Michael; Swiergon, Piotr; Knoerzer, Kai; Juliano, Pablo

    2015-11-01

    The performance of an ultrasound reactor chamber relies on the sound pressure level achieved throughout the system. The active volume of a high frequency ultrasound chamber can be determined by the sound pressure penetration and distribution provided by the transducers. This work evaluated the sound pressure levels and uniformity achieved in water by selected commercial scale high frequency plate transducers without and with reflector plates. Sound pressure produced by ultrasonic plate transducers vertically operating at frequencies of 400 kHz (120 W) and 2 MHz (128 W) was characterized with hydrophones in a 2 m long chamber and their effective operating distance across the chamber's vertical cross section was determined. The 2 MHz transducer produced the highest pressure amplitude near the transducer surface, with a sharp decline of approximately 40% of the sound pressure occurring in the range between 55 and 155 mm from the transducer. The placement of a reflector plate 500 mm from the surface of the transducer was shown to improve the sound pressure uniformity of 2 MHz ultrasound. Ultrasound at 400 kHz was found to penetrate the fluid up to 2 m without significant losses. Furthermore, 400 kHz ultrasound generated a more uniform sound pressure distribution regardless of the presence or absence of a reflector plate. The choice of the transducer distance to the opposite reactor wall therefore depends on the transducer plate frequency selected. Based on pressure measurements in water, large scale 400 kHz reactor designs can consider larger transducer distance to opposite wall and larger active cross-section, and therefore can reach higher volumes than when using 2 MHz transducer plates. PMID:26186816

  14. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  15. Analysis of Distribution Circuits with High Penetrations of Photo-Voltaic Generation and Progressive Steps to Enable Higher Penetrations

    NASA Astrophysics Data System (ADS)

    Payne, Joshua Daniel

    Concern for anthropogenic climate change has instigated an increase in renewable generation capacity, including photo-voltaic (PV) power generation in distribution circuits. Distribution circuits with relatively high penetrations of PV generation (High-Pen PV) exist today, but how much more generation can distribution systems handle? This research aims to approach this question by 1) analyzing and quantifying High-Pen PV limitations on the primary circuits of distribution systems and 2) propose and analyze progressive steps to enable higher penetrations of PV on distribution circuits. Utilizing connectivity and load demand measurements provided by Pacific Gas & Electric (PG&E), time-resolved three-phase balanced feeder models of a commercial and a residential circuit featuring High-Pen PV were developed and calibrated to the point of the sub-station. Once calibrated, the circuit performance was simulated with varying PV penetrations and spatial distributions for typical seasonal high and seasonal low load demand days. Circuit scenarios with the Generation Center located downstream of the Load Center and with high impedance distribution line in-between lead to high voltage conditions. High-Pen PV interacting with the sub-station Load Drop Compensation (LDC) resulted an increased number of equipment operations and low voltage conditions on the circuit. As PV penetration increased, sub-station power factor and line loss decreased until reverse power flow became dominant. These were observed characteristics of High-Pen PV circuits. To overcome the limitations stated above, practical steps, such as line re-conductoring, and progressive control and operation changes were introduced. The progressive changes included using a Voltage Rise Siting (VRS) score for planning and LDC Current Compensation control to enable higher penetrations of PV. It was shown that limitations of High-Pen PV on the primary side of distribution circuits may be overcome via these practical and

  16. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the

  17. Single phase inverter for a three phase power generation and distribution system

    NASA Technical Reports Server (NTRS)

    Lindena, S. J.

    1976-01-01

    A breadboard design of a single-phase inverter with sinusoidal output voltage for a three-phase power generation and distribution system was developed. The three-phase system consists of three single-phase inverters, whose output voltages are connected in a delta configuration. Upon failure of one inverter the two remaining inverters will continue to deliver three-phase power. Parallel redundancy as offered by two three-phase inverters is substituted by one three-phase inverter assembly with high savings in volume, weight, components count and complexity, and a considerable increase in reliability. The following requirements must be met: (1) Each single-phase, current-fed inverter must be capable of being synchronized to a three-phase reference system such that its output voltage remains phaselocked to its respective reference voltage. (2) Each single-phase, current-fed inverter must be capable of accepting leading and lagging power factors over a range from -0.7 through 1 to +0.7.

  18. THE NEXT GENERATION ATLAS OF QUASAR SPECTRAL ENERGY DISTRIBUTIONS FROM RADIO TO X-RAYS

    SciTech Connect

    Shang Zhaohui; Li Jun; Xie Yanxia; Brotherton, Michael S.; Cales, Sabrina L.; Dale, Daniel A.; Runnoe, Jessie C.; Kelly, Benjamin J.; Wills, Beverley J.; Wills, D.; Green, Richard F.; Nemmen, Rodrigo S.; Ganguly, Rajib; Hines, Dean C.; Kriss, Gerard A.; Tang, Baitian

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  19. The Next Generation Atlas of Quasar Spectral Energy Distributions from Radio to X-Rays

    NASA Astrophysics Data System (ADS)

    Shang, Zhaohui; Brotherton, Michael S.; Wills, Beverley J.; Wills, D.; Cales, Sabrina L.; Dale, Daniel A.; Green, Richard F.; Runnoe, Jessie C.; Nemmen, Rodrigo S.; Gallagher, Sarah C.; Ganguly, Rajib; Hines, Dean C.; Kelly, Benjamin J.; Kriss, Gerard A.; Li, Jun; Tang, Baitian; Xie, Yanxia

    2011-09-01

    We have produced the next generation of quasar spectral energy distributions (SEDs), essentially updating the work of Elvis et al. by using high-quality data obtained with several space- and ground-based telescopes, including NASA's Great Observatories. We present an atlas of SEDs of 85 optically bright, non-blazar quasars over the electromagnetic spectrum from radio to X-rays. The heterogeneous sample includes 27 radio-quiet and 58 radio-loud quasars. Most objects have quasi-simultaneous ultraviolet-optical spectroscopic data, supplemented with some far-ultraviolet spectra, and more than half also have Spitzer mid-infrared Infrared Spectrograph spectra. The X-ray spectral parameters are collected from the literature where available. The radio, far-infrared, and near-infrared photometric data are also obtained from either the literature or new observations. We construct composite SEDs for radio-loud and radio-quiet objects and compare these to those of Elvis et al., finding that ours have similar overall shapes, but our improved spectral resolution reveals more detailed features, especially in the mid- and near-infrared.

  20. Size distributions of PM, carbons and PAHs emitted from a generator using blended fuels containing water.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lin, Wen-Yinn; Lee, Wen-Jhy; Hsieh, Lien-Te; Lin, Chih-Chung; Tsai, Chin-Cheng

    2015-12-01

    This investigation studied the size distributions of particulate matter (PM), particulate carbon, and polycyclic aromatic hydrocarbons (PAHs) that are emitted from a generator that is fueled by diesel that is blended with waste-edible-oil-biodiesel and water-containing acetone. PM samples were collected using a micro-orifice uniform deposit impactor (MOUDI) and a Nano-MOUDI (with aerodynamic diameters of 0.01-18 μm). The results reveal that waste-edible biodiesel blended with water-containing acetone (W5WA3 or W20WA3) at a load of 3 kW emitted lower ΣPM, ΣPM-EC, ΣPM-OC, ΣT-PAHs or ΣT-BaPeq concentrations than did D100, in all 13 particle size ranges, and these reductions of emissions of submicron particles exceeded 85%. Furthermore, W20WA3 emitted significantly lower concentrations of Total-PAHs and Total-BaPeq in four nano/ultrafine particle size ranges. Therefore, water-containing acetone biodieselhols can be utilized as alternatives to petroleum diesel as fuel to reduce the dangers to human health that are posed by emissions from diesel engines. PMID:26218564

  1. Metal concentrations and distribution in paint waste generated during bridge rehabilitation in New York State.

    PubMed

    Shu, Zhan; Axe, Lisa; Jahan, Kauser; Ramanujachary, Kandalam V; Kochersberger, Carl

    2015-09-01

    Between 1950 and 1980, lead and chromium along with other metals have been used in paint coatings to protect bridges from corrosion. In New York State with 4500 bridges in 11 Regions 2385 of the bridges have been rehabilitated and subsequently repainted after 1989 when commercial use of lead based paint was prohibited. The purpose of this research was to address the concentration and distribution of trace metals in the paint waste generated during bridge rehabilitation. Using hypothesis testing and stratified sampling theory, a representative sample size of 24 bridges from across the state was selected that resulted in 117 paint waste samples. Field portable X-ray fluorescence (FP-XRF) analysis revealed metal concentrations ranged from 5 to 168,090 mg kg(-1) for Pb, 49,367 to 799,210 mg kg(-1) for Fe, and 27 to 425,510 mg kg(-1) for Zn. Eighty percent of the samples exhibited lead concentrations greater than 5000 mg kg(-1). The elevated iron concentrations may be attributed to the application of steel grit as an abrasive blasting material routinely used by state Departments of Transportation in the paint removal process. Other metals including Ba and Cr were observed in the paint waste as well. As a result of the paint formulation, metals were found to be associated in the paint waste (Pb correlated with Cr (r=0.85)). The elevated metal concentrations observed raises concern over the potential impact of leaching from this waste stream. PMID:25955694

  2. Generation and dose distribution measurement of flash x-ray in KALI-5000 system

    SciTech Connect

    Menon, Rakhee; Roy, Amitava; Mitra, S.; Sharma, A.; Mondal, J.; Mittal, K. C.; Nagesh, K. V.; Chakravarthy, D. P.

    2008-10-15

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm{sup 2} current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO{sub 4}:Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance {approx}1/x{sup n}, where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns.

  3. Rucio - The next generation of large scale distributed system for ATLAS Data Management

    NASA Astrophysics Data System (ADS)

    Garonne, V.; Vigne, R.; Stewart, G.; Barisits, M.; eermann, T. B.; Lassnig, M.; Serfon, C.; Goossens, L.; Nairz, A.; Atlas Collaboration

    2014-06-01

    Rucio is the next-generation Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 140 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio will deal with these issues by relying on a conceptual data model and new technology to ensure system scalability, address new user requirements and employ new automation framework to reduce operational overheads. We present the key concepts of Rucio, including its data organization/representation and a model of how to manage central group and user activities. The Rucio design, and the technology it employs, is described, specifically looking at its RESTful architecture and the various software components it uses. We show also the performance of the system.

  4. Valuation-Based Framework for Considering Distributed Generation Photovoltaic Tariff Design: Preprint

    SciTech Connect

    Zinaman, O. R.; Darghouth, N. R.

    2015-02-01

    While an export tariff is only one element of a larger regulatory framework for distributed generation, we choose to focus on tariff design because of the significant impact this program design component has on the various flows of value among power sector stakeholders. In that context, this paper is organized into a series of steps that can be taken during the design of a DGPV export tariff design. To that end this paper outlines a holistic, high-level approach to the complex undertaking of DGPV tariff design, the crux of which is an iterative cost-benefit analysis process. We propose a multi-step progression that aims to promote transparent, focused, and informed dialogue on CBA study methodologies and assumptions. When studies are completed, the long-run marginal avoided cost of the DGPV program should be compared against the costs imposed on utilities and non-participating customers, recognizing that these can be defined differently depending on program objectives. The results of this comparison can then be weighed against other program objectives to formulate tariff options. Potential changes to tariff structures can be iteratively fed back into established analytical tools to inform further discussions.

  5. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  6. Generation and dose distribution measurement of flash x-ray in KALI-5000 system.

    PubMed

    Menon, Rakhee; Roy, Amitava; Mitra, S; Sharma, A; Mondal, J; Mittal, K C; Nagesh, K V; Chakravarthy, D P

    2008-10-01

    Flash x-ray generation studies have been carried out in KALI-5000 Pulse power system. The intense relativistic electron beam has been bombarded on a tantalum target at anode to produce flash x-ray via bremsstrahlung conversion. The typical electron beam parameter was 360 kV, 18 kA, and 100 ns, with a few hundreds of A/cm(2) current density. The x-ray dose has been measured with calcium sulfate:dysposium (CaSO(4):Dy) thermoluminescent dosimeter and the axial dose distribution has been characterized. It has been observed that the on axis dose falls of with distance approximately 1/x(n), where n varies from 1.8 to 1.85. A maximum on axis dose of 46 mrad has been measured at 1 m distance from the source. A plastic scintillator with optical fiber coupled to a photomultiplier tube has been developed to measure the x-ray pulse width. The typical x-ray pulse width varied from 50 to 80 ns. PMID:19044706

  7. Temperature and electron density distributions of laser-induced plasmas generated with an iron sample at different ambient gas pressures

    NASA Astrophysics Data System (ADS)

    Aguilera, J. A.; Aragón, C.

    2002-09-01

    Intensity, temperature and electron density distributions of laser-induced plasmas (LIPs) have been measured by emission spectroscopy with two-dimensional spatial resolution and temporal resolution. The plasmas have been generated with an iron sample at different pressures of air, in the range 10-1000 mbar. An experimental system based in an imaging spectrometer equipped with an intensified CCD detector has been used to obtain the spectra with two-dimensional spatial resolution. The evolution of the intensity distributions is described by the blast wave model only at initial times. The temperature distributions are shown to correspond to a slight difference between the intensity distributions of two Fe I emission lines that have a high difference of their upper energy levels (3.38 eV). The electron density distributions have similar features to those of the temperature distributions. The features of the intensity and temperature distributions show a significant change with the ambient gas pressure: they have separated maxima in the plasmas generated at pressures below 100 mbar, whereas at higher pressures, the maxima of the two distributions coincide.

  8. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  9. Advancements in integrating DSM and distributed generation and storage into T&D planning: Proceedings from the Third Annual Workshop

    SciTech Connect

    Not Available

    1994-09-01

    This third in a series of annual EPRI workshops focused on integrating demand-side management and distributed generation an into transmission and distribution planning. The workshop included utility case studies on integrated planning, results from utility pilot projects, analytical developments, and cross-departmental planning and implementation. In addition, the workshop featured information on advancements in area-specific planning and costing methods along with EPRI products that support utility integrated planning efforts.

  10. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    SciTech Connect

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  11. Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity

    SciTech Connect

    Lund, S M; Kikuchi, T; Davidson, R C

    2007-04-12

    Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  12. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    NASA Astrophysics Data System (ADS)

    Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.

    2015-05-01

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled ‘Next Generation Workload Management and Analysis System for Big Data’ (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system. We

  13. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    DOE PAGESBeta

    Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; et al

    2015-05-22

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Managementmore » System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as possible, existing components of the PanDA system

  14. Next Generation Workload Management System For Big Data on Heterogeneous Distributed Computing

    SciTech Connect

    Klimentov, A.; Buncic, P.; De, K.; Jha, S.; Maeno, T.; Mount, R.; Nilsson, P.; Oleynik, D.; Panitkin, S.; Petrosyan, A.; Porter, R. J.; Read, K. F.; Vaniachine, A.; Wells, J. C.; Wenaus, T.

    2015-05-22

    The Large Hadron Collider (LHC), operating at the international CERN Laboratory in Geneva, Switzerland, is leading Big Data driven scientific explorations. Experiments at the LHC explore the fundamental nature of matter and the basic forces that shape our universe, and were recently credited for the discovery of a Higgs boson. ATLAS and ALICE are the largest collaborations ever assembled in the sciences and are at the forefront of research at the LHC. To address an unprecedented multi-petabyte data processing challenge, both experiments rely on a heterogeneous distributed computational infrastructure. The ATLAS experiment uses PanDA (Production and Data Analysis) Workload Management System (WMS) for managing the workflow for all data processing on hundreds of data centers. Through PanDA, ATLAS physicists see a single computing facility that enables rapid scientific breakthroughs for the experiment, even though the data centers are physically scattered all over the world. The scale is demonstrated by the following numbers: PanDA manages O(102) sites, O(105) cores, O(108) jobs per year, O(103) users, and ATLAS data volume is O(1017) bytes. In 2013 we started an ambitious program to expand PanDA to all available computing resources, including opportunistic use of commercial and academic clouds and Leadership Computing Facilities (LCF). The project titled 'Next Generation Workload Management and Analysis System for Big Data' (BigPanDA) is funded by DOE ASCR and HEP. Extending PanDA to clouds and LCF presents new challenges in managing heterogeneity and supporting workflow. The BigPanDA project is underway to setup and tailor PanDA at the Oak Ridge Leadership Computing Facility (OLCF) and at the National Research Center "Kurchatov Institute" together with ALICE distributed computing and ORNL computing professionals. Our approach to integration of HPC platforms at the OLCF and elsewhere is to reuse, as much as

  15. Modeling and control of hybrid wind/photovoltaic/fuel cell distributed generation systems

    NASA Astrophysics Data System (ADS)

    Wang, Caisheng

    Due to ever increasing energy consumption, rising public awareness of environmental protection, and steady progress in power deregulation, alternative (i.e., renewable and fuel cell based) distributed generation (DG) systems have attracted increased interest. Wind and photovoltaic (PV) power generation are two of the most promising renewable energy technologies. Fuel cell (FC) systems also show great potential in DG applications of the future due to their fast technology development and many merits they have, such as high efficiency, zero or low emission (of pollutant gases) and flexible modular structure. The modeling and control of a hybrid wind/PV/FC DG system is addressed in this dissertation. Different energy sources in the system are integrated through an AC bus. Dynamic models for the main system components, namely, wind energy conversion system (WECS), PV energy conversion system (PVECS), fuel cell, electrolyzer, power electronic interfacing circuits, battery, hydrogen storage tank, gas compressor and gas pressure regulator, are developed. Two types of fuel cells have been modeled in this dissertation: proton exchange membrane fuel cell (PEMFC) and solid oxide fuel cell (SOFC). Power control of a grid-connected FC system as well as load mitigation control of a stand-alone FC system are investigated. The pitch angle control for WECS, the maximum power point tracking (MPPT) control for PVECS, and the control for electrolyzer and power electronic devices, are also addressed in the dissertation. Based on the dynamic component models, a simulation model for the proposed hybrid energy system has been developed using MATLAB/Simulink. The overall power management strategy for coordinating the power flows among the different energy sources is presented in the dissertation. Simulation studies have been carried out to verify the system performance under different scenarios using a practical load profile and real weather data. The results show that the overall power

  16. Generation and Propagation of Long Waves due to Spatial and Temporal Pressure Distributions

    NASA Astrophysics Data System (ADS)

    Metin, A. D.; Yalçıner, A. C.; Ozyurt Tarakcıoglu, G.; Zaytsev, A.

    2015-12-01

    An abnormal wave event was observed between 23 and 27 June 2014 in the Mediterranean and Black Seas. First, sea level oscillations began in Ciutadella Inlet (Spain) after midnight of 22 June. The phenomena continued with observation of strong oscillations (up to 3 m wave height) in the Adriatic Sea, Mediterranean Sea and Black Sea on 25-26 June. Finally, at noon on 27 June on a calm and sunny day, the abnormal waves suddenly struck coasts of Odessa with 1-2 m wave height injuring a number of people. This tsunami-like event which is called meteotsunami is generated by different types of meteorological disturbances such as atmospheric gravity waves, pressure jumps and squall lines and the significant consequences necessitates the research to understand, model and simulate such events accurately. Thus, using the 2014 event as a case study, the waves generated by the change of atmospheric pressure distribution is studied. A static water level drop due to high atmospheric pressure in a region and rise due to low atmospheric pressure in another region deform the water level throughout the entire sea area. To compute the sea level change, the relation between the pressure difference and change of water level from normal position (ζ=0.99ΔP) is used where ζ is the change of water level (cm) according to the pressure difference from normal pressure ΔP. This relation gives that 1 hPa (1millibar) depression in air pressure from normal water level position (under 1000millibar) creates almost 1 cm rise in mean sea level. The respective small amplitude long waves propagate along the sea which is continuously excited by the spatial and temporal changes of atmospheric pressure. And, the amplification becomes important to understand the occurrence of unexpected water level changes, especially near the coastal zone. In this study, this long wave propagation due to water surface deformation is modelled by solving nonlinear shallow water equations. The model results are compared

  17. THE GALACTIC SPATIAL DISTRIBUTION OF OB ASSOCIATIONS AND THEIR SURROUNDING SUPERNOVA-GENERATED SUPERBUBBLES

    SciTech Connect

    Higdon, J. C.; Lingenfelter, R. E. E-mail: rlingenfelter@ucsd.edu

    2013-10-01

    The Galactic spatial distribution of OB associations and their surrounding superbubbles (SBs) reflect the distribution of a wide range of important processes in our Galaxy. In particular, it can provide a three-dimensional measure not only of the major source distribution of Galactic cosmic rays, but also the Galactic star formation distribution, the Lyman continuum ionizing radiation distribution, the core-collapse supernova distribution, the neutron star and stellar black hole production distribution, and the principal source distribution of freshly synthesized elements. Thus, we construct a three-dimensional spatial model of the massive-star distribution based primarily on the emission of the H II envelopes that surround the giant SBs and are maintained by the ionizing radiation of the embedded O stars. The Galactic longitudinal distribution of the 205 μm N II radiation, emitted by these H II envelopes, is used to infer the spatial distribution of SBs. We find that the Galactic SB distribution is dominated by the contribution of massive-star clusters residing in the spiral arms.

  18. Future prospects for ECR plasma generators with improved charge state distributions

    SciTech Connect

    Alton, G.D.; Liu, Y.

    1997-06-01

    The growing number and variety of fundamental, applied, and industrial uses for high intensity, high charge state ion beams continues to be the driving force behind efforts to develop Electron Cyclotron Resonance (ECR) ion sources with superior performance characteristics. Incumbent with the advent of sub-micron electronic devices and their fabrication has been the demand for improved process control and optimization. These demands have led to the development of methods for cleaning, chemical etching, and deposition of thin films based on the use of plasma devices including ECR sources. Despite the steady advance in the technology, ECR plasma heating has not yet reached its full potential in terms of charge state and intensity within a particular charge state, in part, because of the narrow band width, single-frequency microwave radiation commonly used to heat the plasma electrons. This heating technique, coupled with conventional minimum-B configuration magnetic fields used for confining the electrons, resulting in the formation of the thin, ECR surfaces within the plasma volumes of these sources. This report identifies fundamentally important methods for enhancing the performances of ECR plasma generators by transforming the ECR zones from surfaces to volumes. Two methods are readily available for increasing the sizes of these zones. These techniques include: (1) a tailored magnetic field configuration in combination with single-frequency microwave radiation to create a large uniformly distributed ECR volume and; (2) the use of broadband-frequency domain techniques derived from standard TWT technology, to transform the resonant plasma surfaces of traditional ECR ion sources into resonant plasma volumes.

  19. Frequency assessment of spatially distributed generations of flood scenarios: an application on Italian territory

    NASA Astrophysics Data System (ADS)

    Lomazzi, M.; Roth, G.; Rudari, R.; Taramasso, A. C.; Ghizzoni, T.; Benedetti, R.; Espa, G.; Terpessi, C.

    2009-12-01

    The flooding risk impact on society cannot be understated: it influences land use and territorial planning and development at both physical and regulatory levels. To cope with it, a variety of actions can be put in place, involving multidisciplinary competences. Mitigation measures goes from the improvement of monitoring systems to the development of hydraulic structures, throughout land use restrictions, civil protection and insurance plans. All of those options present social and economic impacts, either positive or negative, whose proper estimate should rely on the assumption of appropriate - present and future - scenarios, i.e. quantitative event descriptions in terms of i) the flood hazard, with its probability of occurrence, extension, intensity, and duration, ii) the exposed values and iii) their vulnerability. At present, initial attention has been devoted to the design of flood scenarios, or ensembles of them, and to the evaluation of their frequency of occurrence. In the present work, a model for spatially distributed flood scenarios generation and frequency assessment is proposed and applied to the Italian territory. The study area has been divided into homogeneous regions according to their hydrologic, orographic and meteoclimatic characteristics. A statistical model for flood scenarios simulation has been implemented throughout a conditional approach based on MCMC simulations by using i) a historical flood events catalogue; ii) a homogeneous regions correlation matrix; and iii) an auxiliary variables data set. In this framework, the role of the information stored in the historical flood events catalogue "Aree Vulnerate Italiane" (AVI, http://avi.gndci.cnr.it/), produced by the Italian National Research Council, is of crucial importance.

  20. A Framework for the Generation and Dissemination of Drop Size Distribution (DSD) Characteristics Using Multiple Platforms

    NASA Technical Reports Server (NTRS)

    Wolf, David B.; Tokay, Ali; Petersen, Walt; Williams, Christopher; Gatlin, Patrick; Wingo, Mathew

    2010-01-01

    Proper characterization of the precipitation drop size distribution (DSD) is integral to providing realistic and accurate space- and ground-based precipitation retrievals. Current technology allows for the development of DSD products from a variety of platforms, including disdrometers, vertical profilers and dual-polarization radars. Up to now, however, the dissemination or availability of such products has been limited to individual sites and/or field campaigns, in a variety of formats, often using inconsistent algorithms for computing the integral DSD parameters, such as the median- and mass-weighted drop diameter, total number concentration, liquid water content, rain rate, etc. We propose to develop a framework for the generation and dissemination of DSD characteristic products using a unified structure, capable of handling the myriad collection of disdrometers, profilers, and dual-polarization radar data currently available and to be collected during several upcoming GPM Ground Validation field campaigns. This DSD super-structure paradigm is an adaptation of the radar super-structure developed for NASA s Radar Software Library (RSL) and RSL_in_IDL. The goal is to provide the DSD products in a well-documented format, most likely NetCDF, along with tools to ingest and analyze the products. In so doing, we can develop a robust archive of DSD products from multiple sites and platforms, which should greatly benefit the development and validation of precipitation retrieval algorithms for GPM and other precipitation missions. An outline of this proposed framework will be provided as well as a discussion of the algorithms used to calculate the DSD parameters.

  1. LASPE: a subroutine for generating straggling distributions for positrons and electrons

    NASA Astrophysics Data System (ADS)

    Heddle, D. P.; Maximon, Leonard C.

    1992-05-01

    Computer codes used for analysis of data from high energy electron scattering experiments generally use the Rutherford cross-section based distribution derived by Landau to calculate the energy lost by electrons due to straggling. We have developed a FORTRAN program which evaluates straggling distributions incorporating Møller and Bhabha cross-sections. In e - scattering analysis, this program can be used to evaluate the precision of existing Rutherford-based distributions. In addition, the calculation of the e + straggling distribution is relevant to the analysis of experiments such as those investigating dispersive effects in nuclear electromagnetic processes by comparing results obtained from e - and e + scattering from identical nuclei. In addition to a full straggling distribution, the output includes the parameters which characterize the distribution as well as a table of integrals of the distribution.

  2. Reduced resilience of a globally distributed coccolithophore to ocean acidification: Confirmed up to 2000 generations.

    PubMed

    Jin, Peng; Gao, Kunshan

    2016-02-15

    Ocean acidification (OA), induced by rapid anthropogenic CO2 rise and its dissolution in seawater, is known to have consequences for marine organisms. However, knowledge on the evolutionary responses of phytoplankton to OA has been poorly studied. Here we examined the coccolithophore Gephyrocapsa oceanica, while growing it for 2000 generations under ambient and elevated CO2 levels. While OA stimulated growth in the earlier selection period (from generations ~700 to ~1550), it reduced it in the later selection period up to 2000 generations. Similarly, stimulated production of particulate organic carbon and nitrogen reduced with increasing selection period and decreased under OA up to 2000 generations. The specific adaptation of growth to OA disappeared in generations 1700 to 2000 when compared with that at 1000 generations. Both phenotypic plasticity and fitness decreased within selection time, suggesting that the species' resilience to OA decreased after 2000 generations under high CO2 selection. PMID:26746379

  3. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  4. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  5. A novel aerosol generator for homogenous distribution of powder over the lungs after pulmonary administration to small laboratory animals.

    PubMed

    Tonnis, Wouter F; Bagerman, Marieke; Weij, Michel; Sjollema, Jelmer; Frijlink, Henderik W; Hinrichs, Wouter L J; de Boer, Anne H

    2014-11-01

    To evaluate powder formulations for pulmonary administration in pre-clinic research, the powder should be administered to the lungs of small laboratory animals. To do so properly, a device is needed that generates particles small enough to reach deep into the lungs. In this study a newly developed aerosol generator was tested for pulmonary administration of powder to the lungs of mice and its performance was compared to the only currently available device, the Penn-Century insufflator. Results showed that both devices generated powder particles of approximately the same size distribution, but the fine particle fraction needed for deep lung administration was strongly improved when the aerosol generator was used.Imaging studies in mice showed that powder particles from the aerosol generator deposited into the deep lung, where powder from the Penn-Century insufflator did not reach further than the conducting airways.Furthermore, powder administered by using the aerosol generator was more homogenously distributed over the five individual lungs lobes than powder administrated by using the Penn-Century insufflator. PMID:25460152

  6. A Hybrid Computer Simulation to Generate the DNA Distribution of a Cell Population.

    ERIC Educational Resources Information Center

    Griebling, John L.; Adams, William S.

    1981-01-01

    Described is a method of simulating the formation of a DNA distribution, on which statistical results and experimentally measured parameters from DNA distribution and percent-labeled mitosis studies are combined. An EAI-680 and DECSystem-10 Hybrid Computer configuration are used. (Author/CS)

  7. Carrier envelope phase effect on the spatial distribution of high-order harmonic generation in asymmetric molecule

    NASA Astrophysics Data System (ADS)

    Jun, Zhang; Hai-Feng, Liu; Xue-Fei, Pan; Hui, Du; Jing, Guo; Xue-Shen, Liu

    2016-05-01

    The spatial distribution in high-order harmonic generation (HHG) from the asymmetric diatomic molecule HeH2+ is investigated by numerically solving the non-Born–Oppenheimer time-dependent Schrödinger equation (TDSE). The spatial distribution of the HHG spectra shows that there is little contribution in HHG around the geometric center of two nuclei (z = 1.17 a.u.) and the equilibrium internuclear position of the H nucleus (z = 3.11 a.u.). We demonstrate the carrier envelope phase (CEP) effect on the spatial distribution of HHG in a few-cycle laser pulse. The HHG process is investigated by the time evolution of the electronic density distribution. The time–frequency analysis of HHG from two nuclei in HeH2+ is presented to further explain the underlying physical mechanism. Project supported by the National Natural Science Foundation of China (Grant Nos. 11271158, 11574117, and 61575077).

  8. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  9. Optimization of Fin Distribution to Improve the Temperature Uniformity of a Heat Exchanger in a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Wang, Yiping; Wu, Cheng; Tang, Zebo; Yang, Xue; Deng, Yadong; Su, Chuqi

    2015-06-01

    Thermoelectric generators (TEGs) are currently a topic of interest for energy recovery in vehicles. By applying TEGs to the outside surface of the exhaust tailpipe, a small amount of electrical power can be generated because of the temperature difference between the hot exhaust gases and the automobile coolant. The amount of power is anticipated to be a few hundred watts based on the expected temperature difference and the properties of the thermoelectric materials used in TEGs. It is well know that, for thermoelectric exhaust energy recovery, the temperature uniformity of the heat exchangers has a strong influence on the electric power generation. In the current research, the temperature uniformity of a heat exchanger was improved by optimizing the fin distribution to maximize the electric power generated for a given vehicle TEG. A computational fluid dynamics (CFD) model of the heat exchanger was constructed to assess the influence of different fin distributions on the temperature uniformity and the pressure drop in the exhaust system. For the fin distributions, four factors were considered: the length of, spacing between, angle of, and thickness of the fins. Based on these four factors, a design of experiments study using the orthogonal experimental method was conducted to analyze the sensitivity to the design variables and build a database to set up a surrogate model using the Kriging response surface method. A multi-island genetic algorithm was used to optimize the fin distribution based on this surrogate model. To validate the accuracy of the CFD model, a generic heat exchanger module was manufactured and a related testbed constructed, then the temperature distribution on the surface of the exchanger was measured to compare with the results obtained by CFD.

  10. Distribution functions in plasmas generated by a volume source of fission fragments. [in nuclear pumped lasers

    NASA Technical Reports Server (NTRS)

    Deese, J. E.; Hassan, H. A.

    1979-01-01

    The role played by fission fragments and electron distribution functions in nuclear pumped lasers is considered and procedures for their calculations are outlined. The calculations are illustrated for a He-3/Xe mixture where fission is provided by the He-3(n,p)H-3 reaction. Because the dominant ion in the system depends on the Xe fraction, the distribution functions cannot be determined without the simultaneous consideration of a detailed kinetic model. As is the case for wall sources of fission fragments, the resulting plasmas are essentially thermal but the electron distribution functions are non-Maxwellian.

  11. Impact of uniform electrode current distribution on ETF. [Engineering Test Facility MHD generator

    NASA Technical Reports Server (NTRS)

    Bents, D. J.

    1982-01-01

    A basic reason for the complexity and sheer volume of electrode consolidation hardware in the MHD ETF Powertrain system is the channel electrode current distribution, which is non-uniform. If the channel design is altered to provide uniform electrode current distribution, the amount of hardware required decreases considerably, but at the possible expense of degraded channel performance. This paper explains the design impacts on the ETF electrode consolidation network associated with uniform channel electrode current distribution, and presents the alternate consolidation designs which occur. They are compared to the baseline (non-uniform current) design with respect to performance, and hardware requirements. A rational basis is presented for comparing the requirements for the different designs and the savings that result from uniform current distribution. Performance and cost impacts upon the combined cycle plant are discussed.

  12. Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Lomaev, M. I.; Petin, V. K.; Rybka, D. V.; Shlyakhtun, S. V.

    2008-12-01

    The spectra of an ultrashort avalanche electron beam generated by a nanosecond discharge in atmospheric-pressure air were investigated. The temporal characteristics of the beam current pulses, gap voltage, and discharge current in a gas diode were measured with a time resolution of ˜0.1 ns. A simple technique was developed for recovering electron spectra from the curves of beam attenuation by aluminum foils. The effect of the cathode design, electrode gap length, and generator parameters on the electron spectra were studied using seven setups. It is shown that generation of electrons with anomalously high energies requires the use of cathodes with increased curvature radius.

  13. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  14. Probability distributions of ancestries and genealogical distances on stochastically generated rooted binary trees.

    PubMed

    Mulder, Willem H

    2011-07-01

    The stationary birth-only, or Yule-Furry, process for rooted binary trees has been analysed with a view to developing explicit expressions for two fundamental statistical distributions: the probability that a randomly selected leaf is preceded by N nodes, or "ancestors", and the probability that two randomly selected leaves are separated by N nodes. For continuous-time Yule processes, the first of these distributions is presented in closed analytical form as a function of time, with time being measured with respect to the moment of "birth" of the common ancestor (which is essentially inaccessible to phylogenetic analysis), or with respect to the instant at which the first bifurcation occurred. The second distribution is shown to follow in an iterative manner from a hierarchy of second-order ordinary differential equations. For Yule trees of a given number n of tips, expressions have been derived for the mean and variance for each of these distributions as functions of n, as well as for the distributions themselves. In addition, it is shown how the methods developed to obtain these distributions can be employed to find, with minor effort, expressions for the expectation values of two statistics on Yule trees, the Sackin index (sum over all root-to-leaf distances), and the sum over all leaf-to-leaf distances. PMID:21527261

  15. Characterizing the energy distribution of laser-generated relativistic electrons in cone-wire targets

    SciTech Connect

    Sawada, H.; Beg, F. N.; Higginson, D. P.; Ma, T.; Link, A.; Wilks, S. C.; McLean, H. S.; Perez, F.; Patel, P. K.

    2012-10-15

    Transport of relativistic electrons in a solid Cu wire target has been modeled with the implicit hybrid particle-in-cell code LSP to investigate the electron energy distribution and energy coupling from the high-intensity, short-pulse laser to electrons entering to the wire. Experiments were performed on the TITAN laser using a 1.5 mm long Cu wire attached to a Au cone tip at the laser intensity of 1 Multiplication-Sign 10{sup 20} W/cm{sup 2} which was irradiated into the cone. The simulated Cu K{alpha} wire profile and yields matched the measurements using a two-temperature energy distribution. These modeling results show that the cold component of the energy spectrum can be determined with {+-}100 keV accuracy from the fit to the initial experimental fall-off of the K{alpha} emission while the simulated profiles were relatively insensitive to the hotter component of the electron distribution (>4 MeV). The slope of measured escaped electrons was used to determine the hotter temperature. Using exponential energy distributions, the laser-to-electron-in-wire coupling efficiencies inferred from the fits decreased from 3.4% to 1.5% as the prepulse energy increases up to 1 J. The comparison of the energy couplings using the exponential and Relativistic Maxwellian distribution functions showed that the energy inferred in the cold component is independent of the type of the distribution function.

  16. The Influence of a Dispersion Cone on the Temperature Distribution in the Heat Exchanger of a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    MusiaŁ, M.; Borcuch, M.; Wojciechowski, K.

    2016-03-01

    This paper presents the results of a numerical simulation of heat distribution in the heat exchanger of a prototype thermoelectric generator constructed and examined in the Thermoelectric Research Laboratory in AGH University, Cracow, Poland. The area of interest was to prepare a numerical model and determine the influence of a dispersion cone on the temperature distribution along the heat exchanger. The role of a dispersion element is to mix the air stream to improve the flow between the internal heat exchanger's fins in order to enhance heat exchange. The estimation of power output parameters and exchanger efficiency has been performed in order to assess the cone impact for three selected air inlet temperatures. The results show that the presence of the cone increases the efficiency of the thermoelectric generator by at least 25%.

  17. Performance Analysis of Positive-feedback-based Active Anti-islanding Schemes for Inverter-Based Distributed Generators

    SciTech Connect

    Du, Pengwei; Aponte, Erick E.; Nelson, J. Keith

    2010-06-14

    Recently proposed positive-feedback-based anti-islanding schemes (AI) are highly effective in preventing islanding without causing any degradation in power quality. This paper aims to analyze the performance of these schemes quantitatively in the context of the dynamic models of inverter-based distributed generators (DG). In this study, the characteristics of these active anti-islanding methods are discussed and design guidelines are derived.

  18. Generation of intense 10-ps, 193-nm pulses using simple distributed feedback dye lasers and an ArF(*) amplifier.

    PubMed

    Hatten, D L; Cui, Y; Iii, W T; Mikes, T; Goldhar, J

    1992-11-20

    A pair of holographic distributed feedback dye lasers is used to generate 10-ps pulses at two selected wavelengths that are mixed in a BBO crystal to produce a pulse ~ 10 ps in duration at 193 nm. This seed pulse is subsequently amplified in an ArF(*) excimer laser to an energy of 10-15 mJ with <40 microJ in amplified spontaneous emission. The pulses are nearly transform limited and diffraction limited. PMID:20802565

  19. QQ-plots for assessing distributions of biomarker measurements and generating defensible summary statistics.

    PubMed

    Pleil, Joachim D

    2016-01-01

    One of the main uses of biomarker measurements is to compare different populations to each other and to assess risk in comparison to established parameters. This is most often done using summary statistics such as central tendency, variance components, confidence intervals, exceedance levels and percentiles. Such comparisons are only valid if the underlying assumptions of distribution are correct. This article discusses methodology for interpreting and evaluating data distributions using quartile-quartile plots (QQ-plots) and making decisions as to how to treat outliers, interpreting effects of mixed distributions, and identifying left-censored data. The QQ-plot graph is shown to be a simple and elegant tool for visual inspection of complex data and deciding if summary statistics should be performed after log-transformation. PMID:27491525

  20. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  1. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  2. Worldwide telemedicine services based on distributed multimedia electronic patient records by using the second generation Web server hyperwave.

    PubMed Central

    Quade, G.; Novotny, J.; Burde, B.; May, F.; Beck, L. E.; Goldschmidt, A.

    1999-01-01

    A distributed multimedia electronic patient record (EPR) is a central component of a medicine-telematics application that supports physicians working in rural areas of South America, and offers medical services to scientists in Antarctica. A Hyperwave server is used to maintain the patient record. As opposed to common web servers--and as a second generation web server--Hyperwave provides the capability of holding documents in a distributed web space without the problem of broken links. This enables physicians to browse through a patient's record by using a standard browser even if the patient's record is distributed over several servers. The patient record is basically implemented on the "Good European Health Record" (GEHR) architecture. Images Figure 1 PMID:10566494

  3. What interactions can distort the orientational distribution of interfacial water molecules as probed by second harmonic and sum frequency generation?

    NASA Astrophysics Data System (ADS)

    de Beer, Alex G. F.; Roke, Sylvie

    2016-07-01

    Aqueous interfaces are omnipresent in nature. Nonlinear optical methods such as second harmonic and sum frequency generation (SHG/SFG) are valuable techniques to access molecular level information from these interfaces. In the interpretation of SHG and SFG data for both scattering and reflection mode experiments, the relation between the second-order hyperpolarizability tensor β(2), a molecular property, and the surface second-order susceptibility (" separators=" χ(2), a surface averaged property, plays a central role. To correctly describe the molecular details of the interface, it needs to be determined how molecules are oriented, and what the influence is of interfacial electrostatic fields and H-bonding on the orientational distribution. Here, we revisit the relations between β(2) and χ(2) and show, by means of a Boltzmann average, that significant energy differences are needed to generate measurable changes in the molecular orientational distribution at the interface. In practice, H-bonding and surface pressure such as applied in a Langmuir trough can be strong enough to alter the shape of the orientational distribution function of water. In contrast, electrostatic fields, such as those present in the Stern layer, will not have a significant impact on the shape of the orientational distribution function of water molecules.

  4. What interactions can distort the orientational distribution of interfacial water molecules as probed by second harmonic and sum frequency generation?

    PubMed

    de Beer, Alex G F; Roke, Sylvie

    2016-07-28

    Aqueous interfaces are omnipresent in nature. Nonlinear optical methods such as second harmonic and sum frequency generation (SHG/SFG) are valuable techniques to access molecular level information from these interfaces. In the interpretation of SHG and SFG data for both scattering and reflection mode experiments, the relation between the second-order hyperpolarizability tensor β(2), a molecular property, and the surface second-order susceptibility χ(2), a surface averaged property, plays a central role. To correctly describe the molecular details of the interface, it needs to be determined how molecules are oriented, and what the influence is of interfacial electrostatic fields and H-bonding on the orientational distribution. Here, we revisit the relations between β(2) and χ(2) and show, by means of a Boltzmann average, that significant energy differences are needed to generate measurable changes in the molecular orientational distribution at the interface. In practice, H-bonding and surface pressure such as applied in a Langmuir trough can be strong enough to alter the shape of the orientational distribution function of water. In contrast, electrostatic fields, such as those present in the Stern layer, will not have a significant impact on the shape of the orientational distribution function of water molecules. PMID:27475384

  5. Development of a wide band radiative transfer model based on a fast correlated k-distributions generation

    NASA Astrophysics Data System (ADS)

    Croize, Laurence; Pierro, Jean; Huet, Thierry; Labarre, Luc

    2016-04-01

    MATISSE which acronym means Advanced Modeling of the Earth for Environment and Scenes Simulation is developed by ONERA since the mid 1990's. The code main functionality is to compute spectral or integrated natural background radiance images. Natural backgrounds include the atmosphere, low and high altitude clouds, sea and land. It can also provide specific radiative atmospheric terms as path transmission, path radiances, sky radiances or local illumination around a target point. Spectral bandwidth ranges from 700 to 25000 cm-1 wavenumber (i.e. from 0.4 to 14 μm). As far as molecular absorption is concerned, MATISSE v2.0 is based on a correlated K (CK) model and needs a pre-generation of the k-distributions. This method is very precise but is time consuming and is done as an offline calculation. In answer to the increasing need of rapid radiative transfer codes, the future version of the MATISSE v3.0 will include a fast radiative transfer model at low and at medium spectral resolution. This work aims to develop a fast wide band CK model for the acceleration of radiative transfer calculation. As a first step, a statistical k-distributions fast generator was developed. It allows generating k-distributions from 700 to 25000 cm-1 with a spectral resolution of 1 cm-1 in less than 30 ms(*) for one altitude (that means about three orders of magnitude faster than before). Such speed allows generating k-distributions online. To validate the model, we have compared the obtained transmission spectra with reference spectra using a mix of 6 molecules (H2O, CO2, O3, N2O, CO, CH4) in homogenous atmosphere corresponding to different altitudes from 0 to 105 km. Reference spectra were calculated as the convolution of a spectrum obtained with a line by line model and a gate function of 1 cm-1 wide. An average difference of 3×10-3 % and a standard deviation of 3.3% were typically obtained. As a second step, this method of rapid k-distributions generation is now being coupled with a

  6. Distributed Use of a Fourth-Generation Language at Arizona State University.

    ERIC Educational Resources Information Center

    Brown, Jana; O'Connell, John

    1989-01-01

    The acquisition and implementation at Arizona State University of a fourth-generation language product to facilitate end-user access to institutional data are described. Some problems encountered are included, as are discussions of training and security considerations. (Author/MLW)

  7. Impact of soil water storage and distribution on snowmelt generated streamflow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Snowmelt is the primary source of water generating streamflow in much of the western USA and Canada. The amount and timing of this streamflow, which affects a number of management decisions, is directly related to the amount and timing of snowmelt, soil water storage and transmission. The impact of...

  8. Solid-State Power Generating Microdevices for Distributed Space System Architectures

    NASA Astrophysics Data System (ADS)

    Fleurial, J.-P.; Patel, J.; Snyder, G. J.; Huang, C.-K.; Averback, R.; Hill, C.; Chen, G.

    2001-01-01

    Deep space missions have a strong need for compact, high power density, reliable and long life electrical power generation and storage under extreme temperature conditions. Conventional power generating devices become inefficient at very low temperatures (temperatures lower than 200 K encountered during Mars missions for example) and rechargeable energy storage devices cannot be operated thereby limiting mission duration. At elevated temperatures (for example for planned solar probe or Venus lander missions), thin film interdiffusion destroys electronic devices used for generating and storing power. Solar power generation strongly depends upon the light intensity, which falls rapidly in deep interplanetary missions (beyond 5 AU), and in planetary missions in the sun shadow or in dusty environments (Mars, for example). Radioisotope thermoelectric generators (RTGs) have been successfully used for a number of deep space missions RTGs. However, their energy conversion efficiency and specific power characteristics are quite low, and this technology has been limited to relatively large systems (more than 100 W). The National Aeronautics and Space Administration (NASA) and the Jet Propulsion Laboratory (JPL) have been planning the use of much smaller spacecrafts that will incorporate a variety of microdevices and miniature vehicles such as microdetectors, microsensors, and microrovers. Except for electrochemical batteries and solar cells, there are currently no available miniaturized power sources. Novel technologies that will function reliably over a long duration mission (ten years and over), in harsh environments (temperature, pressure, and atmosphere) must be developed to enable the success of future space missions. It is also expected that such micropower sources could have a wide range of terrestrial applications, in particular when the limited lifetime and environmental limitations of batteries are key factors. Additional information is contained in the original

  9. Anisotropic distribution function of minority tail ions generated by strong ion-cyclotron resonance heating

    SciTech Connect

    Chang, C.S.; Colestock, P.

    1989-05-01

    The highly anisotropic particle distribution function of minority tail ions driven by ion-cyclotron resonance heating at the fundamental harmonic is calculated in a two-dimensional velocity space. It is assumed that the heating is strong enough to drive most of the resonant ions above the in-electron critical slowing-down energy. Simple analytic expressions for the tail distribution are obtained fro the case when the Doppler effect is sufficiently large to flatten the sharp pitch angle dependence in the bounce averaged qualilinear heating coefficient, D/sub b/, and for the case when D/sub b/ is assumed to be constant in pitch angle and energy. It is found that a simple constant-D/sub b/ solution can be used instead of the more complicated sharp-D/sub b/ solution for many analytic purposes. 4 refs., 4 figs.

  10. Unnatural landscapes in ecology: Generating the spatial distribution of brine spills

    SciTech Connect

    Jager, Yetta; Efroymson, Rebecca Ann; Sublette, K.; Ashwood, Tom L

    2005-01-01

    Quantitative tools are needed to evaluate the ecological effects of increasing petroleum production. In this article, we describe two stochastic models for simulating the spatial distribution of brine spills on a landscape. One model uses general assumptions about the spatial arrangement of spills and their sizes; the second model distributes spills by siting rectangular well complexes and conditioning spill probabilities on the configuration of pipes. We present maps of landscapes with spills produced by the two methods and compare the ability of the models to reproduce a specified spill area. A strength of the models presented here is their ability to extrapolate from the existing landscape to simulate landscapes with a higher (or lower) density of oil wells.

  11. Temperature and thermal stress distributions for the HFIR permanent reflector generated by nuclear heating

    SciTech Connect

    Chang, S.J.

    1998-04-01

    The beryllium permanent reflector of the High Flux Isotope Reactor has the main functions for slowing down and reflecting the neutrons and housing the experimental facilities. The reflector is heated as a result of the nuclear reaction. Heat is removed mainly by the cooling water passing through the densely distributed coolant holes along the vertical or axial direction of the reflector. The reflector neutronic distribution and its heating rate are calculated by J.C. Gehin of the Oak Ridge National Laboratory by applying the Monte Carlo Code MCNP. The heat transfer boundary conditions along several reflector interfaces are estimated to remove additional heat from the reflector. The present paper is to report the calculation results of the temperature and the thermal stress distributions of the permanent reflector by applying the computer aided design code I-DEAS and the finite element code ABAQUS. The present calculation is to estimate the high stress areas as a result of the new beam tube cutouts along the horizontal mid-plane of the reflector of the recent reactor upgrade project. These high stresses were not able to be calculated in the preliminary design analysis in earlier 60`s. The heat transfer boundary conditions are used in this redesigned calculation. The material constants and the acceptance criteria for the allowable stresses are mainly based on that assumed in the preliminary design report.

  12. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  13. Distributed fiber optic sensor employing phase generate carrier for disturbance detection and location

    NASA Astrophysics Data System (ADS)

    Xu, Haiyan; Wu, Hongyan; Zhang, Xuewu; Zhang, Zhuo; Li, Min

    2015-05-01

    Distributed optic fiber sensor is a new type of system, which could be used in the long-distance and strong-EMI condition for monitoring and inspection. A method of external modulation with a phase modulator is proposed in this paper to improve the positioning accuracy of the disturbance in a distributed optic-fiber sensor. We construct distributed disturbance detecting system based on Michelson interferometer, and a phase modulator has been attached to the fiber sensor in front of the Faraday rotation mirror (FRM), to elevate the signal produced by interfering of the two lights reflected by the Faraday rotation Mirror to a high frequency, while other signals remain in the low frequency. Through a high pass filter and phase retrieve circus, a signal which is proportional to the external disturbance is acquired. The accuracy of disturbance positioning with this signal can be largely improved. The method is quite simple and easy to achieve. Theoretical analysis and experimental results show that, this method can effectively improve the positioning accuracy.

  14. Software for generating liability distributions for pedigrees conditional on their observed disease states and covariates.

    PubMed

    Campbell, Desmond D; Sham, Pak C; Knight, Jo; Wickham, Harvey; Landau, Sabine

    2010-02-01

    For many multifactorial diseases, aetiology is poorly understood. A major research aim is the identification of disease predictors (environmental, biological, and genetic markers). In order to achieve this, a two-stage approach is proposed. The initial or synthesis stage combines observed pedigree data with previous genetic epidemiological research findings, to produce estimates of pedigree members' disease risk and predictions of their disease liability. A further analysis stage uses the latter as inputs to look for associations with potential disease markers. The incorporation of previous research findings into an analysis should lead to power gains. It also allows separate predictions for environmental and genetic liabilities to be generated. This should increase power for detecting disease predictors that are environmental or genetic in nature. Finally, the approach brings pragmatic benefits in terms of data reduction and synthesis, improving comprehensibility, and facilitating the use of existing statistical genetics tools. In this article we present a statistical model and Gibbs sampling approach to generate liability predictions for multifactorial disease for the synthesis stage. We have implemented the approach in a software program. We apply this program to a specimen disease pedigree, and discuss the results produced, comparing its results with those generated under a more naïve model. We also detail simulation studies that validate the software's operation. PMID:19771574

  15. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life

  16. A Study on Grid-Square Statistics Based Estimation of Regional Electricity Demand and Regional Potential Capacity of Distributed Generators

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Sugimoto, Hiroyuki; Suzuoki, Yasuo

    We established a procedure for estimating regional electricity demand and regional potential capacity of distributed generators (DGs) by using a grid square statistics data set. A photovoltaic power system (PV system) for residential use and a co-generation system (CGS) for both residential and commercial use were taken into account. As an example, the result regarding Aichi prefecture was presented in this paper. The statistical data of the number of households by family-type and the number of employees by business category for about 4000 grid-square with 1km × 1km area was used to estimate the floor space or the electricity demand distribution. The rooftop area available for installing PV systems was also estimated with the grid-square statistics data set. Considering the relation between a capacity of existing CGS and a scale-index of building where CGS is installed, the potential capacity of CGS was estimated for three business categories, i.e. hotel, hospital, store. In some regions, the potential capacity of PV systems was estimated to be about 10,000kW/km2, which corresponds to the density of the existing area with intensive installation of PV systems. Finally, we discussed the ratio of regional potential capacity of DGs to regional maximum electricity demand for deducing the appropriate capacity of DGs in the model of future electricity distribution system.

  17. Independent Orbiter Assessment (IOA): Analysis of the electrical power distribution and control/electrical power generation subsystem

    NASA Technical Reports Server (NTRS)

    Patton, Jeff A.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results corresponding to the Orbiter Electrical Power Distribution and Control (EPD and C)/Electrical Power Generation (EPG) hardware. The EPD and C/EPG hardware is required for performing critical functions of cryogenic reactant storage, electrical power generation and product water distribution in the Orbiter. Specifically, the EPD and C/EPG hardware consists of the following components: Power Section Assembly (PSA); Reactant Control Subsystem (RCS); Thermal Control Subsystem (TCS); Water Removal Subsystem (WRS); and Power Reactant Storage and Distribution System (PRSDS). The IOA analysis process utilized available EPD and C/EPG hardware drawings and schematics for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode.

  18. Bimodal regulation of ICR1 levels generates self-organizing auxin distribution

    PubMed Central

    Hazak, Ora; Obolski, Uri; Prat, Tomáš; Friml, Jiří; Hadany, Lilach; Yalovsky, Shaul

    2014-01-01

    Auxin polar transport, local maxima, and gradients have become an important model system for studying self-organization. Auxin distribution is regulated by auxin-dependent positive feedback loops that are not well-understood at the molecular level. Previously, we showed the involvement of the RHO of Plants (ROP) effector INTERACTOR of CONSTITUTIVELY active ROP 1 (ICR1) in regulation of auxin transport and that ICR1 levels are posttranscriptionally repressed at the site of maximum auxin accumulation at the root tip. Here, we show that bimodal regulation of ICR1 levels by auxin is essential for regulating formation of auxin local maxima and gradients. ICR1 levels increase concomitant with increase in auxin response in lateral root primordia, cotyledon tips, and provascular tissues. However, in the embryo hypophysis and root meristem, when auxin exceeds critical levels, ICR1 is rapidly destabilized by an SCF(TIR1/AFB) [SKP, Cullin, F-box (transport inhibitor response 1/auxin signaling F-box protein)]-dependent auxin signaling mechanism. Furthermore, ectopic expression of ICR1 in the embryo hypophysis resulted in reduction of auxin accumulation and concomitant root growth arrest. ICR1 disappeared during root regeneration and lateral root initiation concomitantly with the formation of a local auxin maximum in response to external auxin treatments and transiently after gravitropic stimulation. Destabilization of ICR1 was impaired after inhibition of auxin transport and signaling, proteasome function, and protein synthesis. A mathematical model based on these findings shows that an in vivo-like auxin distribution, rootward auxin flux, and shootward reflux can be simulated without assuming preexisting tissue polarity. Our experimental results and mathematical modeling indicate that regulation of auxin distribution is tightly associated with auxin-dependent ICR1 levels. PMID:25468974

  19. Space and energy. [space systems for energy generation, distribution and control

    NASA Technical Reports Server (NTRS)

    Bekey, I.

    1976-01-01

    Potential contributions of space to energy-related activities are discussed. Advanced concepts presented include worldwide energy distribution to substation-sized users using low-altitude space reflectors; powering large numbers of large aircraft worldwide using laser beams reflected from space mirror complexes; providing night illumination via sunlight-reflecting space mirrors; fine-scale power programming and monitoring in transmission networks by monitoring millions of network points from space; prevention of undetected hijacking of nuclear reactor fuels by space tracking of signals from tagging transmitters on all such materials; and disposal of nuclear power plant radioactive wastes in space.

  20. Distribution Coefficients (Kd Values) for Waste Resins Generated from the K and L Disassembly Basin Facilities

    SciTech Connect

    Kaplan, D.I.

    2002-12-02

    The objective of this study was to measure 14C, 129I, and 99Tc Kd values of spent resin generated from the K and L Disassembly Basin Facilities. The scope of the work was to conduct Kd measurements of resins combined in the ratio that they are disposed, 42:58 cation:anion. Because it was not known how these spent resins would be buried, it was necessary to measure the Kd values in such a manner as to simulate both trench and vault disposal. This was accomplished by using an acid-rain simulant (a standard U.S. Environmental Protection Agency protocol) and a cement leachate simulant .

  1. Timing of seed dispersal generates a bimodal seed bank depth distribution

    USGS Publications Warehouse

    Espinar, J.L.; Thompson, K.; Garcia, L.V.

    2005-01-01

    The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Don??ana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated.

  2. Timing of seed dispersal generates a bimodal seed bank depth distribution.

    PubMed

    Espinar, José L; Thompson, Ken; García, Luis V

    2005-10-01

    The density of soil seed banks is normally highest at the soil surface and declines monotonically with depth. Sometimes, for a variety of reasons, peak density occurs below the surface but, except in severely disturbed soils, it is generally true that deeper seeds are older. In seasonally dry habitats that develop deep soil cracks during the dry season, it is possible that some seeds fall down cracks and rapidly become deeply buried. We investigated this possibility for three dominant clonal perennials (Scirpus maritimus, S. litoralis, and Juncus subulatus) in the Doñana salt marsh, a nontidal marsh with a Mediterranean climate located in southwest Spain. Two species, which shed most of their seed during the dry season and have seeds with low buoyancy, had bimodal viable seed depth distributions, with peak densities at the surface and at 16-20 cm. A third species, which shed most seeds after soil cracks had closed and had seeds with high buoyancy, had viable seeds only in surface soil. Bimodal seed bank depth distributions may be relatively common in seasonally dry habitats with fine-textured soils, but their ecological significance has not been investigated. PMID:21646093

  3. Next generation sequencing and FISH reveal uneven and nonrandom microsatellite distribution in two grasshopper genomes.

    PubMed

    Ruiz-Ruano, Francisco J; Cuadrado, Ángeles; Montiel, Eugenia E; Camacho, Juan Pedro M; López-León, María Dolores

    2015-06-01

    Simple sequence repeats (SSRs), also known as microsatellites, are one of the prominent DNA sequences shaping the repeated fraction of eukaryotic genomes. In spite of their profuse use as molecular markers for a variety of genetic and evolutionary studies, their genomic location, distribution, and function are not yet well understood. Here we report the first thorough joint analysis of microsatellite motifs at both genomic and chromosomal levels in animal species, by a combination of 454 sequencing and fluorescent in situ hybridization (FISH) techniques performed on two grasshopper species. The in silico analysis of the 454 reads suggested that microsatellite expansion is not driving size increase of these genomes, as SSR abundance was higher in the species showing the smallest genome. However, the two species showed the same uneven and nonrandom location of SSRs, with clear predominance of dinucleotide motifs and association with several types of repetitive elements, mostly histone gene spacers, ribosomal DNA intergenic spacers (IGS), and transposable elements (TEs). The FISH analysis showed a dispersed chromosome distribution of microsatellite motifs in euchromatic regions, in coincidence with chromosome location patterns previously observed for many mobile elements in these species. However, some SSR motifs were clustered, especially those located in the histone gene cluster. PMID:25387401

  4. Asymmetric distribution of phosphatidylserine is generated in the absence of phospholipid flippases in Saccharomyces cerevisiae

    PubMed Central

    Mioka, Tetsuo; Fujimura-Kamada, Konomi; Tanaka, Kazuma

    2014-01-01

    In eukaryotic cells, phosphatidylserine (PS) is predominantly located in the cytosolic leaflet of the plasma membrane; this asymmetry is generated by an unknown mechanism. In this study, we used the PS-specific probe mRFP-Lact-C2 to investigate the possible involvement of type 4 P-type ATPases, also called phospholipid flippases, in the generation of this asymmetry in Saccharomyces cerevisiae. PS was not found in the trans-Golgi Network in wild-type cells, but it became exposed when vesicle formation was compromised in the sec7 mutant, and it was also exposed on secretory vesicles (SVs), as reported previously. However, flippase mutations did not reduce the exposure of PS in either case, even at low levels that would only be detectable by quantitative analysis of mRFP-Lact-C2 fluorescence in isolated SVs. Furthermore, no reduction in the PS level was observed in a mutant with multiple flippase mutations. Because PS was not exposed in a mutant that accumulates ER or cis/medial-Golgi membranes, Golgi maturation seems to be a prerequisite for PS translocation. Our results suggest that an unknown mechanism, possibly a protein with flippase-like activity, acts in conjunction with known flippases to regulate PS translocation. PMID:25220349

  5. Smart grids: A paradigm shift on energy generation and distribution with the emergence of a new energy management business model

    NASA Astrophysics Data System (ADS)

    Cardenas, Jesus Alvaro

    An energy and environmental crisis will emerge throughout the world if we continue with our current practices of generation and distribution of electricity. A possible solution to this problem is based on the Smart grid concept, which is heavily influenced by Information and Communication Technology (ICT). Although the electricity industry is mostly regulated, there are global models used as roadmaps for Smart Grids' implementation focusing on technologies and the basic generation-distribution-transmission model. This project aims to further enhance a business model for a future global deployment. It takes into consideration the many factors interacting in this energy provision process, based on the diffusion of technologies and literature surveys on the available documents in the Internet as well as peer-reviewed publications. Tariffs and regulations, distributed energy generation, integration of service providers, consumers becoming producers, self-healing devices, and many other elements are shifting this industry into a major change towards liberalization and deregulation of this sector, which has been heavily protected by the government due to the importance of electricity for consumers. We propose an Energy Management Business Model composed by four basic elements: Supply Chain, Information and Communication Technology (ICT), Stakeholders Response, and the resulting Green Efficient Energy (GEE). We support the developed model based on the literature survey, we support it with the diffusion analysis of these elements, and support the overall model with two surveys: one for peers and professionals, and other for experts in the field, based on the Smart Grid Carnegie Melon Maturity Model (CMU SEI SGMM). The contribution of this model is a simple path to follow for entities that want to achieve environmental friendly energy with the involvement of technology and all stakeholders.

  6. Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: II. Numerical modeling

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Boris, D. R.; Petrova, Tz B.; Lock, E. H.; Fernsler, R. F.; Walton, S. G.

    2013-12-01

    In this work, the second in a series of two, a spatially averaged model of an electron beam generated Ar-N2 plasma is developed to identify the processes behind the measured influence of trace amounts of N2 on the development of the electron energy distribution function. The model is based on the numerical solution of the electron Boltzmann equation self-consistently coupled to a set of rate balance equations for electrons, argon and nitrogen species. Like the experiments, the calculations cover only the low-energy portion (<50 eV) of the electron energy distribution, and therefore a source term is added to the Boltzmann equation to represent ionization by the beam. Similarly, terms representing ambipolar diffusion along and across the magnetic field are added to allow for particle loss and electrostatic cooling from the ambipolar electric field. This work focuses on the changes introduced by adding a small admixture of nitrogen to an argon background. The model predictions for the electron energy distribution function, electron density and temperature are in good agreement with the experimentally measured data reported in part I, where it was found that the electron and ion energy distributions can be controlled by adjusting the fraction of nitrogen in the gas composition.

  7. Size distribution and concentration of soot generated in oil and gas-fired residential boilers under different combustion conditions

    NASA Astrophysics Data System (ADS)

    Jiménez, Santiago; Barroso, Jorge; Pina, Antonio; Ballester, Javier

    2016-05-01

    In spite of the relevance of residential heating burners in the global emission of soot particles to the atmosphere, relatively little information on their properties (concentration, size distribution) is available in the literature, and even less regarding the dependence of those properties on the operating conditions. Instead, the usual procedure to characterize those emissions is to measure the smoke opacity by several methods, among which the blackening of a paper after filtering a fixed amount of gas (Bacharach test) is predominant. In this work, the size distributions of the particles generated in the combustion of a variety of gaseous and liquid fuels in a laboratory facility equipped with commercial burners have been measured with a size classifier coupled to a particle counter in a broad range of operating conditions (air excesses), with simultaneous determination of the Bacharach index. The shape and evolution of the distribution with progressively smaller oxygen concentrations depends essentially on the state of the fuel: whereas the combustion of the gases results in monomodal distributions that 'shift' towards larger diameters, in the case of the gas-oils an ultrafine mode is always observed, and a secondary mode of coarse particle grows in relevance. In both cases, there is a strong, exponential correlation between the total mass concentration and the Bacharach opacity index, quite similar for both groups of fuels. The empirical expressions proposed may allow other researchers to at least estimate the emissions of numerous combustion facilities routinely characterized by their smoke opacities.

  8. Nonuniform steam generator U-tube flow distribution during natural circulation tests in ROSA-IV large scale test facility

    SciTech Connect

    Kukita, Y.; Nakamura, H.; Tasaka, K. ); Chauliac, C. )

    1988-08-01

    Natural circulation experiments were conducted in a large-scale (1/48 scale in volume) full-height simulator of a Westinghouse-type pressurized water reactor. This facility has two steam generators each containing 141 full-size U-tubes of 9 different heights. Transition of the natural circulation mode was observed in the experiments as the primary of side mass inventory was decreased. Three major circulation modes were observed: single-phase liquid natural circulation, two-phase natural circulation, and reflux condensation. For all these circulation modes, and during the transitions between the modes, the mass flow distribution among the steam generator U-tubes was significantly nonuniform. The longer U-tubes indicated reversed flow at higher primary side mass inventories and also tended to empty earlier than the shorter U-tubes when the primary side mass inventory was decreased.

  9. Development of a Compound Distribution Markov Chain Model for Stochastic Generation of Rainfall with Long Term Persistence

    NASA Astrophysics Data System (ADS)

    Kamal Chowdhury, AFM; Lockart, Natalie; Willgoose, Garry; Kuczera, George

    2015-04-01

    One of the overriding issues in the rainfall simulation is the underestimation of observed rainfall variability in longer timescales (e.g. monthly, annual and multi-year), which usually results into under-estimation of reservoir reliability in urban water planning. This study has developed a Compound Distribution Markov Chain (CDMC) model for stochastic generation of daily rainfall. We used two parameters of Markov Chain process (transition probabilities of wet-to-wet and dry-to-dry days) for simulating rainfall occurrence and two parameters of gamma distribution (calculated from mean and standard deviation of wet-day rainfall) for simulating wet-day rainfall amounts. While two models with deterministic parameters underestimated long term variability, our investigation found that the long term variability of rainfall in the model is predominantly governed by the long term variability of gamma parameters, rather than the variability of Markov Chain parameters. Therefore, in the third approach, we developed the CDMC model with deterministic parameters of Markov Chain process, but stochastic parameters of gamma distribution by sampling the mean and standard deviation of wet-day rainfall from their log-normal and bivariate-normal distribution. We have found that the CDMC is able to replicate both short term and long term rainfall variability, when we calibrated the model at two sites in east coast of Australia using three types of daily rainfall data - (1) dynamically downscaled, 10 km resolution gridded data produced by NSW/ACT Regional Climate Modelling project, (2) 5 km resolution gridded data by Australian Water Availability Project and (3) point scale raingauge stations data by Bureau of Meteorology, Australia. We also examined the spatial variability of parameters and their link with local orography at our field site. The suitability of the model in runoff generation and urban reservoir-water simulation will be discussed.

  10. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  11. Blackboard system generator (BSG) - An alternative distributed problem-solving paradigm

    NASA Technical Reports Server (NTRS)

    Silverman, Barry G.; Feggos, Kostas; Chang, Joseph Shih

    1989-01-01

    A status review is presented for a generic blackboard-based distributed problem-solving environment in which multiple-agent cooperation can be effected. This environment is organized into a shared information panel, a chairman control panel, and a metaplanning panel. Each panel contains a number of embedded AI techniques that facilitate its operation and that provide heuristics for solving the underlying team-agent decision problem. The status of these panels and heuristics is described along with a number of robustness considerations. The techniques for each of the three panels and for four sets of paradigm-related advances are described, along with selected results from classroom teaching experiments and from three applications.

  12. Mutualistic Benefits Generate an Unequal Distribution of Risky Activities Among Unrelated Group Members

    NASA Astrophysics Data System (ADS)

    Kukuk, Penelope F.; Ward, Seamus A.; Jozwiak, Amy

    Recent studies provide a new challenge to the adequacy of theories concerning the evolution of cooperation among nonrelatives: some individuals perform high-risk activities while others do not. We examined a communal hymenopteran species, Lasioglossum(Chilalictus)hemichalceum, to determine why group members engaged in demonstrably risky activities (foraging) tolerate the selfish behavior (remaining in the nest) of unrelated nestmates. Experimental removal of adult females indicated that their presence is required for the protection of brood from ant predators. Nonforagers ensure the continued presence of adults in the nest if the risk-taking foragers die, thereby safeguarding the survival of forager offspring. This results in an unequal distribution of risky activities within social groups in which avoidance of risky activities by some group members is ultimately beneficial to risk takers.

  13. A new method for power generation and distribution in outer space

    SciTech Connect

    Bamberger, J.A.

    1989-09-01

    The power system is a major component of a space system's size, mass, technical complexity, and hence, cost. To date, space systems include the energy source as an integral part of the mission satellite. Potentially significant benefit could be realized by separating the energy source from the end-use system and transmitting the power via an energy beam (power beaming) (Coomes et al., 1989). This concept parallels the terrestrial central generating station and transmission grid. In this summary, the system components required for power beaming implementation are outlined and applied to a satellite for power beaming implementation are outlined and applied to a satellite constellation to demonstrate the feasibility of implementing power beaming in the next 20 years. 5 refs., 1 fig., 3 tabs.

  14. Generation and distribution of PAHs in the process of medical waste incineration.

    PubMed

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-01

    After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8×10(3) times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ. PMID:23462270

  15. A fuzzy-based methodology for volt/var control on distribution systems containing dispersed wind generation

    NASA Astrophysics Data System (ADS)

    Black, Clifton R. M.

    This research focuses on voltage and reactive power control on the distribution system in an atmosphere of uncertainty. It also investigates the incorporation of wind turbines into load-flow analysis. It is widely recognized, that in practice, data are only known with finite accuracy and are hence, inexact in nature. In this research, fuzzy load-flow is used to handle this uncertainty. Fuzzy load-flow is based on fuzzy-set theory which has the ability to handle various forms of uncertainty including that from random variables. The fuzzy load flow technique [FLFT] presented in this dissertation, is different from the approach of other authors, in that it is more straightforward. It is based on fuzzy numbers and fuzzy arithmetic, and it calls for only one power-flow solution. The introduction of partial fuzzy arithmetic along with the use of fuzzy arithmetic and point-by-point calculations is significant. The result is a simple and fast technique. The proposed technique is suited for loosely meshed distribution systems with multiple sources. These attributes make this new approach quite attractive for application in today's distribution system which is characterized by the presence of distributed generators and meshes. The voltage and reactive power control problem is de-coupled into sub-problems characterized by the reaction speed of the different control devices. The sub-problem categories are "fast", "medium", and "slow", based on the frequency with which the control devices are adjusted. The control elements include transformer load tap changers (LTC), voltage regulators, and switched capacitors. Fuzzy models for these control devices are introduced and effectively demonstrated. There is a great demand for alternative sources of electric energy. In this research, a fuzzy model for the wind turbine generator is presented. The active power produced by the wind turbines and the reactive power absorbed are expressed as functions of the wind velocity. This research

  16. The Cost-Optimal Distribution of Wind and Solar Generation Facilities in a Simplified Highly Renewable European Power System

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; von Bremen, Lüder; Schyska, Bruno; Chattopadhyay, Kabitri; Lorenz, Elke; Heinemann, Detlev

    2016-04-01

    The transition of the European power system from fossil generation towards renewable sources is driven by different reasons like decarbonisation and sustainability. Renewable power sources like wind and solar have, due to their weather dependency, fluctuating feed-in profiles, which make their system integration a difficult task. To overcome this issue, several solutions have been investigated in the past like the optimal mix of wind and PV [1], the extension of the transmission grid or storages [2]. In this work, the optimal distribution of wind turbines and solar modules in Europe is investigated. For this purpose, feed-in data with an hourly temporal resolution and a spatial resolution of 7 km covering Europe for the renewable sources wind, photovoltaics and hydro was used. Together with historical load data and a transmission model , a simplified pan-European power power system was simulated. Under cost assumptions of [3] the levelized cost of electricity (LCOE) for this simplified system consisting of generation, consumption, transmission and backup units is calculated. With respect to the LCOE, the optimal distribution of generation facilities in Europe is derived. It is shown, that by optimal placement of renewable generation facilities the LCOE can be reduced by more than 10% compared to a meta study scenario [4] and a self-sufficient scenario (every country produces on average as much from renewable sources as it consumes). This is mainly caused by a shift of generation facilities towards highly suitable locations, reduced backup and increased transmission need. The results of the optimization will be shown and implications for the extension of renewable shares in the European power mix will be discussed. The work is part of the RESTORE 2050 project (Wuppertal Institute, Next Energy, University of Oldenburg), that is financed by the Federal Ministry of Education and Research (BMBF, Fkz. 03SFF0439A). [1] Kies, A. et al.: Kies, Alexander, et al

  17. CRAB3: Establishing a new generation of services for distributed analysis at CMS

    NASA Astrophysics Data System (ADS)

    Cinquilli, M.; Spiga, D.; Grandi, C.; Hernàndez, J. M.; Konstantinov, P.; Mascheroni, M.; Riahi, H.; Vaandering, E.

    2012-12-01

    In CMS Computing the highest priorities for analysis tools are the improvement of the end users’ ability to produce and publish reliable samples and analysis results as well as a transition to a sustainable development and operations model. To achieve these goals CMS decided to incorporate analysis processing into the same framework as data and simulation processing. This strategy foresees that all workload tools (TierO, Tier1, production, analysis) share a common core with long term maintainability as well as the standardization of the operator interfaces. The re-engineered analysis workload manager, called CRAB3, makes use of newer technologies, such as RESTFul based web services and NoSQL Databases, aiming to increase the scalability and reliability of the system. As opposed to CRAB2, in CRAB3 all work is centrally injected and managed in a global queue. A pool of agents, which can be geographically distributed, consumes work from the central services serving the user tasks. The new architecture of CRAB substantially changes the deployment model and operations activities. In this paper we present the implementation of CRAB3, emphasizing how the new architecture improves the workflow automation and simplifies maintainability. In particular, we will highlight the impact of the new design on daily operations.

  18. NEXUS Scalable and Distributed Next-Generation Avionics Bus for Space Missions

    NASA Technical Reports Server (NTRS)

    He, Yutao; Shalom, Eddy; Chau, Savio N.; Some, Raphael R.; Bolotin, Gary S.

    2011-01-01

    A paper discusses NEXUS, a common, next-generation avionics interconnect that is transparently compatible with wired, fiber-optic, and RF physical layers; provides a flexible, scalable, packet switched topology; is fault-tolerant with sub-microsecond detection/recovery latency; has scalable bandwidth from 1 Kbps to 10 Gbps; has guaranteed real-time determinism with sub-microsecond latency/jitter; has built-in testability; features low power consumption (< 100 mW per Gbps); is lightweight with about a 5,000-logic-gate footprint; and is implemented in a small Bus Interface Unit (BIU) with reconfigurable back-end providing interface to legacy subsystems. NEXUS enhances a commercial interconnect standard, Serial RapidIO, to meet avionics interconnect requirements without breaking the standard. This unified interconnect technology can be used to meet performance, power, size, and reliability requirements of all ranges of equipment, sensors, and actuators at chip-to-chip, board-to-board, or box-to-box boundary. Early results from in-house modeling activity of Serial RapidIO using VisualSim indicate that the use of a switched, high-performance avionics network will provide a quantum leap in spacecraft onboard science and autonomy capability for science and exploration missions.

  19. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  20. Advanced Propulsion Power Distribution System for Next Generation Electric/Hybrid Vehicle. Phase 1; Preliminary System Studies

    NASA Technical Reports Server (NTRS)

    Bose, Bimal K.; Kim, Min-Huei

    1995-01-01

    The report essentially summarizes the work performed in order to satisfy the above project objective. In the beginning, different energy storage devices, such as battery, flywheel and ultra capacitor are reviewed and compared, establishing the superiority of the battery. Then, the possible power sources, such as IC engine, diesel engine, gas turbine and fuel cell are reviewed and compared, and the superiority of IC engine has been established. Different types of machines for drive motor/engine generator, such as induction machine, PM synchronous machine and switched reluctance machine are compared, and the induction machine is established as the superior candidate. Similar discussion was made for power converters and devices. The Insulated Gate Bipolar Transistor (IGBT) appears to be the most superior device although Mercury Cadmium Telluride (MCT) shows future promise. Different types of candidate distribution systems with the possible combinations of power and energy sources have been discussed and the most viable system consisting of battery, IC engine and induction machine has been identified. Then, HFAC system has been compared with the DC system establishing the superiority of the former. The detailed component sizing calculations of HFAC and DC systems reinforce the superiority of the former. A preliminary control strategy has been developed for the candidate HFAC system. Finally, modeling and simulation study have been made to validate the system performance. The study in the report demonstrates the superiority of HFAC distribution system for next generation electric/hybrid vehicle.

  1. Sparse Reconstruction for Temperature Distribution Using DTS Fiber Optic Sensors with Applications in Electrical Generator Stator Monitoring.

    PubMed

    Bazzo, João Paulo; Pipa, Daniel Rodrigues; da Silva, Erlon Vagner; Martelli, Cicero; Cardozo da Silva, Jean Carlos

    2016-01-01

    This paper presents an image reconstruction method to monitor the temperature distribution of electric generator stators. The main objective is to identify insulation failures that may arise as hotspots in the structure. The method is based on temperature readings of fiber optic distributed sensors (DTS) and a sparse reconstruction algorithm. Thermal images of the structure are formed by appropriately combining atoms of a dictionary of hotspots, which was constructed by finite element simulation with a multi-physical model. Due to difficulties for reproducing insulation faults in real stator structure, experimental tests were performed using a prototype similar to the real structure. The results demonstrate the ability of the proposed method to reconstruct images of hotspots with dimensions down to 15 cm, representing a resolution gain of up to six times when compared to the DTS spatial resolution. In addition, satisfactory results were also obtained to detect hotspots with only 5 cm. The application of the proposed algorithm for thermal imaging of generator stators can contribute to the identification of insulation faults in early stages, thereby avoiding catastrophic damage to the structure. PMID:27618040

  2. [Annual distribution of bacterial indicators generated by the domestic wastes from the landfill of Etueffont (France)].

    PubMed

    Belle, E; Genevois, V; Mudry, J; Aleya, L

    2008-02-01

    We assessed over 15 months the distribution of total coliforms concentrations of Escherichia coli, Enterococci, Pseudomonas aeruginosa, Salmonella and Staphylococcus aureus in three monitoring points in the Etueffont landfill (Belfort, France). We selected the piezometer (PZ30) which is located downstream from the dump and two leachate collectors from the old dump and the new casing. The results showed that the leachate was free from both Salmonella and Staphylococcus aureus. The absence of Salmonella was most likely due to the small occupation of the landfill environment by vertebrates, especially rodents, birds and reptiles, which are known to be principal vectors of Salmonella. S. aureu, is generally hosted on skins and mucus of animals. The mean densities of E. coli and Enterococcus in the leachates were low. In contrast, P. aeruginosa abundance was high and closely related to precipitations. Coliform bacteria concentrations in the leachate averaged UFC.100 CFU x ml(-1). In the contaminated groundwaters, the coliforms, E. coli and Enterococci were always present at concentrations 10 to 100 fold higher than those reported from septic tank effluents. P. aeruginosa concentrations were low (mean: 11 CFU.100 ml(-1)) and inferior to those quoted in the leachate. This may be explained by the anoxic conditions which prevailed in the shistous aquifer. The absence of Salmonella in groundwaters may be due to its sensitivity to disinfectants and that of S. aureus linked to the fact that it is not a common host of the human intestine. Finally, our study clearly indicates the role played by E. coli and Enterococci as biomarkers of recent faecal contamination. PMID:18613619

  3. Generating Within-Plant Spatial Distributions of an Insect Herbivore Based on Aggregation Patterns and Per-Node Infestation Probabilities.

    PubMed

    Rincon, Diego F; Hoy, Casey W; Cañas, Luis A

    2015-04-01

    Most predator-prey models extrapolate functional responses from small-scale experiments assuming spatially uniform within-plant predator-prey interactions. However, some predators focus their search in certain plant regions, and herbivores tend to select leaves to balance their nutrient uptake and exposure to plant defenses. Individual-based models that account for heterogeneous within-plant predator-prey interactions can be used to scale-up functional responses, but they would require the generation of explicit prey spatial distributions within-plant architecture models. The silverleaf whitefly, Bemisia tabaci biotype B (Gennadius) (Hemiptera: Aleyrodidae), is a significant pest of tomato crops worldwide that exhibits highly aggregated populations at several spatial scales, including within the plant. As part of an analytical framework to understand predator-silverleaf whitefly interactions, the objective of this research was to develop an algorithm to generate explicit spatial counts of silverleaf whitefly nymphs within tomato plants. The algorithm requires the plant size and the number of silverleaf whitefly individuals to distribute as inputs, and includes models that describe infestation probabilities per leaf nodal position and the aggregation pattern of the silverleaf whitefly within tomato plants and leaves. The output is a simulated number of silverleaf whitefly individuals for each leaf and leaflet on one or more plants. Parameter estimation was performed using nymph counts per leaflet censused from 30 artificially infested tomato plants. Validation revealed a substantial agreement between algorithm outputs and independent data that included the distribution of counts of both eggs and nymphs. This algorithm can be used in simulation models that explore the effect of local heterogeneity on whitefly-predator dynamics. PMID:26313173

  4. A New Efficient Method for Generating Conformations of Unfolded Proteins with Diverse Main-Chain Dihedral-Angle Distributions.

    PubMed

    Seki, Yasutaka; Shimbo, Yudai; Nonaka, Takamasa; Soda, Kunitsugu

    2011-07-12

    A new method for generating polypeptide-chain conformations has been developed for studying structural characteristics of unfolded proteins. It enables us to generate a large number of conformations very rapidly by avoiding atomic collisions efficiently with the use of main-chain dihedral-angle distributions derived from a crystal-structure database of proteins. In addition, combining main-chain dihedral-angle distributions for the amino acid residues incorporated in different secondary structures, we can obtain diverse conformational ensembles with different structural features. Structural characteristics of proteins denatured in high-concentration denaturant solution were analyzed by comparing predictions from this method with results from solution X-ray scattering (SXS) measurement. Analysis of the dependence of the mean square radius (Rsq) of protein on the number of residues and the shape of its Kratky profile has confirmed that the highly denaturing solvent serves as a good solvent in accordance with previous reports. It was also found that, in order for a conformational ensemble to reproduce experimental data, the percentage in which main-chain dihedral angles are found in the α region must be in the range of 20-40%. It agrees with studies on the (3)JHNα coupling constant using the multidimensional NMR method. These results confirm that our method for generating diverse conformations of polypeptide chains is very useful to the conformational analysis of unfolded protein, because it enables us to analyze comprehensively both of the local structural features obtained from NMR and the global ones obtained from SXS. PMID:26606484

  5. DISTRIBUTION COEFICIENTS (KD) GENERATED FROM A CORE SAMPLE COLLECTED FROM THE SALTSTONE DISPOSAL FACILITY

    SciTech Connect

    Almond, P.; Kaplan, D.

    2011-04-25

    Core samples originating from Vault 4, Cell E of the Saltstone Disposal Facility (SDF) were collected in September of 2008 (Hansen and Crawford 2009, Smith 2008) and sent to SRNL to measure chemical and physical properties of the material including visual uniformity, mineralogy, microstructure, density, porosity, distribution coefficients (K{sub d}), and chemical composition. Some data from these experiments have been reported (Cozzi and Duncan 2010). In this study, leaching experiments were conducted with a single core sample under conditions that are representative of saltstone performance. In separate experiments, reducing and oxidizing environments were targeted to obtain solubility and Kd values from the measurable species identified in the solid and aqueous leachate. This study was designed to provide insight into how readily species immobilized in saltstone will leach from the saltstone under oxidizing conditions simulating the edge of a saltstone monolith and under reducing conditions, targeting conditions within the saltstone monolith. Core samples were taken from saltstone poured in December of 2007 giving a cure time of nine months in the cell and a total of thirty months before leaching experiments began in June 2010. The saltstone from Vault 4, Cell E is comprised of blast furnace slag, class F fly ash, portland cement, and Deliquification, Dissolution, and Adjustment (DDA) Batch 2 salt solution. The salt solution was previously analyzed from a sample of Tank 50 salt solution and characterized in the 4QCY07 Waste Acceptance Criteria (WAC) report (Zeigler and Bibler 2009). Subsequent to Tank 50 analysis, additional solution was added to the tank solution from the Effluent Treatment Project as well as from inleakage from Tank 50 pump bearings (Cozzi and Duncan 2010). Core samples were taken from three locations and at three depths at each location using a two-inch diameter concrete coring bit (1-1, 1-2, 1-3; 2-1, 2-2, 2-3; 3-1, 3-2, 3-3) (Hansen and

  6. Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation

    SciTech Connect

    Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

    2005-07-12

    consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

  7. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    NASA Astrophysics Data System (ADS)

    McLinko, Ryan M.; Sagar, Basant V.

    2009-12-01

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic cells and transmit that power to ground based stations. Solar cells in orbit are not hindered by weather, clouds, or night. The energy generated by this process is clean and pollution-free. Although the concept of space-based solar power was initially proposed nearly 40 years ago, the level of technology in photovoltaics, power transmission, materials, and efficient satellite design has finally reached a level of maturity that makes solar power from space a feasible prospect. Furthermore, new strategies in methods for solar energy acquisition and transmission can lead to simplifications in design, reductions in cost and reduced risk. This paper proposes using a distributed array of small satellites to collect power from the Sun, as compared to the more traditional SSP design that consists of one monolithic satellite. This concept mitigates some of SSP's most troublesome historic constraints, such as the requirement for heavy lift launch vehicles and the need for significant assembly in space. Instead, a larger number of smaller satellites designed to collect solar energy are launched independently. A high frequency beam will be used to aggregate collected power into a series of transmission antennas, which beam the energy to Earth's surface at a lower frequency. Due to the smaller power expectations of each satellite and the relatively short distance of travel from low earth orbit, such satellites can be designed with smaller arrays. The inter-satellite rectenna devices can also be smaller and lighter in weight. Our paper suggests how SSP satellites can be designed small enough to fit within ESPA standards and therefore use rideshare to achieve orbit. Alternatively, larger versions could be launched on Falcon 9s or on Falcon 1s with booster stages

  8. Investigation of the particle size distribution of the ejected material generated during the single femtosecond laser pulse ablation of aluminium

    NASA Astrophysics Data System (ADS)

    Wu, Han; Zhang, Nan; Zhu, Xiaonong

    2014-10-01

    Single femtosecond laser pulses are employed to ablate an aluminium target in vacuum, and the particle size distribution of the ablated material deposited on a mica substrate is examined with atomic force microscopy (AFM). The recorded AFM images show that these particles have a mean radius of several tens of nanometres. It is also determined that the mean radius of these deposited nanoparticles increases when the laser fluence at the aluminium target increases from 0.44 J/cm2 to 0.63 J/cm2. The mechanism of the laser-induced nanoparticle generation is thought to be photomechanical tensile stress relaxation. Raman spectroscopy measurements confirm that the nanoparticles thus produced have the same structure as the bulk aluminium.

  9. Generation and detection of a sub-Poissonian atom number distribution in a one-dimensional optical lattice.

    PubMed

    Béguin, J-B; Bookjans, E M; Christensen, S L; Sørensen, H L; Müller, J H; Polzik, E S; Appel, J

    2014-12-31

    We demonstrate preparation and detection of an atom number distribution in a one-dimensional atomic lattice with the variance -14  dB below the Poissonian noise level. A mesoscopic ensemble containing a few thousand atoms is trapped in the evanescent field of a nanofiber. The atom number is measured through dual-color homodyne interferometry with a pW-power shot noise limited probe. Strong coupling of the evanescent probe guided by the nanofiber allows for a real-time measurement with a precision of ±8  atoms on an ensemble of some 10(3)  atoms in a one-dimensional trap. The method is very well suited for generating collective atomic entangled or spin-squeezed states via a quantum nondemolition measurement as well as for tomography of exotic atomic states in a one-dimensional lattice. PMID:25615331

  10. Storage dynamics in hydropedological units control hillslope connectivity, runoff generation, and the evolution of catchment transit time distributions

    PubMed Central

    Tetzlaff, D; Birkel, C; Dick, J; Geris, J; Soulsby, C

    2014-01-01

    We examined the storage dynamics and isotopic composition of soil water over 12 months in three hydropedological units in order to understand runoff generation in a montane catchment. The units form classic catena sequences from freely draining podzols on steep upper hillslopes through peaty gleys in shallower lower slopes to deeper peats in the riparian zone. The peaty gleys and peats remained saturated throughout the year, while the podzols showed distinct wetting and drying cycles. In this region, most precipitation events are <10 mm in magnitude, and storm runoff is mainly generated from the peats and peaty gleys, with runoff coefficients (RCs) typically <10%. In larger events the podzolic soils become strongly connected to the saturated areas, and RCs can exceed 40%. Isotopic variations in precipitation are significantly damped in the organic-rich soil surface horizons due to mixing with larger volumes of stored water. This damping is accentuated in the deeper soil profile and groundwater. Consequently, the isotopic composition of stream water is also damped, but the dynamics strongly reflect those of the near-surface waters in the riparian peats. “pre-event” water typically accounts for >80% of flow, even in large events, reflecting the displacement of water from the riparian soils that has been stored in the catchment for >2 years. These riparian areas are the key zone where different source waters mix. Our study is novel in showing that they act as “isostats,” not only regulating the isotopic composition of stream water, but also integrating the transit time distribution for the catchment. Key Points Hillslope connectivity is controlled by small storage changes in soil units Different catchment source waters mix in large riparian wetland storage Isotopes show riparian wetlands set the catchment transit time distribution PMID:25506098

  11. Myocardial Drug Distribution Generated from Local Epicardial Application: Potential Impact of Cardiac Capillary Perfusion in a Swine Model Using Epinephrine

    PubMed Central

    Maslov, Mikhail Y.; Edelman, Elazer R.; Pezone, Matthew J.; Wei, Abraham E.; Wakim, Matthew G.; Murray, Michael R.; Tsukada, Hisashi; Gerogiannis, Iraklis S.; Groothuis, Adam; Lovich, Mark A.

    2014-01-01

    Prior studies in small mammals have shown that local epicardial application of inotropic compounds drives myocardial contractility without systemic side effects. Myocardial capillary blood flow, however, may be more significant in larger species than in small animals. We hypothesized that bulk perfusion in capillary beds of the large mammalian heart enhances drug distribution after local release, but also clears more drug from the tissue target than in small animals. Epicardial (EC) drug releasing systems were used to apply epinephrine to the anterior surface of the left heart of swine in either point-sourced or distributed configurations. Following local application or intravenous (IV) infusion at the same dose rates, hemodynamic responses, epinephrine levels in the coronary sinus and systemic circulation, and drug deposition across the ventricular wall, around the circumference and down the axis, were measured. EC delivery via point-source release generated transmural epinephrine gradients directly beneath the site of application extending into the middle third of the myocardial thickness. Gradients in drug deposition were also observed down the length of the heart and around the circumference toward the lateral wall, but not the interventricular septum. These gradients extended further than might be predicted from simple diffusion. The circumferential distribution following local epinephrine delivery from a distributed source to the entire anterior wall drove drug toward the inferior wall, further than with point-source release, but again, not to the septum. This augmented drug distribution away from the release source, down the axis of the left ventricle, and selectively towards the left heart follows the direction of capillary perfusion away from the anterior descending and circumflex arteries, suggesting a role for the coronary circulation in determining local drug deposition and clearance. The dominant role of the coronary vasculature is further suggested by

  12. Generation and use of measurement-based 3-D dose distributions for 3-D dose calculation verification.

    PubMed

    Stern, R L; Fraass, B A; Gerhardsson, A; McShan, D L; Lam, K L

    1992-01-01

    A 3-D radiation therapy treatment planning system calculates dose to an entire volume of points and therefore requires a 3-D distribution of measured dose values for quality assurance and dose calculation verification. To measure such a volumetric distribution with a scanning ion chamber is prohibitively time consuming. A method is presented for the generation of a 3-D grid of dose values based on beam's-eye-view (BEV) film dosimetry. For each field configuration of interest, a set of BEV films at different depths is obtained and digitized, and the optical densities are converted to dose. To reduce inaccuracies associated with film measurement of megavoltage photon depth doses, doses on the different planes are normalized using an ion-chamber measurement of the depth dose. A 3-D grid of dose values is created by interpolation between BEV planes along divergent beam rays. This matrix of measurement-based dose values can then be compared to calculations over the entire volume of interest. This method is demonstrated for three different field configurations. Accuracy of the film-measured dose values is determined by 1-D and 2-D comparisons with ion chamber measurements. Film and ion chamber measurements agree within 2% in the central field regions and within 2.0 mm in the penumbral regions. PMID:1620042

  13. Independent Orbiter Assessment (IOA): Analysis of the electrical power generation/power reactant storage and distribution subsystem

    NASA Technical Reports Server (NTRS)

    Gotch, S. M.

    1986-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NAA FMEA/CIL documentation. The independent analysis results corresponding to the Orbiter Electrical Power Generation (EPG)/Power Reactants Storage and Distribution (PRSD) System Hardware is documented. The EPG/PRSD hardware is required for performing critical functions of cryogenic hydrogen and oxygen storage and distribution to the Fuel Cell Powerplants (FCP) and Atmospheric Revitalization Pressure Control Subsystem (ARPCS). Specifically, the EPG/PRSD hardware consists of the following: Hydryogen (H2) tanks; Oxygen (O2) tanks; H2 Relief Valve/Filter Packages (HRVFP); O2 Relief Valve/Filter Packages (ORVFP); H2 Valve Modules (HVM); O2 Valve Modules (OVM); and O2 and H2 lines, components, and fittings.

  14. Optimal battery sizing in photovoltaic based distributed generation using enhanced opposition-based firefly algorithm for voltage rise mitigation.

    PubMed

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184

  15. Optimal Battery Sizing in Photovoltaic Based Distributed Generation Using Enhanced Opposition-Based Firefly Algorithm for Voltage Rise Mitigation

    PubMed Central

    Wong, Ling Ai; Shareef, Hussain; Mohamed, Azah; Ibrahim, Ahmad Asrul

    2014-01-01

    This paper presents the application of enhanced opposition-based firefly algorithm in obtaining the optimal battery energy storage systems (BESS) sizing in photovoltaic generation integrated radial distribution network in order to mitigate the voltage rise problem. Initially, the performance of the original firefly algorithm is enhanced by utilizing the opposition-based learning and introducing inertia weight. After evaluating the performance of the enhanced opposition-based firefly algorithm (EOFA) with fifteen benchmark functions, it is then adopted to determine the optimal size for BESS. Two optimization processes are conducted where the first optimization aims to obtain the optimal battery output power on hourly basis and the second optimization aims to obtain the optimal BESS capacity by considering the state of charge constraint of BESS. The effectiveness of the proposed method is validated by applying the algorithm to the 69-bus distribution system and by comparing the performance of EOFA with conventional firefly algorithm and gravitational search algorithm. Results show that EOFA has the best performance comparatively in terms of mitigating the voltage rise problem. PMID:25054184

  16. Three-Dimensional Measurements of Fuel Distribution in High-Pressure, High- Temperature, Next-Generation Aviation Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Hicks, Yolanda R.; Locke, Randy J.; Anderson, Robert C.; Zaller, Michelle M.

    1998-01-01

    In our world-class, optically accessible combustion facility at the NASA Lewis Research Center, we have developed the unique capability of making three-dimensional fuel distribution measurements of aviation gas turbine fuel injectors at actual operating conditions. These measurements are made in situ at the actual operating temperatures and pressures using the JP-grade fuels of candidate next-generation advanced aircraft engines for the High Speed Research (HSR) and Advanced Subsonics Technology (AST) programs. The inlet temperature and pressure ranges used thus far are 300 to 1100 F and 80 to 250 psia. With these data, we can obtain the injector spray angles, the fuel mass distributions of liquid and vapor, the degree of fuel vaporization, and the degree to which fuel has been consumed. The data have been used to diagnose the performance of injectors designed both in-house and by major U.S. engine manufacturers and to design new fuel injectors with overall engine performance goals of increased efficiency and reduced environmental impact. Mie scattering is used to visualize the liquid fuel, and laser-induced fluorescence is used to visualize both liquid and fuel vapor.

  17. Independent Orbiter Assessment (IOA): Assessment of the electrical power generation/power reactant storage and distribution subsystem FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Ames, B. E.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) is presented. The IOA effort first completed an analysis of the Electrical Power Generation/Power Reactant Storage and Distribution (EPG/PRSD) subsystem hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baselines with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison are documented for the Orbiter EPG/PRSD hardware. The comparison produced agreement on all but 27 FMEAs and 9 CIL items. The discrepancy between the number of IOA findings and NASA FMEAs can be partially explained by the different approaches used by IOA and NASA to group failure modes together to form one FMEA. Also, several IOA items represented inner tank components and ground operations failure modes which were not in the NASA baseline.

  18. Code generator using distributed phase shifts applied on a chirped fibre Bragg grating in a semiconductor fibre ring laser

    NASA Astrophysics Data System (ADS)

    D. Simard, Alexandre; LaRochelle, Sophie

    2009-06-01

    As data traffic increases on telecommunication networks, optical communication systems must adapt to deal with this increasing bursty traffic. Packet switched networks are considered a good solution to provide efficient bandwidth management. We recently proposed the use of spectra amplitude codes (SAC) to implement all-optical label processing for packet switching and routing. The implementation of this approach requires agile photonic components including filters and lasers. In this paper, we propose a reconfigurable source able to generate the routing codes, which are composed of two wavelengths on a 25 GHz grid. Our solution is to use a cascade of two chirped fibre Bragg gratings (CFBG) in a semiconductor fibre ring laser. The wavelength selection process comes from distributed phase shifts applied on the CFBG that is used in transmission. Those phase shifts are obtained via local thermal perturbations created by resistive chrome lines deposited on a glass plate. The filter resonances are influenced by four parameters: the chrome line positions, the temperature profile along the fibre, the neighbouring heater state (ON/OFF) and the grating itself. Through numerical modeling, these parameters are optimized to design the appropriate chrome line pattern. With this device, we demonstrate successful generation of reconfigurable SAC codes.

  19. Small-Signal Analysis of Autonomous Hybrid Distributed Generation Systems in Presence of Ultracapacitor and Tie-Line Operation

    NASA Astrophysics Data System (ADS)

    Ray, Prakash K.; Mohanty, Soumya R.; Kishor, Nand

    2010-07-01

    This paper presents small-signal analysis of isolated as well as interconnected autonomous hybrid distributed generation system for sudden variation in load demand, wind speed and solar radiation. The hybrid systems comprise of different renewable energy resources such as wind, photovoltaic (PV) fuel cell (FC) and diesel engine generator (DEG) along with the energy storage devices such as flywheel energy storage system (FESS) and battery energy storage system (BESS). Further ultracapacitors (UC) as an alternative energy storage element and interconnection of hybrid systems through tie-line is incorporated into the system for improved performance. A comparative assessment of deviation of frequency profile for different hybrid systems in the presence of different storage system combinations is carried out graphically as well as in terms of the performance index (PI), ie integral square error (ISE). Both qualitative and quantitative analysis reflects the improvements of the deviation in frequency profiles in the presence of the ultracapacitors (UC) as compared to other energy storage elements.

  20. Dynamic wave field synthesis: enabling the generation of field distributions with a large space-bandwidth product.

    PubMed

    Kamau, Edwin N; Heine, Julian; Falldorf, Claas; Bergmann, Ralf B

    2015-11-01

    We present a novel approach for the design and fabrication of multiplexed computer generated volume holograms (CGVH) which allow for a dynamic synthesis of arbitrary wave field distributions. To achieve this goal, we developed a hybrid system that consists of a CGVH as a static element and an electronically addressed spatial light modulator as the dynamic element. We thereby derived a new model for describing the scattering process within the inhomogeneous dielectric material of the hologram. This model is based on the linearization of the scattering process within the Rytov approximation and incorporates physical constraints that account for voxel based laser-lithography using micro-fabrication of the holograms in a nonlinear optical material. In this article we demonstrate that this system basically facilitates a high angular Bragg selectivity on the order of 1°. Additionally, it allows for a qualitatively low cross-talk dynamic synthesis of predefined wave fields with a much larger space-bandwidth product (SBWP ≥ 8.7 × 10(6)) as compared to the current state of the art in computer generated holography. PMID:26561161

  1. Coulomb-Boltzmann-Shifted distribution in laser-generated plasmas from 1010 up to 1019 W/cm2 intensities

    NASA Astrophysics Data System (ADS)

    Torrisi, L.

    2016-02-01

    The charge production from laser-generated plasmas generates not isotropically ion acceleration in vacuum and with mean kinetic energy proportional to the ion charge state. The ion velocity depends on many factors of which the most important are the plasma temperature, the adiabatic gas expansion in vacuum and the Coulomb acceleration. The ion energy distributions of the emitted ions from the plasma can be well explained by the Coulomb-Boltzmann-Shifted function, with a cut-off limitation at high energy for a wide range of laser intensities. It can be applied for intensities of 1010 W/cm2, when plasma is produced only in the backward direction from thick targets (backward plasma acceleration regime), as well as at intensities of the order of 1019 W/cm2, when plasma is produced in the forward direction from thin targets in target-normal sheath acceleration regime. It loses of validity in radiation pressure acceleration regime, at which ions are emitted near mono-energetically.

  2. Storage Dynamics and Non-Linear Connectivity between Landscape Units Control Runoff Generation and Stream Water Age Distributions

    NASA Astrophysics Data System (ADS)

    Soulsby, C.; Birkel, C.; Geris, J.; Tetzlaff, D.

    2015-12-01

    We assess the influence of storage dynamics and non-linearities in hydrological connectivity on runoff generation and stream water ages, using a long-term record of daily isotopes in precipitation and stream flow. These were used to test a parsimonious tracer-aided runoff model for a Scottish catchment. The model tracks tracers and the ages of water fluxes through and between conceptual stores representing steeper hillslopes, dynamically saturated riparian peatlands and deeper groundwater (i.e. the main landscape units involved in runoff generation). Storage is largest in groundwater and on the steep hillslopes, though most dynamic mixing occurs in smaller stores in the riparian peat. The model also couples the ecohydrological effects of different vegetation communities in contrasting landscape units, by estimating evaporation, resulting moisture deficits and the ages of evaporated waters, which also affect the generation and age of runoff. Both stream flow and isotope variations are well-captured by the model, and the simulated storage and tracer dynamics in the main landscape units are consistent with independent measurements. The model predicts the mean age of runoff as ~1.8 years. On a daily basis, this varies from ~1 month in storm events, when younger waters draining the riparian peatland dominate, to around 4 years in dry periods, when groundwater sustains flow. Hydrological connectivity between the units varies non-linearly with storage which depends upon antecedent conditions and event characteristics. This, in turn, determines the spatial distribution of flow paths and the integration of their contrasting non-stationary ages. Improving the representation of storage dynamics and quantifying the ages of water fluxes in such models gives a more complete conceptualisation of the importance of the soil water fluxes in critical zone processes and a framework for tracking diffuse pollutants in water quality assessment.

  3. Emission measure distribution for diffuse regions in solar active regions

    SciTech Connect

    Subramanian, Srividya; Tripathi, Durgesh; Klimchuk, James A.; Mason, Helen E.

    2014-11-01

    Our knowledge of the diffuse emission that encompasses active regions is very limited. In this paper we investigate two off-limb active regions, namely, AR 10939 and AR 10961, to probe the underlying heating mechanisms. For this purpose, we have used spectral observations from Hinode/EIS and employed the emission measure (EM) technique to obtain the thermal structure of these diffuse regions. Our results show that the characteristic EM distributions of the diffuse emission regions peak at log T = 6.25 and the coolward slopes are in the range 1.4-3.3. This suggests that both low- as well as high-frequency nanoflare heating events are at work. Our results provide additional constraints on the properties of these diffuse emission regions and their contribution to the background/foreground when active region cores are observed on-disk.

  4. NHash: Randomized N-Gram Hashing for Distributed Generation of Validatable Unique Study Identifiers in Multicenter Research

    PubMed Central

    Zhang, Guo-Qiang; Tao, Shiqiang; Xing, Guangming; Mozes, Jeno; Zonjy, Bilal; Lhatoo, Samden D

    2015-01-01

    Background A unique study identifier serves as a key for linking research data about a study subject without revealing protected health information in the identifier. While sufficient for single-site and limited-scale studies, the use of common unique study identifiers has several drawbacks for large multicenter studies, where thousands of research participants may be recruited from multiple sites. An important property of study identifiers is error tolerance (or validatable), in that inadvertent editing mistakes during their transmission and use will most likely result in invalid study identifiers. Objective This paper introduces a novel method called "Randomized N-gram Hashing (NHash)," for generating unique study identifiers in a distributed and validatable fashion, in multicenter research. NHash has a unique set of properties: (1) it is a pseudonym serving the purpose of linking research data about a study participant for research purposes; (2) it can be generated automatically in a completely distributed fashion with virtually no risk for identifier collision; (3) it incorporates a set of cryptographic hash functions based on N-grams, with a combination of additional encryption techniques such as a shift cipher; (d) it is validatable (error tolerant) in the sense that inadvertent edit errors will mostly result in invalid identifiers. Methods NHash consists of 2 phases. First, an intermediate string using randomized N-gram hashing is generated. This string consists of a collection of N-gram hashes f 1, f 2, ..., f k. The input for each function f i has 3 components: a random number r, an integer n, and input data m. The result, f i(r, n, m), is an n-gram of m with a starting position s, which is computed as (r mod |m|), where |m| represents the length of m. The output for Step 1 is the concatenation of the sequence f 1(r 1, n 1, m 1), f 2(r 2, n 2, m 2), ..., f k(r k, n k, m k). In the second phase, the intermediate string generated in Phase 1 is encrypted

  5. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO2-x NPs

    NASA Astrophysics Data System (ADS)

    Qiu, Yuan; Rojas, Elena; Murray, Richard A.; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E.

    2015-04-01

    Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO2-x NPs. The brush coating does not prevent CeO2-x NPs from displaying antioxidant properties.Cerium Oxide nanoparticles (CeO2-x NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO2-x NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO2-x NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO2-x NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell

  6. Monte Carlo modelling of distributions of the d-d and d-t reaction products in a dedicated measuring chamber at the fast neutron generator

    NASA Astrophysics Data System (ADS)

    Wiącek, U.; Dankowski, J.

    2015-04-01

    A fast neutron generator with a tritium target can be used to generate d-d and d-t reaction products corresponding to thermonuclear reactions in tokamaks or stellarators. In this way, convenient laboratory conditions for tests of spectrometric detectors - prior to their installation at the big fusion devices - can be achieved. Distributions of the alpha particles, protons, deuterons, and tritons generated by the fast neutron generator operating at the Institute of Nuclear Physics PAN in Cracow, Poland, were calculated by means of the Monte Carlo (MC) codes. Results of this MC modelling are presented.

  7. The value of distributed generation: The PVUSA grid-support project serving Kerman Substation. Interim report, April 1994

    SciTech Connect

    Hoff, T.; Wenger, H.

    1994-07-01

    A common practice of electric utilities experiencing transmission and distribution (T and D) system overloads is to expand the substation, add lines, or upgrade equipment, all of which are capital intensive options. In 1988, it was hypothesized that strategically sited photovoltaics (PV) could benefit parts of T and D systems near or at overloaded conditions. An evaluation methodology was developed and applied to a test case (Kerman Substation near Fresno, California). Analytical results suggested that the value of PV to the T and D system could substantially exceed its energy and generation capacity value. The importance of this finding indicated the need for empirical validation. This led to the construction of a 0.5 MW PV demonstration plant by Pacific Gas and Electric Company (PG and E) at Kerman, California as part of the PVUSA (PV for Utility Scale Applications) project. PVUSA is a national public-private partnership that is assessing and demonstrating the viability of utility-scale photovoltaic electric generation systems. The Kerman PV plant, commissioned for commercial operation in June, 1993, is reported to be the first grid-support PV demonstration plant in the world. This Interim Report focuses on validating the technical aspects of grid-support PV. It provides interim validation results for four of the eight identified value components that stack up to make the ``value bar``, and compares them to 1992 Case Study estimates. Results are based on improved technical evaluation methodologies, measured plant performance under a variety of conditions, and long-term plant performance estimated using a validated computer simulation program. This report is not intended to be exhaustive in scope. It does, however, provide a thorough progress update of the validation project. Complete documentation of test procedures, data, and evaluation methods will be presented in the Final Report.

  8. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    SciTech Connect

    Durrell, Patrick R.; Accetta, Katharine; Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen; Peng, Eric W.; Zhang, Hongxin; Mihos, J. Christopher; Puzia, Thomas H.; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Cuillandre, Jean-Charles; Boissier, Samuel; Boselli, Alessandro; Courteau, Stéphane; Duc, Pierre-Alain; and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ′}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ′} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (∼215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ε {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ε {sub t} = 2.9 ± 0.5 × 10{sup –5}, the latter values

  9. Site-specific assessment of the rockfall and the rock block volume distribution relations, using a LIDAR generated DEM

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga; Corominas, Jordi; Jaboyedoff, Michel

    2014-05-01

    The quantification of the rockfall hazard and, in particular of the rockfall propagation, requires information on the expected probability or frequency of rockfalls of a given magnitude (size), usually in the form of magnitude-frequency M-F relations. Two kinds of relations are needed. The first one characterises the rockfall masses that can be potentially detached from the slope face giving information on the volume distribution of rockfalls. From now on, this will be referred to as potential rockfall volume distribution VDR. For fragmental rockfalls, the evaluation of the VDR can be a first step towards the temporal M-F, The second one characterises the volume distribution of the rock blocks that result from the disintegration of the previous rockfall masses due to impact with the ground. This one will be referred to as rock block volume distribution VDB. In this work we present two analytical procedures which are independent from the existence of empirical data, for: (i) The calculation of the potential VDR that refers to big volumes with low probability of occurrence. This is realised by detection of the kinematically unstable surfaces on a DEM and on orthophotos, and calculation of the volumes that correspond to them. The basic assumptions here describing a conservative scenario of very low probability are: (a) the rockfall mass is detached entirely at a single rockfall event, without taking into account that smaller successive failures are possible instead; (b) all discontinuity sets are present everywhere in the slope and have infinite persistence; and (c) big stepped-path failures are possible. (ii) The assessment of the in-situ rock blocks volume distribution on the slope face, VDB, by calculation of the volume of the prisms which are formed by the intersection of the existing discontinuity sets and are kinematically unstable. This is also based on data obtained by DEM analysis. A high-resolution DEM obtained by Lidar is used. Both procedures are presented

  10. Cell uptake, intracellular distribution, fate and reactive oxygen species generation of polymer brush engineered CeO(2-x) NPs.

    PubMed

    Qiu, Yuan; Rojas, Elena; Murray, Richard A; Irigoyen, Joseba; Gregurec, Danijela; Castro-Hartmann, Pablo; Fledderman, Jana; Estrela-Lopis, Irina; Donath, Edwin; Moya, Sergio E

    2015-04-21

    Cerium Oxide nanoparticles (CeO(2-x) NPs) are modified with polymer brushes of negatively charged poly (3-sulfopropylmethacrylate) (PSPM) and positively charged poly (2-(methacryloyloxy)ethyl-trimethylammonium chloride) (PMETAC) by Atom Transfer Radical Polymerisation (ATRP). CeO(2-x) NPs are fluorescently labelled by covalently attaching Alexa Fluor® 488/Fluorescein isothiocyanate to the NP surface prior to polymerisation. Cell uptake, intracellular distribution and the impact on the generation of intracellular Reactive Oxygen Species (ROS) with respect to CeO(2-x) NPs are studied by means of Raman Confocal Microscopy (CRM), Transmission Electron Microscopy (TEM) and Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). PSPM and PMETAC coated CeO(2-x) NPs show slower and less uptake compared to uncoated Brush modified NPs display a higher degree of co-localisation with cell endosomes and lysosomes after 24 h of incubation. They also show higher co-localisation with lipid bodies when compared to unmodified CeO(2-x) NPs. The brush coating does not prevent CeO(2-x) NPs from displaying antioxidant properties. PMID:25789459

  11. Determination of surface complex nonlinear optical susceptibilities and molecular orientational distribution functions using resonant surface second-harmonic generation

    NASA Astrophysics Data System (ADS)

    Park, Byoungchoo; Yoo, Jeong-Geun; Sakai, Takahiro; Hoshi, Hajime; Ishikawa, Ken; Takezoe, Hideo

    1998-10-01

    Using the resonant optical surface second-harmonic generation (SHG), we have determined the relative values of the complex nonlinear optical (NLO) components (χzzz, χzxx, and χxxz) at isotropic interfaces (C∞v) of a polymer with SHG active side chains. The introduced configuration of the SHG experiment was a polarizer-rotating quarter wave plate-sample-analyzer. It was shown that this configuration gives information on complex NLO coefficients without using the Kleinmann symmetry. For the experiments, we measured resonant surface SHG from the air-polymer and the substrate-polymer interfaces of a thick polymer film. By theoretically fitting the SHG data, we unambiguously determined the nonlinear susceptibility components at the both interfaces of the polymer film. Moreover, unbiased molecular orientational distribution functions (ODFs) at both interfaces were also determined using the modified maximum entropy method. The obtained ODFs were found to be quite different from the previous ones obtained by assuming the Kleinmann symmetry, indicating the important role of the imaginary part of χ's played when determining ODFs.

  12. Thermal electron acceleration by electric field spikes in the outer radiation belt: Generation of field-aligned pitch angle distributions

    NASA Astrophysics Data System (ADS)

    Vasko, I. Y.; Agapitov, O. V.; Mozer, F. S.; Artemyev, A. V.

    2015-10-01

    Van Allen Probes observations in the outer radiation belt have demonstrated an abundance of electrostatic electron-acoustic double layers (DL). DLs are frequently accompanied by field-aligned (bidirectional) pitch angle distributions (PAD) of electrons with energies from hundred eVs up to several keV. We perform numerical simulations of the DL interaction with thermal electrons making use of the test particle approach. DL parameters assumed in the simulations are adopted from observations. We show that DLs accelerate thermal electrons parallel to the magnetic field via the electrostatic Fermi mechanism, i.e., due to reflections from DL potential humps. The electron energy gain is larger for larger DL scalar potential amplitudes and higher propagation velocities. In addition to the Fermi mechanism, electrons can be trapped by DLs in their generation region and accelerated due to transport to higher latitudes. Both mechanisms result in formation of field-aligned PADs for electrons with energies comparable to those found in observations. The Fermi mechanism provides field-aligned PADs for <1 keV electrons, while the trapping mechanism extends field-aligned PADs to higher-energy electrons. It is shown that the Fermi mechanism can result in scattering into the loss cone of up to several tenths of percent of electrons with flux peaking at energies up to several hundred eVs.

  13. Coherence properties of the electric field generated by an incoherent source of currents distributed on the surface of a sphere.

    PubMed

    Zurita-Sánchez, Jorge R

    2016-01-01

    We derive analytical expressions of the cross-spectral density of the electric field arising from an incoherent source whose current density is located on the surface of a sphere. Our approach is based on the series expansion in terms of vector spherical harmonics of the electric field generated by the aforementioned current distribution. We analyze in detail the spectrum, the degree of coherence, and the degree of polarization of the electric field for all regions in space (from the near field to the far field). The relationship of the high-order harmonics to the coherence properties is discussed. The spectrum turns out to be isotropic and it is different from that of the source. We found that the degree of coherence and degree of polarization are strongly influenced by the size of the source. We show the appearance of special features: a zone with a high degree of coherence in the near field for a subwavelength source, the radial degree of coherence is nearly constant in an extended region where two radial points belong to the far field, and a particular radial distance for which the degree of polarization vanishes (3D unpolarized light). PMID:26831593

  14. Tests of constituent-quark generation methods which maintain both the nucleon center of mass and the desired radial distribution in Monte Carlo Glauber models

    NASA Astrophysics Data System (ADS)

    Mitchell, J. T.; Perepelitsa, D. V.; Tannenbaum, M. J.; Stankus, P. W.

    2016-05-01

    Several methods of generating three constituent quarks in a nucleon are evaluated which explicitly maintain the nucleon's center of mass and desired radial distribution and can be used within Monte Carlo Glauber frameworks. The geometric models provided by each method are used to generate distributions over the number of constituent quark participants (Nqp) in p +p ,d +Au , and Au +Au collisions. The results are compared with each other and to a previous result of Nqp calculations, without this explicit constraint, used in measurements of √{sNN}=200 GeV p +p ,d +Au , and Au +Au collisions at the BNL Relativistic Heavy Ion Collider.

  15. Developing a Perceptual Model of Streamflow Generation From Spatially-Distributed Soil Moisture Data: Experiences in an Experimental NZ Catchment

    NASA Astrophysics Data System (ADS)

    Srinivasan, M.; McMillan, H. K.; Clark, M. P.; Goodrich, D. C.; Duncan, M.; Woods, R.; Western, A.

    2008-12-01

    Hydrologic model simulations can only be deemed credible if the model structure is consistent with current understanding of hydrological processes. The necessary steps in building a numerical model are therefore to develop a perceptual model of how the catchment functions and a conceptual model that provides an overview of the major storages and fluxes of water in the catchment. This development can be greatly aided by spatially-distributed measurements of internal catchment behaviour over time, in addition to the integrated response provided by streamflow data. Such a model building exercise needs data at different spatial and temporal scales to be brought together to form a coherent understanding of catchment processes. This presentation outlines our experiences in interpreting streamflow and multi-depth soil moisture time-series data in developing a perceptual model of streamflow generation for two headwater catchments within the experimental Mahurangi catchment, North Island, New Zealand. Soil moisture measurements were made at six locations, spatially distributed across the subcatchments, and at two soil depths - surface (0-30 cm) and subsurface (30-45 cm; top of the B-horizon). Measurements were made at 30 min intervals over a period of 34 months. Results show that the surface soil moisture responses were influenced by event rainfall input and seasonality in evapotranspiration rates, and were strongly related to stormflows and baseflows. The subsurface soil moisture followed an annual cycle, with little correlation to event rainfall; and surprisingly did not appear to be related to streamflow. The subsurface soil moisture data did not indicate the presence of a perched water table or a saturated subsurface layer. However the slow variation of soil moisture in this layer suggested that very little moisture was lost to evaporation or drainage. There appears to be a lack of connectivity between surface and subsurface soil moisture zones across the landscape

  16. Enabling the Distributed Generation Market of High Temperature Fuel Cell and Absorption Chiller Systems to Support Critical and Commercial Loads

    NASA Astrophysics Data System (ADS)

    DiMola, Ashley M.

    Buildings account for over 18% of the world's anthropogenic Greenhouse Gas (GHG) emissions. As a result, a technology that can offset GHG emissions associated with buildings has the potential to save over 9 Giga-tons of GHG emissions per year. High temperature fuel cell and absorption chiller (HTFC/AC) technology offers a relatively low-carbon option for meeting cooling and electric loads for buildings while producing almost no criteria pollutants. GHG emissions in the state of California would decrease by 7.48 million metric tons per year if every commercial building in the State used HTFC/AC technology to meet its power and cooling requirements. In order to realize the benefits of HTFC/AC technology on a wide scale, the distributed generation market needs to be exposed to the technology and informed of its economic viability and real-world potential. This work characterizes the economics associated with HTFC/AC technology using select scenarios that are representative of realistic applications. The financial impacts of various input factors are evaluated and the HTFC/AC simulations are compared to the economics of traditional building utilities. It is shown that, in addition to the emissions reductions derived from the systems, HTFC/AC technology is financially preferable in all of the scenarios evaluated. This work also presents the design of a showcase environment, centered on a beta-test application, that presents (1) system operating data gathered using a custom data acquisition module, and (2) HTFC/AC technology in a clear and approachable manner in order to serve the target audience of market stakeholders.

  17. Effects of source and thermal maturity on the distribution of aromatics and biomarkers in artificially generated oils

    NASA Astrophysics Data System (ADS)

    Chang, Ying-Ju

    2010-05-01

    Ying-Ju Chang (1), Wuu-Liang Huang (2), Suh-Huey Wu (3), Cheng-Lung Kuo (3) (1) Department of Geosciences, National Taiwan University, Taipei, Taiwan (r93224103@ntu.edu.tw); (2) Department of Geosciences, National Taiwan University, Taipei, Taiwan; (3) Exploration and Development Research Institute, Chinese Petroleum Corp., Taiwan Oils generated from isolated kerogens from a variety of source rocks, including two marine shales, two terrestrial coals, and three lacustrine oil shales were characterized for the effects of source and maturity on the distributions of hydrocarbons compounds. Experiments were conducted by confined pressure (gold-tube) pyrolysis at 320 deg. Celsius at four laboratory maturities (0.79, 0.95, 1.10, 1.34 Easy%Ro). The results show that normal alkane distribution in oils from different kerogens exhibit distinct preference in carbon number and predominance in specific compounds. The carbon preference index (CPI) and odd-even predominance (OEP) ratios tend to approach to 1 with increasing maturity. Oils from two terrestrial kerogens show higher Pr/n-C17 ratio than lacustrine kerogens (Green-river oil shale, GR) and vice versa for Ph/n-C18 ratio. Both ratios decrease with increasing maturity but show distinct trends for different kerogens. The (Pr/n-C17) and (Ph/n-C18) ratios for the lamosite, torbanite, and two marine kerogens are very low at all studied maturities. The pristane/phytane (Pr/Ph) and [(Pr/C17)/(Ph/C18)] ratios in oils from three major kerogen types vary barely with maturity but are discernible in diverse organic types, implying good source indication. The methylphenanthrene ratios (MPR) for most kerogens, which vary significantly only at maturities higher than 1.0 %Ro, are suitable for high maturity indication. The methylphenanthrene distribution fraction (MPDF), in general, increases slightly with increasing maturity, except in torbanite. The MPDF parameter for GR kerogen exhibits best linear correlation with maturity whereas

  18. Simulation studies of plasma waves in the electron foreshock - The generation of Langmuir waves by a gentle bump-on-tail electron distribution

    NASA Technical Reports Server (NTRS)

    Dum, C. T.

    1990-01-01

    Particle simulation experiments were used to study the basic physical ingredients needed for building a global model of foreshock wave phenomena. In particular, the generation of Langmuir waves by a gentle bump-on-tail electron distribution is analyzed. It is shown that, with appropriately designed simulations experiments, quasi-linear theory can be quantitatively verified for parameters corresponding to the electron foreshock.

  19. Next-Generation Angular Distribution Models for Top-of-Atmosphere Radiative Flux Calculation from the CERES Instruments: Methodology

    NASA Technical Reports Server (NTRS)

    Su, W.; Corbett, J.; Eitzen, Z.; Liang, L.

    2015-01-01

    The top-of-atmosphere (TOA) radiative fluxes are critical components to advancing our understanding of the Earth's radiative energy balance, radiative effects of clouds and aerosols, and climate feedback. The Clouds and the Earth's Radiant Energy System (CERES) instruments provide broadband shortwave and longwave radiance measurements. These radiances are converted to fluxes by using scene-type-dependent angular distribution models (ADMs). This paper describes the next-generation ADMs that are developed for Terra and Aqua using all available CERES rotating azimuth plane radiance measurements. Coincident cloud and aerosol retrievals, and radiance measurements from the Moderate Resolution Imaging Spectroradiometer (MODIS), and meteorological parameters from Goddard Earth Observing System (GEOS) data assimilation version 5.4.1 are used to define scene type. CERES radiance measurements are stratified by scene type and by other parameters that are important for determining the anisotropy of the given scene type. Anisotropic factors are then defined either for discrete intervals of relevant parameters or as a continuous functions of combined parameters, depending on the scene type. Significant differences between the ADMs described in this paper and the existing ADMs are over clear-sky scene types and polar scene types. Over clear ocean, we developed a set of shortwave (SW) ADMs that explicitly account for aerosols. Over clear land, the SW ADMs are developed for every 1 latitude1 longitude region for every calendar month using a kernel-based bidirectional reflectance model. Over clear Antarctic scenes, SW ADMs are developed by accounting the effects of sastrugi on anisotropy. Over sea ice, a sea-ice brightness index is used to classify the scene type. Under cloudy conditions over all surface types, the longwave (LW) and window (WN) ADMs are developed by combining surface and cloud-top temperature, surface and cloud emissivity, cloud fraction, and precipitable water

  20. Physically-based distributed hydrologic modeling of tropical catchments: Hypothesis testing on model formation and runoff generation

    NASA Astrophysics Data System (ADS)

    Abebe, N. A.; Ogden, F. L.

    2011-12-01

    Watersheds vary in their nature based on their geographic location, altitude, climate, geology, soils, and land use/land cover. These variations lead to differences in the conceptualization and formulation of hydrological models intended to represent the expected hydrological processes in a given catchment. Watersheds in the tropics are characterized by intensive and persistent biological activity and a large amount of rainfall. Our study focuses on the Agua Salud project catchments located in the Panama Canal Watershed, Panama, which have steep rolling topography, deep soils derived from weathered bedrock, and limited exposed bedrock. These catchments are also highly affected by soil cracks, decayed tree roots and animal burrows that form a network of preferential flow paths. One hypothesis is that these macropores conduct interflow during heavy rainfall, when a transient perched water table forms at a depth where the vertical hydraulic conductivity is significantly reduced near the bottom of the bioturbation layer. We have developed a physics-based, spatially distributed, multi-layered hydrologic model to simulate the dominant flow processes, including overland flow, channel flow, vertical matrix and non-Richards film flow, lateral downslope saturated matrix and non-Darcian pipe flow in the bioturbation layer and deep saturated groundwater flow. In our model formulation, we use the model to examine a variety of hydrological processes which we anticipate may occur. Emphasis is given to the modeling of the soil moisture dynamics in the bioturbation layer, development of lateral preferential flow and activation of the macropores and exchange of water at the interface between a bioturbation layer and a second layer below it. We consider interactions between surface water, ground water, channel water and perched water in the riparian zone cells with the aim of understanding likely runoff generation mechanisms. Results show that inclusion of as many different flow

  1. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    SciTech Connect

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-03-15

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies.

  2. Smooth, seamless, and structured grid generation with flexibility in resolution distribution on a sphere based on conformal mapping and the spring dynamics method

    NASA Astrophysics Data System (ADS)

    Iga, Shin-ichi

    2015-09-01

    A generation method for smooth, seamless, and structured triangular grids on a sphere with flexibility in resolution distribution is proposed. This method is applicable to many fields that deal with a sphere on which the required resolution is not uniform. The grids were generated using the spring dynamics method, and adjustments were made using analytical functions. The mesh topology determined its resolution distribution, derived from a combination of conformal mapping factors: polar stereographic projection (PSP), Lambert conformal conic projection (LCCP), and Mercator projection (MP). Their combination generated, for example, a tropically fine grid that had a nearly constant high-resolution belt around the equator, with a gradual decrease in resolution distribution outside of the belt. This grid can be applied to boundary-less simulations of tropical meteorology. The other example involves a regionally fine grid with a nearly constant high-resolution circular region and a gradually decreasing resolution distribution outside of the region. This is applicable to regional atmospheric simulations without grid nesting. The proposed grids are compatible with computer architecture because they possess a structured form. Each triangle of the proposed grids was highly regular, implying a high local isotropy in resolution. Finally, the proposed grids were examined by advection and shallow water simulations.

  3. A strategy for the generation, characterization and distribution of animal models by The Michael J. Fox Foundation for Parkinson’s Research

    PubMed Central

    Baptista, Marco A. S.; Dave, Kuldip D.; Sheth, Niketa P.; De Silva, Shehan N.; Carlson, Kirsten M.; Aziz, Yasmin N.; Fiske, Brian K.; Sherer, Todd B.; Frasier, Mark A.

    2013-01-01

    Progress in Parkinson’s disease (PD) research and therapeutic development is hindered by many challenges, including a need for robust preclinical animal models. Limited availability of these tools is due to technical hurdles, patent issues, licensing restrictions and the high costs associated with generating and distributing these animal models. Furthermore, the lack of standardization of phenotypic characterization and use of varying methodologies has made it difficult to compare outcome measures across laboratories. In response, The Michael J. Fox Foundation for Parkinson’s Research (MJFF) is directly sponsoring the generation, characterization and distribution of preclinical rodent models, enabling increased access to these crucial tools in order to accelerate PD research. To date, MJFF has initiated and funded the generation of 30 different models, which include transgenic or knockout models of PD-relevant genes such as Park1 (also known as Park4 and SNCA), Park8 (LRRK2), Park7 (DJ-1), Park6 (PINK1), Park2 (Parkin), VPS35, EiF4G1 and GBA. The phenotypic characterization of these animals is performed in a uniform and streamlined manner at independent contract research organizations. Finally, MJFF created a central repository at The Jackson Laboratory (JAX) that houses both non-MJFF and MJFF-generated preclinical animal models. Funding from MJFF, which subsidizes the costs involved in transfer, rederivation and colony expansion, has directly resulted in over 2500 rodents being distributed to the PD community for research use. PMID:24046356

  4. In situ diagnostic of the size distribution of nanoparticles generated by ultrashort pulsed laser ablation in vacuum

    SciTech Connect

    Bourquard, Florent; Loir, Anne-Sophie; Donnet, Christophe; Garrelie, Florence

    2014-03-10

    We aim to characterize the size distribution of nanoparticles located in the ablation plume produced by femtosecond laser interaction. The proposed method relies on the use of white-light extinction spectroscopy setup assisted by ultrafast intensified temporal gating. This method allows measurement of optical absorbance of a nickel nanoparticles cloud. Simulation of the extinction section of nickel nanoparticles size distributions has been developed in order to compare the measured optical absorbance to the optical extinction by theoretical and experimental nanoparticles size distributions (measured by scanning electron microscopy). A good agreement has been found between the in situ measured optical absorbance and the optical extinction cross section calculated from ex situ nanoparticles size distribution measurements.

  5. The Effect of Limited Sample Sizes on the Accuracy of the Estimated Scaling Parameter for Power-Law-Distributed Solar Data

    NASA Astrophysics Data System (ADS)

    D'Huys, Elke; Berghmans, David; Seaton, Daniel B.; Poedts, Stefaan

    2016-06-01

    Many natural processes exhibit a power-law behavior. The power-law exponent is linked to the underlying physical process, and therefore its precise value is of interest. With respect to the energy content of nanoflares, for example, a power-law exponent steeper than 2 is believed to be a necessary condition for solving the enigmatic coronal heating problem. Studying power-law distributions over several orders of magnitudes requires sufficient data and appropriate methodology. In this article we demonstrate the shortcomings of some popular methods in solar physics that are applied to data of typical sample sizes. We use synthetic data to study the effect of the sample size on the performance of different estimation methods. We show that vast amounts of data are needed to obtain a reliable result with graphical methods (where the power-law exponent is estimated by a linear fit on a log-transformed histogram of the data). We revisit published results on power laws for the angular width of solar coronal mass ejections and the radiative losses of nanoflares. We demonstrate the benefits of the maximum likelihood estimator and advocate its use.

  6. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  7. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    PubMed Central

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  8. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption.

    PubMed

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information. PMID:26823196

  9. Quantum Hash function and its application to privacy amplification in quantum key distribution, pseudo-random number generation and image encryption

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Guang; Xu, Peng; Yang, Rui; Zhou, Yi-Hua; Shi, Wei-Min

    2016-01-01

    Quantum information and quantum computation have achieved a huge success during the last years. In this paper, we investigate the capability of quantum Hash function, which can be constructed by subtly modifying quantum walks, a famous quantum computation model. It is found that quantum Hash function can act as a hash function for the privacy amplification process of quantum key distribution systems with higher security. As a byproduct, quantum Hash function can also be used for pseudo-random number generation due to its inherent chaotic dynamics. Further we discuss the application of quantum Hash function to image encryption and propose a novel image encryption algorithm. Numerical simulations and performance comparisons show that quantum Hash function is eligible for privacy amplification in quantum key distribution, pseudo-random number generation and image encryption in terms of various hash tests and randomness tests. It extends the scope of application of quantum computation and quantum information.

  10. Direct control of the grid point distribution in meshes generated by elliptic equations. [for solution of Navier-Stokes nozzle flow

    NASA Technical Reports Server (NTRS)

    Middlecoff, J. F.; Thomas, P. D.

    1979-01-01

    The generation of computational grids suitable for obtaining accurate numerical solutions to the three-dimensional Navier-Stokes equations is the subject of intensive research. For a wide class of nozzle configurations, a three-dimensional grid can be constructed by a sequence of two-dimensional grids in successive cross-sectional planes. The present paper is concerned with numerical generation of two-dimensional grids. An effective method of interior grid control is presented based on a modified elliptic system containing free parameters. For a simply connected region, the free parameters are computed from the Dirichlet boundary values. The resulting interior grid point distribution is controlled entirely by a priori selection of the grid point distribution along the boundaries of the section.

  11. Do bacterial cell numbers follow a theoretical Poisson distribution? Comparison of experimentally obtained numbers of single cells with random number generation via computer simulation.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2016-12-01

    We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. PMID:27554145

  12. Absolute energy distributions of Al, Cu, and Ta ions produced by nanosecond laser-generated plasmas at 1013 Wcm-2

    NASA Astrophysics Data System (ADS)

    Comet, M.; Versteegen, M.; Gobet, F.; Denis-Petit, D.; Hannachi, F.; Meot, V.; Tarisien, M.

    2016-01-01

    The charge state and energy distributions of ions produced by a pulsed 1 J, 9 ns Nd:YAG laser focused onto solid aluminum, copper, and tantalum targets were measured with an electrostatic analyzer coupled with a windowless electron multiplier detector. Special attention was paid to the detector response function measurements and to the determination of the analyzer transmission. Space charge effects are shown to strongly affect this transmission. Measured absolute energy distributions are presented for several charge states. They follow Boltzmann-like functions characterized by an effective ion temperature and an equivalent accelerating voltage. These parameters exhibit power laws as a function of I λ 2 which open the possibility to predict the expected shape of the relative energy distributions of ions on a large range of laser intensities (106-1016 Wcm-2 μm2).

  13. Size Distribution for Potentially Unstable Rock Masses and In Situ Rock Blocks Using LIDAR-Generated Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Mavrouli, O.; Corominas, J.; Jaboyedoff, M.

    2015-07-01

    In this paper, two analytical procedures which are independent from the existence of empirical data are presented for the calculation of (1) the size distribution of potentially unstable rock masses that expresses the potential rockfall size distribution, including big volumes corresponding to potential rare events with low susceptibility of failure and (2) the in situ block distribution on the slope face. Two approaches are, respectively, used. The first one involves the detection of kinematically unstable surfaces on a digital elevation model (DEM) and on orthophotos and the calculation of the volumes resting on them. For the second one the in situ block volumes formed by the intersection of the existing discontinuity sets are calculated using a high-resolution DEM. The procedures are presented through an application example at the country of Andorra and in particular at the chute of Forat Negre. The results from the first procedure indicate that it is kinematically possible to have mobilized volumes of some thousands of cubic meters; however, these are considered rare events with low susceptibility of failure. The size distribution of potentially unstable rock masses for big volume events was well fitted by a power law with an exponent of -0.5. The in situ block distribution on the slope face from the second procedure, assuming three types of intersection between the joints of the existing discontinuity sets and two extreme cases of discontinuity persistence, was also found to follow a power law, but with an exponent of -1.3. The comparison with the observed in the field block volume distribution on the slope face indicates that in reality discontinuities have a very high persistence and that considering only their visible trace length overestimates volumes, which is conservative.

  14. Effect of refracted light distribution on the photoelastic generation of zero-group velocity Lamb modes in optically low-absorbing plates.

    PubMed

    Raetz, Samuel; Laurent, Jérôme; Dehoux, Thomas; Royer, Daniel; Audoin, Bertrand; Prada, Claire

    2015-12-01

    Zero-group velocity (ZGV) Lamb modes are associated with sharp local acoustic resonances and allow, among other features, local measurement of Poisson's ratio. While the thermoelastic generation of Lamb waves in metal plates has been widely studied, the case of materials of low-optical absorption remains unexplored. In materials such as glasses, the generation of bulk elastic waves has been demonstrated to be sensitive to the refracted light distribution. In this paper, a detailed analysis of the effect of light refraction on the laser-based generation of ZGV Lamb modes is presented. Experiments are performed on a bare glass plate without the need for an additional layer for light absorption or reflection. Using an appropriate tilted volume source, it is shown that the laser-ultrasonic technique allows non-contact measurement of the Poisson's ratio. PMID:26723309

  15. Community-Based Social Networks: Generation of Power Law Degree Distribution and IP Solutions to the KPP

    ERIC Educational Resources Information Center

    Wu, Wentao

    2012-01-01

    The objective of this thesis is two-fold: (1) to investigate the degree distribution property of community-based social networks (CSNs) and (2) to provide solutions to a pertinent problem, the Key Player Problem. In the first part of this thesis, we consider a growing community-based network in which the ability of nodes competing for links to new…

  16. Assessment of heterogeneous slip distribution effect on tsunamigenic hydrodynamic processes generated by the 2014 Pisagua, Chile earthquake

    NASA Astrophysics Data System (ADS)

    González-Carrasco, J. F.; Zamora, N.; Núñez, C.; Aránguiz, R.; Babeyko, A. Y.; Gonzalez, G.

    2014-12-01

    The Chilean continental margin lies in the western margin of the South American plate. The interaction between the Nazca and South America plates has a high tsunamigenic potential. Historically, Chilean coastal cities has been affected by the strongest earthquakes and tsunamis recorded in the world. The location of the mega-thrust close to the land has raised the need to improve early warning systems. Typically fast tsunami threat assessment in early warning systems is based on homogeneous slip distribution models related with the historical earthquake scenarios Actually, one of the main aspects in numerical tsunami modeling is the use of finite fault rupture models where slip distribution is provided with more realistic and precise seismic representations. However, in recent years it has been tested that slip distribution has an essential contribution to tsunamigenic hydrodynamic processes such as wave period propagation, arrival times, inundation and run-up pattern along the coast. In this work we have a twofold aim, on one side to test the implications of slip distribution on the tsunamigenic hydrodynamic processes along the Arica, Iquique and Patache coastal zones resulted from the 2014 Pisagua earthquake, and on the other side compare the use of tsunami numerical codes based on linear, and non-linear/non-hydrostatic hydrodynamic equations to assess the above mentioned datasets.The analysis has been possible due of the availability of high resolved finite fault model for the 2014 Pisagua earthquake (Hayes et al., 2014; An et al., 2014; Yagi et al., 2014), the recorded tsunami wave in Arica, Iquique and Patache tsunamigrams and the high resolution coastal bathymetry in the study region in northern Chile. The results provide a better insight of the inference of physical characteristics of the source, the morphological characteristics of seafloor and coastline geometry on the wave period and frequency as well as on the run-up distribution and coastal resonance

  17. LONG-TERM EFFECTS OF METHYLMERCURIC CHLORIDE ON THREE GENERATIONS OF BROOK TROUT (SALVELINUS FONTINALIS): TOXICITY, ACCUMULATION, DISTRIBUTION, AND ELIMINATION

    EPA Science Inventory

    During a 144-wk period three generations of brook trout (Salvelinus fontinalis) were continuously exposed to mean water concentrations of methylmercuric chloride (MMC) of 2.93, 0.93, 0.29, 0.09, 0.03, and less than 0.010 (control) micrograms Hg/liter. During the first 39 wk the h...

  18. LINE: a code which simulates spectral line shapes for fusion reaction products generated by various speed distributions

    SciTech Connect

    Slaughter, D.

    1985-03-01

    A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrum to order ten are calculated both with respect to the origin and with respect to the mean.

  19. Changes in the pattern of distribution of von Willebrand factor in rat aortic endothelial cells following thrombin generation in vivo.

    PubMed

    Senis, Y A; Richardson, M; Tinlin, S; Maurice, D H; Giles, A R

    1996-04-01

    The pattern of distribution of von Willebrand factor (VWF) in relatively large sheets of rat aortic endothelial cells (EC) obtained by the Häutchen technique were analysed by immunocytochemistry and light microscopy. EC were examined pre and post administration of a procoagulant mixture of factor Xa (F.Xa) and phosphotidylcholine/phosphotidylserine (PCPS) vesicles which was demonstrated to result in the selective loss of high molecular weight multimers (HMWM) of plasma VWF in the rat. In placebo animals the pattern was heterogenous both in overall distribution and in individual cells which showed both a diffuse and granular pattern. Groups of intensely stained EC were oriented parallel to the longitudinal axis of the aorta and staining was particularly prominent around the orifices of the intercostal arteries, implicating shear-stress as a possible factor in VWF expression by EC. Changes in the pattern of distribution of staining were observed at various time points post-infusion of F.Xa/PCPS, suggesting the immediate release of VWF from EC stores followed by the recruitment of EC to synthesize and store VWF. These changes are consistent with the decrease in EC Weibel-Palade Body (WPB) content observed by EM in previously reported studies using this model. PMID:8611460

  20. Efficient second-harmonic generation of a broadband radiation by control of the temperature distribution along a nonlinear crystal.

    PubMed

    Regelskis, K; Želudevičius, J; Gavrilin, N; Račiukaitis, G

    2012-12-17

    We demonstrate an efficient technique for the second harmonic generation (SHG) of the broadband radiation based on the temperature gradient along a nonlinear crystal. The characteristics of Type I non-critical phase-matched SHG of broadband radiation in the LiB(3)O(5) (LBO) crystal with the temperature gradient imposed along the crystal were investigated both numerically and experimentally. The frequency doubling efficiency of the broadband pulsed fiber laser radiation as high as 68% has been demonstrated. PMID:23263092

  1. Assessment of the benefits of distributed fuel cell generators in the service areas of Central and South West Services, Inc.. Final report

    SciTech Connect

    El-Gasseir, M.M.

    1993-10-01

    A framework and methodology for assessing the cost effectiveness of 2-MW molten-carbonate fuel cell (MCFC) generators have been developed and used for a number of specific applications and sites within the service territories of the four operating companies of Central and South West Corporation (CSW). The analyses indicate that the MCFC`s relatively small size and its other design and operating characteristics create an opportunity for securing a number of benefits in addition to its capacity and energy values. The combined levelized values of the identified non-traditional or distributed benefits range from 6 to 71 mills/kWh (in 1991 currency) for a 1997 market-entry unit, and from 16 to 67 mills/kWh for a commercial facility in the Year 2000. Because of such savings, the projected total levelized benefits of MCFC generation varied from approximately 63 to 125 and 72 to 127 mills/kWh for the 1997 and 2000 units, respectively. These values correspond to benefit-to-cost ratios of 0.69--1.3 for the market entry fuel cell and 1.1--1.9 for the commercial unit. These estimates are indicative of the competitiveness of MCFC generation in comparison with current technology, including combined cycle plants. Although the results are not accurate projections of future benefit values and are contingent upon satisfactory performance of the MCFC facility, they are indicative of the potential opportunities and challenges that distributed generation poses for CSW and its operating companies. The new technology could be used to lower the cost of service for all customers in the future. It might also provide an additional instrument for the competition to make in-roads into operating companies` markets. The development of MCFC generators along with current cost and performance projections could have far reaching impacts on the electric utility industry.

  2. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  3. Procedure of calculation of the spatial distribution of temperatures and heat fluxes in the steam generator of a nuclear power installation with an RBEC fast-neutron reactor

    NASA Astrophysics Data System (ADS)

    Frolov, A. A.; Sedov, A. A.

    2016-08-01

    A method for combined 3D/1D-modeling of thermohydraulics of a once-through steam generator (SG) based on the joint analysis of three-dimensional thermo- and hydrodynamics of a single-phase heating coolant in the intertube space and one-dimensional thermohydraulics of steam-generating channels (tubes) with the use of well-known friction and heat-transfer correlations under various boiling conditions is discussed. This method allows one to determine the spatial distribution of temperatures and heat fluxes of heat-exchange surfaces of SGs with a single-phase heating coolant in the intertube space and with steam generation within tubes. The method was applied in the analytical investigation of typical operation of a once-through SG of a nuclear power installation with an RBEC fast-neutron heavy-metal reactor that is being designed by Kurchatov Institute in collaboration with OKB GIDROPRESS and Leipunsky Institute of Physics and Power Engineering. Flow pattern and temperature fields were obtained for the heavy-metal heating coolant in the intertube space. Nonuniformities of heating of the steam-water coolant in different heat-exchange tubes and nonuniformities in the distribution of heat fluxes at SG heat-exchange surfaces were revealed.

  4. Simulation of cesium injection and distribution in rf-driven ion sources for negative hydrogen ion generation

    SciTech Connect

    Gutser, R.; Wuenderlich, D.; Fantz, U.

    2010-02-15

    Cesium seeded sources for surface generated negative hydrogen ions are major components of neutral beam injection systems in future large-scale fusion experiments such as ITER. Stability and delivered current density depend highly on the cesium conditions during plasma-on and plasma-off phases of the ion source. The Monte Carlo code CSFLOW3D was used to study the transport of neutral and ionic cesium in both phases. Homogeneous and intense flows were obtained from two cesium sources in the expansion region of the ion source and from a dispenser array, which is located 10 cm in front of the converter surface.

  5. ESPRESSO instrument control electronics: a PLC based distributed layout for a second generation instrument at ESO VLT

    NASA Astrophysics Data System (ADS)

    Baldini, V.; Cirami, R.; Coretti, I.; Cristiani, S.; Di Marcantonio, P.; Mannetta, M.; Santin, P.; Mégevand, D.; Zerbi, F.

    2014-07-01

    ESPRESSO is an ultra-stable fiber-fed spectrograph designed to combine incoherently the light coming from up to 4 Unit Telescopes of the ESO VLT. From the Nasmyth focus of each telescope the light, through an optical path, is fed by the Coudé Train subsystems to the Front End Unit placed in the Combined Coudé Laboratory. The Front End is composed by one arm for each telescope and its task is to convey the incoming light, after a calibration process, into the spectrograph fibers. To perform these operations a large number of functions are foreseen, like motorized stages, lamps, digital and analog sensors that, coupled with dedicated Technical CCDs (two per arms), allow to stabilize the incoming beam up to the level needed to exploit the ESPRESSO scientific requirements. The Instrument Control Electronics goal is to properly control all the functions in the Combined Coudé Laboratory and the spectrograph itself. It is fully based on a distributed PLC architecture, abandoning in this way the VME-based technology previously adopted for the ESO VLT instruments. In this paper we will describe the ESPRESSO Instrument Control Electronics architecture, focusing on the distributed layout and its interfaces with the other ESPRESSO subsystems.

  6. Distribution of O{sub 2} molecules over vibrational levels at the output of a singlet-oxygen generator

    SciTech Connect

    Azyazov, V N; Pichugin, S Yu; Safonov, V S; Ufimtsev, N I

    2001-09-30

    Simple formulas are obtained for determining the population of the vibrational levels of singlet oxygen generated chemically in a singlet-oxygen generator. The rate of decrease in the vibrational energy of oxygen is limited by the exchange between its first vibrational level and the bending mode of the water molecule. It is shown that the populations of singlet oxygen molecules at the second and third vibrational levels are comparable with the population of oxygen in the excited electronic state b{sup 1}{Sigma}{sub g}{sup +}. The possibility of formation of electronically excited iodine in the reaction O{sub 2}({alpha}{sup 1}{Delta}{sub g}, {nu}=2) +I{sub 2}(X) {yields} O{sub 2}(X {sup 3}{Sigma}{sub g}{sup -}) +O{sub 2}({Lambda} {sup 3}{Pi}{sub 1u}), which may be the intermediate state in the process of dissociation of iodine in singlet-oxygen medium, is substantiated. (active media. lasers)

  7. Evaluation on double-wall-tube residual stress distribution of sodium-heated steam generator by neutron diffraction and numerical analysis

    SciTech Connect

    Kisohara, N.; Suzuki, H.; Akita, K.; Kasahara, N.

    2012-07-01

    A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)

  8. Investigations on ring-shaped pumping distributions for the generation of beams with radial polarization in an Yb:YAG thin-disk laser.

    PubMed

    Dietrich, Tom; Rumpel, Martin; Graf, Thomas; Ahmed, Marwan Abdou

    2015-10-01

    We present experimental investigations on the generation of radially polarized laser beams excited by a ring-shaped pump intensity distribution in combination with polarizing grating waveguide mirrors in an Yb:YAG thin-disk laser resonator. Hollow optical fiber components were implemented in the pump beam path to transform the commonly used flattop pumping distribution into a ring-shaped distribution. The investigation was focused on finding the optimum mode overlap between the ring-shaped pump spot and the excited first order Laguerre-Gaussian (LG(01)) doughnut mode. The power, efficiency and polarization state of the emitted laser beam as well as the thermal behavior of the disk was compared to that obtained with a standard flattop pumping distribution. A maximum output power of 107 W with a high optical efficiency of 41.2% was achieved by implementing a 300 mm long specially manufactured hollow fiber into the pump beam path. Additionally it was found that at a pump power of 280 W the maximum temperature increase is about 21% below the one observed with standard homogeneous pumping. PMID:26480177

  9. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  10. Method and apparatus for generating coherent radiation in the ultra-violet region and above by use of distributed feedback

    NASA Technical Reports Server (NTRS)

    Saffren, M. M. (Inventor)

    1976-01-01

    Helium in the superfluid state emits copious amounts of radiation in the ultraviolet region when excited by an electron stream. Conventional laser action using mirrors is impossible in superfluid helium because there are no mirrors that will reflect VUV radiation. By utilizing the distributed feedback method, the superfluid helium can be made to lase. By setting up a standing wave in superfluid helium that has a wavelength equal to, or harmonically related to, half the wavelength of the photon radiation chosen to be emitted as laser radiation by the superfluid helium, the need for end mirrors to produce reflection of the laser radiation is eliminated and reflection occurs instead at the wavefronts of the standing wave. The photons leave the superfluid helium at right angles to the standing wave as coherent radiation having a very high intensity. The standing wave established in the superfluid helium may be an acoustical standing wave, a thermal standing wave (second sound), or an electric standing wave.

  11. Different expression domains for two closely related amphibian TAARs generate a bimodal distribution similar to neuronal responses to amine odors.

    PubMed

    Syed, Adnan S; Sansone, Alfredo; Röner, Sebastian; Bozorg Nia, Shahrzad; Manzini, Ivan; Korsching, Sigrun I

    2015-01-01

    Olfactory perception is mediated by a multitude of olfactory receptors, whose expression in the sensory surface, the olfactory epithelium, is spatially regulated. A common theme is the segregation of different olfactory receptors in different expression domains, which in turn leads to corresponding segregation in the neuronal responses to different odor groups. The amphibian olfactory receptor gene family of trace amine associated receptors, in short TAARs, is exceedingly small and allows a comprehensive analysis of spatial expression patterns, as well as a comparison with neuronal responses to the expected ligands for this receptor family, amines. Here we report that TAAR4b exhibits a spatial expression pattern characteristically different in two dimensions from that of TAAR4a, its close homolog. Together, these two genes result in a bimodal distribution resembling that of amine responses as visualized by calcium imaging. A stringent quantitative analysis suggests the involvement of additional olfactory receptors in amphibian responses to amine odors. PMID:26358883

  12. Different expression domains for two closely related amphibian TAARs generate a bimodal distribution similar to neuronal responses to amine odors

    PubMed Central

    Syed, Adnan S.; Sansone, Alfredo; Röner, Sebastian; Bozorg Nia, Shahrzad; Manzini, Ivan; Korsching, Sigrun I.

    2015-01-01

    Olfactory perception is mediated by a multitude of olfactory receptors, whose expression in the sensory surface, the olfactory epithelium, is spatially regulated. A common theme is the segregation of different olfactory receptors in different expression domains, which in turn leads to corresponding segregation in the neuronal responses to different odor groups. The amphibian olfactory receptor gene family of trace amine associated receptors, in short TAARs, is exceedingly small and allows a comprehensive analysis of spatial expression patterns, as well as a comparison with neuronal responses to the expected ligands for this receptor family, amines. Here we report that TAAR4b exhibits a spatial expression pattern characteristically different in two dimensions from that of TAAR4a, its close homolog. Together, these two genes result in a bimodal distribution resembling that of amine responses as visualized by calcium imaging. A stringent quantitative analysis suggests the involvement of additional olfactory receptors in amphibian responses to amine odors. PMID:26358883

  13. Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension

    NASA Astrophysics Data System (ADS)

    Szabó, S.; Bódis, K.; Huld, T.; Moner-Girona, M.

    2011-07-01

    Three rural electrification options are analysed showing the cost optimal conditions for a sustainable energy development applying renewable energy sources in Africa. A spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas. The resulting mapping application offers support to decide in which regions the communities could be electrified either within the grid or in an isolated mini-grid. Donor programs and National Rural Electrification Agencies (or equivalent governmental departments) could use this type of delineation for their program boundaries and then could use the local optimization tools adapted to the prevailing parameters. The views expressed in this paper are those of the authors and do not necessarily represent European Commission and UNEP policy.

  14. Electron two-stream instability and its application in solar and heliophysics

    NASA Astrophysics Data System (ADS)

    Che, Haihong

    2016-06-01

    It is well known that electron beams accelerated in solar flares can drive two-stream instability and produce radio bursts in the solar corona as well as in the interplanetary medium. Recent observations show that the solar wind likely originates from nanoflare-like events near the surface of the Sun where locally heated plasma escapes along open field lines into space. Recent numerical simulations and theoretical studies show that electron two-stream instability (ETSI) driven by nanoflare-accelerated electron beams can produce the observed nanoflare-type radio bursts, the non-Maxwellian electron velocity distribution function of the solar wind, and the kinetic scale turbulence in solar wind. This brief review focus on the basic theoretical framework and recent progress in the nonlinear evolution of ETSI driven by electron beams, including the formation of electron holes, Langmuir wave generation in warm plasma, and the nonlinear modulation instability and Langmuir collapse. Potential applications in heliophysics and astrophysics are discussed.

  15. Influence of Electron-Impact Multiple Ionization on Equilibrium and Dynamic Charge State Distributions: A Case Study Using Iron

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Savin, D. W.

    2015-02-01

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  16. INFLUENCE OF ELECTRON-IMPACT MULTIPLE IONIZATION ON EQUILIBRIUM AND DYNAMIC CHARGE STATE DISTRIBUTIONS: A CASE STUDY USING IRON

    SciTech Connect

    Hahn, M.; Savin, D. W.

    2015-02-10

    We describe the influence of electron-impact multiple ionization (EIMI) on the ionization balance of collisionally ionized plasmas. Previous ionization balance calculations have largely neglected EIMI. Here, EIMI cross-section data are incorporated into calculations of both equilibrium and non-equilibrium charge-state distributions (CSDs). For equilibrium CSDs, we find that EIMI has only a small effect and can usually be ignored. However, for non-equilibrium plasmas the influence of EIMI can be important. In particular, we find that for plasmas in which the temperature oscillates there are significant differences in the CSD when including versus neglecting EIMI. These results have implications for modeling and spectroscopy of impulsively heated plasmas, such as nanoflare heating of the solar corona.

  17. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell

    NASA Astrophysics Data System (ADS)

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimates of the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  18. Analysis of a shift of the maximum of photoelectron momentum distributions generated by intense circularly polarized pulses

    NASA Astrophysics Data System (ADS)

    Ohmi, Masataka; Tolstikhin, Oleg I.; Morishita, Toru

    2015-10-01

    We investigate a shift of the maximum of photoelectron momentum distributions (PEMDs) produced in the ionization of a model atom by intense half-cycle and one-cycle circularly polarized pulses. Our analysis approaches the problem from two complementary directions: by solving the time-dependent Schrödinger equation (TDSE) and by using the adiabatic theory. The TDSE results show that the maximum is shifted along the ridge of the PEMD in the polarization plane from the position corresponding to the maximum of the ionizing field to a later ionization moment. The direction of this longitudinal shift agrees with that observed and discussed in relation to the attoclock technique. In addition, we found a transverse shift of the maximum resulting from the fact that the ridge expands in the radial direction from the position predicted by classical mechanics. The PEMDs obtained from the adiabatic theory are in quantitative agreement with the TDSE results. In particular, the uniform adiabatic asymptotics closely reproduces the transverse shift of the ridge and partially reproduces the longitudinal shift of the maximum of the PEMD. The adiabatic theory also yields a simple analytic formula describing the transverse shift.

  19. Sedimentation of mixed cultures using natural coagulants for the treatment of effluents generated in terrestrial fuel distribution terminals.

    PubMed

    Vieira, R B; Vieira, P A; Cardoso, S L; Ribeiro, E J; Cardoso, V L

    2012-09-15

    This study evaluated the use of natural coagulants (Moringa oleifera and chitosan) under different conditions with a mixed culture (C1 mixed culture). This culture was used for the biodegradation of hydrocarbons present in the effluent from fuel distribution terminals contaminated with diesel oil and gasoline. The biodegradation was evaluated by two central composite design (CCD) experiments: the first with varying concentrations of Moringa oleifera (MO), drying temperatures (TE) and seed drying times (TI); the second with varying concentrations of chitosan and the hydrochloric acid in which chitosan had been solubilized. The responses monitored in the CCD experiments included the sludge volume index (SVI), the turbidity removal (TR) and the specific rate of oxygen uptake (SOUR). Subsequently, the biodegradation was monitored in a sequencing batch reactor (SBR) under the optimal conditions obtained for each CCD experiment. The results indicated that the best coagulant was chitosan solubilized in 0.25 N HCl at a concentration of 50mg/L. Within five cycles with chitosan as a coagulant, the total organic carbon (TOC) removal increased from 77±1.0% to 82±0.5%, the volatile suspended solids (VSS) increased from 1.4±0.3 to 2.25±0.3 g/L and the total petroleum hydrocarbon (TPH) removal increased from 75±1.0% to 81±0.5%. PMID:22795394

  20. The sedimentation of mixed cultures used in the treatment of effluents generated from terrestrial fuel distribution terminals.

    PubMed

    Vieira, R B; Vieira, P A; Ribeiro, E J; Cardoso, V L

    2010-12-15

    This study evaluated the use of coagulants (ferric chloride and aluminium sulphate) and an anionic polyelectrolyte (polyacrylamide) in the settling of a mixed culture (C(1)), which was used for the biodegradation of hydrocarbons present in effluent of fuel distribution terminals contaminated with diesel oil and gasoline. In preliminary investigations conducted in jar tests, the optimal concentrations of coagulant were obtained for further studies. After preliminary tests, biodegradation was evaluated in a central composite design (CCD) with varying concentrations of ferric chloride and polyelectrolyte. Ferric chloride and polyelectrolyte concentrations ranged from 77.9 to 422.12 mg/L and 0.0 to 3.2mg/L, respectively. The responses monitored in CCD experiments included the sludge volume index (SVI), turbidity, and specific rate of oxygen uptake (SOUR), where values of 100mL/g, 840 nephelometric turbidity unit (NTU) and 58 mg O(2)/gh, respectively, were obtained. Subsequently, biodegradation was monitored in a sequencing batch reactor (SBR). The results indicated that within five cycles, total petroleum hydrocarbon (TPH) removal increased from 75 ± 1.0% to 79 ± 0.5%, while the volatile suspended solids (VSS) increased from 1300 to 2500 mg/L. PMID:20832164

  1. Biomimetic oxidative dimerization of anodically generated stilbene radical cations: effect of aromatic substitution on product distribution and reaction pathways.

    PubMed

    Hong, Fong-Jiao; Low, Yun-Yee; Chong, Kam-Weng; Thomas, Noel F; Kam, Toh-Seok

    2014-05-16

    A systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products. The aromatic substituents were found to fall into three main categories, viz., substrates in which the nature and position of the aromatic substituents gave rise to essentially the same products as 4,4'-dimethoxystilbene, for example, tetraaryltetrahydrofurans, dehydrotetralins, and aldehydes (p-MeO or p-NMe2 on one ring and X on the other ring, where X = o-MeO or p-alkyl, or m- or p-EWG; e.g., 4-methoxy-4'-trifluoromethylstilbene); those that gave rise to a mixture of indanyl (or tetralinyl) acetamides and dehydrotetralins (or pallidols) (both or one ring substituted by alkyl groups, e.g., 4,4'-dimethylstilbene); and those where strategic placement of donor groups, such as OMe and OH, led to the formation of ampelopsin F and pallidol-type carbon skeletons (e.g., 4,3',4'-trimethoxystilbene). Reaction pathways to rationalize the formation of the different products are presented. PMID:24754525

  2. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  3. Effect of Distributed Photovoltaic Generation on the Voltage Magnitude in a Self-Contained Power Supply System

    NASA Astrophysics Data System (ADS)

    Lukutin, B. V.; Shandarova, E. B.; Makarova, A. F.; Shvartsman, I. B.

    2016-04-01

    A promising way to increase the technical and economic characteristics of standalone power supply systems is to incorporate renewable energy installations in their structure. This saves fuel and extends the operational life of diesel power stations. The most common option is a hybrid system with photovoltaic power stations incorporated into the local network of the diesel power station. This paper deals with the dependence of the deflection voltage and power losses in the electric power transmission line on the graphs of electrical loads, the parameters of elements of the power supply system, connection points and the capacity of distributed photovoltaic power stations. Research has been carried out on the common low-voltage power supply systems of the radial type (0.4 kV) with an installed capacity of up to 100 kW. The studies have been conducted by simulating the operating modes of hybrid power systems of various configurations. As a result of these studies recommendations to reduce losses and voltage variations in the network by selecting the power and photovoltaic power connection points have been put forward.

  4. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  5. Distribution, volume, and depositional origin of Upper Eocene bolide-generated sediments along the U. S. East Coast

    SciTech Connect

    Poag, C.W.; Poppe, L.J. ); Powars, D.S.; Mixon, R.B. )

    1992-01-01

    Upper Eocene bolidites (bolide-generated sedimentary deposits) appear to form a continuous coastwise band, 600 km long and 30--100 km wide, from North Carolina to New Jersey (> 65,000 km[sup 2]). The authors sampled these deposits in 14 boreholes (cores and rotary cuttings) and identified them on 36 offshore seismic-reflection profiles. Cores from the bolidites contain allogenic phenoclasts and fossils, as well as shock-altered minerals and tektite glass. On seismic profiles, the bolidites commonly exhibit interrupted, chaotic reflections and fill elongate or ovate excavations. Maximum bolidite thickness offshore is 500m in the presumed impact crater (New Jersey Continental Shelf); maximum thickness onshore is > 60m (southeastern Virginia). Estimated bolidite volume is at least 1,700km[sup 3]. Disparate depositional processes formed four types of bolidites: (1) chaotic fill within the impact crater; (2) stratified( ) ejecta around the crater; (3) ejecta-bearing debrite at Deep Sea Drilling Project Site 612 (New Jersey slope); and (4) impact tsunamiite in North Carolina, Virginia, Maryland, and New Jersey.

  6. Cyclophosphamide induced generation of giant hypersegmented granulocytes in rat bone marrow: cell cycle distribution and silver nucleolar staining.

    PubMed

    Kotelnikov, V M; Pogorelov, V M; Berger, J; Kozinets, G I

    1988-01-01

    Daily injection of cyclophosphamide (20 mg/kg body weight) for 7 days resulted in accumulation of 50% of rat bone marrow granulocytes in G2. Tetraploid neutrophils were hypersegmented (7.25 +/- 0.33) in comparison with diploid ones (3.92 +/- 0.33). After 14 days of cyclophosphamide treatment tetraploid hypersegmented neutrophils could be found in peripheral blood. Diploid neutrophils in these animals were also hypersegmented (4.78 +/- 0.14 versus 3.15 +/- 0.02 in control, p less than 0.001). Nucleolar ribosomal gene activities, evaluated by morphometry of silver nucleolar grains, decreased on bone marrow granulocytes in the course of differentiation in control rats. After cyclophosphamide treatment mature granulocytes contained more silver grains than in controls which may be explained by conservation of silver binding sites of nucleoli from the stages of promyelocytes and myelocytes. These results suggest two mechanisms of hypersegmented neutrophil, generation in cyclophosphamide treated rats: the first, via maturation of myelocytes arrested in G2, and second, a direct one, without tetraploid granulocyte involvement. PMID:2465255

  7. High-power supercontinuum generation in a ZBLAN fiber with very efficient power distribution toward the mid-infrared.

    PubMed

    Swiderski, Jacek; Michalska, Maria

    2014-02-15

    We report high-power supercontinuum (SC) generation in a step-index fluorozirconate (ZBLAN) fiber with a zero-dispersion wavelength shifted to ~1.9  μm. Pumping the fluoride fiber with 2.75 W of power provided by a thulium-doped fiber amplifier, a continuous spectrum extending from ~0.85 to 4.2 μm with 2.24 W of average output power was achieved. Over 61% (1.37 W) of the total output power corresponds to wavelengths longer than 3 μm, which shows, to the best of our knowledge, the highest power conversion efficiency toward the mid-IR spectral band in relation to the output spectrum width. A linear SC power scalability up to 5.24 W, with a spectral band of ~0.9-4  μm, with repetition rate and pump power provided by a 1.55 μm fiber master-oscillator power amplifier system, is also demonstrated. PMID:24562239

  8. Microfluidics and Stimulus-Responsive Materials -- The Key to Next Generation Chemical Sensors for Widely Distributed Environmental Monitoring

    NASA Astrophysics Data System (ADS)

    Diamond, Dermot

    2012-02-01

    The fields of chemical sensing and microfluidics have promised much, but in terms of functional devices, have delivered relatively little. Issues like biofouling and surface degradation mean that sensor characteristics change rapidly in real samples. Consequently, chemical sensors must be regularly recalibrated to ensure the information they send is reliable. This results in complex and very costly devices that must integrate fluidics, standards, and waste storage, as well as sampling and analytical procedures. The fundamental challenge for realizing sensors for widely distributed environmental monitoring is this - how can we produce low cost sensing platforms that can function reliably in an autonomous manner for periods up to years? The key to progress lies in new, and more sophisticated materials that can respond to external stimuli, and communicate with the external world. For example, materials that can be activated from a passive state, reversibly bind and release targeted guest molecules, and return to a passive form. Activation and deactivation happen as part of an external control system, which can be local (chemical in nature) or external (e.g. photonic), and the material reports its status (passive, activated-free, activated-occupied) optically materials can be incorporated into more sophisticated platforms, such as micelles, beads, or complete fluidic systems that are much more biomimetic in nature than current platforms. They include polymer actuators that expand and contract dramatically under an external stimulus (e.g. light), enabling valve and pumping functions to be fully integrated into the microfluidic device. This lecture, I will present some of the exciting possibilities for chemical sensing that are now beginning to emerge through breakthroughs in fundamental materials science.

  9. [Are the "elderly" living at the expense of the "young"? Remarks on the burden distribution between "generations" in an aging population from the economic perspective].

    PubMed

    Schmähl, W

    2002-08-01

    Public and scientific discussion on the effects of an aging population is often biased: aging is primarily seen as an economic burden. Increasing contribution rates in pension schemes, health and long-term care insurance are highlighted. This paper tries to provide a more balanced view. The distinction between a cross-sectional and a longitudinal view already gives different information on distributional effects. Labeling older people as "economically inactive" is a much too narrow perspective focused on the activity on the labor market only. Other types of work are neglected such as caring for children or frail elderly as well as economic activities from wealth, consumption as well as paying taxes to finance public expenditure. The approach of "generational accounting" is also narrow, focusing on public expenditure, social insurance contributions and only some types of taxes, but not dealing with private, especially intrafamily transfers. In economic terms, a comprehensive approach is needed regarding the effect of institutions and measures on the economic situation of cohorts. The role of investment in human capital is mentioned as a decisive factor for productivity in a country. Further education and retraining of older workers is one important element. An integrative approach dealing with the different fields of activities is needed when analyzing the intergenerational as well as the intragenerational distribution. This requires an elaborated and differentiated reporting of distributional effects. This important precondition, however, does not exist in Germany. PMID:12426877

  10. Angular and internal state distributions of H2 (+) generated by (2 + 1) resonance enhanced multiphoton ionization of H2 using time-of-flight mass spectrometry.

    PubMed

    Perreault, William E; Mukherjee, Nandini; Zare, Richard N

    2016-06-01

    We report direct measurement of the anisotropy parameter β for the angular distribution of the photoelectron and photoion in (2 + 1) resonance enhanced multiphoton ionization process of H2 X (1)Σg (+) (v = 0, J = 0) molecules through the intermediate H2 E,F (1)Σg (+) (v' = 0, J' = 0) level (λ = 201.684 nm) using a time-of-flight mass spectrometer. The time-of-flight spectra were recorded as the direction of polarization of the ionizing laser was varied with respect to the flight axis of the H2 molecular beam and were fitted to an angular distribution in an appropriately rotated coordinate system with the z-axis oriented along the time-of-flight axis. The anisotropy parameter β was found to be 1.72 ± 0.13 by fitting the time-of-flight spectra and agreed with previous measurements. Using secondary ionization with a delayed laser pulse of different wavelength, we also determined the vibrational energy distribution of the ions, showing that 98% ± 4% of the ions are generated in their ground vibrational state, in agreement with the calculated Franck-Condon factors between the H2 E,F (1)Σg (+) (v' = 0) and H2 (+) X (1)Σg (+) (v″) vibrational levels. PMID:27276949

  11. Angular and internal state distributions of H2+ generated by (2 + 1) resonance enhanced multiphoton ionization of H2 using time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Perreault, William E.; Mukherjee, Nandini; Zare, Richard N.

    2016-06-01

    We report direct measurement of the anisotropy parameter β for the angular distribution of the photoelectron and photoion in (2 + 1) resonance enhanced multiphoton ionization process of H2 X 1 Σg + (v = 0, J = 0) molecules through the intermediate H2 E,F 1 Σg + (v' = 0, J' = 0) level (λ = 201.684 nm) using a time-of-flight mass spectrometer. The time-of-flight spectra were recorded as the direction of polarization of the ionizing laser was varied with respect to the flight axis of the H2 molecular beam and were fitted to an angular distribution in an appropriately rotated coordinate system with the z-axis oriented along the time-of-flight axis. The anisotropy parameter β was found to be 1.72 ± 0.13 by fitting the time-of-flight spectra and agreed with previous measurements. Using secondary ionization with a delayed laser pulse of different wavelength, we also determined the vibrational energy distribution of the ions, showing that 98% ± 4% of the ions are generated in their ground vibrational state, in agreement with the calculated Franck-Condon factors between the H2 E,F 1 Σg + (v' = 0) and H 2+ X 1 Σg + (v″) vibrational levels.

  12. Photo-induced exciton generation in polyvinylpyrrolidone encapsulated Ag2S core-shells: Electrochemical deposition, regular shape and high order of particle size distribution

    NASA Astrophysics Data System (ADS)

    Mukherjee, Nillohit; Jana, Sumanta; Gopal Khan, Gobinda; Mondal, Anup

    2012-12-01

    Visible light induced frequency switching behavior, exhibited by the electrochemically deposited thin films of polyvinylpyrrolidone (PVP) encapsulated Ag2S nanosphere (core-shell) is shown here. A low frequency (˜40 Hz) pulse was found to be generated upon illumination with 1 Sun due to excitonic transition, which also showed good switching behavior with the "on" and "off" state of the light. Capping of the semiconductor surface by a polymer like PVP reduces the surface states and thus lowers the built in barrier height and the width of depletion region. So, the number of photo generated but non recombining electron-hole pairs (excitons) increases, which put their signature in some unique physical properties like increase in photoluminescence (PL) intensity, light induced frequency switching behavior due to free exciton generation, etc. Here, the depositions were carried out on indium tin oxide coated glass substrates from an aqueous solution of AgNO3, thioacetamide, and PVP. The films were structurally characterized using high resolution X-ray diffraction, field emission scanning electron microscopy, and high resolution transmission electron microscopic techniques. The deposited particles were regular in shape with significantly high order of size distribution. Furrier transform infrared spectroscopy confirmed the presence of PVP as the encapsulating agent. Optical characterization, viz., UV - vis - NIR and NIR-PL revealed noteworthy amount of NIR emission from the deposited material.

  13. Distribution, metabolism and toxicity of inhaled sulfur dioxide and endogenously generated sulfite in the respiratory tract of normal and sulfite oxidase-deficient rats

    SciTech Connect

    Gunnison, A.F.; Sellakumar, A.; Currie, D.; Snyder, E.A.

    1987-01-01

    We report on the distribution, metabolism, and toxicity of sulfite in the respiratory tract and other tissues of rats exposed to endogenously generated sulfite or to inhaled sulfur dioxide (SO/sub 2/). Graded sulfite oxidase deficiency was induced in several groups of rats by manipulating their tungsten to molybdenum intake ratio. Endogenously generated sulfite and S-sulfonate compounds (a class of sulfite metabolite) accumulated in the respiratory tract tissues and in the plasma of these rats in inverse proportion to hepatic sulfite oxidase activity. In contrast to this systemic mode of exposure, sulfite exposure of normal, sulfite oxidase-competent rats via inhaled SO/sub 2/ (10 and 30 ppm) was restricted to the airways. Minor pathological changes consisting of epithelial hyperplasia, mucoid degeneration, and desquamation of epithelium were observed only in the tracheas and bronchi of the rats inhaling SO/sub 2/, even though the concentration of sulfite plus S-sulfonates in the tracheas and bronchi of these rats was considerably lower than that in the endogenously exposed rats. We attribute this histological damage to hydrogen ions stemming from inhaled SO/sub 2/, not to the sulfite/bisulfite ions that are also a product of inhaled SO/sub 2/. In addition to the lungs and trachea, all other tissues examined, except the testes, appeared to be refractory to high concentrations of endogenously generated sulfite. The testes of grossly sulfite oxidase-deficient rats were severely atrophied and devoid of spermatogenic cells.

  14. Next-Generation Angular Distribution Models for Top-of-Atmosphere Radiative Flux Calculation from CERES Instruments: Validation

    NASA Technical Reports Server (NTRS)

    Su, W.; Corbett, J.; Eitzen, Z.; Liang, L.

    2015-01-01

    Radiative fluxes at the top of the atmosphere (TOA) from the Clouds and the Earth's Radiant Energy System (CERES) instrument are fundamental variables for understanding the Earth's energy balance and how it changes with time. TOA radiative fluxes are derived from the CERES radiance measurements using empirical angular distribution models (ADMs). This paper evaluates the accuracy of CERES TOA fluxes using direct integration and flux consistency tests. Direct integration tests show that the overall bias in regional monthly mean TOA shortwave (SW) flux is less than 0.2Wm(exp -2) and the RMSE is less than 1.1Wm(exp -2). The bias and RMSE are very similar between Terra and Aqua. The bias in regional monthly mean TOA LW fluxes is less than 0.5Wm(exp -2) and the RMSE is less than 0.8Wm(exp -)2 for both Terra and Aqua. The accuracy of the TOA instantaneous flux is assessed by performing tests using fluxes inverted from nadir- and oblique-viewing angles using CERES along-track observations and temporally and spatially matched MODIS observations, and using fluxes inverted from multi-angle MISR observations. The averaged TOA instantaneous SW flux uncertainties from these two tests are about 2.3% (1.9Wm(exp -2) over clear ocean, 1.6% (4.5Wm(exp -2) over clear land, and 2.0% (6.0Wm(exp -) over clear snow/ice; and are about 3.3% (9.0Wm(exp -2), 2.7% (8.4Wm(exp -2), and 3.7% (9.9Wm(exp -2) over ocean, land, and snow/ice under all-sky conditions. The TOA SW flux uncertainties are generally larger for thin broken clouds than for moderate and thick overcast clouds. The TOA instantaneous daytime LW flux uncertainties derived from the CERESMODIS test are 0.5% (1.5Wm(exp -2), 0.8% (2.4Wm(exp -2), and 0.7% (1.3Wm(exp -2) over clear ocean, land, and snow/ice; and are about 1.5% (3.5Wm(exp -2), 1.0% (2.9Wm(exp -2), and 1.1% (2.1Wm(exp -2) over ocean, land, and snow/ice under all-sky conditions. The TOA instantaneous nighttime LW flux uncertainties are about 0.5-1% (<2.0Wm(exp -2) for all

  15. Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation.

    PubMed

    González-Moya, Johan R; Garcia-Basabe, Yunier; Rocco, Maria Luiza M; Pereira, Marcelo B; Princival, Jefferson L; Almeida, Luciano C; Araújo, Carlos M; David, Denis G F; da Silva, Antonio Ferreira; Machado, Giovanna

    2016-07-15

    Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ∼100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a

  16. Effects of the large distribution of CdS quantum dot sizes on the charge transfer interactions into TiO2 nanotubes for photocatalytic hydrogen generation

    NASA Astrophysics Data System (ADS)

    González-Moya, Johan R.; Garcia-Basabe, Yunier; Rocco, Maria Luiza M.; Pereira, Marcelo B.; Princival, Jefferson L.; Almeida, Luciano C.; Araújo, Carlos M.; David, Denis G. F.; Ferreira da Silva, Antonio; Machado, Giovanna

    2016-07-01

    Hydrogen fuels generated by water splitting using a photocatalyst and solar irradiation are currently gaining the strength to diversify the world energy matrix in a green way. CdS quantum dots have revealed a hydrogen generation improvement when added to TiO2 materials under visible-light irradiation. In the present paper, we investigated the performance of TiO2 nanotubes coupled with CdS quantum dots, by a molecular bifunctional linker, on photocatalytic hydrogen generation. TiO2 nanotubes were obtained by anodization of Ti foil, followed by annealing to crystallize the nanotubes into the anatase phase. Afterwards, the samples were sensitized with CdS quantum dots via an in situ hydrothermal route using 3-mercaptopropionic acid as the capping agent. This sensitization technique permits high loading and uniform distribution of CdS quantum dots onto TiO2 nanotubes. The XPS depth profile showed that CdS concentration remains almost unchanged (homogeneous), while the concentration relative to the sulfate anion decreases by more than 80% with respect to the initial value after ∼100 nm in depth. The presence of sulfate anions is due to the oxidation of sulfide and occurs in greater proportion in the material surface. This protection for air oxidation inside the nanotubular matrix seemingly protected the CdS for photocorrosion in sacrificial solution leading to good stability properties proved by long duration, stable photocurrent measurements. The effect of the size and the distribution of sizes of CdS quantum dots attached to TiO2 nanotubes on the photocatalytic hydrogen generation were investigated. The experimental results showed three different behaviors when the reaction time of CdS synthesis was increased in the sensitized samples, i.e. similar, deactivation and activation effects on the hydrogen production with regard to TiO2 nanotubes. The deactivation effect was related to two populations of sizes of CdS, where the population with a shorter band gap acts as a

  17. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. I. Theories

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Miller, William H.

    2011-03-01

    We have reformulated and generalized our recent work [J. Liu and W. H. Miller, J. Chem. Phys. 126, 234110 (2007)] into an approach for generating a family of trajectory-based dynamics methods in the phase space formulation of quantum mechanics. The approach (equilibrium Liouville dynamics) is in the spirit of Liouville's theorem in classical mechanics. The trajectory-based dynamics is able to conserve the quantum canonical distribution for the thermal equilibrium system and approaches classical dynamics in the classical (ℏ → 0), high temperature (β → 0), and harmonic limits. Equilibrium Liouville dynamics provides the framework for the development of novel theoretical/computational tools for studying quantum dynamical effects in large/complex molecular systems.

  18. Transform-limited pulse generation in the gigahertz region from a gain-switched distributed-feedback laser diode using spectral windowing.

    PubMed

    Nakazawa, M; Suzuki, K; Kimura, Y

    1990-06-15

    For the first time, to our knowledge, transform-limited and high-power picosecond pulses in the gigahertz region are successfully generated from a distributed-feedback laser diode using spectral manipulation with a narrow-band Fabry-Perot resonator and erbium fiber amplifiers. The pulses, which before the optical filtering have a width of 27 psec and a spectral width of 1.24 nm, are transformed to transform-limited pulses with a width of 17 psec and a spectral width of 0.21 nm. The peak power of the pulse at a 6-GHz repetition rate is amplified to greater than 90 mW with an erbium fiber amplifier. PMID:19768057

  19. An approach for generating trajectory-based dynamics which conserves the canonical distribution in the phase space formulation of quantum mechanics. I. Theories.

    PubMed

    Liu, Jian; Miller, William H

    2011-03-14

    We have reformulated and generalized our recent work [J. Liu and W. H. Miller, J. Chem. Phys. 126, 234110 (2007)] into an approach for generating a family of trajectory-based dynamics methods in the phase space formulation of quantum mechanics. The approach (equilibrium Liouville dynamics) is in the spirit of Liouville's theorem in classical mechanics. The trajectory-based dynamics is able to conserve the quantum canonical distribution for the thermal equilibrium system and approaches classical dynamics in the classical (ℏ → 0), high temperature (β → 0), and harmonic limits. Equilibrium Liouville dynamics provides the framework for the development of novel theoretical∕computational tools for studying quantum dynamical effects in large∕complex molecular systems. PMID:21405150

  20. Generation of temperature anisotropy for alpha particle velocity distributions in solar wind at 0.3 AU: Vlasov simulations and Helios observations

    NASA Astrophysics Data System (ADS)

    Perrone, D.; Bourouaine, S.; Valentini, F.; Marsch, E.; Veltri, P.

    2014-04-01

    Solar wind "in situ" measurements from the Helios spacecraft in regions of the Heliosphere close to the Sun (˜0.3 AU), at which typical values of the proton plasma beta are observed to be lower than unity, show that the alpha particle distribution functions depart from the equilibrium Maxwellian configuration, displaying significant elongations in the direction perpendicular to the background magnetic field. In the present work, we made use of multi-ion hybrid Vlasov-Maxwell simulations to provide theoretical support and interpretation to the empirical evidences above. Our numerical results show that, at variance with the case of βp≃1 discussed in Perrone et al. (2011), for βp=0.1 the turbulent cascade in the direction parallel to the ambient magnetic field is not efficient in transferring energy toward scales shorter than the proton inertial length. Moreover, our numerical analysis provides new insights for the theoretical interpretation of the empirical evidences obtained from the Helios spacecraft, concerning the generation of temperature anisotropy in the particle velocity distributions.

  1. Design of a Geospatial Systems Model Integrating Power Generation, Transmission and Distribution for Use in Evaluating Low-Carbon Energy Pathways

    NASA Astrophysics Data System (ADS)

    Kammen, D. M.; Nelson, J.; Petros-Good, A.; Johnston, J.; Fripp, M.; Hoffman, I.; Blanco, C.

    2009-12-01

    The transition to a low-carbon economy requires the coordination of research, and implementation efforts in basic energy and systems science, energy infrastructure, and efficient, low-carbon end-use technologies, practices and polices. While the evolution of specific supply-side and end-use technologies are vital to this process, too little attention has been given to the dramatic opportunities for energy systems science, specifically the use of the transmission, storage, and distribution system, to decarbonize the energy economy. We present results from a model, Switch, that uses historic data for wind, photovoltaic and solar thermal resources and electricity loads, as well as minimum, maximum and average flows for hydroelectric facilities and detailed performance characteristics for all existing conventional generators in its region of analysis. We utilize this model to consider the potential benefits of coordinated energy supply, transmission and distribution, and end-use technology deployment and planning decisions, and to explore opportunities to minimize cost and carbon emissions over the coming decades. We present results from the Switch model for western North America under a range of carbon prices and other policy scenarios, and discuss planned expansions of the model to all of North America and China.

  2. Independent Orbiter Assessment (IOA): Assessment of the Electrical Power Distribution and Control/Electrical Power Generation (EPD and C/EPG) FMEA/CIL

    NASA Technical Reports Server (NTRS)

    Mccants, C. N.; Bearrow, M.

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Electrical Power Distribution and Control/Electrical Power Generation (EPD and C/EPG) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were then compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison was provided through additional analysis as required. The results of that comparison is documented for the Orbiter EPD and C/EPG hardware. The IOA product for the EPD and C/EPG analysis consisted of 263 failure mode worksheets that resulted in 42 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 211 FMEA and 47 CIL items.

  3. Comparative Study of Radiation Dosage Distribution and Medical Implication of Quasi-monoenergetic Proton Generated from Laser Acceleration of Ultra-thin Foil

    NASA Astrophysics Data System (ADS)

    Batpurev, Temuge; Cao, Jennifer; Xie, Wang; Liu, Tung-Chang; Shao, Xi; Liu, Chuan-Sheng

    2012-10-01

    Recently the search for mono-energetic protons has gained great interest, particularly in applications such as proton therapy for cancer treatment. The advantage of proton therapy is that unlike photon radiation, proton beams deposit most of the energy at the tumor, sparing surrounding tissue and vital organs. A compact laser-driven proton accelerator is attractive for proton cancer therapy since the electric fields for particle acceleration can reach the order of tens of GV per cm which allows large reduction of the system size. Recent work by Liu et al. [2012] shows that laser acceleration of an ultra-thin multi-ion foil can generate high quality quasi-monoenergetic proton beams. The proton acceleration is due to the combination of radiation pressure and heavy-ion Coulomb repulsion. To assess the feasibility of laser-proton cancer therapy with such a proton accelerator, we simulated the interaction of protons with water and determine the radiation dosage deposition for particle beams produced from the PIC simulation of laser acceleration of multi-ion targets. We used the SRIM code to calculate the depth and lateral dose distribution of protons. We also compared the dosage map produced from protons generated from laser acceleration of single ion and multi-ion targets.

  4. Performance Analysis and Optimum Operation Planning of Distributed Energy System Based on Micro Gas Turbine-Solid Oxide Fuel Cell Hybrid Power Generation

    NASA Astrophysics Data System (ADS)

    Morita, Aina; Kimijima, Shinji

    In this paper, the economical and energy saving advantages of the distributed energy system, which consists of a micro gas turbine-solid oxide fuel cell hybrid power generation system, waste heat recovery devices and air-conditioning equipments, are investigated. Firstly, the thermodynamical performance evaluation of the hybrid system with the heat recovery devices is discussed to estimate the energy conversion efficiency of the whole system. Secondly, by using 1inear programming technique, the optimum operation planning of the cogeneration plant based on the hybrid system is discussed to predict the reduction of the primary fuel consumption and utility cost. Throughout detailed investigation, it is found that the energy conversion efficiency, which includes the waste heat utilization, reaches over 80% (LHV). In addition, the optimum operation of the hybrid system, of which power generation capacity is appropriate for the energy demand, achieve the highly effective energy saving against the traditional energy supply scheme, that is, the fuel reduction reaches around 40% to the conventional value.

  5. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a

  6. An atlas of selected beta-ray spectra and depth-dose distributions in lithium fluoride and soft tissue generated by a fast Monte-Carlo-based sampling method

    NASA Astrophysics Data System (ADS)

    Samei, Ehsan; Kearfott, Kimberlee J.; Gillespie, Timothy J.; Chris Wang, C.-K.

    1996-12-01

    A method to generate depth-dose distributions due to beta radiation in LiF and soft tissue is proposed. In this method, the EGS4 Monte Carlo radiation transport code is initially used to generate a library of monoenergetic electron depth-dose distributions in the material for electron energies in the range of 10 keV to 5 MeV in 10 keV increments. A polynomial least-squares fit is applied to each distribution. In addition, a theoretical model is developed to generate beta-ray energy spectra of selected radionuclides. A standard Monte Carlo random sampling technique is then employed to sample the spectra and generate the depth-dose distributions in LiF and soft tissue. The proposed method has an advantage over more traditional methods in that the actual radiation transport in the media is performed only once for a set of monoenergetic cases and the beta depth-dose distributions are easily generated by sampling this previously-acquired database in a matter of minutes. This method therefore reduces the demand on computer resources and time. The method can be used to calculate depth-dose distribution due to any beta-emitting nuclide or combination of nuclides with up to ten beta components.

  7. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a

  8. Asymmetries in coronal spectral lines and emission measure distribution

    SciTech Connect

    Tripathi, Durgesh; Klimchuk, James A.

    2013-12-10

    It has previously been argued that (1) spicules do not provide enough pre-heated plasma to fill the corona, and (2) even if they did, additional heating would be required to keep the plasma hot as it expands upward. Here we address whether spicules play an important role by injecting plasma at cooler temperatures (<2 MK), which then gets heated to coronal values at higher altitudes. We measure red-blue asymmetries in line profiles formed over a wide range of temperatures in the bright moss areas of two active regions. We derive emission measure distributions from the excess wing emission. We find that the asymmetries and emission measures are small and conclude that spicules do not inject an important (dominant) mass flux into the cores of active regions at temperatures >0.6 MK (log T > 5.8). These conclusions apply not only to spicules but also to any process that suddenly heats and accelerates chromospheric plasma (e.g., a chromospheric nanoflare). The traditional picture of coronal heating and chromospheric evaporation appears to remain the most likely explanation of the active region corona.

  9. Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell

    NASA Astrophysics Data System (ADS)

    Grillo, Olivia; Magistri, Loredana; Massardo, Aristide F.

    In this paper, different pressurisation and heat recovering techniques for an existing 100 kW molten carbonate fuel cell developed by Ansaldo fuel cells (formerly Ansaldo Ricerche) such as electrically driven compressors for anode (fuel) and cathode side (air), turbocharger, simple cycle gas turbine and regenerated gas turbine are analysed and discussed. The analysis has been carried out using for the FCS-MCFC stack simulation a model developed by the Thermochemical Power Group of the University of Genoa carefully tested with available experimental design point data. The design point hybrid system configurations have been analysed in detail using the code HS-MCFC based on the cited MCFC stack model and developed using Simulink language [Master Thesis, University of Genoa, 2001]. The different hybrid systems design point performance are presented and discussed in great detail, taking into account efficiency, specific power, costs, feasibility, and the need of modification of the existing FC-MCFC systems. Due to the size of the hybrid systems investigated (100-150 kW) they are very interesting for distributed power generation applications.

  10. Immobilization of nanobeads on a surface to control the size, shape and distribution of pores in electrochemically generated sol-gel films

    PubMed Central

    Ciabocco, Michela; Berrettoni, Mario; Zamponi, Silvia

    2015-01-01

    Electrochemically assisted deposition of an ormosil film at a potential where hydrogen ion is generated as the catalyst yields insulating films on electrodes. When the base electrode is modified with 20-nm poly(styrene sulfonate), PSS, beads bound to the surface with 3-aminopropyltriethoxysilane (APTES) and using (CH3)3SiOCH3 as the precursor, the resulting film of organically modified silica (ormosil) has cylindrical channels that reflect both the diameter of the PSS and the distribution of the APTES-PSS on the electrode. At an electrode modified by a 20-min immersion in 0.5 mmol dm-3 APTES followed by a 30-s immersion in PSS, a 20-min electrolysis at 1.5 V in acidified (CH3)3SiOCH3 resulted in an ormosil film with 20-nm pores separated by 100 nm. Cyclic voltammetry of Ru(CN)64- at scan rates above 5 mVs-1 yielded currents controlled primarily by linear diffusion. Below 5 mVs-1, convection rather than the expected factor, radial diffusion, apparently limited the current. PMID:26167128

  11. Multi-purpose droop controllers incorporating a passivity-based stabilizer for unified control of electronically interfaced distributed generators including primary source dynamics.

    PubMed

    Azimi, Seyed Mohammad; Afsharnia, Saeed

    2016-07-01

    This paper presents multi-purpose droop controllers for electronically-interfaced distributed generators (EI-DGs). These controllers allow the micro-grids to operate in grid-connected mode, islanded mode and mode transition transients with a unique control configuration. The active and reactive-power sharing among EI-DGs are satisfied by the proposed droop controllers in islanded mode. On the other hand, in the grid-connected mode, the droop controllers adjust the output active and reactive-powers of EI-DGs at the pre-programmed constant levels. The provision of sufficient damping capability and maintenance of the transient stability in all operational modes of EI-DGs are warranted by the suggested stabilizer. This stabilizer, which is designed using the passivity-based control (PBC) approach, is incorporated in the droop controllers to dampen power-angle, frequency and voltage deviations during large transients using solely local information. The primary source dynamics of EI-DGs are also considered. It is analytically proven that the presence of the primary source dynamics leads to attenuation of the damping capability of EI-DGs in transients. To compensate the adverse effect of the primary source dynamics during transients a novel compensator is inserted in the frequency-droop loop. Finally, time-domain simulations are performed on a multi-resources MG to verify the analytical results compared to those obtained, based on a recently-developed strategy. PMID:27085670

  12. Photonic generation of tunable microwave signals from a dual-wavelength distributed-Bragg-reflector highly Er3+/Yb3+ co-doped phosphate fiber laser

    NASA Astrophysics Data System (ADS)

    Mo, Shupei; Feng, Zhouming; Xu, Shanhui; Zhang, Weinan; Chen, Dongdan; Yang, Tong; Yang, Changsheng; Li, Can; Yang, Zhongmin

    2013-12-01

    The photonic generation of tunable microwave signal from a dual-wavelength distributed-Bragg-reflector (DW-DBR) highly Er3+/Yb3+ co-doped phosphate fiber laser is presented. Microwave signals centered at ˜15, ˜22 and ˜25 GHz with <10 kHz linewidth were obtained. The laser cavity of the fiber laser consists of a dual-channel narrowband fiber-Bragg-grating (DC-NB-FBG), a 0.4-cm-long Er3+/Yb3+ co-doped phosphate fiber and a wideband FBG (WB-FBG). The wavelength selecting gratings are spatially separated to create partially separated resonant cavities. Er3+/Yb3+ co-doped phosphate fiber ensures that mode competition is relative weak under low pump power. The short cavity length and the DC-NB-FBG ensure that only one longitudinal mode is supported by each reflection peak. Dual-wavelength single-frequency lasing with laser linewidths of <4 kHz is achieved.

  13. The transient distributions of nuclear weapon-generated tritium and its decay product 3 He in the Mediterranean Sea, 1952-2011, and their oceanographic potential

    NASA Astrophysics Data System (ADS)

    Roether, W.; Jean-Baptiste, P.; Fourré, E.; Sültenfuß, J.

    2013-10-01

    We present a comprehensive account of tritium and 3He in the Mediterranean Sea since the appearance of the tritium generated by the atmospheric nuclear-weapon testing in the 1950s and early 1960s, based on essentially all available observations. Tritium in surface waters rose to 20-30 TU in 1964 (TU = 1018 × [3H]/H]), a factor of about 100 above the natural level, and thereafter declined 30-fold up to 2011. The decline was largely due to radioactive tritium decay, which produced significant amounts of its stable daughter 3He. We present the scheme by which we separate the tritiugenic part of 3He and the part due to release from the sea floor (terrigenic part). We show that the tritiugenic component can be quantified throughout the Mediterranean waters, typically to a ± 0.15 TU equivalent, mostly because the terrigenic part is low in 3He. This fact makes the Mediterranean unique in offering a potential for the use of tritiugenic 3He as a tracer. The transient distributions of the two tracers are illustrated by a number of sections spanning the entire sea and relevant features of their distributions are noted. By 2011, the 3He concentrations in the top few hundred metres had become low, in response to the decreasing tritium concentrations combined with a flushing out by the general westward drift of these waters. Tritium-3He ages in Levantine Intermediate Water (LIW) were obtained repeated in time at different locations, defining transit times from the LIW source region east of Rhodes. The ages show an upward trend with the time elapsed since the surface-water tritium maximum, which arises because the repeated observations represent increasingly slower moving parts of the full transit time spectrum of LIW. The transit time dispersion revealed by this new application of tritium-3He dating is considerable. We find mean transit times of 12 ± 2 yr up to the Strait of Sicily, 18 ± 3 yr up to the Tyrrhenian Sea, and 22 ± 4 yr up into the Western Mediterranean

  14. The transient distributions of nuclear weapon-generated tritium and its decay product 3He in the Mediterranean Sea, 1952-2011, and their oceanographic potential

    NASA Astrophysics Data System (ADS)

    Roether, W.; Jean-Baptiste, P.; Fourré, E.; Sültenfuß, J.

    2013-04-01

    We present a comprehensive account of tritium and 3He in the Mediterranean Sea since the appearance of the tritium generated by the atmospheric nuclear-weapon testing in the 1950's and early 1960's, based on essentially all available observations. Tritium in surface waters rose to 20-30 TU in 1964 (TU = 1018 · [3H]/[H]), a factor of about 100 above the natural level, and thereafter declined 30-fold up to 2011. The decline was largely due to radioactive tritium decay, which produced significant amounts of its stable daughter 3He. We present the scheme by which we separate the tritiugenic part of 3He and the part due to release from the sea floor (terrigenic part). We show that the tritiugenic component can be quantified throughout the Mediterranean waters, typically to a ±0.15 TU equivalent, mostly because the terrigenic part is low in 3He. This fact makes the Mediterranean unique in offering a potential for the use of tritiugenic 3He as a tracer. The transient distributions of the two tracers are illustrated by a number of sections spanning the entire sea and relevant features of their distributions are noted. By 2011, the 3He concentrations in the top few hundred meters had become low, in response to the decreasing tritium concentrations combined with a flushing out by the general westward drift of these waters. Tritium-3He ages in Levantine Intermediate Water (LIW) were obtained repeated in time at different locations, defining transit times from the LIW source region east of Rhodes. The ages show an upward trend with the time elapsed since the surface-water tritium maximum, which arises because the repeated observations represent increasingly slower moving parts of the full transit time spectrum of LIW. The transit time dispersion found by this new application of tritium-3He dating is considerable. We find mean transit times of 12 ± 2 yr up to the Strait of Sicily, 18 ± 3 yr up to the Tyrrhenian Sea, and 22 ± 4 yr up into the Western Mediterranean. We

  15. High-efficiency grid-connected photovoltaic module integrated converter system with high-speed communication interfaces for small-scale distribution power generation

    SciTech Connect

    Choi, Woo-Young; Lai, Jih-Sheng

    2010-04-15

    This paper presents a high-efficiency grid-connected photovoltaic (PV) module integrated converter (MIC) system with reduced PV current variation. The proposed PV MIC system consists of a high-efficiency step-up DC-DC converter and a single-phase full-bridge DC-AC inverter. An active-clamping flyback converter with a voltage-doubler rectifier is proposed for the step-up DC-DC converter. The proposed step-up DC-DC converter reduces the switching losses by eliminating the reverse-recovery current of the output rectifying diodes. To reduce the PV current variation introduced by the grid-connected inverter, a PV current variation reduction method is also suggested. The suggested PV current variation reduction method reduces the PV current variation without any additional components. Moreover, for centralized power control of distributed PV MIC systems, a PV power control scheme with both a central control level and a local control level is presented. The central PV power control level controls the whole power production by sending out reference power signals to each individual PV MIC system. The proposed step-up DC-DC converter achieves a high-efficiency of 97.5% at 260 W output power to generate the DC-link voltage of 350 V from the PV voltage of 36.1 V. The PV MIC system including the DC-DC converter and the DC-AC inverter achieves a high-efficiency of 95% with the PV current ripple less than 3% variation of the rated PV current. (author)

  16. Second-Harmonic Generation in Vertically Coupled InAs/GaAs Quantum Dots with a Gaussian Potential Distribution: Combined Effects of Electromagnetic Fields, Pressure, and Temperature

    NASA Astrophysics Data System (ADS)

    Ben Mahrsia, R.; Choubani, M.; Bouzaiene, L.; Maaref, H.

    2015-08-01

    Simulation of quantum dots (QD) is usually performed on the basis of abrupt changes between neighboring materials. In practice, it is not possible to construct such QD because in a real structure the interface between two adjacent materials is not a step. In the work discussed in this paper, vertically coupled InAs/GaAs quantum dots (VCQD) with a non-abrupt change between two neighboring materials are considered. A potential function in the form of a Gaussian distribution was used to show this effect. We also focused on studying the effect of structure, applied electric ( F) and magnetic ( B) fields, pressure ( P), and temperature ( T) on second-harmonic generation (SHG). The analytical expression for SHG was investigated theoretically by use of the density matrix approach, the effective mass, and the finite-difference method (FDM). It was found that the major resonant peak value of SHG is a non-monotonic function of the barrier width ( L B). Moreover, the major resonant peak of SHG is blue-shifted (red-shifted) and its magnitude increases (decreases) monotonically with increasing temperature (pressure). The results obtained also show that the magnitude and position of the resonant peaks of SHG are affected by changes in external conditions, for example applied electric and magnetic fields, structural dimensions of the coupled QD system, and relaxation time ( T 0). Calculations also show that SHG in a VCQD structure with a non-abrupt potential change can be controlled and optimized by appropriate choice of structural dimensions and the external conditions mentioned above.

  17. Effect of Winglets on a First-Generation Jet Transport Wing. 2: Pressure and Spanwise Load Distributions for a Semispan Model at High Subsonic Speeds. [in the Langley 8 ft transonic tunnel

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Flechner, S. G.; Jacobs, P. F.

    1977-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at high subsonic speeds are presented for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. Selected data are discussed to show the general trends and effects of the various configurations.

  18. Space factor of "excess" heat generation in the Earth and planetary interiors. Article 2. Space-time patterns of distribution of the heat generating zones in the Earth interior

    NASA Astrophysics Data System (ADS)

    Makarenko, O. M.

    Besides radiogenic energy, the "supplementary" energy source occurs in the Earth interior. This source is of cosmic origin and modulated by position and direction of the Solar system motion in the Galaxy. It can be called as "cosmic furnace", which works in the Earth internal and outer cores as well as in mantle. The specific thermal generation per unit of volume is about 10 W/km3 in the Earth mantle and some 50 W/km3 in the Earth core. Excess heat generation occurs mainly in the latitudinal zone between 650 of northern latitude and 650 of southern latitude. More active heat generation occurs in the northern and southern hemispheres alternately with intervals about 200 million years that is equal to the period of revolution about the Galaxy center. The latitudinal zone of maximal heat generation moves in time along the sinusoidal curve in accordance with displacement of projection of the Solar system apex on the Earth surface. Maximal intensity of heat generation occurs when projection of the Earth motion in the Galaxy achieves the Earth equator (every 100 million years). At this particular time the direction of the Solar system motion in the Galaxy is in the plane of ecliptic and heat generation - of maximal intensity. This results in existence of equatorial hot belt in the Earth interior, distinctly exhibited in the core and mantle. The fact of alternate heating of the Earth semi-spheres allows us to assume that heat-generating factor influencing our planet from galactic space is absorbed largely while passing through the planetary interior.

  19. Effect of winglets on a first-generation jet transport wing. 3: Pressure and spanwise load distributions for a semispan model at Mach 0.30. [in the Langley 8 ft transonic tunnel

    NASA Technical Reports Server (NTRS)

    Montoya, L. C.; Jacobs, P. F.; Flechner, S. G.

    1977-01-01

    Pressure and spanwise load distributions on a first-generation jet transport semispan model at a Mach number of 0.30 are given for the basic wing and for configurations with an upper winglet only, upper and lower winglets, and a simple wing-tip extension. To simulate second-segment-climb lift conditions, leading- and/or trailing-edge flaps were added to some configurations.

  20. Development of activity pencil beam algorithm using measured distribution data of positron emitter nuclei generated by proton irradiation of targets containing {sup 12}C, {sup 16}O, and {sup 40}Ca nuclei in preparation of clinical application

    SciTech Connect

    Miyatake, Aya; Nishio, Teiji; Ogino, Takashi

    2011-10-15

    Purpose: The purpose of this study is to develop a new calculation algorithm that is satisfactory in terms of the requirements for both accuracy and calculation time for a simulation of imaging of the proton-irradiated volume in a patient body in clinical proton therapy. Methods: The activity pencil beam algorithm (APB algorithm), which is a new technique to apply the pencil beam algorithm generally used for proton dose calculations in proton therapy to the calculation of activity distributions, was developed as a calculation algorithm of the activity distributions formed by positron emitter nuclei generated from target nuclear fragment reactions. In the APB algorithm, activity distributions are calculated using an activity pencil beam kernel. In addition, the activity pencil beam kernel is constructed using measured activity distributions in the depth direction and calculations in the lateral direction. {sup 12}C, {sup 16}O, and {sup 40}Ca nuclei were determined as the major target nuclei that constitute a human body that are of relevance for calculation of activity distributions. In this study, ''virtual positron emitter nuclei'' was defined as the integral yield of various positron emitter nuclei generated from each target nucleus by target nuclear fragment reactions with irradiated proton beam. Compounds, namely, polyethylene, water (including some gelatin) and calcium oxide, which contain plenty of the target nuclei, were irradiated using a proton beam. In addition, depth activity distributions of virtual positron emitter nuclei generated in each compound from target nuclear fragment reactions were measured using a beam ON-LINE PET system mounted a rotating gantry port (BOLPs-RGp). The measured activity distributions depend on depth or, in other words, energy. The irradiated proton beam energies were 138, 179, and 223 MeV, and measurement time was about 5 h until the measured activity reached the background level. Furthermore, the activity pencil beam data

  1. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  2. GUIDCOUN: A Comprehensive FORTRAN IV Computer Program for Generating Item and Test Analyses as Well as a Complete Standard Scores Distribution

    ERIC Educational Resources Information Center

    Noble, Gilbert H.

    1977-01-01

    A computer program providing comprehensive test and item analysis is presented. Completing its performance on one run, the program, written in Fortran and emphasizing ease of use, integrates various statistical techniques for analyzing individual items and the overall test, in addition to generating a variety of standard scores. (Author/JKS)

  3. Precise hypocenter distribution and earthquake generating and stress in and around the upper-plane seismic belt in the subducting Pacific slab beneath NE Japan

    NASA Astrophysics Data System (ADS)

    Kita, S.; Okada, T.; Nakajima, J.; Matsuzawa, T.; Uchida, N.; Hasegawa, A.

    2007-12-01

    1. Introduction We found an intraslab seismic belt (upper-plane seismic belt) in the upper plane of the double seismic zone within the Pacific slab, running interface at depths of 70-100km beneath the forearc area. The location of the deeper limits of this belt appears to correspond to one of the facies boundaries (from jadeite lawsonite blueschist to lawsonite amphibole eclogite) in the oceanic crust [Kita et al., 2006, GRL]. In this study, we precisely relocated intraslab earthquakes by using travel time differences calculated by the waveform cross-spectrum analysis to obtain more detailed distribution of the upper plane-seismic belt within the Pacific slab beneath NE Japan. We also discuss the stress field in the slab by examining focal mechanisms of the earthquakes. 2. Data and Method We relocated events at depths of 50-00 km for the period from March 2003 to November 2006 from the JMA earthquake catalog. We applied the double-difference hypocenter location method (DDLM) by Waldhauser and Ellsworth (2000) to the arrival time data of the events. We use relative earthquake arrival times determined both by the waveform cross-spectrum analysis and by the catalog-picking data. We also determine focal mechanisms using the P wave polarity. 3. Spatial distribution of relocated hypocenters In the upper portion of the slab crust, seismicity is very active and distributed relatively homogeneously at depths of about 70-100km parallel to the volcanic front, where the upper-plane seismic belt has been found. In the lower portion of slab crust and/or the uppermost portion of the slab mantle, seismicity is spatially very limited to some small areas (each size is about 20 x 20km) at depths around 65km. Two of them correspond to the aftershock area of the 2003 Miyagi (M7.1) intraslab earthquake and that of the 1987 Iwaizumi (M6.6) intraslab earthquake, respectively. Based on the dehydration embrittelment hypothesis, the difference of the spatial distribution of the seismicity in

  4. Uniform random number generators

    NASA Technical Reports Server (NTRS)

    Farr, W. R.

    1971-01-01

    Methods are presented for the generation of random numbers with uniform and normal distributions. Subprogram listings of Fortran generators for the Univac 1108, SDS 930, and CDC 3200 digital computers are also included. The generators are of the mixed multiplicative type, and the mathematical method employed is that of Marsaglia and Bray.

  5. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes.

    PubMed

    Lu, X; Nakajima, K; Sakanakura, H; Matsubae, K; Bai, H; Nagasaka, T

    2012-06-01

    Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected. PMID:22370049

  6. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOEpatents

    Maris, Humphrey J.

    2002-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  7. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOEpatents

    Maris, Humphrey J.

    2003-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  8. On the magnetic field distribution generated by a dipolar current source situated in a realistically shaped compartment model of the head.

    PubMed

    Meijs, J W; Bosch, F G; Peters, M J; Lopes da Silva, F H

    1987-03-01

    The magnetic field distribution around the head is simulated using a realistically shaped compartment model of the head. The model is based on magnetic resonance images. The 3 compartments describe the brain, the skull and the scalp. The source is represented by a current dipole situated in the visual cortex. The magnetic field distribution due to the source and that due to the volume currents are calculated separately. The simulations are carried out in order to ascertain which matrix of grid points is suitable as a measuring grid. The possibilities studied are grid points situated in a plane, in a surface which follows the contours of the head and in a sphere. This sphere is taken concentric to the sphere which is the best possible fit for the head. Taking into account the relative contribution of the volume currents and the possible accuracy in the positioning of the magnetic field detector, it can be concluded that the best choice is to measure the normal component of the magnetic field at points which are situated in the spherical surface. The results of this study also show that the magnetic field distribution based on a realistically shaped compartment model differs from that based on a compartment model consisting of concentric spheres. In the spherical model of the head no contribution of the volume currents to the component of the field normal to the sphere can be expected. The difference between the results obtained with these two volume conductor models increases with source depth. PMID:2434313

  9. Origin, distribution and alteration of organic matter and generation and migration of hydrocarbons in Austin Chalk, Upper Cretaceous, southeastern Texas. Final report, September 1, 1980-August 31, 1981

    SciTech Connect

    Grabowski, G.J. Jr.

    1981-01-01

    The kerogen and bitumen from samples of the Austin Chalk from the subsurface of southeastern Texas were analyzed to determine the origin of the organic matter and the alteration of the kerogen to form petroleum. The effects of mineral composition on the rate of alteration and on the composition of hydrocarbons generated was examined. The source-rock potential and the processes of migration and reservoiring in the chalk are considered.

  10. Initial velocity distributions of ions generated by in-flight laser desorption/ionization of individual polystyrene latex microparticles as studied by the delayed ion extraction method.

    PubMed

    Vera, César Costa; Trimborn, Achim; Hinz, Klaus-Peter; Spengler, Bernhard

    2005-01-01

    The delayed ion extraction method has been used to study characteristics of the initial velocity distributions of positive and negative ions produced simultaneously by laser desorption/ionization (LDI) from non-impacted single aerosol polymeric particles, using a bipolar time-of-flight (TOF) instrument (LAMPAS 2). Due to the geometry of the setup and the characteristics of the ablation process, only the projections of the velocities on the axis of the mass spectrometer can be directly studied. Additionally, since the mean initial velocity under these conditions should be close to zero, it was necessary to extend the method by taking into account higher order contributions of the velocity distribution. Theoretical expressions for these higher order terms are presented and discussed. The bipolar characteristics of the instrument permit evaluation and treatment of a possible instrumental artifact caused by small inclinations of the ionizing laser with respect to the ideal incidence direction. Results of a number of experiments are presented and discussed in relation to the theoretical expressions presented, and to possible ablation scenarios. Evidence pointing out that, under our experimental conditions, only partial ablation of the latex particles occurs was obtained. The variance of the distribution of the projection of the initial velocities can be directly estimated from these results. By assuming that the total initial velocities of the ions are developed completely according to a single-temperature adiabatic expansion mechanism, temperatures of approximately 50 K/Da can be assigned to the ion clouds from the variance estimations. If a two-temperature model is used, a radial temperature of about 100 K/Da results. These values are in reasonable agreement with results for polymer ablation from the literature. PMID:15593241

  11. Three-zonal engineering method of heat calculation for fluidized bed furnaces based on data on commercial investigations of heat generation distribution during biomass combustion

    NASA Astrophysics Data System (ADS)

    Litun, D. S.; Ryabov, G. A.

    2016-02-01

    A three-zonal method of heat calculation of furnaces for combustion of biomass and low-caloric fuel in the fluidized bed is described. The method is based on equations of thermal and material balances that account for heat generation by fuel in the zone, heat-and-mass transfer heat exchange between the furnace media and surfaces that bound the zone, and heat-and-mass transfer between furnace zones. The calculation procedure for heat generation by fuel in the fluidized bed (FB) using the heat generation portion by the fuel is proposed. Based on commercial investigations, the main factors that affect the average temperature in the FB and the portion of fuel heat that is released in the FB are determined. Results of commercial investigations showed that the airflow coefficient in the FB should be recognized as the main operation parameter that affects the average temperature in the FB and, consequently, heat generation in the FB. The gas flow rate in the FB can be marked out as the second factor that affects the consumption degree of oxidizer supplied in the FB. Commercial investigations revealed that mixing is affected by the gas flow rate in the FB and the bed material particle size, which may be changed during the boiler operation because of the agglomeration of particles of sand and ash. The calculation processing of commercial investigations on a KM-75-40M boiler of a CHP-3 of an Arkhangelsk Pulp and Paper Mill (APPM), which was carried out using the inverse problem procedure by means of a developed computer program, determined the range of the fuel heat release share in the FB, which was 0.26-0.45 at an excess air factor of 0.59-0.93 in the bed, and the heat release share in the maximum temperature zone in the total heat release in the superbed space. The heat release share in the bed is determined as an approximating function of the excess air factor in the bed and the fluidization number. The research results can be used during designing boilers with the

  12. Asymmetric spatial distribution in the high-order harmonic generation of a H2 + molecule controlled by the combination of a mid-infrared laser pulse and a terahertz field

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Pan, Xue-Fei; Xia, Chang-Long; Du, Hui; Xu, Tong-Tong; Guo, Jing; Liu, Xue-Shen

    2016-07-01

    The control of the spatial distribution in the high-order harmonic generation (HHG) of a H2 + molecule is theoretically investigated by the combination of a mid-infrared laser pulse and a terahertz (THz) field. We use a THz pulse to steer the electron motion, and the numerical results show that the cutoff of the harmonic from the recombination of the electron with the nucleus along the negative-z direction is enhanced and the case along the positive-z direction is suppressed when a THz field is added. The underlying physical mechanism is illustrated by the semi-classical three step model and the ionization probability. The time-frequency analysis further demonstrates the asymmetric spatial distribution in a HHG controlled by adding a THz field.

  13. Power System Concepts for the Lunar Outpost: A Review of the Power Generation, Energy Storage, Power Management and Distribution (PMAD) System Requirements and Potential Technologies for Development of the Lunar Outpost

    NASA Technical Reports Server (NTRS)

    Khan, Z.; Vranis, A.; Zavoico, A.; Freid, S.; Manners, B.

    2006-01-01

    This paper will review potential power system concepts for the development of the lunar outpost including power generation, energy storage, and power management and distribution (PMAD). In particular, the requirements of the initial robotic missions will be discussed and the technologies considered will include cryogenics and regenerative fuel cells (RFC), AC and DC transmission line technology, high voltage and low voltage power transmission, conductor materials of construction and power beaming concepts for transmitting power to difficult to access locations such as at the bottom of craters. Operating conditions, component characteristics, reliability, maintainability, constructability, system safety, technology gaps/risk and adaptability for future lunar missions will be discussed for the technologies considered.

  14. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide*

    PubMed Central

    Borek, Arkadiusz; Kuleta, Patryk; Ekiert, Robert; Pietras, Rafał; Sarewicz, Marcin; Osyczka, Artur

    2015-01-01

    Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which “semireverse” electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P. PMID:26245902

  15. Mitochondrial Disease-related Mutation G167P in Cytochrome b of Rhodobacter capsulatus Cytochrome bc1 (S151P in Human) Affects the Equilibrium Distribution of [2Fe-2S] Cluster and Generation of Superoxide.

    PubMed

    Borek, Arkadiusz; Kuleta, Patryk; Ekiert, Robert; Pietras, Rafał; Sarewicz, Marcin; Osyczka, Artur

    2015-09-25

    Cytochrome bc1 is one of the key enzymes of many bioenergetic systems. Its operation involves a large scale movement of a head domain of iron-sulfur protein (ISP-HD), which functionally connects the catalytic quinol oxidation Qo site in cytochrome b with cytochrome c1. The Qo site under certain conditions can generate reactive oxygen species in the reaction scheme depending on the actual position of ISP-HD in respect to the Qo site. Here, using a bacterial system, we show that mutation G167P in cytochrome b shifts the equilibrium distribution of ISP-HD toward positions remote from the Qo site. This renders cytochrome bc1 non-functional in vivo. This effect is remediated by addition of alanine insertions (1Ala and 2Ala) in the neck region of the ISP subunit. These insertions, which on their own shift the equilibrium distribution of ISP-HD in the opposite direction (i.e. toward the Qo site), also act in this manner in the presence of G167P. Changes in the equilibrium distribution of ISP-HD in G167P lead to an increased propensity of cytochrome bc1 to generate superoxide, which becomes evident when the concentration of quinone increases. This result corroborates the recently proposed model in which "semireverse" electron transfer back to the Qo site, occurring when ISP-HD is remote from the site, favors reactive oxygen species production. G167P suggests possible molecular effects of S151P (corresponding in sequence to G167P) identified as a mitochondrial disease-related mutation in human cytochrome b. These effects may be valid for other human mutations that change the equilibrium distribution of ISP-HD in a manner similar to G167P. PMID:26245902

  16. SU-E-T-556: Monte Carlo Generated Dose Distributions for Orbital Irradiation Using a Single Anterior-Posterior Electron Beam and a Hanging Lens Shield

    SciTech Connect

    Duwel, D; Lamba, M; Elson, H; Kumar, N

    2015-06-15

    Purpose: Various cancers of the eye are successfully treated with radiotherapy utilizing one anterior-posterior (A/P) beam that encompasses the entire content of the orbit. In such cases, a hanging lens shield can be used to spare dose to the radiosensitive lens of the eye to prevent cataracts. Methods: This research focused on Monte Carlo characterization of dose distributions resulting from a single A-P field to the orbit with a hanging shield in place. Monte Carlo codes were developed which calculated dose distributions for various electron radiation energies, hanging lens shield radii, shield heights above the eye, and beam spoiler configurations. Film dosimetry was used to benchmark the coding to ensure it was calculating relative dose accurately. Results: The Monte Carlo dose calculations indicated that lateral and depth dose profiles are insensitive to changes in shield height and electron beam energy. Dose deposition was sensitive to shield radius and beam spoiler composition and height above the eye. Conclusion: The use of a single A/P electron beam to treat cancers of the eye while maintaining adequate lens sparing is feasible. Shield radius should be customized to have the same radius as the patient’s lens. A beam spoiler should be used if it is desired to substantially dose the eye tissues lying posterior to the lens in the shadow of the lens shield. The compromise between lens sparing and dose to diseased tissues surrounding the lens can be modulated by varying the beam spoiler thickness, spoiler material composition, and spoiler height above the eye. The sparing ratio is a metric that can be used to evaluate the compromise between lens sparing and dose to surrounding tissues. The higher the ratio, the more dose received by the tissues immediately posterior to the lens relative to the dose received by the lens.

  17. Verification of LHS distributions.

    SciTech Connect

    Swiler, Laura Painton

    2006-04-01

    This document provides verification test results for normal, lognormal, and uniform distributions that are used in Sandia's Latin Hypercube Sampling (LHS) software. The purpose of this testing is to verify that the sample values being generated in LHS are distributed according to the desired distribution types. The testing of distribution correctness is done by examining summary statistics, graphical comparisons using quantile-quantile plots, and format statistical tests such as the Chisquare test, the Kolmogorov-Smirnov test, and the Anderson-Darling test. The overall results from the testing indicate that the generation of normal, lognormal, and uniform distributions in LHS is acceptable.

  18. Relationship between the frequency magnitude distribution and the visibility graph in the synthetic seismicity generated by a simple stick-slip system with asperities.

    PubMed

    Telesca, Luciano; Lovallo, Michele; Ramirez-Rojas, Alejandro; Flores-Marquez, Leticia

    2014-01-01

    By using the method of the visibility graph (VG) the synthetic seismicity generated by a simple stick-slip system with asperities is analysed. The stick-slip system mimics the interaction between tectonic plates, whose asperities are given by sandpapers of different granularity degrees. The VG properties of the seismic sequences have been put in relationship with the typical seismological parameter, the b-value of the Gutenberg-Richter law. Between the b-value of the synthetic seismicity and the slope of the least square line fitting the k-M plot (relationship between the magnitude M of each synthetic event and its connectivity degree k) a close linear relationship is found, also verified by real seismicity. PMID:25162728

  19. Relationship between the Frequency Magnitude Distribution and the Visibility Graph in the Synthetic Seismicity Generated by a Simple Stick-Slip System with Asperities

    PubMed Central

    Telesca, Luciano; Lovallo, Michele; Ramirez-Rojas, Alejandro; Flores-Marquez, Leticia

    2014-01-01

    By using the method of the visibility graph (VG) the synthetic seismicity generated by a simple stick–slip system with asperities is analysed. The stick–slip system mimics the interaction between tectonic plates, whose asperities are given by sandpapers of different granularity degrees. The VG properties of the seismic sequences have been put in relationship with the typical seismological parameter, the b-value of the Gutenberg-Richter law. Between the b-value of the synthetic seismicity and the slope of the least square line fitting the k-M plot (relationship between the magnitude M of each synthetic event and its connectivity degree k) a close linear relationship is found, also verified by real seismicity. PMID:25162728

  20. Generation regimes of bidirectional hybridly mode-locked ultrashort pulse erbium-doped all-fiber ring laser with a distributed polarizer.

    PubMed

    Krylov, Alexander A; Chernykh, Dmitriy S; Arutyunyan, Natalia R; Grebenyukov, Vyacheslav V; Pozharov, Anatoly S; Obraztsova, Elena D

    2016-05-20

    We report on the stable picosecond and femtosecond pulse generation from the bidirectional erbium-doped all-fiber ring laser hybridly mode-locked with a coaction of a single-walled carbon nanotube-based saturable absorber and nonlinear polarization evolution that was introduced through the insertion of the short-segment polarizing fiber. Depending on the total intracavity dispersion value, the laser emits conservative solitons, transform-limited Gaussian pulses, or highly chirped stretched pulses with almost 20 nm wide parabolic spectrum in both clockwise (CW) and counterclockwise (CCW) directions of the ring. Owing to the polarizing action in the cavity, we have demonstrated for the first time, to the best of our knowledge, an efficient tuning of soliton pulse characteristics for both CW and CCW channels via an appropriate polarization control. We believe that the bidirectional laser presented may be highly promising for gyroscopic and other dual-channel applications. PMID:27411151