Sample records for nanoindentation-induced deformation microstructure

  1. Deformation Mechanisms of Gum Metals Under Nanoindentation

    NASA Astrophysics Data System (ADS)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  2. Plastic deformation behaviors of Ni- and Zr-based bulk metallic glasses subjected to nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weizhong, Liang, E-mail: wzliang1966@126.com; Zhiliang, Ning; Zhenqian, Dang

    2013-12-15

    Plastic deformation behaviors of Ni{sub 42}Ti{sub 20}Zr{sub 21.5}Al{sub 8}Cu{sub 5}Si{sub 3.5} and Zr{sub 51}Ti{sub 5}Ni{sub 10}Cu{sub 25}Al{sub 9} bulk metallic glasses at room temperature were studied by nanoindentation testing and atomic force microscopy under equivalent indentation experimental conditions. The different chemical composition of these two bulk metallic glasses produced variant tendencies for displacement serrated flow to occur during the loading process. The nanoindentation strain rate was calculated as a function of indentation displacement in order to verify the occurrence of displacement serrated flow at different loading rates. Atomic force microscopy revealed decreasing numbers of discrete shear bands around the indentationmore » sites as loading rates increased from 0.025 to 2.5 mNs{sup −1}. Variations in plastic deformation behaviors between Ni and Zr-based glasses materials can be explained by the different metastable microstructures and thermal stabilities of the two materials. The mechanism governing plastic deformation of these metallic glasses was analyzed in terms of an established model of the shear transformation zone. - Highlights: • Plastic deformation of Ni- and Zr-based BMG is studied under identical conditions • Zr-based BMG undergoes a greater extent of plastic deformation than Ni-based BMG • Nanoindentation strain rate is studied to clarify variation in plastic deformation • Metastable microstructure, thermal stability affect BMG plastic deformation.« less

  3. Deformation mechanisms during nanoindentation of sodium borosilicate glasses of nuclear interest.

    PubMed

    Kilymis, D A; Delaye, J-M

    2014-07-07

    In this paper we analyze results of Molecular Dynamics simulations of Vickers nanoindentation, performed for sodium borosilicate glasses of interest in the nuclear industry. Three glasses have been studied in their pristine form, as well as a disordered one that is analogous to the real irradiated glass. We focused in the behavior of the glass during the nanoindentation in order to reveal the mechanisms of deformation and how they are affected by microstructural characteristics. Results have shown a strong dependence on the SiO2 content of the glass, which promotes densification due to the open structure of SiO4 tetrahedra and also due to the strength of Si-O bonds. Densification for the glasses is primarily expressed by the relative decrease of the Si-O-Si and Si-O-B angles, indicating rotation of the structural units and decrease of free volume. The increase of alkali content on the other hand results to higher plasticity of the matrix and increased shear flow. The most important effect on the deformation mechanism of the disordered glasses is that of the highly depolymerized network that will also induce shear flow and, in combination with the increased free volume, will result in the decreased hardness of these glasses, as has been previously observed.

  4. Interfacial diffusion aided deformation during nanoindentation

    DOE PAGES

    Samanta, Amit; E., Weinan

    2015-07-06

    Nanoindentation is commonly used to quantify the mechanical response of material surfaces. Despite its widespread use, a detailed understanding of the deformation mechanisms responsible for plasticity during these experiments has remained elusive. Nanoindentation measurements often show stress values close to a material’s ideal strength which suggests that dislocation nucleation and subsequent dislocation activity dominates the deformation. However, low strain-rate exponents and small activation volumes have also been reported which indicates high temperature sensitivity of the deformation processes. Using an order parameter aided temperature accelerated sampling technique called adiabatic free energy dynamics [J. B. Abrams and M. E. Tuckerman, J. Phys.more » Chem. B, 112, 15742 (2008)], and molecular dynamics we have probed the diffusive mode of deformation during nanoindentation. Localized processes such as surface vacancy and ad-atom pair formation, vacancy diffusion are found to play an important role during indentation. Furthermore, our analysis suggests a change in the dominant deformation mode from dislocation mediated plasticity to diffusional flow at high temperatures, slow indentation rates and small indenter tip radii.« less

  5. A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeisig, J., E-mail: j.zeisig@ifw-dresden.de; Hufenbach, J.; Wendrock, H.

    2016-04-04

    Micro- and nanoindentation experiments were conducted to investigate the deformation mechanisms in a Fe79.4Cr13Mo5V1C1.6 (wt. %) cast alloy. This alloy consists of an as cast microstructure mainly composed of austenite, martensite, and a complex carbide network. During microhardness testing, metastable austenite transforms partially into martensite confirmed by electron backscatter diffraction. For nanoindentation tests, two different indenter geometries were applied (Berkovich and cube corner type). Load-displacement curves of nanoindentation in austenitic dendrites depicted pop-ins after transition into plastic deformation for both nanoindenters. Characterizations of the region beneath a nanoindent by transmission electron microscopy revealed a martensitic transformation as an activated deformationmore » mechanism and suggest a correlation with the pop-in phenomena of the load-displacement curves. Furthermore, due to an inhomogeneous chemical composition within the austenitic dendrites, more stabilized regions deform by mechanical twinning. This additional deformation mechanism was only observed for the cube corner indenter with the sharper geometry since higher shear stresses are induced beneath the contact area.« less

  6. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    DOE PAGES

    Schwarm, Samuel C.; Kolli, R. Prakash; Aydogan, Eda; ...

    2016-11-03

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in themore » γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).« less

  7. Characterization of phase properties and deformation in ferritic-austenitic duplex stainless steels by nanoindentation and finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwarm, Samuel C.; Kolli, R. Prakash; Aydogan, Eda

    The phase properties and deformation behavior of the δ–ferrite and γ–austenite phases of CF–3 and CF–8 cast duplex stainless steels were characterized by nanoindentation and microstructure-based finite element method (FEM) models. We evaluated the elastic modulus of each phase and the results indicate that the mean elastic modulus of the δ–ferrite phase is greater than that of the γ–austenite phase, and the mean nanoindentation hardness values of each phase are approximately the same. Furthermore, the elastic FEM model results illustrate that greater von Mises stresses are located within the δ–ferrite phase, while greater von Mises strains are located in themore » γ–austenite phase in response to elastic deformation. The elastic moduli calculated by FEM agree closely with those measured by tensile testing. Finally, the plastically deformed specimens exhibit an increase in misorientation, deformed grains, and subgrain structure formation as measured by electron backscatter diffraction (EBSD).« less

  8. Microstructure and nanoindentation of the rostrum of Curculio longinasus Chittenden, 1927 (Coleoptera: Curculionidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Sudhanshu S.

    2016-08-15

    The rostrum is an extension of the cuticle of the head of weevils (Coleoptera: Curculionidae) and is often used to bore holes for oviposition (the process of laying eggs) into host plant tissue where larval development occurs. In members of the genus Curculio Linnaeus, 1758, the rostrum is long, slender, and strongly curved, but is nevertheless used to excavate straight bore-holes in the fruit of various host plants, through significant deformation of this structure. In this study, scanning electron microscopy (SEM) was used to examine the rostrum of Curculio longinasus Chittenden, 1927, leading to a microstructural model that describes itsmore » deformation behavior. Specifically, we used the continuous stiffness measurement (CSM) technique in nanoindentation to measure the Young's modulus and hardness of rostrum. The values of Young's modulus and hardness for the endocuticle were measured to be 8.91 ± 0.93 GPa and 558 ± 60 MPa, respectively. These results are critical for generating accurate finite element models of the head's mechanical behavior while it undergoes deformation. - Highlights: •SEM was used to examine the rostrum of Curculio longinasus Chittenden, 1927. •Nanoindentation to measure the Young's modulus and hardness of rostrum. •Results are critical for finite element models of the head's mechanical behavior.« less

  9. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1997-12-31

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if XRDCD could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material.more » Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels.« less

  10. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fourspring, P.M.; Pangborn, R.N.

    1996-06-01

    X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life ofmore » the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.« less

  11. An x-ray diffraction study of microstructural deformation induced by cyclic loading of selected steel

    NASA Astrophysics Data System (ADS)

    Fourspring, Patrick Michael

    X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.

  12. The deformation of gum metal under nanoindentation and sub-micron pillar compression

    NASA Astrophysics Data System (ADS)

    Withey, Elizabeth Ann

    Reaching ideal strength has proven to be difficult in most materials. Dislocation slip, phase transformations, twinning, and fracture all tend to occur at stresses well below the ideal strength of a material. Only on very small scales has it been possible to approach ideal strength. Thus, it was of great interest when a set of beta-Ti alloys, Gum Metal, were found to have a bulk yield strength close to half of its ideal strength. However, some recent studies have questioned the reliability of this claim. Several studies have suggested Gum Metal deforms by dislocation slip. Others have suggested the possibility of transformation-induced plasticity. The present study was undertaken in order to help clarify if and how Gum Metal can reach ideal strength. Two different experiments, ex situ nanoindentation and quantitative in situ nanopillar compression in a transmission electron microscope to correlate real-time deformation behavior, were performed on a single composition of Gum Metal, Ti-23Nb-0.7Ta-2Zr-1.20 at. %, obtained from Toyota Central R&D Laboratories. Nanoindented specimens were thinned from the bottom surface until the pits of multiple indentations became electron-transparent allowing for qualitative analysis of the deformation microstructure in both fully cold-worked and solution-treated specimens. Real-time load-displacement behavior from the nanopillar compression tests was correlated with real-time video recorded during each compression to determine both the compressive strength of each pillar and the timing and strengths of different deformation behaviors observed. Combining the results from both experiments provided several important conclusions. First, Gum Metal approaches and can attain ideal strength in nanopillars regardless of processing condition. While dislocations exist in Gum Metal, they can be tightly pinned by obstacles with spacing less than ˜20 nm, which should inhibit their motion at strengths below the ideal shear strength. The plastic

  13. Deformation-Induced Microstructural Banding in TRIP Steels

    NASA Astrophysics Data System (ADS)

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-05-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  14. Deformation-Induced Microstructural Banding in TRIP Steels

    NASA Astrophysics Data System (ADS)

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-07-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  15. Advanced Nanoindentation Testing for Studying Strain-Rate Sensitivity and Activation Volume

    NASA Astrophysics Data System (ADS)

    Maier-Kiener, Verena; Durst, Karsten

    2017-11-01

    Nanoindentation became a versatile tool for testing local mechanical properties beyond hardness and modulus. By adapting standard nanoindentation test methods, simple protocols capable of probing thermally activated deformation processes can be accomplished. Abrupt strain-rate changes within one indentation allow determining the strain-rate dependency of hardness at various indentation depths. For probing lower strain-rates and excluding thermal drift influences, long-term creep experiments can be performed by using the dynamic contact stiffness for determining the true contact area. From both procedures hardness and strain-rate, and consequently strain-rate sensitivity and activation volume can be reliably deducted within one indentation, permitting information on the locally acting thermally activated deformation mechanism. This review will first discuss various testing protocols including possible challenges and improvements. Second, it will focus on different examples showing the direct influence of crystal structure and/or microstructure on the underlying deformation behavior in pure and highly alloyed material systems.

  16. TEM-nanoindentation studies of semiconducting structures.

    PubMed

    Le Bourhis, E; Patriarche, G

    2007-01-01

    This paper reviews the application of nanoindentation coupled with transmission electron microscopy (TEM) to investigations of the plastic behaviour of semiconducting structures and its implication for device design. Instrumented nanoindentation has been developed to extract the mechanical behaviour of small volumes scaled to those encountered in semiconductor heterostructures. We illustrate that TEM is a powerful complementary tool for the study of local plasticity induced by nanoindentation. TEM-nanoindentation allows for detailed understanding of the plastic deformation in semiconducting structures and opens practical routes for improvement of devices. Performances of heterostructures are deteriously affected by dislocations that relax the lattice mismatched layers. Different ways to obtain compliant substructures are being developed in order to concentrate the plastic relaxation underneath the heterostructure. Such approaches allow for mechanical design of micro- and opto-electronic devices to be considered throughout the fabrication process.

  17. Durability of crystalline phase in concrete microstructure modified by the mineral powders: evaluation by nanoindentation tests

    NASA Astrophysics Data System (ADS)

    Rajczakowska, Magdalena; Łydżba, Dariusz

    2016-03-01

    This paper presents the nanoindentation investigation of the evolution of concrete microstructure modified by the Internal Crystallization Technology mineral powders. The samples under study were retrieved from a fragment of a circular concrete lining of the vertical mine shaft at a depth of approximately 1,000 m. Due to the aggressive environment and exposure to contaminated water, the internal surface of the structure was deteriorated, decreasing its strength significantly. The mineral powders were applied directly on the surface lining. The specimens were investigated one month, three months and one year after the application of the aforementioned substance in order to verify the time dependence of the strengthening processes and durability of the crystalline phase. The microstructural changes of concrete were assessed with the use of nanoindentation technique. The testing procedure involved including the previously cut specimens in the epoxy resin and grinding and polishing in order to reduce the surface roughness. As a result of the nanoindentation tests the hardness as well as Young's modulus of the material were evaluated. The results were then compared and statistically analyzed. As a consequence, the disintegration time of the crystalline network in the pores of concrete was identified.

  18. Deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass during nanoindentation

    NASA Astrophysics Data System (ADS)

    Fang, Qihong; Yi, Ming; Li, Jia; Liu, Bin; Huang, Zaiwang

    2018-06-01

    The deformation behaviors of Cu29Zr32Ti15Al5Ni19 high entropy bulk metallic glass (HE-BMG) during the nanoindentation are presented via the large-scale molecular dynamics (MD) simulations. The indentation tests are carried out using spherical rigid indenter to investigate the microstructural evolution on the mechanical properties of HE-BMGs in terms of shear strain, indentation force, and surface morphology as well as radial distribution function (RDF). Based on the Hertzian fitting the load-displacement curve, HE-BMG Cu29Zr32Ti15Al5Ni19 has the Young's modulus of 93.1 GPa and hardness of 8.8 GPa. The indentation force requiring for the continual increasing contacted area between the indenter and the substrate goes up with the increasing of indentation depth. In addition, the symmetrical distribution of atomic displacement reveals the isotropic of HE-BMG after the indentation treatment. In the deformation region, the Al element would lead to the serious fluctuation in the first peak of RDF, which is much stronger than the other elements. The severe distortion from the atomic size difference maybe reduce the activation energy to the occurrence of shear deformation in HE-BMG, leading to the transition from brittle to ductile observed by the whole sliding of the local atom group. Through the indentation load-displacement curves at various temperatures, the softening of HE-BMG at high temperatures is in qualitative agreement with the experimental findings. Moreover, this effective strategy is used to accelerate the discovery of excellent mechanical properties of HE-BMGs by means of MD simulation, as well as understand the fundamental nanoindentation response of HE-BMGs.

  19. An in vitro study of the microstructure, composition and nanoindentation mechanical properties of remineralizing human dental enamel

    NASA Astrophysics Data System (ADS)

    Arsecularatne, J. A.; Hoffman, M.

    2014-08-01

    This paper describes the results of an in vitro investigation on the interrelations among microstructure, composition and mechanical properties of remineralizing human dental enamel. Polished enamel samples have been demineralized for 10 min in an acetic acid solution (at pH 3) followed by remineralization in human saliva for 30 and 120 min. Microstructure variations of sound, demineralized and remineralized enamel samples have been analysed using focused ion beam, scanning electron microscopy and transmission electron microscopy, while their compositions have been analysed using energy dispersive x-ray. Variations in the mechanical properties of enamel samples have been assessed using nanoindentation. The results reveal that, under the selected conditions, only partial remineralization of the softened enamel surface layer occurs where some pores remain unrepaired. As a result, while the nanoindentation elastic modulus shows an improvement following remineralization, hardness does not.

  20. Modeling and Simulation of Nanoindentation

    NASA Astrophysics Data System (ADS)

    Huang, Sixie; Zhou, Caizhi

    2017-11-01

    Nanoindentation is a hardness test method applied to small volumes of material which can provide some unique effects and spark many related research activities. To fully understand the phenomena observed during nanoindentation tests, modeling and simulation methods have been developed to predict the mechanical response of materials during nanoindentation. However, challenges remain with those computational approaches, because of their length scale, predictive capability, and accuracy. This article reviews recent progress and challenges for modeling and simulation of nanoindentation, including an overview of molecular dynamics, the quasicontinuum method, discrete dislocation dynamics, and the crystal plasticity finite element method, and discusses how to integrate multiscale modeling approaches seamlessly with experimental studies to understand the length-scale effects and microstructure evolution during nanoindentation tests, creating a unique opportunity to establish new calibration procedures for the nanoindentation technique.

  1. Spherical nanoindentation study of the deformation micromechanisms of LiTaO{sub 3} single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anasori, B.; Barsoum, M. W.; Sickafus, K. E.

    2011-07-15

    Herein, spherical nanoindentation (NI) was used to investigate the room temperature deformation behavior of C-plane LiTaO{sub 3} single crystals loaded along the [0001] direction as a function of ion irradiation. When the NI load-displacement curves of 3 different nanoindenter radii (1.4 {mu}m, 5 {mu}m, and 21 {mu}m) were converted to NI stress-strain curves, good agreement between them was found. The surface first deforms elastically - with a Young's modulus of 205 {+-} 5 GPa, calculated from the stiffness versus contact radii curves and 207 {+-} 3 GPa measured using a Berkovich tip - and then plastically deforms at {approx_equal} 6more » GPa. Repeated loading into the same location results in large, reproducible, fully reversible, nested hysteresis loops attributed to the formation of incipient kink bands (IKBs). The latter are coaxial fully reversible dislocation loops that spontaneously shrink when the load is removed. The IKBs most probably nucleate within the (1012) twins that form near the surface. The sharper radii resulted in twin nucleation at lower stresses. The changes in the reversible loops' shape and areas can be related to the width of the twins that form. The latter were proportional to the nanoindenter tip radii and confirmed by scanning electron microscopy and by the fact that larger threshold stresses were needed for IKB nucleation with the smaller tip sizes. No effect of irradiation was observed on the NI response, presumably because of the mildness of the irradiation damage.« less

  2. The evolution of machining-induced surface of single-crystal FCC copper via nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Huang, Hu; Zhao, Hongwei; Ma, Zhichao; Yang, Yihan; Hu, Xiaoli

    2013-05-01

    The physical properties of the machining-induced new surface depend on the performance of the initial defect surface and deformed layer in the subsurface of the bulk material. In this paper, three-dimensional molecular dynamics simulations of nanoindentation are preformed on the single-point diamond turning surface of single-crystal copper comparing with that of pristine single-crystal face-centered cubic copper. The simulation results indicate that the nucleation of dislocations in the nanoindentation test on the machining-induced surface and pristine single-crystal copper is different. The dislocation embryos are gradually developed from the sites of homogeneous random nucleation around the indenter in the pristine single-crystal specimen, while the dislocation embryos derived from the vacancy-related defects are distributed in the damage layer of the subsurface beneath the machining-induced surface. The results show that the hardness of the machining-induced surface is softer than that of pristine single-crystal copper. Then, the nanocutting simulations are performed along different crystal orientations on the same crystal surface. It is shown that the crystal orientation directly influences the dislocation formation and distribution of the machining-induced surface. The crystal orientation of nanocutting is further verified to affect both residual defect generations and their propagation directions which are important in assessing the change of mechanical properties, such as hardness and Young's modulus, after nanocutting process.

  3. Phase transformation dependence on initial plastic deformation mode in Si via nanoindentation

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Williams, James S.; ...

    2016-09-30

    Silicon in its diamond-cubic phase is known to phase transform to a technologically interesting mixture of the body-centred cubic and rhombohedral phases under nanoindentation pressure. In this study, we demonstrate that during plastic deformation the sample can traverse two distinct pathways, one that initially nucleates a phase transformation while the other initially nucleates crystalline defects. These two pathways remain distinct even after sufficient pressure is applied such that both deformation mechanisms are present within the sample. Here, it is further shown that the indents that initially nucleate a phase transformation generate larger, more uniform volumes of the phase transformed materialmore » than indents that initially nucleate crystalline defects.« less

  4. Direct observation of twin deformation in YBa2Cu3O7-x thin films by in situ nanoindentation in TEM

    NASA Astrophysics Data System (ADS)

    Lee, Joon Hwan; Zhang, Xinghang; Wang, Haiyan

    2011-04-01

    The deformation behaviors of YBa2Cu3O7-x (YBCO) thin films with twinning structures were studied via in situ nanoindentation experiments in a transmission electron microscope. The YBCO films were grown on SrTiO3 (001) substrates by pulsed laser deposition. Both ex situ (conventional) and in situ nanoindentation were conducted to reveal the deformation of the YBCO films from the directions perpendicular and parallel to the twin interfaces. The hardness measured perpendicular to the twin interfaces is ˜50% and 40% higher than that measured parallel to the twin interfaces ex situ and in situ, respectively. Detailed in situ movie analysis reveals that the twin structures play an important role in deformation and strengthening mechanisms in YBCO thin films.

  5. Effect of deformation schedule on the microstructure and mechanical properties of a thermomechanically processed C-Mn-Si transformation-induced plasticity steel

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2003-08-01

    Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.

  6. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2

    NASA Astrophysics Data System (ADS)

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo

    2018-04-01

    The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.

  7. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe 2As 2

    DOE PAGES

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.; ...

    2018-04-10

    In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less

  8. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe 2As 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.

    In this paper, the plastic deformation and fracture mechanisms in single-crystalline CaFe 2As 2 has been studied using nanoindentation and density functional theory simulations. CaFe 2As 2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe 2As 2 has an atomic-scalemore » layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe 2As 2 layers.« less

  9. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  10. Suppression of nanoindentation-induced phase transformation in crystalline silicon implanted with hydrogen

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet

    2017-09-01

    In this paper the effect of hydrogen implantation in silicon on nanoindentation-induced phase transformation is investigated. Hydrogen ions were implanted in silicon through 300 nm thick oxide with double energy implantation (75 and 40 keV). For both energies implantation dose was 4 × 1016 cm-2. Some samples were thermally annealed at 400 °C. The micro-Raman spectroscopy was applied on nanoindentation imprints and the obtained results were related to the pop out/elbow appearances in nanoindentatioin unloading-displacement curves. The Raman spectroscopy revealed a suppression of Si-XII and Si-III phases and formation of a-Si in the indents of hydrogen implanted Si. The high-resolution x-ray diffraction measurements were taken to support the analysis of silicon phase formation during nanoindentation. Implantation induced strain, high hydrogen concentration, and platelets generation were found to be the factors that control suppression of c-Si phases Si-XII and Si-III, as well as a-Si phase enhancement during nanoindentation. [Figure not available: see fulltext.

  11. The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni

    DOE PAGES

    Chen, Tianyi; Tan, Lizhen; Lu, Zizhe; ...

    2017-07-26

    Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less

  12. Deformation-resembling microstructure created by fluid-mediated dissolution-precipitation reactions.

    PubMed

    Spruzeniece, Liene; Piazolo, Sandra; Maynard-Casely, Helen E

    2017-01-27

    Deformation microstructures are widely used for reconstructing tectono-metamorphic events recorded in rocks. In crustal settings deformation is often accompanied and/or succeeded by fluid infiltration and dissolution-precipitation reactions. However, the microstructural consequences of dissolution-precipitation in minerals have not been investigated experimentally. Here we conducted experiments where KBr crystals were reacted with a saturated KCl-H 2 O fluid. The results show that reaction products, formed in the absence of deformation, inherit the general crystallographic orientation from their parents, but also display a development of new microstructures that are typical in deformed minerals, such as apparent bending of crystal lattices and new subgrain domains, separated by low-angle and, in some cases, high-angle boundaries. Our work suggests that fluid-mediated dissolution-precipitation reactions can lead to a development of potentially misleading microstructures. We propose a set of criteria that may help in distinguishing such microstructures from the ones that are created by crystal-plastic deformation.

  13. Nanoindentation of silicon implanted with hydrogen: effect of implantation dose on silicon’s mechanical properties and nanoindentation-induced phase transformation

    NASA Astrophysics Data System (ADS)

    Jelenković, Emil V.; To, Suet; Goncharova, Lyudmila V.; Wong, Sing Fai

    2017-07-01

    Implantation of hydrogen in single-crystal silicon (c-Si) is known to affect its machining. However, very little is reported on the material and mechanical properties of hydrogen-implanted silicon (Si). In this article, near-surface regions (~0-500 nm) of lightly doped (1 0 0) Si were modified by varying the hydrogen concentration using ion implantation. The maximum hydrogen concentration was varied from ~4  ×  1020 to ~3.2  ×  1021 cm-3. The implanted Si was investigated by nanoindentation. From the dynamic nanoindentation test, it was found that in hydrogen-implanted Si hardness is increased significantly, while the elastic modulus is reduced. The nanoindentation-induced Si phase transformation was studied under different load/unload rates and loads. Raman spectroscopy revealed that the hydrogen implantation tends to suppress Si-XII and Si-III phases and facilitates amorphous Si formation during the unloading stage of nanoindentation. Both the mechanical properties and phase transformations were qualitatively related not only to the hydrogen concentration, but also to the implantation-generated defects and strain.

  14. Mechanical Characterization of Nanoporous Thin Films by Nanoindentation and Laser-induced Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Chow, Gabriel

    Thin films represent a critical sector of modern engineering that strives to produce functional coatings at the smallest possible length scales. They appear most commonly in semiconductors where they form the foundation of all electronic circuits, but exist in many other areas to provide mechanical, electrical, chemical, and optical properties. The mechanical characterization of thin films has been a continued challenge due foremost to the length scales involved. However, emerging thin films focusing on materials with significant porosity, complex morphologies, and nanostructured surfaces produce additional difficulties towards mechanical analysis. Nanoindentation has been the dominant thin film mechanical characterization technique for the last decade because of the quick results, wide range of sample applicability, and ease of sample preparation. However, the traditional nanoindentation technique encounters difficulties for thin porous films. For such materials, alternative means of analysis are desirable and the lesser known laser-induced surface acoustic wave technique (LiSAW) shows great potential in this area. This dissertation focuses on studying thin, porous, and nanostructured films by nanoindentation and LiSAW techniques in an effort to directly correlate the two methodologies and to test the limits and applicabilities of each technique on challenging media. The LiSAW technique is particularly useful for thin porous films because unlike indentation, the substrate is properly accounted for in the wave motion analysis and no plastic deformation is necessary. Additionally, the use of lasers for surface acoustic wave generation and detection allows the technique to be fully non-contact. This is desirable in the measurement of thin, delicate, and porous films where physical sample probing may not be feasible. The LiSAW technique is also valuable in overcoming nanoscale roughness, particularly for films that cannot be mechanically polished, since typical SAW

  15. Hardness and deformation mechanisms of highly elastic carbon nitride thin films as studied by nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hainsworth, S.V.; Page, T.F.; Sjoestroem, H.

    1997-05-01

    Carbon nitride (CN{sub x}) thin films (0.18 < x < 0.43), deposited by magnetron sputtering of C in a N{sub 2} discharge, have been observed to be extremely resistant to plastic deformation during surface contact (i.e., exhibit a purely elastic response over large strains). Elastic recoveries as high as 90% have been measured by nanoindentation. This paper addresses the problems of estimating Young`s modulus (E) and hardness (H) in such cases and shows how different strategies involving analysis of both loading and unloading curves and measuring the work of indentation each present their own problems. The results of some cyclicmore » contact experiments are also presented and possible deformation mechanisms in the fullerene-like CN{sub x} structures discussed.« less

  16. In Situ TEM Nanoindentation Studies on Stress-Induced Phase Transformations in Metallic Materials

    DOE PAGES

    Liu, Y.; Wang, H.; Zhang, X.

    2015-11-30

    Though abundant phase transformations are in general thermally driven processes, there are many examples wherein stresses can induce phase transformations. We applied numerous in situ techniques, such as in situ x-ray diffraction and neutron diffraction in order to reveal phase transformations. Recently, an in situ nanoindentation technique coupled with transmission electron microscopy demonstrated the capability to directly correlating stresses with phase transformations and microstructural evolutions at a submicron length scale. We briefly review in situ studies on stress-induced diffusional and diffusionless phase transformations in amorphous CuZrAl alloy and NiFeGa shape memory alloy. Moreover, in the amorphous CuZrAl, in situ nanoindentationmore » studies show that the nucleation of nanocrystals (a diffusional process) occurs at ultra-low stresses manifested by a prominent stress drop. In the NiFeGa shape memory alloy, two distinctive types of martensitic (diffusionless) phase transformations accompanied by stress plateaus are observed, including a reversible gradual phase transformation at low stress levels, and an irreversible abrupt phase transition at higher stress levels.« less

  17. Deformation Behavior and Structure of i-Al-Cu-Fe Quasicrystalline Alloy in Vicinity of Nanoindenter Indentation

    NASA Astrophysics Data System (ADS)

    Shalaeva, E. V.; Selyanin, I. O.; Smirnova, E. O.; Smirnov, S. V.; Novachek, D. D.

    2018-02-01

    The nanoindentation tests have been carried out for the quasicrystalline polygrain Al62.4Cu25.3Fe12.3 alloy with the icosahedral structure i; the load P-displacement h diagrams have been used to estimate the contributions of plastic deformation (monotonic and intermittent), and the structures of the transverse microscopic sections have been studied in the vicinity of indentations by electron microscopy. It is shown that several systems of deformation bands are formed in the elasto-plastic zone in the vicinity of the indentations along the close-packed planes of the i lattice with the five-fold and two-fold symmetry axes; the bands often begin from cracks and manifest the signs of the dislocation structure. The traces of the phase transformation with the formation of the β-phase areas are observed only in a thin layer under an indenter. The effects of intermittent deformation are up to 50% of the total inelastic deformation and are related to the plastic behavior of the quasicrystal-activation and passage of deformation bands and also the formation of undersurface micro- and nanosized cracks.

  18. Berkovich Nanoindentation on AlN Thin Films

    PubMed Central

    2010-01-01

    Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm−3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young’s modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young’s modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple “pop-ins” observed in the load–displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load–displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices. PMID:20672096

  19. Berkovich Nanoindentation on AlN Thin Films.

    PubMed

    Jian, Sheng-Rui; Chen, Guo-Ju; Lin, Ting-Chun

    2010-03-31

    Berkovich nanoindentation-induced mechanical deformation mechanisms of AlN thin films have been investigated by using atomic force microscopy (AFM) and cross-sectional transmission electron microscopy (XTEM) techniques. AlN thin films are deposited on the metal-organic chemical-vapor deposition (MOCVD) derived Si-doped (2 × 1017 cm-3) GaN template by using the helicon sputtering system. The XTEM samples were prepared by means of focused ion beam (FIB) milling to accurately position the cross-section of the nanoindented area. The hardness and Young's modulus of AlN thin films were measured by a Berkovich nanoindenter operated with the continuous contact stiffness measurements (CSM) option. The obtained values of the hardness and Young's modulus are 22 and 332 GPa, respectively. The XTEM images taken in the vicinity regions just underneath the indenter tip revealed that the multiple "pop-ins" observed in the load-displacement curve during loading are due primarily to the activities of dislocation nucleation and propagation. The absence of discontinuities in the unloading segments of load-displacement curve suggests that no pressure-induced phase transition was involved. Results obtained in this study may also have technological implications for estimating possible mechanical damages induced by the fabrication processes of making the AlN-based devices.

  20. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  1. Investigation of Interface Bonding Mechanism of an Explosively Welded Tri-Metal Titanium/Aluminum/Magnesium Plate by Nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, T. T.; Wang, W. X.; Zhou, J.; Cao, X. Q.; Yan, Z. F.; Wei, Y.; Zhang, W.

    2018-04-01

    A tri-metal titanium/aluminum/magnesium (Ti/Al/Mg) cladding plate, with an aluminum alloy interlayer plate, was fabricated for the first time by explosive welding. Nanoindentation tests and associated microstructure analysis were conducted to investigate the interface bonding mechanisms of the Ti/Al/Mg cladding plate. A periodic wavy bonding interface (with an amplitude of approximately 30 μm and a wavelength of approximately 160 μm) without a molten zone was formed between the Ti and Al plates. The bonding interface between the Al and the Mg demonstrated a similar wavy shape, but the wave at this location was much larger with an amplitude of approximately 390 μm and a wavelength of approximately 1580 μm, and some localized melted zones also existed at this location. The formation of the wavy interface was found to result from a severe deformation at the interface, which was caused by the strong impact or collision. The nanoindentation tests showed that the material hardness decreased with increasing distance from the bonding interface. Material hardness at a location was found to be correlated with the degree of plastic deformation at that site. A larger plastic deformation was correlated with an increase in hardness.

  2. Insights into the deformation behavior of the CrMnFeCoNi high-entropy alloy revealed by elevated temperature nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.

    A CrMnFeCoNi high-entropy alloy was investigated by nanoindentation from room temperature to 400 °C in the nanocrystalline state and cast plus homogenized coarse-grained state. In the latter case a < 100 >-orientated grain was selected by electron back scatter diffraction for nanoindentation. It was found that hardness decreases more strongly with increasing temperature than Young’s modulus, especially for the coarse-grained state. The modulus of the nanocrystalline state was slightly higher than that of the coarse-grained one. For the coarse-grained sample a strong thermally activated deformation behavior was found up to 100–150 °C, followed by a diminishing thermally activated contribution atmore » higher testing temperatures. For the nanocrystalline state, different temperature dependent deformation mechanisms are proposed. At low temperatures, the governing processes appear to be similar to those in the coarse-grained sample, but with increasing temperature, dislocation-grain boundary interactions likely become more dominant. Finally, at 400 °C, decomposition of the nanocrystalline alloy causes a further reduction in thermal activation. Furthermore, this is rationalized by a reduction of the deformation controlling internal length scale by precipitate formation in conjunction with a diffusional contribution.« less

  3. Microstructural and mechanical challenges in biomedical NiTi

    NASA Astrophysics Data System (ADS)

    Franz-Xaver Wagner, Martin

    2010-07-01

    The mechanical behaviour of NiTi shape memory alloys superficially resembles that of certain biomaterials, such as bones or tissues: By virtue of a reversible martensitic phase transformation, NiTi alloys can recover relatively large strains; uniaxial stress-strain curves exhibit constant stress-plateaus (at several hundreds of MPa, depending on alloy composition and testing temperature) associated with the phase transition. These novel functional properties, in combination with high mechanical strength in ultra-fine grained NiTi and good biocompatibility, are utilized in various implants and medical devices. Yet - and quite similar to hierarchically structured biomaterials - the deformation behaviour of NiTi is intricately linked to distinct deformation processes on several length scales, and there remain significant gaps in our understanding of the microstructure-property relations. In the present paper, recent experimental and theoretical results from first-principles calculations, micromechanical modelling and nanoindentation are discussed with a focus on the role of inelastic deformation processes, twin boundaries and the interaction of plastic deformation and stress-induced phase transformations. These novel findings challenge our understanding of the fundamental mechanical properties of NiTi. They highlight the importance of inelastic deformation mechanisms for the overall mechanical properties and strength of NiTi.

  4. Deformation-Induced Dynamic Precipitation and Resulting Microstructure in a Mg-Zn-Ca Alloy

    NASA Astrophysics Data System (ADS)

    Du, Yuzhou; Zheng, Mingyi; Jiang, Bailing; Zhou, Kesong

    2018-05-01

    The microstructure of an Mg-Zn-Ca extrusion was investigated by transmission electron microscopy, and the interaction between dynamic precipitation and dynamic recrystallization was analyzed. The results showed that dynamic precipitation significantly affected the microstructure of the as-extruded Mg-Zn-Ca alloy. The pinning effects of precipitates on dislocations effectively prohibited dynamic recrystallization processes, while the grain boundary precipitate Ca2Mg6Zn3, inhibited the growth of dynamically recrystallized grains. Consequently, a bimodal microstructure with fine dynamically recrystallized (DRXed) grains and elongated deformed regions was obtained for the Mg-Zn-Ca extrusion. High-resolution transmission electron microscopy indicated that the intragranular precipitate MgZn2 had a crystal orientation relationship with α-Mg in the form of (0002)Mg//(10-13)MgZn2 and [1-100]Mg//[1-210]MgZn2, which was beneficial for strength improvement.

  5. Microstructures and Lattice Preferred Orientations in Experimentally Deformed Granulites

    NASA Astrophysics Data System (ADS)

    Miao, S.; Zhou, Y.

    2017-12-01

    We analysed microstructures and lattice preferred orientations (LPO) on experimentally deformed natural granulites in order to understand the relationship between deformation processes and evolving microstructures. The LPO was measured using the scanning electron microscope (SEM)-based electron backscatter diffraction (EBSD) technique. Microstructures were observed by polarized light microscopy and by orientation contrast in the SEM. Natural granulite samples were collected in the Archean lower crust terrane of North China Craton. This granulite is composed of 59% plagioclase (PI) + 21% clinopyroxene (Cpx) +14% orthopyroxene + 5% opaque minerals+1% quartz. The water contents of bulk rocks were in the range 0.10-0.26 wt.%. The average grain size of PI and Cpx were 240 μm and 220 μm, respectively. These samples were deformed in axial compress tests up to 7%-15% shorting at temperatures ranged from 900 ° to 1150 °. Microstructures results in conjunction with some other parameters such as stress exponents indicated that the samples deformed mainly by intragranular microcracking, twinning and dislocation glide with very little recrystallization. The natural sample, without any macroscopic foliation visible, has a significant initial LPO in Cpx corresponding to an "S-type" fabric with the b[010]maximum normal to a foliation plane. PI also has a pre-existing fabric. We compared the LPO of Cpx and PI of experimentally deformed samples with that of undeformed natural samples. It shows that no clear LPO evolution apart from the initial LPO could be attributed to deformation. Even if at a temperature range (eg. above 1100 °) where partial melting occurs, "S-type" fabrics of Cpx have been remained effectively. Deformation in the dislocation creep regime does not alter the initial LPO nor produce a new pattern. This is consistent with previous results, which stated that large strains, at least more than 25% shortening are necessary to overprint a pre-existing LPO in

  6. Nano-deformation behavior of silicon (100) film studied by depth sensing indentation and nanoscratch technique

    NASA Astrophysics Data System (ADS)

    Geetha, D.; Pratyank, R.; Kiran, P.

    2018-04-01

    Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.

  7. Fine grained 304 ASS processed by a severe plastic deformation and subsequent annealing; microstructure and mechanical properties evaluation

    NASA Astrophysics Data System (ADS)

    Salout, Shima Ahmadzadeh; Shirazi, Hasan; Nili-Ahmadabadi, Mahmoud

    2018-01-01

    The current research is an attempt to study the effect of a novel severe plastic deformation technique so called "repetitive corrugation and straightening by rolling" (RCSR) and subsequent annealing on the microstructure and mechanical properties of AISI type 304 austenitic stainless steel. In this study, RCSR process was carried out at 200 °C on the 304 austenitic stainless steel (above Md30 temperature that is about 50 °C for this stainless steel) in order to avoid the formation of martensite phase when a high density of dislocations was introduced into the austenite phase and also high density of mechanical twins was induced in the deformed 304 austenitic stainless steel. Because of relationship between deformation temperature, stacking fault energy (SFE) and mechanisms of deformation. Thereafter subsequently, annealing treatment was applied into deformed structure in order to refine the microstructure of 304 stainless s teel. The specimens were examined by means of optical microscopy (OM), scanning electron microscopy (SEM), tensile and micro-hardness tests. The results indicate that by increasing the cycles of RCSR process (increasing applied strain), further mechanical twins are induced, the hardness and in particular, the yield stress of specimens have been increased.

  8. Modelling of deformation and recrystallisation microstructures in rocks and ice

    NASA Astrophysics Data System (ADS)

    Bons, Paul D.; Evans, Lynn A.; Gomez-Rivas, Enrique; Griera, Albert; Jessell, Mark W.; Lebensohn, Ricardo; Llorens, Maria-Gema; Peternell, Mark; Piazolo, Sandra; Weikusat, Ilka; Wilson, Chris J. L.

    2015-04-01

    Microstructures both record the deformation history of a rock and strongly control its mechanical properties. As microstructures in natural rocks only show the final "post-mortem" state, geologists have attempted to simulate the development of microstructures with experiments and later numerical models. Especially in-situ experiments have given enormous insight, as time-lapse movies could reveal the full history of a microstructure. Numerical modelling is an alternative approach to simulate and follow the change in microstructure with time, unconstrained by experimental limitations. Numerical models have been applied to a range of microstructural processes, such as grain growth, dynamic recrystallisation, porphyroblast rotation, vein growth, formation of mylonitic fabrics, etc. The numerical platform "Elle" (www.elle.ws) in particular has brought progress in the simulation of microstructural development as it is specifically designed to include the competition between simultaneously operating processes. Three developments significantly improve our capability to simulate microstructural evolution: (1) model input from the mapping of crystallographic orientation with EBSD or the automatic fabric analyser, (2) measurement of grain size and crystallographic preferred orientation evolution using neutron diffraction experiments and (3) the implementation of the full-field Fast Fourier Transform (FFT) solver for modelling anisotropic crystal-plastic deformation. The latter enables the detailed modelling of stress and strain as a function of local crystallographic orientation, which has a strong effect on strain localisation such as, for example, the formation of shear bands. These models can now be compared with the temporal evolution of crystallographic orientation distributions in in-situ experiments. In the last decade, the possibility to combine experiments with numerical simulations has allowed not only verification and refinement of the numerical simulation

  9. Evolution of hardness, microstructure, and strain rate sensitivity in a Zn-22% Al eutectoid alloy processed by high-pressure torsion

    NASA Astrophysics Data System (ADS)

    Kawasaki, Megumi; Lee, Han-Joo; Choi, In-Chul; Jang, Jae-il; Ahn, Byungmin; Langdon, Terence G.

    2014-08-01

    Severe plastic deformation (SPD) is an attractive processing method for refining microstructures of metallic materials to give ultrafine grain sizes within the submicrometer to even the nanometer levels. Experiments were conducted to discuss the evolution of hardness, microstructure and strain rate sensitivity, m, in a Zn-22% Al eutectoid alloy processed by high- pressure torsion (HPT). The data from microhardness and nanoindentation hardness measurements revealed that there is a significant weakening in the Zn-Al alloy during HPT despite extensive grain refinement. Excellent room-temperature (RT) plasticity was observed in the alloy after HPT from nanoindentation creep in terms of an increased value of m. The microstructural changes with increasing numbers of HPT turns show a strong correlation with the change in the m value. Moerover, the excellent RT plasticity in the alloy is discussed in terms of the enhanced level of grain boundary sliding and the evolution of microsturucture.

  10. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  11. Effect of Deformation Parameters on Microstructure and Properties During DIFT of X70HD Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhu, Wei; Xiao, Hong; Zhang, Liang-liang; Qin, Hao; Yu, Yue

    2018-02-01

    Grain refinement is a critical approach to improve the strength of materials without damaging the toughness. The grains of deformation-induced ferrite are considerably smaller than those of proeutectoid ferrite. Grain refinement is crucial to the application of deformation-induced ferrite. The composition of ferrite and bainite or martensite is important in controlling the performance of X70HD pipeline steel, and cooling significantly influences the control of their ratio and grain size. By analyzing the static and dynamic phase-transition points using Gleeble-3800 thermal simulator, thermal simulations were performed through two-stage deformations in the austenite zone. Ferrite transformation rules were studied with thermal simulation tests under different deformation and cooling parameters based on the actual production of cumulative deformation. The influence of deformation parameters on the microstructure transformation was analyzed. Numerous fine-grain deformation-induced ferrites were obtained by regulating various parameters, including deformation temperature, strain rate, cooling rate, final cooling temperature and other parameters. Results of metallographic observation and microtensile testing revealed that the selection of appropriate parameters can refine the grains and improve the performance of the X70HD pipeline steel.

  12. Mechanical properties and deformation mechanism of Al2O3 determined from in situ transmission electron microscopy compression

    NASA Astrophysics Data System (ADS)

    Lin, Kai-Peng; Stachiv, Ivo; Fang, Te-Hua

    2017-07-01

    The mechanical properties and deformation mechanism of alumina (Al2O3) ceramic nanopillars and microstructures have been studied using in situ transmission electron microscopy (TEM) compression and nanoindentation experiments. It has been found that the Young’s modulus of Al2O3 nanopillars significantly increases with a decrease of its thickness; it ranges from 54.8 GPa for the nanopillar of radius 175 nm to 347.5 GPa for the one of radius of 75 nm. The hardness of Al2O3 microstructures estimated by the nanoindentation is between 3.19 to 20.60 GPa. The Raman spectra of Al2O3 substrate has a production peak (577.3 cm-1) between 418.3 and 645.2 (cm-1) peaks. The strain hardening behavior of Al2O3 microstructures has been observed and the impact of size on the compressive and bending behavior of Al2O3 micro-pillared structures is also examined and explained.

  13. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    NASA Astrophysics Data System (ADS)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  14. Roles of microstructures on deformation response of 316 stainless steel made by 3D printing

    NASA Astrophysics Data System (ADS)

    Pham, Minh-Son; Hooper, Paul

    2017-10-01

    One of the main challenges in additive manufacturing (AM) of metals is to manufacture high quality materials and ensure the performance of AM materials in service duties. This challenge can only be solved when the relationships between build process parameters, microstructure and deformation behaviour are understood. This present study is part of holistic efforts at Imperial College to reveal such relationships. In this study, we present our study of porosity condition, grain morphology, texture and metastable phases in AM stainless steel 316. To provide samples for mechanical and microstructural study, cylindrical samples of stainless steel 316 were printed by powder-bed laser melting with a bi-directional hatch pattern. Scanning electron microscopy and electron backscattered diffraction were used to investigate fine microstructures (such as grain morphology, texture and crystal phases) after 3D printing and deformation. Subsequently, a detailed 3D structure of columnar grains in as-printed 316 steel is constructed thanks to microscopic observation. Most of grains in as-built samples have a spherical bowl morphology, and being stacked on others to form the columnar structure. Examinations on microstructures show that the small sub-grains in as-printed samples is likely responsible for high yield strength at room temperature (significantly higher than that of conventional steel). In addition, residual stresses after rapid cooling probably promote the deformation-induced twinning that assists the plasticity during deformation, leading to a good ductility of the AM steel (almost as same as that of conventional 316 steel). Currently, a more detailed study is being undertaken to confirm this hypothesis.

  15. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  16. Nano-indentation and laser-induced damage testing in optical multilayer-dielectric gratings [Nanomechanics and laser-induced damage in optical multilayer dielectric gratings

    DOE PAGES

    Mehrotra, K.; Corning Research & Development Corp., Coming, NY; Taylor, B. N.; ...

    2017-03-16

    Here, we demonstrate how a nanomechanical test can be used to generate metrics to complement laser-induced–damage testing (LIDT) measurements and show that differences in optical performance of the gratings (arising from changes in cleaning process and/or fabrication methods) can be related to their mechanical reliability. Data are presented on LIDT measurements in diffractive gratings of silica deposited on optical multilayers. The nano-indentation response of the diffraction gratings is measured in a new mode that allows for the extraction of a measurable metric characterizing the brittleness of the gratings, as well as their ductility. We show that lower LIDT’s are positivelymore » correlated with an increased grating brittleness, and therefore identify a nanomechanical approach to describe LIDT’s. We present extensive numerical simulations of nano-indentation tests and identify different deformation modes including stretching, shear concentration, and bending as precursors to mechanical failure in the nano-indentation test. The effects of geometrical inhomogeneities on enhanced stress generation in these gratings are specifically examined and addressed.« less

  17. Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Hovanski, Yuri

    2015-03-01

    Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less

  18. Hidden secrets of deformation: Impact-induced compaction within a CV chondrite

    NASA Astrophysics Data System (ADS)

    Forman, L. V.; Bland, P. A.; Timms, N. E.; Collins, G. S.; Davison, T. M.; Ciesla, F. J.; Benedix, G. K.; Daly, L.; Trimby, P. W.; Yang, L.; Ringer, S. P.

    2016-10-01

    The CV3 Allende is one of the most extensively studied meteorites in worldwide collections. It is currently classified as S1-essentially unshocked-using the classification scheme of Stöffler et al. (1991), however recent modelling suggests the low porosity observed in Allende indicates the body should have undergone compaction-related deformation. In this study, we detail previously undetected evidence of impact through use of Electron Backscatter Diffraction mapping to identify deformation microstructures in chondrules, AOAs and matrix grains. Our results demonstrate that forsterite-rich chondrules commonly preserve crystal-plastic microstructures (particularly at their margins); that low-angle boundaries in deformed matrix grains of olivine have a preferred orientation; and that disparities in deformation occur between chondrules, surrounding and non-adjacent matrix grains. We find heterogeneous compaction effects present throughout the matrix, consistent with a highly porous initial material. Given the spatial distribution of these crystal-plastic deformation microstructures, we suggest that this is evidence that Allende has undergone impact-induced compaction from an initially heterogeneous and porous parent body. We suggest that current shock classifications (Stöffler et al., 1991) relying upon data from chondrule interiors do not constrain the complete shock history of a sample.

  19. He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl

    NASA Astrophysics Data System (ADS)

    Pouchon, Manuel A.; Chen, Jiachao; Hoffelner, Wolfgang

    2009-05-01

    TiAl is a well known high temperature material with good creep properties. It is investigated as a potential structural material for Generation IV high temperature gas cooled nuclear reactors. The tests are performed with the ABB-2 (Ti-rich TiAl with 2 at.% W) developed by ASEA Brown Boveri Ltd. (ABB). Thin samples are irradiated throughout with 24 MeV 4He2+ ions; the irradiated material is then investigated towards its microstructure and its hardness. The microstructure is studied by transmission electron microscopy and the hardness is investigated using a micro-hardness tester and a nano-indenter. Different effects can be identified. From room to moderate irradiation temperatures, the radiation induced hardening of the material slowly vanishes until the material completely recovers at about 943 K. Beyond this temperature, He-bubble formation seems to harden the material again, until beyond 1200 K a steep increase in hardening is detected. This effect can be correlated with bubbles being identified in the micrographs. The results are consistent and give strong indications to a microstructural development as a function of temperature.

  20. Microstructure and Plastic Deformation of the As-Welded Invar Fusion Zones

    NASA Astrophysics Data System (ADS)

    Yao, D. J.; Zhou, D. R.; Xu, P. Q.; Lu, F. G.

    2017-05-01

    The as-welded Invar fusion zones were fabricated between cemented carbides and carbon steel using a Fe-Ni Invar interlayer and laser welding method. Three regions in the as-welded Invar fusion zones were defined to compare microstructures, and these were characterized and confirmed by scanning electron microscopy and X-ray diffractometry. The structure and plastic deformation mechanism for initial Invar Fe-Ni alloys and the as-welded Invar fusion zones are discussed. (1) After undergoing high-temperature thermal cycles, the microstructure of the as-welded Invar fusion zones contains γ-(Fe, Ni) solid solution (nickel dissolving in γ-Fe) with a face-centered cubic (fcc) crystal structure and mixed carbides (eutectic colonies, mixed carbides between two adjacent grains). The mixed carbides exhibited larger, coarser eutectic microstructures with a decrease in welding speed and an increase in heat input. (2) The structure of the initial Invar and the as-welded Invar is face-centered cubic γ-(Fe, Ni). (3) The as-welded Invar has a larger plastic deformation than initial Invar with an increase in local strain field and dislocation density. Slip deformation is propagated along the (111) plane. This finding helps us to understand microstructure and the formation of dislocation and plastic deformation when the Invar Fe-Ni alloy undergoes a high-temperature process.

  1. High-Throughput Nanoindentation for Statistical and Spatial Property Determination

    NASA Astrophysics Data System (ADS)

    Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.

    2018-04-01

    Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.

  2. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  3. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    DOE PAGES

    Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...

    2018-04-11

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less

  4. Mechanical properties of multilayered films using different nanoindenters.

    PubMed

    Fang, Te-Hua; Wang, Tong Hong; Wu, Jia-Hung

    2010-07-01

    The effects of interface, contact hardness, deformation, and adhesion of Al/Ni multilayered films under nanoindentation were investigated using molecular dynamics (MD) simulations. The results show that the indentation force of the sphere indenter is the largest among nanoindentations using sphere, cone, Vickers, or Berkovich type indenters at the same penetration depth. Force increasing, relaxation and adhesion took place during loading, holding depth and unloading, respectively. The interface occurred along the {111} (110) slip systems and the maximum width of the glide bands was about 1 nm. The reaction force and plastic energy of the indented films are also discussed.

  5. Deformation-related microstructures in magmatic zircon and implications for diffusion

    NASA Astrophysics Data System (ADS)

    Reddy, Steven Michael; Timms, Nicholas E.; Hamilton, Patrick Joseph; Smyth, Helen R.

    2009-02-01

    An undeformed glomeroporphyritic andesite from the Sunda Arc of Java, Indonesia, contains zoned plagioclase and amphibole glomerocrysts in a fine-grained groundmass and records a complex history of adcumulate formation and subsequent magmatic disaggregation. A suite of xenocrystic zircon records Proterozoic and Archaean dates whilst a discrete population of zoned, euhedral, igneous zircon yields a SHRIMP U-Pb crystallisation age of 9.3 ± 0.2 Ma. Quantitative microstructural analysis of zircon by electron backscatter diffraction (EBSD) shows no deformation in the inherited xenocrysts, but intragrain orientation variations of up to 30° in 80% of the young zircon population. These variations are typically accommodated by both progressive crystallographic bending and discrete low angle boundaries that overprint compositional growth zoning. Dispersion of crystallographic orientations are dominantly by rotation about an axis parallel to the zircon c-axis [001], which is coincident with the dominant orientation of misorientation axes of adjacent analysis points in EBSD maps. Less common <100> misorientation axes account for minor components of crystallographic dispersion. These observations are consistent with zircon deformation by dislocation creep and the formation of tilt and twist boundaries associated with the operation of <001>{100} and <100>{010} slip systems. The restriction of deformation microstructures to large glomerocrysts and the young magmatic zircon population, and the absence of deformation within the host igneous rock and inherited zircon grains, indicate that zircon deformation took place within a low-melt fraction (<5% melt), mid-lower crustal cumulate prior to fragmentation during magmatic disaggregation and entrainment of xenocrystic zircons during magmatic decompression. Tectonic stresses within the compressional Sunda Arc at the time of magmatism are considered to be the probable driver for low-strain deformation of the cumulate in the late

  6. Microstructure based hygromechanical modelling of deformation of fruit tissue

    NASA Astrophysics Data System (ADS)

    Abera, M. K.; Wang, Z.; Verboven, P.; Nicolai, B.

    2017-10-01

    Quality parameters such as firmness and susceptibility to mechanical damage are affected by the mechanical properties of fruit tissue. Fruit tissue is composed of turgid cells that keep cell walls under tension, and intercellular gas spaces where cell walls of neighboring cells have separated. How the structure and properties of these complex microstructures are affecting tissue mechanics is difficult to unravel experimentally. In this contribution, a modelling methodology is presented to calculate the deformation of apple fruit tissue affected by differences in structure and properties of cells and cell walls. The model can be used to perform compression experiments in silico using a hygromechanical model that computes the stress development and water loss during tissue deformation, much like in an actual compression test. The advantage of the model is that properties and structure can be changed to test the influence on the mechanical deformation process. The effect of microstructure, turgor pressure, cell membrane permeability, wall thickness and damping) on the compressibility of the tissue was simulated. Increasing the turgor pressure and thickness of the cell walls results in increased compression resistance of apple tissue increases, as do decreasing cell size and porosity. Geometric variability of the microstructure of tissues plays a major role, affecting results more than other model parameters. Different fruit cultivars were compared, and it was demonstrated, that microstructure variations within a cultivar are so large that interpretation of cultivar-specific effects is difficult.

  7. Nanoindentation of Electropolished FeCrAl Alloy Welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan; Aydogan, Eda; Mara, Nathan Allan

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a largermore » reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.« less

  8. Evaluation of the phase properties of hydrating cement composite using simulated nanoindentation technique

    NASA Astrophysics Data System (ADS)

    Gautham, S.; Sindu, B. S.; Sasmal, Saptarshi

    2017-10-01

    Properties and distribution of the products formed during the hydration of cementitious composite at the microlevel are investigated using a nanoindentation technique. First, numerical nanoindentation using nonlinear contact mechanics is carried out on three different phase compositions of cement paste, viz. mono-phase Tri-calcium Silicate (C3S), Di-calcium Silicate (C2S) and Calcium-Silicate-Hydrate (CSH) individually), bi-phase (C3S-CSH, C2S-CSH) and multi-phase (more than 10 individual phases including water pores). To reflect the multi-phase characteristics of hydrating cement composite, a discretized multi-phase microstructural model of cement composite during the progression of hydration is developed. Further, a grid indentation technique for simulated nanoindentation is established, and employed to evaluate the mechanical characteristics of the hydrated multi-phase cement paste. The properties obtained from the numerical studies are compared with those obtained from experimental grid nanoindentation. The influence of composition and distribution of individual phase properties on the properties obtained from indentation are closely investigated. The study paves the way to establishing the procedure for simulated grid nanoindentation to evaluate the mechanical properties of heterogeneous composites, and facilitates the design of experimental nanoindentation.

  9. Microstructural evolution of bainitic steel severely deformed by equal channel angular pressing.

    PubMed

    Nili-Ahmadabadi, M; Haji Akbari, F; Rad, F; Karimi, Z; Iranpour, M; Poorganji, B; Furuhara, T

    2010-09-01

    High Si bainitic steel has been received much of interest because of combined ultra high strength, good ductility along with high wear resistance. In this study a high Si bainitic steel (Fe-0.22C-2.0Si-3.0Mn) was used with a proper microstructure which could endure severe plastic deformation. In order to study the effect of severe plastic deformation on the microstructure and properties of bainitic steel, Equal Channel Angular Pressing was performed in two passes at room temperature. Optical, SEM and TEM microscopies were used to examine the microstructure of specimens before and after Equal Channel Angular Pressing processing. X-ray diffraction was used to measure retained austenite after austempering and Equal Channel Angular Pressing processing. It can be seen that retained austenite picks had removed after Equal Channel Angular Pressing which could attributed to the transformation of austenite to martensite during severe plastic deformation. Enhancement of hardness values by number of Equal Channel Angular Pressing confirms this idea.

  10. Microstructure characterization based on the type of deformed grains in cold-rolled, Cu-added, bake-hardenable steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.S.; Kim, S.I.; Choi, S.-H., E-mail: shihoon@sunchon.ac.kr

    2014-06-01

    The electron backscatter diffraction technique has been used to characterize the microstructure of deformed grains in cold-rolled, Cu-added, bake-hardenable steel. A new scheme based on the kind and number of average orientations, as determined from a unique grain map of the deformed grains, was developed in order to classify deformed grains by type. The α-fiber components, γ-fiber components and random orientations, those which could not be assigned to either γ-fiber or α-fiber components, were used to define the average orientation of unique grains within individual deformed grains. The microstructures of deformed grains in as-rolled specimens were analyzed based on themore » Taylor factor, stored energy, and misorientation. The relative levels and distributions of the Taylor factor, the stored energy and the misorientation were examined in terms of the types of deformed grains. - Highlights: • We characterized the microstructure of Cu-added BH steel using EBSD. • A new scheme was developed in order to classify deformed grains by type. • Stored energy and misorientation are strongly dependent on the type of deformed grains. • Microstructure was examined in terms of the types of deformed grains.« less

  11. In Situ Nanoindentation Studies on Detwinning and Work Hardening in Nanotwinned Monolithic Metals

    DOE PAGES

    Liu, Y.; Li, N.; Bufford, D.; ...

    2015-07-14

    Certain nanotwinned (nt) metals have rare combinations of high mechanical strength and ductility. Here, we review recent in situ nanoindentation studies (using transmission electron microscopes) on the deformation mechanisms of nt face-centered cubic metals including Cu, Ni, and Al with a wide range of stacking fault energy (SFE). Moreover, in nt Cu with low-to-intermediate SFE, detwinning (accompanied by rapid twin boundary migration) occurs at ultralow stress. In Ni with relatively high SFE, coherent {111} twin boundaries lead to substantial work hardening. Twinned Al has abundant {112} incoherent twin boundaries, which induce significant work-hardening capability and plasticity in Al. Finally, twinmore » boundaries in Al also migrate but at very high stresses. Furthermore, molecular dynamics simulations reveal the influence of SFE on deformation mechanisms in twinned metals.« less

  12. Experimental Characterization and Simulation of Slip Transfer at Grain Boundaries and Microstructurally-Sensitive Crack Propagation

    NASA Technical Reports Server (NTRS)

    Gupta, Vipul; Hochhalter, Jacob; Yamakov, Vesselin; Scott, Willard; Spear, Ashley; Smith, Stephen; Glaessgen, Edward

    2013-01-01

    A systematic study of crack tip interaction with grain boundaries is critical for improvement of multiscale modeling of microstructurally-sensitive fatigue crack propagation and for the computationally-assisted design of more durable materials. In this study, single, bi- and large-grain multi-crystal specimens of an aluminum-copper alloy are fabricated, characterized using electron backscattered diffraction (EBSD), and deformed under tensile loading and nano-indentation. 2D image correlation (IC) in an environmental scanning electron microscope (ESEM) is used to measure displacements near crack tips, grain boundaries and within grain interiors. The role of grain boundaries on slip transfer is examined using nano-indentation in combination with high-resolution EBSD. The use of detailed IC and EBSD-based experiments are discussed as they relate to crystal-plasticity finite element (CPFE) model calibration and validation.

  13. The Microstructural Evolution and Mechanical Properties of Zr-Based Metallic Glass under Different Strain Rate Compressions

    PubMed Central

    Chen, Tao-Hsing; Tsai, Chih-Kai

    2015-01-01

    In this study, the high strain rate deformation behavior and the microstructure evolution of Zr-Cu-Al-Ni metallic glasses under various strain rates were investigated. The influence of strain and strain rate on the mechanical properties and fracture behavior, as well as microstructural properties was also investigated. Before mechanical testing, the structure and thermal stability of the Zr-Cu-Al-Ni metallic glasses were studied with X-ray diffraction (XRD) and differential scanning calorimeter. The mechanical property experiments and microstructural observations of Zr-Cu-Al-Ni metallic glasses under different strain rates ranging from 10−3 to 5.1 × 103 s−1 and at temperatures of 25 °C were investigated using compressive split-Hopkinson bar (SHPB) and an MTS tester. An in situ transmission electron microscope (TEM) nanoindenter was used to carry out compression tests and investigate the deformation behavior arising at nanopillars of the Zr-based metallic glass. The formation and interaction of shear band during the plastic deformation were investigated. Moreover, it was clearly apparent that the mechanical strength and ductility could be enhanced by impeding the penetration of shear bands with reinforced particles. PMID:28788034

  14. Controlling microstructure and texture in magnesium alloy sheet by shear-based deformation processing

    NASA Astrophysics Data System (ADS)

    Sagapuram, Dinakar

    Application of lightweight Mg sheet is limited by its low workability, both in production of sheet (typically by multistep hot and cold-rolling) and forming of sheet into components. Large strain extrusion machining (LSEM), a constrained chip formation process, is used to create Mg alloy AZ31B sheet in a single deformation step. The deformation in LSEM is shown to be intense simple shear that is confined to a narrow zone, which results in significant deformation-induced heating up to ~ 200°C and reduces the need for pre-heating to realize continuous sheet forms. This study focuses on the texture and microstructure development in the sheet processed by LSEM. Interestingly, deep, highly twinned steady-state layer develops in the workpiece subsurface due to the compressive field ahead of the shear zone. The shear deformation, in conjunction with this pre-deformed twinned layer, results in tilted-basal textures in the sheet with basal planes tilted well away from the surface. These textures are significantly different from those in rolled sheet, where basal planes are nearly parallel to the surface. By controlling the strain path, the basal plane inclination from the surface could be varied in the range of 32-53°. B-fiber (basal plane parallel to LSEM shear plane), associated with basal slip, is the major texture component in the sheet. An additional minor C2-fiber component appears above 250°C due to the thermal activation of pyramidal slip. Together with these textures, microstructure ranges from severely cold-worked to (dynamically) recrystallized type, with the corresponding grain sizes varying from ultrafine- (~ 200 nm) to fine- (2 mum) grained. Small-scale limiting dome height (LDH) confirmed enhanced formability (~ 50% increase in LDH) of LSEM sheet over the conventional rolled sheet. Premature, twinning-driven shear fractures are observed in the rolled sheet with the basal texture. In contrast, LSEM sheet with a tilted-basal texture favorably oriented for

  15. Ion-irradiation-induced damage of steels characterized by means of nanoindentation

    NASA Astrophysics Data System (ADS)

    Heintze, C.; Recknagel, C.; Bergner, F.; Hernández-Mayoral, M.; Kolitsch, A.

    2009-05-01

    Self-ion irradiation was used to simulate the damage caused by fast neutrons in the austenitic stainless steel SS 304 SA, the ferritic/martensitic steel Eurofer'97 and a Fe-9 at.%Cr model alloy. The irradiation-induced hardness change in the damage layer was evaluated by means of nanoindentation. Three-step irradiations were performed at room temperature and 300 °C up to 1 and 10 dpa. An irradiation-induced hardness change was shown for all materials. No influence of irradiation temperature could be resolved. Irradiation-induced hardening exhibits different fluence dependencies in Eurofer'97 and Fe-9 at.%Cr. While the data indicate a saturation-like behaviour for Fe-9 at.%Cr, an increase of hardness with fluence up to 10 dpa was found for Eurofer'97.

  16. Deformation microstructures of Barre granite: An optical, Sem and Tem study

    USGS Publications Warehouse

    Schedl, A.; Kronenberg, A.K.; Tullis, J.

    1986-01-01

    New scanning electron microscope techniques have been developed for characterizing ductile deformation microstructures in felsic rocks. In addition, the thermomechanical history of the macroscopically undeformed Barre granite (Vermont, U.S.A.) has been reconstructed based on examination of deformation microstructures using optical microscopy, scanning electron microscopy, and transmission electron microscopy. The microstructures reveal three distinct events: 1. (1) a low-stress, high-temperature event that produced subgrains in feldspars, and subgrains and recrystallized grains in quartz; 2. (2) a high-stress, low-temperature event that produced a high dislocation density in quartz and feldspars; and 3. (3) a lowest-temperature event that produced cracks, oriented primarily along cleavage planes in feldspars, and parallel to the macroscopic rift in quartz. The first two events are believed to reflect various stages in the intrusion and cooling history of the pluton, and the last may be related to the last stages of cooling, or to later tectonism. ?? 1986.

  17. Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures

    NASA Astrophysics Data System (ADS)

    Escobar de Obaldia, Enrique; Herrera, Steven; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo

    2016-11-01

    The remarkable mechanical properties observed in biological composite materials relative to those of their individual constituents distinguish them from common engineering materials. Some naturally occurring high-performance ceramics, like the external veneer of the Chiton (Cryptochiton stelleri) tooth, have been shown to have superior hardness and impressive abrasion resistance properties. The mechanical performance of the chiton tooth has been attributed to a hierarchical arrangement of nanostructured magnetite rods surrounded with organic material. While nanoindentation tests provide useful information about the overall performance of this biological composite, understanding the key microstructural features and energy dissipation mechanisms at small scales remains a challenging task. We present a combined experimental/numerical approach to elucidate the role of material deformation in the rods, debonding at the rod interfaces and the influence of energy dissipation mechanisms on the ability of the microstructure to distribute damage under extreme loading conditions. We employ a 3D finite element-based micromechanical model to simulate the nanoindentation tests performed in geological magnetite and cross-sections of the chiton tooth. This proposed model is capable of capturing the inelastic deformation of the rods and the failure of their interfaces, while damage, fracture and fragmentation of the mineralized rods is assessed using a probabilistic function. Our results show that these natural materials achieve their abrasion resistant properties by controlling the interface strength between rods, alleviating the tensile stress on the rods near the indentation tip and therefore decreasing the probability of catastrophic failure without significantly sacrificing resistance to penetration. The understanding of these competing energy dissipating mechanisms provides a path to the prediction of new combination of materials. In turns, these results suggest certain

  18. Evolution of microstructure and precipitates in 2xxx aluminum alloy after severe plastic deformation

    NASA Astrophysics Data System (ADS)

    Adamczyk-Cieslak, B.; Zdunek, J.; Mizera, J.

    2016-04-01

    This paper investigates the influence of precipitation on the microstructure development in a 2xxx aluminum alloy subjected to hydrostatic extrusion. A three step reduction of the diameter was performed using hydrostatic extrusion (HE) process: from 20mm (initial state) to 10 mm, 5 mm and 3 mm, which corresponds to the logarithmic deformations ɛ = 1.4, ɛ = 2.8 and ɛ = 3.8 respectively. The microstructure and precipitation analysis before and after deformation was performed using transmission electron microscope (TEM), and scanning electron microscopy (SEM). As a result of the tests, a very significant influence of precipitation on the degree of refinement and mechanism of microstructure transformation was stated.

  19. Heavy Deformation of Patented Near-Eutectoid Steel

    NASA Astrophysics Data System (ADS)

    Khanchandani, Heena; Banerjee, M. K.

    2018-01-01

    Evolution of microstructure in the patented near-eutectoid steel, forged under varying situations, is critically examined in the present investigation. Steel with 0.74 wt.% carbon is isothermally annealed at 500 °C to obtain fine pearlite microstructure. Steel samples, so patented, are subjected to mechanical deformation by forging at various temperatures with different amount of thickness reduction. Microstructural analyses have revealed that mechanical deformation by forging at lower temperatures brings about partial dissolution of cementite, which is followed by the formation of ɛ-carbide in the microstructures. In contrast, cementite is precipitated within ferrite matrix upon warm or hot forging at higher temperatures. It is further observed that increasing deformation percent during low-temperature forging reduces interlamellar spacing of pearlite, whereas an opposite trend is noticed in case of deformation at higher temperature; moreover, deformation induced the change in interlamellar spacing and formation of fine carbide phases in microstructures has caused appreciable enhancement in hardness of the steel.

  20. Microstructure of calcite deformed by high-pressure torsion: An X-ray line profile study

    NASA Astrophysics Data System (ADS)

    Schuster, Roman; Schafler, Erhard; Schell, Norbert; Kunz, Martin; Abart, Rainer

    2017-11-01

    Calcite aggregates were deformed to high strain using high-pressure torsion and applying confining pressures of 1-6 GPa and temperatures between room temperature and 450 °C. The run products were characterized by X-ray diffraction, and key microstructural parameters were extracted employing X-ray line profile analysis. The dominant slip system was determined as r { 10 1 bar 4 } ⟨ 2 bar 021 ⟩ with edge dislocation character. The resulting dislocation density and the size of the coherently scattering domains (CSD) exhibit a systematic dependence on the P-T conditions of deformation. While high pressure generally impedes recovery through reducing point defect mobility, the picture is complicated by pressure-induced phase transformations in the CaCO3 system. Transition from the calcite stability field to those of the high-pressure polymorphs CaCO3-II, CaCO3-III and CaCO3-IIIb leads to a change of the microstructural evolution with deformation. At 450 °C and pressures within the calcite stability field, dislocation densities and CSD sizes saturate at shear strains exceeding 10 in agreement with earlier studies at lower pressures. In the stability field of CaCO3-II, the dislocation density exhibits a more complex behavior. Furthermore, at a given strain and strain rate, the dislocation density increases and the CSD size decreases with increasing pressure within the stability fields of either calcite or of the high-pressure polymorphs. There is, however, a jump from high dislocation densities and small CSDs in the upper pressure region of the calcite stability field to lower dislocation densities and larger CSDs in the low-pressure region of the CaCO3-II stability field. This jump is more pronounced at higher temperatures and less so at room temperature. The pressure influence on the deformation-induced evolution of dislocation densities implies that pressure variations may change the rheology of carbonate rocks. In particular, a weakening is expected to occur at

  1. Characterisation of Asphalt Concrete Using Nanoindentation

    PubMed Central

    Barbhuiya, Salim; Caracciolo, Benjamin

    2017-01-01

    In this study, nanoindentation was conducted to extract the load-displacement behaviour and the nanomechanical properties of asphalt concrete across the mastic, matrix, and aggregate phases. Further, the performance of hydrated lime as an additive was assessed across the three phases. The hydrated lime containing samples have greater resistance to deformation in the mastic and matrix phases, in particular, the mastic. There is strong evidence suggesting that hydrated lime has the most potent effect on the mastic phase, with significant increase in hardness and stiffness. PMID:28773181

  2. Nanoindentation testing as a powerful screening tool for assessing phase stability of nanocrystalline high-entropy alloys

    DOE PAGES

    Maier-Kiener, Verena; Schuh, Benjamin; George, Easo P.; ...

    2016-11-19

    The equiatomic high-entropy alloy (HEA), CrMnFeCoNi, has recently been shown to be microstructurally unstable, resulting in a multi-phase microstructure after intermediate-temperature annealing treatments. The decomposition occurs rapidly in the nanocrystalline (NC) state and after longer annealing times in coarse-grained states. To characterize the mechanical properties of differently annealed NC states containing multiple phases, nanoindentation was used in this paper. The results revealed besides drastic changes in hardness, also for the first time significant changes in the Young's modulus and strain rate sensitivity. Finally, nanoindentation of NC HEAs is, therefore, a useful complementary screening tool with high potential as a highmore » throughput approach to detect phase decomposition, which can also be used to qualitatively predict the long-term stability of single-phase HEAs.« less

  3. Multiscale crystal defect dynamics: A coarse-grained lattice defect model based on crystal microstructure

    NASA Astrophysics Data System (ADS)

    Lyu, Dandan; Li, Shaofan

    2017-10-01

    Crystal defects have microstructure, and this microstructure should be related to the microstructure of the original crystal. Hence each type of crystals may have similar defects due to the same failure mechanism originated from the same microstructure, if they are under the same loading conditions. In this work, we propose a multiscale crystal defect dynamics (MCDD) model that models defects by considering its intrinsic microstructure derived from the microstructure or material genome of the original perfect crystal. The main novelties of present work are: (1) the discrete exterior calculus and algebraic topology theory are used to construct a scale-up (coarse-grained) dual lattice model for crystal defects, which may represent all possible defect modes inside a crystal; (2) a higher order Cauchy-Born rule (up to the fourth order) is adopted to construct atomistic-informed constitutive relations for various defect process zones, and (3) an hierarchical strain gradient theory based finite element formulation is developed to support an hierarchical multiscale cohesive (process) zone model for various defects in a unified formulation. The efficiency of MCDD computational algorithm allows us to simulate dynamic defect evolution at large scale while taking into account atomistic interaction. The MCDD model has been validated by comparing of the results of MCDD simulations with that of molecular dynamics (MD) in the cases of nanoindentation and uniaxial tension. Numerical simulations have shown that MCDD model can predict dislocation nucleation induced instability and inelastic deformation, and thus it may provide an alternative solution to study crystal plasticity.

  4. Creep deformation in near-γ TiAl: Part 1. the influence of microstructure on creep deformation in Ti-49Al-1V

    NASA Astrophysics Data System (ADS)

    Worth, Brian D.; Jones, J. Wayne; Allison, John E.

    1995-11-01

    The influence of microstructure on creep deformation was examined in the near-y TiAl alloy Ti-49A1-1V. Specifically, microstructures with varying volume fractions of lamellar constituent were produced through thermomechanical processing. Creep studies were conducted on these various microstructures under constant load in air at temperatures between 760 °C and 870 °C and at stresses ranging from 50 to 200 MPa. Microstructure significantly influences the creep behavior of this alloy, with a fully lamellar microstructure yielding the highest creep resistance of the microstructures examined. Creep resistance is dependent on the volume fraction of lamellar constituent, with the lowest creep resistance observed at intermediate lamellar volume fractions. Examination of the creep deformation structure revealed planar slip of dislocations in the equiaxed y microstructure, while subboundary formation was observed in the duplex microstructure. The decrease in creep resistance of the duplex microstructure, compared with the equiaxed y microstructure, is attributed to an increase in dislocation mobility within the equiaxed y constituent, that results from partitioning of oxygen from the γ phase to the α2 phase. Dislocation motion in the fully lamellar microstructure was confined to the individual lamellae, with no evidence of shearing of γ/γ or γ/α2 interfaces. This suggests that the high creep resistance of the fully lamellar microstructure is a result of the fine spacing of the lamellar structure, which results in a decreased effective slip length for dislocation motion over that found in the duplex and equiaxed y microstructures.

  5. Microstructural Evolution and Deformation Behavior of a Hot-Rolled and Heat Treated Fe-8Mn-4Al-0.2C Steel

    NASA Astrophysics Data System (ADS)

    Cai, Zhihui; Ding, Hua; Ying, Zhengyan; Misra, R. D. K.

    2014-04-01

    The microstructural evolution following tensile deformation of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel was studied. Quenching in the range of 750-800 °C followed by tempering at 200 °C led to a ferrite-austenite mixed microstructure that was characterized by excellent combination of tensile strength of 800-1000 MPa and elongation of 30-40%, and a three-stage work hardening behavior. During the tensile deformation, the retained austenite transformed into martensite and delayed the onset of necking, thus leading to a higher ductility via the transformation-induced plasticity (TRIP) effect. The improvement of elongation is attributed to diffusion of carbon from δ-ferrite to austenite during tempering, which improves the stability of austenite, thus contributing to enhanced tensile ductility.

  6. Microstructure and yield strength effects on hydrogen and tritium induced cracking in HERF (high-energy-rate-forged) stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morgan, M J; Tosten, M H

    1989-01-01

    Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent onmore » the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.« less

  7. Post Deformation at Room and Cryogenic Temperature Cooling Media on Severely Deformed 1050-Aluminum

    NASA Astrophysics Data System (ADS)

    Khorrami, M. Sarkari; Kazeminezhad, M.

    2018-03-01

    The annealed 1050-aluminum sheets were initially subjected to the severe plastic deformation through two passes of constrained groove pressing (CGP) process. The obtained specimens were post-deformed by friction stir processing at room and cryogenic temperature cooling media. The microstructure evolutions during mentioned processes in terms of grain structure, misorientation distribution, and grain orientation spread (GOS) were characterized using electron backscattered diffraction. The annealed sample contained a large number of "recrystallized" grains and relatively large fraction (78%) of high-angle grain boundaries (HAGBs). When CGP process was applied on the annealed specimen, the elongated grains with interior substructure were developed, which was responsible for the formation of 80% low-angle grain boundaries. The GOS map of the severely deformed specimen manifested the formation of 43% "distorted" and 51% "substructured" grains. The post deformation of severely deformed aluminum at room temperature led to the increase in the fraction of HAGBs from 20 to 60%. Also, it gave rise to the formation of "recrystallized" grains with the average size of 13 μm, which were coarser than the grains predicted by Zener-Hollomon parameter. This was attributed to the occurrence of appreciable grain growth during post deformation. In the case of post deformation at cryogenic temperature cooling medium, the grain size was decreased, which was in well agreement with the predicted grain size. The cumulative distribution of misorientation was the same for both processing routes. Mechanical properties characterizations in terms of nano-indentation and tensile tests revealed that the post deformation process led to the reduction in hardness, yield stress, and ultimate tensile strength of the severely deformed aluminum.

  8. Effect of prior deformation on microstructural development and Laves phase precipitation in high-chromium stainless steel.

    PubMed

    Hsiao, Z-W; Chen, D; Kuo, J-C; Lin, D-Y

    2017-04-01

    This study investigated the influence of deformation on precipitation behaviour and microstructure change during annealing. Here, the prior deformation of high-chromium stainless steel was tensile deformation of 3%, 6% and 10%, and the specimens were then annealed at 700˚C for 10 h. The specimens were subsequently analyzed using backscattered electron image and electron backscattering diffraction measurements with SEM. Compared with the deformation microstructure, the grains revealed no preferred orientation. The precipitates of TiN and NbC were formed homogenously in the grain interior and at grain boundaries after annealing. Fine Laves phase precipitates were observed in grains and along subgrain boundaries as the deformation increased. Furthermore, the volume fraction of Laves phase increased, but the average particle diameter of precipitate was reduced as the deformation increased. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  9. A novel method of multi-scale simulation of macro-scale deformation and microstructure evolution on metal forming

    NASA Astrophysics Data System (ADS)

    Huang, Shiquan; Yi, Youping; Li, Pengchuan

    2011-05-01

    In recent years, multi-scale simulation technique of metal forming is gaining significant attention for prediction of the whole deformation process and microstructure evolution of product. The advances of numerical simulation at macro-scale level on metal forming are remarkable and the commercial FEM software, such as Deform2D/3D, has found a wide application in the fields of metal forming. However, the simulation method of multi-scale has little application due to the non-linearity of microstructure evolution during forming and the difficulty of modeling at the micro-scale level. This work deals with the modeling of microstructure evolution and a new method of multi-scale simulation in forging process. The aviation material 7050 aluminum alloy has been used as example for modeling of microstructure evolution. The corresponding thermal simulated experiment has been performed on Gleeble 1500 machine. The tested specimens have been analyzed for modeling of dislocation density, nucleation and growth of recrystallization(DRX). The source program using cellular automaton (CA) method has been developed to simulate the grain nucleation and growth, in which the change of grain topology structure caused by the metal deformation was considered. The physical fields at macro-scale level such as temperature field, stress and strain fields, which can be obtained by commercial software Deform 3D, are coupled with the deformed storage energy at micro-scale level by dislocation model to realize the multi-scale simulation. This method was explained by forging process simulation of the aircraft wheel hub forging. Coupled the results of Deform 3D with CA results, the forging deformation progress and the microstructure evolution at any point of forging could be simulated. For verifying the efficiency of simulation, experiments of aircraft wheel hub forging have been done in the laboratory and the comparison of simulation and experiment result has been discussed in details.

  10. Structure-property-glass transition relationships in non-isocyanate polyurethanes investigated by dynamic nanoindentation

    NASA Astrophysics Data System (ADS)

    Weyand, Stephan; Blattmann, Hannes; Schimpf, Vitalij; Mülhaupt, Rolf; Schwaiger, Ruth

    2016-07-01

    Newly developed green-chemistry approaches towards the synthesis of non-isocyanate polyurethane (NIPU) systems represent a promising alternative to polyurethanes (PU) eliminating the need for harmful ingredients. A series of NIPU systems were studied using different nanoindentation techniques in order to understand the influence of molecular parameters on the mechanical behavior. Nanoindentation revealed a unique characteristic feature of those materials, i.e. stiffening with increasing deformation. It is argued that the origin of this observed stiffening is a consequence of the thermodynamic state of the polymer network, the molecular characteristics of the chemical building blocks and resulting anisotropic elastic response of the network structure. Flat-punch nanoindentation was applied in order to characterize the constitutive viscoelastic nature of the materials. The complex modulus shows distinct changes as a function of the NIPU network topology illustrating the influence of the chemical building blocks. The reproducibility of the data indicates that the materials are homogeneous over the volumes sampled by nanoindentation. Our study demonstrates that nanoindentation is very well-suited to investigate the molecular characteristics of NIPU materials that cannot be quantified in conventional experiments. Moreover, the technique provides insight into the functional significance of complex molecular architectures thereby supporting the development of NIPU materials with tailored properties.

  11. Deformation of the lithosphere and what microstructures can tell us about it (Stephan Mueller Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Heilbronner, Renée

    2016-04-01

    The lithosphere is a roughly stratified and heterogeneous rock body that constitutes the outer layer of our planet. It is subdivided into irregularly shaped stiff plates that move with respect to one another deforming each other along their margins. At the large scale the lithosphere is usually modeled as a flat-lying multi-layer, its rheological profile being based on flow laws determined experimentally for key minerals of the crust and upper mantle. At the somewhat smaller scale of field observations, geometrical and physical complexities become apparent: rocks are folded, sheared and fractured, and - in general - quite heterogeneously deformed. And finally, at the even smaller scale of mechanical testing and microscopic investigations, rocks are seen as polycrystalline aggregates or granular composites whose bulk properties depends both on the composition and shape of the individual grains and the spatial arrangement of the crystals with respect to one another. In other words, the physical properties of the lithosphere and the inferred style or type of deformation depend very much on the scale of observation. Microstructures and textures (crystallographic preferred orientations) of deformed rocks provide a wealth of information: when used as archives of the deformation history, they allow us to unravel the tectonic evolution of the lithosphere at plate boundaries. At the same time, they enable us to assess past and/or present geophysical properties. By comparing the microstructures of experimentally and naturally deformed rocks it is possible to infer the active deformation mechanisms and thus to extrapolate flow laws to geological time scales. With the advent of digital image processing, microstructure and texture analysis have taken a great leap forward. By amalgamating methods from neighbouring disciplines such as mathematical morphometry, stereology, geostatistics, material sciences, etc., microstructure and texture analysis have come a long way since the

  12. Cyclic Deformation Microstructure in Heavily Cold-Drawn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xie, Xingfei; Ning, Dong; Sun, Jian

    2018-04-01

    Cyclic deformation microstructure of the heavily cold-drawn austenitic stainless steel is significantly influenced by the spacing between mechanical twins introduced by prior cold drawing. Well-developed dislocation cells form between mechanical twins with the spacing larger than about 800 nm. Persistent slip band (PSB)-like structure with ladders takes place between mechanical twins spacing from 300 to 800 nm. Few dislocations occur between neighboring mechanical twins with spacing less than about 100 nm. Pre-existing mechanical twins and deformation bands segment austenitic grains, facilitating multi-slip and consequently suppressing PSB formation.

  13. Cyclic Deformation Microstructure in Heavily Cold-Drawn Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Xie, Xingfei; Ning, Dong; Sun, Jian

    2018-07-01

    Cyclic deformation microstructure of the heavily cold-drawn austenitic stainless steel is significantly influenced by the spacing between mechanical twins introduced by prior cold drawing. Well-developed dislocation cells form between mechanical twins with the spacing larger than about 800 nm. Persistent slip band (PSB)-like structure with ladders takes place between mechanical twins spacing from 300 to 800 nm. Few dislocations occur between neighboring mechanical twins with spacing less than about 100 nm. Pre-existing mechanical twins and deformation bands segment austenitic grains, facilitating multi-slip and consequently suppressing PSB formation.

  14. Effect of deformation path on microstructure, microhardness and texture evolution of interstitial free steel fabricated by differential speed rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamad, Kotiba; Chung, Bong Kwon; Ko, Young Gun, E-mail: younggun@ynu.ac.kr

    2014-08-15

    This paper reports the effect of the deformation path on the microstructure, microhardness, and texture evolution of interstitial free (IF) steel processed by differential speed rolling (DSR) method. For this purpose, total height reductions of 50% and 75% were imposed on the samples by a series of differential speed rolling operations with various height reductions per pass (deformation levels) ranging from 10 to 50% under a fixed roll speed ratio of 1:4 for the upper and lower rolls, respectively. Microstructural observations using transmission electron microscopy and electron backscattered diffraction measurements showed that the samples rolled at deformation level of 50%more » had the finest mean grain size (∼ 0.5 μm) compared to the other counterparts; also the samples rolled at deformation level of 50% showed a more uniform microstructure. Based on the microhardness measurements along the thickness direction of the deformed samples, gradual evolution of the microhardness value and its homogeneity was observed with the increase of the deformation level per pass. Texture analysis showed that, as the deformation level per pass increased, the fraction of alpha fiber and gamma fiber in the deformed samples increased. The textures obtained by the differential speed rolling process under the lubricated condition would be equivalent to those obtained by the conventional rolling. - Highlights: • Effect of DSR deformation path on microstructure of IF steel is significant. • IF steel rolled at deformation level of 50% has the ultrafine grains of ∼ 0.5 μm. • Rolling texture components are pronounced with increasing deformation level.« less

  15. Evolution of the viscosity of Earth's upper mantle: Grain-boundary sliding and the role of microstructure in olivine deformation

    NASA Astrophysics Data System (ADS)

    Hansen, Lars N.

    Many features of plate tectonics cannot be explained with standard rheological models of the upper mantle. In particular, the localization of deformation at plate boundaries requires the viscosity of the constituent rocks to evolve spatially and temporally. Such rheological complexity may arise from changing microstructural state variables (e.g., grain size and crystallographic-fabric strength), but the degree to which microstructure contributes to the evolution of viscosity is unclear given our current understanding of deformation mechanisms in mantle minerals. Dislocation-accommodated grain-boundary sliding (GBS) is a potentially critical mechanism for localizing deformation in olivine because it imparts a sensitivity of the viscosity to the state of the microstructure while simultaneously providing mechanisms for changing the microstructure. However, many details of GBS in olivine are currently unknown including 1) the magnitude of the sensitivity of strain rate to crystallographic fabric and grain size, 2) the strength of the crystallographic fabrics produced, and 3) the anisotropy in viscosity of polycrystalline aggregates. Detailed knowledge of these unknowns is necessary to assess the importance of microstructural evolution in the operation of plate tectonics. This dissertation investigates the details of GBS in olivine through four sets of laboratory-based experiments. In Chapter 2, triaxial compressive creep experiments on aggregates of San Carlos olivine are used to develop a flow law for olivine deforming by GBS. Extrapolations of strain rate to geological conditions using the derived flow law indicate that GBS is the dominant deformation mechanism throughout the uppermost mantle. Crystallographic fabrics observed in deformed samples are consistent with upper-mantle seismic anisotropy. In Chapter 3, torsion experiments on iron-rich olivine are used to determine the rheological behavior of olivine deforming by GBS at large strains. The sensitivity of the

  16. Review of Relationship Between Particle Deformation, Coating Microstructure, and Properties in High-Pressure Cold Spray

    NASA Astrophysics Data System (ADS)

    Rokni, M. R.; Nutt, S. R.; Widener, C. A.; Champagne, V. K.; Hrabe, R. H.

    2017-08-01

    In the cold spray (CS) process, deposits are produced by depositing powder particles at high velocity onto a substrate. Powders deposited by CS do not undergo melting before or upon impacting the substrate. This feature makes CS suitable for deposition of a wide variety of materials, most commonly metallic alloys, but also ceramics and composites. During processing, the particles undergo severe plastic deformation and create a more mechanical and less metallurgical bond with the underlying material. The deformation behavior of an individual particle depends on multiple material and process parameters that are classified into three major groups—powder characteristics, geometric parameters, and processing parameters, each with their own subcategories. Changing any of these parameters leads to evolution of a different microstructure and consequently changes the mechanical properties in the deposit. While cold spray technology has matured during the last decade, the process is inherently complex, and thus, the effects of deposition parameters on particle deformation, deposit microstructure, and mechanical properties remain unclear. The purpose of this paper is to review the parameters that have been investigated up to now with an emphasis on the existent relationships between particle deformation behavior, microstructure, and mechanical properties of various cold spray deposits.

  17. 3D modeling of unconstrained HPT process: role of strain gradient on high deformed microstructure formation

    NASA Astrophysics Data System (ADS)

    Ben Kaabar, A.; Aoufi, A.; Descartes, S.; Desrayaud, C.

    2017-05-01

    During tribological contact’s life, different deformation paths lead to the formation of high deformed microstructure, in the near-surface layers of the bodies. The mechanical conditions (high pressure, shear) occurring under contact, are reproduced through unconstrained High Pressure Torsion configuration. A 3D finite element model of this HPT test is developed to study the local deformation history leading to high deformed microstructure with nominal pressure and friction coefficient. For the present numerical study the friction coefficient at the interface sample/anvils is kept constant at 0.3; the material used is high purity iron. The strain distribution in the sample bulk, as well as the main components of the strain gradients according to the spatial coordinates are investigated, with rotation angle of the anvil.

  18. Microstructural Characteristics of High Rate Plastic Deformation in Elektron™ WE43 Magnesium Alloy

    NASA Astrophysics Data System (ADS)

    Hamilton, Joseph; Brennan, Sarah T.; Sohn, Yongho; Davis, Bruce; DeLorme, Rick; Cho, Kyu

    High strain rate deformation of WE43 magnesium alloy was carried out by high velocity impacts, and the characteristics and mechanisms of microstructural damage were examined. Six samples were subjected to a variety of high velocity impact loadings that resulted in both partial and full damage. Optical, scanning and transmission electron microscopy analyses were performed in order to identify regions of shear localization. These regions were used to map, both quantitatively and qualitatively, the effects of deformation on the microstructure. Shear localization was observed in every sample, and its depth was measured. Evidence of shear localization was observed to a greater extent in samples with partial damage while fracturing was observed more frequently in samples with full damage.

  19. Texture developed during deformation of Transformation Induced Plasticity (TRIP) steels

    NASA Astrophysics Data System (ADS)

    Bhargava, M.; Shanta, C.; Asim, T.; Sushil, M.

    2015-04-01

    Automotive industry is currently focusing on using advanced high strength steels (AHSS) due to its high strength and formability for closure applications. Transformation Induced Plasticity (TRIP) steel is promising material for this application among other AHSS. The present work is focused on the microstructure development during deformation of TRIP steel sheets. To mimic complex strain path condition during forming of automotive body, Limit Dome Height (LDH) tests were conducted and samples were deformed in servo hydraulic press to find the different strain path. FEM Simulations were done to predict different strain path diagrams and compared with experimental results. There is a significant difference between experimental and simulation results as the existing material models are not applicable for TRIP steels. Micro texture studies were performed on the samples using EBSD and X-RD techniques. It was observed that austenite is transformed to martensite and texture developed during deformation had strong impact on limit strain and strain path.

  20. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei-dong

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocationmore » mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.« less

  1. Towards the modeling of nanoindentation of virus shells: Do substrate adhesion and geometry matter?

    NASA Astrophysics Data System (ADS)

    Bousquet, Arthur; Dragnea, Bogdan; Tayachi, Manel; Temam, Roger

    2016-12-01

    Soft nanoparticles adsorbing at surfaces undergo deformation and buildup of elastic strain as a consequence of interfacial adhesion of similar magnitude with constitutive interactions. An example is the adsorption of virus particles at surfaces, a phenomenon of central importance for experiments in virus nanoindentation and for understanding of virus entry. The influence of adhesion forces and substrate corrugation on the mechanical response to indentation has not been studied. This is somewhat surprising considering that many single-stranded RNA icosahedral viruses are organized by soft intermolecular interactions while relatively strong adhesion forces are required for virus immobilization for nanoindentation. This article presents numerical simulations via finite elements discretization investigating the deformation of a thick shell in the context of slow evolution linear elasticity and in presence of adhesion interactions with the substrate. We study the influence of the adhesion forces in the deformation of the virus model under axial compression on a flat substrate by comparing the force-displacement curves for a shell having elastic constants relevant to virus capsids with and without adhesion forces derived from the Lennard-Jones potential. Finally, we study the influence of the geometry of the substrate in two-dimensions by comparing deformation of the virus model adsorbed at the cusp between two cylinders with that on a flat surface.

  2. Effect of different stages of deformation on the microstructure evolution of Ti-rich NiTi shape memory alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadayyon, Ghazal, E-mail: Ghazal.tadayyon@gmail.co

    The main objective of this work was to investigate the thermomechanical behavior and microstructural changes of a Ti-rich NiTi shape memory alloy (SMA). The microstructural and texture evolution of aged NiTi alloy at different degrees of deformation were elicited by transmission electron microscopy (TEM). An effort was made to correlate results obtained from the tensile test with results from microstructure studies. The undeformed sample reveals a self-accommodated morphology with straight and well defined twin boundaries. At different stages of deformation, diverse mechanisms were involved. These mechanisms include marstraining, detwinning accompanied by dislocation movement, and finally, severe plastic deformation, subdivision andmore » amorphization of the matrix. Under increasing strains, high density lattice defects were generated and the morphology of B19’ became disordered. - Graphical abstract: The summary of microstructure changes of the martensite twins during tensile deformation in polycrystalline NiTi SMAs. - Highlights: • Initial elastic response, dislocation avalanche and deformation bands were studied. • < 011 > Type II twin accompanied by detwinned area after 2% cold work was observed. • Visible parallel fine stacking faults showed plastic flow of the material. • At higher strains, subgrains changed to recrystallized, finely amorphous structure.« less

  3. Nanoscale deformation mechanism of TiC/a-C nanocomposite thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, C. Q.; Pei, Y. T.; Shaha, K. P.

    2009-06-01

    This paper concentrates on the deformation behavior of amorphous diamondlike carbon composite materials. Combined nanoindentation and ex situ cross-sectional transmission electron microscopy investigations are carried out on TiC/a-C nanocomposite films, with and without multilayered structures deposited by pulse dc magnetron sputtering. It is shown that by controlling the distribution of nanocrystallites forming nanoscale multilayers, the system can be used as a 'microstructural ruler' that is able to distinguish various deformation patterns, which can be hardly detected otherwise in a homogeneous structure. It is shown that rearrangement of nanocrystallites and displacement of a-C matrix occur at length scales from tens ofmore » nanometer down to 1 nm. At submicrometer scale homogeneous nucleation of multiple shear bands has been observed within the nanocomposites. The multilayered structure in the TiC/a-C nanocomposite film contributes to an enhanced toughness.« less

  4. Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon

    2010-02-01

    Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.

  5. Effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy

    NASA Astrophysics Data System (ADS)

    Wu, Wenqian; Guo, Lin; Liu, Bin; Ni, Song; Liu, Yong; Song, Min

    2017-12-01

    The effects of torsional deformation on the microstructures and mechanical properties of a CoCrFeNiMo0.15 high-entropy alloy have been investigated. The torsional deformation generates a gradient microstructure distribution due to the gradient torsional strain. Both dislocation activity and deformation twinning dominated the torsional deformation process. With increasing the torsional equivalent strain, the microstructural evolution can be described as follows: (1) formation of pile-up dislocations parallel to the trace of {1 1 1}-type slip planes; (2) formation of Taylor lattices; (3) formation of highly dense dislocation walls; (3) formation of microbands and deformation twins. The extremely high deformation strain (strained to fracture) results in the activation of wavy slip. The tensile strength is very sensitive to the torsional deformation, and increases significantly with increasing the torsional angle.

  6. Microstructure Evolution and Mechanical Behavior of a Hot-Rolled High-Manganese Dual-Phase Transformation-Induced Plasticity/Twinning-Induced Plasticity Steel

    NASA Astrophysics Data System (ADS)

    Fu, Liming; Shan, Mokun; Zhang, Daoda; Wang, Huanrong; Wang, Wei; Shan, Aidang

    2017-05-01

    The microstructures and deformation behavior were studied in a high-temperature annealed high-manganese dual-phase (28 vol pct δ-ferrite and 72 vol pct γ-austenite) transformation-induced plasticity/twinning-induced plasticity (TRIP/TWIP) steel. The results showed that the steel exhibits a special Lüders-like yielding phenomenon at room temperature (RT) and 348 K (75 °C), while it shows continuous yielding at 423 K, 573 K and 673 K (150 °C, 300 °C and 400 °C) deformation. A significant TRIP effect takes place during Lüders-like deformation at RT and 348 K (75 °C) temperatures. Semiquantitative analysis of the TRIP effect on the Lüders-like yield phenomenon proves that a softening effect of the strain energy consumption of strain-induced transformation is mainly responsible for this Lüders-like phenomenon. The TWIP mechanism dominates the 423 K (150 °C) deformation process, while the dislocation glide controls the plasticity at 573 K (300 °C) deformation. The delta-ferrite, as a hard phase in annealed dual-phase steel, greatly affects the mechanical stability of austenite due to the heterogeneous strain distribution between the two phases during deformation. A delta-ferrite-aided TRIP effect, i.e., martensite transformation induced by localized strain concentration of the hard delta-ferrite, is proposed to explain this kind of Lüders-like phenomenon. Moreover, the tensile curve at RT exhibits an upward curved behavior in the middle deformation stage, which is principally attributed to the deformation twinning of austenite retained after Lüders-like deformation. The combination of the TRIP effect during Lüders-like deformation and the subsequent TWIP effect greatly enhances the ductility in this annealed high-manganese dual-phase TRIP/TWIP steel.

  7. Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy

    NASA Astrophysics Data System (ADS)

    Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.

    2018-05-01

    A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.

  8. A spectral approach for discrete dislocation dynamics simulations of nanoindentation

    NASA Astrophysics Data System (ADS)

    Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei

    2018-07-01

    We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.

  9. Influence of the Starting Microstructure on the Hot Deformation Behavior of a Low Stacking Fault Energy Ni-based Superalloy

    NASA Astrophysics Data System (ADS)

    McCarley, Joshua; Alabbad, B.; Tin, S.

    2018-03-01

    The influence of varying fractions of primary gamma prime precipitates on the hot deformation and annealing behavior of an experimental Nickel-based superalloy containing 24 wt pct. Co was investigated. Billets heat treated at 1110 °C or 1135 °C were subjected to hot compression tests at temperatures ranging from 1020 °C to 1060 °C and strain rates ranging from 0.001 to 0.1/s. The microstructures were characterized using electron back scatter diffraction in the as-deformed condition as well as following a super-solvus anneal heat treatment at 1140 °C for 1 hour. This investigation sought to quantify and understand what effect the volume fraction of primary gamma prime precipitates has on the dynamic recrystallization behavior and resulting length fraction ∑3 twin boundaries in the low stacking fault superalloy following annealing. Although deformation at the lower temperatures and higher strain rates led to dynamic recrystallization for both starting microstructures, comparatively lower recrystallized fractions were observed in the 1135 °C billet microstructures deformed at strain rates of 0.1/s and 0.05/s. Subsequent annealing of the 1135 °C billet microstructures led to a higher proportion of annealing twins when compared to the annealed 1110 °C billet microstructures.

  10. Microstructural controls on the viscoplasticity of Carbopol, and possible applications to shale deformation studies

    NASA Astrophysics Data System (ADS)

    Hayman, N. W.; Shafiei, M.; Balhoff, M.; Daigle, H.

    2017-12-01

    To a first order, sedimentary materials behave in an elastic-plastic manner for most experimental and natural conditions at short time scales. However, long-term patterns of leakage from carbon-capture and storage efforts, and reduced efficiency during unconventional hydrocarbon production, point to a broader range of subsurface behaviors. Our analyses of microstructural and porosity responses to experimental deformation of shale suggest that sedimentary rock deformation is not strictly elastic-plastic. For example, organic matter (OM) in mudrocks can fracture during failure, but elsewhere may be more viscous in the same rock volume. The fracture of OM can be accompanied by some combination of frictional and poroelastic deformation in the surrounding clay aggregates, potentially described by critical-state-line soil mechanics. What is less clear is the possible role of viscoplasticity in sedimentary rock deformation. Though not a good analog material for all rock deformation, the cross-linked polymer Carbopol provides an excellent opportunity to explore controls on viscoplasticity. Above the yield stress, carbopol plastic deformation follows a Herschel-Bulkley model wherein shear stress varies as function of strain rate to a power that is generally <1; i.e. it is a shear-thinning material. The rheology can then be tuned by changing the pH of the gel. Using images obtained from scanning electron microscopy, including using a cryogenic system, we found that a structural transition from a dilute neutralized dispersion to an aggregate of closely packed particulates occurs as the pH of the polymer solution increases. This closely packed microstructure thus controls the yield strength which in turn follows approximately a non-linear relationship with porosity. This "analog material" thus has allowed us to quantify the microstructural length-scales that govern viscoplasticity in this material. Future experiments and numerical modeling can evaluate if a viscoplastic

  11. Microstructural changes and strain hardening effects in abrasive contacts at different relative velocities and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojacz, H., E-mail: rojacz@ac2t.at

    2016-08-15

    Strain hardening is commonly used to reach the full potential of materials and can be beneficial in tribological contacts. 2-body abrasive wear was simulated in a scratch test, aimed at strain hardening effects in various steels. Different working conditions were examined at various temperatures and velocities. Strain hardening effects and microstructural changes were analysed with high resolution scanning electron microscopy (HRSEM), electron backscatter diffraction (EBSD), micro hardness measurements and nanoindentation. Statistical analysing was performed quantifying the influence of different parameters on microstructures. Results show a crucial influence of temperature and velocity on the strain hardening in tribological contacts. Increased velocitymore » leads to higher deformed microstructures and higher increased surface hardness at a lower depth of the deformed zones at all materials investigated. An optimised surface hardness can be achieved knowing the influence of velocity (strain rate) and temperature for a “tailor-made” surface hardening in tribological systems aimed at increased wear resistance. - Highlights: •Hardening mechanisms and their intensity in tribological contacts are dependent on relative velocity and temperature. •Beneficial surface hardened zones are formed at certain running-in conditions; the scientific background is presented here. •Ferritic-pearlitic steels strain hardens via grain size reduction and decreasing interlamellar distances in pearlite. •Austenitic steels show excellent surface hardening (120% hardness increase) by twinning and martensitic transformation. •Ferritic steels with hard phases harden in the ferrite phase as per Hall-Petch equation and degree of deformation.« less

  12. Microstructural development inside the stress induced martensite variant in a Ti-Ni-Nb shape memory alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Y.F.; Cai, W.; Zhang, J.X.

    2000-04-03

    The microstructural development inside the stress induced martensite (SIM) variants in Ti-Ni-Nb alloy with various degrees of deformation have been revealed by electron microscopic observations. The orientation relationship between the SIM and the parent phase has been found: [1{bar 1}0]{sub M}{parallel}[11{bar 1}]{sub B2}, (001){sub M} 5{degree} away from (101){sub B2}. The lattice invariant shear of the SIM variants at the slightly deformed stage is dominantly (11{bar 1}) Type I twin. Besides the ordinary slip, the adjustment and development of the internal secondary twinning from (11{bar 1}) Type I twin to {l_angle}011{r_angle} Type II/ or (011) Type I twin, (001)compound twinmore » and (111) Type I twin happen concurrently or in combination inside the SIM variants with the further deformation. The corresponding deformation mechanisms include stress induced reorientation of SIM substructural bands by the most favorably oriented twin system, stress induced migration of the SIM substructural boundary through internal twinning and stress induced injection of foreign SIM variant to the preexisting substructural bands.« less

  13. Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep

    Treesearch

    J.B. Puthoff; J.E. Jakes; H. Cao; D.S. Stone

    2009-01-01

    The development of nanoindentation test systems with high data collection speeds has made possible a novel type of indentation creep test: broadband nanoindentation creep (BNC). Using the high density of data points generated and analysis techniques that can model the instantaneous projected indent area at all times during a constant-load indentation experiment, BNC...

  14. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    NASA Astrophysics Data System (ADS)

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  15. Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands

    NASA Astrophysics Data System (ADS)

    Adelinet, M.; Fortin, J.; Schubnel, A.; Guéguen, Y.

    2013-04-01

    According to the stress state, deformation mode observed in rocks may be very different. Even in the brittle part of the crust a differential stress can induce shear failure but also localized compacting deformation, such as compaction bands in porous sedimentary rocks. The mode of deformation controls many hydrodynamic factors, such as permeability and porosity. We investigate in this paper two different modes of deformation in an Icelandic basalt by using laboratory seismological tools (elastic waves and acoustic emissions) and microstructural observations. First of all, we show that at low effective confining pressure (Peff = 5 MPa) an axial loading induces a shear failure in the basalt with an angle of about 30° with respect to the main stress direction. On the contrary, at high effective confining pressure (Peff ≥ 75 MPa and more) an increase of the axial stress induces a localization of the deformation in the form of subhorizontal bands again with respect to the main stress direction. In this second regime, focal mechanisms of the acoustic emissions reveal an important number of compression events suggesting pore collapse mechanisms. Microstructural observations confirm this assumption. Similar compaction structures are usually obtained for porous sedimentary rocks (20-25%). However, the investigated basalt has an initial total porosity of only about 10% so that compaction structures were not expected. The pore size and the ratio of pore to grain size are likely to be key factors for the particular observed mechanical behavior.

  16. Effect of Cooling Mode on Microstructure and Mechanical Properties of Pipeline Steel for Strain Based Design and Research on its Deformation Mechanism

    NASA Astrophysics Data System (ADS)

    Hesong, Zhang; Yonglin, Kang

    With the rapid development of oil and gas industry long distance pipelines inevitably pass through regions with complex geological activities. In order to avoid large deformation the pipelines must be designed based on strain criteria. In this paper the alloy system of X80 high deformability pipeline steel was designed which was 0.25%Mo-0.05%C-1.75%Mn. The effect of controlled cooling process on microstructure and mechanical properties of X80 high deformability pipeline steel were systematically investigated. Through the two-stage controlled cooling process the microstructure of the X80 high deformability pipeline steel were ferrite, bainite and M/A island. There were two kinds of ferrite which were polygonal ferrite (PF) and quasi-polygonal ferrite (QF). The bainite was granular bainite ferrite (GF). Along with the decrease of the start cooling temperature, the volume fraction of ferrite and M/A both increased, the yield ratio (Y/T) decreased, the uniform elongation (uEl) increased firstly with the content of ferrite increased but then decreased with the content and size of M/A increased. When the finish cooling temperature decreasing, the size of M/A became finer. As the start cooling temperature was 690 °C and the finish cooling temperature was 450 °C the volume fraction of ferrite was 23%, the size of ferrite grain was 5μm, the size of M/A island was below 1μm and the structure uniformity was the best. The deformation mechanism of X80 high deformability pipeline steel was analyzed. The best way to improve the work hardening rate was reducing the size of M/A islands on the premise of a certain volume fraction. The decreasing path of instantaneous strain hardening index (n*-value) showed three stages in the deformation process. The n*-value kept stable in the second stage, the reason was that the retained austenite transformed into martensite and the phase transition improved the strain hardening ability of the microstructure. This phenomenon was called

  17. Electron back-scattered diffraction and nanoindentation analysis of nanostructured Al tubes processed by multipass tubular-channel angular pressing

    NASA Astrophysics Data System (ADS)

    Mesbah, Mohsen; Faraji, Ghader; Bushroa, A. R.

    2016-03-01

    Microstructural evolution and mechanical properties of nanostructured 1060 aluminum alloy tubes processed by tubular-channel angular pressing (TCAP) process were investigated using electron back-scattered diffraction (EBSD), transmission electron microscopy (TEM) and nanoindentation analyzes. EBSD scans revealed a homogeneous ultrafine grained microstructure after the third passes of the TCAP process. Apart from that the mean grain sizes of the TCAP processed tubes were refined to 566 nm, 500 nm and 480 nm respectively after the first, second and third passes. The results showed that after the three TCAP passes, the grain boundaries with a high angle comprised 78% of all the boundaries. This is in comparison to the first pass processed sample that includes approximately 20% HAGBs. The TEM inspection afforded an appreciation of the role of very low-angle misorientation boundaries in the process of refining microstructure. Nanoindentation results showed that hardness was the smallest form of an unprocessed sample while the largest form of the processed sample after the three passes of TCAP indicated the highest resistant of the material. In addition, the module of elasticity of the TCAP processed samples was greater from that of the unprocessed sample.

  18. Pyrite deformation and connections to gold mobility: Insight from micro-structural analysis and trace element mapping

    NASA Astrophysics Data System (ADS)

    Dubosq, R.; Lawley, C. J. M.; Rogowitz, A.; Schneider, D. A.; Jackson, S.

    2018-06-01

    The metamorphic transition of pyrite to pyrrhotite results in the liberation of lattice-bound and nano-particulate metals initially hosted within early sulphide minerals. This process forms the basis for the metamorphic-driven Au-upgrading model applied to many orogenic Au deposits, however the role of syn-metamorphic pyrite deformation in controlling the retention and release of Au and related pathfinder elements is poorly understood. The lower amphibolite facies metamorphic mineral assemblage (Act-Bt-Pl-Ep-Alm ± Cal ± Qz ± Ilm; 550 °C) of Canada's giant Detour Lake deposit falls within the range of pressure-temperature conditions (450 °C) for crystal plastic deformation of pyrite. We have applied a complementary approach of electron backscatter diffraction (EBSD) mapping and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) 2D element mapping on pyrite from the Detour Lake deposit. Chemical element maps document an early generation of Au-rich sieve textured pyrite domains and a later stage of syn-metamorphic oscillatory-zoned Au-poor pyrite. Both pyrite types are cut by Au-rich fractures as a consequence of remobilization of Au with trace element enrichment of first-row transition elements, post-transition metals, chalcogens and metalloids during a late brittle deformation stage. However, similar enrichment in trace elements and Au can be observed along low-angle grain boundaries within otherwise Au-poor pyrite, indicating that heterogeneous microstructural misorientation patterns and higher strain domains are also relatively Au-rich. We therefore propose that the close spatial relationship between pyrite and Au at the microscale, features typical of orogenic Au deposits, reflects the entrapment of Au within deformation-induced microstructures in pyrite rather than the release of Au during the metamorphic transition from pyrite to pyrrhotite. Moreover, mass balance calculations at the deposit scale suggest that only a small percentage

  19. The influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of dual-phase steels

    NASA Astrophysics Data System (ADS)

    Hance, Brandon Michael

    It was hypothesized that, in dual-phase (DP) steels, strain partitioning between ferrite (alpha) and martensite (alpha') during deformation results in a distribution of post-deformation residual stresses that, in turn, affects the subsequent strength, work hardening behavior and formability when the strain path is changed. The post-forming deformation-induced residual stress state was expected to depend upon the microstructure, the amount of strain and the prestrain path. The primary objective of this research program was to understand the influence of deformation-induced residual stresses on the post-forming tensile stress/strain behavior of DP steels. Three commercially produced sheet steels were considered in this analysis: (1) a DP steel with approximately 15 vol. % martensite, (2) a conventional high-strength, low-alloy (HSLA) steel, and (3) a conventional, ultra-low-carbon interstitial-free (IF) steel. Samples of each steel were subjected to various prestrain levels in various plane-stress forming modes, including uniaxial tension, plane strain and balanced biaxial stretching. Neutron diffraction experiments confirmed the presence of large post-forming deformation-induced residual stresses in the ferrite phase of the DP steel. The deformation-alphainduced residual stress state varied systematically with the prestrain mode, where the principal residual stress components are proportional to the principal strain components of the prestrain mode, but opposite in sign. For the first time, and by direct experimental correlation, it was shown that deformation-induced residual stresses greatly affect the post-forming tensile stress/strain behavior of DP steels. As previously reported in the literature, the formability (residual tensile ductility) of the IF steel and the HSLA steel was adversely affected by strain path changes. The DP steel presents a formability advantage over the conventional IF and HSLA steels, and is expected to be particularly well suited for

  20. Atomistic simulation study of influence of Al2O3-Al interface on dislocation interaction and prismatic loop formation during nano-indentation on Al2O3-coated aluminum.

    PubMed

    Mishra, Srishti; Meraj, Md; Pal, Snehanshu

    2018-06-19

    A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al 2 O 3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al 2 O 3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al 2 O 3 thin film coated Al specimen. The displacement of oxygen atoms from Al 2 O 3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.

  1. Mechanical properties of amorphous and devitrified Ni-Zr alloy thin films: A cyclic nanoindentation study

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Debarati; Chatterjee, Arnomitra; Jana, Swapan

    2018-04-01

    Thin films of Ni-Zr glassy alloy were deposited at room temperature by magnetron co-sputtering. The alloy films were vacuum annealed in steps of 200°C from room temperature up to 800 °C, where devitrification finally occurred. Mechanical properties of the films were measured after each thermal anneal, through (cyclic) nanoindentation technique. The hardness values were observed to steadily increase with annealing temperature, as the alloy films underwent an amorphous to crystalline transformation. Grazing incidence X-ray diffraction measurements were performed on the as-deposited and annealed films both before and after nanoindentation. The resistance to plastic deformation was strongly linked to the (nano)structure of the material.

  2. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2018-05-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  3. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    NASA Astrophysics Data System (ADS)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  4. Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.; Tu, K. N.

    2006-11-01

    The electromigration-induced back stress in Pb-free SnAgCu solder was studied by an area array of nanoindentation markers on the cross section of a solder joint. The marker movements driven by combined electron wind force and electromigration-induced back stress gradient were measured at different locations. The back stress gradient was determined from the observation of marker motion using the proposed model. With the applied current density of 104A/cm2 at 125°C, the stress gradient near the anode is 97kPa/μm.

  5. High-temperature deformation and microstructural analysis for silicon nitride-scandium(III) oxide

    NASA Technical Reports Server (NTRS)

    Cheong, Deock-Soo; Sanders, William A.

    1992-01-01

    It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at tripple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase.

  6. Microstructural Evolution and Dynamic Softening Mechanisms of Al-Zn-Mg-Cu Alloy during Hot Compressive Deformation

    PubMed Central

    Shi, Cangji; Lai, Jing; Chen, X.-Grant

    2014-01-01

    The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454

  7. Microstructure, accumulated strain, and mechanical behavior of AA6061 Al alloy severely deformed at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Magalhães, D. C.; Kliauga, A. M.; Ferrante, M.; Sordi, V. L.

    2017-05-01

    The combination of Severe Plastic Deformation (SPD) and cryogenic temperatures can be an efficient way to obtain metals and alloys with very refined microstructure and thus optimize the strength-ductility pair. However, there is still a lack of studies on cryogenic SPD process and their effects on microstructure and mechanical properties, especially in precipitation-hardenable aluminum alloys. This study describes the effect of low temperature processing on microstructure, aging kinetic and tensile properties of AA6061 Al alloy after cryo-SPD. Samples of AA6061 Al alloy in the solutionized state was processed by Equal-channel angular pressing (ECAP) at 77 K and 298 K, up to accumulate true strains up to 4.2. Results indicated that the aging kinetic is accelerated when deformation is performed at cryogenic temperature, dislocation density measurement by x-ray and diffraction analysis at TEM achieved a saturation level of 2×1015 m-2 by ECAP at 298K and 5×1015 m-2 after cryogenic ECAP plus precipitation hardening. The same level of yield strength was observed in both deformation procedures but an improvement in uniform elongation was achieved by cryogenic ECAP followed by a T6 treatment

  8. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344).

    PubMed

    Brandstätter, Jennifer; Kurz, Walter; Rogowitz, Anna

    2017-08-01

    In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e-twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal-plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low-angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high-temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity.

  9. Microstructural analysis and calcite piezometry on hydrothermal veins: Insights into the deformation history of the Cocos Plate at Site U1414 (IODP Expedition 344)

    PubMed Central

    Kurz, Walter; Rogowitz, Anna

    2017-01-01

    Abstract In this study we present microstructural data from hydrothermal veins in the sedimentary cover and the igneous basement recovered from Hole U1414A, Integrated Ocean Drilling Program (IODP) Expedition 344 (Costa Rica Seismogenesis Project), to constrain deformation mechanism operating in the subducting Cocos Plate. Cathodoluminescence studies, mechanical e‐twin piezometry and electron backscatter diffraction (EBSD) analyses of carbonate veins were used to give insights into the deformation conditions and to help to understand the tectonic deformation history of the Cocos Plate offshore Costa Rica. Analyses of microstructures in the sedimentary rocks and in the basalt of the igneous basement reveal brittle deformation, as well as crystal‐plastic deformation of the host rock and the vein material. Cathodoluminescence images showed that in the basalt fluid flow and related precipitation occurred over several episodes. The differential stresses, obtained from two different piezometers using the same parameter (twin density), indicate various mean differential stresses of 49 ± 11 and 69 ± 30 MPa and EBSD mapping of calcite veins reveals low‐angle subgrain boundaries. Deformation temperatures are restricted to the range from 170°C to 220°C, due to the characteristics of the existing twins and the lack of high‐temperature intracrystalline deformation mechanisms (>220°C). The obtained results suggest that deformation occurred over a period associated with changes of ambient temperatures, occurrence of fluids and hydrofracturing, induced differential stresses due to the bending of the plate at the trench, and related seismic activity. PMID:29081570

  10. Deformation Behavior of Ultra-Strong and Ductile Mg-Gd-Y-Zn-Zr Alloy with Bimodal Microstructure

    NASA Astrophysics Data System (ADS)

    Xu, C.; Fan, G. H.; Nakata, T.; Liang, X.; Chi, Y. Q.; Qiao, X. G.; Cao, G. J.; Zhang, T. T.; Huang, M.; Miao, K. S.; Zheng, M. Y.; Kamado, S.; Xie, H. L.

    2018-02-01

    An ultra-strong and ductile Mg-8.2Gd-3.8Y-1Zn-0.4Zr (wt pct) alloy was developed by using hot extrusion to modify the microstructure via forced-air cooling and an artificial aging treatment. A superior strength-ductility balance was obtained that had a tensile yield strength of 466 MPa and an elongation to failure of 14.5 pct. The local strain evolution during the in situ testing of the ultra-strong and ductile alloy was quantitatively analyzed with high-resolution electron backscattered diffraction and digital image correlation. The fracture behavior during the tensile test was characterized by synchrotron X-ray tomography along with SEM and STEM observations. The alloy showed a bimodal microstructure, consisting of dynamically recrystallized (DRXed) grains with random orientations and elongated hot-worked grains with < { 10{\\bar{1}}0} > parallel to the extrusion direction. The DRXed grains were deformed by the basal <;a> slip and the hot-worked grains were deformed by the prismatic slip dominantly. The strain evolution analysis indicated that the multilayered structure relaxed the strain localization via strain transfer from the DRXed to the hot-worked regions, which led to the high ductility of the alloy. Precipitation of the γ' on basal planes and the β' phases on the prismatic planes of the α-Mg generated closed volumes, which enhanced the strength by pinning dislocations effectively, and contributed to the high ductility by impeding the propagation of micro-cracks inside the grains. The deformation incompatibility between the hot-worked grains and the arched block-shaped long-period stacking ordered (LPSO) phases induced the crack initiation and propagation, which fractured the alloy.

  11. Measuring in-vivo and in-situ ex-vivo the 3D deformation of the lamina cribrosa microstructure under elevated intraocular pressure

    NASA Astrophysics Data System (ADS)

    Wei, Junchao; Yang, Bin; Voorhees, Andrew P.; Tran, Huong; Brazile, Bryn; Wang, Bo; Schuman, Joel; Smith, Matthew A.; Wollstein, Gadi; Sigal, Ian A.

    2018-02-01

    Elevated intraocular pressure (IOP) deforms the lamina cribrosa (LC), a structure within the optic nerve head (ONH) in the back of the eye. Evidence suggests that these deformations trigger events that eventually cause irreversible blindness, and have therefore been studied in-vivo using optical coherence tomography (OCT), and ex-vivo using OCT and a diversity of techniques. To the best of our knowledge, there have been no in-situ ex-vivo studies of LC mechanics. Our goal was two-fold: to introduce a technique for measuring 3D LC deformations from OCT, and to determine whether deformations of the LC induced by elevated IOP differ between in-vivo and in-situ ex-vivo conditions. A healthy adult rhesus macaque monkey was anesthetized and IOP was controlled by inserting a 27- gauge needle into the anterior chamber of the eye. Spectral domain OCT was used to obtain volumetric scans of the ONH at normal and elevated IOPs. To improve the visibility of the LC microstructure the scans were first processed using a novel denoising technique. Zero-normalized cross-correlation was used to find paired corresponding locations between images. For each location pair, the components of the 3D strain tensor were determined using non-rigid image registration. A mild IOP elevation from 10 to 15mmHg caused LC effective strains as large as 3%, and about 50% larger in-vivo than in-situ ex-vivo. The deformations were highly heterogeneous, with substantial 3D components, suggesting that accurate measurement of LC microstructure deformation requires high-resolution volumes. This technique will help improve understanding of LC biomechanics and how IOP contributes to glaucoma.

  12. Post Deformation Annealing Behaviour of Mg-Al-Sn Alloys

    NASA Astrophysics Data System (ADS)

    Kabir, Abu Syed Humaun; Su, Jing; Sanjari, Mehdi; Jung, In-Ho; Yue, Stephen

    In this study, effects of dynamically formed precipitates on the microstructure and texture evolutions were investigated after the post deformation annealing for various times. Two ternary alloys of Mg, Al and Sn were designed, produced and deformed at 300°C at a strain rate of 0.01s-1 to form different amounts of strain induced precipitates during deformation. Subsequent annealing at deformation temperature was performed for up to 4 hours. Microstructures and precipitation were investigated by optical and scanning electron microscopes and macro and micro-texture were measured by X-ray diffraction (XRD) and Electron Back-Scattered Diffraction (EBSD) techniques, respectively. It was found that certain amount of strain induced precipitates was necessary to prevent grain growth for a certain time during annealing by grain boundary pinning effect. Also, texture randomization was possible with the presence of precipitates after certain time of annealing.

  13. Micromechanics of plastic deformation and phase transformation in a three-phase TRIP-assisted advanced high strength steel: Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Srivastava, Ankit; Ghassemi-Armaki, Hassan; Sung, Hyokyung; Chen, Peng; Kumar, Sharvan; Bower, Allan F.

    2015-05-01

    The micromechanics of plastic deformation and phase transformation in a three-phase advanced high strength steel are analyzed both experimentally and by microstructure-based simulations. The steel examined is a three-phase (ferrite, martensite and retained austenite) quenched and partitioned sheet steel with a tensile strength of 980 MPa. The macroscopic flow behavior and the volume fraction of martensite resulting from the austenite-martensite transformation during deformation were measured. In addition, micropillar compression specimens were extracted from the individual ferrite grains and the martensite particles, and using a flat-punch nanoindenter, stress-strain curves were obtained. Finite element simulations idealize the microstructure as a composite that contains ferrite, martensite and retained austenite. All three phases are discretely modeled using appropriate crystal plasticity based constitutive relations. Material parameters for ferrite and martensite are determined by fitting numerical predictions to the micropillar data. The constitutive relation for retained austenite takes into account contributions to the strain rate from the austenite-martensite transformation, as well as slip in both the untransformed austenite and product martensite. Parameters for the retained austenite are then determined by fitting the predicted flow stress and transformed austenite volume fraction in a 3D microstructure to experimental measurements. Simulations are used to probe the role of the retained austenite in controlling the strain hardening behavior as well as internal stress and strain distributions in the microstructure.

  14. Deformation microstructures and magnetite texture development in synthetic shear zones

    NASA Astrophysics Data System (ADS)

    Till, Jessica L.; Moskowitz, Bruce M.

    2014-08-01

    We present observations of deformation features in magnetite from synthetic magnetite-bearing silicate aggregates deformed between 1000 °C and 1200 °C in transpressional shear experiments with strains of up to 300%. Anisotropy of magnetic susceptibility and shape preferred orientation (SPO) analysis were combined with electron backscatter diffraction (EBSD) to characterize the magnetite deformation fabrics and intragrain microstructures. Crystallographic preferred orientation (CPO) in magnetite is very weak in all deformed samples and does not vary as a function of either temperature or shear strain. Magnetic anisotropy and SPO increase strongly with both strain and deformation temperature and indicate that strain partitioning between magnetite and the plagioclase matrix decreases at higher temperatures. EBSD orientation mapping of individual magnetite particles revealed substantial dispersions in intragrain orientation, analogous to undulose extinction, after deformation at 1000 and 1100 °C, indicating that dislocation creep processes were active in magnetite despite the lack of a well-developed CPO. Geometrical analysis of crystallographic orientation dispersions from grain map data indicates that low-angle grain boundary formation in magnetite could have been accommodated by slip on {110} or {100} planes, but no evidence for dominant slip on the expected {111} planes was found. Evidence for activation of multiple slip systems was seen in some magnetite grains and could be partially responsible for the lack of CPO in magnetite. These results suggest that, at least in polyphase rocks, crystallographic textures in magnetite may be inherently weak or slow to develop and CPO alone is not an adequate indicator of magnetite deformation mechanisms. These results may aid in the interpretation of deformation textures in other spinel-structured phases such as chromite and ringwoodite.

  15. Microstructural Evolution and Mechanical Properties of Ti-22Al-25Nb (At.%) Orthorhombic Alloy with Three Typical Microstructures

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo

    2018-01-01

    Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.

  16. Spherical Nanoindentation Stress-Strain Measurements of BOR-60 14YWT-NFA1 Irradiated Tubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan; Carvajal Nunez, Ursula; Krumwiede, David

    Spherical nanoindentation stress-strain protocols were applied to characterize unirradiated and fast neutron irradiated nanostructured ferritic alloy (NFA) 14YWT and compared against Berkovich nanohardness and available tensile data. The predicted uniaxial yield strength from spherical, 100 and 5 micron radii, indentation yield strength measurements was 1100-1400 MPa which compares well with the predictions from Berkovich nanohardness, 1200 MPa, and available tensile data, ~1100 MPa. However, spherical indentation measurements predict an increase in the uniaxial yield strength of ~1 GPa while Berkovich nanohardness measurements predict an increase of only ~250 MPa. No tensile data exists on the irradiated condition. It is believedmore » the difference in the predicted uniaxial yield strength between spherical and Berkovich nanoindentation are due to a low number of tests on the irradiated sample combined with the significant heterogeneity in the microstructure, the differences in sensitivity to sample preparation on the irradiated sample between the two indentation protocols , and/or in how strain localizes under the indenter with the possibility of dislocation channeling under Berkovich hardness indents leading to strain softening. Nanoindentation capabilities to test neutron irradiated samples in a radiological area were realized.« less

  17. Effect of Annealing Time on Microstructural Evolution and Deformation Characteristics in 10Mn1.5Al TRIP Steel

    NASA Astrophysics Data System (ADS)

    Han, Qihang; Zhang, Yulong; Wang, Li

    2015-05-01

    To investigate microstructural evolution and its effects on the deformation behaviors of cold-rolled 10Mn1.5Al TRIP steel, a series of intercritical annealing treatments with various holding times from 3 minutes to 48 hours were conducted. With the increase of the holding time from 3 minutes to 12 hours, the elongation was improved from 15 to 42 pct, while the tensile strength was only reduced from 1210 to 1095 MPa; the strength-ductility combination thus exceeded 45 GPa pct. Austenite was found to coexist with martensite within deformed grains, which reduced the strain concentration at the interface. The austenite transformation fraction, as measured from the {220} peaks, after 3 minutes annealing was half that after 12 hours annealing. This is an indication that the slip systems were more easily activated in the micro-scaled grains compared with nano-scaled grains. Therefore, although the stability of austenite would have increased during annealing, size-induced slip suppression was reduced. Thus, more strain was accommodated in the austenite, facilitating a greater strain-induced transformation and better ductility.

  18. Simulation and experimental analysis of nanoindentation and mechanical properties of amorphous NiAl alloys.

    PubMed

    Wang, Chih-Hao; Fang, Te-Hua; Cheng, Po-Chien; Chiang, Chia-Chin; Chao, Kuan-Chi

    2015-06-01

    This paper used numerical and experimental methods to investigate the mechanical properties of amorphous NiAl alloys during the nanoindentation process. A simulation was performed using the many-body tight-binding potential method. Temperature, plastic deformation, elastic recovery, and hardness were evaluated. The experimental method was based on nanoindentation measurements, allowing a precise prediction of Young's modulus and hardness values for comparison with the simulation results. The indentation simulation results showed a significant increase of NiAl hardness and elastic recovery with increasing Ni content. Furthermore, the results showed that hardness and Young's modulus increase with increasing Ni content. The simulation results are in good agreement with the experimental results. Adhesion test of amorphous NiAl alloys at room temperature is also described in this study.

  19. Microstructural and strain rate effects on plastic deformation in aluminum 2219-T87

    NASA Astrophysics Data System (ADS)

    Rincon, Carlos D.

    A fundamental investigation has been conducted on the effects of microstructure and strain rate on the plastic deformation of theta-prime-strengthened 2219 aluminum. The motivation for this work is based upon a previous study which showed inhomogeneous and locally extreme work hardening in the HAZ regions in VPPA 2219-T87 butt welds. This strongly suggests that the HAZ microstructure plays a major role in the deformation and fracture process in precipitation hardened aluminum alloy 2219. Tensile specimens of the weld joint exhibited more rapid work hardening in the heat-affected-zone (HAZ) at higher strain levels. Microhardness contour maps for these welds illustrated that late stage deformation was concentrated in two crossing bands at about 45sp° to the tensile axis. The width of the deformation bands and the ultimate tensile strength seemed to be dictated by the amount of work hardening in the HAZ. In this study, three different heat treatments were used to produce samples with different particle sizes and particle spacings, but all hardened by copper aluminide precipitates of the thetasp' structure. The heat treatments were categorized as being (A) as-received T87 condition, (B) T87 condition aged at approximately 204sp°C for 3 hours and (C) T87 over-aged at 204sp°C for 7 days. Uniaxial tensile tests consisted of two sets of experiments: (1) three heat treatments (A, B, and C) at two strain rates (0.02 minsp{-1} and 0.2 minsp{-1}) and (2) three heat treatments that were interrupted at select stress-strain levels (0.8% and 2% total strain) during the tensile tests at strain rate equal to 0.02 minsp{-1} at room temperature. Furthermore, a detailed transmission electron microscopy (TEM) study demonstrates the microstructural development during tensile deformation. The Voce equation of strain-hardening provides a slightly better fit to the tensile curves than the Ludwik-Hollomon equation. At higher strains, localized areas showed strain fields around thetasp

  20. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  1. Microstructural Characteristics of Deformed Quartz Under Non-Steady-State Conditions

    NASA Astrophysics Data System (ADS)

    Soleymani, Hamid; Kidder, Steven B.; Hirth, Greg

    2017-12-01

    Analysis of rock deformation experiments can be used to better inform studies of the stress history of geologic fault zones. While it is thought that many geological processes are slow enough to reach steady-state, however, the impact of non-steady-state conditions can be significant. For instance it is thought that most rocks experience a gradual increase in stress as they approach the brittle-ductile transition during exhumation, however experiments simulating a gradual stress increase during dislocation creep were not previously carried out. Similarly, while numerical models of earthquakes on major plate boundary fault zones indicate temporarily elevated differential stress and strain-rates below the fault edge in the ductile crust/upper-mantle, few experimental studies have explored the effects of such episodic stress and strain-rates on microstructural evolution. We carried out general-shear and axial compression Griggs rig experiments on Black Hills quartzite (grain size ≈ 100 µm) and synthesized quartz aggregates (grain size ≈ 20 µm) both annealed at 900 °C and confining pressure of 1GPa. The first series of experiments was designed to simulate the stress history of rapidly exhumed rocks. Stress was increased during the experiments by gradually decreasing the temperature from 900 °C to 800 °C at various constant displacement rates. The second series of experiments explores the microstructural and rheological characteristics of quartz deformed to strains of γ ≈ 4 via alternating fast strain rate ( ≈ 1 × 10-3 sec-1 ) and relaxation intervals. Preliminarily mechanical data suggest that our techniques successfully simulate exhumation stress paths and episodic stress pulses. Detailed microstructural analysis of the experimental samples and comparisons to natural samples will be presented to explore the degree to which non-steady-state behavior may be recorded in exhumed rocks.

  2. Nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass: Insights from molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilymis, D. A.; Ispas, S., E-mail: simona.ispas-crouzet@umontpellier.fr; Delaye, J.-M.

    2016-07-28

    We have carried out classical molecular dynamics simulations in order to get insight into the atomistic mechanisms of the deformation during nanoindentation of the pristine and irradiated forms of a sodium borosilicate glass. In terms of the glass hardness, we have found that the primary factor affecting the decrease of hardness after irradiation is depolymerization rather than free volume, and we argue that this is a general trend applicable to other borosilicate glasses with similar compositions. We have analyzed the changes of the short- and medium-range structures under deformation and found that the creation of oxygen triclusters is an importantmore » mechanism in order to describe the deformation of highly polymerized borosilicate glasses and is essential in the understanding of the folding of large rings under stress. We have equally found that the less polymerized glasses present a higher amount of relative densification, while the analysis of bond-breaking during the nanoindentation has showed that shear flow is more likely to appear around sodium atoms. The results provided in this study can be proven to be useful in the interpretation of experimental results.« less

  3. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension

    NASA Astrophysics Data System (ADS)

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  4. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension.

    PubMed

    Liao, Chih-Tang; Wu, Yi-Fan; Chien, Wei; Huang, Jung-Ren; Chen, Yeng-Long

    2017-11-01

    We apply the lattice Boltzmann method and the bead-spring network model of deformable particles (DPs) to study shear-induced particle ordering and deformation and the corresponding rheological behavior for dense DP suspensions confined in a narrow gap under steady external shear. The particle configuration is characterized with small-angle scattering intensity, the real-space 2D local order parameter, and the particle shape factors including deformation, stretching and tilt angles. We investigate how particle ordering and deformation vary with the particle volume fraction ϕ (=0.45-0.65) and the external shear rate characterized with the capillary number Ca (=0.003-0.191). The degree of particle deformation increases mildly with ϕ but significantly with Ca. Under moderate shear rate (Ca  =  0.105), the inter-particle structure evolves from string-like ordering to layered hexagonal close packing (HCP) as ϕ increases. A long wavelength particle slithering motion emerges for sufficiently large ϕ. For ϕ  =  0.61, the structure maintains layered HCP for Ca  =  0.031-0.143 but gradually becomes disordered for larger and smaller Ca. The correlation in particle zigzag movements depends sensitively on ϕ and particle ordering. Layer-by-layer analysis reveals how the non-slippery hard walls affect particle ordering and deformation. The shear-induced reconfiguration of DPs observed in the simulation agrees qualitatively with experimental results of sheared uniform emulsions. The apparent suspension viscosity increases with ϕ but exhibits much weaker dependence compared to hard-sphere suspensions, indicating that particle deformation and unjamming under shear can significantly reduce the viscous stress. Furthermore, the suspension shear-thins, corresponding to increased inter-DP ordering and particle deformation with Ca. This work provides useful insights into the microstructure-rheology relationship of concentrated deformable particle suspensions.

  5. Effect of Austenite Deformation on the Microstructure Evolution and Grain Refinement Under Accelerated Cooling Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, H.; Palmiere, E. J.

    2017-07-01

    Although there has been much research regarding the effect of austenite deformation on accelerated cooled microstructures in microalloyed steels, there is still a lack of accurate data on boundary densities and effective grain sizes. Previous results observed from optical micrographs are not accurate enough, because, for displacive transformation products, a substantial part of the boundaries have disorientation angles below 15 deg. Therefore, in this research, a niobium microalloyed steel was used and electron backscattering diffraction mappings were performed on all of the transformed microstructures to obtain accurate results on boundary densities and grain refinement. It was found that with strain rising from 0 to 0.5, a transition from bainitic ferrite to acicular ferrite occurs and the effective grain size reduces from 5.7 to 3.1 μm. When further increasing strain from 0.5 to 0.7, dynamic recrystallization was triggered and postdynamic softening occurred during the accelerated cooling, leading to an inhomogeneous and coarse transformed microstructure. In the entire strain range, the density changes of boundaries with different disorientation angles are distinct, due to different boundary formation mechanisms. Finally, the controversial influence of austenite deformation on effective grain size of low-temperature transformation products was argued to be related to the differences in transformation conditions and final microstructures.

  6. Deformation Behavior and Microstructure Evolution of As-Cast 42CrMo Alloy in Isothermal and Non-isothermal Compression

    NASA Astrophysics Data System (ADS)

    Qin, Fangcheng; Li, Yongtang; Qi, Huiping; Lv, Zhenhua

    2016-11-01

    The isothermal and non-isothermal multi-pass compression tests of centrifugal casting 42CrMo steel were conducted on a Gleeble-3500 thermal simulation machine. The effects of compression passes and finishing temperatures on deformation behavior and microstructure evolution were investigated. It is found that the microstructure is homogeneous with equiaxed grains, and the flow stress does not show significant change with the increase in passes, while the peak softening coefficient increases first and then decreases during inter-pass. Moreover, the dominant mechanisms of controlled temperature and accumulated static recrystallization for grain refinement and its homogeneous distribution are found after 5 passes deformation. As the finishing temperature increases, the flow stress decreases gradually, but the dynamic recrystallization accelerates and softening effect increases, resulting in the larger grain size and homogeneous microstructure. The microhardness decreases sharply because the sufficient softening occurs in microstructure. When the finishing temperature is 890 °C, the carbide particles are precipitated in the vicinity of the grain boundaries, thus inhibiting the dislocation motion. Thus, the higher finishing temperature (≥970 °C) for centrifugal casting 42CrMo alloy should be avoided in non-isothermal multi-pass deformation, which is beneficial to grain refinement and properties improvement.

  7. Effects of collagen microstructure and material properties on the deformation of the neural tissues of the lamina cribrosa.

    PubMed

    Voorhees, A P; Jan, N-J; Sigal, I A

    2017-08-01

    It is widely considered that intraocular pressure (IOP)-induced deformation within the neural tissue pores of the lamina cribrosa (LC) contributes to neurodegeneration and glaucoma. Our goal was to study how the LC microstructure and mechanical properties determine the mechanical insult to the neural tissues within the pores of the LC. Polarized light microscopy was used to measure the collagen density and orientation in histology sections of three sheep optic nerve heads (ONH) at both mesoscale (4.4μm) and microscale (0.73μm) resolutions. Mesoscale fiber-aware FE models were first used to calculate ONH deformations at an IOP of 30mmHg. The results were then used as boundary conditions for microscale models of LC regions. Models predicted large insult to the LC neural tissues, with 95th percentile 1st principal strains ranging from 7 to 12%. Pores near the scleral boundary suffered significantly higher stretch compared to pores in more central regions (10.0±1.4% vs. 7.2±0.4%; p=0.014; mean±SD). Variations in material properties altered the minimum, median, and maximum levels of neural tissue insult but largely did not alter the patterns of pore-to-pore variation, suggesting these patterns are determined by the underlying structure and geometry of the LC beams and pores. To the best of our knowledge, this is the first computational model that reproduces the highly heterogeneous neural tissue strain fields observed experimentally. The loss of visual function associated with glaucoma has been attributed to sustained mechanical insult to the neural tissues of the lamina cribrosa due to elevated intraocular pressure. Our study is the first computational model built from specimen-specific tissue microstructure to consider the mechanics of the neural tissues of the lamina separately from the connective tissue. We found that the deformation of the neural tissue was much larger than that predicted by any recent microstructure-aware models of the lamina. These results

  8. Boundary migration in a 3D deformed microstructure inside an opaque sample

    DOE PAGES

    Zhang, Y. B.; Budai, J. D.; Tischler, J. Z.; ...

    2017-06-30

    How boundaries surrounding recrystallization grains migrate through the 3D network of dislocation boundaries in deformed crystalline materials is unknown and critical for the resulting recrystallized crystalline materials. Furthermore, by using X-ray Laue diffraction microscopy, we show for the first time the migration pattern of a typical recrystallization boundary through a well-characterized deformation matrix. The data provide a unique possibility to investigate effects of both boundary misorientation and plane normal on the migration, information which cannot be accessed with any other techniques. Our results show that neither of these two parameters can explain the observed migration behavior. Instead we suggest thatmore » the subdivision of the deformed microstructure ahead of the boundary plays the dominant role. Our experimental observations challenge the assumptions of existing recrystallization theories, and set the stage for determination of mobilities of recrystallization boundaries.« less

  9. Influence of deformation ageing treatment on microstructure and properties of aluminum alloy 2618

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jianhua; Yi Danqing; Su Xuping

    2008-07-15

    The effects of deformation ageing treatment (DAT) on the microstructure and properties of aluminum alloy 2618 were investigated. The alloy was subjected to deformation ageing treatment which included solution treating at 535 deg. C quenching into water at room-temperature, cold rolling (10%) and further ageing to peak hardness level at 200 deg. C. The electron microscopic studies revealed that the treatment affects the ageing characteristics and the coarsening of ageing phase (S') at elevated-temperature. The dislocation-precipitate tangles substructure couldn't be found in alloy 2618. The tensile and hardness tests showed that deformation-ageing treatment causes a significant improvement in tensile strengthmore » and hardness to alloy 2618 at room- and elevated-temperature.« less

  10. In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation

    PubMed Central

    Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef

    2016-01-01

    Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to −16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features. PMID:26947558

  11. In-situ Observation of Cross-Sectional Microstructural Changes and Stress Distributions in Fracturing TiN Thin Film during Nanoindentation.

    PubMed

    Zeilinger, Angelika; Todt, Juraj; Krywka, Christina; Müller, Martin; Ecker, Werner; Sartory, Bernhard; Meindlhumer, Michael; Stefenelli, Mario; Daniel, Rostislav; Mitterer, Christian; Keckes, Jozef

    2016-03-07

    Load-displacement curves measured during indentation experiments on thin films depend on non-homogeneous intrinsic film microstructure and residual stress gradients as well as on their changes during indenter penetration into the material. To date, microstructural changes and local stress concentrations resulting in plastic deformation and fracture were quantified exclusively using numerical models which suffer from poor knowledge of size dependent material properties and the unknown intrinsic gradients. Here, we report the first in-situ characterization of microstructural changes and multi-axial stress distributions in a wedge-indented 9 μm thick nanocrystalline TiN film volume performed using synchrotron cross-sectional X-ray nanodiffraction. During the indentation, needle-like TiN crystallites are tilted up to 15 degrees away from the indenter axis in the imprint area and strongly anisotropic diffraction peak broadening indicates strain variation within the X-ray nanoprobe caused by gradients of giant compressive stresses. The morphology of the multiaxial stress distributions with local concentrations up to -16.5 GPa correlate well with the observed fracture modes. The crack growth is influenced decisively by the film microstructure, especially by the micro- and nano-scopic interfaces. This novel experimental approach offers the capability to interpret indentation response and indenter imprint morphology of small graded nanostructured features.

  12. Microstructure and hot compression deformation of the as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy

    NASA Astrophysics Data System (ADS)

    Luo, Xiaoping; Kang, Li; Li, Qiushu; Chai, Yuesheng

    2015-08-01

    The hot compression deformation behavior and microstructure of as-cast Mg-5.0Sn-1.5Y-0.1Zr alloy were investigated by performing isothermal hot compression tests. The tests were conducted using a thermal mechanical simulator at 250-450 °C and strain rates ranging from 0.002 to 2 s-1, with a maximum deformation strain of 50 %. The effects of the deformation parameters on the microstructure evolution of the Mg-5.0Sn-1.5Y-0.1Zr alloy were discussed. The study revealed the flow behavior and the deformation mechanism of the Mg-5.0Sn-1.5Y-0.1Zr alloy. The dependence of flow stress on temperature and strain rate was described by a hyperbolic sine constitutive equation. Through regression analysis, the activation energy of 223.26 kJ mol-1 for plastic deformation was determined by considering flow stress at a strain rate of 0.2. Microstructure observation showed that dynamic recrystallization occurred extensively along grain boundaries at temperatures higher than 300 °C and strain rates lower than 0.02 s-1. This observation provides a theoretical basis for the manufacture and application of the Mg-5.0Sn-1.5Y-0.1Zr alloy.

  13. Nanoindentation hardness and atomic force microscope imaging studies of pressure-quenched zirconium metal

    NASA Astrophysics Data System (ADS)

    Catledge, Shane A.; Spencer, Philemon T.; Vohra, Yogesh K.

    2000-11-01

    We have carried out mechanical property measurements on zirconium metal compressed in a diamond anvil cell to 19 GPa at room temperature with subsequent quenching to room pressure. The irreversible transformation from the ambient hexagonal-close-packed phase to the simple hexagonal ω phase (AlB2 structure) is confirmed by synchrotron energy dispersive x-ray diffraction followed by nanoindentation of the pressure-quenched sample. We document an 80% increase in hardness as a consequence of the pressure-induced transformation to the ω phase at room temperature. This is a large increase for a metallic phase transformation and can be attributed to the presence of sp2-hybrid bonds forming graphite-like nets in the (0001) plane of the AlB2 structure. Atomic force microscopy of the indents shows that a plastic deformation of 2 μm in depth was achieved with a force of 200 mN.

  14. Methodologies in determining mechanical properties of thin films using nanoindentation

    NASA Astrophysics Data System (ADS)

    Han, Seung Min Jane

    . The measured yield strengths show the trend of increasing strength with decreasing bilayer period, and agree with the nanoindentation hardness results using the suitable Tabor correction factor. Strain softening was observed at large strains, and a new model for the true stress and true strain was developed to account for the inhomogeneous deformation geometry.

  15. Deformation Microstructures of the Yugu Peridotites in the Gyeonggi Massif, Korea: Implications for Olivine Fabric Transition in Mantle Shear Zones

    NASA Astrophysics Data System (ADS)

    Jung, H.; Park, M.

    2017-12-01

    Large-scale emplaced peridotite bodies may provide insights into plastic deformation process and tectonic evolution in the mantle shear zone. Due to the complexity of deformation microstructures and processes in natural mantle rocks, the evolution of pre-existing olivine fabrics is still not well understood. In this study, we examine well-preserved transitional characteristics of microstructures and olivine fabrics developed in a mantle shear zone from the Yugu peridotite body, the Gyeonggi Massif, Korean Peninsula. The Yugu peridotite body predominantly comprises spinel harzburgite together with minor lherzolite, dunite, and clinopyroxenite. We classified highly deformed peridotites into four textural types based on their microstructural characteristics: proto-mylonite; proto-mylonite to mylonite transition; mylonite; and ultra-mylonite. Olivine fabrics changed from A-type (proto-mylonite) via D-type (mylonite) to E-type (ultra-mylonite). Olivine fabric transition is interpreted as occurring under hydrous conditions at low temperature and high strain, because of characteristics such as Ti-clinohumite defects (and serpentine) and fluid inclusion trails in olivine, and a hydrous mineral (pargasite) in the matrix, especially in the ultra-mylonitic peridotites. Even though the ultra-mylonitic peridotites contained extremely small (24-30 μm) olivine neoblasts, the olivine fabrics showed a distinct (E-type) pattern rather than a random one. Analysis of the lattice preferred orientation strength, dislocation microstructures, recrystallized grain-size, and deformation mechanism maps of olivine suggest that the proto-mylonitic, mylonitic, and ultra-mylonitic peridotites were deformed by dislocation creep (A-type), DisGBS (D-type), and combination of dislocation and diffusion creep (E-type), respectively.

  16. Effect of material inhomogeneity on the cyclic plastic deformation behavior at the microstructural level: micromechanics-based modeling of dual-phase steel

    NASA Astrophysics Data System (ADS)

    Paul, Surajit Kumar

    2013-07-01

    The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.

  17. Spherical nanoindentation stress-strain analysis, Version 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Turner, David; Miller, Calvin

    Nanoindentation is a tool that allows the mechanical response of a variety of materials at the nano to micron length scale to be measured. Recent advances in spherical nanoindentation techniques have allowed for a more reliable and meaningful characterization of the mechanical response from nanoindentation experiments in the form on an indentation stress-strain curve. This code base, Spin, is written in MATLAB (The Mathworks, Inc.) and based on the analysis protocols developed by S.R. Kalidindi and S. Pathak [1, 2]. The inputs include the displacement, load, harmonic contact stiffness, harmonic displacement, and harmonic load from spherical nanoindentation tests in themore » form of an Excel (Microsoft) spreadsheet. The outputs include indentation stress-strain curves and indentation properties as well their variance due to the uncertainty of the zero-point correction in the form of MATLAB data (.mat) and figures (.png). [1] S. Pathak, S.R. Kalidindi. Spherical nanoindentation stress–strain curves, Mater. Sci. Eng R-Rep 91 (2015). [2] S.R. Kalidindi, S. Pathak. Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves, Acta Materialia 56 (2008) 3523-3532.« less

  18. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y2SiO5 crystal

    NASA Astrophysics Data System (ADS)

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; Qiao, Mei; Wang, Tie-Jun; Zhang, Jing; Liu, Yong; Liu, Peng; Zhu, Zi-Hua; Wang, Xue-Lin

    2017-09-01

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this paper, we used 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated Y2SiO5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prism coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.

  19. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    NASA Astrophysics Data System (ADS)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

    2018-02-01

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

  20. Fabrication of nanofibers reinforced polymer microstructures using femtosecond laser material processing

    NASA Astrophysics Data System (ADS)

    Alubaidy, Mohammed-Amin

    A new method has been introduced for the formation of microfeatures made of nanofibers reinforced polymer, using femtosecond laser material processing. The Femtosecond laser is used for the generation of three-dimensional interweaved nanofibers and the construction of microfeatures, like microchannels and voxels, through multi photon polymerization of nanofiber dispersed polymer resin. A new phenomenon of multiphoton polymerization induced by dual wavelength irradiation was reported for the first time. A significant improvement in the spatial resolution, compared to the two photon absorption (2PA) and the three photon absorption (3PA) processes has been achieved. Conductive polymer microstructures and magnetic polymer microstructures have been fabricated through this method. The mechanical properties of nanofiber reinforced polymer microstructures has been investigated by means of nanoindentation and the volume fraction of the generated nanofibers in the nanocomposite was calculated by using nanoindentation analysis. The results showed significant improvement in strength of the material. The electrical conductivity of the two photon polymerization (TPP) generated microfeatures was measured by a two-probe system at room temperature and the conductivity-temperature relationship was measured at a certain temperature range. The results suggest that the conductive polymer microstructure is reproducible and has a consistent conductivity-temperature relation. The magnetic strength has been characterized using Guassmeter. To demonstrate the potential application of the new fabrication method, a novel class of DNA-functionalized three-dimensional (3D), stand-free, and nanostructured electrodes were fabricated. The developed nanofibrous DNA biosensor has been characterized by cyclic voltammetry with the use of ferrocyanide as an electrochemical redox indicator. Results showed that the probe--target recognition has been improved. This research demonstrated that femtosecond

  1. Effect of microstructure on the stability of retained austenite in transformation-induced-plasticity steels

    NASA Astrophysics Data System (ADS)

    Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.

    2004-08-01

    Two Fe-0.2C-1.55Mn-1.5Si (in wt pct) steels, with and without the addition of 0.039Nb (in wt pct), were studied using laboratory rolling-mill simulations of controlled thermomechanical processing. The microstructures of all samples were characterized by optical metallography, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The microstructural behavior of phases under applied strain was studied using a heat-tinting technique. Despite the similarity in the microstructures of the two steels (equal amounts of polygonal ferrite, carbide-free bainite, and retained austenite), the mechanical properties were different. The mechanical properties of these transformation-induced-plasticity (TRIP) steels depended not only on the individual behavior of all these phases, but also on the interaction between the phases during deformation. The polygonal ferrite and bainite of the C-Mn-Si steel contributed to the elongation more than these phases in the C-Mn-Si-Nb-steel. The stability of retained austenite depends on its location within the microstructure, the morphology of the bainite, and its interaction with other phases during straining. Granular bainite was the bainite morphology that provided the optimum stability of the retained austenite.

  2. Microstructure characterization of 316L deformed at high strain rates using EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yvell, K., E-mail: kyv@du.se

    2016-12-15

    Specimens from split Hopkinson pressure bar experiments, at strain rates between ~ 1000–9000 s{sup −1} at room temperature and 500 °C, have been studied using electron backscatter diffraction. No significant differences in the microstructures were observed at different strain rates, but were observed for different strains and temperatures. Size distribution for subgrains with boundary misorientations > 2° can be described as a bimodal lognormal area distribution. The distributions were found to change due to deformation. Part of the distribution describing the large subgrains decreased while the distribution for the small subgrains increased. This is in accordance with deformation being heterogeneousmore » and successively spreading into the undeformed part of individual grains. The variation of the average size for the small subgrain distribution varies with strain but not with strain rate in the tested interval. The mean free distance for dislocation slip, interpreted here as the average size of the distribution of small subgrains, displays a variation with plastic strain which is in accordance with the different stages in the stress-strain curves. The rate of deformation hardening in the linear hardening range is accurately calculated using the variation of the small subgrain size with strain. - Highlights: •Only changes in strain, not strain rate, gave differences in the microstructure. •A bimodal lognormal size distribution was found to describe the size distribution. •Variation of the subgrain fraction sizes agrees with models for heterogeneous slip. •Variation of subgrain size with strain describes part of the stress strain curve.« less

  3. Magneto-induced large deformation and high-damping performance of a magnetorheological plastomer

    NASA Astrophysics Data System (ADS)

    Liu, Taixiang; Gong, Xinglong; Xu, Yangguang; Pang, Haoming; Xuan, Shouhu

    2014-10-01

    A magnetorheological plastomer (MRP) is a new kind of soft magneto-sensitive polymeric composite. This work reports on the large magneto-deforming effect and high magneto-damping performance of MRPs under a quasi-statical shearing condition. We demonstrate that an MRP possesses a magnetically sensitive malleability, and its magneto-mechanical behavior can be analytically described by the magneto-enhanced Bingham fluid-like model. The magneto-induced axial stress, which drives the deformation of the MRP with 70 wt % carbonyl iron powder, can be tuned in a large range from nearly 0.0 kPa to 55.4 kPa by an external 662.6 kA m-1 magnetic field. The damping performance of an MRP has a significant correlation with the magnetic strength, shear rate, carbonyl iron content and shear strain amplitude. For an MRP with 60 wt % carbonyl iron powder, the relative magneto-enhanced damping effect can reach as high as 716.2% under a quasi-statically shearing condition. Furthermore, the related physical mechanism is proposed, and we reveal that the magneto-induced, particle-assembled microstructure directs the magneto-mechanical behavior of the MRP.

  4. Crystal Orientation Effect on the Subsurface Deformation of Monocrystalline Germanium in Nanometric Cutting.

    PubMed

    Lai, Min; Zhang, Xiaodong; Fang, Fengzhou

    2017-12-01

    Molecular dynamics simulations of nanometric cutting on monocrystalline germanium are conducted to investigate the subsurface deformation during and after nanometric cutting. The continuous random network model of amorphous germanium is established by molecular dynamics simulation, and its characteristic parameters are extracted to compare with those of the machined deformed layer. The coordination number distribution and radial distribution function (RDF) show that the machined surface presents the similar amorphous state. The anisotropic subsurface deformation is studied by nanometric cutting on the (010), (101), and (111) crystal planes of germanium, respectively. The deformed structures are prone to extend along the 110 slip system, which leads to the difference in the shape and thickness of the deformed layer on various directions and crystal planes. On machined surface, the greater thickness of subsurface deformed layer induces the greater surface recovery height. In order to get the critical thickness limit of deformed layer on machined surface of germanium, the optimized cutting direction on each crystal plane is suggested according to the relevance of the nanometric cutting to the nanoindentation.

  5. Bright x-rays reveal shifting deformation states and effects of the microstructure on the plastic deformation of crystalline materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.

    The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less

  6. Bright x-rays reveal shifting deformation states and effects of the microstructure on the plastic deformation of crystalline materials

    DOE PAGES

    Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...

    2017-11-30

    The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less

  7. The effect of deformation temperature on the microstructure evolution of Inconel 625 superalloy

    NASA Astrophysics Data System (ADS)

    Guo, Qingmiao; Li, Defu; Guo, Shengli; Peng, Haijian; Hu, Jie

    2011-07-01

    Hot compression tests of Inconel 625 superalloy were conducted using a Gleeble-1500 simulator between 900 °C and 1200 °C with different true strains and a strain rate of 0.1 s -1. Scanning electron microscope (SEM) and electron backscatter diffraction technique (EBSD) were employed to investigate the effect of deformation temperature on the microstructure evolution and nucleation mechanisms of dynamic recrystallization (DRX). It is found that the relationship between the DRX grain size and the peak stress can be expressed by a power law function. Significant influence of deformation temperatures on the nucleation mechanisms of DRX are observed at different deformation stages. At lower deformation temperatures, continuous dynamic recrystallization (CDRX) characterized by progressive subgrain rotation is considered as the main mechanism of DRX at the early deformation stage. However, discontinuous dynamic recrystallization (DDRX) with bulging of the original grain boundaries becomes the operating mechanism of DRX at the later deformation stage. At higher deformation temperatures, DDRX is the primary mechanism of DRX, while CDRX can only be considered as an assistant mechanism at the early deformation stage. Nucleation of DRX can also be activated by the twinning formation. With increasing the deformation temperature, the effect of DDRX accompanied with twinning formation grows stronger, while the effect of CDRX grows weaker. Meanwhile, the position of subgrain formation shifts gradually from the interior of original grains to the vicinity of the original boundaries.

  8. Electromigration-induced plastic deformation in passivated metal lines

    NASA Astrophysics Data System (ADS)

    Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.

    2002-11-01

    We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.

  9. Microstructural characterization of hydrogen induced cracking in TRIP-assisted steel by EBSD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laureys, A., E-mail: Aurelie.Laureys@UGent.be; Depover, T.; Petrov, R.

    2016-02-15

    The present work evaluates hydrogen induced cracking by performing an elaborate EBSD (Electron BackScatter Diffraction) study in a steel with transformation induced plasticity (TRIP-assisted steel). This type of steel exhibits a multiphase microstructure which undergoes a deformation induced phase transformation. Additionally, each microstructural constituent displays a different behavior in the presence of hydrogen. The aim of this study is to obtain a better understanding on the mechanisms governing hydrogen induced crack initiation and propagation in the hydrogen saturated multiphase structure. Tensile tests on notched samples combined with in-situ electrochemical hydrogen charging were conducted. The tests were interrupted at stresses justmore » after reaching the tensile strength, i.e. before macroscopic failure of the material. This allowed to study hydrogen induced crack initiation and propagation by SEM (Scanning Electron Microscopy) and EBSD. A correlation was found between the presence of martensite, which is known to be very susceptible to hydrogen embrittlement, and the initiation of hydrogen induced cracks. Initiation seems to occur mostly by martensite decohesion. High strain regions surrounding the hydrogen induced crack tips indicate that further crack propagation may have occurred by the HELP (hydrogen-enhanced localized plasticity) mechanism. Small hydrogen induced cracks located nearby the notch are typically S-shaped and crack propagation was dominantly transgranularly. The second stage of crack propagation consists of stepwise cracking by coalescence of small hydrogen induced cracks. - Highlights: • Hydrogen induced cracking in TRIP-assisted steel is evaluated by EBSD. • Tensile tests were conducted on notched hydrogen saturated samples. • Crack initiation occurs by a H-Enhanced Interface DEcohesion (HEIDE) mechanism. • Crack propagation involves growth and coalescence of small cracks. • Propagation is governed by the

  10. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    DOE PAGES

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; ...

    2017-11-06

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less

  11. Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro

    The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less

  12. 3-Dimensional Microstructure of Al-Al3Ti Alloy Severely Deformed by ECAP

    NASA Astrophysics Data System (ADS)

    Sato, Hisashi; Hishikawa, Takahisa; Makino, Yuuki; Kunimine, Takahiro; Watanabe, Yoshimi

    Microstructure of Al-Al3Ti alloy deformed by Equal-Channel-Angular Pressing (ECAP) is 3-dimensionally investigated. Especially, distribution of Al3Ti particles is focused in this study. The Al-Al3Ti alloy has coarse Al3Ti platelet particles in α-Al matrix. When the Al-Al3Ti alloy is deformed by ECAP under route A, fine Al3Ti platelet particles are observed. These Al3Ti platelet particles are aligned along to deformation axis, and its plane normal is perpendicular to the deformation axis. On the other hand, Al-Al3Ti alloy ECAPed under route Bc forms several groups consisted of fine Al3Ti platelet particles. Moreover, longitudinal size of the Al3Ti particle groups is close to that of initial Al3Ti particles with 4-pass ECAP specimen. These distribution behaviors of the Al3Ti particle can be explained by plastic flow of α-Al matrix. Finally, it is concluded that distribution of Al3Ti particle in Al-Al3Ti alloy by ECAP is controlled by plastic deformation of α-Al matrix.

  13. Effects of hot compression deformation temperature on the microstructure and properties of Al-Zr-La alloys

    NASA Astrophysics Data System (ADS)

    Yue, Xian-hua; Liu, Chun-fang; Liu, Hui-hua; Xiao, Su-fen; Tang, Zheng-hua; Tang, Tian

    2018-02-01

    The main goal of this study is to investigate the microstructure and electrical properties of Al-Zr-La alloys under different hot compression deformation temperatures. In particular, a Gleeble 3500 thermal simulator was used to carry out multi-pass hot compression tests. For five-pass hot compression deformation, the last-pass deformation temperatures were 240, 260, 300, 340, 380, and 420°C, respectively, where the first-pass deformation temperature was 460°C. The experimental results indicated that increasing the hot compression deformation temperature with each pass resulted in improved electrical conductivity of the alloy. Consequently, the flow stress was reduced after deformation of the samples subjected to the same number of passes. In addition, the dislocation density gradually decreased and the grain size increased after hot compression deformation. Furthermore, the dynamic recrystallization behavior was effectively suppressed during the hot compression process because spherical Al3Zr precipitates pinned the dislocation movement effectively and prevented grain boundary sliding.

  14. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    NASA Astrophysics Data System (ADS)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  15. Quantitative prediction of phase transformations in silicon during nanoindentation

    NASA Astrophysics Data System (ADS)

    Zhang, Liangchi; Basak, Animesh

    2013-08-01

    This paper establishes the first quantitative relationship between the phases transformed in silicon and the shape characteristics of nanoindentation curves. Based on an integrated analysis using TEM and unit cell properties of phases, the volumes of the phases emerged in a nanoindentation are formulated as a function of pop-out size and depth of nanoindentation impression. This simple formula enables a fast, accurate and quantitative prediction of the phases in a nanoindentation cycle, which has been impossible before.

  16. Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Xu, Y. N.; Liu, M. N.; Wang, M. C.; Oloyede, A.; Bell, J. M.; Yan, C.

    2015-10-01

    Titanium dioxide (TiO2) nanotube arrays are attracting increasing attention for use in solar cells, lithium-ion batteries, and biomedical implants. To take full advantage of their unique physical properties, such arrays need to maintain adequate mechanical integrity in applications. However, the mechanical performance of TiO2 nanotube arrays is not well understood. In this work, we investigate the deformation and failure of TiO2 nanotube arrays using the nanoindentation technique. We found that the load-displacement response of the arrays strongly depends on the indentation depth and indenter shape. Substrate-independent elastic modulus and hardness can be obtained when the indentation depth is less than 2.5% of the array height. The deformation mechanisms of TiO2 nanotube arrays by Berkovich and conical indenters are closely associated with the densification of TiO2 nanotubes under compression. A theoretical model for deformation of the arrays under a large-radius conical indenter is also proposed.

  17. Stress Dependence of Microstructures in Experimentally Deformed Calcite

    NASA Astrophysics Data System (ADS)

    Platt, J. P.; De Bresser, J. H. P.

    2017-12-01

    Measurements of dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Blg), and the maximum scale length for surface-energy driven grain-boundary migration (γGBM) in experimentally deformed Cararra marble help define the dependence of these microstructural features on stress and temperature. Measurements were made optically on ultra-thin sections in order to allow these features to be defined during measurement on the basis of microstructural setting and geometry. Taken together with previously published data Dr defines a paleopiezometer with a stress exponent of -1.09. There is no discernible temperature dependence over the 500°C temperature range of the experiments. Recrystallization occured mainly by bulging and subgrain rotation, and the two processes operated together, so that it is not possible to separate grains nucleated by the two mechanisms. Sg and Dr measured in the same samples are closely similar in size, suggesting that new grains do not grow significantly after nucleation, and that subgrain size is likely to be the primary control on recrystallized grain size. Blg and γGBM measured on each sample define a relationship to stress with an exponent of approximately -1.6, which helps define the boundary in stress - grain-size space between a region of dominant strain-energy-driven grain-boundary migration at high stress, from a region of dominant surface-energy-driven grain-boundary migration at low stress.

  18. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    NASA Astrophysics Data System (ADS)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  19. High-temperature deformation and microstructural analysis for Si3N4-Sc2O3

    NASA Technical Reports Server (NTRS)

    Cheong, Deock-Soo; Sanders, William A.

    1990-01-01

    It was indicated that Si3N4 doped with Sc2O3 may exhibit high temperature mechanical properties superior to Si3N4 systems with various other oxide sintered additives. High temperature deformation of samples was studied by characterizing the microstructures before and after deformation. It was found that elements of the additive, such as Sc and O, exist in small amounts at very thin grain boundary layers and most of them stay in secondary phases at triple and multiple grain boundary junctions. These secondary phases are devitrified as crystalline Sc2Si2O7. Deformation of the samples was dominated by cavitational processes rather than movements of dislocations. Thus the excellent deformation resistance of the samples at high temperature can be attributed to the very small thickness of the grain boundary layers and the crystalline secondary phase.

  20. Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asgharzadeh, H.; Kim, H.S.; Simchi, A., E-mail: simchi@sharif.edu

    2013-01-15

    An ultrafine-grained Al6063/Al{sub 2}O{sub 3} (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 {mu}m), ultrafine grains (0.1-1 {mu}m), and micron-size grains (> 1 {mu}m) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle grain boundaries rather than nanometricmore » alumina particles. Hot deformation behavior of the material at different temperatures and strain rates was studied by compression test and compared to coarse-grained Al6063 alloy. The activation energy of the hot deformation process for the nanocomposite was determined to be 291 kJ mol{sup -1}, which is about 64% higher than that of the coarse-grained alloy. Detailed microstructural analysis revealed that dynamic recrystallization is responsible for the observed deformation softening in the ultrafine-grained nanocomposite. - Highlights: Black-Right-Pointing-Pointer The strengthening mechanisms of Al6063/Al{sub 2}O{sub 3} nanocomposite were evaluated. Black-Right-Pointing-Pointer Hot deformation behavior of the nanocomposite was studied. Black-Right-Pointing-Pointer The hot deformation activation energy was determined using consecutive models. Black-Right-Pointing-Pointer The restoration mechanisms and microstructural changes are presented.« less

  1. Uncovering the true nature of deformation microstructures using 3D analysis methods

    NASA Astrophysics Data System (ADS)

    Ferry, M.; Quadir, M. Z.; Afrin, N.; Xu, W.; Loeb, A.; Soe, B.; McMahon, C.; George, C.; Bassman, L.

    2015-08-01

    Three-dimensional electron backscatter diffraction (3D EBSD) has emerged as a powerful technique for generating 3D crystallographic information in reasonably large volumes of a microstructure. The technique uses a focused ion beam (FIB) as a high precision serial sectioning device for generating consecutive ion milled surfaces of a material, with each milled surface subsequently mapped by EBSD. The successive EBSD maps are combined using a suitable post-processing method to generate a crystallographic volume of the microstructure. The first part of this paper shows the usefulness of 3D EBSD for understanding the origin of various structural features associated with the plastic deformation of metals. The second part describes a new method for automatically identifying the various types of low and high angle boundaries found in deformed and annealed metals, particularly those associated with grains exhibiting subtle and gradual variations in orientation. We have adapted a 2D image segmentation technique, fast multiscale clustering, to 3D EBSD data using a novel variance function to accommodate quaternion data. This adaptation is capable of segmenting based on subtle and gradual variation as well as on sharp boundaries within the data. We demonstrate the excellent capabilities of this technique with application to 3D EBSD data sets generated from a range of cold rolled and annealed metals described in the paper.

  2. Correction of the post -- necking true stress -- strain data using instrumented nanoindentation

    NASA Astrophysics Data System (ADS)

    Romero Fonseca, Ivan Dario

    The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic

  3. Impact-Induced Chondrule Deformation and Aqueous Alteration of CM2 Murchison

    NASA Technical Reports Server (NTRS)

    Hanna, R. D.; Zolensky, M.; Ketcham, R. A.; Behr, W. M.; Martinez, J. E.

    2014-01-01

    Deformed chondrules in CM2 Murchison have been found to define a prominent foliation [1,2] and lineation [3] in 3D using X-ray computed tomography (XCT). It has been hypothesized that chondrules in foliated chondrites deform by "squeezing" into surrounding pore space [4,5], a process that also likely removes primary porosity [6]. However, shock stage classification based on olivine extinction in Murchison is consistently low (S1-S2) [4-5,7] implying that significant intracrystalline plastic deformation of olivine has not occurred. One objective of our study is therefore to determine the microstructural mechanisms and phases that are accommodating the impact stress and resulting in relative displacements within the chondrules. Another question regarding impact deformation in Murchison is whether it facilitated aqueous alteration as has been proposed for the CMs which generally show a positive correlation between degree of alteration and petrofabric strength [7,2]. As pointed out by [2], CM Murchison represents a unique counterpoint to this correlation: it has a strong petrofabric but a relatively low degree of aqueous alteration. However, Murchison may not represent an inconsistency to the proposed causal relationship between impact and alteration, if it can be established that the incipient aqueous alteration post-dated chondrule deformation. Methods: Two thin sections from Murchison sample USNM 5487 were cut approximately perpendicular to the foliation and parallel to lineation determined by XCT [1,3] and one section was additionally polished for EBSD. Using a combination of optical petrography, SEM, EDS, and EBSD several chondrules were characterized in detail to: determine phases, find microstructures indicative of strain, document the geometric relationships between grain-scale microstructures and the foliation and lineation direction, and look for textural relationships of alteration minerals (tochilinite and Mg-Fe serpentine) that indicate timing of their

  4. Microstructural Evolution and Constitutive Relationship of M350 Grade Maraging Steel During Hot Deformation

    NASA Astrophysics Data System (ADS)

    Chakravarthi, K. V. A.; Koundinya, N. T. B. N.; Narayana Murty, S. V. S.; Nageswara Rao, B.

    2017-03-01

    Maraging steels exhibit extraordinary strength coupled with toughness and are therefore materials of choice for critical structural applications in defense, aerospace and nuclear engineering. Thermo-mechanical processing is an important step in the manufacture of these structural components. This process assumes significance as these materials are expensive and the mechanical properties obtained depend on the microstructure evolved during thermo-mechanical processing. In the present study, M350 grade maraging steel specimens were hot isothermally compressed in the temperature range of 900-1200 °C and in the strain rate range of 0.001-100 s-1, and true stress-true strain curves were generated. The microstructural evolution as a function of strain rate and temperature in the deformed compression specimens was studied. The effect of friction between sample and compression dies was evaluated, and the same was found to be low. The measured flow stress data was used for the development of a constitutive model to represent the hot deformation behavior of this alloy. The proposed equation can be used as an input in the finite element analysis to obtain the flow stress at any given strain, strain rate, and temperature useful for predicting the flow localization or fracture during thermo-mechanical simulation. The activation energy for hot deformation was calculated and is found to be 370.88 kJ/mol, which is similar to that of M250 grade maraging steel.

  5. Orientation Dependence of the Deformation Microstructure of Ta-4%W after Cold-Rolling

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ma, G. Q.; Godfrey, A.; Shu, D. Y.; Chen, Q.; Wu, G. L.

    2017-07-01

    One of the common features of deformed face-centered cubic metals with medium to high stacking fault energy is the formation of geometrically necessary dislocation boundaries. The dislocation boundary arrangements in refractory metals with body-centered cubic crystal structure are, however, less well known. To address this issue a Ta-4%W alloy was cold rolled up to 70% in thickness in the present work. The resulting deformation microstructures were characterized by electron back-scattering diffraction and the dislocation boundary arrangements in each grain were revealed using sample-frame misorientation axis maps calculated using an in-house code. The maps were used to analyze the slip pattern of individual grains after rolling, revealing an orientation dependence of the slip pattern.

  6. Freezing-induced deformation of biomaterials in cryomedicine

    NASA Astrophysics Data System (ADS)

    Ozcelikkale, Altug

    Cryomedicine utilizes low temperature treatments of biological proteins, cells and tissues for cryopreservation, materials processing and cryotherapy. Lack of proper understanding of cryodamage that occurs during these applications remains to be the primary bottleneck for development of successful tissue cryopreservation and cryosurgery procedures. An engineering approach based on a view of biological systems as functional biomaterials can help identify, predict and control the primary cryodamage mechanisms by developing an understanding of underlying freezing-induced biophysical processes. In particular, freezing constitutes the main structural/mechanical origin of cryodamage and results in significant deformation of biomaterials at multiple length scales. Understanding of these freezing-induced deformation processes and their effects on post-thaw biomaterial functionality is currently lacking but will be critical to engineer improved cryomedicine procedures. This dissertation addresses this problem by presenting three separate but related studies of freezing-induced deformation at multiple length scales including nanometer-scale protein fibrils, single cells and whole tissues. A combination of rigorous experimentation and computational modeling is used to characterize post-thaw biomaterial structure and properties, predict biomaterial behavior and assess its post-thaw biological functionality. Firstly, freezing-induced damage on hierarchical extracellular matrix structure of collagen is investigated at molecular, fibril and matrix levels. Results indicate to a specific kind of fibril damage due to freezing-induced expansion of intrafibrillar fluid. This is followed by a study of freezing-induced cell and tissue deformation coupled to osmotically driven cellular water transport. Computational and semi empirical modeling of these processes indicate that intracellular deformation of the cell during freezing is heterogeneous and can interfere with cellular water

  7. The effect of the initial microstructure in terms of sink strength on the ion-irradiation-induced hardening of ODS alloys studied by nanoindentation

    NASA Astrophysics Data System (ADS)

    Duan, Binghuang; Heintze, Cornelia; Bergner, Frank; Ulbricht, Andreas; Akhmadaliev, Shavkat; Oñorbe, Elvira; de Carlan, Yann; Wang, Tieshan

    2017-11-01

    Oxide dispersion strengthened (ODS) Fe-Cr alloys are promising candidates for structural components in nuclear energy production. The small grain size, high dislocation density and the presence of particle matrix interfaces may contribute to the improved irradiation resistance of this class of alloys by providing sinks and/or traps for irradiation-induced point defects. The extent to which these effects impede hardening is still a matter of debate. To address this problem, a set of alloys of different grain size, dislocation density and oxide particle distribution were selected. In this study, three-step Fe-ion irradiation at both 300 °C and 500 °C up to 10 dpa was used to introduce damage in five different materials including three 9Cr-ODS alloys, one 14Cr-ODS alloy and one 14Cr-non-ODS alloy. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and nanoindentation testing were applied, the latter before and after irradiation. Significant hardening occurred for all materials and temperatures, but it is distinctly lower in the 14Cr alloys and also tends to be lower at the higher temperature. The possible contribution of Cr-rich α‧-phase particles is addressed. The impact of grain size, dislocation density and particle distribution is demonstrated in terms of an empirical trend between total sink strength and hardening.

  8. Microstructural, mechanical and optical properties research of a carbon ion-irradiated Y 2SiO 5 crystal

    DOE PAGES

    Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; ...

    2017-01-28

    Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this study, we used 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated Y 2SiO 5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prismmore » coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. Finally, 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.« less

  9. An electron back-scattered diffraction study on the microstructure evolution of severely deformed aluminum AI6061 alloy

    NASA Astrophysics Data System (ADS)

    Vaseghi, M.; Karimi Taheri, A.; Kim, H. S.

    2014-08-01

    In this paper dynamic strain ageing behavior in an Al-Mg-Si alloy related to equal channel angular pressing (ECAP) was investigated. In order to examine the combined plastic deformation and ageing effects on microstructure evolutions and strengthening characteristics, the Al6061 alloy were subjected to phi=90° ECAP die for up to 4 passes via route Bc at high temperatures. For investigating the effects of ageing temperature and strain rate in ECAP, Vickers hardness tests were performed. The combination of the ECAP process with dynamic ageing at higher temperatures resulted in a significant increase in hardness. The microstructural evolution of the samples was studied using electron back-scattering diffraction (EBSD). The grains of Al6061 aluminum alloy were refined significantly at 100 and 150 °C with greater pass numbers and the distributions of grain size tended to be more uniform with pass number increasing. Frequency of sub-boundaries and low angle grain boundaries (LAGBs) increased at initial stage of deformation, and sub-boundaries and LAGBs evolved into highangle grain boundaries (HAGBs) with further deformation, which resulted in the high frequency of HAGBs in the alloy after ECAP 4 passes.

  10. Investigation of microstructural alterations in M50 and 52100 steel using nanoindentation

    NASA Astrophysics Data System (ADS)

    Paulson, Kristin R.

    Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 108 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were tested at 4.5 GPa to 10 8 cycles in the lubricated and unlubricated condition. Microstructural alterations characterized as dark etching regions (DER), and white etching bands (WEBs) were not observed. Additionally, hardness was investigated cross sectionally as a function of depth and location within the wear track produced by the fatigue test. No conclusive evidence was derived from the hardness measurements as a function of depth in relation to the formation of microstructural alterations or the stress experienced subsurface within the material. Hardness measurements performed specifically within a butterfly wing, however, returned hardness values significantly higher than the matrix hardness values.

  11. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    NASA Astrophysics Data System (ADS)

    Patterson, Erin E.; Hovanski, Yuri; Field, David P.

    2016-06-01

    This work focuses on the microstructural characterization of aluminum to steel friction stir welded joints. Lap weld configuration coupled with scribe technology used for the weld tool have produced joints of adequate quality, despite the significant differences in hardness and melting temperatures of the alloys. Common to friction stir processes, especially those of dissimilar alloys, are microstructural gradients including grain size, crystallographic texture, and precipitation of intermetallic compounds. Because of the significant influence that intermetallic compound formation has on mechanical and ballistic behavior, the characterization of the specific intermetallic phases and the degree to which they are formed in the weld microstructure is critical to predicting weld performance. This study used electron backscatter diffraction, energy dispersive spectroscopy, scanning electron microscopy, and Vickers micro-hardness indentation to explore and characterize the microstructures of lap friction stir welds between an applique 6061-T6 aluminum armor plate alloy and a RHA homogeneous armor plate steel alloy. Macroscopic defects such as micro-cracks were observed in the cross-sectional samples, and binary intermetallic compound layers were found to exist at the aluminum-steel interfaces of the steel particles stirred into the aluminum weld matrix and across the interfaces of the weld joints. Energy dispersive spectroscopy chemical analysis identified the intermetallic layer as monoclinic Al3Fe. Dramatic decreases in grain size in the thermo-mechanically affected zones and weld zones that evidenced grain refinement through plastic deformation and recrystallization. Crystallographic grain orientation and texture were examined using electron backscatter diffraction. Striated regions in the orientations of the aluminum alloy were determined to be the result of the severe deformation induced by the complex weld tool geometry. Many of the textures observed in the weld

  12. Multiscale characteristics of mechanical and mineralogical heterogeneity using nanoindentation and Maps Mineralogy in Mancos Shale

    NASA Astrophysics Data System (ADS)

    Yoon, H.; Mook, W. M.; Dewers, T. A.

    2017-12-01

    Multiscale characteristics of textural and compositional (e.g., clay, cement, organics, etc.) heterogeneity profoundly influence the mechanical properties of shale. In particular, strongly anisotropic (i.e., laminated) heterogeneities are often observed to have a significant influence on hydrological and mechanical properties. In this work, we investigate a sample of the Cretaceous Mancos Shale to explore the importance of lamination, cements, organic content, and the spatial distribution of these characteristics. For compositional and structural characterization, the mineralogical distribution of thin core sample polished by ion-milling is analyzed using QEMSCAN® with MAPS MineralogyTM (developed by FEI Corporoation). Based on mineralogy and organic matter distribution, multi-scale nanoindentation testing was performed to directly link compositional heterogeneity to mechanical properties. With FIB-SEM (3D) and high-magnitude SEM (2D) images, key nanoindentation patterns are analyzed to evaluate elastic and plastic responses. Combined with MAPs Mineralogy data and fine-resolution BSE images, nanoindentation results are explained as a function of compositional and structural heterogeneity. Finite element modeling is used to quantitatively evaluate the link between the heterogeneity and mechanical behavior during nanoindentation. In addition, the spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy are employed as inputs for multiscale brittle fracture simulations using a phase field model. Comparison of experimental and numerical simulations reveal that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, may yield improvements on the numerical predictions of the mesoscale fracture patterns and hence the macroscopic effective toughness. Sandia National Laboratories is a multimission laboratory managed and operated by

  13. Strain rate dependence in the nanoindentation-induced deformation of Mg-Al intermetallic compounds produced by packed powder diffusion coating

    NASA Astrophysics Data System (ADS)

    Chang, Haiwei; Lu, Mingyuan; Zhang, Mingxing; Atrens, Andrej; Huang, Han

    2015-09-01

    Nanoindentation was performed on τ-Mg32(Al, Zn)49 and β-Mg17Al12 intermetallic coatings and on a AZ91E Mg alloy substrate using loading rates of 0.03 to 30 mNs-1. Pop-in phenomenon was observed during loading in the two intermetallic coatings and in the substrate. Both the magnitude of the pop-ins and the time interval between two consecutive pop-ins increased with increasing loads. The phenomenon was attributed to plastic instability, which is known as the Portevin-Le Châtelier effect. The morphologies of the indent impressions at different strain rates on the t phase, the β phase and the substrate were also investigated using atomic force microscopy. Pile-up occurred in the τ and β phases and was found independent of the strain rate; no obvious pile-up occurred on the AZ91E substrate. The AZ91E substrate exhibited creep rates greater than those of the intermetallic phases, and all of the creep rates increased with the loading rate.

  14. Length-Scale Effects and Material Models at Numerical Simulations of Nanoindentation of A Metallic Alloy

    NASA Astrophysics Data System (ADS)

    Nikolov, N.; Avdjieva, T.; Altaparmakov, I.

    2014-06-01

    Some specially designed metallic alloys crystallize during process of rapid quenching which aims their amorphization. Nevertheless, change in their mechanical properties could be seen compared to these obtained during conventional technological regimes of cooling. That attracts the attention in this elaboration. Full 3-D numerical simulations of nanoindentation process of two material models are performed. The models reflect equivalent elastic and different plastic material properties. The plastic behaviour of the first one is subjected to yield criterion of Dracker-Prager and this of the second one to yield criterion of Mises. The reported numerical results depending on the nanoindentation scale length of 1000 nanometers, suggest different adequacy of the two yield criteria to the data obtained experimentally with a Zr-Al-Cu-Ni-Mo alloy. It could be speculated that the different effects developed depending on the indenter travel of 1000 nanometers and taken into account in the two yield criteria stand behind this fact and determinate three structural levels of plastic deformation.

  15. Stress dependence of microstructures in experimentally deformed calcite

    NASA Astrophysics Data System (ADS)

    Platt, John P.; De Bresser, J. H. P.

    2017-12-01

    Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Lρ), and the maximum scale length for surface-energy driven grain-boundary migration (Lγ). Taken together with previously published data Dr defines a paleopiezometer over the range 15-291 MPa and temperature over the range 500-1000 °C, with a stress exponent of -1.09 (CI -1.27 to -0.95), showing no detectable dependence on temperature. Sg and Dr measured in the same samples are closely similar in size, suggesting that the new grains did not grow significantly after nucleation. Lρ and Lγ measured on each sample define a relationship to stress with an exponent of approximately -1.6, which helps define the boundary between a region of dominant strain-energy-driven grain-boundary migration at high stress, from a region of dominant surface-energy-driven grain-boundary migration at low stress.

  16. Microstructural evolution and deformation behavior of Al-Cu alloys: A Transmission X-ray Microscopy (TXM) and micropillar compression study

    DOE PAGES

    Kaira, C. Shashank; Kantzos, Christopher; Williams, Jason J.; ...

    2017-11-07

    In this paper, a unique approach to correlating an evolving 3D microstructure in an Al-Cu alloy and its micro-scale mechanical properties has been introduced. Using these nanoscale three-dimensional microstructures derived from Transmission X-ray Microscopy (TXM), individual contributions from different strengthening mechanisms were quantified. The spatial distribution and morphology of the individual θ' and θ phases were seen to play an important role in influencing dislocation storage. Uniaxial micro-compression experiments were used to quantify the stress-strain response of the alloy at different aging times. Transmission electron microscopy (TEM) aided in discerning dislocation activity at these precipitates. A model is proposed tomore » accurately predict the variation in yield stress by using appropriate morphological parameters from the 3D microstructure and its validity has been corroborated using experimental measurements. Distributions of 2D and 3D inter-precipitate spacing were seen to provide crucial insights on influencing deformation in such precipitation-strengthened alloys. In conclusion, the transition in deformation behavior and origin of numerous strain bursts were investigated using in situ micropillar compression testing.« less

  17. Microstructural evolution and deformation behavior of Al-Cu alloys: A Transmission X-ray Microscopy (TXM) and micropillar compression study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaira, C. Shashank; Kantzos, Christopher; Williams, Jason J.

    In this paper, a unique approach to correlating an evolving 3D microstructure in an Al-Cu alloy and its micro-scale mechanical properties has been introduced. Using these nanoscale three-dimensional microstructures derived from Transmission X-ray Microscopy (TXM), individual contributions from different strengthening mechanisms were quantified. The spatial distribution and morphology of the individual θ' and θ phases were seen to play an important role in influencing dislocation storage. Uniaxial micro-compression experiments were used to quantify the stress-strain response of the alloy at different aging times. Transmission electron microscopy (TEM) aided in discerning dislocation activity at these precipitates. A model is proposed tomore » accurately predict the variation in yield stress by using appropriate morphological parameters from the 3D microstructure and its validity has been corroborated using experimental measurements. Distributions of 2D and 3D inter-precipitate spacing were seen to provide crucial insights on influencing deformation in such precipitation-strengthened alloys. In conclusion, the transition in deformation behavior and origin of numerous strain bursts were investigated using in situ micropillar compression testing.« less

  18. Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture

    NASA Astrophysics Data System (ADS)

    Patra, Sudipta; Ghosh, Abhijit; Singhal, Lokesh Kumar; Podder, Arijit Saha; Sood, Jagmohan; Kumar, Vinod; Chakrabarti, Debalay

    2017-01-01

    The hot deformation behavior of 2101 grade lean duplex stainless steel (DSS, containing 5 wt pct Mn, 0.2 wt pct N, and 1.4 wt pct Ni) and associated microstructural changes within δ-ferrite and austenite ( γ) phases were investigated by hot-compression testing in a GLEEBLE 3500 simulator over a range of deformation temperatures, T def [1073 K to 1373 K (800 °C to 1100 °C)], and applied strains, ɛ (0.25 to 0.80), at a constant true strain rate of 1/s. The microstructural softening inside γ was dictated by discontinuous dynamic recrystallization (DDRX) at a higher T def [1273 K to 1373 K (1000 °C to 1100 °C)], while the same was dictated by continuous dynamic recrystallization (CDRX) at a lower T def (1173 K (900 °C)]. Dynamic recovery (DRV) and CDRX dominated the softening inside δ-ferrite at T def ≥ 1173 K (900 °C). The dynamic recrystallization (DRX) inside δ and γ could not take place upon deformation at 1073 K (800 °C). The average flow stress level increased 2 to 3 times as the T def dropped from 1273 to 1173 K (1000 °C to 900 °C) and finally to 1073 K (800 °C). The average microhardness values taken from δ-ferrite and γ regions of the deformed samples showed a different trend. At T def of 1373 K (1100 °C), microhardness decreased with the increase in strain, while at T def of 1173 K (900 °C), microhardness increased with the increase in strain. The microstructural changes and hardness variation within individual phases of hot-deformed samples are explained in view of the chemical composition of the steel and deformation parameters ( T def and ɛ).

  19. Mechanism of Martensitic to Equiaxed Microstructure Evolution during Hot Deformation of a Near-Alpha Ti Alloy

    NASA Astrophysics Data System (ADS)

    Shams, Seyed Amir Arsalan; Mirdamadi, Shamsoddin; Abbasi, Seyed Mahdi; Kim, Daehwan; Lee, Chong Soo

    2017-06-01

    In this study, mechanisms of microstructural evolution during hot deformation of Ti-1100 were investigated by EBSD analysis. Misorientation angle distribution of initial microstructure showed that diffusionless martensitic phase transformation in Ti-1100 obeys Burgers orientation relationship, and most of the high-angle-grain boundaries consist of angles of 60 and 63 deg. Calculated activation energy of hot deformation ( 338 kJ/mol) and EBSD grain boundary maps revealed that continuous dynamic recrystallization (CDRX) is the dominant mechanism during hot compression at 1073 K (800 °C) and strain rate of 0.005 s-1. At a temperature range of 1073 K to 1173 K (800 °C to 900 °C), not only the array of variants lying perpendicular to compression axis but also CDRX contributes to flow softening. Increasing the rolling temperature from 1123 K to 1273 K (850 °C to 1000 °C) brought about changes in spheroidization mechanism from CDRX to conventional boundary splitting and termination migration correlated with the higher volume fraction of beta phase at higher temperatures.

  20. Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi

    NASA Technical Reports Server (NTRS)

    Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.

    2011-01-01

    A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.

  1. Microstructure stability during creep deformation of hard-oriented polysynthetically twinned crystal of TiAl alloy

    NASA Astrophysics Data System (ADS)

    Kim, Hee Y.; Maruyama, K.

    2003-10-01

    The hard-orientated polysynthetically twinned (PST) crystal with the lamellar plates oriented parallel to the compression axis was deformed at 1150 K under the applied stress of 158 to 316 MPa. Microstructural changes were examined quantitatively for the PST crystal during creep deformation. In the as-grown PST crystal of the present study, proportions of α 2/ γ, true twin, pseudotwin, and 120 deg rotational fault interfaces were 12, 59, 12, and 17 pct, respectively. After creep deformation, lamellar coarsening by dissolution of α 2 lamellae and migration of γ/γ interfaces were observed. The acceleration of creep rate after the minimum strain rate in the creep curve was attributed to the lamellar coarsening and destruction of lamellar structure during the creep deformation. Thirty-two percent of α 2/ γ interfaces, 51 pct of true twin interfaces, 74 pct of pseudotwin interfaces, and 80 pct of 120 deg rotational faults disappeared after 4 pct creep strain at 1150 K. The α 2/ γ interface was more stable than γ/γ interfaces during the creep deformation. The pseudotwin interface and 120 deg rotational fault were less thermally stable than the true twin interface for γ/γ interfaces.

  2. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  3. Microstructural Influence on Deformation and Fatigue Life of Composites Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Murthy, P.; Bednarcyk, B. A.; Pineda, E. J.

    2015-01-01

    A fully coupled deformation and damage approach to modeling the response of composite materials and composite laminates is presented. It is based on the semi-­-analytical generalized method of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which provide closed-form constitutive equations for composite materials as well as the micro scale stress and strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to represent a composite material point, while the availability of the micro fields allow the incorporation of lower scale sub­-models to represent local phenomena in the fiber and matrix. Further, GMC's formulation performs averaging when applying certain governing equations such that some degree of microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the method quite attractive as the centerpiece in a integrated computational material engineering (ICME) structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been investigated using this coupled deformation and damage micromechanics based approach. The local effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale for the individual composite phases. For analysis of laminates, classical lamination theory is employed as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to simulate the behavior of the composite material within each laminate layer. A key outcome of this study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on

  4. Experimental research on a modular miniaturization nanoindentation device

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei; Mi, Jie; Yang, Jie; Wan, Shunguang; Yang, Zhaojun; Yan, Jiwang; Ma, Zhichao; Geng, Chunyang

    2011-09-01

    Nanoindentation technology is developing toward the in situ test which requires miniaturization of indentation instruments. This paper presents a miniaturization nanoindentation device based on the modular idea. It mainly consists of macro-adjusting mechanism, x-y precise positioning platform, z axis precise driving unit, and the load-depth measuring unit. The device can be assembled with different forms and has minimum dimensions of 200 mm × 135 mm × 200 mm. The load resolution is about 0.1 mN and the displacement resolution is about 10 nm. A new calibration method named the reference-mapping method is proposed to calibrate the developed device. Output performance tests and indentation experiments indicate the feasibility of the developed device and calibration method. This paper gives an example that combining piezoelectric actuators with flexure hinge to realize nanoindentation tests. Integrating a smaller displacement sensor, a more compact nanoindentation device can be designed in the future.

  5. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    NASA Astrophysics Data System (ADS)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  6. Nanoindentation creep behavior of human enamel.

    PubMed

    He, Li-Hong; Swain, Michael V

    2009-11-01

    In this study, the indentation creep behavior of human enamel was investigated with a nanoindentation system and a Berkovich indenter at a force of 250 mN with one-step loading and unloading method. A constant hold period of 900 s was incorporated into each test at the maximum load as well at 5 mN minimum load during unloading. The indentation creep at the maximum load and creep recovery at the minimum load was described with a double exponential function and compared with other classic viscoelastic models (Debye/Maxwell and Kohlrausch-Williams-Watts). Indentation creep rate sensitivity, m, of human enamel was measured for the first time with a value of approximately 0.012. Enamel displayed both viscoelastic and viscoplastic behavior similar to that of bone. These results indicate that, associated with entrapment of particulates between teeth under functional loading and sliding wear conditions, the enamel may inelastically deform but recover upon its release. This behavior may be important in explaining the excellent wear resistance, antifatigue, and crack resistant abilities of natural tooth structure. (c) 2008 Wiley Periodicals, Inc.

  7. Microstructural characterization of high-manganese austenitic steels with different stacking fault energies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, Shigeo, E-mail: s.sato@imr.tohoku.ac.jp; Kwon, Eui-Pyo; Imafuku, Muneyuki

    Microstructures of tensile-deformed high-manganese austenitic steels exhibiting twinning-induced plasticity were analyzed by electron backscatter diffraction pattern observation and X-ray diffraction measurement to examine the influence of differences in their stacking fault energies on twinning activity during deformation. The steel specimen with the low stacking fault energy of 15 mJ/m{sup 2} had a microstructure with a high population of mechanical twins than the steel specimen with the high stacking fault energy (25 mJ/m{sup 2}). The <111> and <100> fibers developed along the tensile axis, and mechanical twinning occurred preferentially in the <111> fiber. The Schmid factors for slip and twinning deformationsmore » can explain the origin of higher twinning activity in the <111> fiber. However, the high stacking fault energy suppresses the twinning activity even in the <111> fiber. A line profile analysis based on the X-ray diffraction data revealed the relationship between the characteristics of the deformed microstructures and the stacking fault energies of the steel specimens. Although the variation in dislocation density with the tensile deformation is not affected by the stacking fault energies, the effect of the stacking fault energies on the crystallite size refinement becomes significant with a decrease in the stacking fault energies. Moreover, the stacking fault probability, which was estimated from a peak-shift analysis of the 111 and 200 diffractions, was high for the specimen with low stacking fault energy. Regardless of the difference in the stacking fault energies of the steel specimens, the refined crystallite size has a certain correlation with the stacking fault probability, indicating that whether the deformation-induced crystallite-size refinement occurs depends directly on the stacking fault probability rather than on the stacking fault energies in the present steel specimens. - Highlights: {yields} We studied effects of stacking fault

  8. Irradiation-induced microstructural evolution and mechanical properties in iron with and without helium

    NASA Astrophysics Data System (ADS)

    Okuniewski, Maria Ann

    Ferritic-martensitic steels have been identified as candidate structural materials for Generation IV reactors, fusion systems, and accelerator driven systems (ADS). These steels have been selected because of their superior radiation resistance to void swelling, irradiation creep, and helium (He) and hydrogen (H) embrittlement at higher temperatures (T/Tm > 0.4). In fusion and ADS reactors the structural materials will be subjected to irradiation damage, as well as the introduction of He and H. The He and H can be introduced via (n,alpha) and (n,p) threshold reactions, respectively. Also protons can be directly implanted from the beam in an ADS. In fusion and ADS environments the He generation is approximately 10 appm/dpa and 150 appm/dpa. The H generation is approximately three to ten times higher than He production in ADS environments. The impact of these large generation rates of He and H impurities on microstructural evolution during irradiation is not well understood. The irradiation-induced microstructural evolution and its relationship to mechanical properties in body-centered cubic (bcc) iron (Fe) with and without He was systematically investigated. The bcc Fe was selected as a simplified material to serve as a basis for a reactor structural material that was exposed to varying He-to-damage ratios to simulate fusion (10 appm/dpa) and ADS (150 appm/dpa) environments. Through utilizing relatively pure, single crystal, bcc Fe, microstructural and mechanical properties effects from alloying elements can be reduced, if not eliminated. Ion irradiations were carried out at two temperature regimes (300 and 450°C). A coordinated group of experiments and simulations were carried out. Following specimen irradiations, the resultant microstructure and mechanical properties were evaluated with both non-destructive and destructive experimental techniques. The experimental techniques included positron annihilation spectroscopy (PAS), specifically, Doppler broadening

  9. Fundamental Studies of Irradiation-Induced Modifications in Microstructural Evolution and Mechanical Properties of Advanced Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stubbins, James; Heuser, Brent; Hosemann, Peter

    This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study.more » Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe ++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (≥10 dpa) can be carried out to compare with ion-irradiated A709. The radiation-induced

  10. Deformation mechanisms in experimentally deformed Boom Clay

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  11. Effective properties of a fly ash geopolymer: Synergistic application of X-ray synchrotron tomography, nanoindentation, and homogenization models

    DOE PAGES

    Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; ...

    2015-09-02

    Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less

  12. Microstructural analysis of the thermal annealing of ice-Ih using EBSD

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-04-01

    Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes

  13. Hydrogen-Induced Plastic Deformation in ZnO

    NASA Astrophysics Data System (ADS)

    Lukáč, F.; Čížek, J.; Vlček, M.; Procházka, I.; Anwand, W.; Brauer, G.; Traeger, F.; Rogalla, D.; Becker, H.-W.

    In the present work hydrothermally grown ZnO single crystals covered with Pd over-layer were electrochemically loaded with hydrogen and the influence of hydrogen on ZnO micro structure was investigated by positron annihilation spectroscopy (PAS). Nuclear reaction analysis (NRA) was employed for determination of depth profile of hydrogen concentration in the sample. NRA measurements confirmed that a substantial amount of hydrogen was introduced into ZnO by electrochemical charging. The bulk hydrogen concentration in ZnO determined by NRA agrees well with the concentration estimated from the transported charge using the Faraday's law. Moreover, a subsurface region with enhanced hydrogen concentration was found in the loaded crystals. Slow positron implantation spectroscopy (SPIS) investigations of hydrogen-loaded crystal revealed enhanced concentration of defects in the subsurface region. This testifies hydrogen-induced plastic deformation of the loaded crystal. Absorbed hydrogen causes a significant lattice expansion. At low hydrogen concentrations this expansion is accommodated by elastic straining, but at higher concentrations hydrogen-induced stress exceeds the yield stress in ZnO and plastic deformation of the loaded crystal takes place. Enhanced hydrogen concentration detected in the subsurface region by NRA is, therefore, due to excess hydrogen trapped at open volume defects introduced by plastic deformation. Moreover, it was found that hydrogen-induced plastic deformation in the subsurface layer leads to typical surface modification: formation of hexagonal shape pyramids on the surface due to hydrogen-induced slip in the [0001] direction.

  14. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-05-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  15. Microstructure and Strain Rate-Dependent Tensile Deformation Behavior of Fiber Laser-Welded Butt Joints of Dual-Phase Steels

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Dong, Danyang; Han, Zhiqiang; Yang, Zhibin; Wang, Lu; Dong, Qingwei

    2018-04-01

    The microstructure and tensile deformation behavior of the fiber laser-welded similar and dissimilar dual-phase (DP) steel joints over a wide range of strain rates from 10-3 to 103 s-1 were investigated for the further applications on the lightweight design of vehicles. The high strain rate dynamic tensile deformation process and full-field strain distribution of the base metals and welded joints were examined using the digital image correlation method and high-speed photography. The strain rate effects on the stress-strain responses, tensile properties, deformation, and fracture behavior of the investigated materials were analyzed. The yield stress (YS) and ultimate tensile strength (UTS) of the dissimilar DP780/DP980 welded joints were lying in-between those of the DP780 and DP980 base metals, and all materials exhibited positive strain rate dependence on the YS and UTS. Owing to the microstructure heterogeneity, the welded joints showed relatively lower ductility in terms of total elongation (TE) than those of the corresponding base metals. The strain localization started before the maximum load was reached, and the strain localization occurred earlier during the whole deformation process with increasing strain rate. As for the dissimilar welded joint, the strain localization tended to occur in the vicinity of the lowest hardness value across the welded joint, which was in the subcritical HAZ at the DP780 side. As the strain rate increased, the typical ductile failure characteristic of the investigated materials did not change.

  16. Backtracking Depth-Resolved Microstructures for Crystal Plasticity Identification—Part 1: Backtracking Microstructures

    NASA Astrophysics Data System (ADS)

    Shi, Qiwei; Latourte, Félix; Hild, François; Roux, Stéphane

    2017-12-01

    In situ mechanical tests performed on polycrystalline materials in a scanning electron microscope suffer from the lack of information on depth-resolved three-dimensional microstructures. The latter ones can be accessed with focused ion beam technology only postmortem, because it is destructive. The present study considers the challenge of backtracking this deformed microstructure to the reference state. This theoretical question is tackled on a numerical (synthetic) test case. A two-dimensional microstructure with one dimension along the depth is considered, and deformed using a crystal plasticity law. The proposed numerical strategy is shown to retrieve accurately the reference state.

  17. Effect of Post-deformation Annealing Treatment on the Microstructural Evolution of a Cold-Worked Corrosion-Resistant Superalloy (CRSA) Steel

    NASA Astrophysics Data System (ADS)

    Mirzaei, A.; Zarei-Hanzaki, A.; Mohamadizadeh, A.; Lin, Y. C.

    2018-03-01

    The post-deformation annealing treatments of a commercial cold-worked corrosion-resistant superalloy steel (Sanicro 28 steel) were carried out at different temperatures in the range of 900-1100 °C for different holding durations of 5, 10, and 15 min. The effects of post-deformation annealing time and temperature on the microstructural evolution and subsequent mechanical properties of the processed Sanicro 28 steel were investigated. The observations indicated that twin-twin hardening in cold deformation condition mainly correlates with abundant nucleation of mechanical twins in multiple directions resulting in considerable strain hardening behavior. Microstructural investigations showed that the static recrystallization takes place after isothermal holding at 900 °C for 5 min. Increasing the annealing temperature from 900 to 1050 °C leads to recrystallization development and grain refinement in the as-recrystallized state. In addition, an increase in annealing duration from 5 to 15 min leads to subgrain coarsening and subsequently larger recrystallized grains size. The occurrence of large proportion of the grain refinement, which is achieved in the first annealing stage at 1050 °C after 5 min, is considered as the main factor for the maximum elongation at this stage.

  18. Oxide Dissolution and Oxygen Diffusion in Solid-State Recycled Ti-6Al-4V: Numerical Modeling, Verification by Nanoindentation, and Effects on Grain Growth and Recrystallization

    NASA Astrophysics Data System (ADS)

    Lui, E. W.; Palanisamy, S.; Dargusch, M. S.; Xia, K.

    2017-12-01

    The oxide dissolution and oxygen diffusion during annealing of Ti-6Al-4V solid-state recycled from machining chips by equal-channel angular pressing (ECAP) have been investigated using nanoindentation and numerical modeling. The hardness profile from nanoindentation was converted into the oxygen concentration distribution using the Fleisher and Friedel model. An iterative fitting method was then employed to revise the ideal model proposed previously, leading to correct predictions of the oxide dissolution times and oxygen concentration profiles and verifying nanoindentation as an effective method to measure local oxygen concentrations. Recrystallization started at the prior oxide boundaries where local strains were high from the severe plastic deformation incurred in the ECAP recycling process, forming a band of ultrafine grains whose growth was retarded by solute dragging thanks to high oxygen concentrations. The recrystallized fine-grained region would advance with time to eventually replace the lamellar structure formed during ECAP.

  19. New Deformation-Induced Nanostructure in Silicon.

    PubMed

    Wang, Bo; Zhang, Zhenyu; Chang, Keke; Cui, Junfeng; Rosenkranz, Andreas; Yu, Jinhong; Lin, Cheng-Te; Chen, Guoxin; Zang, Ketao; Luo, Jun; Jiang, Nan; Guo, Dongming

    2018-06-18

    Nanostructures in silicon (Si) induced by phase transformations have been investigated during the past 50 years. Performances of nanostructures are improved compared to that of bulk counterparts. Nevertheless, the confinement and loading conditions are insufficient to machine and fabricate high-performance devices. As a consequence, nanostructures fabricated by nanoscale deformation at loading speeds of m/s have not been demonstrated yet. In this study, grinding or scratching at a speed of 40.2 m/s was performed on a custom-made setup by an especially designed diamond tip (calculated stress under the diamond tip in the order of 5.11 GPa). This leads to a novel approach for the fabrication of nanostructures by nanoscale deformation at loading speeds of m/s. A new deformation-induced nanostructure was observed by transmission electron microscopy (TEM), consisting of an amorphous phase, a new tetragonal phase, slip bands, twinning superlattices, and a single crystal. The formation mechanism of the new phase was elucidated by ab initio simulations at shear stress of about 2.16 GPa. This approach opens a new route for the fabrication of nanostructures by nanoscale deformation at speeds of m/s. Our findings provide new insights for potential applications in transistors, integrated circuits, diodes, solar cells, and energy storage systems.

  20. Microstructural change in electroformed copper liners of shaped charges upon plastic deformation at ultra-high strain rate

    NASA Astrophysics Data System (ADS)

    Tian, W. H.; Hu, S. L.; Fan, A. L.; Wang, Z.

    2002-01-01

    Transmission electron microscopy (TEM) observations were carried out for examining the as-formed and post-deformed microstructures in a variety of electroformed copper liners of shaped charges. The deformation was carried out at an ultra-high strain rate. Specifically, the electron backscattering Kikuchi pattern (EBSP) technique was utilized to examine the micro-texture of these materials. TEM observations revealed that these electroformed copper liners of shaped charges have a grain size of about 1-3 mum, EBSP analysis demonstrated that the as-grown copper liners of shaped charges exhibit a l 10) fiber micro-texture which is parallel to the normal direction of the surface of the liners of shaped charges. Having undergone plastic deformation at ultra-high strain rate (10(7) s(-1)), the specimens which were recovered from the copper slugs were found to have grain size of the same order as that before deformation. EBSP analysis revealed that the (110) fiber texture existed in the as-formed copper liners disappears in the course of deformation. TEM examination results indicate that dynamic recovery and recrystallization play a significant role in this deformation process.

  1. Representation and Management of the Knowledge of Brittle Deformation in Shear Zones Using Microstructural Data From the SAFOD Core Samples

    NASA Astrophysics Data System (ADS)

    Babaie, H. A.; Broda, C. M.; Kumar, A.; Hadizadeh, J.

    2010-12-01

    Web access to data that represent knowledge acquired by investigators studying the microstructures in the core samples of the SAFOD (San Andreas Observatory at Depth) project can help scientists efficiently integrate and share knowledge, query the data, and update the knowledge base on the Web. To achieve this, we have used OWL (Web Ontology Language) to build the brittle deformation ontology for the microstructures observed in the SAFOD core samples, by explicitly formalizing the knowledge about deformational processes, geological objects undergoing deformation, and the underlying mechanical and environmental conditions in brittle shear zones. The developed Web-based ‘SAFOD Brittle Microstructure and Mechanics Knowledge base’ (SAFOD BM2KB), which instantiates this ontology and is available at http://codd.cs.gsu.edu:9999/safod/index.jsp, will host and serve data that pertains to spatial objects, such as microstructure, gouge, fault, and SEM image, acquired by the SAFOD investigators through the studies of the SAFOD core samples. Deformation in shear zones involves complex brittle and ductile processes that alter, create, and/or destroy a wide variety of one- to three-dimensional, multi-scale spatial entities such as rocks and their constituent minerals and structure. These processes occur through a series of sub-processes that happen in different time intervals, and affect the spatial objects at granular to regional scales within shear zones. The processes bring about qualitative change to the spatial entities over time intervals that start and end with events. Processes, such as mylonitization and cataclastic flow, change the spatial location, distribution, dimension, size, shape, and orientation of some objects through translation, rotation and strain. These processes may also result in newly formed entities, such as a new mineral, gouge, vein, or fault, during one or more phases of deformation. Deformation processes may also destroy entities, such as a

  2. Relationships Between Smelter Grade Alumina Characteristics and Strength Determined by Nanoindentation and Ultrasound-Mediated Particle Breakage

    NASA Astrophysics Data System (ADS)

    Wijayaratne, Hasini; McIntosh, Grant; Hyland, Margaret; Perander, Linus; Metson, James

    2017-06-01

    The mechanical strength of smelter grade alumina (SGA) is of considerable practical significance for the aluminum reduction process. Attrition of alumina during transportation and handling generates an increased level of fines. This results in generation of dust, poor flow properties, and silo segregation that interfere with alumina feeding systems. These lead to process instabilities which in turn result in current efficiency losses that are costly. Here we are concerned with developing a fundamental understanding of SGA strength in terms of its microstructure. Nanoindentation and ultrasound-mediated particle breakage tests have been conducted to study the strength. Strength of SGA samples both industry calcined and laboratory prepared, decrease with increasing α-alumina (corundum) content contrary to expectation. The reducing strength of alumina with increasing degree of calcination is attributed to the development of a macroporous and abrasion-prone microstructure resulting from the `pseudomorphic' transformation of precursor gibbsite during the calcination process.

  3. Microstructural and superficial modification in a Cu-Al-Be shape memory alloy due to superficial severe plastic deformation under sliding wear conditions

    NASA Astrophysics Data System (ADS)

    Figueroa, C. G.; Garcia-Castillo, F. N.; Jacobo, V. H.; Cortés-Pérez, J.; Schouwenaars, R.

    2017-05-01

    Stress induced martensitic transformation in copper-based shape memory alloys has been studied mainly in monocrystals. This limits the use of such results for practical applications as most engineering applications use polycristals. In the present work, a coaxial tribometer developed by the authors was used to characterise the tribological behaviour of polycrystalline Cu-11.5%Al-0.5%Be shape memory alloy in contact with AISI 9840 steel under sliding wear conditions. The surface and microstructure characterization of the worn material was conducted by conventional scanning electron microscopy and atomic force microscopy, while the mechanical properties along the transversal section were measured by means of micro-hardness testing. The tribological behaviour of Cu-Al-Be showed to be optimal under sliding wear conditions since the surface only presented a slight damage consisting in some elongated flakes produced by strong plastic deformation. The combination of the plastically modified surface and the effects of mechanically induced martensitic transformation is well-suited for sliding wear conditions since the modified surface provides the necessary strength to avoid superficial damage while superelasticity associated to martensitic transformation is an additional mechanism which allows absorbing mechanical energy associated to wear phenomena as opposed to conventional ductile alloys where severe plastic deformation affects several tens of micrometres below the surface.

  4. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    NASA Astrophysics Data System (ADS)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.

    2017-09-01

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.

  5. Multi-scale invertigation of the relationship between the microstructure and mechanical properties in dual phase steels

    NASA Astrophysics Data System (ADS)

    Zhang, Fan

    Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the

  6. Pyrite deformation and connections to gold mobility: insight from micro-structural analysis and trace element mapping

    NASA Astrophysics Data System (ADS)

    Dubosq, Renelle; Rogowitz, Anna; Lawley, Christopher; Schneider, David; Jackson, Simon

    2017-04-01

    Pyrite is an important and ubiquitous gold-bearing phase in many orogenic gold deposits making the study of its deformation behaviour under metamorphic conditions crucial to the understanding of gold (re)mobilization. However, pyrite deformation mechanisms and their influence on the retention or release of trace elements during deformation and metamorphism remain poorly understood. We propose a syn- to post-peak metamorphic and deformation driven gold upgrading model where gold is remobilized through deformation-induced diffusion pathways in the form of substructures in pyrite. The middle amphibolite facies assemblage (actinolite-biotite-plagioclase-almandine) of the Detour Lake deposit (Canada) makes it an ideal study area due to maximum temperatures reaching 550°C, exceeding the conditions for plastic deformation in pyrite (450°C). The world-class Detour Lake deposit, containing 16.4 Moz of Au at 1 g/t, is a Neoarchean orogenic gold ore body located in the northern Abitibi district within the Superior Province. The mine is situated along the high strain, sub-vertical ductile-brittle Sunday Lake Deformation Zone (SLDZ) parallel to the broadly E-W trending Abitibi greenstone belt. Herein we combine orientation contrast (OC) forescatter imaging, electron backscatter diffraction (EBSD) and 2D laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) trace element pyrite mapping to evaluate the influence of pyrite brittle and plastic deformation on the release of trace elements during syn-metamorphic gold remobilization. Local misorientation patterns in pyrite exhibit parallel bands that can be described by continuous rotation around one of the <100> axes, whereas higher strain areas reveal more heterogeneous misorientation patterns and the development of low-angle grain boundaries with late fractures indicative of dislocation creep and strain hardening. These late fractures are an important micro-structural setting for gold and clusters of precious

  7. Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study

    NASA Astrophysics Data System (ADS)

    Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel

    2015-04-01

    A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most

  8. Deformation-Induced Recrystallization of Magnesium Single Crystals at Ambient Temperature

    NASA Astrophysics Data System (ADS)

    Molodov, K. D.; Al-Samman, T.; Molodov, D. A.

    2015-04-01

    Specially oriented magnesium single crystals were subjected to plane strain compression along the <112¯0> direction in c-axis extension at ambient temperature. The samples exhibited outstanding formability deforming up to a logarithmic final strain of -1. Investigations by optical and orientation imaging microscopy revealed that massive {101¯2} extension twinning at low strains consumed the whole sample and resulted in new soft orientations for slip. Observations also indicated that additional twinning took place in the completely twinned matrix by secondary and tertiary twinning events. At advanced stages of deformation newly formed, equiaxed small grains were observed within numerous bands related to former deformation twins. These “recrystallized” grains characterized by a low grain orientation spread of less than 1° generated new orientations, which led to a substantial weakening and randomization of the texture during deformation up to very large strains. The reported results in this paper are discussed with regard to the microstructure evolution arising from multiple twinning and continuous dynamic recrystallization at room temperature.

  9. Adsorption-induced deformation of nanoporous materials—A review

    NASA Astrophysics Data System (ADS)

    Gor, Gennady Y.; Huber, Patrick; Bernstein, Noam

    2017-03-01

    When a solid surface accommodates guest molecules, they induce noticeable stresses to the surface and cause its strain. Nanoporous materials have high surface area and, therefore, are very sensitive to this effect called adsorption-induced deformation. In recent years, there has been significant progress in both experimental and theoretical studies of this phenomenon, driven by the development of new materials as well as advanced experimental and modeling techniques. Also, adsorption-induced deformation has been found to manifest in numerous natural and engineering processes, e.g., drying of concrete, water-actuated movement of non-living plant tissues, change of permeation of zeolite membranes, swelling of coal and shale, etc. In this review, we summarize the most recent experimental and theoretical findings on adsorption-induced deformation and present the state-of-the-art picture of thermodynamic and mechanical aspects of this phenomenon. We also reflect on the existing challenges related both to the fundamental understanding of this phenomenon and to selected applications, e.g., in sensing and actuation, and in natural gas recovery and geological CO2 sequestration.

  10. Primary combination of phase-field and discrete dislocation dynamics methods for investigating athermal plastic deformation in various realistic Ni-base single crystal superalloy microstructures

    NASA Astrophysics Data System (ADS)

    Gao, Siwen; Rajendran, Mohan Kumar; Fivel, Marc; Ma, Anxin; Shchyglo, Oleg; Hartmaier, Alexander; Steinbach, Ingo

    2015-10-01

    Three-dimensional discrete dislocation dynamics (DDD) simulations in combination with the phase-field method are performed to investigate the influence of different realistic Ni-base single crystal superalloy microstructures with the same volume fraction of {γ\\prime} precipitates on plastic deformation at room temperature. The phase-field method is used to generate realistic microstructures as the boundary conditions for DDD simulations in which a constant high uniaxial tensile load is applied along different crystallographic directions. In addition, the lattice mismatch between the γ and {γ\\prime} phases is taken into account as a source of internal stresses. Due to the high antiphase boundary energy and the rare formation of superdislocations, precipitate cutting is not observed in the present simulations. Therefore, the plastic deformation is mainly caused by dislocation motion in γ matrix channels. From a comparison of the macroscopic mechanical response and the dislocation evolution for different microstructures in each loading direction, we found that, for a given {γ\\prime} phase volume fraction, the optimal microstructure should possess narrow and homogeneous γ matrix channels.

  11. Electrically induced formation of uncapped, hollow polymeric microstructures

    NASA Astrophysics Data System (ADS)

    Lee, Sung Hun; Kim, Pilnam; Jeong, Hoon Eui; Suh, Kahp Y.

    2006-11-01

    Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (~20 µm). Upon exposure to an external electric field (1.0-3.0 V µm-1), the hollow microstructures were destabilized and stretched by the well-known electrohydrodynamic instability, resulting in contact of the top polymer surface with the mask. Subsequently, detachment of the capping layer occurred upon removal of the mask due to larger adhesion forces at the polymer/mask interface than cohesion forces of the polymer. These hollow microstructures were tested to capture the budding yeast, Saccharomyces cerevisiae, for shear protection.

  12. Microstructural record of pressure solution and crystal plastic deformation in carbonate fault rocks from a shallow crustal strike-slip fault, Northern Calcareous Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Bauer, Helene; Rogowitz, Anna; Grasemann, Benhard; Decker, Kurt

    2017-04-01

    This study presents microstructural investigations of natural carbonate fault rocks that formed by a suite of different deformation processes, involving hydro-fracturing, dissolution-precipitation creep and cataclasis. Some fault rocks show also clear indications of crystal plastic deformation, which is quite unexpected, as the fault rocks were formed in an upper crustal setting, raising the question of possible strongly localised, low temperature ductile deformation in carbonate rocks. The investigated carbonate fault rocks are from an exhumed, sinistral strike-slip fault at the eastern segment of the Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault system in the Northern Calcareous Alps (Austria). The SEMP fault system formed during eastward lateral extrusion of the Eastern Alps in the Oligocene to Lower Miocene. Based on vitrinite reflectance data form intramontane Teritary basins within the Northern Calcareous Alps, a maximum burial depth of 4 km for the investigated fault segment is estimated. The investigated fault accommodated sinistral slip of several hundreds of meters. Microstructural analysis of fault rocks includes scanning electron microscopy, optical microscopy and electron backscattered diffraction mapping. The data show that fault rocks underwent various stages of evolution including early intense veining (hydro-fracturing) and stylolite formation reworked by localised shear zones. Cross cutting relationship reveals that veins never cross cut clay seams accumulated along stylolites. We conclude that pressure solution processes occured after hydro-fracturing. Clay enriched zones localized further deformation, producing a network of small-scale clay-rich shear zones of up to 1 mm thickness anastomosing around carbonate microlithons, varying from several mm down to some µm in size. Clay seams consist of kaolinit, chlorite and illite matrix and form (sub) parallel zones in which calcite was dissolved. Beside pressure solution, calcite microlithons

  13. Microstructural Analysis of Severe Plastic Deformed Twin Roll Cast AZ31 for the Optimization of Superplastic Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, John P.; Askari, Hesam A.; Heiden, Michael J.

    2013-07-08

    In recent years magnesium alloys have attracted significant attention as potential candidates to replace many of the heavier metals used in some automotive applications. However, the limited formability of magnesium and its alloys at room temperature has driven interest in the superplastic forming magnesium as an alternative shaping method. Severe plastic deformation techniques have become a well studied method of refining the grain size and modifying the microstructural characteristics of many magnesium alloys to achieve greater superplastic properties. In this study twin roll cast (TRC) AZ31 magnesium alloy was subjected to equal channel angular pressing (ECAP) and friction stir weldingmore » (FSW). The influence of these severe plastic deformation processes on the grain size, texture and grain boundary character distribution was investigated to identify the optimum severe plastic deformation process for the superplastic forming of AZ31.« less

  14. Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.

    2003-01-01

    Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.

  15. Microstructure and Mechanical Properties of Additively Manufactured Parts with Staircase Feature

    NASA Astrophysics Data System (ADS)

    Keya, Tahmina

    This thesis focuses on a part with staircase feature that is made of Inconel 718 and fabricated by SLM process. The objective of the study was to observe build height effect on the microstructure and mechanical properties of the part. Due to the nature of SLM, there is possibility of different microstructure and mechanical properties in different locations depending on the design of the part. The objective was to compare microstructure and mechanical properties from different location and four comparison groups were considered: 1. Effect of thermal cycle; 2. External and internal surfaces; 3. Build height effect and 4. Bottom surfaces. To achieve the goals of this research, standard metallurgical procedure has been performed to prepare samples. Etching was done to reveal the microstructure of SLM processed Inconel 718 parts. Young's modulus and hardness were measured using nanoindentation technique. FEM analysis was performed to simulate nanoindentation. The conclusions drawn from this research are: 1. The microstructure of front and side surface of SLM processed Inconel 718 consists of arc shaped cut ends of melt pools with intermetallic phase at the border of the melt pool; 2. On top surface, melted tracks and scanning patterns can be observed and the average width of melted tracks is 100-150 microm; 3. The microstructure looks similar at different build height; 4. Microstructure on the top of a stair is more defined and organized than the internal surface; 5. The mechanical properties are highest at the bottom. OM images revealed slight difference in microstructure in terms of build height for this specific part, but mechanical properties seem to be vary noticeably. This is something to be kept in mind while designing or determining build orientation. External and internal surfaces of a stair at the same height showed difference in both microstructure and mechanical properties. To minimize that effect and to make it more uniform, gradual elevation can be

  16. Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy.

    PubMed

    Jie, Jin; Shao, Tianmin

    2017-10-19

    M50 bearing steels were alternately implanted with Ti⁺ and N⁺ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 10 17 ions/cm², and Ti-implantation at an energy of about 40-90 keV and a fluence of 2 × 10 17 ions/cm². The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials.

  17. Graded Microstructure and Mechanical Performance of Ti/N-Implanted M50 Steel with Polyenergy

    PubMed Central

    Jie, Jin; Shao, Tianmin

    2017-01-01

    M50 bearing steels were alternately implanted with Ti+ and N+ ions using solid and gas ion sources of implantation system, respectively. N-implantation was carried out at an energy of about 80 keV and a fluence of 2 × 1017 ions/cm2, and Ti-implantation at an energy of about 40–90 keV and a fluence of 2 × 1017 ions/cm2. The microstructures of modification layers were analyzed by grazing-incidence X-ray diffraction, auger electron spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The results showed that the gradient structure was formed under the M50 bearing steel subsurface, along the ion implantation influence zone composed of amorphous, nanocrystalline, and gradient-refinement phases. A layer of precipitation compounds like TiN is formed. In addition, nano-indentation hardness and tribological properties of the gradient structure subsurface were examined using a nano-indenter and a friction and wear tester. The nano-indentation hardness of N + Ti-co-implanted sample is above 12 GPa, ~1.3 times than that of pristine samples. The friction coefficient is smaller than 0.2, which is 22.2% of that of pristine samples. The synergism between precipitation-phase strengthening and gradient microstructure is the main mechanism for improving the mechanical properties of M50 materials. PMID:29048360

  18. Evaluation of defect formation in helium irradiated Y2O3 doped W-Ti alloys by positron annihilation and nanoindentation

    NASA Astrophysics Data System (ADS)

    Richter, Asta; Anwand, Wolfgang; Chen, Chun-Liang; Böttger, Roman

    2017-10-01

    Helium implanted tungsten-titanium ODS alloys are investigated using positron annihilation spectroscopy and nanoindentation. Titanium reduces the brittleness of the tungsten alloy, which is manufactured by mechanical alloying. The addition of Y2O3 nanoparticles increases the mechanical properties at elevated temperature and enhances irradiation resistance. Helium ion implantation was applied to simulate irradiation effects on these materials. The irradiation was performed using a 500 kV He ion implanter at fluences around 5 × 1015 cm-2 for a series of samples both at room temperature and at 600 °C. The microstructure and mechanical properties of the pristine and irradiated W-Ti-ODS alloy are compared with respect to the titanium and Y2O3 content. Radiation damage is studied by positron annihilation spectroscopy analyzing the lifetime and the Doppler broadening. Three types of helium-vacancy defects were detected after helium irradiation in the W-Ti-ODS alloy: small defects with high helium-to-vacancy ratio (low S parameter) for room temperature irradiation, larger open volume defects with low helium-to-vacancy ratio (high S parameter) at the surface and He-vacancy complexes pinned at nanoparticles deeper in the material for implantation at 600 °C. Defect induced hardness was studied by nanoindentation. A drastic hardness increase is observed after He ion irradiation both for room temperature and elevated irradiation temperature of 600 °C. The Ti alloyed tungsten-ODS is more affected by the hardness increase after irradiation compared to the pure W-ODS alloy.

  19. Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design

    DTIC Science & Technology

    2013-08-23

    REPORT Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design 14. ABSTRACT 16. SECURITY...15. SUBJECT TERMS materials design, stainless steels , plastic deformation by twinning, computational materials science, experimental characterization...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 30-Jun-2013 Stablization of Nanotwinned Microstructures in Stainless Steels Through

  20. Effects of freezing-induced cell-fluid-matrix interactions on the cells and extracellular matrix of engineered tissues.

    PubMed

    Teo, Ka Yaw; DeHoyos, Tenok O; Dutton, J Craig; Grinnell, Frederick; Han, Bumsoo

    2011-08-01

    The two most significant challenges for successful cryopreservation of engineered tissues (ETs) are preserving tissue functionality and controlling highly tissue-type dependent preservation outcomes. In order to address these challenges, freezing-induced cell-fluid-matrix interactions should be understood, which determine the post-thaw cell viability and extracellular matrix (ECM) microstructure. However, the current understanding of this tissue-level biophysical interaction is still limited. In this study, freezing-induced cell-fluid-matrix interactions and their impact on the cells and ECM microstructure of ETs were investigated using dermal equivalents as a model ET. The dermal equivalents were constructed by seeding human dermal fibroblasts in type I collagen matrices with varying cell seeding density and collagen concentration. While these dermal equivalents underwent an identical freeze/thaw condition, their spatiotemporal deformation during freezing, post-thaw ECM microstructure, and cellular level cryoresponse were characterized. The results showed that the extent and characteristics of freezing-induced deformation were significantly different among the experimental groups, and the ETs with denser ECM microstructure experienced a larger deformation. The magnitude of the deformation was well correlated to the post-thaw ECM structure, suggesting that the freezing-induced deformation is a good indicator of post-thaw ECM structure. A significant difference in the extent of cellular injury was also noted among the experimental groups, and it depended on the extent of freezing-induced deformation of the ETs and the initial cytoskeleton organization. These results suggest that the cells have been subjected to mechanical insult due to the freezing-induced deformation as well as thermal insult. These findings provide insight on tissue-type dependent cryopreservation outcomes, and can help to design and modify cryopreservation protocols for new types of tissues from

  1. Microstructure and Mechanical Properties of a Tempered High Cr Martensitic Steel

    NASA Astrophysics Data System (ADS)

    Guerra-Fuentes, L.; Hernandez-Rodriguez, M. A. L.; Zambrano-Robledo, P.; Salinas-Rodriguez, A.; Garcia-Sanchez, E.

    2017-07-01

    Microstructural and mechanical studies have been performed in a high Cr martensitic steel Firth-Vickers (FV535) to analyze the tempering of martensite. Nanoindentation technique was used to determine the hardness and elastic modulus through systematic measurements on martensite and tempered martensite. On the other hand, microscopic studies were carried out to analyze the material in the same condition as received and subsequently observe the microstructural modifications after heat treatment. The precipitation presented in the last stage of tempering was observed by transmission electron microscopy. The results showed the effect of the martensite decomposition on the mechanical and nanomechanical properties of FV535.

  2. Effects of microrolling parameters on the microstructure and deformation behavior of pure copper

    NASA Astrophysics Data System (ADS)

    Jing, Yi; Zhang, Hong-mei; Wu, Hao; Li, Lian-jie; Jia, Hong-bin; Jiang, Zheng-yi

    2018-01-01

    Microrolling experiments and uniaxial tensile tests of pure copper under different annealing conditions were carried out in this paper. The effects of grain size and reduction on non-uniform deformation, edge cracking, and microstructure were studied. The experimental results showed that the side deformation became more non-uniform, resulting in substantial edge bulge, and the uneven spread increased with increasing grain size and reduction level. When the reduction level reached 80% and the grain size was 65 μm, slight edge cracks occurred. When the grain size was 200 μm, the edge cracks became wider and deeper. No edge cracks occurred when the grain size was 200 μm and the reduction level was less than 60%; edge cracks occurred when the reduction level was increased to 80%. As the reduction level increased, the grains were gradually elongated and appeared as a sheet-like structure along the rolling direction; a fine lamellar structure was obtained when the grain size was 20 μm and the reduction level was less than 60%.

  3. Microstructures and mechanical properties of Cu-Sn alloy subjected to elevated-temperature heat deformation

    NASA Astrophysics Data System (ADS)

    Hui, Jun; Feng, Zaixin; Fan, Wenxin; Wang, Pengfei

    2018-04-01

    Cu-Sn alloy was subjected to elevated-temperature isothermal compression with 0.01 s‑1 strain rate and 500 ∼ 700 °C temperature range. The thermal compression curve reflected a competing process of work hardening versus dynamic recovery (DRV) and recrystallization, which exhibited an obvious softening trend. Meanwhile, high-temperature deformation and microstructural features in different regions of the alloy was analyzed through EBSD. The results show that grains grow as the temperature rises, competition among recrystallization, substructural, and deformation regions tends to increase with the increase of temperature, and distribution frequency of recrystallization regions gradually increases and then drops suddenly at 650 °C. At 500 ∼ 550 °C, preferentially oriented texturing phenomenon occurs, low angle boundaries(LABs) are gradually transformed into high angle boundaries (HABs) and the Σ (CSL) boundaries turn gradually into Σ3 boundaries. In tensile test of tin bronze, elongation at break increases slowly, whereas yield strength (YS) and ultimate tensile strength (TS) decrease gradually.

  4. Microstructure and critical strain of dynamic recrystallization of 6082 aluminum alloy in thermal deformation

    NASA Astrophysics Data System (ADS)

    Ren, W. W.; Xu, C. G.; Chen, X. L.; Qin, S. X.

    2018-05-01

    Using high temperature compression experiments, true stress true strain curve of 6082 aluminium alloy were obtained at the temperature 460°C-560°C and the strain rate 0.01 s-1-10 s-1. The effects of deformation temperature and strain rate on the microstructure are investigated; (‑∂lnθ/∂ε) ‑ ε curves are plotted based on σ-ε curve. Critical strains of dynamic recrystallization of 6082 aluminium alloy model were obtained. The results showed lower strain rates were beneficial to increase the volume fraction of recrystallization, the average recrystallized grain size was coarse; High strain rates are beneficial to refine average grain size, the volume fraction of dynamic recrystallized grain is less than that by using low strain rates. High temperature reduced the dislocation density and provided less driving force for recrystallization so that coarse grains remained. Dynamic recrystallization critical strain model and thermal experiment results can effectively predict recrystallization critical point of 6082 aluminium alloy during thermal deformation.

  5. The Microstructure Evolution and Deformation Behavior of AZ80 During Gradient Increment Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Ren, Lingbao; Quan, Gaofeng; Boehlert, Carl J.; Zhou, Mingyang; Guo, Yangyang; Fan, Lingling

    2018-06-01

    Cyclic loading-unloading uniaxial tension experiments were conducted at temperatures ranging between 293 K and 623 K and a strain rate of 10-3 s-1 to study the cyclic accumulated plastic deformation (CAP) behavior of extruded AZ80. The 673 K/4-h heat treatment to the as-extruded AZ80 led to a noticeable decrease in yield strength which was associated with both dissolution of the β-Mg17Al12 phase and growth of the matrix grain size. The critical number of cycles needed to soften the material (N c) decreased from 5 to 4 when the cyclic strain amplitude (ɛ a) increased from 3.3 to 5.0 pct for the as-extruded AZ80. The average cyclic hardening rate (Θ) increased from 11 to 23 MPa/cycle after heat treatment, and this was attributed to the more pronounced twinning process in the coarse-grained microstructure. During the 293 K to 473 K CAP deformation, the increasing accumulated cyclic tension strain may have accelerated the propagation of secondary twinning leading to the Lüders-like post-yield softening. Twinning was prevalent at low temperature (293 K to 473 K) in the ɛ a = 3.0 pct CAP deformation for the heat-treated alloy, and twin-assisted precipitation occurred during the 523 K CAP deformation, which implied that the high diffusivity in the twin boundary accelerated the heterogeneous nucleation of precipitates. The preferred cracking locations changed from twin boundaries to grain boundaries when the CAP deformation temperature increased from 473 K to 523 K. As for the 623 K CAP deformation, cavities initiated at the grain boundaries, and the volume fraction of the cracks/cavities increased from 0.01 to 0.05 with increasing temperature.

  6. Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  7. Recent advances in the deformation processing of titanium alloys

    NASA Astrophysics Data System (ADS)

    Tamirisakandala, S.; Bhat, R. B.; Vedam, B. V.

    2003-12-01

    Titanium (Ti) alloys are special-purpose materials used for several critical applications in aerospace as well as non-aerospace industries, and extensive deformation processing is necessary to shape-form these materials, which poses many challenges due to the microstructural complexities. Some of the recent developments in the deformation processing of Ti alloys and usefulness of integrating the material behavior information with simulation schemes while designing and optimizing manufacturing process schedules are discussed in this paper. Discussions are primarily focused on the most important alloy, Ti-6Al-4V and on developing a clear understanding on the influence of key parameters (e.g., oxygen content, starting microstructure, temperature, and strain rate) on the deformation behavior during hot working. These studies are very useful not only for obtaining controlled microstructures but also to design complex multi-step processing sequences to produce defect-free components. Strain-induced porosity (SIP) has been a serious problem during titanium alloy processing, and improved scientific understanding helps in seeking elegant solutions to avoid SIP. A novel high-speed processing technique for microstructural conversion in titanium has been described, which provides several benefits over the conventional slow-speed practices. The hot working behavior of some of the affordable α+β and β titanium alloys being developed recently—namely, Ti-5.5Al-1Fe, Ti-10V-2Fe-3Al, Ti-6.8Mo-4.5Fe-1.5Al, and Ti-10V-4.5Fe-1.5Al—has been analyzed, and the usefulness of the processing maps in optimizing the process parameters and design of hot working schedules in these alloys is demonstrated. Titanium alloys modified with small additions of boron are emerging as potential candidates for replacing structural components requiring high specific strength and stiffness. Efforts to understand the microstructural mechanisms during deformation processing of Ti-B alloys and the issues

  8. Deformation behavior of migmatites: insights from microstructural analysis of a garnet-sillimanite-mullite-quartz-feldspar-bearing anatectic migmatite at Rampura-Agucha, Aravalli-Delhi Fold Belt, NW India

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; Piazolo, Sandra; Saha, Lopamudra; Bhattacharya, Abhijit; Pal, Durgesh Kumar; Sarkar, Saheli

    2018-03-01

    In the present study we investigate the microstructural development in mullite, quartz and garnet in an anatectic migmatite hosted within a Grenvillian-age shear zone in the Aravalli-Delhi Fold Belt. The migmatite exhibits three main deformation structures and fabrics (S1, S2, S3). Elongated garnet porphyroblasts are aligned parallel to the metatexite S2 layers and contain crenulation hinges defined by biotite-sillimanite-mullite-quartz (with S1 axial planar foliation). Microstructural evidence and phase equilibrium relations establish the garnet as a peritectic phase of incongruent melting by breakdown of biotite, sillimanite ± mullite and quartz at peak P-T of 8 kbar, 730 °C along a tight-loop, clockwise P-T path. Monazite dating establishes that the partial melting occurred between 1000 and 870 Ma. The absence of subgrains and systematic crystal lattice distortions in these garnets despite their elongation suggests growth pseudomorphing pre-existing 3-D networks of S1 biotite aggregates rather than high-temperature crystal plastic deformation which is noted in the S1 quartz grains that exhibit strong crystallographic preferred orientation (CPO), undulatory extinction and subgrains. Mode-I fractures in these garnet porphyroblasts induced by high melt pressure during late stage of partial melt crystallization are filled by retrograde biotite-sillimanite. Weak CPO and non-systematic crystal lattice distortions in the coarse quartz grains within the S2 leucosome domains indicate these crystallized during melt solidification without later crystal plastic deformation overprint. In the later stages of deformation (D3), strain was mostly accommodated in the mullite-biotite-sillimanite-rich restite domains forming S3 which warps around garnet and leucosome domains; consequently, fine-grained S3 quartz does not exhibit strong CPOs.

  9. Evolution of quartz microstructure and c-axis crystallographic preferred orientation within ductilely deformed granitoids (Arolla unit, Western Alps)

    NASA Astrophysics Data System (ADS)

    Menegon, Luca; Pennacchioni, Giorgio; Heilbronner, Renee; Pittarello, Lidia

    2008-11-01

    We have studied quartz microstructures and the c-axis crystallographic preferred orientations (CPOs) in four granitoid samples representative of increasing ductile shear deformation, from a weakly deformed granitoid (stage 1) to a mylonitic granitoid (stage 4). The quartz c-axis CPO measured in the mylonitic granitoid has been compared with the one observed in a fully recrystallized quartz mylonite from the same area. All the samples belong to the Austroalpine Arolla unit (Western Alps) and were deformed at greenschist facies conditions. The quartz c-axis CPO was analyzed using a U-stage and the optical orientation imaging technique. The magmatic plagioclase, forming more than 50% of the volume of the granitoid, is extensively replaced by a mica-rich aggregate even in weakly deformed samples of stage 1. These aggregates flow to form an interconnected weak matrix with increasing deformation, wrapping relatively less strained quartz grains that undergo dominantly coaxial strain. Recrystallization of quartz ranges from less than 1% in the weakly deformed granitoid to up to 85% in the mylonitic granitoid, with average grain strain of 41% and 64%, respectively. With increasing strain and recrystallization, quartz grains in the granitoids show a sequence of transient microstructures and CPOs. Crystal plastic deformation is initially accomplished by dislocation glide with limited recovery, and at 50% grain strain it results in a CPO consistent with dominantly basal < a> slip. At 60% grain strain, recrystallization is preferentially localized along shear bands, which appear to develop along former intragranular cracks, and the recrystallized grains develop a strong c-axis CPO with maxima orthogonal to the shear band boundaries and independent of the host grain orientation. Within the granitoid mylonite, at an average quartz grain strain of 64%, recrystallization is extensive and the c-axis CPO of new grains displays maxima overlapping the host c-axis orientation and

  10. Effect of borides on hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xuan

    To investigate borides effect on the hot deformation behavior and microstructure evolution of powder metallurgy high borated stainless steel, hot compression tests at the temperatures of 950– 1150 °C and the strain rates of 0.01– 10 s{sup −1} were performed. Flow stress curves indicated that borides increased the material's stress level at low temperature but the strength was sacrificed at temperatures above 1100 °C. A hyperbolic-sine equation was used to characterize the dependence of the flow stress on the deformation temperature and strain rate. The hot deformation activation energy and stress exponent were determined to be 355 kJ/mol and 3.2,more » respectively. The main factors leading to activation energy and stress exponent of studied steel lower than those of commercial 304 stainless steel were discussed. Processing maps at the strains of 0.1, 0.3, 0.5, and 0.7 showed that flow instability mainly concentrated at 950– 1150 °C and strain rate higher than 0.6 s{sup −1}. Results of microstructure illustrated that dynamic recrystallization was fully completed at both high temperature-low strain rate and low temperature-high strain rate. In the instability region cracks were generated in addition to cavities. Interestingly, borides maintained a preferential orientation resulting from particle rotation during compression. - Highlights: •The decrement of activation energy was affected by boride and boron solution. •The decrease of stress exponent was influenced by composition and Cottrell atmosphere. •Boride represented a preferential orientation caused by particle rotation.« less

  11. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    NASA Astrophysics Data System (ADS)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.

  12. Deformation-induced changes in hydraulic head during ground-water withdrawal

    USGS Publications Warehouse

    Hsieh, Paul A.

    1996-01-01

    Ground-water withdrawal from a confined or semiconfined aquifer causes three-dimensional deformation in the pumped aquifer and in adjacent layers (overlying and underlying aquifers and aquitards). In response to the deformation, hydraulic head in the adjacent layers could rise or fall almost immediately after the start of pumping. This deformation-induced effect suggest that an adjacent layer undergoes horizontal compression and vertical extension when pumping begins. Hydraulic head initially drops in a region near the well and close to the pumped aquifer, but rises outside this region. Magnitude of head change varies from a few centimeters to more than 10 centimeters. Factors that influence the development of deformation-induced effects includes matrix rigidity (shear modulus), the arrangement of aquifer and aquitards, their thicknesses, and proximity to land surface. Induced rise in hydraulic head is prominent in an aquitard that extends from land surface to a shallow pumped aquifer. Induced drop in hydraulic head is likely observed close to the well in an aquifer that is separated from the pumped aquifer by a relatively thin aquitard. Induced effects might last for hours in an aquifer, but could persist for many days in an aquitard. Induced effects are eventually dissipated by fluid flow from regions of higher head to regions of lower head, and by propagation of drawdown from the pumped aquifer into adjacent layers.

  13. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation.

    PubMed

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan; He, Weifeng

    2018-04-06

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling.

  14. The Microstructure Evolution of Dual-Phase Pipeline Steel with Plastic Deformation at Different Strain Rates

    NASA Astrophysics Data System (ADS)

    Ji, L. K.; Xu, T.; Zhang, J. M.; Wang, H. T.; Tong, M. X.; Zhu, R. H.; Zhou, G. S.

    2017-07-01

    Tensile properties of the high-deformability dual-phase ferrite-bainite X70 pipeline steel have been investigated at room temperature under the strain rates of 2.5 × 10-5, 1.25 × 10-4, 2.5 × 10-3, and 1.25 × 10-2 s-1. The microstructures at different amount of plastic deformation were examined by using scanning and transmission electron microscopy. Generally, the ductility of typical body-centered cubic steels is reduced when its stain rate increases. However, we observed a different ductility dependence on strain rates in the dual-phase X70 pipeline steel. The uniform elongation (UEL%) and elongation to fracture (EL%) at the strain rate of 2.5 × 10-3 s-1 increase about 54 and 74%, respectively, compared to those at 2.5 × 10-5 s-1. The UEL% and EL% reach to their maximum at the strain rate of 2.5 × 10-3 s-1. This phenomenon was explained by the observed grain structures and dislocation configurations. Whether or not the ductility can be enhanced with increasing strain rates depends on the competition between the homogenization of plastic deformation among the microconstituents (ultra-fine ferrite grains, relatively coarse ferrite grains as well as bainite) and the progress of cracks formed as a consequence of localized inconsistent plastic deformation.

  15. Microstructures and Crystallographic Misorientation in Experimentally Deformed Natural Quartz Single Crystals

    NASA Astrophysics Data System (ADS)

    Thust, Anja; Heilbronner, Renée.; Stünitz, Holger

    2010-05-01

    Samples of natural milky quartz were deformed in a Griggs deformation apparatus at different confining pressures (700 MPa, 1000 MPa, 1500 MPa), with constant displacement rates of 1 * 10-6s-1, axial strains of 3 - 19%, and at a temperature of 900° C. The single crystal starting material contains a large number of H2O-rich fluid inclusions. Directly adjacent to the fluid inclusions the crystal is essentially dry (50-150H/106Si, determined by FTIR). The samples were cored from a narrow zone of constant 'milkyness' (i.e. same density of fluid inclusions) in a large single crystal in two different orientations (1) normal to one of the prism planes (⊥{m} orientation) and (2) 45° to and to (O+ orientation).During attaining of the experimental P and T conditions, numerous fluid inclusions decrepitate by cracking. Rapid crack healing produces regions of very small fluid inclusions ('wet' quartz domains). Only these regions are subsequently deformed by dislocation glide, dry quartz domains without cracking and decrepitation of fluid inclusions remain undeformed. Sample strain is not sufficient to cause recrystallization, so that deformation is restricted to dislocation glide. In experiments at lower temperatures (800, 700° C) or at lower strain rate (10-5s-1) there is abundant cracking and semi-brittle deformation, indicating that 900° C, (10-6s-1) represents the lower temperature end of crystal plastic deformation in these single crystals. Peak strengths (at 900° C) range between 150 and 250 MPa for most samples of both orientations. There is a trend of decreasing strength with increasing confining pressure, as described by Kronenberg and Tullis (1984) for quartzites, but the large variation in strength due to inhomogeneous sample strain precludes a definite analysis of the strength/pressure dependence in our single crystals. In the deformed samples, we can distinguish a number of microstructures and inferred different slip systems. In both orientations, deformation

  16. Deformation mechanisms and resealing of damage zones in experimentally deformed cemented and un-cemented clay-rich geomaterials, at low bulk strain

    NASA Astrophysics Data System (ADS)

    Desbois, Guillaume; Urai, Janos L.; Schuck, Bernhardt; Hoehne, Nadine; Oelker, Anne; Bésuelle, Pierre; Viggiani, Gioacchino; Schmatz, Joyce; Klaver, Jop

    2017-04-01

    for the development of the shear band. At the same time, evidence for dilatancy at low confining pressure indicates that deformation involves also brittle deformation. Our observations strongly suggest that the deformation mostly localizes in those regions of the specimen, where the original grain sizes are smaller. In COx, microstructures show evidence for dominantly cataclastic deformation involving intergranular - transgranular - and - intragranular micro fracturing, grain rotation and clay particle bending mechanisms, down to nm- scale. Micro fracturing of the original fabric results in fragments at a range of scales, which are reworked into a clay-rich cataclastic gouge during frictional flow. Intergranular and minor intragranular micro fracturing occur in regions of non localized deformation, whereas transgranular micro fracturing occurs at regions of localized deformation. These processes are accompanied by dilatancy, but also by progressive decrease of porosity and pore size in the gouge with the non-clay particles embedded in reworked clay. The mechanism of this compaction during shearing is interpreted to be a combination of cataclasis of the cemented clay matrix, and shear-induced rearrangement of clay particles around the fragments of non-clay particles.

  17. Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-N stainless steels

    NASA Astrophysics Data System (ADS)

    Hwang, Byoungchul; Lee, Tae-Ho; Kim, Sung-Joon

    2010-12-01

    Effects of deformation-induced martensite and grain size on ductile-to-brittle transition behavior of austenitic 18Cr-10Mn-(0.3˜0.6)N stainless steels with different alloying elements were investigated by means of Charpy impact tests and microstructural analyses. The steels all exhibited ductile-to-brittle transition behavior due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductileto-brittle transition temperature (DBTT) obtained from Chapry impact tests did not coincide with that predicted by an empirical equation depending on N content in austenitic Cr-Mn-N stainless steels. Furthermore, a decrease of grain size was not effective in terms of lowering DBTT. Electron back-scattered diffraction and transmission electron microscopy analyses of the cross-sectional area of the fracture surface showed that some austenites with lower stability could be transformed to α'-martensite by localized plastic deformation near the fracture surface. Based on these results, it was suggested that when austenitic 18Cr-10Mn-N stainless steels have limited Ni, Mo, and N content, the deterioration of austenite stability promotes the formation of deformation-induced martensite and thus increases DBTT by substantially decreasing low-temperature toughness.

  18. Analysis of Plastic Flow Instability During Superplastic Deformation of the Zn-Al Eutectoid Alloy Modified with 2 wt.% Cu

    NASA Astrophysics Data System (ADS)

    Ramos-Azpeitia, Mitsuo; Elizabeth Martínez-Flores, E.; Hernandez-Rivera, Jose Luis; Torres-Villaseñor, Gabriel

    2017-11-01

    The aim of this work is to analyze the plastic flow instability in Zn-21Al-2Cu alloy deformed under 10-3 s-1 and 513 K, which are optimum conditions for inducing superplastic behavior in this alloy. An evaluation using the Hart and Wilkinson-Caceres criteria showed that the limited stability of plastic flow observed in this alloy is related to low values of the strain-rate sensitivity index ( m) and the strain-hardening coefficient ( γ), combined with the tendency of these parameters to decrease depending on true strain ( ɛ). The reduction in m and γ values could be associated with the early onset of plastic instability and with microstructural changes observed as function of the strain. Grain growth induced by deformation seems to be important during the first stage of deformation of this alloy. However, when ɛ > 0.4 this growth is accompanied by other microstructural rearrangements. These results suggest that in this alloy, a grain boundary sliding mechanism acts to allow a steady superplastic flow only for ɛ < 0.4. For ɛ values between 0.4 and 0.7, observed occurrences of microstructural changes and severe neck formation lead to the supposition that there is a transition in the deformation mechanism. These changes are more evident when ɛ > 0.7 as another mechanism is thought to take over.

  19. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM.

    PubMed

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G; Vázquez, Luis

    2015-11-25

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young's modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young's modulus.

  20. Microstructural and fabric characterization of brittle-ductile transitional deformation of middle crustal rocks along the Jinzhou detachment fault zone, Northeast China

    NASA Astrophysics Data System (ADS)

    Zhang, Juyi; Jiang, Hao; Liu, Junlai

    2017-04-01

    Detachment fault zones (DFZs) of metamorphic core complexes generally root into the middle crust. Exhumed DFZs therefore generally demonstrate structural, microstructural and fabric features characteristic of middle to upper crustal deformation. The Jinzhou detachment fault zone from the Liaonan metamorphic core complex is characterized by the occurrence of a sequence of fault rocks due to progressive shearing along the fault zone during exhumation of the lower plate. From the exhumed fabric zonation, cataclastic rocks formed in the upper crust occur near the Jinzhou master detachment fault, and toward the lower plate gradually changed to mylonites, mylonitic gneisses and migmatitic gneisses. Correspondingly, these fault rocks have various structural, microstructural and fabric characteristics that were formed by different deformation and recrystallization mechanisms from middle to upper crustal levels. At the meanwhile, various structural styles for strain localization were formed in the DFZ. As strain localization occurs, rapid changes in deformation mechanisms are attributed to increases in strain rates or involvement of fluid phases during the brittle-ductile shearing. Optical microscopic studies reveal that deformed quartz aggregates in the lower part of the detachment fault zone are characterized by generation of dynamically recrystallized grains via SGR and BLG recrystallization. Quartz rocks from the upper part of the DFZ have quartz porphyroclasts in a matrix of very fine recrystallized grains. The porphyroclasts have mantles of sub-grains and margins grain boundary bulges. Electron backscattered diffraction technique (EBSD) quartz c-axis fabric analysis suggests that quartz grain aggregates from different parts of the DFZ possess distinct fabric complexities. The c-axis fabrics of deformed quartz aggregates from mylonitic rocks in the lower part of the detachment fault zone preserve Y-maxima which are ascribed to intermediate temperature deformation (500

  1. Micromechanical characterization of shales through nanoindentation and energy dispersive x-ray spectrometry

    DOE PAGES

    Veytskin, Yuriy B.; Tammina, Vamsi K.; Bobko, Christopher P.; ...

    2017-03-01

    Shales are heterogeneous sedimentary rocks which typically comprise a variable mineralogy (including compacted clay particles sub-micrometer in size), silt grains, and nanometer sized pores collectively arranged with transversely isotropic symmetry. Moreover, a detailed understanding of the micro- and sub-microscale geomechanics of these minerals is required to improve models of shale strength and stiffness properties. In this paper, we propose a linked experimental–computational approach and validate a combination of grid nanoindentation and Scanning Electron Microscopy (SEM) with Energy and Wavelength Dispersive X-ray Spectrometry (EDS/WDS) at the same spatial locations to identify both the nano-mechanical morphology and local mineralogy of these nanocomposites.more » The experimental parameters of each method are chosen to assess a similar volume of material. By considering three different shales of varying mineralogy and mechanical diversity, we show through the EMMIX statistical iterative technique that the constituent phases, including highly compacted plate- or sheet-like clay particles, carbonates, silicates, and sulfides, have distinct nano-mechanical morphologies and associated indentation moduli and hardness. Nanoindentation-based strength homogenization analysis determines an average clay packing density, friction coefficient, and solid cohesion for each tested shale sample. Comparison of bulk to microscale geomechanical properties, through bulk porosimetry measurements, reveals a close correspondence between bulk and microscale clay packing densities. Determining the mechanical microstructure and material properties is useful for predictive microporomechanical models of the stiffness and strength properties of shale. Furthermore, the experimental and computational approaches presented here also apply to other chemically and mechanically complex materials exhibiting nanogranular, composite behavior.« less

  2. Development of Simultaneous Corrosion Barrier and Optimized Microstructure in FeCrAl Heat-Resistant Alloy for Energy Applications. Part II: The Optimized Creep-Resistant Microstructure

    NASA Astrophysics Data System (ADS)

    Pimentel, G.; Aranda, M. M.; Chao, J.; González-Carrasco, J. L.; Capdevila, C.

    2015-09-01

    The first part of this two-part study reported the possibility of simultaneously generating a dense, self-healing α-alumina layer by thermal oxidation and a coarse-grained microstructure with a potential goodness for high-temperature creep resistance in a FeCrAl oxide dispersion-strengthened ferritic alloy that was cold deformed after hot rolling and extrusion. In this second part, the factors affecting the formation of the coarse-grained microstructure such as strain gradients induced during the rolling process are analyzed. It is concluded that larger strain gradients lead to more refined and more isotropic grain structures.

  3. Deformation of a laser beam in the fabrication of graphite microstructures inside a volume of diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kononenko, T V; Zavedeev, E V

    2016-03-31

    We report a theoretical and experimental study of the energy profile deformation along the laser beam axis during the fabrication of graphite microstructures inside a diamond crystal. The numerical simulation shows that the use of a focusing lens with a numerical aperture NA < 0.1 at a focusing depth of up to 2 mm makes it possible to avoid a noticeable change in the energy profile of the beam due to the spherical aberration that occurs in the case of refraction of the focused laser beam at the air – diamond interface. The calculation results are confirmed by experimental datamore » on the distribution of the laser intensity along the beam axis in front of its focal plane, derived from observations of graphitisation wave propagation in diamond. The effect of radiation self-focusing on laser-induced graphitisation of diamond is analysed. It is shown that if the wavefront distortion due to self-focusing can be neglected at a minimum pulse energy required for the optical breakdown of diamond, then an increase in the beam distortion with increasing pulse energy has no effect on the graphitisation process. (interaction of laser radiation with matter)« less

  4. Phase transformation as the single-mode mechanical deformation of silicon

    DOE PAGES

    Wong, Sherman; Haberl, Bianca; Williams, James S.; ...

    2015-06-25

    The mixture of the metastable body-centered cubic (bc8) and rhombohedral (r8) phases of silicon that is formed via nanoindentation of diamond cubic (dc) silicon exhibits properties that are of scientifc and technological interest. This letter demonstrates that large regions of this mixed phase can be formed in crystalline Si via nanoindentation without signifcant damage to the surrounding crystal. Cross-sectional transmission electron microscopy is used to show that volumes 6 μm wide and up to 650 nm deep can be generated in this way using a spherical tip of ~21.5 μm diameter. The phase transformed region is characterised using both Ramanmore » microspectroscopy and transmission electron microscopy. It is found that uniform loading using large spherical indenters can favor phase transformation as the sole deformation mechanism as long as the maximum load is below a critical level. We suggest that the sluggish nature of the transformation from the dc-Si phase to the metallic (b-Sn) phase normally results in competing deformation mechanisms such as slip and cracking but these can be suppressed by controlled loading conditions.« less

  5. Effect of reduction of area on microstructure and mechanical properties of twinning-induced plasticity steel during wire drawing

    NASA Astrophysics Data System (ADS)

    Hwang, Joong-Ki; Son, Il-Heon; Yoo, Jang-Yong; Zargaran, A.; Kim, Nack J.

    2015-09-01

    The effect of reduction of area (RA), 10%, 20%, and 30%, during wire drawing on the inhomogeneities in microstructure and mechanical properties along the radial direction of Fe-Mn-Al-C twinning-induced plasticity steel has been investigated. After wire drawing, the deformation texture developed into the major <111> and minor <100> duplex fiber texture. However, the <111> texture became more pronounced in both center and surface areas as the RA per pass increased. It also shows that a larger RA per pass resulted in a higher yield strength and smaller elongation than a smaller RA per pass at all strain levels. Although inhomogeneities in microstructure and mechanical properties along the radial direction decreased with increasing RA per pass, there existed an optimum RA per pass for maximum drawing limit. Insufficient penetration of strain from surface to center at small RA per pass (e.g., 10%) and high friction and unsound metal flow at large RA per pass (e.g., 30%) all resulted in heterogeneous microstructure and mechanical properties along the radial direction of drawn wire. On the other hand, 20% RA per pass improved the drawing limit by about 30% as compared to the 10% and 30% RAs per pass.

  6. Nano-indentation investigation on the mechanical stability of individual austenite in high-carbon steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Xun; Han, Lizhan; Zhang, Weimin

    2015-12-15

    Quenching (AQ) and cryogenic treatments (QC) were conducted on the high-carbon SAE 52100 steel to investigate the mechanical stability of individual retained austenite (RA) by nano-indentation. The cross-sections of indented RA region prepared by focused ion beam (FIB) were examined by using transmission electron microscopy (TEM). For the first time, it was directly observed that some parts of RA grain, closest to the indent, in AQ specimen had transformed into strain-induced martensite (SIM). However, not any pop-in or transformation was detected in the indented QC specimen. This clearly indicates that the mechanical stability of RA in QC seems significantly enhanced,more » which is mainly attributed to the cryogenic treatment resulting in a higher carbon enrichment of RA compared to that in AQ. Furthermore, a higher load of external stress may need to trigger its martensitic transformation in QC specimen. - Highlights: • Mechanical stability of retained austenite was studied by nano-indentation and TEM. • The strain-induced martensite transformation in RA was observed under applied load. • Cryogenic treatment enhances mechanical stability of RA due to carbon enrichment.« less

  7. History Dependence of the Microstructure on Time-Dependent Deformation During In-Situ Cooling of a Nickel-Based Single-Crystal Superalloy

    NASA Astrophysics Data System (ADS)

    Panwisawas, Chinnapat; D'Souza, Neil; Collins, David M.; Bhowmik, Ayan; Roebuck, Bryan

    2018-05-01

    Time-dependent plastic deformation through stress relaxation and creep deformation during in-situ cooling of the as-cast single-crystal superalloy CMSX-4® has been studied via neutron diffraction, transmission electron microscopy, electro-thermal miniature testing, and analytical modeling across two temperature regimes. Between 1000 °C and 900 °C, stress relaxation prevails and gives rise to softening as evidenced by a decreased dislocation density and the presence of long segment stacking faults in γ phase. Lattice strains decrease in both the γ matrix and γ' precipitate phases. A constitutive viscoplastic law derived from in-situ isothermal relaxation test under-estimates the equivalent plastic strain in the prediction of the stress and strain evolution during cooling in this case. It is thereby shown that the history dependence of the microstructure needs to be taken into account while deriving a constitutive law and which becomes even more relevant at high temperatures approaching the solvus. Higher temperature cooling experiments have also been carried out between 1300 °C and 1150 °C to measure the evolution of stress and plastic strain close to the γ' solvus temperature. In-situ cooling of samples using ETMT shows that creep dominates during high-temperature deformation between 1300 °C and 1220 °C, but below a threshold temperature, typically 1220 °C work hardening begins to prevail from increasing γ' fraction and resulting in a rapid increase in stress. The history dependence of prior accumulated deformation is also confirmed in the flow stress measurements using a single sample while cooling. The saturation stresses in the flow stress experiments show very good agreement with the stresses measured in the cooling experiments when viscoplastic deformation is dominant. This study demonstrates that experimentation during high-temperature deformation as well as the history dependence of the microstructure during cooling plays a key role in deriving

  8. Orogen-scale along-strike continuity in quartz recrystallization microstructures adjacent to the Main Central Thrust: implications for deformation temperatures, strain rates and flow stresses

    NASA Astrophysics Data System (ADS)

    Law, Richard

    2015-04-01

    Traced for ~ 1500 km along the foreland edge of the Himalaya from NW India to Bhutan published reports indicate a remarkable along-strike continuity of quartz recrystallization microstructures in the footwall and hanging wall to the Main Central Thrust (MCT). Recrystallization in Lesser Himalayan Series (LHS) rocks in the footwall to the MCT is dominated by grain boundary bulging (BLG) microstructures, while recrystallization in Greater Himalayan Series (GHS) rocks in the hanging wall is dominated by grain boundary migration microstructures that traced structurally upwards transition in to the anatectic core of the GHS. In foreland-positioned high-strain rocks adjacent to the MCT recrystallization is dominated by subgrain rotation (SGR) with transitional BLG-SGR and SGR-GBM microstructures being recorded at structural distances of up to a few hundred meters below and above the MCT, respectively. Correlation with available information on temperatures of metamorphism indicated by mineral phase equilibria and RSCM data suggests that recrystallization in the structural zones dominated by BLG, SGR and GBM occurred at temperatures of ~ 350-450, 450-550 and 550- > 650 °C, respectively. It should be kept in mind, however, that these temperatures are likely to be 'close-to-peak' temperatures of metamorphism, whereas penetrative shearing and recrystallization may have continued during cooling. The dominance of SGR along the more foreland-positioned exposures of the MCT intuitively suggests that shearing occurred under a relatively restricted range of deformation temperatures and strain rates. Plotting the 'close-to-peak' 450-500 °C temperatures of metamorphism indicated for SGR-dominated rocks located at up to a few hundred meters below/above the MCT on the quartz recrystallization map developed by Stipp et al. (2002) indicates 'ball-park' strain rates of ~ 10-13 to 10-10 sec-1. However, only strain rates slower than 10-12 sec-1 on the MCT are likely to be compatible with

  9. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE PAGES

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...

    2017-02-20

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  10. Effect of stress evolution on microstructural behavior in U-Mo/Al dispersion fuel [Effect of stress on microstructural evolution in U-Mo/Al dispersion fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.

    U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less

  11. Influence of Size on the Microstructure and Mechanical Properties of an AISI 304L Stainless Steel—A Comparison between Bulk and Fibers

    PubMed Central

    Baldenebro-Lopez, Francisco J.; Gomez-Esparza, Cynthia D.; Corral-Higuera, Ramon; Arredondo-Rea, Susana P.; Pellegrini-Cervantes, Manuel J.; Ledezma-Sillas, Jose E.; Martinez-Sanchez, Roberto; Herrera-Ramirez, Jose M.

    2015-01-01

    In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed. PMID:28787949

  12. Surface Nanocrystallization and Amorphization of Dual-Phase TC11 Titanium Alloys under Laser Induced Ultrahigh Strain-Rate Plastic Deformation

    PubMed Central

    Luo, Sihai; Zhou, Liucheng; Wang, Xuede; Cao, Xin; Nie, Xiangfan

    2018-01-01

    As an innovative surface technology for ultrahigh strain-rate plastic deformation, laser shock peening (LSP) was applied to the dual-phase TC11 titanium alloy to fabricate an amorphous and nanocrystalline surface layer at room temperature. X-ray diffraction, transmission electron microscopy, and high-resolution transmission electron microscopy (HRTEM) were used to investigate the microstructural evolution, and the deformation mechanism was discussed. The results showed that a surface nanostructured surface layer was synthesized after LSP treatment with adequate laser parameters. Simultaneously, the behavior of dislocations was also studied for different laser parameters. The rapid slipping, accumulation, annihilation, and rearrangement of dislocations under the laser-induced shock waves contributed greatly to the surface nanocrystallization. In addition, a 10 nm-thick amorphous structure layer was found through HRTEM in the top surface and the formation mechanism was attributed to the local temperature rising to the melting point, followed by its subsequent fast cooling. PMID:29642379

  13. Lattice defects affecting moisture-induced embrittlement of Ni-based L1{sub 2} ordered intermetallics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasugi, T.; Hanada, S.

    1997-12-31

    Moisture-induced embrittlement of L1{sub 2} alloys (such as Ni{sub 3}(Si,Ti) and Ni{sub 3}Al) is observed by tensile test and SEM fractography. A variety of microstructures were prepared by selecting pre-deformation and heat treatment conditions. It is shown that tensile ductility and the associated fractography depend on structure as well as test atmosphere. Well-annealed specimens are susceptible to moisture-induced embrittlement while pre-deformed specimens are resistive to moisture-induced embrittlement. Also, this embrittlement is generally sensitive to the heat treatment scheme preceded by the pre-deformation. Results indicate that the embrittlement occurs when hydrogen is enriched on grain boundaries. On the other hand, themore » embrittlement can be suppressed when hydrogen is trapped at lattice defects such as dislocations and vacancies. These results are discussed in association with the kinetics of hydrogen in the pre-deformed microstructure.« less

  14. Indentation recovery in GdPO 4 and observation of deformation twinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.

    A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less

  15. Indentation recovery in GdPO 4 and observation of deformation twinning

    DOE PAGES

    Wilkinson, Taylor M.; Musselman, Matthew A.; Boatner, Lynn A.; ...

    2016-09-30

    A series of nanoindentation tests on both single and polycrystalline specimens of a monazite rare-earth orthophosphate, GdPO 4, revealed frequent observation of anomalous unloading behavior with a large degree of recovery, where previously this behavior had only been observed in xenotime-structure rare-earth orthophosphates. An indentation site in the polycrystalline sample was examined using TEM to identify the deformation mechanism responsible for recovery. Finally, the presence of a twin along the (100) orientation, along with a series of stacking faults contained within the deformation site, provide evidence that the mechanism of recovery in GdPO 4 is the collapse of deformation twinsmore » during unloading.« less

  16. Comparison of microstructure of superplastically deformed synthetic materials and ultramylonite: Coalescence of secondary mineral grains via grain boundary sliding

    NASA Astrophysics Data System (ADS)

    Hiraga, T.; Miyazaki, T.; Tasaka, M.; Yoshida, H.

    2011-12-01

    Using very fine-grained aggregates of forsterite containing ~10vol% secondary mineral phase such as periclase and enstatite, we have been able to demonstrate their superplascity, that is, achievement of more than a few 100 % tensile strain (Hiraga et al. 2010). Superplastic deformation is commonly considered to proceed via grain boundary sliding (GBS) which results in grain switching in the samples. Hiraga et al. (2010) succeeded in detecting the operation of GBS from observing the coalescence of grains of secondary phase in superplastically deformed samples. The secondary phase pins the motion of grain boundaries of the primary phase; however, the reduction of the number of the grains of secondary phase due to their coalescence allows grain growth of the primary phase. We analyzed the relationships between grain size of the primary and secondary phases, between strain and grain size, and between strain and the number of coalesced grains in the superplastically deformed samples. The results supports participation of all the grains of the primary phase in grain switching process indicating that the grain boundary sliding accommodates almost entire strain during the deformation. Mechanical properties of these materials such as their stress and grain size exponents of 1-2 do not conflict this conclusion. We applied the relationships obtained from analyzing superplastic materials to the microstructure of the natural samples, which has been considered to have deformed via grain boundary sliding, that is, ultramylonite. The microstructure of greenschist-grade ultramylonite reported by Fliervoet et al. (1997) was analyzed. Distributions of the mineral phases (i.e., quartz, plagioclase, K-feldspar and biotite) show distinct coalescence of the same mineral phases in the direction almost perpendicular to the foliation of the rock. The number of coalesced grains indicates that the strain that rock experienced is > 2. [reference] Hiraga et al. (2010) Nature 468, 1091

  17. The nano-epsilon dot method for strain rate viscoelastic characterisation of soft biomaterials by spherical nano-indentation.

    PubMed

    Mattei, G; Gruca, G; Rijnveld, N; Ahluwalia, A

    2015-10-01

    Nano-indentation is widely used for probing the micromechanical properties of materials. Based on the indentation of surfaces using probes with a well-defined geometry, the elastic and viscoelastic constants of materials can be determined by relating indenter geometry and measured load and displacement to parameters which represent stress and deformation. Here we describe a method to derive the viscoelastic properties of soft hydrated materials at the micro-scale using constant strain rates and stress-free initial conditions. Using a new self-consistent definition of indentation stress and strain and corresponding unique depth-independent expression for indentation strain rate, the epsilon dot method, which is suitable for bulk compression testing, is transformed to nano-indentation. We demonstrate how two materials can be tested with a displacement controlled commercial nano-indentor using the nano-espilon dot method (nano-ε̇M) to give values of instantaneous and equilibrium elastic moduli and time constants with high precision. As samples are tested in stress-free initial conditions, the nano-ε̇M could be useful for characterising the micro-mechanical behaviour of soft materials such as hydrogels and biological tissues at cell length scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Thermal Stability of Microstructure and Microhardness of Heterophase BCC-Alloys After Torsional Deformation on Bridgman Anvils

    NASA Astrophysics Data System (ADS)

    Ditenberg, I. A.; Tyumentsev, A. N.

    2018-03-01

    The results of investigations of thermal stability of microstructure and microhardness of alloys of the V-4Ti-4Cr and Mo-47Re systems, subjected to torsional deformation by high quasi-hydrostatic pressure at room temperature, are reported. It is shown that submicrocrystalline and nanocrystalline states, and the respective high values of microhardness, persist up to the upper bound ( 0.4 Tmelt) of the temperature interval of their recovery and polygonization in a single-phase state. The main factors ensuring thermal stability of highlydefective states in heterophase alloys are discussed.

  19. Microstructures in naturally deformed Upper Rotliegend salt rocks from Northern Germany

    NASA Astrophysics Data System (ADS)

    Henneberg, Mareike; Hammer, Jörg; Mertineit, Michael

    2017-04-01

    Permian and Meso-/Cenozoic salt formations are represented in wide parts of the German geologic underground (Reinhold & Hammer 2016). They are of interest for cavern storage of oil and gas as well as of renewable energies (in form of compressed air or hydrogen). For industrial exploration purposes, more detailed data about the composition, barrier properties, as well as the genesis and deformation of the rocks is needed. In central Northern Germany, salt rocks from the Upper Rotliegend are implemented in diapir structures together with salt formations from the Zechstein. Rotliegend salt rocks are characterized by halite that contains patches of detrital material which account for 5 to 60 vol.% of the rock. They show a characteristic red to purple color. Drill cores containing Rotliegend halite rocks from different locations were investigated in this study by using petrographical and microstructural methods. The halite shows different fabric types: (i) euhedral to hypidiomorphic grains with grain sizes up to several millimeters, (ii) polygonal grains with smaller grain sizes between 0.1 and 3 mm, and (iii) fibrous halite. Halite grain boundaries are decorated with fluid inclusions, especially around the contact to detrital material. Subgrains in halite are abundant in all investigated samples and show average sizes between 140 µm and 217 µm. These correspond to average differential stresses of 1 MPa to 1.45 MPa (Carter et al. 1993, Schléder & Urai 2005). The detrital material consists of clasts of quartz, feldspar, mica, carbonates and metal oxides with grain sizes of clay to silt fraction. In some samples, the detrital components show internal deformation by folding and fracturing. Depending on the location, different quantities of authigenic evaporite minerals, like carbonate and anhydrite, formed. Fractures are filled with halite, anhydrite and celestine. The different types of halite fabric are an indication of locally different deformational behavior of the

  20. Evaluation of Argon ion irradiation hardening of ferritic/martensitic steel-T91 using nanoindentation, X-ray diffraction and TEM techniques

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.

    2017-08-01

    In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.

  1. Orientation-dependent deformation mechanisms of bcc niobium nanoparticles

    NASA Astrophysics Data System (ADS)

    Bian, J. J.; Yang, L.; Niu, X. R.; Wang, G. F.

    2018-07-01

    Nanoparticles usually exhibit pronounced anisotropic properties, and a close insight into the atomic-scale deformation mechanisms is of great interest. In present study, atomic simulations are conducted to analyse the compression of bcc nanoparticles, and orientation-dependent features are addressed. It is revealed that surface morphology under indenter predominantly governs the initial elastic response. The loading curve follows the flat punch contact model in [1 1 0] compression, while it obeys the Hertzian contact model in [1 1 1] and [0 0 1] compressions. In plastic deformation regime, full dislocation gliding is dominated in [1 1 0] compression, while deformation twinning is prominent in [1 1 1] compression, and these two mechanisms coexist in [0 0 1] compression. Such deformation mechanisms are distinct from those in bulk crystals under nanoindentation and nanopillars under compression, and the major differences are also illuminated. Our results provide an atomic perspective on the mechanical behaviours of bcc nanoparticles and are helpful for the design of nanoparticle-based components and systems.

  2. Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Sarac, Baran

    Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology

  3. Nanomechanical characterization of nanostructured bainitic steel: Peak Force Microscopy and Nanoindentation with AFM

    PubMed Central

    Morales-Rivas, Lucia; González-Orive, Alejandro; Garcia-Mateo, Carlos; Hernández-Creus, Alberto; Caballero, Francisca G.; Vázquez, Luis

    2015-01-01

    The full understanding of the deformation mechanisms in nanostructured bainite requires the local characterization of its mechanical properties, which are expected to change from one phase, bainitic ferrite, to another, austenite. This study becomes a challenging process due to the bainitic nanostructured nature and high Young’s modulus. In this work, we have carried out such study by means of the combination of AFM-based techniques, such as nanoindentation and Peak Force Quantitative Nanomechanical Mapping (PF-QNM) measurements. We have addressed critically the limits and advantages of these techniques and been able to measure some elastoplastic parameters of both phases. Specifically, we have analyzed by PF-QNM two nanostructured bainitic steels, with a finer and a coarser structure, and found that both phases have a similar Young’s modulus. PMID:26602631

  4. On the failure load and mechanism of polycrystalline graphene by nanoindentation

    PubMed Central

    Sha, Z. D.; Wan, Q.; Pei, Q. X.; Quek, S. S.; Liu, Z. S.; Zhang, Y. W.; Shenoy, V. B.

    2014-01-01

    Nanoindentation has been recently used to measure the mechanical properties of polycrystalline graphene. However, the measured failure loads are found to be scattered widely and vary from lab to lab. We perform molecular dynamics simulations of nanoindentation on polycrystalline graphene at different sites including grain center, grain boundary (GB), GB triple junction, and holes. Depending on the relative position between the indenter tip and defects, significant scattering in failure load is observed. This scattering is found to arise from a combination of the non-uniform stress state, varied and weakened strengths of different defects, and the relative location between the indenter tip and the defects in polycrystalline graphene. Consequently, the failure behavior of polycrystalline graphene by nanoindentation is critically dependent on the indentation site, and is thus distinct from uniaxial tensile loading. Our work highlights the importance of the interaction between the indentation tip and defects, and the need to explicitly consider the defect characteristics at and near the indentation site in polycrystalline graphene during nanoindentation. PMID:25500732

  5. Simultaneous measurements of photoemission and morphology of various Al alloys during mechanical deformation

    NASA Astrophysics Data System (ADS)

    Cai, M.; Li, W.; Dickinson, J. T.

    2006-11-01

    We report simultaneous measurements of strain and photoelectron emission from high purity Al (1350), Al-Mg (5052), Al-Mn (3003), Al-Cu (2024), and Al-Mg-Si (6061) alloys under uniaxial tension due to pulsed excimer laser radiation (248nm). The emission of low-energy photoelectrons is sensitive to deformation-induced changes in surface morphology, including the formation of slip lines and slip bands. Alloy composition and surface treatment significantly influence the photoemission during deformation. Surface oxide enhances the signal-to-noise level during photoemission measurement. In the early stage of deformation (strain ⩽0.04), photoemission intensity increases gradually in a nonlinear fashion. While subsequent photoemission increases almost linearly with strain until failure in samples with thin oxide layer (˜31Å), there are two linear segments of photoemission for the samples with oxide of 45Å. The onset of strain localization corresponds to the intersection point of two linear segments, usually at a strain of 0.08-0.20. A constitutive model incorporating microstructure evolution and work hardening during tensile deformation is proposed to qualitatively interpret the growth of the photoemission as a function of strain. Photoemissions from various alloys are interpreted in the light of surface treatment, work function, composition, and microstructural development during deformation.

  6. Fluid inclusions and microstructures in experimentally deformed quartz single crystals

    NASA Astrophysics Data System (ADS)

    Thust, A.; Tarantola, A.; Heilbronner, R.; Stünitz, H.

    2009-04-01

    to H2O loss into the healed cracks. First observations of deformed samples show abundant deformation lamellae. With higher deformation the lamellae form conjugated zones of high dislocation density and undulatory extinction. Micro cracks are frequently connected to fluid inclusions. Recrystallized grains are rare in deformed samples because of the low strain acquired. In semi-brittle experiments at lower temperature and faster strain rates considerable recrystallization features are visible and clearly connected to initial brittle deformation features. We conclude that fluid inclusion rupture and fast crack healing at high temperatures are necessary for the redistribution of H2O and a prerequisite of ductile deformation. References: Griggs, D.T. & Balcic, J.D. 1965: Quartz: anomalous weakness of synthetic crystals. Science 147, 293-295. FitzGerald, J.D., Boland, J.N., McLaren, A.C., Ord, A., Hobbs, B.E. 1991: Microstructures in water-weakened single crystals of quartz. Journal of Geophysical Research Vol. 96 No. B2, 2139-2155 Kronenberg, A.K. & Tullis, J. 1984: Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research Vol.89, No. B6, 4281-4297. Kronenberg, A.K., Kirby, S.H., Aines, R.D., Rossman G.R. 1986: Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implication for hydrolytic weakening. Journal of Geophysical Research Vol.91, NO. B12, 12,723-12,744. Paterson, M.S.1989: The interaction of water with quartz and the influence in dislocation flow - an overview. In: S. Karato and M. Toriumi (Editors), Rheology of Solids and of the Earth. Oxford University Press, London, pp. 107-142.

  7. Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys

    PubMed Central

    Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.

    2017-01-01

    In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248

  8. NUMERICAL SIMULATION OF NANOINDENTATION AND PATCH CLAMP EXPERIMENTS ON MECHANOSENSITIVE CHANNELS OF LARGE CONDUCTANCE IN ESCHERICHIA COLI

    PubMed Central

    Tang, Yuye; Chen, Xi; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang

    2010-01-01

    A hierarchical simulation framework that integrates information from all-atom simulations into a finite element model at the continuum level is established to study the mechanical response of a mechanosensitive channel of large conductance (MscL) in bacteria Escherichia Coli (E.coli) embedded in a vesicle formed by the dipalmitoylphosphatidycholine (DPPC) lipid bilayer. Sufficient structural details of the protein are built into the continuum model, with key parameters and material properties derived from molecular mechanics simulations. The multi-scale framework is used to analyze the gating of MscL when the lipid vesicle is subjective to nanoindentation and patch clamp experiments, and the detailed structural transitions of the protein are obtained explicitly as a function of external load; it is currently impossible to derive such information based solely on all-atom simulations. The gating pathways of E.coli-MscL qualitatively agree with results from previous patch clamp experiments. The gating mechanisms under complex indentation-induced deformation are also predicted. This versatile hierarchical multi-scale framework may be further extended to study the mechanical behaviors of cells and biomolecules, as well as to guide and stimulate biomechanics experiments. PMID:21874098

  9. Nanoindentation mapping of the mechanical properties of human molar tooth enamel.

    PubMed

    Cuy, J L; Mann, A B; Livi, K J; Teaford, M F; Weihs, T P

    2002-04-01

    The mechanical behavior of dental enamel has been the subject of many investigations. Initial studies assumed that it was a more or less homogeneous material with uniform mechanical properties. Now it is generally recognized that the mechanical response of enamel depends upon location, chemical composition, and prism orientation. This study used nanoindentation to map out the properties of dental enamel over the axial cross-section of a maxillary second molar (M(2)). Local variations in mechanical characteristics were correlated with changes in chemical content and microstructure across the entire depth and span of a sample. Microprobe techniques were used to examine changes in chemical composition and scanning electron microscopy was used to examine the microstructure. The range of hardness (H) and Young's modulus (E) observed over an individual tooth was found to be far greater than previously reported. At the enamel surface H>6GPa and E>115GPa, while at the enamel-dentine junction H<3GPa and E<70GPa. These variations corresponded to the changes in chemistry, microstructure, and prism alignment but showed the strongest correlations with changes in the average chemistry of enamel. For example, the concentrations of the constituents of hydroxyapatite (P(2)O(5) and CaO) were highest at the hard occlusal surface and decreased on moving toward the softer enamel-dentine junction. Na(2)O and MgO showed the opposite trend. The mechanical properties of the enamel were also found to differ from the lingual to the buccal side of the molar. At the occlusal surface the enamel was harder and stiffer on the lingual side than on the buccal side. The interior enamel, however, was softer and more compliant on the lingual than on the buccal side, a variation that also correlated with differences in average chemistry and might be related to differences in function.

  10. Nanoindentation size effects in wood

    Treesearch

    Joseph E. Jakes; Donald S. Stone; Charles R. Frihart

    2007-01-01

    The purpose of this work was to test some of the assumptions underlying methods currently employed to investigate nanoindentation properties of wood. We examined whether hardness and modulus depend on load. We employed a surface preparation technique that minimizes alterations of cell wall properties. Areas were determined using both (a) Oliver-Pharr method and (b) a...

  11. Hardness of AISI type 410 martensitic steels after high temperature irradiation via nanoindentation

    NASA Astrophysics Data System (ADS)

    Waseem, Owais Ahmed; Jeong, Jong-Ryul; Park, Byong-Guk; Maeng, Cheol-Soo; Lee, Myoung-Goo; Ryu, Ho Jin

    2017-11-01

    The hardness of irradiated AISI type 410 martensitic steel, which is utilized in structural and magnetic components of nuclear power plants, is investigated in this study. Proton irradiation of AISI type 410 martensitic steel samples was carried out by exposing the samples to 3 MeV protons up to a 1.0 × 1017 p/cm2 fluence level at a representative nuclear reactor coolant temperature of 350 °C. The assessment of deleterious effects of irradiation on the micro-structure and mechanical behavior of the AISI type 410 martensitic steel samples via transmission electron microscopy-energy dispersive spectroscopy and cross-sectional nano-indentation showed no significant variation in the microscopic or mechanical characteristics. These results ensure the integrity of the structural and magnetic components of nuclear reactors made of AISI type 410 martensitic steel under high-temperature irradiation damage levels up to approximately 5.2 × 10-3 dpa.

  12. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir; Karimzadeh, F.; Enayati, M.H.

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties ofmore » the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the

  13. Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Tianlei; Gao, Yanfei; Bei, Hongbin

    2011-01-01

    Instrumented nanoindentation techniques have been widely used to characterize the small-scale mechanical behavior of materials. The elastic-plastic transition during nanoindentation is often indicated by a sudden displacement burst (pop-in) in the measured load-displacement curve. In defect-free single crystals, the pop-in is believed to be the result of homogeneous dislocation nucleation because the maximum shear stress corresponding to the pop-in load approaches the theoretical strength of the materials and because the statistical distribution of pop-in stresses is consistent with what is expected for a thermally activated process of homogeneous dislocation nucleation. This paper investigates whether this process is affected by crystallographymore » and stress components other than the resolved shear stress. A Stroh formalism coupled with the two-dimensional Fourier transformation is used to derive the analytical stress fields in elastically anisotropic solids under Hertzian contact, which allows the determination of an indentation Schmid factor, namely, the ratio of maximum resolved shear stress to the maximum contact pressure. Nanoindentation tests were conducted on B2-structured NiAl single crystals with different surface normal directions. This material was chosen because it deforms at room temperature by {110}<001> slip and thus avoids the complexity of partial dislocation nucleation. Good agreement is obtained between the experimental data and the theoretically predicted orientation dependence of pop-in loads based on the indentation Schmid factor. Pop-in load is lowest for indentation directions close to <111> and highest for those close to <001>. In nanoindentation, since the stress component normal to the slip plane is typically comparable in magnitude to the resolved shear stress, we find that the pressure sensitivity of homogeneous dislocation nucleation cannot be determined from pop-in tests. Our statistical measurements generally confirm the

  14. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    DOE PAGES

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; ...

    2017-06-27

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  15. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  16. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE PAGES

    Cheng, G.; Choi, K. S.; Hu, X.; ...

    2017-04-05

    Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  17. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X.

    The deformation limits of various DP980 steels are examined in this study with deformation instability theory. Under uniaxial tension, overall stress-strain curves of the material are estimated based on simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, actual microstructure-based finite element (FE) method is used to explicitly resolve the deformation incompatibilities between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for the various DP980 considered. Undermore » complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  18. Predicting Deformation Limits of Dual-Phase Steels Under Complex Loading Paths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X.

    Here in this study, the deformation limits of various DP980 steels are examined with the deformation instability theory. Under uniaxial tension, overall stress–strain curves of the material are estimated based on a simple rule of mixture (ROM) with both iso-strain and iso-stress assumptions. Under complex loading paths, an actual microstructure-based finite element (FE) method is used to resolve the deformation compatibilities explicitly between the soft ferrite and hard martensite phases. The results show that, for uniaxial tension, the deformation instability theory with iso-strain-based ROM can be used to provide the lower bound estimate of the uniform elongation (UE) for themore » various DP980 considered. Under complex loading paths, the deformation instability theory with microstructure-based FE method can be used in examining the effects of various microstructural features on the deformation limits of DP980 steels.« less

  19. Deformation-induced crystallographic-preferred orientation of hcp-iron: An experimental study using a deformation-DIA apparatus

    NASA Astrophysics Data System (ADS)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo

    2018-05-01

    Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the <0001> and < 11 2 bar 0 > axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the <0001> and < 11 2 bar 0 > axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) < 11 2 bar 0 > is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.

  20. Interpretation of microstructures in high temperature deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McQueen, H.J.

    1999-07-01

    In each historical period the microstructures produced by high temperature straining were probed by the current technology, this giving rise to new models and theories of rate controlling mechanisms. The progress in understanding has not been monotonic since occasionally theories were developed to high levels of sophistication while overlooking aspects of the substructure which were to become significant. New technologies such as TEM, or SEM-EBSP-OIM have made possible great leaps forward but often leave unresolved problems on a different scale. Experimental observations are presented of substructures in Al with solute, dynamic precipitates, dispersoids and reinforcing particles and in both austeniticmore » and ferritic stainless steels, thus providing a range of crystal structures and stacking fault energies (SFE). After the historical analysis, the current view of the hot-worked state will be presented with comparison of the conflicting theories. The analysis is centered on dislocation strain and there is only mention of pertinent interactions with grain boundary related deformation. The first seventy references point to research being done during the period that Prof. Julia Weertman (also the author) was pursuing research for the Ph.D. or starting a teaching career. it was an exciting time in which the applications of dislocation theory to cold working, recovery and creep were being confirmed by intragranular structural observations. Both the new modes of microscopic examination and the enhanced theories made possible the surge in fundamental understanding of hot working mechanisms that were summarized in the following twenty classic reviews. Finally, the remaining fifty references survey the current research which attempts to clarify the more complex details of the mechanisms: dynamic recovery (DRV) and dynamic recrystallization (DRX).« less

  1. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    PubMed Central

    Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-01-01

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925

  2. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    PubMed

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  3. Fabrication, microstructure, properties and deformation mechanisms of a nanocrystalline aluminum-iron-chromium-titanium alloy by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Luo, Hong

    the grain size, the higher the compressive strength. This new microstructural design approach could present opportunities for exploiting nc materials in structural applications at both ambient and elevated temperatures. The nanocrystalline Al-Fe-Cr-Ti alloy exhibited significant difference in deformation behavior between tension and compression at 25, 200 and 300°C. However, the strengths obtained in tension and compression were similar at 400°C. Systematic microstructure examinations and deformation mechanism analyses indicate that the asymmetry of this nc Al93Fe3Cr 2Ti2 alloy is related to its dislocation mediated plastic deformation mechanism, its nanoscale grain microstructure, and premature brittle failure in tension tests.

  4. A study of microstructure, quasi-static response, fatigue, deformation and fracture behavior of high strength alloy steels

    NASA Astrophysics Data System (ADS)

    Kannan, Manigandan

    The history of steel dates back to the 17th century and has been instrumental in the betterment of every aspect of our lives ever since, from the pin that holds the paper together to the Automobile that takes us to our destination steel touches everyone every day. Path breaking improvements in manufacturing techniques, access to advanced machinery and understanding of factors like heat treatment, corrosion resistance have aided in the advancement in the properties of steel in the last few years. In this dissertation document, the results of a study aimed at the influence of alloy chemistry, processing and influence of the quasi static and fatigue behavior of seven alloy steels is discussed. The microstructure of the as-received steel was examined and characterized for the nature and morphology of the grains and the presence of other intrinsic features in the microstructure. The tensile, cyclic fatigue and bending fatigue tests were done on a fully automated closed-loop servo-hydraulic test machine at room temperature. The failed samples of high strength steels were examined in a scanning electron microscope for understanding the fracture behavior, especially the nature of loading be it quasi static, cyclic fatigue or bending fatigue . The quasi static and cyclic fatigue fracture behavior of the steels examined coupled with various factors contributing to failure are briefly discussed in light of the conjoint and mutually interactive influences of intrinsic microstructural effects, nature of loading, and stress (load)-deformation-microstructural interactions.

  5. Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process

    NASA Astrophysics Data System (ADS)

    Bayat, N.; Ebrahimi, G. R.; Momeni, A.; Ezatpour, H. R.

    2018-02-01

    Single- and two-step hot compression experiments were carried out on 16Cr25Ni6Mo superaustenitic stainless steel in the temperature range from 950 to 1150°C and at a strain rate of 0.1 s-1. In the two-step tests, the first pass was interrupted at a strain of 0.2; after an interpass time of 5, 20, 40, 60, or 80 s, the test was resumed. The progress of dynamic recrystallization at the interruption strain was less than 10%. The static softening in the interpass period increased with increasing deformation temperature and increasing interpass time. The static recrystallization was found to be responsible for fast static softening in the temperature range from 950 to 1050°C. However, the gentle static softening at 1100 and 1150°C was attributed to the combination of static and metadynamic recrystallizations. The correlation between calculated fractional softening and microstructural observations showed that approximately 30% of interpass softening could be attributed to the static recovery. The microstructural observations illustrated the formation of fine recrystallized grains at the grain boundaries at longer interpass time. The Avrami kinetics equation was used to establish a relationship between the fractional softening and the interpass period. The activation energy for static softening was determined as 276 kJ/mol.

  6. Comparisons of nanoindentation, 3-point bending, and tension tests for orthodontic wires.

    PubMed

    Iijima, Masahiro; Muguruma, Takeshi; Brantley, William A; Mizoguchi, Itaru

    2011-07-01

    The purposes of this study were to obtain information about mechanical properties with the nanoindentation test for representative wire alloys and compare the results with conventional mechanical tests. Archwires having 0.016 × 0.022-in cross sections were obtained of 1 stainless steel, 1 cobalt-chromium-nickel, 1 beta-titanium alloy, and 2 nickel-titanium products. Specimens of as-received wires were subjected to nanoindentation testing along the external surfaces and over polished cross sections to obtain values of hardness and elastic modulus. Other specimens of as-received wires were subjected to Vickers hardness, 3-point bending, and tension tests. All testing was performed at 25°C. Differences were found in hardness and elastic modulus obtained with the nanoindentation test at the external and cross-sectioned surfaces and with the conventional mechanical-property tests. Mechanical properties obtained with the nanoindentation test generally varied with indentation depth. The 3 testing methods did not yield identical values of hardness and elastic modulus, although the order among the 5 wire products was the same. Variations in results for the nanoindentation and conventional mechanical property tests can be attributed to the different material volumes sampled, different work-hardening levels, and an oxide layer on the wire surface. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  7. XRD and EBSD analysis of anisotropic microstructure development in cold rolled F138 stainless steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Vincentis, N.S., E-mail: devincentis@ifir-conic

    The microstructural characteristics of deformation-processed materials highly influence their mechanical properties. For a complete characterization of a microstructure both local and global information must be gathered, which requires the combination of different analysis techniques. X-ray and Electron Backscatter Diffraction were used in the present paper to characterize the deformation induced in a cold rolled F138 austenitic stainless steel sample. The results obtained using laboratory and synchrotron X-ray sources were compared and combined with EBSD quantitative results, allowing the global and local characterization and orientation dependence of the deformation microstructure. A particular behavior was observed in the XRD data corresponding tomore » the planes with < 220 >∥ ND, likely due to a smaller amount of defects accumulated in the crystals with that particular orientation. EBSD was used to separate the scans data into partitions and to calculate misorientation variables and parameters, showing that this behavior can be attributed to a combination of larger grain sizes, lower local boundary misorientations and dislocation densities for crystals having < 220 >∥ ND. Several conclusions, of general validity for the evaluation of microstructure anisotropy, can be extracted from the results. - Highlights: •Combined XRD and EBSD for studying microstructure gave a superb insight on anisotropic accumulation of defects. •W-H and CMWP methods were applied for checking consistency of results. •XRD showed that a smaller accumulation of defects occurred in crystals with < 220 >∥ ND. •High brilliance X-ray beam allowed to study the anisotropy of defect accumulation.« less

  8. In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam

    Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less

  9. In situ, 3D characterization of the deformation mechanics of a superelastic NiTi shape memory alloy single crystal under multiscale constraint

    DOE PAGES

    Paranjape, Harshad M.; Paul, Partha P.; Amin-Ahmadi, Behnam; ...

    2017-11-20

    Microstructural elements in NiTi shape memory alloys (SMAs) – precipitates, phase boundaries, inclusions, grain boundaries – can be viewed as sources of multiscale constraint that influence their deformation response. In this paper, we characterized in situ, and in 3D, the deformation and the evolution of microstructure during a tension test in a superelastic NiTi specimen containing some of these sources of constraint. The method used was far-field high-energy X-ray diffraction microscopy (ff-HEDM), complemented by electron microscopy. We simulated the local stress state in the specimen using a microstructural model informed by the experimental data. Using these combined microstructure, deformation, andmore » stress data, we report three phenomena, and relate them to specific sources of constraint. During initial elastic loading, axial lattice strain in austenite increased monotonically. On partial stress-induced phase transformation to martensite, the stress redistributed to both phases leading to a stress relaxation in austenite. The specimen contained a dense distribution of inclusions, which led to the activation of martensite habit plane variants that produce less than theoretical maximum transformation strain. Large Ni 4Ti 3 precipitates potentially contributed to the poor transformation response. Under load, proportional gradients in local rotation and elastic stretch developed in the martensite phase, because of the constraint at phase interfaces. Finally, this combined ff-HEDM, electron microscopy, microstructural simulation toolbox provides a versatile method to understand the effect of constraint on inelastic deformation in other alloys with hierarchical microstructure.« less

  10. Lattice preferred orientation of hcp-iron induced by shear deformation

    NASA Astrophysics Data System (ADS)

    Nishihara, Y.; Ohuchi, T.; Kawazoe, T.; Maruyama, G.; Higo, Y.; Funakoshi, K. I.; Seto, Y.

    2015-12-01

    Many hypotheses have been proposed for origin of seismic anisotropy in the Earth's inner core which consists of solid metal. Plastic deformation of constituent material (most probably hexagonal-close-packed (hcp) iron) is one of the candidate processes to form the inner core anisotropy. Thus knowledge of deformation-induced lattice preferred orientation (LPO) of hcp-iron is important for understanding of nature of the inner core. In this study, we have carried out shear deformation experiments on hcp-iron and determined its deformation induced LPO. Since it is impossible to recover hcp-iron to ambient condition, both deformation and measurement of LPO have to be done at high-pressure conditions. Shear deformation experiments of hcp-iron were carried out using a deformation-DIA apparatus at high-pressure and high-temperature condition where hcp-iron is stable (9-18 GPa, 723 K). Development of LPO in the deforming sample was observed in-situ based on two-dimensional X-ray diffraction using an imaging plate detector and monochromatized synchrotron X-ray. In shear deformation of hcp-iron, <0001> and <112‾0> axes gradually aligned to be sub-parallel to shear plane normal and shear direction, respectively, from initial random orientation. The <0001> and <112‾0> axes are back-rotated from shear direction by 30°. The above results suggest basal slip <112‾0>{0001} is the dominant slip system under the studied deformation conditions. It has been shown that Earth's inner core has an axisymmetric anisotropy with P-wave traveling 3% faster along polar paths than along equatorial directions. Although elastic anisotropy of hcp-iron at the inner core conditions is still controversial, recent theoretical studies consistently shows that P-wave velocity of hcp-iron is fastest along <0001> direction at least at low-temperatures. Our experimental results could be suggesting that most part of the inner core deforms with shear plane sub-parallel to equatorial plane.

  11. Invited Article: Indenter materials for high temperature nanoindentation

    NASA Astrophysics Data System (ADS)

    Wheeler, J. M.; Michler, J.

    2013-10-01

    As nanoindentation at high temperatures becomes increasingly popular, a review of indenter materials for usage at high temperatures is instructive for identifying appropriate indenter-sample materials combinations to prevent indenter loss or failure due to chemical reactions or wear during indentation. This is an important consideration for nanoindentation as extremely small volumes of reacted indenter material will have a significant effect on measurements. The high temperature hardness, elastic modulus, thermal properties, and chemical reactivities of diamond, boron carbide, silicon carbide, tungsten carbide, cubic boron nitride, and sapphire are discussed. Diamond and boron carbide show the best elevated temperature hardness, while tungsten carbide demonstrates the lowest chemical reactivity with the widest array of elements.

  12. Microstructural study of the Mertz shear zone, East Antarctica. Implications for deformation processes and seismic anisotropy.

    NASA Astrophysics Data System (ADS)

    Lamarque, Gaëlle; Bascou, Jérôme; Maurice, Claire; Cottin, Jean-Yves; Ménot, René-Pierre

    2015-04-01

    The Mertz Shear Zone (MSZ; 146°E 67°S; East Antarctica) is one major lithospheric-scale structure which outcrops on the eastern edge of the Terre Adélie Craton (Ménot et al., 2007) and that could connected with shear zones of South Australia (e.g., Kalinjala or Coorong shear zone (Kleinschmidt and Talarico, 2000; Gibson et al., 2013)) before the Cretaceous opening of the Southern Ocean. Geochronological and metamorphic studies indicated an MSZ activity at 1.7 and 1.5 Ga respectively in amphibolite and greenschists facies conditions. The deformation affects both the intermediate and lower crust levels, without associated voluminous magma injection. Granulite crop out in the area of the MSZ. They were dated at 2.4 Ga (Ménot et al., 2005) and could represent some preserved Neoarchean tectonites. These rocks show various degrees of deformation including penetrative structures that may display comparable features with that observed in amphibolite and greenschists facies rocks, i.e. NS-striking and steeply dipping foliation with weekly plunging lineation. In the field, cinematic indicators for the MSZ argue for a dominant dextral shear sense. We proceed to optical analysis and crystallographic preferred orientation (CPO) measurements using EBSD technique in order to better constrain the deformation processes. Our results highlight (1) a microstructural gradient from highly deformed rocks (mylonites), forming plurimetric large shear bands and showing evidences of plastic deformation, to slightly deformed rocks in preserved cores with no evidences of plastic deformation or with a clear strong static recrystallization; (2) CPO of minerals related with variations on deformation conditions. Feldspar and quartz CPO argue for plastic deformation at high temperature in the most deformed domains and for the absence of deformation or an important stage of static recrystallization in preserved cores; (3) uncommon CPO in orthopyroxene which are characterized by [010]-axes

  13. Dependence of stress-induced omega transition and mechanical twinning on phase stability in metastable β Ti–V alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, X.L.; Li, L.; Mei, W.

    2015-09-15

    Tensile properties and deformation microstructures of a series of binary β Ti–16–22V alloys have been investigated. The results show that the plastic deformation mode changes from the plate-like stress-induced ω phase transformation with a special habit plane of (− 5052){sub ω}//(3 − 3 − 2){sub β} to (332)<113> type deformation twinning with increasing the content of vanadium in the β Ti–16–22 wt.% V alloys. The plate-like stress-induced ω phase has a special orientation relationship with the β phase matrix, i.e., [110]{sub β}//[− 12 − 10]{sub ω}, (3 − 3 − 2){sub β}//(− 5052){sub ω} and (− 55 − 4){sub β}//(30more » − 31){sub ω}. The alloys plastically deformed by stress-induced ω phase transformation exhibit relatively higher yield strength than those deformed via (332)<113> type deformation twinning. It can be concluded that the stability of β phase plays a significant role in plastic deformation mode, i.e., stress-induced ω phase transformation or (332)<113> type deformation twinning, which governs the mechanical property of the β Ti–16–22 wt.% V alloys. - Highlights: • Tensile properties and deformed microstructures of β Ti–16–22V alloys were studied. • Stress-induced ω phase transformation and (332)<113> twinning occur in the alloys. • Stability of β phase plays a significant role in plastic deformation mode. • Plastic deformation mode governs the mechanical property of the alloys.« less

  14. Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation.

    PubMed

    Liao, Xiangmin; Wiedmann, Timothy Scott

    2005-01-01

    The purpose of this work was to evaluate nanoindentation as a means to characterize the material properties of pharmaceutical solids. X-ray diffraction of potassium chloride and acetaminophen showed that samples prepared by cooling a melt to a crystalline sample as opposed to slow recrystallization had the same crystal structure. With analysis of the force-displacement curves, the KCl quenched samples had a hardness that was 10 times higher than the recrystallized KCl, while acetaminophen quenched samples were 25% harder than the recrystallized samples. The elastic moduli of the quenched samples were also much greater than that observed for the recrystallized samples. Although the elasticity was independent of load, the hardness increased with load for acetaminophen. With each sample, the flow at constant load increased with applied load. Etching patterns obtained by atomic force microscopy showed that the KCl quenched sample had a higher dislocation density than the recrystallized sample, although there was no evident difference in the acetaminophen samples. Overall, the differences in the observed sample properties may be related to the dislocation density. Thus, nanoindentation has been shown to be a sensitive method for determining a processed-induced change in the hardness, creep, and elasticity of KCl and acetaminophen. (c) 2004 Wiley-Liss, Inc.

  15. The effect of strain rate on the evolution of microstructure in aluminium alloys.

    PubMed

    Leszczyńska-Madej, B; Richert, M

    2010-03-01

    Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.

  16. Nanomechanical Characterization of Temperature-Dependent Mechanical Properties of Ion-Irradiated Zirconium with Consideration of Microstructure and Surface Damage

    NASA Astrophysics Data System (ADS)

    Marsh, Jonathan; Zhang, Yang; Verma, Devendra; Biswas, Sudipta; Haque, Aman; Tomar, Vikas

    2015-12-01

    Zirconium alloys for nuclear applications with different microstructures were produced by manufacturing processes such as chipping, rolling and annealing. The two Zr samples, rolled and rolled-annealed were subjected to different levels of irradiation, 1 keV and 100 eV, to study the effect of irradiation dosages. The effect of microstructure and irradiation on the mechanical properties (reduced modulus, hardness, indentation yield strength) was analyzed with nanoindentation experiments, which were carried out in the temperature range of 25°C to 450°C to investigate temperature dependence. An indentation size effect analysis was performed and the mechanical properties were also corrected for the oxidation effects at high temperatures. The irradiation-induced hardness was observed, with rolled samples exhibiting higher increase compared to rolled and annealed samples. The relevant material parameters of the Anand viscoplastic model were determined for Zr samples containing different level of irradiation to account for viscoplasticity at high temperatures. The effect of the microstructure and irradiation on the stress-strain curve along with the influence of temperature on the mechanisms of irradiation creep such as formation of vacancies and interstitials is presented. The yield strength of irradiated samples was found to be higher than the unirradiated samples which also showed a decreasing trend with the temperature.

  17. Microstructural effects on the deformation and fracture of the alloy Ti-25Al-10Nb-3B-1Mo. Final report, 1 July 1988-15 December 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.H.

    1992-12-01

    The effects of microstructure and temperature on tensile and fracture behavior were explored for the titanium aluminide alloy Ti-25Al-lONb-3V-lMo (atomic percent). Three microstructures were selected for this study in an attempt to determine the role of the individual microstructural constituents. the three microstructures studied were an alpha-2 + beta processed microstructure with a fine Widmanstaetten microstructure, a beta processed microstructure with a fine Widmanstaetten microstructure, and a beta processed microstructure with a coarse Widmanstaetten microstructure. Tensile testing of both round and flat specimens was conducted in vacuum at elevated temperature and in air at room and elevated temperatures. Extensive fractographymore » and specimen sectioning were used to study tensile deformation and the effects of environment on this alloy. Room temperature fracture toughness testing using compact tension specimens was conducted. Elevated temperature toughness testing was performed using J-bend bar specimens in an air environment. Again, extensive fractography and specimen sectioning were used to study the elevated temperature toughening mechanisms of this alloy.... Titanium, Titanium aluminide, Intermetallic, Fracture toughness, Tensile behavior, Fractography environmental interaction.« less

  18. Defects with Deep Levels in GaAs Induced by Plastic Deformation and Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Haga, Toru; Suezawa, Masashi; Sumino, Koji

    1988-10-01

    Defects with deep electronic energy levels induced by plastic deformation at 450°C or electron irradiation at room temperature in boat-grown GaAs crystals are investigated by means of optical absorption. The optical absorption spectra associated with the induced defects are compared with that of grown-in defects EL2. Thermal stabilities of the defects are studied by tracing the changes in the absorption spectra due to isochronal annealing of the specimens. The defects induced by the above two procedures are identified not to be EL2, even though some part of the defects gives rise to absorption similar to that caused by EL2 in the spectral shape. The absorptions in both the deformed and the irradiated samples are mostly photo-unquenchable. Deformation-induced defects responsible for this absorption are found to be AsGa antisite-related defects which are less thermally stable than EL2. Irradiation-induced defects giving rise to this kind of absorption are far more unstable in comparison with the deformation-induced defects, and are mostly eliminated by annealing at temperatures lower than 300°C.

  19. A Method for Measuring the Hardness of the Surface Layer on Hot Forging Dies Using a Nanoindenter

    NASA Astrophysics Data System (ADS)

    Mencin, P.; van Tyne, C. J.; Levy, B. S.

    2009-11-01

    The properties and characteristics of the surface layer of forging dies are critical for understanding and controlling wear. However, the surface layer is very thin, and appropriate property measurements are difficult to obtain. The objective of the present study is to determine if nanoindenter testing provides a reliable method, which could be used to measure the surface hardness in forging die steels. To test the reliability of nanoindenter testing, nanoindenter values for two quenched and tempered steels (FX and H13) are compared to microhardness and macrohardness values. These steels were heat treated for various times to produce specimens with different values of hardness. The heat-treated specimens were tested using three different instruments—a Rockwell hardness tester for macrohardness, a Vickers hardness tester for microhardness, and a nanoindenter tester for fine scale evaluation of hardness. The results of this study indicate that nanoindenter values obtained using a Nanoindenter XP Machine with a Berkovich indenter reliably correlate with Rockwell C macrohardness values, and with Vickers HV microhardness values. Consequently, nanoindenter testing can provide reliable results for analyzing the surface layer of hot forging dies.

  20. Hexagonal OsB 2: Sintering, microstructure and mechanical properties

    DOE PAGES

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; ...

    2015-02-07

    In this study, the metastable high pressure ReB 2-type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (~80 wt.%) and orthorhombic (~20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulusmore » of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; but, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics.« less

  1. Effect of the nature of grain boundary regions on cavitation of a superplastically deformed aluminium alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blandin, J.J.; Varloteaux, A.; Suery, M.

    Superplastic deformation of aluminium alloys induces cavity formation throughout the material, so that superplastic forming usually requires to be carried out under superimposed gas pressure to minimize strain-induced damage. This paper deals with the beneficial effects of heat treatment at high temperature for several hours before deformation on cavitation behavior of a superplastically deformed 7475 alloy. Transmission electron microscopy observations show that several microstructural transformations are induced by superplastic deformation and affected by the heat treatment. At first, the generation of dispersoid free zones at the periphery of the grains is observed, the composition of which depends on the priormore » history of the specimen. Secondly, the formation of long thin fibers extending in the cavities in the as received specimens, these fibers being no longer present in the heat-treated conditions. A TEM characterization of the fibers is presented and a mechanism of their formation is discussed. Such a reduction of the cavitation level for a given strain is interesting in view of superplastic forming of aluminium alloys under atmospheric pressure.« less

  2. Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures

    PubMed Central

    Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie

    2016-01-01

    We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse (FΣpulse) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low FΣpulse resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing FΣpulse, the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold FΣpulse values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold FΣpulse on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing FΣpulse. However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter. PMID:28774143

  3. Nanostructural Evolution of Hard Turning Layers in Carburized Steel

    NASA Astrophysics Data System (ADS)

    Bedekar, Vikram

    The mechanisms of failure for components subjected to contact fatigue are sensitive to the structure and properties of the material surface. Although, the bulk material properties are determined by the steel making, forming and the heat treatment; the near surface material properties are altered during final material removal processes such as hard turning or grinding. Therefore, the ability to optimize, modulate and predict the near surface properties during final metal removal operations would be extremely useful in the enhancement of service life of a component. Hard machining is known to induce severely deformed layers causing dramatic microstructural transformations. These transformations occur via grain refinement or thermal phenomena depending upon cutting conditions. The aim of this work is to engineer the near surface nanoscale structure and properties during hard turning by altering strain, strain rate, temperature and incoming microstructure. The near surface material transformations due to hard turning were studied on carburized SAE 8620 bearing steel. Variations in parent material microstructures were introduced by altering the retained austenite content. The strain, strain rate and temperature achieved during final metal cutting were altered by varying insert geometry, insert wear and cutting speed. The subsurface evolution was quantified by a series of advanced characterization techniques such as transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD), X-ray stress evaluation and nanoindentation which were coupled with numerical modeling. Results showed that the grain size of the nanocrystalline near surface microstructure can be effectively controlled by altering the insert geometry, insert wear, cutting speed and the incoming microstructure. It was also evident that the near surface retained austenite decreased at lower cutting speed indicating transformation due to plastic deformation, while it increased at higher cutting

  4. Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Byoungkoo; Tan, Lizhen; Xu, C.

    In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less

  5. Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation

    DOE PAGES

    Kim, Byoungkoo; Tan, Lizhen; Xu, C.; ...

    2015-12-30

    In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less

  6. Interfacial modulus mapping of layered dental ceramics using nanoindentation

    PubMed Central

    Bushby, Andrew J; P'ng, Ken MY; Wilson, Rory M

    2016-01-01

    PURPOSE The aim of this study was to test the modulus of elasticity (E) across the interfaces of yttria stabilized zirconia (YTZP) / veneer multilayers using nanoindentation. MATERIALS AND METHODS YTZP core material (KaVo-Everest, Germany) specimens were either coated with a liner (IPS e.max ZirLiner, Ivoclar-Vivadent) (Type-1) or left as-sintered (Type-2) and subsequently veneered with a pressable glass-ceramic (IPS e.max ZirPress, Ivoclar-Vivadent). A 5 µm (nominal tip diameter) spherical indenter was used with a UMIS CSIRO 2000 (ASI, Canberra, Australia) nanoindenter system to test E across the exposed and polished interfaces of both specimen types. The multiple point load – partial unload method was used for E determination. All materials used were characterized using Scanning Electron Microscopy (SEM) and X – ray powder diffraction (XRD). E mappings of the areas tested were produced from the nanoindentation data. RESULTS A significantly (P<.05) lower E value between Type-1 and Type-2 specimens at a distance of 40 µm in the veneer material was associated with the liner. XRD and SEM characterization of the zirconia sample showed a fine grained bulk tetragonal phase. IPS e-max ZirPress and IPS e-max ZirLiner materials were characterized as amorphous. CONCLUSION The liner between the YTZP core and the heat pressed veneer may act as a weak link in this dental multilayer due to its significantly (P<.05) lower E. The present study has shown nanoindentation using spherical indentation and the multiple point load - partial unload method to be reliable predictors of E and useful evaluation tools for layered dental ceramic interfaces. PMID:28018566

  7. Deformation of Reservoir Sandstones by Elastic versus Inelastic Deformation Mechanisms

    NASA Astrophysics Data System (ADS)

    Pijnenburg, R.; Verberne, B. A.; Hangx, S.; Spiers, C. J.

    2016-12-01

    Hydrocarbon or groundwater production from sandstone reservoirs can result in surface subsidence and induced seismicity. Subsidence results from combined elastic and inelastic compaction of the reservoir due to a change in the effective stress state upon fluid extraction. The magnitude of elastic compaction can be accurately described using poroelasticity theory. However inelastic or time-dependent compaction is poorly constrained. Specifically, the underlying microphysical processes controlling sandstone compaction remain poorly understood. We use sandstones recovered by the field operator (NAM) from the Slochteren gas reservoir (Groningen, NE Netherlands) to study the importance of elastic versus inelastic deformation processes upon simulated pore pressure depletion. We conducted conventional triaxial tests under true in-situ conditions of pressure and temperature. To investigate the effect of applied differential stress (σ1 - σ3 = 0 - 50 MPa) and initial sample porosity (φi = 12 - 24%) on instantaneous and time-dependent inelastic deformation, we imposed multiple stages of axial loading and relaxation. The results show that inelastic strain develops at all stages of loading, and that its magnitude increases with increasing value of differential stress and initial porosity. The stress sensitivity of the axial creep strain rate and microstructural evidence suggest that inelastic compaction is controlled by a combination of intergranular slip and intragranular cracking. Intragranular cracking is shown to be more pervasive with increasing values of initial porosity. The results are consistent with a conceptual microphysical model, involving deformation by poro-elasticity combined with intergranular sliding and grain contact failure. This model aims to predict sandstone deformation behavior for a wide range of stress conditions.

  8. Thermally Activated Deformation Behavior of ufg-Au: Environmental Issues During Long-Term and High-Temperature Nanoindentation Testing

    NASA Astrophysics Data System (ADS)

    Maier, Verena; Leitner, Alexander; Pippan, Reinhard; Kiener, Daniel

    2015-12-01

    For testing time-dependent material properties by nanoindentation, in particular for long-term creep or relaxation experiments, thermal drift influences on the displacement signal are of prime concern. To address this at room and elevated temperatures, we tested fused quartz at various contact depths at room temperature and ultra-fine grained (ufg) Au at various temperatures. We found that the raw data for fused quartz are strongly affected by thermal drift, but corrected by use of dynamic stiffness measurements all the datasets collapse. The situation for the ufg Au shows again that the data are only useful with drift correction, but with this applied it turns out that there is a significant change of elastic and plastic properties when exceeding 200°C, which is also reflected by an increasing strain rate sensitivity.

  9. Evaluation of in-situ deformation experiments of TRIP steel

    NASA Astrophysics Data System (ADS)

    Procházka, J.; Kučerová, L.; Bystrianský, M.

    2017-02-01

    The paper reports on the behaviour of low alloyed TRIP (transformation induced plasticity) steel with Niobium during tensile test. The structures were analysed using in-situ tensile testing coupled with electron backscattering diffraction (EBSD) analysis carried out in scanning electron microscope (SEM). Steel specimens were of same chemical composition; however three different annealing temperatures, 800 °C, 850 °C and 950 °C, were applied to the material during the heat treatment. The treatment consisted of annealing for 20 minutes in the furnace; cooling in salt bath after the heating and holding at 425 °C for 20 minutes for all the samples. Untreated bar was used as reference material. Flat samples for deformation stage were cut out of the heat-treated bars. In situ documentation of microstructure and crystallography development were carried out during the deformation experiments. High deformation lead to significant degradation of EBSD signal.

  10. A study of the effects of rare-earth elements on the microstructural evolution and deformation behavior of magnesium alloys at temperatures up to 523K

    NASA Astrophysics Data System (ADS)

    Chakkedath, Ajith

    Due to their high specific strength, lightweight magnesium (Mg) alloys are being increasingly used for applications, such as the automotive industry, where weight savings are critical. In order to develop new alloys and processing methods to achieve higher strength and better formability to compete with currently used metal alloys, it is important to understand the effects of alloying elements, processing, and temperature on the microstructure, mechanical properties, and the deformation behavior. In this dissertation, a systematic investigation on the effects of Nd additions (0-1wt.%) and temperature (298-523K) on the microstructure and the activity of different deformation modes in as-cast and cast-then-extruded Mg-1Mn (wt.%) alloys were performed. For this study, an in-situ testing technique which combines tension and compression testing inside a scanning electron microscope (SEM) with electron backscatter diffraction (EBSD) analysis was employed. The main findings of this work were that the microstructure, strength, and the distribution of the deformation modes varied significantly as a function of Nd content, temperature, and processing. An increase in the Nd content resulted in a weaker texture after extrusion in Mg-1Mn alloys. A combination of slip and twinning mechanisms controlled the tensile deformation in the extruded alloys at ambient temperatures. With an increase in temperature, the twinning activity decreased, and slip mechanisms dominated the deformation. In the extruded Nd-containing alloys, basal slip dominated the deformation, especially at elevated temperatures, suggesting that Nd additions strengthen basal slip. This resulted in excellent elevated-temperature strength retention in extruded Mg-1Mn-1Nd alloy, and a decrease in the Nd content to 0-0.3wt.% resulted in a decrease in the tensile strength at elevated temperatures. In extruded Mg-1Mn, contraction twinning dominated the tensile deformation and this alloy exhibited a lower elongation

  11. Environmental-Induced Damage in Tin (Sn) and Aluminum (Al) Alloys

    NASA Astrophysics Data System (ADS)

    Vallabhaneni, Venkata Sathya Sai Renuka

    Sn and Al alloys are widely used in various industries. Environmental-induced damage resulting in whiskering in Sn and corrosion in Al account for numerous failures globally every year. Therefore, for designing materials that can better withstand these failures, a comprehensive study on the characterization of the damage is necessary. This research implements advanced characterization techniques to study the above-mentioned environmental-induced damage in Sn and Al alloys. Tin based films are known to be susceptible to whisker growth resulting in numerous failures. While the mechanisms and factors affecting whisker growth have been studied extensively, not much has been reported on the mechanical properties of tin whiskers themselves. This study focuses on the tensile behavior of tin whiskers. Tensile tests of whiskers were conducted in situ a dual beam focused ion beam (FIB) with a scanning electron microscope (SEM) using a micro electro-mechanical system (MEMS) tensile testing stage. The deformation mechanisms of whiskers were analyzed using transmission electron microscopy (TEM). Due to the heterogenous nature of the microstructure of Al 7075, it is susceptible to corrosion forming corrosion products and pits. These can be sites for cracks nucleation and propagation resulting in stress corrosion cracking (SCC). Therefore, complete understanding of the corrosion damaged region and its effect on the strength of the alloy is necessary. Several studies have been performed to visualize pits and understand their effect on the mechanical performance of Al alloys using two-dimensional (2D) approaches which are often inadequate. To get a thorough understanding of the pits, it is necessary for three-dimensional (3D) studies. In this study, Al 7075 alloys were corroded in 3.5 wt.% NaCl solution and X-ray tomography was used to obtain the 3D microstructure of pits enabling the quantification of their dimensions accurately. Furthermore, microstructure and mechanical property

  12. In situ nanoindentation study of plastic Co-deformation in Al-TiN nanocomposites

    DOE PAGES

    Li, N.; Wang, H.; Misra, A.; ...

    2014-10-16

    We performed in situ indentation in a transmission electron microscope on Al-TiN multilayers with individual layer thicknesses of 50 nm, 5 nm and 2.7 nm to explore the effect of length scales on the plastic co-deformability of a metal and a ceramic. At 50 nm, plasticity was confined to the Al layers with easy initiation of cracks in the TiN layers. At 5 nm and below, cracking in TiN was suppressed and post mortem measurements indicated a reduction in layer thickness in both layers. Our results demonstrate the profound size effect in enhancing plastic co-deformability in nanoscale metal-ceramic multilayers.

  13. Femtosecond laser-induced inverted microstructures inside glasses by tuning refractive index of objective's immersion liquid.

    PubMed

    Luo, Fangfang; Song, Juan; Hu, Xiao; Sun, Haiyi; Lin, Geng; Pan, Huaihai; Cheng, Ya; Liu, Li; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan

    2011-06-01

    We report the formation of inverted microstructures inside glasses after femtosecond laser irradiation by tuning the refractive index contrast between the immersion liquid and the glass sample. By using water as well as 1-bromonaphthalene as immersion liquids, microstructures with similar shape but opposite directions are induced after femtosecond laser irradiation. Interestingly, the elemental distribution in the induced structures is also inverted. The simulation of laser intensity distribution along the laser propagation direction indicates that the interfacial spherical aberration effect is responsible for the inversion of microstructures and elemental distribution. © 2011 Optical Society of America

  14. Nanoindentation of virus capsids in a molecular model

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Robbins, Mark O.

    2010-01-01

    A molecular-level model is used to study the mechanical response of empty cowpea chlorotic mottle virus (CCMV) and cowpea mosaic virus (CPMV) capsids. The model is based on the native structure of the proteins that constitute the capsids and is described in terms of the Cα atoms. Nanoindentation by a large tip is modeled as compression between parallel plates. Plots of the compressive force versus plate separation for CCMV are qualitatively consistent with continuum models and experiments, showing an elastic region followed by an irreversible drop in force. The mechanical response of CPMV has not been studied, but the molecular model predicts an order of magnitude higher stiffness and a much shorter elastic region than for CCMV. These large changes result from small structural changes that increase the number of bonds by only 30% and would be difficult to capture in continuum models. Direct comparison of local deformations in continuum and molecular models of CCMV shows that the molecular model undergoes a gradual symmetry breaking rotation and accommodates more strain near the walls than the continuum model. The irreversible drop in force at small separations is associated with rupturing nearly all of the bonds between capsid proteins in the molecular model, while a buckling transition is observed in continuum models.

  15. Parameter estimation of a nonlinear Burger's model using nanoindentation and finite element-based inverse analysis

    NASA Astrophysics Data System (ADS)

    Hamim, Salah Uddin Ahmed

    Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.

  16. A microstructural study of fault rocks from the SAFOD: Implications for the deformation mechanisms and strength of the creeping segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, Jafar; Mittempergher, Silvia; Gratier, Jean-Pierre; Renard, Francois; Di Toro, Giulio; Richard, Julie; Babaie, Hassan A.

    2012-09-01

    The San Andreas Fault zone in central California accommodates tectonic strain by stable slip and microseismic activity. We study microstructural controls of strength and deformation in the fault using core samples provided by the San Andreas Fault Observatory at Depth (SAFOD) including gouge corresponding to presently active shearing intervals in the main borehole. The methods of study include high-resolution optical and electron microscopy, X-ray fluorescence mapping, X-ray powder diffraction, energy dispersive X-ray spectroscopy, white light interferometry, and image processing. The fault zone at the SAFOD site consists of a strongly deformed and foliated core zone that includes 2-3 m thick active shear zones, surrounded by less deformed rocks. Results suggest deformation and foliation of the core zone outside the active shear zones by alternating cataclasis and pressure solution mechanisms. The active shear zones, considered zones of large-scale shear localization, appear to be associated with an abundance of weak phases including smectite clays, serpentinite alteration products, and amorphous material. We suggest that deformation along the active shear zones is by a granular-type flow mechanism that involves frictional sliding of microlithons along phyllosilicate-rich Riedel shear surfaces as well as stress-driven diffusive mass transfer. The microstructural data may be interpreted to suggest that deformation in the active shear zones is strongly displacement-weakening. The fault creeps because the velocity strengthening weak gouge in the active shear zones is being sheared without strong restrengthening mechanisms such as cementation or fracture sealing. Possible mechanisms for the observed microseismicity in the creeping segment of the SAF include local high fluid pressure build-ups, hard asperity development by fracture-and-seal cycles, and stress build-up due to slip zone undulations.

  17. Influence of thermally activated processes on the deformation behavior during low temperature ECAP

    NASA Astrophysics Data System (ADS)

    Fritsch, S.; Scholze, M.; F-X Wagner, M.

    2016-03-01

    High strength aluminum alloys are generally hard to deform. Therefore, the application of conventional severe plastic deformation methods to generate ultrafine-grained microstructures and to further increase strength is considerably limited. In this study, we consider low temperature deformation in a custom-built, cooled equal channel angular pressing (ECAP) tool (internal angle 90°) as an alternative approach to severely plastically deform a 7075 aluminum alloy. To document the maximum improvement of mechanical properties, these alloys are initially deformed from a solid solution heat-treated condition. We characterize the mechanical behavior and the microstructure of the coarse grained initial material at different low temperatures, and we analyze how a tendency for the PLC effect and the strain-hardening rate affect the formability during subsequent severe plastic deformation at low temperatures. We then discuss how the deformation temperature and velocity influence the occurrence of PLC effects and the homogeneity of the deformed ECAP billets. Besides the mechanical properties and these microstructural changes, we discuss technologically relevant processing parameters (such as pressing forces) and practical limitations, as well as changes in fracture behavior of the low temperature deformed materials as a function of deformation temperature.

  18. Structural and optical properties of II-VI and III-V compound semiconductors

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi

    This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and

  19. Nanoindentation investigation of heavy ion irradiated Ti 3(Si,Al)C 2

    NASA Astrophysics Data System (ADS)

    Liu, X. M.; Le Flem, M.; Béchade, J. L.; Monnet, I.

    2010-06-01

    Because of good damage tolerance, thermal stability and interesting mechanical properties, Ti 3SiC 2, belonging to M n+1AX n phases, has been considered as a potential candidate material for applications in the future Gas Fast nuclear Reactors (GFR) such as components of fuel cladding working between 500 °C and 800 °C. However, the outstanding mechanical properties of Ti 3SiC 2 related to a layered microstructure could be impacted by irradiation. In this work, high energy Kr and Xe ion irradiated Ti 3Si 0.95Al 0.05C 2 and Ti 3Si 0.90Al 0.10C 2 samples, provided by IMR Shenyang, Chinese Academy of Science, were characterized by nanoindentation technique. After irradiation at room temperature, an increase in hardness with irradiation dose was highlighted. Nevertheless, some damage tolerance remained because of preservation of the typical MAX layered structure. Irradiations at 300 °C and 500 °C lead to less significant increase suggesting irradiation defect annealing. A complete recovery of the properties at 800 °C seems to be obtained.

  20. Comparison of thermal modeling, microstructural analysis, and Ti-in-quartz thermobarometry to constrain the thermal history of a cooling pluton during deformation in the Mount Abbot Quadrangle, CA

    NASA Astrophysics Data System (ADS)

    Nevitt, Johanna M.; Warren, Jessica M.; Kidder, Steven; Pollard, David D.

    2017-03-01

    Granitic plutons commonly preserve evidence for jointing, faulting, and ductile fabric development during cooling. Constraining the spatial variation and temporal evolution of temperature during this deformation could facilitate an integrated analysis of heterogeneous deformation over multiple length-scales through time. Here, we constrain the evolving temperature of the Lake Edison granodiorite within the Mount Abbot Quadrangle (central Sierra Nevada, CA) during late Cretaceous deformation by combining microstructural analysis, titanium-in-quartz thermobarometry (TitaniQ), and thermal modeling. Microstructural and TitaniQ analyses were applied to 12 samples collected throughout the pluton, representative of either the penetrative "regional" fabric or the locally strong "fault-related" fabric. Overprinting textures and mineral assemblages indicate the temperature decreased from 400-500°C to <350°C during faulting. TitaniQ reveals consistently lower Ti concentrations for partially reset fault-related fabrics (average: 12 ± 4 ppm) than for regional fabrics (average: 31 ± 12 ppm), suggesting fault-related fabrics developed later, following a period of pluton cooling. Uncertainties, particularly in TiO2 activity, significantly limit further quantitative thermal estimates using TitaniQ. In addition, we present a 1-D heat conduction model that suggests average pluton temperature decreased from 585°C at 85 Ma to 332°C at 79 Ma, consistent with radiometric age data for the field. Integrated with the model results, microstructural temperature constraints suggest faulting initiated by ˜83 Ma, when the temperature was nearly uniform across the pluton. Thus, spatially heterogeneous deformation cannot be attributed to a persistent temperature gradient, but may be related to regional structures that develop in cooling plutons.

  1. The role of microstructure on deformation and damage mechanisms in a Nickel-based superalloy at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Maciejewski, Kimberly E.

    The overall objective of this research work is the development and implementation of a mechanistic based time-dependent crack growth model which considers the role of creep, fatigue and environment interactions on both the bulk and the grain boundary phase in ME3 disk material. The model is established by considering a moving crack tip along a grain boundary path in which damage events are described in terms of the grain boundary deformation and related accommodation processes. Modeling of these events was achieved by adapting a cohesive zone approach (an interface with internal singular surfaces) in which the grain boundary dislocation network is smeared into a Newtonian fluid element. The deformation behavior of this element is controlled by the continuum in both far field (internal state variable model) and near field (crystal plasticity model) and the intrinsic grain boundary viscosity which is characterized by microstructural parameters, including grain boundary precipitates and morphology, and is able to define the mobility of the element by scaling the motion of dislocations into a mesoscopic scale. Within the cohesive zone element, the motion of gliding dislocations in the tangential direction relates to the observed grain boundary sliding displacement, the rate of which is limited by the climb of dislocations over grain boundary obstacles. Effects of microstructural variation and orientation of the surrounding continuum are embedded in the tangential stress developing in the grain boundary. The mobility of the element in the tangential direction (i.e. by grain boundary sliding) characterizes the accumulation of irreversible displacement while the vertical movement (migration), although present, is assumed to alter stress by relaxation and, thus, is not considered a contributing factor in the damage process. This process is controlled by the rate at which the time-dependent sliding reaches a critical displacement and as such, a damage criterion is

  2. Relationship between Yield Point Phenomena and the Nanoindentation Pop-in Behavior of Steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, T.-H.; Oh, C.-S.; Lee, K.

    2012-01-01

    Pop-ins on nanoindentation load-displacement curves of a ferritic steel were correlated with yield drops on its tensile stress-strain curves. To investigate the relationship between these two phenomena, nanoindentation and tensile tests were performed on annealed specimens, prestrained specimens, and specimens aged for various times after prestraining. Clear nanoindentation pop-ins were observed on annealed specimens, which disappeared when specimens were indented right after the prestrain, but reappeared to varying degrees after strain aging. Yield drops in tensile tests showed similar disappearance and appearance, indicating that the two phenomena, at the nano- and macro-scale, respectively, are closely related and influenced by dislocationmore » locking by solutes (Cottrell atmospheres).« less

  3. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  4. Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling

    NASA Astrophysics Data System (ADS)

    Carvajal-Nunez, U.; Elbakhshwan, M. S.; Mara, N. A.; White, J. T.; Nelson, A. T.

    2018-02-01

    Three methods were used to measure the mechanical properties of {U}3{Si}, {U}_3{Si}2, and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young's modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young's modulus of the three U-Si compounds were both observed to increase with Si content. Finally, finite elements modelling was used to validate the nanoindentation data calculated for {U}3{Si}2 and estimate its yield strength.

  5. An analysis of optical effects caused by thermally induced mirror deformations.

    PubMed

    Ogrodnik, R F

    1970-09-01

    This paper analyzes thermally induced mirror deformations and their resulting wavefront distortions which occur under the conditions of radially nonuniform mirror heating. The analysis is adaptable to heating produced by any radially nonuniform incident radiation. Specific examples of radiation distributions which are considered are the cosine squared and the gaussian and TEM(0, 1) laser distributions. Deformation effects are examined from two aspects, the first of which is the reflected wavefront radial phase distortion profile caused by the thermally induced surface irregularities at the mirror face. These phase distortion effects appear as aberrations in noncoherent optical applications and as the loss of spatial coherence in coherent applications. The second aspect is the gross wavefront bending due to mirror curvature effects. The analysis considers substrate material, geometry, and cooling in order to determine potential deformation controlling factors. Substrate materials are compared, and performance indicators are suggested to aid in selecting an optimum material for a given heating condition. Deformation examples are given for materials of interest and specific absorbed power levels.

  6. Fabrication and Deformation of 3D Multilayered Kirigami Microstructures.

    PubMed

    Humood, Mohammad; Shi, Yan; Han, Mengdi; Lefebvre, Joseph; Yan, Zheng; Pharr, Matt; Zhang, Yihui; Huang, Yonggang; Rogers, John A; Polycarpou, Andreas A

    2018-03-01

    Mechanically guided 3D microassembly with controlled compressive buckling represents a promising emerging route to 3D mesostructures in a broad range of advanced materials, including single-crystalline silicon (Si), of direct relevance to microelectronic devices. During practical applications, the assembled 3D mesostructures and microdevices usually undergo external mechanical loading such as out-of-plane compression, which can induce damage in or failure of the structures/devices. Here, the mechanical responses of a few mechanically assembled 3D kirigami mesostructures under flat-punch compression are studied through combined experiment and finite element analyses. These 3D kirigami mesostructures consisting of a bilayer of Si and SU-8 epoxy are formed through integration of patterned 2D precursors with a prestretched elastomeric substrate at predefined bonding sites to allow controlled buckling that transforms them into desired 3D configurations. In situ scanning electron microscopy measurement enables detailed studies of the mechanical behavior of these structures. Analysis of the load-displacement curves allows the measurement of the effective stiffness and elastic recovery of various 3D structures. The compression experiments indicate distinct regimes in the compressive force/displacement curves and reveals different geometry-dependent deformation for the structures. Complementary computational modeling supports the experimental findings and further explains the geometry-dependent deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Microstructure of ultra high performance concrete containing lithium slag.

    PubMed

    He, Zhi-Hai; Du, Shi-Gui; Chen, Deng

    2018-04-03

    Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Strength of Rocks Affected by Deformation Enhanced Grain Growth

    NASA Astrophysics Data System (ADS)

    Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.

    2005-12-01

    One way of looking into the possibility of long-term strength changes in the lithosphere is to study transient effects resulting from modifications of the microstructure of rocks. It is generally accepted that mechanical weakening may occur due to progressive grain size refinement resulting from dynamic recrystallization. A decrease in grain size may induce a switch from creep controlled by grain size insensitive dislocation mechanisms to creep governed by grain size sensitive (GSS) mechanisms involving diffusion and grain boundary sliding processes. This switch forms a well-known scenario to explain localization in the lithosphere. However, fine-grained rocks in localized deformation zones are prone to grain coarsening due to surface energy driven grain boundary migration (SED-GBM). This might harden the rock, affecting its role in localizing strain in the long term. The question has arisen if grain growth by SED-GBM in a rock deforming in the GSS creep field can be significantly affected by strain. The broad aim of this study is to shed more light onto this. We have experimentally investigated the microstructural and strength evolution of fine-grained (~0.6 μm) synthetic forsterite and Fe-bearing olivine aggregates that coarsen in grain size while deforming by GSS creep at elevated pressure (600 MPa) and temperature (850-1000 °C). The materials were prepared by `sol-gel' method and contained 0.3-0.5 wt% water and 5-10 vol% enstatite. We performed i) static heat treatment tests of various time durations involving hot isostatic pressing (HIP), and ii) heat treatment tests starting with HIP and continuing with deformation up to 45% axial strain at strain rates in the range 4x10-7 - 1x10-4 s-1. Microstructures were characterized by analyzing full grain size distributions and textures using SEM/EBSD. In addition to the experiments, we studied microstructural evolution in simple two-dimensional numerical models, combining deformation and SED-GBM by means of the

  9. Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carvajal-Nunez, U.; Elbakhshwan, M. S.; Mara, N. A.

    Three methods were used to measure the mechanical properties of U 3Si, U 3Si 2, and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young’s modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young’s modulus of the three U-Si compounds were both observed to increase with Si content. In conclusion, finite elements modelling was used to validate the nanoindentation data calculated for U 3Si 2 and estimate its yield strength.

  10. Mechanical Properties of Uranium Silicides by Nanoindentation and Finite Elements Modeling

    DOE PAGES

    Carvajal-Nunez, U.; Elbakhshwan, M. S.; Mara, N. A.; ...

    2017-12-04

    Three methods were used to measure the mechanical properties of U 3Si, U 3Si 2, and USi. Quasi-static and continuous stiffness measurement nanoindentation were used to determine hardness and Young’s modulus, and microindentation was used to evaluate the bulk hardness. Hardness and Young’s modulus of the three U-Si compounds were both observed to increase with Si content. In conclusion, finite elements modelling was used to validate the nanoindentation data calculated for U 3Si 2 and estimate its yield strength.

  11. Spherical nanoindentation stress-strain curves of commercially pure titanium and Ti-6Al-4V

    DOE Data Explorer

    Weaver, Jordan S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Priddy, Matthew W. [Georgia Inst. of Technology, Atlanta, GA (United States); McDowell, David L. [Georgia Inst. of Technology, Atlanta, GA (United States); Kalidindi, Surya R. [Georgia Inst. of Technology, Atlanta, GA (United States)

    2016-07-27

    Spherical nanoindentation combined with electron back-scattered diffraction was employed to characterize the grain-scale elastic and plastic anisotropy of single crystal alpha-Ti for commercially pure (CP-Ti) and alloyed (Ti-64) titanium. In addition, alpha-beta Ti (single colony) grains were characterized. The data set includes the nanoindentation force, displacement, and contact stiffness, the nanoindentation stress-strain analysis, and the alpha-Ti crystal orientations. Details of the samples and experimental protocols can be found in Weaver et al. (2016) Acta Materialia doi:10.1016/j.actamat.2016.06.053.

  12. Management of enophthalmos and superior sulcus deformity induced by the silent sinus syndrome.

    PubMed

    Ando, Andre; Cruz, Antonio Augusto Velasco

    2005-01-01

    Silent sinus syndrome is a dysfunction of the maxillary sinus that induces a progressive and asymptomatic enophthalmos with prominent deep superior sulcus deformity. Two cases of silent sinus syndrome are reported, and the simultaneous management of both enophthalmos and superior sulcus deformity caused by this syndrome is discussed. The patients underwent surgical endoscopic maxillary meatotomy and transconjunctival subperiosteal implantation of porous polyethylene sheets. The treatment successfully corrected both the enophthalmos and the upper eyelid sulcus deformity. However, small degrees of vertical eye dystopia were observed. Silent sinus syndrome is a rare cause of enophthalmos and superior sulcus deformity. Orbital floor implants can be used to increase the volume of the orbital contents, but vertical eye dystopia is likely to be induced if this method of treatment is the only option chosen.

  13. The deformation behavior and microstructure evolution of duplex Mg-9Li-1Al alloy during superplasticity tensile testing

    NASA Astrophysics Data System (ADS)

    Liu, Meiduo; Zheng, Haipeng; Zhang, Tianlong; Wu, Ruizhi

    2017-12-01

    The superplastic mechanical properties and microstructure evolution of the duplex Mg-9Li-1Al alloy were investigated. The tensile testing results show that, the elongation of the as-extruded Mg-9Li-1Al alloy reaches 510% at 573 K with a strain rate of 2×10-4 s-1. During the deformation process, the strips of α phase break into equiaxed structure. This phenomenon can be attributed to a particular dynamic recrystallization, which suggests that the β phase can recrystallize in the α phase due to the small misfit degree between α phase and β phase.

  14. Microstructural characterization of ultrasonic impact treated aluminum-magnesium alloy

    NASA Astrophysics Data System (ADS)

    Tran, Kim Ngoc Thi

    Aluminum 5456-H116 has high as-welded strength, is formable, and highly corrosion resistant, however, it can become sensitized when exposed to elevated temperatures for a prolonged time. Sensitization results in the formation of a continuous β phase at the grain boundaries that is anodic to the matrix. Thus the grain boundaries become susceptible to stress corrosion cracking (SCC) and intergranular corrosion cracking (IGC). Cracking issues on aluminum superstructures have prompted the use of a severe plastic deformation processes, such as ultrasonic impact treatment (UIT), to improve SCC resistance. This study correlated the effects of UIT on the properties of 5456-H116 alloy to the microstructural evolution of the alloy and helped develop a fundamental understanding of the mechanisms that cause the microstructural evolution. Ultrasonic impact treatment produces a deformed layer at the surface ˜ 10 to 18 µm thick that is characterized by micro-cracks, tears, and voids. Ultrasonic impact treatment results in grain refinement within the deformation layer and extending below the deformed layer. The microstructure exhibits weak crystallographic texture with larger fraction of high angle grain boundaries. Nanocrystalline grains within the deformation layer vary in size from 2 to 200 nm in diameter and exhibit curved or wavy grain boundaries. The nanocrystalline grains are thermally stable up to 300°C. Above 300°C, grain growth occurs with an activation energy of ˜ 32 kJ/mol. Below the deformation layer, the microstructure is characterized by submicron grains, complex structure of dislocations, sub-boundaries, and Moiré fringes depicting overlapping grains. The deformation layer does not exhibit the presence of a continuous β phase, however below the deformation layer; a continuous β phase along the grain boundaries is present. In general the highest hardness and yield strength is at the UIT surface which is attributed to the formation of nanocrystalline grains

  15. Effect of severe plastic deformation on microstructure of squeeze-cast magnesium alloy AZ31 plate

    NASA Astrophysics Data System (ADS)

    Fong, Kai Soon; Tan, Ming Jen; Atsushi, Danno; Chua, Beng Wah; Ho, Meng Kwong

    2016-10-01

    High cost and poor room temperature formability of magnesium alloy sheet are the key factors that limit its application as a feedstock material for press forming. Production of Mg plates by squeeze casting with further processing by severe plastic deformation (SPD) is a potential method to reduce cost and improve formability. In this study, AZ31 Mg plate of dimension 96×96×4 mm was successfully produced by squeeze casting, using a novel melt transfer technique, at a forging force and speed of 180 Ton and 200 mm/sec respectively. The effect of severe plastic deformation (SPD) using groove pressing on the mechanical properties of squeeze-casted Mg plate after partial homogenization was subsequently investigated. Observation of the microstructure after two cycles of groove pressing, under decreasing temperature from 543K to 493K, shows a significant grain refinement from 39 to 4.7 µm. The Vickers hardness increased by approximately 25% from 56 to 74.1 which suggests an improvement in mechanical strength as a result of both the grain refinement and work hardening. The result shows that squeeze casting combined with groove pressing is potentially an effective method for preparation of thin magnesium alloy plate with fine-grained structure and improved mechanical properties.

  16. Nanoindentation data analysis of loading curve performed on DLC thin films: Effect of residual stress on the elasto-plastic properties

    NASA Astrophysics Data System (ADS)

    Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.

    2017-11-01

    The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.

  17. On the Specific Role of Microstructure in Governing Cyclic Fatigue, Deformation, and Fracture Behavior of a High-Strength Alloy Steel

    NASA Astrophysics Data System (ADS)

    Manigandan, K.; Srivatsan, T. S.

    2015-06-01

    In this paper, the results of an experimental study that focused on evaluating the conjoint influence of microstructure and test specimen orientation on fully reversed strain-controlled fatigue behavior of the high alloy steel X2M are presented and discussed. The cyclic stress response of this high-strength alloy steel revealed initial hardening during the first few cycles followed by gradual softening for most of fatigue life. Cyclic strain resistance exhibited a linear trend for the variation of elastic strain amplitude with reversals to failure, and plastic strain amplitude with reversals to failure. Fracture morphology was the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, the alloy steel revealed fracture to be essentially ductile with features reminiscent of predominantly "locally" ductile and isolated brittle mechanisms. The mechanisms governing stress response at the fine microscopic level, fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.

  18. Adsorbate-induced lattice deformation in IRMOF-74 series

    DOE PAGES

    Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; ...

    2017-01-09

    Here, IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar tomore » the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.« less

  19. Adsorbate-induced lattice deformation in IRMOF-74 series

    PubMed Central

    Jawahery, Sudi; Simon, Cory M.; Braun, Efrem; Witman, Matthew; Tiana, Davide; Vlaisavljevich, Bess; Smit, Berend

    2017-01-01

    IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar to the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series. PMID:28067222

  20. Adsorbate-induced lattice deformation in IRMOF-74 series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jawahery, Sudi; Simon, Cory M.; Braun, Efrem

    Here, IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar tomore » the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.« less

  1. Probing elastically or plastically induced structural heterogeneities in bulk metallic glasses by nanoindentation pop-in tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Tingkun; Gao, Yanfei; Bei, Hongbin

    Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.

  2. Probing elastically or plastically induced structural heterogeneities in bulk metallic glasses by nanoindentation pop-in tests

    DOE PAGES

    Liu, Tingkun; Gao, Yanfei; Bei, Hongbin

    2017-07-21

    Shear banding dynamics in bulk metallic glasses (BMGs) is manifested by the spatiotemporal evolution of strain fields which in turn depend on structural heterogeneities. The spacing of these heterogeneities, as a characteristic length scale, was determined from the analysis of nanoindentation pop-in tests using a stochastic model. Furthermore, the pre-stress by elastic bending and residual stress by plastic bending of BMG plates were found to dramatically decrease such spacings, thus increasing heterogeneity density and mechanically rejuvenating the glass structure.

  3. Vitamin A Deficiency Induces Congenital Spinal Deformities in Rats

    PubMed Central

    Li, Zheng; Shen, Jianxiong; Wu, William Ka Kei; Wang, Xiaojuan; Liang, Jinqian; Qiu, Guixing; Liu, Jiaming

    2012-01-01

    Most cases of congenital spinal deformities were sporadic and without strong evidence of heritability. The etiology of congenital spinal deformities is still elusive and assumed to be multi-factorial. The current study seeks to elucidate the effect of maternal vitamin A deficiency and the production of congenital spinal deformities in the offsping. Thirty two female rats were randomized into two groups: control group, which was fed a normal diet; vitamin A deficient group, which were given vitamin A-deficient diet from at least 2 weeks before mating till delivery. Three random neonatal rats from each group were killed the next day of parturition. Female rats were fed an AIN-93G diet sufficient in vitamin A to feed the rest of neonates for two weeks until euthanasia. Serum levels of vitamin A were assessed in the adult and filial rats. Anteroposterior (AP) spine radiographs were obtained at week 2 after delivery to evaluate the presence of the skeletal abnormalities especially of spinal deformities. Liver and vertebral body expression of retinaldehyde dehydrogenase (RALDHs) and RARs mRNA was assessed by reverse transcription-real time PCR. VAD neonates displayed many skeletal malformations in the cervical, thoracic, the pelvic and sacral and limbs regions. The incidence of congenital scoliosis was 13.79% (8/58) in the filial rats of vitamin A deficiency group and 0% in the control group. Furthermore, vitamin A deficiency negatively regulate the liver and verterbral body mRNA levels of RALDH1, RALDH2, RALDH3, RAR-α, RAR-β and RAR-γ. Vitamin A deficiency in pregnancy may induce congenital spinal deformities in the postnatal rats. The decreases of RALDHs and RARs mRNA expression induced by vitamin A deprivation suggest that vertebral birth defects may be caused by a defect in RA signaling pathway during somitogenesis. PMID:23071590

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Tianyi; Tan, Lizhen; Lu, Zizhe

    Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less

  5. The mechanical properties of as-grown noncubic organic molecular crystals assessed by nanoindentation

    DOE PAGES

    Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...

    2017-06-19

    Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less

  6. Design of novel materials for additive manufacturing - Isotropic microstructure and high defect tolerance.

    PubMed

    Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T

    2018-01-22

    Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.

  7. Microstructural characterization of pipe bomb fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Otto, E-mail: gregory@egr.uri.edu; Oxley, Jimmie; Smith, James

    2010-03-15

    Recovered pipe bomb fragments, exploded under controlled conditions, have been characterized using scanning electron microscopy, optical microscopy and microhardness. Specifically, this paper examines the microstructural changes in plain carbon-steel fragments collected after the controlled explosion of galvanized, schedule 40, continuously welded, steel pipes filled with various smokeless powders. A number of microstructural changes were observed in the recovered pipe fragments: deformation of the soft alpha-ferrite grains, deformation of pearlite colonies, twin formation, bands of distorted pearlite colonies, slip bands, and cross-slip bands. These microstructural changes were correlated with the relative energy of the smokeless powder fillers. The energy of themore » smokeless powder was reflected in a reduction in thickness of the pipe fragments (due to plastic strain prior to fracture) and an increase in microhardness. Moreover, within fragments from a single pipe, there was a radial variation in microhardness, with the microhardness at the outer wall being greater than that at the inner wall. These findings were consistent with the premise that, with the high energy fillers, extensive plastic deformation and wall thinning occurred prior to pipe fracture. Ultimately, the information collected from this investigation will be used to develop a database, where the fragment microstructure and microhardness will be correlated with type of explosive filler and bomb design. Some analyses, specifically wall thinning and microhardness, may aid in field characterization of explosive devices.« less

  8. Microstructural evaluation of cumulative fatigue damage in a plant component sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fukuoka, C.; Nakagawa, Y.G.; Yoshida, K.

    1996-12-31

    Fatigue damage accumulated in a real plant was evaluated in terms of microstructural conditioning. Microstructural damage induced in laboratory by cyclic deformation near and below the fatigue limit was also examined. A Transmission Electron Microscopy (TEM) technique called the Selected Area Diffraction (SAD) method was employed in this study. In earlier studies, it was found that the SAD value indicating a magnitude of crystallographic misorientation in the substructure (dislocation cells) was increasing with the increase of fatigue damage accumulation. Small samples removed from PWR feed water nozzle welds were examined by the SAD. It was found that the damage statemore » measured by the SAD well agreed with the morphological evidence. Cyclic stresses near or below the fatigue limit were applied to samples taken from a SA508 steel plate at various stresses. The SAD value increased even below the fatigue limit, but there was no sign of microstructural conditioning below the stresses of 50% of the fatigue limit. These results suggested that at stresses below the current design curve (below half the fatigue limit) no microstructural conditioning proceeded. It was concluded that the microstructural method was effective to evaluate damage accumulation in real plant components, and also that the current design curve was adequate in terms of microstructural conditioning state.« less

  9. Effect of irradiation temperature on microstructural changes in self-ion irradiated austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeob; Kwon, Junhyun; Shin, Chansun

    2017-09-01

    We investigated the microstructural and hardness changes in austenitic stainless steel after Fe ion irradiation at 400, 300, and 200 °C using transmission electron microscopy (TEM) and nanoindentation. The size of the Frank loops increased and the density decreased with increasing irradiation temperature. Radiation-induced segregation (RIS) was detected across high-angle grain boundaries, and the degree of RIS increases with increasing irradiation temperature. Ni-Si clusters were observed using high-resolution TEM in the sample irradiated at 400 °C. The results of this work are compared with the literature data of self-ion and proton irradiation at comparable temperatures and damage levels on stainless steels with a similar material composition with this study. Despite the differences in dose rate, alloy composition and incident ion energy, the irradiation temperature dependence of RIS and the size and density of radiation defects followed the same trends, and were very comparable in magnitude.

  10. A novel sample preparation method to avoid influence of embedding medium during nano-indentation

    Treesearch

    Yujie Meng; Siqun Wang; Zhiyong Cai; Timothy M. Young; Guanben Du; Yanjun Li

    2012-01-01

    The effect of the embedding medium on the nano-indentation measurements of lignocellulosic materials was investigated experimentally using nano-indentation. Both the reduced elastic modulus and the hardness of nonembedded cell walls were found to be lower than those of the embedded samples, proving that the embedding medium used for specimen preparation on cellulosic...

  11. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach

    NASA Astrophysics Data System (ADS)

    Moraleda, Joaquín; Segurado, Javier; LLorca, Javier

    2009-09-01

    The in-plane finite deformation of incompressible fiber-reinforced elastomers was studied using computational micromechanics. Composite microstructure was made up of a random and homogeneous dispersion of aligned rigid fibers within a hyperelastic matrix. Different matrices (Neo-Hookean and Gent), fibers (monodisperse or polydisperse, circular or elliptical section) and reinforcement volume fractions (10-40%) were analyzed through the finite element simulation of a representative volume element of the microstructure. A successive remeshing strategy was employed when necessary to reach the large deformation regime in which the evolution of the microstructure influences the effective properties. The simulations provided for the first time "quasi-exact" results of the in-plane finite deformation for this class of composites, which were used to assess the accuracy of the available homogenization estimates for incompressible hyperelastic composites.

  12. Enhanced Coalescence-Induced Droplet-Jumping on Nanostructured Superhydrophobic Surfaces in the Absence of Microstructures.

    PubMed

    Zhang, Peng; Maeda, Yota; Lv, Fengyong; Takata, Yasuyuki; Orejon, Daniel

    2017-10-11

    Superhydrophobic surfaces are receiving increasing attention due to the enhanced condensation heat transfer, self-cleaning, and anti-icing properties by easing droplet self-removal. Despite the extensive research carried out on this topic, the presence or absence of microstructures on droplet adhesion during condensation has not been fully addressed yet. In this work we, therefore, study the condensation behavior on engineered superhydrophobic copper oxide surfaces with different structural finishes. More specifically, we investigate the coalescence-induced droplet-jumping performance on superhydrophobic surfaces with structures varying from the micro- to the nanoscale. The different structural roughness is possible due to the specific etching parameters adopted during the facile low-cost dual-scale fabrication process. A custom-built optical microscopy setup inside a temperature and relative humidity controlled environmental chamber was used for the experimental observations. By varying the structural roughness, from the micro- to the nanoscale, important differences on the number of droplets involved in the jumps, on the frequency of the jumps, and on the size distribution of the jumping droplets were found. In the absence of microstructures, we report an enhancement of the droplet-jumping performance of small droplets with sizes in the same order of magnitude as the microstructures. Microstructures induce further droplet adhesion, act as a structural barrier for the coalescence between droplets growing on the same microstructure, and cause the droplet angular deviation from the main surface normal. As a consequence, upon coalescence, there is a decrease in the net momentum in the out-of-plane direction, and the jump does not ensue. We demonstrate that the absence of microstructures has therefore a positive impact on the coalescence-induced droplet-jumping of micrometer droplets for antifogging, anti-icing, and condensation heat transfer applications.

  13. Microstructure and texture evolution in cold-rolled and annealed alloy MA-956

    NASA Astrophysics Data System (ADS)

    Hosoda, Takashi

    The microstructural and texture development with thermomechanical processing, performed through a combination of cold-rolling and annealing, in MA-956 plate consisting of a layered and inhomogeneous microstructure was systematically assessed. The alloy contained in mass percent, 20 Cr, 4.8 Al, 0.4 Ti, 0.4 Y2O3, and the balance iron. The starting material was as-hot-rolled plate, 9.7 mm thick. The as-hot-rolled plate was subjected to 40%, 60%, and 80% cold-rolling reduction and subsequently annealed at 1000, 1200, or 1380. Assessment of microstructural and texture developments before and after cold-rolling and annealing was performed using light optical microscopy (LOM), Vickers hardness testing, and electron backscatter diffraction (EBSD). Locally introduced misorientations by cold-rolling in each region were evaluated by Kernel Average Misorientation (KAM) maps. The as-hot-rolled condition contained a layered and inhomogeneous microstructure consisting of thin and coarse elongated grains, and aggregated regions which consisted of fine grains and sub-grains with {100} texture parallel to the longitudinal direction. The microstructure of the 40% cold-rolled condition contained deformation bands, and the 60% and 80% cold-rolled conditions also contained highly deformed regions where the deformation bands were intricately tangled. A predominant orientation of (001) parallel to the rolling direction was developed during cold-rolling, becoming more prominent with increasing reduction. The magnitudes of KAM angles varied through the thickness depending on the initial microstructures. Recrystallization occurred in regions where high KAM angles were dense after annealing and nucleation sites were the aggregation regions, deformation bands, and highly deformed regions. The shape and size of the recrystallized grains varied depending on the nucleation sites.

  14. Dynamic Microstructure Design Consortium

    DTIC Science & Technology

    2011-03-23

    multiple realizations of polycrystalline microstructure. Cyclic microplasticity in favorably oriented martensite grains is the primary driver for the...can alter the residual stress distribution 13. The present work ex- plores how short-range microplastic deformation during cyclic loading promotes

  15. Whole-field macro- and micro-deformation characteristic of unbound water-loss in dentin hard tissue.

    PubMed

    Chen, Zhenning; Nadeau, Bobby; Yu, Kevin; Shao, Xinxing; He, Xiaoyuan; Goh, M Cynthia; Kishen, Anil

    2018-04-06

    High-resolution deformation measurements in a functionally graded hard tissue such as human dentin are essential to understand the unbound water-loss mediated changes and their role in its mechanical integrity. Yet a whole-field, 3-dimensional (3D) measurement and characterization of fully hydrated dentin in both macro- and micro-scales remain to be a challenge. This study was conducted in 2 stages. In stage-1, a stereo-digital image correlation approach was utilized to determine the water-loss and load-induced 3D deformations of teeth in a sagittal section over consecutively acquired frames, from a fully hydrated state to nonhydrated conditions for a period up to 2 hours. The macroscale analysis revealed concentrated residual deformations at the dentin-enamel-junction and the apical regions of root in the direction perpendicular to the dentinal tubules. Significant difference in the localized deformation characteristics was observed between the inner and outer aspects of the root dentin. During quasi-static loadings, further increase in the residual deformation was observed in the dentin. In stage-2, dentin microstructural variations induced by dynamic water-loss were assessed with environmental scanning electron microscopy and atomic force microscopy (AFM), showing that the dynamic water-loss induced distention of dentinal tubules with concave tubular edges, and concurrent contraction of intertubular dentin with convex profile. The findings from the current macro- and micro-scale analysis provided insight on the free-water-loss induced regional deformations and ultrastructural changes in human dentin. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Microstructure and Texture Evolution in Double-Cone Samples of Ti-6Al-4V Alloy with Colony Preform Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Kun Vanna; Lim, Chao Voon Samuel; Zhang, Kai; Sun, Jifeng; Yang, Xiaoguang; Huang, Aijun; Wu, Xinhua; Davies, Christopher H.

    2015-12-01

    Heat-treated Ti-6Al-4V forged bar with colony microstructure was machined into double-cone-shaped samples for a series of isothermal uniaxial compression test at 1223 K (950 °C) with varying constant crosshead speeds of 12.5, 1.25, and 0.125 mms-1 to a height reduction of 70 pct. Another set of samples deformed under the same conditions were heat treated at 1173 K (900 °C) for an hour followed by water quench. Finite element modeling was used to provide the strains, strain rates, and temperature profiles of the hot compression samples, and the microstructure and texture evolution was examined at four positions on each sample, representative of different strain ranges. Lamellae fragmentation and kinking are the dominant microstructural features at lower strain range up to a maximum of 2.0, whereas globularization dominates at strains above 2.0 for the as-deformed samples. The globularization fraction generally increases with strain, or by post-deformation heat treatment, but fluctuates at lower strain. The grain size of the globular α is almost constant with strain and maximizes for samples with the lowest crosshead speed due to the longer deformation time. The globular α grain also coarsens because of post-deformation heat treatment, with its size increasing with strain level. With respect to texture evolution, a basal transverse ring and another component 30 deg from ND is determined for samples deformed at 12.5 mms-1, which is consistent with the temperature increase to close to β-transus from simulation results. The texture type remains unchanged with its intensity increased and spreads with increasing strain.

  17. Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining

    NASA Astrophysics Data System (ADS)

    Momeni, Amir; Kazemi, Shahab; Bahrani, Ali

    2013-10-01

    The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100°C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-Hollomon parameter ( Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6.×1015 (ln Z=35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate.

  18. A microelectromechanical systems (MEMS) force-displacement transducer for sub-5 nm nanoindentation and adhesion measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Youfeng; Oh, Yunje; Stauffer, Douglas; Polycarpou, Andreas A.

    2018-04-01

    We present a highly sensitive force-displacement transducer capable of performing ultra-shallow nanoindentation and adhesion measurements. The transducer utilizes electrostatic actuation and capacitive sensing combined with microelectromechanical fabrication technologies. Air indentation experiments report a root-mean-square (RMS) force resolution of 1.8 nN and an RMS displacement resolution of 0.019 nm. Nanoindentation experiments on a standard fused quartz sample report a practical RMS force resolution of 5 nN and an RMS displacement resolution of 0.05 nm at sub-10 nm indentation depths, indicating that the system has a very low system noise for indentation experiments. The high sensitivity and low noise enables the transducer to obtain high-resolution nanoindentation data at sub-5 nm contact depths. The sensitive force transducer is used to successfully perform nanoindentation measurements on a 14 nm thin film. Adhesion measurements were also performed, clearly capturing the pull-on and pull-off forces during approach and separation of two contacting surfaces.

  19. Study of modifications in the mechanical properties of sodium aluminoborosilicate glass induced by heavy ions and electrons

    NASA Astrophysics Data System (ADS)

    Chen, L.; Yuan, W.; Nan, S.; Du, X.; Zhang, D. F.; Lv, P.; Peng, H. B.; Wang, T. S.

    2016-03-01

    Radiation effects on the mechanical properties of sodium aluminoborosilicate glass induced by 4 MeV Kr, 5 MeV Xe ions and 1.2 MeV electrons have been investigated by nano-indentation measurements. Raman and electron paramagnetic resonance (EPR) spectroscopies were used to characterize the microstructure evolution of electron irradiated samples. The nano-indentation results indicated that the mean hardness was reduced by 12.8%, and the mean reduced Young modulus was increased by 3.5% after heavy ion irradiation. Both the hardness and reduced Young modulus variations reached stabilization when the nuclear deposited energy was around 3 × 1021 keVnucl/cm3. Although decreases of hardness (about 6.6%) and reduced Young modulus (about 3.1%) were also observed when the deposited electronic energy reached approximately 1.5 × 1022 keVelec/cm3 after electron irradiation, the results still emphasized that the nuclear energy deposition is the major factor for the evolution in the hardness and modulus of the sodium aluminoborosilicate glass under ion irradiation, rather than a synergy process of the electronic and nuclear energy depositions.

  20. Deformation and Fabric in Compacted Clay Soils

    NASA Astrophysics Data System (ADS)

    Wensrich, C. M.; Pineda, J.; Luzin, V.; Suwal, L.; Kisi, E. H.; Allameh-Haery, H.

    2018-05-01

    Hydromechanical anisotropy of clay soils in response to deformation or deposition history is related to the micromechanics of platelike clay particles and their orientations. In this article, we examine the relationship between microstructure, deformation, and moisture content in kaolin clay using a technique based on neutron scattering. This technique allows for the direct characterization of microstructure within representative samples using traditional measures such as orientation density and soil fabric tensor. From this information, evidence for a simple relationship between components of the deviatoric strain tensor and the deviatoric fabric tensor emerge. This relationship may provide a physical basis for future anisotropic constitutive models based on the micromechanics of these materials.

  1. Evolution of microstructure in stainless martensitic steel for seamless tubing

    NASA Astrophysics Data System (ADS)

    Pyshmintsev, I. Yu.; Bityukov, S. M.; Pastukhov, V. I.; Danilov, S. V.; Vedernikova, L. O.; Lobanov, M. L.

    2017-12-01

    Scanning electron microscopy with orientation analysis by the electron backscatter diffraction (EBSD) method is used to study microstructures and textures formed in the 0.08C-13Cr-3Ni-Mo-V-Nb steel through seamless tube production route: after hot deformation by extrusion; after quenching from various temperatures and subsequent high tempering. It is shown that the martensitic microstructure formed both after hot deformation and after quenching is characterized by the presence of deformation crystallographic texture, which is predetermined by the texture of austenite. The effect of heat treatment on texture, packet refinement, lath width, precipitation of carbides and Charpy impact energy is analyzed.

  2. Thermomechanical analysis of freezing-induced cell-fluid-matrix interactions in engineered tissues

    PubMed Central

    Han, Bumsoo; Teo, Ka Yaw; Ghosh, Soham; Dutton, J. Craig; Grinnell, Frederick

    2012-01-01

    Successful cryopreservation of functional engineered tissues (ETs) is significant to tissue engineering and regenerative medicine, but it is extremely challenging to develop a successful protocol because the effects of cryopreservation parameters on the post-thaw functionality of ETs are not well understood. Particularly, the effects on the microstructure of their extracellular matrix (ECM) have not been well studied, which determines many functional properties of the ETs. In this study, we investigated the effects of two key cryopreservation parameters – i) freezing temperature and corresponding cooling rate; and ii) the concentration of cryoprotective agent (CPA) on the ECM microstructure as well as the cellular viability. Using dermal equivalent as a model ET and DMSO as a model CPA, freezing-induced spatiotemporal deformation and post-thaw ECM microstructure of ETs was characterized while varying the freezing temperature and DMSO concentrations. The spatial distribution of cellular viability and the cellular actin cytoskeleton was also examined. The results showed that the tissue dilatation increased significantly with reduced freezing temperature (i.e., rapid freezing). A maximum limit of tissue deformation was observed for preservation of ECM microstructure, cell viability and cell-matrix adhesion. The dilatation decreased with the use of DMSO, and a freezing temperature dependent threshold concentration of DMSO was observed. The threshold DMSO concentration increased with lowering freezing temperature. In addition, an analysis was performed to delineate thermodynamic and mechanical components of freezing-induced tissue deformation. The results are discussed to establish a mechanistic understanding of freezing-induced cell-fluid-matrix interaction and phase change behavior within ETs in order to improve cryopreservation of ETs. PMID:23246556

  3. Analytical and Experimental Characterization of Gravity Induced Deformations In Subscale Gossamer Structures

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Blandino, Joseph R.; McEvoy, Kiley C.

    2004-01-01

    The development of gossamer space structures such as solar sails and sunshields presents many challenges due to their large size and extreme flexibility. The post-deployment structural geometry exhibited during ground testing may significantly depart from the in-space configuration due to the presence of gravity-induced deformations (gravity sag) of lightly preloaded membranes. This paper describes a study carried out to characterize gravity sag in two subscale gossamer structures: a single quadrant from a 2 m, 4 quadrant square solar sail and a 1.7 m membrane layer from a multi-layer sunshield The behavior of the test articles was studied over a range of preloads and in several orientations with respect to gravity. An experimental study was carried out to measure the global surface profiles using photogrammetry, and nonlinear finite element analysis was used to predict the behavior of the test articles. Comparison of measured and predicted surface profiles shows that the finite dement analysis qualitatively predicts deformed shapes comparable to those observed in the laboratory. Quantitatively, finite element analysis predictions for peak gravity-induced deformations in both test articles were within 10% of measured values. Results from this study provide increased insight into gravity sag behavior in gossamer structures, and demonstrates the potential to analytically predict gravity-induced deformations to within reasonable accuracy.

  4. Mechanical Properties of Materials with Nanometer Scale Microstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations,more » talks and publications completed on this grant during the past 15 years.« less

  5. Deformation mechanisms in negative Poisson's ratio materials - Structural aspects

    NASA Technical Reports Server (NTRS)

    Lakes, R.

    1991-01-01

    Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.

  6. Effects of size reduction on deformation, microstructure, and surface roughness of micro components for micro metal injection molding

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Wang, Xin-da; Li, Xiang; Qi, Xiao-tong; Qu, Xuan-hui

    2017-09-01

    The fabrication of 17-4PH micro spool mandrils by micro metal injection molding was described here. The effects of size reduction on deformation, microstructure and surface roughness were studied by comparing a ϕ500 μm micro post and a ϕ1.7 mm cylinder after debinding and sintering. Experimental results show that slumping of the micro posts occurred due to a dramatic increase in outlet vapor pressure initiated at the thermal degradation onset temperature and the moment of gravity. Asymmetrical stress distribution within the micro component formed during the cooling stage may cause warping. Prior solvent debinding and adjustment in a thermal debinding scheme were useful for preventing the deformation of the micro components. Smaller grain size and higher micro hardness due to impeded grain growth were observed for the micro posts compared with the ϕ1.7 mm cylinder. Surface roughness increased with distance from the gate of the micro spool mandril due to melt front advancement during mold filling and the ensuing pressure distribution. At each position, surface roughness was dictated by injection molding and increased slightly after sintering.

  7. Microstructural evolution and rheology of quartz in a mid-crustal shear zone

    NASA Astrophysics Data System (ADS)

    Rahl, Jeffrey M.; Skemer, Philip

    2016-06-01

    We present microstructural and crystallographic preferred orientation (CPO) data on quartz deformed in the middle crust to explore the interaction and feedback between dynamic recrystallization, deformation processes, and CPO evolution. The sample investigated here is a moderately deformed quartz-rich mylonite from the Blue Ridge in Virginia. We have created high-resolution crystallographic orientation maps using electron backscatter diffraction (EBSD) of 51 isolated quartz porphyroclasts with recrystallized grain fractions ranging from 10 to 100%. Recrystallized grains are internally undeformed and display crystallographic orientations dispersed around the orientation of the associated parent porphyroclast. We document a systematic decrease in fabric intensity with recrystallization, suggesting that progressive deformation of the recrystallized domains involves processes that can weaken a pre-existing CPO. Relationships between recrystallization fraction and shear strain suggest that complete microstructural re-equilibration requires strains in excess of γ = 5. Variation in the degree of recrystallization implies that strain was accumulated heterogeneously, and that a steady-state microstructure and rheology were not achieved.

  8. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  9. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation

    DOE PAGES

    Gerbig, Yvonne B.; Michaels, C. A.; Bradby, Jodie E.; ...

    2015-12-17

    Indentation-induced plastic deformation of amorphous silicon (a-Si) thin films was studied by in situ Raman imaging of the deformed contact region of an indented sample, employing a Raman spectroscopy-enhanced instrumented indentation technique (IIT). The occurrence and evolving spatial distribution of changes in the a-Si structure caused by processes, such as polyamorphization and crystallization, induced by indentation loading were observed. Furthermore, the obtained experimental results are linked with previously published work on the plastic deformation of a-Si under hydrostatic compression and shear deformation to establish a model for the deformation behavior of a-Si under indentation loading.

  10. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength

    PubMed Central

    Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.

    2006-01-01

    The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6–1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. PMID:16606825

  11. Binary gas mixture adsorption-induced deformation of microporous carbons by Monte Carlo simulation.

    PubMed

    Cornette, Valeria; de Oliveira, J C Alexandre; Yelpo, Víctor; Azevedo, Diana; López, Raúl H

    2018-07-15

    Considering the thermodynamic grand potential for more than one adsorbate in an isothermal system, we generalize the model of adsorption-induced deformation of microporous carbons developed by Kowalczyk et al. [1]. We report a comprehensive study of the effects of adsorption-induced deformation of carbonaceous amorphous porous materials due to adsorption of carbon dioxide, methane and their mixtures. The adsorption process is simulated by using the Grand Canonical Monte Carlo (GCMC) method and the calculations are then used to analyze experimental isotherms for the pure gases and mixtures with different molar fraction in the gas phase. The pore size distribution determined from an experimental isotherm is used for predicting the adsorption-induced deformation of both pure gases and their mixtures. The volumetric strain (ε) predictions from the GCMC method are compared against relevant experiments with good agreement found in the cases of pure gases. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. The hot deformation behavior and microstructure evolution of HA/Mg-3Zn-0.8Zr composites for biomedical application.

    PubMed

    Liu, Debao; Liu, Yichi; Zhao, Yue; Huang, Y; Chen, Minfang

    2017-08-01

    The hot deformation behavior of nano-sized hydroxylapatite (HA) reinforced Mg-3Zn-0.8Zr composites were performed by means of Gleeble-1500D thermal simulation machine in a temperature range of 523-673K and a strain rate range of 0.001-1s -1 , and the microstructure evolution during hot compression deformation were also investigated. The results show that the flow stress increases increasing strain rates at a constant temperature, and decreases with increasing deforming temperatures at a constant strain rate. Under the same processing conditions, the flow stresses of the 1HA/Mg-3Zn-0.8Zr specimens are higher than those of the Mg-3Zn-0.8Zr alloy specimens, and the difference is getting closer with increasing deformation temperature. The hot deformation behaviors of Mg-3Zn-0.8Zr and 1HA/Mg-3Zn-0.8Zr can be described by constitutive equation of hyperbolic sine function with the hot deformation activation energy being 124.6kJ/mol and 125.3kJ/mol, respectively. Comparing with Mg-3Zn-0.8Zr alloy, the instability region in the process map of 1HA/Mg-3Zn-0.8Zr expanded to a bigger extent at the same conditions. The optimum process conditions of 1HA/Mg-3Zn-0.8Zr composite is concluded as between the temperature window of 573-623K with a strain rate range of 0.001-0.1s -1 . A higher volume fraction and smaller grain size of dynamic recrystallization (DRX) grains was observed in 1HA/Mg-3Zn-0.8Zr specimens after the hot compression deformation compared with Mg-3Zn-0.8Zr alloy, which was ascribed to the presence of the HA particles that play an important role in particle-stimulated nucleation (PSN) mechanism and can effectively hinder the migration of interfaces. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. TA [B] Predicting Microstructure-Creep Resistance Correlation in High Temperature Alloys over Multiple Time Scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomar, Vikas

    2017-03-06

    DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less

  14. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.

    PubMed

    Bufford, D; Liu, Y; Wang, J; Wang, H; Zhang, X

    2014-09-10

    Nanotwinned metals have been the focus of intense research recently, as twin boundaries may greatly enhance mechanical strength, while maintaining good ductility, electrical conductivity and thermal stability. Most prior studies have focused on low stacking-fault energy nanotwinned metals with coherent twin boundaries. In contrast, the plasticity of twinned high stacking-fault energy metals, such as aluminium with incoherent twin boundaries, has not been investigated. Here we report high work hardening capacity and plasticity in highly twinned aluminium containing abundant Σ3{112} incoherent twin boundaries based on in situ nanoindentation studies in a transmission electron microscope and corresponding molecular dynamics simulations. The simulations also reveal drastic differences in deformation mechanisms between nanotwinned copper and twinned aluminium ascribed to stacking-fault energy controlled dislocation-incoherent twin boundary interactions. This study provides new insight into incoherent twin boundary-dominated plasticity in high stacking-fault energy twinned metals.

  15. Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation

    PubMed Central

    Morozova, Anna; Borodin, Elijah; Bratov, Vladimir; Zherebtsov, Sergey; Kaibyshev, Rustam

    2017-01-01

    This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu–0.1Cr–0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson–Mehl–Avrami–Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu–0.1Cr–0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12. PMID:29210990

  16. Comparison of mechanical and microstructural properties of conventional and severe plastic deformation processes

    NASA Astrophysics Data System (ADS)

    Szombathelyi, V.; Krallics, Gy

    2014-08-01

    The effect of the deformation processes on yield stress, Vickers microhardness and dislocation density were investigated using commercial purity (A1050) and alloyed aluminum (Al 6082). For the evolution of the dislocation density X-ray line profile analysis was used. In the large plastic strain range the variation of mechanical and microstructure evolution of A1050 and of Al 6082 processed by equal channel angular pressing are investigated using route BC and route C. In the plastic strain range up to 3 plane strain compression test was used to evaluate mechanical properties. The hardness and the yield stress showed a sharp increase after the first pass. In the case of A1050 it was found that the two examined routes has not resulted difference in the flow stress. In the case of Al 6082 the effect of the routes on the yield stress is significant. The present results showed that in the comparable plastic strain range higher yield stress values can be achieved by plane strain compression test than by ECAP.

  17. Broadband nanoindentation of glassy polymers: Part II. Viscoplasticity

    Treesearch

    Joseph E. Jakes; Rod S. Lakes; Don S. Stone

    2012-01-01

    The relationship between hardness and flow stress in glassy polymers is examined. Materials studied include poly(methylmethacrylate), polystyrene, and polycarbonate. Properties are strongly rate dependent, so broadband nanoindentation creep (BNC) is used to measure hardness across a broad range of indentation strain rates (10-4 to 10 s

  18. Implications of Microstructural Studies of the SAFOD Gouge for the Strength and Deformation Mechanisms in the Creeping Segment of the San Andreas Fault

    NASA Astrophysics Data System (ADS)

    Hadizadeh, J.; Gratier, J. L.; Mittempergher, S.; Renard, F.; Richard, J.; di Toro, G.; Babaie, H. A.

    2010-12-01

    The San Andreas Fault zone (SAF) in the vicinity of the San Andreas Fault Observatory at Depth (SAFOD)in central California is characterized by an average 21 mm/year aseismic creep and strain release through repeating M<3 earthquakes. Seismic inversion studies indicate that the ruptures occur on clusters of stationary patches making up 1% or less of the total fault surface area. The existence of these so-called asperity patches, although not critical in determining the fault strength, suggests interaction of different deformation mechanisms. What are the deformation mechanisms, and how do the mechanisms couple and factor into the current strength models for the SAF? The SAFOD provides core samples and geophysical data including cores from two shear zones where the main borehole casing is deforming. The studies so far show a weak fault zone with about 200m of low-permeability damage zone without anomalous temperature or high fluid pressure (Zoback et al. EOS 2010). To answer the above questions, we studied core samples and thin sections ranging in measured depths (MD) from 3059m to 3991m including gouge from borehole casing deformation zones. The methods of study included high resolution scanning and transmission electron microscopy, cathodoluminescence imaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The microstructural and analytical data suggest that deformation is by a coupling of cataclastic flow and pressure solution accompanied by widespread alteration of feldspar to clay minerals and other neomineralizations. The clay contents of the gouge and streaks of serpentinite are not uniformly distributed, but weakness of the creeping segment is likely to be due to intrinsically low frictional strength of the fault material. This conclusion, which is based on the overall ratio of clay/non-clay constituents and the presence of talc in the actively deforming zones, is consistent with the 0.3-0.45 coefficient of friction for the drill

  19. Combinatorial refinement of thin-film microstructure, properties and process conditions: iterative nanoscale search for self-assembled TiAlN nanolamellae.

    PubMed

    Zalesak, J; Todt, J; Pitonak, R; Köpf, A; Weißenbacher, R; Sartory, B; Burghammer, M; Daniel, R; Keckes, J

    2016-12-01

    Because of the tremendous variability of crystallite sizes and shapes in nano-materials, it is challenging to assess the corresponding size-property relationships and to identify microstructures with particular physical properties or even optimized functions. This task is especially difficult for nanomaterials formed by self-organization, where the spontaneous evolution of microstructure and properties is coupled. In this work, two compositionally graded TiAlN films were (i) grown using chemical vapour deposition by applying a varying ratio of reacting gases and (ii) subsequently analysed using cross-sectional synchrotron X-ray nanodiffraction, electron microscopy and nanoindentation in order to evaluate the microstructure and hardness depth gradients. The results indicate the formation of self-organized hexagonal-cubic and cubic-cubic nanolamellae with varying compositions and thicknesses in the range of ∼3-15 nm across the film thicknesses, depending on the actual composition of the reactive gas mixtures. On the basis of the occurrence of the nanolamellae and their correlation with the local film hardness, progressively narrower ranges of the composition and hardness were refined in three steps. The third film was produced using an AlCl 3 /TiCl 4 precursor ratio of ∼1.9, resulting in the formation of an optimized lamellar microstructure with ∼1.3 nm thick cubic Ti(Al)N and ∼12 nm thick cubic Al(Ti)N nanolamellae which exhibits a maximal hardness of ∼36 GPa and an indentation modulus of ∼522 GPa. The presented approach of an iterative nanoscale search based on the application of cross-sectional synchrotron X-ray nanodiffraction and cross-sectional nanoindentation allows one to refine the relationship between (i) varying deposition conditions, (ii) gradients of microstructure and (iii) gradients of mechanical properties in nanostructured materials prepared as thin films. This is done in a combinatorial way in order to screen a wide range of

  20. The instability of the spiral wave induced by the deformation of elastic excitable media

    NASA Astrophysics Data System (ADS)

    Ma, Jun; Jia, Ya; Wang, Chun-Ni; Li, Shi-Rong

    2008-09-01

    There are some similarities between the spiral wave in excitable media and in cardiac tissue. Much evidence shows that the appearance and instability of the spiral wave in cardiac tissue can be linked to one kind of heart disease. There are many models that can be used to investigate the formation and instability of the spiral wave. Cardiac tissue is excitable and elastic, and it is interesting to simulate the transition and instability of the spiral wave induced by media deformation. For simplicity, a class of the modified Fitzhugh-Nagumo (MFHN) model, which can generate a stable rotating spiral wave, meandering spiral wave and turbulence within appropriate parameter regions, will be used to simulate the instability of the spiral wave induced by the periodical deformation of media. In the two-dimensional case, the total acreage of elastic media is supposed to be invariable in the presence of deformation, and the problem is described with Lx × Ly = N × ΔxN × Δy = L'xL'y = N × Δx'N × Δy'. In our studies, elastic media are decentralized into N × N sites and the space of the adjacent sites is changed to simulate the deformation of elastic media. Based on the nonlinear dynamics theory, the deformation effect on media is simplified and simulated by perturbing the diffusion coefficients Dx and Dy with different periodical signals, but the perturbed diffusion coefficients are compensatory. The snapshots of our numerical results find that the spiral wave can coexist with the spiral turbulence, instability of the spiral wave and weak deformation of the spiral wave in different conditions. The ratio parameter ɛ and the frequency of deformation forcing play a deterministic role in inducing instability of the spiral wave. Extensive studies confirm that the instability of the spiral wave can be induced and developed only if an appropriate frequency for deformation is used. We analyze the power spectrum for the time series of the mean activator of four sampled sites

  1. Predicting Hot Deformation of AA5182 Sheet

    NASA Astrophysics Data System (ADS)

    Lee, John T.; Carpenter, Alexander J.; Jodlowski, Jakub P.; Taleff, Eric M.

    Aluminum 5000-series alloy sheet materials exhibit substantial ductilities at hot and warm temperatures, even when grain size is not particularly fine. The relatively high strain-rate sensitivity exhibited by these non-superplastic materials, when deforming under solute-drag creep, is a primary contributor to large tensile ductilities. This active deformation mechanism influences both plastic flow and microstructure evolution across conditions of interest for hot- and warm-forming. Data are presented from uniaxial tensile and biaxial bulge tests of AA5182 sheet material at elevated temperatures. These data are used to construct a material constitutive model for plastic flow, which is applied in finite-element-method (FEM) simulations of plastic deformation under multiaxial stress states. Simulation results are directly compared against experimental data to explore the usefulness of this constitutive model. The effects of temperature and stress state on plastic response and microstructure evolution are discussed.

  2. Development of regional liquefaction-induced deformation hazard maps

    USGS Publications Warehouse

    Rosinski, A.; Knudsen, K.-L.; Wu, J.; Seed, R.B.; Real, C.R.; ,

    2004-01-01

    This paper describes part of a project to assess the feasibility of producing regional (1:24,000-scale) liquefaction hazard maps that are based-on potential liquefaction-induced deformation. The study area is the central Santa Clara Valley, at the south end of San Francisco Bay in Central California. The information collected and used includes: a) detailed Quaternary geological mapping, b) over 650 geotechnical borings, c) probabilistic earthquake shaking information, and d) ground-water levels. Predictions of strain can be made using either empirical formulations or numerical simulations. In this project lateral spread displacements are estimated and new empirical relations to estimate future volumetric and shear strain are used. Geotechnical boring data to are used to: (a) develop isopach maps showing the thickness of sediment thatis likely to liquefy and deform under earthquake shaking; and (b) assess the variability in engineering properties within and between geologic map units. Preliminary results reveal that late Holocene deposits are likely to experience the greatest liquefaction-induced strains, while Holocene and late Pleistocene deposits are likely to experience significantly less horizontal and vertical strain in future earthquakes. Development of maps based on these analyses is feasible.

  3. Typhoon-Induced Ground Deformation

    NASA Astrophysics Data System (ADS)

    Mouyen, M.; Canitano, A.; Chao, B. F.; Hsu, Y.-J.; Steer, P.; Longuevergne, L.; Boy, J.-P.

    2017-11-01

    Geodetic instruments now offer compelling sensitivity, allowing to investigate how solid Earth and surface processes interact. By combining surface air pressure data, nontidal sea level variations model, and rainfall data, we systematically analyze the volumetric deformation of the shallow crust at seven borehole strainmeters in Taiwan induced by 31 tropical cyclones (typhoons) that made landfall to the island from 2004 to 2013. The typhoon's signature consists in a ground dilatation due to air pressure drop, generally followed by a larger ground compression. We show that this compression phase can be mostly explained by the mass loading of rainwater that falls on the ground and concentrates in the valleys towards the strainmeter sensitivity zone. Further, our analysis shows that borehole strainmeters can help quantifying the amount of rainwater accumulating and flowing over a watershed during heavy rainfalls, which is a useful constraint for building hydrological models.

  4. Experimental determination of micromachined discrete and continuous device spring constants using nanoindentation method

    NASA Astrophysics Data System (ADS)

    Chan, M. L.; Tay, Francis E.; Logeeswaran, V. J.; Zeng, Kaiyang; Shen, Lu; Chau, Fook S.

    2002-04-01

    A rapid and accurate static and quasi-static method for determining the out-of-plane spring constraints of cantilevers and a micromachined vibratory sensor is presented. In the past, much of the effort in nanoindentation application was to investigate the thin-film mechanical properties. In this paper, we have utilized the nanoindentation method to measure directly some micromachined device (e.g. microgyroscope) spring constants. The cantilevers and devices tested were fabricated using the MUMPS process and an SOI process (patent pending). Spring constants are determined using a commercial nanoindentation apparatus UMIS-2000 configured with both Berkovich and spherical indenter tip that can be placed onto the device with high accuracy. Typical load resolution is 20micrometers N to 0.5N and a displacement resolution of 0.05nm. Information was deduced from the penetration depth versus load curves during both loading and unloading.

  5. Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata

    NASA Astrophysics Data System (ADS)

    Kuc, Dariusz; Gawąd, Jerzy

    2011-01-01

    The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.

  6. Microstructural evolution during thermal annealing of ice-Ih

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine

    2017-06-01

    We studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice pre-deformed in uniaxial compression at temperature of -7 °C to macroscopic strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This initial evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period ≥1.5 h, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intragranular misorientations, consuming first the most misorientated parts of primary grains. Grain growth kinetics fits the parabolic growth law with grain growth exponents in the range of 2.4-4.0. Deformation-induced tilt boundaries and kink bands may slow down grain boundary migration. They are stable features during early stages of static recrystallization, only erased by normal growth, which starts after >24 h of annealing.

  7. In Situ TEM Study of Interaction between Dislocations and a Single Nanotwin under Nanoindentation.

    PubMed

    Wang, Bo; Zhang, Zhenyu; Cui, Junfeng; Jiang, Nan; Lyu, Jilei; Chen, Guoxin; Wang, Jia; Liu, Zhiduo; Yu, Jinhong; Lin, Chengte; Ye, Fei; Guo, Dongming

    2017-09-06

    Nanotwinned (nt) materials exhibit excellent mechanical properties, and have been attracting much more attention of late. Nevertheless, the fundamental mechanism of interaction between dislocations and a single nanotwin is not understood. In this study, in situ transmission electron microscopy (TEM) nanoindentation is performed, on a specimen of a nickel (Ni) alloy containing a single nanotwin of 89 nm in thickness. The specimen is prepared using focused ion beam (FIB) technique from an nt surface, which is formed by a novel approach under indentation using a developed diamond panel with tips array. The stiffness of the specimen is ten times that of the pristine counterparts during loading. The ultrahigh stiffness is attributed to the generation of nanotwins and the impediment of the single twin to the dislocations. Two peak loads are induced by the activation of a new slip system and the penetration of dislocations over the single nanotwin, respectively. One slip band is parallel to the single nanotwin, indicating the slip of dislocations along the nanotwin. In situ TEM observation of nanoindentation reveals a new insight for the interaction between dislocations and a single nanotwin. This paves the way for design and preparation of high-performance nt surfaces of Ni alloys used for aircraft engines, gas turbines, turbocharger components, ducts, and absorbers.

  8. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-03-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  9. Microstructural Evolutions During Reversion Annealing of Cold-Rolled AISI 316 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Naghizadeh, Meysam; Mirzadeh, Hamed

    2018-06-01

    Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.

  10. Broadband nanoindentation of glassy polymers: Part I Viscoelasticity

    Treesearch

    Joesph E. Jakes; Rod S. Lakes; Don S. Stone

    2012-01-01

    Protocols are developed to assess viscoelastic moduli from unloading slopes in Berkovich nanoindentation across four orders of magnitude in time scale (0.01-100 s unloading time). Measured viscoelastic moduli of glassy polymers poly(methyl methacrylate), polystyrene, and polycarbonate follow the same trends with frequency (1/unloading time) as viscoelastic moduli...

  11. Deformation induced microtwins and stacking faults in aluminum single crystal.

    PubMed

    Han, W Z; Cheng, G M; Li, S X; Wu, S D; Zhang, Z F

    2008-09-12

    Microtwins and stacking faults in plastically deformed aluminum single crystal were successfully observed by high-resolution transmission electron microscope. The occurrence of these microtwins and stacking faults is directly related to the specially designed crystallographic orientation, because they were not observed in pure aluminum single crystal or polycrystal before. Based on the new finding above, we propose a universal dislocation-based model to judge the preference or not for the nucleation of deformation twins and stacking faults in various face-centered-cubic metals in terms of the critical stress for dislocation glide or twinning by considering the intrinsic factors, such as stacking fault energy, crystallographic orientation, and grain size. The new finding of deformation induced microtwins and stacking faults in aluminum single crystal and the proposed model should be of interest to a broad community.

  12. Micromechanisms of deformation in shales

    NASA Astrophysics Data System (ADS)

    Bonnelye, A.; Gharbi, H.; Hallais, S.; Dimanov, A.; Bornert, M.; Picard, D.; Mezni, M.; Conil, N.

    2017-12-01

    One of the envisaged solutions for nuclear wastes disposal is underground repository in shales. For this purpose, the Callovo Oxfordian (Cox) argillaceous formation is extensively studied. The hydro-mechanical behavior of the argillaceous rock is complex, like the multiphase and multi-scale structured material itself. The argilaceous matrix is composed of interstratified illite-smectite particles, it contains detritic quartz and calcite, accessory pyrite, and the rock porosity ranges from micrometre to nanometre scales. Besides the bedding anisotropy, structural variabilities exist at all scales, from the decametric-metric scales of the geological formation to the respectively millimetric and micrometric scales of the aggregates of particles and clay particles Our study aims at understanding the complex mechanisms which are activated at the micro-scale and are involved in the macroscopic inelastic deformation of such a complex material. Two sets of experiments were performed, at two scales on three bedding orientations (90°, 45° and 0°). The first set was dedicated to uniaxial deformation followed with an optical set-up with a pixel resolution of 0.55µm. These experiments allowed us to see the fracture propagation with different patterns depending on the bedding orientation. For the second set of experiments, an experimental protocol was developed in order to perform uniaxial deformation experiment at controlled displacement rate, inside an environmental scanning electron microscope (ESEM), under controlled relative humidity, in order to preserve as much as possible the natural state of saturation of shales. We aimed at characterizing the mechanical anisotropy and the mechanisms involved in the deformation, with an image resolution below the micormeter. The observed sample surfaces were polished by broad ion beam in order to reveal the fine microstructures of the argillaceous matrix. In both cases, digital images were acquired at different loading stages during

  13. The Physical Mechanism of Frictional Aging Revealed by Nanoindentation Creep

    NASA Astrophysics Data System (ADS)

    Thom, C.; Carpick, R. W.; Goldsby, D. L.

    2017-12-01

    A classical observation from rock friction experiments is that friction increases linearly with the logarithm of the time of stationary contact, a phenomenon sometimes referred to as aging. Aging is most often attributed to an increase in the real area of contact due to asperity creep. However, recent atomic force microscopy (AFM) experiments and molecular dynamics simulations suggest that time-dependent siloxane (Si—O—Si) bonding gives rise to aging in silica-silica contacts in the absence of plastic deformation. Determining whether an increase in contact `quantity' (due to creep), contact `quality' (due to chemical bonding), or another unknown mechanism causes aging is a challenging experimental task, despite its importance for developing a physical basis for rate and state friction laws. An intriguing observation is that aging is absent in friction experiments on quartz rocks and gouge at humidities <5% and returns upon exposure of the test specimens to humid air. This behavior has been attributed to the effects of water on asperity creep (via hydrolytic weakening) or on the adhesive strength of contacts. To discern between these possibilities, we have conducted nanoindentation experiments on single crystals of quartz to measure their indentation hardness and creep behavior at humidities of 2% to 50%, and in vacuum. Samples were loaded at 1000 mN/s to a peak load of 15, 40, or 400 mN, which was then held constant for 10 s. After the peak load is reached, the tip sinks into the material with time due to creep of the indentation contact. Our experiments reveal that there is no effect of varying humidity on either indentation hardness or indentation creep behavior over the full range of humidities investigated. If asperity creep were the dominant mechanism of frictional aging for quartz in the experiments cited above, then significant increases in hardness and decreases in the growth rate of indentation contacts at low humidities is expected, in stark contrast

  14. Hardness and microstructural inhomogeneity at the epitaxial interface of laser 3D-printed Ni-based superalloy

    DOE PAGES

    Qian, Dan; Zhang, Anfeng; Zhu, Jianxue; ...

    2016-09-09

    Here in this letter, microstructural and mechanical inhomogeneities, a great concern for single crystal Ni-based superalloys repaired by laser assisted 3D printing, have been probed near the epitaxial interface. Nanoindentation tests show the hardness to be uniformly lower in the bulk of the substrate and constantly higher in the epitaxial cladding layer. A gradient of hardness through the heat affected zone is also observed, resulting from an increase in dislocation density, as indicated by the broadening of the synchrotron X-ray Laue microdiffraction reflections. Lastly, the hardening mechanism of the claddin g region, on the other hand, is shown to originatemore » not only from high dislocation density but also and more importantly from the fine γ/γ' microstructure.« less

  15. Large-area uniform periodic microstructures on fused silica induced by surface phonon polaritons and incident laser

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong

    2018-06-01

    A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.

  16. Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers

    NASA Astrophysics Data System (ADS)

    Lorenz, H.; Klüppel, M.

    2012-11-01

    A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.

  17. Elastic properties of single-walled carbon nanotube thin film by nanoindentation test.

    PubMed

    Tang, Xingling; El-Hami, Abdelkhalak; El-Hami, Khalil; Eid, Mohamed; Si, Chaorun

    2017-09-12

    This paper carries out a preliminary study for the elastic properties of single walled carbon nanotube (SWCNT) thin film. The SWCNT thin films (~250 nm) are prepared by a simple and cost effective method of spin-coating technology. Nanoindentation test with a Berkovich indenter is used to determine the hardness and elastic modulus of the SWCNT thin film. It is important to note that the elastic properties of SWCNT film are indirectly derived from the information of load and displacement of the indenter under certain assumptions, deviation of the 'test value' is inevitable. In this regard, uncertainty analysis is an effective process in guarantying the validity of the material properties. This paper carries out uncertainty estimation for the tested elastic properties of SWCNT film by nanoindentation. Experimental results and uncertainty analysis indicates that nanoindentation test could be an effective and reliable method in determine the elastic properties of SWCNT thin film. Moreover, the obtained values of hardness and elastic modulus can further benefit the design of SWCNT thin film based components.

  18. Influence of Ultrasonic Surface Rolling on Microstructure and Wear Behavior of Selective Laser Melted Ti-6Al-4V Alloy

    PubMed Central

    Wang, Zhen; Xiao, Zhiyu; Huang, Chuanshou; Wen, Liping; Zhang, Weiwen

    2017-01-01

    The present article studied the effect of ultrasonic surface rolling process (USRP) on the microstructure and wear behavior of a selective laser melted Ti-6Al-4V alloy. Surface characteristics were investigated using optical microscope, nano-indentation, scanning electron microscope, transmission electron microscope and laser scanning confocal microscope. Results indicated that the thickness of pore-free surfaces increased to 100~200 μm with the increasing ultrasonic surface rolling numbers. Severe work hardening occurred in the densified layer, resulting in the formation of refined grains, dislocation walls and deformation twins. After 1000 N 6 passes, about 15.5% and 14.1% increment in surficial Nano-hardness and Vickers-hardness was obtained, respectively. The hardness decreased gradually from the top surface to the substrate. Wear tests revealed that the friction coefficient declined from 0.74 (polished surface) to 0.64 (USRP treated surface) and the wear volume reduced from 0.205 mm−3 to 0.195 mm−3. The difference in wear volume between USRP treated and polished samples increased with sliding time. The enhanced wear resistance was concluded to be associated with the improvement of hardness and shear resistance and also the inhibition of delamination initiation. PMID:29048344

  19. Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons

    NASA Astrophysics Data System (ADS)

    Stephenson, Kale J.; Was, Gary S.

    2015-01-01

    The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.

  20. High Strain Rate and Shock-Induced Deformation in Metals

    NASA Astrophysics Data System (ADS)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  1. Austenitic Nickel- and Manganese-Free Fe-15Cr-1Mo-0.4N-0.3C Steel: Tensile Behavior and Deformation-Induced Processes between 298 K and 503 K (25 °C and 230 °C)

    NASA Astrophysics Data System (ADS)

    Mola, Javad; Ullrich, Christiane; Kuang, Buxiao; Rahimi, Reza; Huang, Qiuliang; Rafaja, David; Ritzenhoff, Roman

    2017-03-01

    The high-temperature austenite phase of a high-interstitial Mn- and Ni-free stainless steel was stabilized at room temperature by the full dissolution of precipitates after solution annealing at 1523 K (1250 °C). The austenitic steel was subsequently tensile-tested in the temperature range of 298 K to 503 K (25 °C to 230 °C). Tensile elongation progressively enhanced at higher tensile test temperatures and reached 79 pct at 503 K (230 °C). The enhancement at higher temperatures of tensile ductility was attributed to the increased mechanical stability of austenite and the delayed formation of deformation-induced martensite. Microstructural examinations after tensile deformation at 433 K (160 °C) and 503 K (230 °C) revealed the presence of a high density of planar glide features, most noticeably deformation twins. Furthermore, the deformation twin to deformation-induced martensite transformation was observed at these temperatures. The results confirm that the high tensile ductility of conventional Fe -Cr-Ni and Fe-Cr-Ni-Mn austenitic stainless steels may be similarly reproduced in Ni- and Mn-free high-interstitial stainless steels solution annealed at sufficiently high temperatures. The tensile ductility of the alloy was found to deteriorate with decarburization and denitriding processes during heat treatment which contributed to the formation of martensite in an outermost rim of tensile specimens.

  2. Multifractal Analysis of Seismically Induced Soft-Sediment Deformation Structures Imaged by X-Ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Nakashima, Yoshito; Komatsubara, Junko

    Unconsolidated soft sediments deform and mix complexly by seismically induced fluidization. Such geological soft-sediment deformation structures (SSDSs) recorded in boring cores were imaged by X-ray computed tomography (CT), which enables visualization of the inhomogeneous spatial distribution of iron-bearing mineral grains as strong X-ray absorbers in the deformed strata. Multifractal analysis was applied to the two-dimensional (2D) CT images with various degrees of deformation and mixing. The results show that the distribution of the iron-bearing mineral grains is multifractal for less deformed/mixed strata and almost monofractal for fully mixed (i.e. almost homogenized) strata. Computer simulations of deformation of real and synthetic digital images were performed using the egg-beater flow model. The simulations successfully reproduced the transformation from the multifractal spectra into almost monofractal spectra (i.e. almost convergence on a single point) with an increase in deformation/mixing intensity. The present study demonstrates that multifractal analysis coupled with X-ray CT and the mixing flow model is useful to quantify the complexity of seismically induced SSDSs, standing as a novel method for the evaluation of cores for seismic risk assessment.

  3. Microstructure effects on the recrystallization of low-symmetry alpha-uranium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCabe, Rodney James; Richards, Andrew Walter; Coughlin, Daniel Robert

    2015-10-01

    We employ electron backscatter diffraction (EBSD) to investigate microstructural evolution of uranium during recrystallization. To understand the relationship between microstructure and recrystallization, we use measures of intra-granular misorientation within grains and near grain boundaries in both deformed (non-recrystallized) uranium and recrystallizing uranium. The data show that the level of intra-granular misorientation depends on crystallographic orientation. However, contrary to expectation, this relationship does not significantly affect the recrystallization texture. Rather, the analysis suggests that recrystallization nucleation occurs along high angle grain boundaries in the deformed microstructure. Specifically, we show that the nucleation of recrystallized grains correlates well with the spatially heterogeneousmore » distribution of high angle boundaries. Due to the inhomogeneous distribution of high angle boundaries, the recrystallized microstructure after long times exhibits clustered distributions of small and large grains. Twin boundaries do not appear to act as recrystallization nucleation sites.« less

  4. The deformation record of olivine in mylonitic peridotites from the Finero Complex, Ivrea Zone: Separate deformation cycles during exhumation

    NASA Astrophysics Data System (ADS)

    Matysiak, Agnes K.; Trepmann, Claudia A.

    2015-12-01

    Mylonitic peridotites from the Finero complex are investigated to detect characteristic olivine microfabrics that can resolve separate deformation cycles at different metamorphic conditions. The heterogeneous olivine microstructures are characterized by deformed porphyroclasts surrounded by varying amounts of recrystallized grains. A well-developed but only locally preserved foam structure is present in recrystallized grain aggregates. This indicates an early stage of dynamic recrystallization and subsequent recovery and recrystallization at quasi-static stress conditions, where the strain energy was reduced such that a reduction in surface energy controlled grain boundary migration. Ultramylonites record a renewed stage of localized deformation and recrystallization by a second generation of recrystallized grains that do not show a foam structure. This second generation of recrystallized grains as well as sutured grain and kink band boundaries of porphyroclasts indicate that these microstructures developed during a stage of localized deformation after development of the foam structure. The heterogeneity of the microfabrics is interpreted to represent several (at least two) cycles of localized deformation separated by a marked hiatus with quasi-static recrystallization and recovery and eventually grain growth. The second deformation cycle did not only result in reactivation of preexisting shear zones but instead also locally affected the host rock that was not deformed in the first stage. Such stress cycles can result from sudden increases in differential stress imposed by seismic events, i.e., high stress-loading rates, during exhumation of the Finero complex.

  5. Supplementary Microstructural Features Induced During Laser Surface Melting of Thermally Sprayed Inconel 625 Coatings

    NASA Astrophysics Data System (ADS)

    Ahmed, Nauman; Voisey, K. T.; McCartney, D. G.

    2014-02-01

    Laser surface melting of thermally sprayed coatings has the potential to enhance their corrosion properties by incorporating favorable microstructural changes. Besides homogenizing the as-sprayed structure, laser melting may induce certain microstructural modifications (i.e., supplementary features) in addition to those that directly improve the corrosion performance. Such features, being a direct result of the laser treatment process, are described in this paper which is part of a broader study in which high velocity oxy-fuel sprayed Inconel 625 coatings on mild-steel substrates were treated with a diode laser and the modified microstructure characterized using optical and scanning electron microscopy and x-ray diffraction. The laser treated coating features several different zones, including a region with a microstructure in which there is a continuous columnar dendritic structure through a network of retained oxide stringers.

  6. An Investigation into the Properties and Microstructure of Cement Mixtures Modified with Cellulose Nanocrystal

    PubMed Central

    Flores, Jessica; Kamali, Mahsa; Ghahremaninezhad, Ali

    2017-01-01

    This paper aims to examine the effect of cellulose nanocrystals (CNC) on the hydration, transport behavior, and microstructure of cement mixtures. The addition of CNC delayed hydration at an early age but improved hydration at later ages. A small increase in the electrical resistivity of the cement mixtures with CNC was observed. Statistical nanoindentation showed a small tendency to a larger volume fraction of high density calcium-silicate-hydrate (C-S-H) and a smaller volume fraction of low-density C-S-H in the mixture with CNC. PMID:28772857

  7. Microstructure design of low alloy transformation-induced plasticity assisted steels

    NASA Astrophysics Data System (ADS)

    Zhu, Ruixian

    The microstructure of low alloy Transformation Induced Plasticity (TRIP) assisted steels has been systematically varied through the combination of computational and experimental methodologies in order to enhance the mechanical performance and to fulfill the requirement of the next generation Advanced High Strength Steels (AHSS). The roles of microstructural parameters, such as phase constitutions, phase stability, and volume fractions on the strength-ductility combination have been revealed. Two model alloy compositions (i.e. Fe-1.5Mn-1.5Si-0.3C, and Fe-3Mn-1Si-0.3C in wt%, nominal composition) were studied. Multiphase microstructures including ferrite, bainite, retained austenite and martensite were obtained through conventional two step heat treatment (i.e. intercritical annealing-IA, and bainitic isothermal transformation-BIT). The effect of phase constitution on the mechanical properties was first characterized experimentally via systematically varying the volume fractions of these phases through computational thermodynamics. It was found that martensite was the main phase to deteriorate ductility, meanwhile the C/VA ratio (i.e. carbon content over the volume fraction of austenite) could be another indicator for the ductility of the multiphase microstructure. Following the microstructural characterization of the multiphase alloys, two microstructural design criteria (i.e. maximizing ferrite and austenite, suppressing athermal martensite) were proposed in order to optimize the corresponding mechanical performance. The volume fraction of ferrite was maximized during the IA with the help of computational thermodyanmics. On the other hand, it turned out theoretically that the martensite suppression could not be avoided on the low Mn contained alloy (i.e. Fe- 1.5Mn-1.5Si-0.3C). Nevertheless, the achieved combination of strength (~1300MPa true strength) and ductility (˜23% uniform elongation) on the low Mn alloy following the proposed design criteria fulfilled the

  8. Grain-scale investigations of deformation heterogeneities in aluminum alloys

    NASA Astrophysics Data System (ADS)

    Güler, Baran; Şimşek, Ülke; Yalçınkaya, Tuncay; Efe, Mert

    2018-05-01

    The anisotropic deformation of Aluminum alloys at micron scale exhibits localized deformation, which has negative implications on the macroscale mechanical and forming behavior. The scope of this work is twofold. Firstly, micro-scale deformation heterogeneities affecting forming behavior of aluminum alloys is investigated through experimental microstructure analysis at large strains and various strain paths. The effects of initial texture, local grain misorientation, and strain paths on the strain localizations are established. In addition to uniaxial tension condition, deformation heterogeneities are also investigated under equibiaxial tension condition to determine the strain path effects on the localization behavior. Secondly, the morphology and the crystallographic data obtained from the experiments is transferred to Abaqus software, in order to predict both macroscopic response and the microstructure evolution though crystal plasticity finite element simulations. The model parameters are identified through the comparison with experiments and the capability of the model to capture real material response is discussed as well.

  9. Hot Deformation Behavior and Dynamic Recrystallization of Medium Carbon LZ50 Steel

    NASA Astrophysics Data System (ADS)

    Du, Shiwen; Chen, Shuangmei; Song, Jianjun; Li, Yongtang

    2017-03-01

    Hot deformation and dynamic recrystallization behaviors of a medium carbon steel LZ50 were systematically investigated in the temperature range from 1143 K to 1443 K (870 °C to 1170 °C) at strain rates from 0.05 to 3s-1 using a Gleeble-3500 thermo-simulation machine. The flow stress constitutive equation for hot deformation of this steel was developed with the two-stage Laasraoui equation. The activation energy of the tested steel was 304.27 KJ/mol, which was in reasonable agreement with those reported previously. The flow stress of this steel in hot deformation was mainly controlled by dislocation climb during their intragranular motion. The effect of Zener-Hollomon parameter on the characteristic points of the flow curves was studied, and the dependence of critical strain on peak strain obeyed a linear equation. Dynamic recrystallization was the most important softening mechanism for the tested steel during hot deformation. Kinetic equation of this steel was also established based on the flow stress. The austenite grain size of complete dynamic recrystallization was a power law function of Zener-Hollomon parameter with an exponent of -0.2956. Moreover, the microstructures induced under different deformation conditions were analyzed.

  10. Inferring Spatial Variations of Microstructural Properties from Macroscopic Mechanical Response

    PubMed Central

    Liu, Tengxiao; Hall, Timothy J.; Barbone, Paul E.; Oberai, Assad A.

    2016-01-01

    Disease alters tissue microstructure, which in turn affects the macroscopic mechanical properties of tissue. In elasticity imaging, the macroscopic response is measured and is used to infer the spatial distribution of the elastic constitutive parameters. When an empirical constitutive model is used these parameters cannot be linked to the microstructure. However, when the constitutive model is derived from a microstructural representation of the material, it allows for the possibility of inferring the local averages of the spatial distribution of the microstructural parameters. This idea forms the basis of this study. In particular, we first derive a constitutive model by homogenizing the mechanical response of a network of elastic, tortuous fibers. Thereafter, we use this model in an inverse problem to determine the spatial distribution of the microstructural parameters. We solve the inverse problem as a constrained minimization problem, and develop efficient methods for solving it. We apply these methods to displacement fields obtained by deforming gelatin-agar co-gels, and determine the spatial distribution of agar concentration and fiber tortuosity, thereby demonstrating that it is possible to image local averages of microstructural parameters from macroscopic measurements of deformation. PMID:27655420

  11. Effect of temperature, microstructure, and stress state on the low cycle fatigue behavior of Waspaloy

    NASA Technical Reports Server (NTRS)

    Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.

    1988-01-01

    Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.

  12. Compensation of Gravity-Induced Structural Deformations on a Beam- Waveguide Antenna Using a Deformable Mirror

    NASA Technical Reports Server (NTRS)

    Imbriale, W. A.; Moore, M.; Rochblatt, D. J.; Veruttipong, W.

    1995-01-01

    At the NASA Deep Space Network (DSN) Goldstone Complex, a 34-meter- diameter beam-waveguide antenna, DSS-13, was constructed in 1988-1990 and has become an integral part of an advanced systems program and a test bed for technologies being developed to introduce Ka-band (32 GHz) frequencies into the DSN. A method for compensating the gravity- induced structural deformations in this large antenna is presented.

  13. Mechanical Behavior and Microstructure Evolution of Bearing Steel 52100 During Warm Compression

    NASA Astrophysics Data System (ADS)

    Huo, Yuanming; He, Tao; Chen, Shoushuang; Wu, Riming

    2018-05-01

    High-performance bearing steel requires a fine and homogeneous structure of carbide particles. Direct deformation spheroidizing of bearing steel in a dual-phase zone can contribute to achieving this important structure. In this work, warm compression testing of 52100 bearing steel was performed at temperatures in the range of 650-850°C and at strain rates of 0.1-10.0 s-1. The effect of deformation temperatures on mechanical behavior and microstructure evolution was investigated to determine the warm deformation temperature window. The effect of deformation rates on microstructure evolution and metal flow softening behavior of the warm compression was analyzed and discussed. Experimental results showed that the temperature range from 750°C to 800°C should be regarded as the critical range separating warm and hot deformation. Warm deformation at temperatures in the range of 650-750°C promoted carbide spheroidization, and this was determined to be the warm deformation temperature window. Metal flow softening during the warm deformation was caused by carbide spheroidization.

  14. Atypical transitions in material response during constant strain rate, hot deformation of austenitic steel

    NASA Astrophysics Data System (ADS)

    Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.

    2017-10-01

    Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.

  15. Deformation induced dynamic recrystallization and precipitation strengthening in an Mg−Zn−Mn alloy processed by high strain rate rolling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jimiao; Song, Min

    2016-11-15

    The microstructure of a high strain-rate rolled Mg−Zn−Mn alloy was investigated by transmission electron microscopy to understand the relationship between the microstructure and mechanical properties. The results indicate that: (1) a bimodal microstructure consisting of the fine dynamic recrystallized grains and the largely deformed grains was formed; (2) a large number of dynamic precipitates including plate-like MgZn{sub 2} phase, spherical MgZn{sub 2} phase and spherical Mn particles distribute uniformly in the grains; (3) the major facets of many plate-like MgZn{sub 2} precipitates deviated several to tens of degrees (3°–30°) from the matrix basal plane. It has been shown that themore » high strength of the alloy is attributed to the formation of the bimodal microstructure, dynamic precipitation, and the interaction between the dislocations and the dynamic precipitates. - Highlights: •A bimodal microstructure was formed in a high strain-rate rolled Mg−Zn−Mn alloy. •Plate-like MgZn{sub 2}, spherical MgZn{sub 2} and spherical Mn phases were observed. •The major facet of the plate-like MgZn{sub 2} deviated from the matrix basal plane.« less

  16. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  17. Microstructural evidence of melting in crustal rocks (Invited)

    NASA Astrophysics Data System (ADS)

    Holness, M. B.; Cesare, B.; Sawyer, E. W.

    2010-12-01

    The signature of the former presence of melt on a microscopic scale is highly variable, subject to modification both during the melting event and during its subsequent history. Static pyrometamorphism results in melt films on grain boundaries between reactant phases. If a volume increase is involved, melting results in hydrofracture. On a longer timescale, as demonstrated by fragments of the crustal source in lava flows at El Hoyazo (SE Spain), melt occurs throughout the rock. These examples are highly unusual: the great majority of rocks that underwent melting cooled more slowly, permitting microstructural modification driven by a combination of textural equilibration, reaction and deformation. In the absence of deformation, and at constant temperature, melt-bearing rocks approach textural equilibrium, characterised by uniform grain size, smoothly curved grain boundaries and the establishment at all three-grain junctions of the equilibrium dihedral angle. The dihedral angle controls melt connectivity, with consequences for melt mobility and rock rheology. However, deformation is the rule rather than the exception in regional metamorphic terrains with profound effects on melt distribution. If deformation occurs predominantly by diffusive processes, textural equilibration can keep pace. At higher deformation rates melt is squeezed into planar pockets aligned parallel to the shearing direction or perpendicular to the extensional stress. Microstructures formed during solidification are controlled by cooling rate, H2O, and the size of the melt pockets. Large pockets solidify to look like igneous rocks. In small pores the supersaturation required for crystal growth is high and melt persist to lower temperatures, even being preserved as tiny glassy inclusions (“nanogranites”) in regional terranes. The pore size effect changes crystallization order, resulting in small, highly cuspate grains on grain boundaries with low dihedral angles. Crystallisation microstructures

  18. Microstructural investigation of plastically deformed Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy by X-ray diffraction and transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dirras, G., E-mail: dirras@univ-paris13.fr; Gubicza, J.; Heczel, A.

    2015-10-15

    The microstructure evolution in body-centered cubic (bcc) Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy during quasi-static compression test was studied by X-ray line profile analysis (XLPA) and transmission electron microscopy (TEM). The average lattice constant and other important parameters of the microstructure such as the mean crystallite size, the dislocation density and the edge/screw character of dislocations were determined by XLPA. The elastic anisotropy factor required for XLPA procedure was determined by nanoindentation. XLPA shows that the crystallite size decreased while the dislocation density increased with strain during compression, and their values reached about 39 nm and 15more » × 10{sup 14} m{sup −2}, respectively, at a plastic strain of ~ 20%. It was revealed that with increasing strain the dislocation character became more screw. This can be explained by the reduced mobility of screw dislocations compared to edge dislocations in bcc structures. These observations are in line with TEM investigations. The development of dislocation density during compression was related to the yield strength evolution. - Highlights: • Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy was processed by arc-melting. • The mechanical was evaluated by RT compression test. • The microstructure evolution was studied by XLPA and TEM. • With increasing strain the dislocation character became more screw. • The yield strength was related to the development of the dislocation density.« less

  19. Microstructure characterization and room temperature deformation of a rapidly solidified NiAl-based eutectic alloy containing trace Dy

    NASA Astrophysics Data System (ADS)

    Li, Hutian; Guo, Jianting; Huai, Kaiwen; Ye, Hengqiang

    2006-04-01

    The microstructure and room temperature compressive deformation behavior of a rapidly solidified NiAl-Cr(Mo)-Dy eutectic alloy fabricated by water-cooled copper mold method were studied by a combination of SEM, EDS and compressive tests. The morphology stability after hot isostatic pressing (HIP) treatment was evaluated. Rapid solidification resulted in a shift in the coupled zone for the eutectic growth towards the Cr(Mo) phase, indicating a hypoeutectic composition, hence increasing the volume fraction of primary dendritic NiAl. Meanwhile, significantly refined microstructure and lamellar/rod-like Cr(Mo) transition were observed due to trace rare earth (RE) element Dy addition and rapid solidification effects. Compared with the results in literature [H.E. Cline, J.L. Walter, Metall. Trans. 1(1970)2907-2917; P. Ferrandini, W.W. Batista, R. Caram, J. Alloys Comp. 381(2004)91-98], an interesting phenomenon, viz., NiAl halos around the primary Cr(Mo) dendrites in solidified NiAl-Cr(Mo) hypereutectic alloy, was not observed in this study. This difference was interpreted in terms of their different reciprocal nucleation ability. In addition, it was proposed that the localized destabilization of morphology after HIP treatment is closely related to the presence of primary NiAl dendrites. The improved mechanical properties can be attributed to the synergistic effects of rapid solidification and Dy addition, which included refined microstructure, suppression of the crack development along eutectic grain boundaries, enhancement of density of geometrically necessary dislocations located at NiAl/Cr(Mo) interfaces and the Cr solubility extension in NiAl.

  20. Loading simulation of lumbar spine vertebrae during a compression test using the finite elements method and trabecular bone strength properties, determined by means of nanoindentations.

    PubMed

    Bouzakis, K D; Mitsi, S; Michailidis, N; Mirisidis, I; Mesomeris, G; Maliaris, G; Korlos, A; Kapetanos, G; Antonarakos, P; Anagnostidis, K

    2004-06-01

    The mechanical strength properties of lumbar spine vertebrae are of great importance in a wide range of applications. Herein, through nanoindentations and appropriate evaluation of the corresponding results, trabecular bone struts stress-strain characteristics can be determined. In the frame of the present paper, an L2 fresh cadaveric vertebra, from which posterior elements were removed, was subjected to compression. With the aid of developed finite elements method based algorithms, the cortical shell and the cancellous core bulk elasticity moduli and stresses were determined, whereas the tested vertebra geometrical model used in these algorithms was considered as having a compound structure, consisting of the cancellous bone surrounded by the cortical shell. Moreover nanoindentations were conducted and an appropriate evaluation method of the obtained results was applied to extract stress-strain curves of individual lumbar spine vertebra trabecular bone struts. These data were used in the mathematical description of the vertebrae compression test. The vertebral cancellous bone structure was simulated by a beam elements network, possessing an equivalent porosity and different stiffnesses in vertical and horizontal direction. Thus, the measured course of the compression load versus the occurring specimen deformation was verified.

  1. Microstructural characteristics of adiabatic shear localization in a metastable beta titanium alloy deformed at high strain rate and elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Hongyi, E-mail: h.zhan@uq.edu.au; Zeng, Weidong; Wang, Gui

    2015-04-15

    The microstructural evolution and grain refinement within adiabatic shear bands in the Ti6554 alloy deformed at high strain rates and elevated temperatures have been characterized using transmission electron microscopy. No stress drops were observed in the corresponding stress–strain curve, indicating that the initiation of adiabatic shear bands does not lead to the loss of load capacity for the Ti6554 alloy. The outer region of the shear bands mainly consists of cell structures bounded by dislocation clusters. Equiaxed subgrains in the core area of the shear band can be evolved from the subdivision of cell structures or reconstruction and transverse segmentationmore » of dislocation clusters. It is proposed that dislocation activity dominates the grain refinement process. The rotational recrystallization mechanism may operate as the kinetic requirements for it are fulfilled. The coexistence of different substructures across the shear bands implies that the microstructural evolution inside the shear bands is not homogeneous and different grain refinement mechanisms may operate simultaneously to refine the structure. - Graphical abstract: Display Omitted - Highlights: • The microstructure within the adiabatic shear band was characterized by TEM. • No stress drops were observed in the corresponding stress–strain curve. • Dislocation activity dominated the grain refinement process. • The kinetic requirements for rotational recrystallization mechanism were fulfilled. • Different grain refinement mechanisms operated simultaneously to refine the structure.« less

  2. Cryomilled and spark plasma sintered titanium: the evolution of microstructure

    NASA Astrophysics Data System (ADS)

    Kozlík, Jiří; Becker, Hanka; Harcuba, Petr; Stráský, Josef; Janeček, Milos

    2017-05-01

    Bulk ultra-fine grained (UFG) commercially pure Ti was prepared by cryogenic milling in liquid argon and subsequent spark plasma sintering (SPS). During cryogenic milling, individual powder particles are repetitively severely deformed by attrition forces. Powder particles were not significantly refined, but due to severe repetitive plastic deformation, ultra-fine grained microstructure emerges within each powder particle. Cryogenic milling can be therefore considered as a specific severe plastic deformation (SPD) method. Compactization of cryomilled powder by SPS technique (also referred to as field assisted sintering technique - FAST) requires significantly lower sintering temperatures and shorter sintering times for successful compaction when compared to any other sintering technique. This is crucial for maintaining the UFG microstructure due to its limited thermal stability. Several specimens were prepared by varying processing parameters, in particular the sintering temperature. The microstructure of powders and compacted samples was observed by scanning electron microscopy (SEM). Increased sintering temperature results in recrystallization and grain growth. A trade-off relationship between the density of compacted material and grain size was identified. Microhardness of the material was found to depend on residual porosity rather than grain size. This contribution presents cryogenic milling and spark plasma sintering as a viable alternative for achieving UFG microstructure in commercially pure Ti.

  3. Visualizing Stress and Temperature Distribution During Elevated Temperature Deformation of IN-617 Using Nanomechanical Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Wang, Hao; Tomar, Vikas

    2018-04-01

    This work presents direct measurements of stress and temperature distribution during the mesoscale microstructural deformation of Inconel-617 (IN-617) during 3-point bending tests as a function of temperature. A novel nanomechanical Raman spectroscopy (NMRS)-based measurement platform was designed for simultaneous in situ temperature and stress mapping as a function of microstructure during deformation. The temperature distribution was found to be directly correlated to stress distribution for the analyzed microstructures. Stress concentration locations are shown to be directly related to higher heat conduction and result in microstructural hot spots with significant local temperature variation.

  4. Large-Amplitude Deformation and Bond Breakage in Shock-Induced Reactions of Explosive Molecules

    NASA Astrophysics Data System (ADS)

    Kay, Jeffrey

    The response of explosive molecules to large-amplitude mechanical deformation plays an important role in shock-induced reactions and the initiation of detonation in explosive materials. In this presentation, the response of a series of explosive molecules (nitromethane, 2,4,6-trinitrotoluene [TNT], and 2,4,6-triamino-1,3,5-trinitrobenzene [TATB]) to a variety of large-amplitude deformations are examined using ab initio quantum chemical calculations. Large-amplitude motions that result in bond breakage are described, and the insights these results provide into both previous experimental observations and previous theoretical predictions of shock-induced reactions are discussed.

  5. An investigation on microstructure and mechanical property of thermally aged stainless steel weld overlay cladding

    NASA Astrophysics Data System (ADS)

    Cao, X. Y.; Zhu, P.; Ding, X. F.; Lu, Y. H.; Shoji, T.

    2017-04-01

    Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2-11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging.

  6. Grain Boundary Sliding in Deforming Wehrlite: Rheology and Microstructure

    NASA Astrophysics Data System (ADS)

    Zhao, N.; Hirth, G.; Cooper, R. F.; Kruckenberg, S. C.

    2016-12-01

    Elastic anisotropy of Earth's upper mantle used to be attributed exclusively to dislocation creep. However, recent experimental results suggest that crystallographic preferred orientation (CPO) in olivine, which contributes to elastic anisotropy, could also form during grain boundary sliding [e.g., 1-3]. Nevertheless, the fundamental problem of how CPO forms during grain boundary sliding is not fully understood. Our current efforts examine the grain-size-sensitive flow of wehrlite, to characterize the influence of the second phase (clinopyroxene) both on olivine CPO formation as well as the propensity of grain boundary sliding and accumulated strain to effect solid-state phase separation (i.e., metamorphic layering). Creep tests on fine-grain-size (2-5 µm) olivine and clinopyroxene aggregates (T =1100-1200ºC; P = 1.5 GPa; γ=3-7) have been conducted. These reveal strong type-B fabric for olivine. Characterization of effects of grain size, temperature and applied strain rate reveal the grain size dependence, stress exponent and activation energy of the flow kinetics of wehrlite. The stress exponent, which is similar to stress exponent for harzburgite reported by Sundberg & Cooper [1], and grain-size dependence suggest that the dominant deformation mechanism in our experiments may be grain boundary sliding. A large stress drop in early segments of experiments suggest an evolution of microstructure. The Fourier transform of backscatter images demonstrates that there exists a direction of foliation, defined by Ol-Cpx heterophase boundaries, which may be the key to understand the development of CPO formation. [1] Sundberg, M. & Cooper, R. F., J. Geophys. Res., 2008. [2] Miyazaki, T., Sueyoshi, K., and Hiraga, T., Nature, 2013. [3] Tielke, J. A., L. N. Hansen, M. Tasaka, C. Meyers, M. E. Zimmerman, and D. L. Kohlstedt, J. Geophys. Res., 2016.

  7. Plasticity performance of Al 0.5 CoCrCuFeNi high-entropy alloys under nanoindentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Li-ping; Chen, Shu-ying; Ren, Jing-li

    2017-04-01

    The statistical and dynamic behaviors of the displacement-load curves of a high-entropy alloy, Al0.5 CoCrCuFeNi, were analyzed for the nanoindentation performed at two temperatures. Critical behavior of serrations at room temperature and chaotic flows at 200 °C were detected. These results are attributed to the interaction among a large number of slip bands. For the nanoindentation at room temperature, recurrent partial events between slip bands introduce a hierarchy of length scales, leading to a critical state. For the nanoindentation at 200 °C, there is no spatial interference between two slip bands, which is corresponding to the evolution of separated trajectorymore » of chaotic behavior« less

  8. Tapping-mode AFM study of tip-induced polymer deformation under geometrical confinement.

    PubMed

    Zhang, Hong; Honda, Yukio; Takeoka, Shinji

    2013-02-05

    The morphological stability of polymer films is critically important to their application as functional materials. The deformation of polymer surfaces on the nanoscale may be significantly influenced by geometrical confinement. Herein, we constructed a mechanically heterogeneous polymer surface by phase separation in a thin polymer film and investigated the deformation behavior of its nanostructure (∼30 nm thickness and ∼100 nm average diameter) with tapping-mode atomic force microscopy. By changing different scan parameters, we could induce deformation localized to the nanostructure in a controllable manner. A quantity called the deformation index is defined and shown to be correlated to energy dissipation by tip-sample interaction. We clarified that the plastic deformation of a polymer on the nanoscale is energy-dependent and is related to the glass-to-rubber transition. The mobility of polymer chains beneath the tapping tip is enhanced, and in the corresponding region a rubberlike deformation with the lateral motion of the tip is performed. The method we developed can provide insight into the geometrical confinement effects on polymer behavior.

  9. Microstructure and Mechanical Properties of Extruded Gamma Met PX

    NASA Technical Reports Server (NTRS)

    Draper, S. L.; Das, G.; Locci, I.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.

    2003-01-01

    A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at %) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.

  10. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads

    PubMed Central

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Krüger, Lutz; Martin, Ulrich

    2018-01-01

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α′-martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading. PMID:29695107

  11. Microstructure and Deformation Response of TRIP-Steel Syntactic Foams to Quasi-Static and Dynamic Compressive Loads.

    PubMed

    Ehinger, David; Weise, Jörg; Baumeister, Joachim; Funk, Alexander; Waske, Anja; Krüger, Lutz; Martin, Ulrich

    2018-04-24

    The implementation of hollow S60HS glass microspheres and Fillite 106 cenospheres in a martensitically transformable AISI 304L stainless steel matrix was realized by means of metal injection molding of feedstock with varying fractions of the filler material. The so-called TRIP-steel syntactic foams were studied with respect to their behavior under quasi-static compression and dynamic impact loading. The interplay between matrix material behavior and foam structure was discussed in relation to the findings of micro-structural investigations, electron back scatter diffraction EBSD phase analyses and magnetic measurements. During processing, the cenospheres remained relatively stable retaining their shape while the glass microspheres underwent disintegration associated with the formation of pre-cracked irregular inclusions. Consequently, the AISI 304L/Fillite 106 syntactic foams exhibited a higher compression stress level and energy absorption capability as compared to the S60HS-containing variants. The α ′ -martensite kinetic of the steel matrix was significantly influenced by material composition, strain rate and arising deformation temperature. The highest ferromagnetic α ′ -martensite phase fraction was detected for the AISI 304L/S60HS batches and the lowest for the TRIP-steel bulk material. Quasi-adiabatic sample heating, a gradual decrease in strain rate and an enhanced degree of damage controlled the mechanical deformation response of the studied syntactic foams under dynamic impact loading.

  12. Orientation dependence of the dislocation microstructure in compressed body-centered cubic molybdenum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, S.; Wang, M.P.; Chen, C., E-mail: chench011-33@163.com

    2014-05-01

    The orientation dependence of the deformation microstructure has been investigated in commercial pure molybdenum. After deformation, the dislocation boundaries of compressed molybdenum can be classified, similar to that in face-centered cubic metals, into three types: dislocation cells (Type 2), and extended planar boundaries parallel to (Type 1) or not parallel to (Type 3) a (110) trace. However, it shows a reciprocal relationship between face-centered cubic metals and body-centered cubic metals on the orientation dependence of the deformation microstructure. The higher the strain, the finer the microstructure is and the smaller the inclination angle between extended planar boundaries and the compressionmore » axis is. - Highlights: • A reciprocal relationship between FCC metals and BCC metals is confirmed. • The dislocation boundaries can be classified into three types in compressed Mo. • The dislocation characteristic of different dislocation boundaries is different.« less

  13. Asymptotic analysis of hierarchical martensitic microstructure

    NASA Astrophysics Data System (ADS)

    Cesana, Pierluigi; Porta, Marcel; Lookman, Turab

    2014-12-01

    We consider a hierarchical nested microstructure, which also contains a point of singularity (disclination) at the origin, observed in lead orthovanadate. We show how to exactly compute the energy cost and associated displacement field within linearized elasticity by enforcing geometric compatibility of strains across interfaces of the three-phase mixture of distortions (variants) in the microstructure. We prove that the mechanical deformation is purely elastic and discuss the behavior of the system close to the origin.

  14. Slurry erosion induced surface nanocrystallization of bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao

    2018-05-01

    Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.

  15. Inelastic Deformation of Metal Matrix Composites. Part 1; Plasticity and Damage Mechanisms

    NASA Technical Reports Server (NTRS)

    Majumdar, B. S.; Newaz, G. M.

    1992-01-01

    The deformation mechanisms of a Ti 15-3/SCS6 (SiC fiber) metal matrix composite (MMC) were investigated using a combination of mechanical measurements and microstructural analysis. The objectives were to evaluate the contributions of plasticity and damage to the overall inelastic response, and to confirm the mechanisms by rigorous microstructural evaluations. The results of room temperature experiments performed on 0 degree and 90 degree systems primarily are reported in this report. Results of experiments performed on other laminate systems and at high temperatures will be provided in a forthcoming report. Inelastic deformation of the 0 degree MMC (fibers parallel to load direction) was dominated by the plasticity of the matrix. In contrast, inelastic deformations of the 90 degree composite (fibers perpendicular to loading direction) occurred by both damage and plasticity. The predictions of a continuum elastic plastic model were compared with experimental data. The model was adequate for predicting the 0 degree response; however, it was inadequate for predicting the 90 degree response largely because it neglected damage. The importance of validating constitutive models using a combination of mechanical measurements and microstructural analysis is pointed out. The deformation mechanisms, and the likely sequence of events associated with the inelastic deformation of MMCs, are indicated in this paper.

  16. Hierarchical structure observation and nanoindentation size effect characterization for a limnetic shell

    NASA Astrophysics Data System (ADS)

    Song, Jingru; Fan, Cuncai; Ma, Hansong; Wei, Yueguang

    2015-06-01

    In the present research, hierarchical structure observation and mechanical property characterization for a type of biomaterial are carried out. The investigated biomaterial is Hyriopsis cumingii, a typical limnetic shell, which consists of two different structural layers, a prismatic "pillar" structure and a nacreous "brick and mortar" structure. The prismatic layer looks like a "pillar forest" with variation-section pillars sized on the order of several tens of microns. The nacreous material looks like a "brick wall" with bricks sized on the order of several microns. Both pillars and bricks are composed of nanoparticles. The mechanical properties of the hierarchical biomaterial are measured by using the nanoindentation test. Hardness and modulus are measured for both the nacre layer and the prismatic layer, respectively. The nanoindentation size effects for the hierarchical structural materials are investigated experimentally. The results show that the prismatic nanostructured material has a higher stiffness and hardness than the nacre nanostructured material. In addition, the nanoindentation size effects for the hierarchical structural materials are described theoretically, by using the trans-scale mechanics theory considering both strain gradient effect and the surface/interface effect. The modeling results are consistent with experimental ones.

  17. Modeling the microstructural changes during hot tandem rolling of AA5 XXX aluminum alloys: Part I. Microstructural evolution

    NASA Astrophysics Data System (ADS)

    Wells, M. A.; Samarasekera, I. V.; Brimacombe, J. K.; Hawbolt, E. B.; Lloyd, D. J.

    1998-06-01

    A comprehensive mathematical model of the hot tandem rolling process for aluminum alloys has been developed. Reflecting the complex thermomechanical and microstructural changes effected in the alloys during rolling, the model incorporated heat flow, plastic deformation, kinetics of static recrystallization, final recrystallized grain size, and texture evolution. The results of this microstructural engineering study, combining computer modeling, laboratory tests, and industrial measurements, are presented in three parts. In this Part I, laboratory measurements of static recrystallization kinetics and final recrystallized grain size are described for AA5182 and AA5052 aluminum alloys and expressed quantitatively by semiempirical equations. In Part II, laboratory measurements of the texture evolution during static recrystallization are described for each of the alloys and expressed mathematically using a modified form of the Avrami equation. Finally, Part III of this article describes the development of an overall mathematical model for an industrial aluminum hot tandem rolling process which incorporates the microstructure and texture equations developed and the model validation using industrial data. The laboratory measurements for the microstructural evolution were carried out using industrially rolled material and a state-of-the-art plane strain compression tester at Alcan International. Each sample was given a single deformation and heat treated in a salt bath at 400 °C for various lengths of time to effect different levels of recrystallization in the samples. The range of hot-working conditions used for the laboratory study was chosen to represent conditions typically seen in industrial aluminum hot tandem rolling processes, i.e., deformation temperatures of 350 °C to 500 °C, strain rates of 0.5 to 100 seconds and total strains of 0.5 to 2.0. The semiempirical equations developed indicated that both the recrystallization kinetics and the final recrystallized

  18. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE PAGES

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.; ...

    2018-03-13

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  19. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    NASA Astrophysics Data System (ADS)

    Krumwiede, D. L.; Yamamoto, T.; Saleh, T. A.; Maloy, S. A.; Odette, G. R.; Hosemann, P.

    2018-06-01

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. This study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior on radiation-damaged samples.

  20. Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krumweide, David L; Yamamoto, Takuya; Saleh, Tarik A.

    Nanoindentation testing has been used for decades to assess materials on a local scale and to obtain fundamental mechanical property parameters. Nuclear materials research often faces the challenge of testing rather small samples due to the hazardous nature, limited space in reactors, and shallow ion-irradiated zones, fostering the need for small-scale mechanical testing (SSMT). As such, correlating the results from SSMT to bulk properties is particularly of interest. Here, this study compares macroscopic tensile test data (yield and flow stresses) to nanoindentation data (hardness) obtained on a number of different neutron-irradiated materials in order to understand the scaling behavior onmore » radiation-damaged samples.« less

  1. Phase transition of AISI type 304L stainless steel induced by severe plastic deformation via cryo-rolling

    NASA Astrophysics Data System (ADS)

    Shit, Gopinath; Bhaskar, Pragna; Ningshen, S.; Dasgupta, A.; Mudali, U. Kamachi; Bhaduri, A. Kumar

    2017-05-01

    The phase transition induced by Severe Plastic Deformation (SPD) was confirmed in metastable AISI type 304L austenitic stainless steel (SS). SPD via cryo-rolling in liquid nitrogen (L-N2) temperature is the adopted route for correlating the phase transition and corrosion resistance. The thickness of the annealed AISI type 304L SS at 1050°C sheet was reduced step by step from 15% to 50% of its initial thickness. The phase changes and phase transformation are qualitatively analyzed by X-Ray Diffraction (XRD) method. During the process, the XRD of each Cryo-Rolled and annealed sample was analyzed and different phases and phase transitions are measured. The investigated AISI type 304L SS by SPD reveals a microstructure of γ-austenite; α'-marternsite and ɛ-martensite formation depending on the percentage of cryo-rolling. The Vickers hardness (HV) of the samples is also measured. The corrosion rate of the annealed sheet and cryo rolled sample was estimated in boiling nitric acid as per ASTM A-262 practice-C test.

  2. Nanoindentation studies of full and empty viral capsids and the effects of capsid protein mutations on elasticity and strength

    NASA Astrophysics Data System (ADS)

    Michel, J. P.; Ivanovska, I. L.; Gibbons, M. M.; Klug, W. S.; Knobler, C. M.; Wuite, G. J. L.; Schmidt, C. F.

    2006-04-01

    The elastic properties of capsids of the cowpea chlorotic mottle virus have been examined at pH 4.8 by nanoindentation measurements with an atomic force microscope. Studies have been carried out on WT capsids, both empty and containing the RNA genome, and on full capsids of a salt-stable mutant and empty capsids of the subE mutant. Full capsids resisted indentation more than empty capsids, but all of the capsids were highly elastic. There was an initial reversible linear regime that persisted up to indentations varying between 20% and 30% of the diameter and applied forces of 0.6-1.0 nN; it was followed by a steep drop in force that is associated with irreversible deformation. A single point mutation in the capsid protein increased the capsid stiffness. The experiments are compared with calculations by finite element analysis of the deformation of a homogeneous elastic thick shell. These calculations capture the features of the reversible indentation region and allow Young's moduli and relative strengths to be estimated for the empty capsids. atomic force microscopy | cowpea chlorotic mottle virus | finite element analysis | biomechanics

  3. Deformation-Induced Precession of a Robot Moving on Curved Space

    NASA Astrophysics Data System (ADS)

    Li, Shengkai; Aydin, Yasemin; Lofaro, Olivia; Rieser, Jennifer; Goldman, Daniel

    Previous studies have demonstrated that passive particles rolling on a deformed surface can mimic aspects of general relativity [Ford et al, AJP, 2015]. However, these systems are dissipative. To explore steady-state dynamics, we study the movement of a self-propelled robot car on a large deformable elastic membrane: a spandex sheet stretched over a metal frame with a diameter of 2.5 m. Two wheels in the rear of the car are differentially-driven by a DC motor, and a caster in the front helps maintain directional stability; in the absence of curvature the car drives straight. A linear actuator attached below the membrane allows for controlled deformation at the center of the membrane. We find that closed elliptic orbits occur when the membrane is highly depressed ( 10 cm). However, when the center is only slightly indented, the elliptical orbits precess at a rate depending on the orbit shape and the depression. Remarkably, this dynamic is well described by the Schwarzschild metric solution, typically used to describe the effects of gravity on bodies orbiting a massive object. Experiments with multiple cars reveal complex interactions that are mediated through car-induced deformations of the membrane.

  4. Three Microstructural Exercises for Students.

    ERIC Educational Resources Information Center

    Means, Winthrop D.

    1986-01-01

    Describes laboratory exercises which demonstrate a new simplified technique for deforming thin samples of crystalline materials on the stage of a petrographic microscope. Discusses how this process allows students to see the development of microstructures resulting from cracking, slipping, thinning, and recrystallization. References and sources of…

  5. Microstructure and Texture Evolution in a Yttrium-Containing ZM31 Alloy: Effect of Pre- and Post-deformation Annealing

    NASA Astrophysics Data System (ADS)

    Tahreen, N.; Zhang, D. F.; Pan, F. S.; Jiang, X. Q.; Li, D. Y.; Chen, D. L.

    2016-12-01

    Microstructure and texture evolution of as-extruded ZM31 magnesium alloys with different amounts of yttrium (Y) during pre- and post-deformation annealing were examined with special attention given to the effect of Y on recrystallization. It was observed that the extruded ZM31 alloys exhibited a basal texture with the basal planes parallel to the extrusion direction (ED). The compression of the extruded alloys in the ED to a strain amount of 10 pct resulted in c-axes of hcp unit cells rotating toward the anti-compression direction due to the occurrence of extension twinning. Annealing of the extruded alloys altered the microstructure and texture, and the subsequent compression after annealing showed a relatively weak texture and a lower degree of twinning. A reverse procedure of pre-compression and subsequent annealing was found to further weaken the texture with a more scattered distribution of orientations and to lead to the vanishing of the original basal texture. With increasing Y content, both the extent of extension twinning during compression and the fraction of recrystallization during annealing decreased due to the role of Y present in the substitutional solid solution and in the second-phase particles, leading to a significant increase in the compressive yield strength.

  6. Holographic investigation of residual deformations induced by a pulsed ion implanter.

    PubMed

    Kaufmann, G H; Feugeas, J N; Marino, B; Galizzi, G E

    1991-01-01

    A new use of holographic interferometry to investigate the residual deformations induced in nitrogen implanted specimens by a plasma focus device is reported. The method is simple and nondestructive. Experimental results obtained for AISI 304 stainless steel specimens are presented.

  7. A Community Database of Quartz Microstructures: Can we make measurements that constrain rheology?

    NASA Astrophysics Data System (ADS)

    Toy, Virginia; Peternell, Mark; Morales, Luiz; Kilian, Ruediger

    2014-05-01

    Rheology can be explored by performing deformation experiments, and by examining resultant microstructures and textures as links to naturally deformed rocks. Certain deformation processes are assumed to result in certain microstructures or textures, of which some might be uniquely indicative, while most cannot be unequivocally used to interpret the deformation mechanism and hence rheology. Despite our lack of a sufficient understanding of microstructure and texture forming processes, huge advances in texture measurements and quantification of microstructural parameters have been made. Unfortunately, there are neither standard procedures nor a common consensus on interpretation of many parameters (e.g. texture, grain size, shape preferred orientation). Textures (crystallographic preferred orientations) have been extensively correlated to the interpretation of deformation mechanisms. For example the strength of textures can be measured either from the orientation distribution function (e.g. the J-index (Bunge, 1983) or texture entropy (Hielscher et al., 2007) or via the intensity of polefigures. However, there are various ways to identify a representative volume, to measure, to process the data and to calculate an odf and texture descriptors, which restricts their use as a comparative and diagnostic measurement. Microstructural parameters such as grain size, grain shape descriptors and fabric descriptors are similarly used to deduce and quantify deformation mechanisms. However there is very little consensus on how to measure and calculate some of these very important parameters, e.g. grain size which makes comparison of a vast amount of precious data in the literature very difficult. We propose establishing a community database of a standard set of such measurements, made using typical samples of different types of quartz rocks through standard methods of microstructural and texture quantification. We invite suggestions and discussion from the community about the

  8. Microstructure study of a severely plastically deformed Mg-Zn-Y alloy by application of low angle annular dark field diffraction contrast imaging.

    PubMed

    Basha, Dudekula Althaf; Rosalie, Julian M; Somekawa, Hidetoshi; Miyawaki, Takashi; Singh, Alok; Tsuchiya, Koichi

    2016-01-01

    Microstructural investigation of extremely strained samples, such as severely plastically deformed (SPD) materials, by using conventional transmission electron microscopy techniques is very challenging due to strong image contrast resulting from the high defect density. In this study, low angle annular dark field (LAADF) imaging mode of scanning transmission electron microscope (STEM) has been applied to study the microstructure of a Mg-3Zn-0.5Y (at%) alloy processed by high pressure torsion (HPT). LAADF imaging advantages for observation of twinning, grain fragmentation, nucleation of recrystallized grains and precipitation on second phase particles in the alloy processed by HPT are highlighted. By using STEM-LAADF imaging with a range of incident angles, various microstructural features have been imaged, such as nanoscale subgrain structure and recrystallization nucleation even from the thicker region of the highly strained matrix. It is shown that nucleation of recrystallized grains starts at a strain level of revolution [Formula: see text] (earlier than detected by conventional bright field imaging). Occurrence of recrystallization of grains by nucleating heterogeneously on quasicrystalline particles is also confirmed. Minimizing all strain effects by LAADF imaging facilitated grain size measurement of [Formula: see text] nm in fully recrystallized HPT specimen after [Formula: see text].

  9. Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel

    NASA Astrophysics Data System (ADS)

    Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn; Alsagabi, Sultan; Butt, Darryl P.; Cole, James I.; Price, Lloyd M.; Shao, Lin

    2015-07-01

    Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ⩾50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.

  10. Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates

    PubMed Central

    Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng

    2013-01-01

    Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228

  11. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    PubMed Central

    Kononova, Olga; Snijder, Joost; Kholodov, Yaroslav; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2016-01-01

    The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams) modeling the particle structure. The beams’ deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F)-deformation (X) spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young’s moduli for Hertzian and bending deformations, and the structural damage dependent beams’ survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications. PMID:26821264

  12. Early arthritis induces disturbances at bone nanostructural level reflected in decreased tissue hardness in an animal model of arthritis

    PubMed Central

    Cascão, Rita; Finnilä, Mikko A. J.; Lopes, Inês P.; Saarakkala, Simo; Zioupos, Peter; Canhão, Helena; Fonseca, João E.

    2018-01-01

    Introduction Arthritis induces joint erosions and skeletal bone fragility. Objectives The main goal of this work was to analyze the early arthritis induced events at bone architecture and mechanical properties at tissue level. Methods Eighty-eight Wistar rats were randomly housed in experimental groups, as follows: adjuvant induced arthritis (AIA) (N = 47) and a control healthy group (N = 41). Rats were monitored during 22 days for the inflammatory score, ankle perimeter and body weight and sacrificed at different time points (11 and 22 days post disease induction). Bone samples were collected for histology, micro computed tomography (micro-CT), 3-point bending and nanoindentation. Blood samples were also collected for bone turnover markers and systemic cytokine quantification. Results At bone tissue level, measured by nanoindentation, there was a reduction of hardness in the arthritic group, associated with an increase of the ratio of bone concentric to parallel lamellae and of the area of the osteocyte lacuna. In addition, increased bone turnover and changes in the microstructure and mechanical properties were observed in arthritic animals, since the early phase of arthritis, when compared with healthy controls. Conclusion We have shown in an AIA rat model that arthritis induces very early changes at bone turnover, structural degradation and mechanical weakness. Bone tissue level is also affected since the early phase of arthritis, characterized by decreased tissue hardness associated with changes in bone lamella organization and osteocyte lacuna surface. These observations highlight the pertinence of immediate control of inflammation in the initial stages of arthritis. PMID:29315314

  13. Rock-Fluid Interactions Under Stress: How Rock Microstructure Controls The Evolution of Porosity and Permeability

    NASA Astrophysics Data System (ADS)

    Vanorio, T.

    2016-12-01

    Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.

  14. Migmatites to mylonites - Crustal deformation mechanisms in the Western Gneiss Region, Norway

    NASA Astrophysics Data System (ADS)

    Lee, A. L.; Torvela, T.; Lloyd, G. E.; Walker, A.

    2016-12-01

    Strain and fluids localise into shear zones while crustal blocks remain comparatively dry, rigid and deform less. However when H2O is present in the crustal blocks they start to melt, deformation becomes more distributed and is no longer strongly localised into the weak shear zones. Using examples from the Western Gneiss Region (WGR), Norway, we show the deformation characteristics when mylonitic shear zones and migmatites coexist. The WGR is the lowest structural level of the Caledonian Orogeny, exposing Silurian to Devonian metamorphism and deformation of the Precambrian crust. WGR is predominantly composed of amphibolite-facies quartzofeldspathic gneiss that has undergone partial melting. This study focuses on the southwestern peninsula of the island of Gurskøy. Over a 1.2 kilometre section there is a diverse deformation sequence of migmatized gneiss, mylonitic shear zones, sillimanite bearing garnet-mica schists, augen gneiss and boudinaged amphibolite dykes resulting in a large competence differences between the lithologies over the area. The strongly deformed mylonitic shear zones extend from 5 to over 100 meters in width, but deformation is also high in the migmatitic layers as shown from S-C fabrics and isoclinal folding of leucratic and restitic layers. Microstructural evidence of dynamic recrystallization, symplectite textures and magmatic flow show deformation is widespread over the peninsula. Strain localisation, melting, and their interactions are shown by a combination of outcrop and quantitative modelling that uses field data, microstructural analysis, crystallographic preferred orientations and numerical Eshelby modelling. Detailed field mapping and microstructural analysis of samples from across the peninsula allows melt quantification and thus an understanding of strain mechanisms when melt is present. This area is important as it shows the heterogeneity of deformation within the partially melted lower crust on the sub-seismic scale.

  15. Localization in Naturally Deformed Systems - the Default State?

    NASA Astrophysics Data System (ADS)

    Clancy White, Joseph

    2017-04-01

    Based on the extensive literature on localized rock deformation, conventional wisdom would interpret it to be a special behaviour within an anticipated background of otherwise uniform deformation. The latter notwithstanding, the rock record is so rife with transient (cyclic), heterogeneous deformation, notably shear localization, as to characterize localization as the anticipated 'normal' behaviour. The corollary is that steady, homogeneous deformation is significantly less common, and if achieved must reflect some special set of conditions that are not representative of the general case. An issue central to natural deformation is then not the existance of localized strain, but rather how the extant deformation processes scale across tectonic phenomena and in turn organize to enable a coherent(?) descripion of Earth deformation. Deformation is fundamentally quantized, discrete (diffusion, glide, crack propagation) and reliant on the defect state of rock-forming minerals. The strain energy distribution that drives thermo-mechanical responses is in the first instance established at the grain-scale where the non-linear interaction of defect-mediated micromechanical processes introduces heterogeneous behaviour described by various gradient theories, and evidenced by the defect microstructures of deformed rocks. Hence, the potential for non-uniform response is embedded within even quasi-uniform, monomineralic materials, seen, for example, in the spatially discrete evolution of dynamic recrystallization. What passes as homogeneous or uniform deformation at various scales is the aggregation of responses at some characteristic dimension at which heterogeneity is not registered or measured. Nevertheless, the aggregate response and associated normalized parameters (strain, strain rate) do not correspond to any condition actually experienced by the deforming material. The more common types of macroscopic heterogeneity promoting localization comprise mechanically contrasting

  16. Experimental study on the deformation microstructures of lawsonite blueschist and implications for seismic anisotropy

    NASA Astrophysics Data System (ADS)

    Choi, S.; Jung, H.

    2017-12-01

    Various seismic anisotropy has been observed in the world, especially along subduction zones, and a part of the seismic anisotropy can be caused by the subducting slab, which is poorly understood. One of the main rocks at the top of the subducting slab in cold subduction zones is lawsonite blueschist, which has been rarely studied experimentally. Since lawsonite blueschist is composed of elastically anisotropic minerals such as glaucophane and lawsonite, development of the lattice preferred orientation (LPO) of these minerals can cause a large seismic anisotropy. Therefore, to understand deformation microstructures (i.e., LPOs) of lawsonite and glaucophane and the resultant seismic anisotropy, we conducted deformation experiments of lawsonite blueschist in simple shear using a modified Griggs apparatus. The experiments were performed under the pressures (P = 1 - 2 GPa), temperatures (T = 230 - 400 °), shear strain (γ = 1 - 4), and shear strain rates (10-6 - 10-4 s-1). LPOs of minerals were determined by SEM/EBSD technique. LPO of glaucophane after experiments at the shear strain (1 < γ ≤ 4.0) showed that the maxima of (110) poles and [100] axes were aligned subnormal to the shear plane and the maximum of [001] axes subparallel to the shear direction. LPO of lawsonite showed that at low strain (γ ≤ 1.4) the maximum of [010] axes were aligned sub-parallel to the shear direction, but at high strain (γ ≥ 2.1) the maximum of [100] axes were aligned sub-parallel to the direction with the [001] axes aligned subnormal to the shear plane. Using the LPO data, seismic properties of each minerals were calculated. Glaucophane showed a high P-wave anisotropy (7.7 - 16.9 %) and relatively low maximum S-wave anisotropy (4.4 - 9.2 %). In contrast, lawsonite showed much higher maximum S-wave anisotropy (8.3 - 20.7 %) than glaucophane, but showed a low P-wave anisotropy in the range of 4.7 - 10.3 %. Our results indicate that seismic anisotropy observed at the top of cold

  17. Nitroprusside inhibits calcium-induced impairment of red blood cell deformability.

    PubMed

    Barodka, Viachaslau; Mohanty, Joy G; Mustafa, Asif K; Santhanam, Lakshmi; Nyhan, Aoibhinn; Bhunia, Anil K; Sikka, Gautam; Nyhan, Daniel; Berkowitz, Dan E; Rifkind, Joseph M

    2014-02-01

    Red blood cell (RBC) deformation is critical for microvascular perfusion and oxygen delivery to tissues. Abnormalities in RBC deformability have been observed in aging, sickle cell disease, diabetes, and preeclampsia. Although nitric oxide (NO) prevents decreases in RBC deformability, the underlying mechanism is unknown. As an experimental model, we used ionophore A23187-mediated calcium influx in RBCs to reduce their deformability and investigated the role of NO donor sodium nitroprusside (SNP) and KCa3.1 (Gardos) channel blockers on RBC deformability (measured as elongation index [EI] by microfluidic ektacytometry). RBC intracellular Ca(2+) and extracellular K(+) were measured by inductively coupled plasma mass spectrometry and potassium ion selective electrode, respectively. SNP treatment of RBCs blocked the Ca(2+) (approx. 10 μmol/L)-induced decrease in RBC deformability (EI 0.34 ± 0.02 vs. 0.09 ± 0.01, control vs. Ca(2+) loaded, p < 0.001; and EI 0.37 ± 0.02 vs. 0.30 ± 0.01, SNP vs. SNP plus Ca(2+) loaded) as well as Ca(2+) influx and K(+) efflux. The SNP effect was similar to that observed after pharmacologic blockade of the KCa3.1 channel (with charybdotoxin or extracellular medium containing isotonic K(+) concentration). In RBCs from KCa3.1(-/-) mice, 10 μmol/L Ca(2+) loading did not decrease cellular deformability. A preliminary attempt to address the molecular mechanism of SNP protection suggests the involvement of cell surface thiols. Our results suggest that nitroprusside treatment of RBCs may protect them from intracellular calcium increase-mediated stiffness, which may occur during microvascular perfusion in diseased states, as well as during RBC storage. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  18. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Jihoon; Pugno, Nicola M.; Ryu, Seunghwa

    2015-09-01

    Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip

  19. Observations on the deformation-induced beta internal friction peak in bcc metals

    NASA Technical Reports Server (NTRS)

    Dicarlo, J. A.

    1974-01-01

    During a study of the effects of electron irradiation on the tungsten alpha mechanism, internal friction data were obtained. The data indicate that the mechanism underlying the beta peak does not possess the relaxation parameters generally associated with a simple dislocation process. The significance of the experimental results in the light of beta observations in other metals is discussed. It is suggested that the beta peaks in deformed bcc metals are the anelastic result of the thermally-activated relaxation of deformation-induced imperfections.

  20. Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults.

    PubMed

    Magnani, Maria Beatrice; Blanpied, Michael L; DeShon, Heather R; Hornbach, Matthew J

    2017-11-01

    To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques.

  1. Discriminating between natural versus induced seismicity from long-term deformation history of intraplate faults

    PubMed Central

    Magnani, Maria Beatrice; Blanpied, Michael L.; DeShon, Heather R.; Hornbach, Matthew J.

    2017-01-01

    To assess whether recent seismicity is induced by human activity or is of natural origin, we analyze fault displacements on high-resolution seismic reflection profiles for two regions in the central United States (CUS): the Fort Worth Basin (FWB) of Texas and the northern Mississippi embayment (NME). Since 2009, earthquake activity in the CUS has increased markedly, and numerous publications suggest that this increase is primarily due to induced earthquakes caused by deep-well injection of wastewater, both flowback water from hydrofracturing operations and produced water accompanying hydrocarbon production. Alternatively, some argue that these earthquakes are natural and that the seismicity increase is a normal variation that occurs over millions of years. Our analysis shows that within the NME, faults deform both Quaternary alluvium and underlying sediments dating from Paleozoic through Tertiary, with displacement increasing with geologic unit age, documenting a long history of natural activity. In the FWB, a region of ongoing wastewater injection, basement faults show deformation of the Proterozoic and Paleozoic units, but little or no deformation of younger strata. Specifically, vertical displacements in the post-Pennsylvanian formations, if any, are below the resolution (~15 m) of the seismic data, far less than expected had these faults accumulated deformation over millions of years. Our results support the assertion that recent FWB earthquakes are of induced origin; this conclusion is entirely independent of analyses correlating seismicity and wastewater injection practices. To our knowledge, this is the first study to discriminate natural and induced seismicity using classical structural geology analysis techniques. PMID:29202029

  2. Effect of Low Cu Amounts and Pre-Deformation on the Precipitation in Al-Mg-Si Alloys

    NASA Astrophysics Data System (ADS)

    Saito, Takeshi; Muraishi, Shinji; Marioara, Calin D.; Holmestad, Randi

    Transmission electron microscopy (TEM) studies were performed on two Al-Mg-Si alloys with low Cu additions (0.01 and 0.10 wt%) in order to investigate the effect of Cu and 10% pre-deformation on precipitate microstructure and its connection to mechanical properties. After 300 minutes aging at 190°C, fine microstructures associated with high hardness were observed in the alloy with 0.10% Cu. Pre-deformation led to heterogeneous distributions of precipitates along dislocations, causing microstructure coarsening. This effect was less pronounced in the alloy with the higher Cu amount.

  3. Motion of Deformable Drops Through Porous Media

    NASA Astrophysics Data System (ADS)

    Zinchenko, Alexander Z.; Davis, Robert H.

    2017-01-01

    This review describes recent progress in the fundamental understanding of deformable drop motion through porous media with well-defined microstructures, through rigorous first-principles hydrodynamical simulations and experiments. Tight squeezing conditions, when the drops are much larger than the pore throats, are particularly challenging numerically, as the drops nearly coat the porous material skeleton with small surface clearance, requiring very high surface resolution in the algorithms. Small-scale prototype problems for flow-induced drop motion through round capillaries and three-dimensional (3D) constrictions between solid particles, and for gravity-induced squeezing through round orifices and 3D constrictions, show how forcing above critical conditions is needed to overcome trapping. Scaling laws for the squeezing time are suggested. Large-scale multidrop/multiparticle simulations for emulsion flow through a random granular material with multiple drop breakup show that the drop phase generally moves faster than the carrier fluid; both phase velocities equilibrate much faster to the statistical steady state than does the drop-size distribution.

  4. Multiscale Characterization of Microstructure in Near-Surface Regions of a 16MnCr5 Gear Wheel After Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Medghalchi, Setareh; Jamebozorgi, Vahid; Bala Krishnan, Arjun; Vincent, Smobin; Salomon, Steffen; Basir Parsa, Alireza; Pfetzing, Janine; Kostka, Aleksander; Li, Yujiao; Eggeler, Gunther; Li, Tong

    2018-05-01

    The dependence of the microstructure on the degree of deformation in near-surface regions of a 16MnCr5 gear wheel after 2.1 × 106 loading cycles has been investigated by x-ray diffraction analysis, transmission electron microscopy, and atom probe tomography. Retained austenite and large martensite plates, along with elongated lamella-like cementite, were present in a less deformed region. Comparatively, the heavily deformed region consisted of a nanocrystalline structure with carbon segregation up to 2 at.% at grain boundaries. Spheroid-shaped cementite, formed at the grain boundaries and triple junctions of the nanosized grains, was enriched with Cr and Mn but depleted with Si. Such partitioning of Cr, Mn, and Si was not observed in the elongated cementite formed in the less deformed zone. This implies that rolling contact loading induced severe plastic deformation as well as a pronounced annealing effect in the active contact region of the toothed gear during cyclic loading.

  5. Competing Grain Boundary and Interior Deformation Mechanisms with Varying Sizes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wei; Gao, Yanfei; Nieh, T. G.

    In typical coarse-grained alloys, the dominant plastic deformations are dislocation gliding or climbing, and material strengths can be tuned by dislocation interactions with grain boundaries, precipitates, solid solutions, and other defects. With the reduction of grain size, the increase of material strengths follows the classic Hall-Petch relationship up to nano-grained materials. Even at room temperatures, nano-grained materials exhibit strength softening, or called the inverse Hall-Petch effect, as grain boundary processes take over as the dominant deformation mechanisms. On the other hand, at elevated temperatures, grain boundary processes compete with grain interior deformation mechanisms over a wide range of the appliedmore » stress and grain sizes. This book chapter reviews and compares the rate equation model and the microstructure-based finite element simulations. The latter explicitly accounts for the grain boundary sliding, grain boundary diffusion and migration, as well as the grain interior dislocation creep. Therefore the explicit finite element method has clear advantages in problems where microstructural heterogeneities play a critical role, such as in the gradient microstructure in shot peening or weldment. Furthermore, combined with the Hall-Petch effect and its breakdown, the above competing processes help construct deformation mechanism maps by extending from the classic Frost-Ashby type to the ones with the dependence of grain size.« less

  6. Deformation-induced splitting of the isoscalar E 0 giant resonance: Skyrme random-phase-approximation analysis

    NASA Astrophysics Data System (ADS)

    Kvasil, J.; Nesterenko, V. O.; Repko, A.; Kleinig, W.; Reinhard, P.-G.

    2016-12-01

    The deformation-induced splitting of isoscalar giant monopole resonance (ISGMR) is systematically analyzed in a wide range of masses covering medium, rare-earth, actinide, and superheavy axial deformed nuclei. The study is performed within the fully self-consistent quasiparticle random-phase-approximation method based on the Skyrme functional. Two Skyrme forces, one with a large (SV-bas) and one with a small (SkP) nuclear incompressibility, are considered. The calculations confirm earlier results that, because of the deformation-induced E 0 -E 2 coupling, the isoscalar E 0 resonance attains a double-peak structure and significant energy upshift. Our results are compared with available analytic estimations. Unlike earlier studies, we get a smaller energy difference between the lower and upper peaks and thus a stronger E 0 -E 2 coupling. This in turn results in more pumping of E 0 strength into the lower peak and more pronounced splitting of ISGMR. We also discuss widths of the peaks and their negligible correlation with deformation.

  7. Thermally induced stresses and deformations in angle-ply composite tubes

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rousseau, Carl Q.

    1987-01-01

    Cure-induced uniform temperature change effects on the stresses, axial expansion, and thermally-induced twist of four specific angle-ply tube designs are discussed with a view to the tubes' use as major space structure components. The stresses and deformations in the tubes are studied as a function of the four designs, the off-axis angle, and the single-material and hybrid reinforcing-material construction used. It is found that tube design has a minor influence on the stresses, axial stiffness, and axial thermal expansion characteristics, which are more directly a function of off-axis angle and material selection; tube design is, however, the primary influence in the definition of thermally-induced twist and torsional stiffness characteristics. None of the designs is free of thermally induced twist.

  8. Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying

    NASA Astrophysics Data System (ADS)

    Park, Dong Jun; Kim, Hyun Gil; Jung, Yang Il; Park, Jung Hwan; Yang, Jae Ho; Koo, Yang Hyun

    2018-06-01

    FeCrAl and Mo layers were cold-sprayed onto a Zr surface, with the Mo layer introduced between the FeCrAl coating and the Zr matrix preventing high-temperature interdiffusion. Microstructural characterization of the first-deposited Mo layer and the Zr matrix immediately below the Mo/Zr interface was performed using transmission electron microscopy, and near-interface elemental distributions were obtained using energy-dispersive X-ray spectroscopy. The deformation of the coated Mo powder induced the formation of microbands and mechanically interlocked nanoscale structures. The mechanical behavior of Zr with a coating layer was compared with those characteristic of conventional Zr samples. The coated sample showed smaller strength reduction in the test conducted at elevated temperature. The hardness and fracture morphology of the Zr matrix near the interface region were investigated to determine the effect of impacting Mo particles on the matrix microstructure. The enhanced hardness and cleavage fracture morphology of the Zr matrix immediately below the Mo/Zr interface indicated the occurrence of localized deformation owing to Mo particle impact.

  9. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  10. Nanoindentation study of bulk zirconium hydrides at elevated temperatures

    DOE PAGES

    Cinbiz, Mahmut Nedim; Balooch, Mehdi; Hu, Xunxiang; ...

    2017-08-02

    Here, the mechanical properties of zirconium hydrides was studied using nano-indentation technique at a temperature range of 25 – 400 °C. Temperature dependency of reduced elastic modulus and hardness of δ- and ε-zirconium hydrides were obtained by conducting nanoindentation experiments on the bulk hydride samples with independently heating capability of indenter and heating stage. The reduced elastic modulus of δ-zirconium hydride (H/Zr ratio =1.61) decreased from ~113 GPa to ~109 GPa while temperature increased from room temperature to 400°C. For ε-zirconium hydrides (H/Zr ratio=1.79), the reduced elastic modulus decreased from 61 GPa to 54 GPa as temperature increased from roommore » temperature to 300 °C. Whereas, hardness of δ-zirconium hydride significantly decreased from 4.1 GPa to 2.41 GPa when temperature increased from room temperature to 400 °C. Similarly, hardness of ε-zirconium hydride decreased from 3.06 GPa to 2.19 GPa with temperature increase from room temperature to 300°C.« less

  11. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints.

    PubMed

    Borba, Natascha Z; Afonso, Conrado R M; Blaga, Lucian; Dos Santos, Jorge F; Canto, Leonardo B; Amancio-Filho, Sergio T

    2017-02-15

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α' martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined.

  12. On the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints

    PubMed Central

    Borba, Natascha Z.; Afonso, Conrado R. M.; Blaga, Lucian; dos Santos, Jorge F.; Canto, Leonardo B.; Amancio-Filho, Sergio T.

    2017-01-01

    In the current work, process-related thermo-mechanical changes in the rivet microstructure, joint local and global mechanical properties, and their correlation with the rivet plastic deformation regime were investigated for Ti-6Al-4V (rivet) and glass-fiber-reinforced polyester (GF-P) friction-riveted joints of a single polymeric base plate. Joints displaying similar quasi-static mechanical performance to conventional bolted joints were selected for detailed characterization. The mechanical performance was assessed on lap shear specimens, whereby the friction-riveted joints were connected with AA2198 gussets. Two levels of energy input were used, resulting in process temperatures varying from 460 ± 130 °C to 758 ± 56 °C and fast cooling rates (178 ± 15 °C/s, 59 ± 15 °C/s). A complex final microstructure was identified in the rivet. Whereas equiaxial α-grains with β-phase precipitated in their grain boundaries were identified in the rivet heat-affected zone, refined α′ martensite, Widmanstätten structures and β-fleck domains were present in the plastically deformed rivet volume. The transition from equiaxed to acicular structures resulted in an increase of up to 24% in microhardness in comparison to the base material. A study on the rivet material flow through microtexture of the α-Ti phase and β-fleck orientation revealed a strong effect of shear stress and forging which induced simple shear deformation. By combining advanced microstructural analysis techniques with local mechanical testing and temperature measurement, the nature of the complex rivet plastic deformational regime could be determined. PMID:28772545

  13. A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo.

    PubMed

    Disney, C M; Lee, P D; Hoyland, J A; Sherratt, M J; Bay, B K

    2018-04-14

    Many biological tissues have a complex hierarchical structure allowing them to function under demanding physiological loading conditions. Structural changes caused by ageing or disease can lead to loss of mechanical function. Therefore, it is necessary to characterise tissue structure to understand normal tissue function and the progression of disease. Ideally intact native tissues should be imaged in 3D and under physiological loading conditions. The current published in situ imaging methodologies demonstrate a compromise between imaging limitations and maintaining the samples native mechanical function. This review gives an overview of in situ imaging techniques used to visualise microstructural deformation of soft tissue, including three case studies of different tissues (tendon, intervertebral disc and artery). Some of the imaging techniques restricted analysis to observational mechanics or discrete strain measurement from invasive markers. Full-field local surface strain measurement has been achieved using digital image correlation. Volumetric strain fields have successfully been quantified from in situ X-ray microtomography (micro-CT) studies of bone using digital volume correlation but not in soft tissue due to low X-ray transmission contrast. With the latest developments in micro-CT showing in-line phase contrast capability to resolve native soft tissue microstructure, there is potential for future soft tissue mechanics research where 3D local strain can be quantified. These methods will provide information on the local 3D micromechanical environment experienced by cells in healthy, aged and diseased tissues. It is hoped that future applications of in situ imaging techniques will impact positively on the design and testing of potential tissue replacements or regenerative therapies. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  14. Improving Tensile and Compressive Properties of an Extruded AZ91 Rod by the Combined Use of Torsion Deformation and Aging Treatment

    PubMed Central

    Song, Bo; Wang, Chunpeng; Guo, Ning; Pan, Hucheng; Xin, Renlong

    2017-01-01

    In this study, AZ91 magnesium alloy rods were used to investigate the effects of torsion deformation on microstructure and subsequent aging behavior. Extruded AZ91 rod has a uniform microstructure and typical fiber texture. Torsion deformation can generate a gradient microstructure on the cross-section of the rod. After torsion, from the center to the edge in the cross-section of the rod, both stored dislocations and area fraction of {10-12} twins gradually increase, and the basal pole of the texture tends to rotate in the ED direction. Direct aging usually generates coarse discontinuous precipitates and fine continuous precipitates simultaneously. Both twin structures and dislocations via torsion deformation can be effective microstructures for the nucleation of continuous precipitates during subsequent aging. Thus, aging after torsion can promote continuous precipitation and generate gradient precipitation characteristics. Both aging treatment and torsion deformation can reduce yield asymmetry, and torsion deformation enhances the aging hardening effect by promoting continuous precipitation. Therefore, combined use of torsion deformation and aging treatment can effectively enhance the yield strength and almost eliminate the yield asymmetry of the present extruded AZ91 rod. Finally, the relevant mechanisms are discussed. PMID:28772638

  15. Effect of pretreatment on rehydration, colour and nanoindentation properties of potato cylinders dried using a mixed-mode solar dryer.

    PubMed

    Dhalsamant, Kshanaprava; Tripathy, Punyadarshini P; Shrivastava, Shanker L

    2017-08-01

    Desirable quality estimation is an important consumer driver for wider acceptability of mixed-mode solar drying of potatoes in food industries. The aim of this study is to characterise rehydration, colour, texture, nanoindentaion and microstructure of dried potato samples and to establish the influence of pre-drying treatment on the above qualities. The water absorption capacity and rehydration ability of solar dried potato were significantly influenced by pretreatment followed by rehydration temperature and sample diameter. The redness index (a*) of pretreated dried samples was lower with simultaneous higher value of yellowness index (b*), chroma (C*) and hue angle (h*). Also, the average nanohardness (H) of pretreated samples increased significantly by 22.64% compared to that of untreated samples. The average reduced modulus (E r ) and Young's modulus (E s ) of dried potato samples were 1.865 GPa and 1.403 GPa, respectively. Moreover, creep displacement of 43.27 nm was traced in the untreated potato samples during a 20 s dwell time under a constant load of 200 µN in the nanoindentation test. Micrographs revealed more uniform pore spaces in pretreated samples. Pretreated, thinner potato samples achieved better quality dried products in terms of rehydration, colour, texture and nanohardness indices with significantly improved microstructure and creep resistance properties. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Microstructural Evolution during the Dynamic Deformation of High Strength Navy Steels

    DTIC Science & Technology

    2008-05-19

    phase particles (Figures 23d,e). These include carbides as well as copper precipitates that are of the order of 10 nm or less in size. These particles ...Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - I pure Fe: Acta Metallurgica 30(1982)323. 22. Y. Inokuti...and B. Cantor, Microstructure and kinetics of martensite transformations in splat-quenched Fe and Fe-Ni alloys - II Fe-Ni alloys : Acta

  17. Microstructures of the Kirsehir Complex, Central Turkey

    NASA Astrophysics Data System (ADS)

    ISIK, V.; Caglayan, A.; Uysal, T.; Bolhar, R.

    2011-12-01

    Turkey is positioned on the boundary between the Eurasian and African/Arabian plates, providing an ideal natural laboratory for learning passive and active earth processes such as deformation, metamorphism, earthquakes and volcanism. Central Turkey historically has played an important role in evolution of the Alpine orogeny. The Kirsehir Complex is one of three Mesozoic-Early Tertiary metamorphic and plutonic mid-crustal basement units exposed in central Turkey. The most common lithology of the metamorphites are the banded gneisses, which are intercalated with layers of schists, amphibolites and quartzite, and marbles representing the structurally the highest metamorphites of the study area. The metamorphites are characterized by multiple folding episodes and overprinting faults (thrust, normal and strike-slip). These metamorphites reached peak metamorphic conditions of upper amphibolite facies, as indicated by local presence of clinopyroxene, sillimanite, hornblende, andalusite and garnet. Later, retrograde greenschist facies conditions were attained characterized by the alteration of feldspar and mafic minerals to muscovite and chlorite/actinolite, respectively. The microstructures of selected minerals can be used to bracket the metamorphic grade during which microstructure formed. Quartz displays undulose extinction, deformation bands, subgrains and deformation lamellae, and recrystallisation. The presence of lobate grain boundaries of quartz indicates that GBM recrystallisation occurred. Undulose extinction and recrystallisation are common in micas. Recrystallisation, core-mantle structures in feldspar, myrmekites in K-feldspars within the gneisses suggest that deformation occurred within the amphibolite facies. Garnet occurs as slightly elliptical porphroclats. Sillimanite is present as fibrolite growing near biotite and microboudinaged. Andalusite porphyroblast/porphroclats are elongate and microboudinaged. Kinematic indicators (asymmetric mantled grains, S

  18. Ferromagnetism induced by point defect in Janus monolayer MoSSe regulated by strain engineering

    NASA Astrophysics Data System (ADS)

    Meng, Ming; Li, Tinghui; Li, Shaofeng; Liu, Kuili

    2018-03-01

    The formation and regulation of magnetism dependent on introduced defects in the Janus MoSSe monolayer has attracted much attention because of its potential application in spintronics. Here, we present a theoretical study of defect formation in the MoSSe monolayer and its introduced magnetism under external strain. The tensile deformation induced by external strain not only leads to decreases in defect formation energy, but also enhances magnetic characteristics. However, as compressed deformation increases, the magnetism in the structure induced by Se or S defects remains unchanged because this microstructural deformation adequately spin polarizes unpaired electrons of neighboring Mo atoms. Our results suggest the use of point defect and strain engineering in the Janus MoSSe monolayer for spintronics applications.

  19. The effects of CuO particle size on microstructure evolution of AgCuO compo-sites in plastic deformation process: finite element simulation and experimental study

    NASA Astrophysics Data System (ADS)

    Li, Zhiguo; Cao, Hanxing; Zhou, Xiaolong; Zhou, Zhaobo; Cao, Jianchun

    2018-04-01

    The effects of CuO with different particle sizes on the microstructure evolution of AgCuO composite material during plastic deformation process were investigated by finite element (FE) analysis and experiment. The results are as follows: with the decrease of CuO particle size, the degree of radial compression and axial elongation of CuO particle cluster increase gradually, as well as the dispersion of CuO also increase. Meanwhile, the shape of CuO particles is constantly transformed from polygonal to fibrous, which makes the number of linear fibrous CuO increase continuously while bent fibrous CuO reduce gradually. By comparing the simulation and experiment results we find that there are four different typical microstructure regions, which caused by the interaction between monoclinic and cubic CuO during the extrusion process.

  20. Microprobe monazite geochronology: new techniques for dating deformation and metamorphism

    NASA Astrophysics Data System (ADS)

    Williams, M.; Jercinovic, M.; Goncalves, P.; Mahan, K.

    2003-04-01

    High-resolution compositional mapping, age mapping, and precise dating of monazite on the electron microprobe are powerful additions to microstructural and petrologic analysis and important tools for tectonic studies. The in-situ nature and high spatial resolution of the technique offer an entirely new level of structurally and texturally specific geochronologic data that can be used to put absolute time constraints on P-T-D paths, constrain the rates of sedimentary, metamorphic, and deformational processes, and provide new links between metamorphism and deformation. New analytical techniques (including background modeling, sample preparation, and interference analysis) have significantly improved the precision and accuracy of the technique and new mapping and image analysis techniques have increased the efficiency and strengthened the correlation with fabrics and textures. Microprobe geochronology is particularly applicable to three persistent microstructural-microtextural problem areas: (1) constraining the chronology of metamorphic assemblages; (2) constraining the timing of deformational fabrics; and (3) interpreting other geochronological results. In addition, authigenic monazite can be used to date sedimentary basins, and detrital monazite can fingerprint sedimentary source areas, both critical for tectonic analysis. Although some monazite generations can be directly tied to metamorphism or deformation, at present, the most common constraints rely on monazite inclusion relations in porphyroblasts that, in turn, can be tied to the deformation and/or metamorphic history. Examples will be presented from deep-crustal rocks of northern Saskatchewan and from mid-crustal rocks from the southwestern USA. Microprobe monazite geochronology has been used in both regions to deconvolute overprinting deformation and metamorphic events and to clarify the interpretation of other geochronologic data. Microprobe mapping and dating are powerful companions to mass spectroscopic