Sample records for nanomaterials display unexpected

  1. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    PubMed Central

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  2. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes.

    PubMed

    Wei, Hui; Wang, Erkang

    2013-07-21

    Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

  3. ASSESSING THE EFFECTS OF PULMONARY EXPOSURE TO NANOMATERIALS

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing a wide diversity of nano-scale (<100 nm) materials displaying unique physicochemical properties for a variety of applications. Nanomaterials may also display unique toxicological properties and routes of exp...

  4. Strain-controlled electrocatalysis on multimetallic nanomaterials

    NASA Astrophysics Data System (ADS)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  5. Nanotherapeutics--product development along the "nanomaterial" discussion.

    PubMed

    Wacker, Matthias G

    2014-03-01

    Nanomaterials have become part of formulation development in the pharmaceutical industry and offer exciting opportunities in the area of targeted drug delivery. But they may also exert unexpected toxicities and potentially pose a threat to human health and the environment. Since the Scientific Committee on Emerging and Newly Identified Health Risks recommended a definition of "nanomaterials" for implementation into the existing and upcoming regulatory framework in the European Union, a discussion about safety requirements of new nanoscale products has emerged. At the same time, the Food and Drug Administration of the United States still observes recent developments in this area. Although the impact on the pharmaceutical product chain is still uncertain, guidelines on risk assessment in food products and cosmetics are available and offer a preview of future developments in the regimens of pharmaceuticals. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  6. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Dufresne, Alain

    2017-12-01

    Unexpected and attractive properties can be observed when decreasing the size of a material down to the nanoscale. Cellulose is no exception to the rule. In addition, the highly reactive surface of cellulose resulting from the high density of hydroxyl groups is exacerbated at this scale. Different forms of cellulose nanomaterials, resulting from a top-down deconstruction strategy (cellulose nanocrystals, cellulose nanofibrils) or bottom-up strategy (bacterial cellulose), are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, the basis for low-density foams, additives in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic and medical products. This paper focuses on the use of cellulose nanomaterials as a filler for the preparation of polymer nanocomposites. Impressive mechanical properties can be obtained for these materials. They obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials, which has not yet been properly resolved and remains a challenge. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  7. Carbon Nanomaterials Interfacing with Neurons: An In vivo Perspective

    PubMed Central

    Baldrighi, Michele; Trusel, Massimo; Tonini, Raffaella; Giordani, Silvia

    2016-01-01

    Developing new tools that outperform current state of the art technologies for imaging, drug delivery or electrical sensing in neuronal tissues is one of the great challenges in neurosciences. Investigations into the potential use of carbon nanomaterials for such applications started about two decades ago. Since then, numerous in vitro studies have examined interactions between these nanomaterials and neurons, either by evaluating their compatibility, as vectors for drug delivery, or for their potential use in electric activity sensing and manipulation. The results obtained indicate that carbon nanomaterials may be suitable for medical therapies. However, a relatively small number of in vivo studies have been carried out to date. In order to facilitate the transformation of carbon nanomaterial into practical neurobiomedical applications, it is essential to identify and highlight in the existing literature the strengths and weakness that different carbon nanomaterials have displayed when probed in vivo. Unfortunately the current literature is sometimes sparse and confusing. To offer a clearer picture of the in vivo studies on carbon nanomaterials in the central nervous system, we provide a systematic and critical review. Hereby we identify properties and behavior of carbon nanomaterials in vivo inside the neural tissues, and we examine key achievements and potentially problematic toxicological issues. PMID:27375413

  8. Strategies to Improve Cancer Photothermal Therapy Mediated by Nanomaterials.

    PubMed

    de Melo-Diogo, Duarte; Pais-Silva, Cleide; Dias, Diana R; Moreira, André F; Correia, Ilídio J

    2017-05-01

    The deployment of hyperthermia-based treatments for cancer therapy has captured the attention of different researchers worldwide. In particular, the application of light-responsive nanomaterials to mediate hyperthermia has revealed promising results in several pre-clinical assays. Unlike conventional therapies, these nanostructures can display a preferential tumor accumulation and thus mediate, upon irradiation with near-infrared light, a selective hyperthermic effect with temporal resolution. Different types of nanomaterials such as those based on gold, carbon, copper, molybdenum, tungsten, iron, palladium and conjugated polymers have been used for this photothermal modality. This progress report summarizes the different strategies that have been applied so far for increasing the efficacy of the photothermal therapeutic effect mediated by nanomaterials, namely those that improve the accumulation of nanomaterials in tumors (e.g. by changing the corona composition or through the functionalization with targeting ligands), increase nanomaterials' intrinsic capacity to generate photoinduced heat (e.g. by synthesizing new nanomaterials or assembling nanostructures) or by optimizing the parameters related to the laser light used in the irradiation process (e.g. by modulating the radiation wavelength). Overall, the development of new strategies or the optimization and combination of the existing ones will surely give a major contribution for the application of nanomaterials in cancer PTT. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. RISK ASSESSMENT OF MANUFACTURED NANOMATERIAL: MORE THAN JUST SIZE

    EPA Science Inventory

    Nanotechnology is a dynamic and enabling technology capable of producing nano-scale materials with unique electrical, catalytic, thermal, mechanical, or imaging properties for a variety of applications. Nanomaterials may display unique toxicological properties and routes of expos...

  10. Deformable devices with integrated functional nanomaterials for wearable electronics.

    PubMed

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-01-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  11. Deformable devices with integrated functional nanomaterials for wearable electronics

    NASA Astrophysics Data System (ADS)

    Kim, Jaemin; Lee, Jongsu; Son, Donghee; Choi, Moon Kee; Kim, Dae-Hyeong

    2016-03-01

    As the market and related industry for wearable electronics dramatically expands, there are continuous and strong demands for flexible and stretchable devices to be seamlessly integrated with soft and curvilinear human skin or clothes. However, the mechanical mismatch between the rigid conventional electronics and the soft human body causes many problems. Therefore, various prospective nanomaterials that possess a much lower flexural rigidity than their bulk counterparts have rapidly established themselves as promising electronic materials replacing rigid silicon and/or compound semiconductors in next-generation wearable devices. Many hybrid structures of multiple nanomaterials have been also developed to pursue both high performance and multifunctionality. Here, we provide an overview of state-of-the-art wearable devices based on one- or two-dimensional nanomaterials (e.g., carbon nanotubes, graphene, single-crystal silicon and oxide nanomembranes, organic nanomaterials and their hybrids) in combination with zero-dimensional functional nanomaterials (e.g., metal/oxide nanoparticles and quantum dots). Starting from an introduction of materials strategies, we describe device designs and the roles of individual ones in integrated systems. Detailed application examples of wearable sensors/actuators, memories, energy devices, and displays are also presented.

  12. Purifying Nanomaterials

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Cheh (Inventor); Hurst, Janet (Inventor)

    2014-01-01

    A method of purifying a nanomaterial and the resultant purified nanomaterial in which a salt, such as ferric chloride, at or near its liquid phase temperature, is used to penetrate and wet the internal surfaces of a nanomaterial to dissolve impurities that may be present, for example, from processes used in the manufacture of the nanomaterial.

  13. Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent Nanomaterials on the Platform Surface

    DTIC Science & Technology

    2016-02-01

    Nanomaterials on the Platform Surface by Bryan Glaz Approved for public release; distribution is unlimited...Research Laboratory Aerodynamic Flow Control by Thermoacoustic Excitation from the Constituent Nanomaterials on the Platform Surface by Bryan Glaz...shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

  14. Advanced nanomaterials

    NASA Astrophysics Data System (ADS)

    Titus, Elby; Ventura, João; Pedro Araújo, João; Campos Gil, João

    2017-12-01

    Nanomaterials provide a remarkably novel outlook to the design and fabrication of materials. The know-how of designing, modelling and fabrication of nanomaterials demands sophisticated experimental and analytical techniques. The major impact of nanomaterials will be in the fields of electronics, energy and medicine. Nanoelectronics hold the promise of improving the quality of life of electronic devices through superior performance, weight reduction and lower power consumption. New energy production systems based on hydrogen, solar and nuclear sources have also benefited immensely from nanomaterials. In modern medicine, nanomaterials research will have great impact on public health care due to better diagnostic methods and design of novel drugs.

  15. Capillary electrophoresis and nanomaterials - Part I: Capillary electrophoresis of nanomaterials.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    Nanomaterials are in analytical science used for a broad range of purposes, covering the area of sample pretreatment as well as separation, detection, and identification of target molecules. This part of the review covers capillary electrophoresis (CE) of nanomaterials and focuses on the application of CE as a method for characterization used during nanomaterial synthesis and modification as well as the monitoring of their properties and interactions with other molecules. The heterogeneity of the nanomaterial family is extremely large. Depending on different definitions of the term Nanomaterial/Nanoparticle, the group may cover metal and polymeric nanoparticles, carbon nanomaterials, liposomes and even dendrimers. Moreover, these nanomaterials are usually subjected to some kind of surface modification or functionalization, which broadens the diversity even more. Not only for purposes of verification of nanomaterial synthesis and batch-to-batch quality check, but also for determination the polydispersity and for functionality characterization on the nanoparticle surface, has CE offered very beneficial capabilities. Finally, the monitoring of interactions between nanomaterials and other (bio)molecules is easily performed by some kind of capillary electromigration technique. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. CE and nanomaterials - Part II: Nanomaterials in CE.

    PubMed

    Adam, Vojtech; Vaculovicova, Marketa

    2017-10-01

    The scope of this two-part review is to summarize publications dealing with CE and nanomaterials together. This topic can be viewed from two broad perspectives, and this article is trying to highlight these two approaches: (i) CE of nanomaterials, and (ii) nanomaterials in CE. The second part aims at summarization of publications dealing with application of nanomaterials for enhancement of CE performance either in terms of increasing the separation resolution or for improvement of the detection. To increase the resolution, nanomaterials are employed as either surface modification of the capillary wall forming open tubular column or as additives to the separation electrolyte resulting in a pseudostationary phase. Moreover, nanomaterials have proven to be very beneficial for increasing also the sensitivity of detection employed in CE or even they enable the detection (e.g., fluorescent tags of nonfluorescent molecules). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. HEALTH RISK ASSESSMENT OF ENGINEERED-MANUFACTURED NANOMATERIALS: RESEARCH CHALLENGES AND PRELIMINARY FINDINGS

    EPA Science Inventory

    Nanotechnology continues to produce a diversity of engineered nanomaterials (NMs), displaying novel physicochemical properties with applications in commercial, consumer, electronic, biomedical, energy, and environmental sectors. Nanotechnology has been referred to as the next in...

  18. Cytotoxicity screening of 23 engineered nanomaterials using a test matrix of ten cell lines and three different assays

    PubMed Central

    2011-01-01

    Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205

  19. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    PubMed Central

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.; Laskin, Julia; Lai, Jinfeng; Mueller, Karl; Munusamy, Prabhakaran; Thevuthasan, Suntharampillai; Wang, Hongfei; Washton, Nancy; Elder, Alison; Baisch, Brittany L.; Karakoti, Ajay; Kuchibhatla, Satyanarayana V. N. T.; Moon, DaeWon

    2013-01-01

    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may

  20. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.

    2013-09-15

    This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of thesemore » often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these

  1. NANOMATERIAL HEALTH EFFECTS RESEARCH CONTRIBUTES TO RISK MANAGEMENT STRATEGIES THROUGH THE RISK ASSESSMENT PARADIGM

    EPA Science Inventory

    Nanotechnology continues to produce a diversity of engineered nanomaterials displaying novel physicochemical properties with applications in commercial, consumer, electronic, biomedical, energy, and environmental sectors. Nanotechnology has been referred to as the next industrial...

  2. Nanomaterial disposal by incineration.

    PubMed

    Holder, Amara L; Vejerano, Eric P; Zhou, Xinzhe; Marr, Linsey C

    2013-09-01

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which nanomaterials may enter incinerator waste streams and the fate of these nanomaterials during the incineration process. Although the literature on incineration of nanomaterials is scarce, results from studies of their behavior at high temperature or in combustion environments for other applications can help predict their fate within an incinerator. Preliminary evidence suggests nanomaterials may catalyze the formation or destruction of combustion by-products. Depending on their composition, nanomaterials may undergo physical and chemical transformations within the incinerator, impacting their partitioning within the incineration system (e.g., bottom ash, fly ash) and the effectiveness of control technology for removing them. These transformations may also drastically affect nanomaterial transport and impacts in the environment. Current regulations on incinerator emissions do not specifically address nanomaterials, but limits on particle and metal emissions may prove somewhat effective at reducing the release of nanomaterials in incinerator effluent. Control technology used to meet these regulations, such as fabric filters, electrostatic precipitators, and wet electrostatic scrubbers, are expected to be at least partially effective at removing nanomaterials from incinerator flue gas.

  3. Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery

    PubMed Central

    Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin

    2014-01-01

    Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171

  4. Molecular toxicity of nanomaterials.

    PubMed

    Chang, Xue-Ling; Yang, Sheng-Tao; Xing, Gengmei

    2014-10-01

    With the rapid developments in the fields of nanoscience and nanotechnlogy, more and more nanomaterials and their based consumer products have been used into our daily life. The safety concerns of nanomaterials have been well recognized by the scientific community and the public. Molecular mechanism of interactions between nanomaterials and biosystems is the most essential topic and final core of the biosafety. In the last two decades, nanotoxicology developed very fast and toxicity phenomena of nanomaterials have been reported. To achieve better understanding and detoxication of nanomaterials, thorough studies of nanotoxicity at molecular level are important. The interactions between nanomaterials and biomolecules have been widely investigated as the first step toward the molecular nanotoxicology. The consequences of such interactions have been discussed in the literature. Besides this, the chemical mechanism of nanotoxicology is gaining more attention, which would lead to a better design of nontoxic nanomaterials. In this review, we focus on the molecular nanotoxicology and explore the toxicity of nanomaterials at molecular level. The molecular level studies of nanotoxicology are summarized and the published nanotoxicological data are revisited.

  5. Electrodynamic Arrays Having Nanomaterial Electrodes

    NASA Technical Reports Server (NTRS)

    Trigwell, Steven (Inventor); Biris, Alexandru S. (Inventor); Calle, Carlos I. (Inventor)

    2013-01-01

    An electrodynamic array of conductive nanomaterial electrodes and a method of making such an electrodynamic array. In one embodiment, a liquid solution containing nanomaterials is deposited as an array of conductive electrodes on a substrate, including rigid or flexible substrates such as fabrics, and opaque or transparent substrates. The nanomaterial electrodes may also be grown in situ. The nanomaterials may include carbon nanomaterials, other organic or inorganic nanomaterials or mixtures.

  6. Price tag in nanomaterials?

    NASA Astrophysics Data System (ADS)

    Gkika, D. A.; Vordos, N.; Nolan, J. W.; Mitropoulos, A. C.; Vansant, E. F.; Cool, P.; Braet, J.

    2017-05-01

    With the evolution of the field of nanomaterials in the past number of years, it has become apparent that it will be key to future technological developments. However, while there are unlimited research undertakings on nanomaterials, limited research results on nanomaterial costs exist; all in spite of the generous funding that nanotechnology projects have received. There has recently been an exponential increase in the number of studies concerning health-related nanomaterials, considering the various medical applications of nanomaterials that drive medical innovation. This work aims to analyze the effect of the cost factor on acceptability of health-related nanomaterials independently or in relation to material toxicity. It appears that, from the materials studied, those used for cancer treatment applications are more expensive than the ones for drug delivery. The ability to evaluate cost implications improves the ability to undertake research mapping and develop opinions on nanomaterials that can drive innovation.

  7. Colloidal nanomaterial-based immunoassay.

    PubMed

    Teste, Bruno; Descroix, Stephanie

    2012-06-01

    Nanomaterials have been widely developed for their use in nanomedicine, especially for immunoassay-based diagnosis. In this review we focus on the use of nanomaterials as a nanoplatform for colloidal immunoassays. While conventional heterogeneous immunoassays suffer from mass transfer limitations and consequently long assay time, colloidal immunosupports allow target capture in the entire volume, thus speeding up reaction kinetics and shortening assay time. Owing to their wide range of chemical and physical properties, nanomaterials are an interesting candidate for immunoassay development. The most popular colloidal nanomaterials for colloidal immunoassays will be discussed, as well as their influence on immune reactions. Recent advances in nanomaterial applications for different formats of immunoassays will be reported, such as nanomaterial-based indirect immunoassays, optical-based agglutination immunoassays, resonance energy transfer-based immunoassays and magnetic relaxation-based immunoassays. Finally, the future of using nanomaterials for homogeneous immunoassays dedicated to clinical diagnosis will be discussed.

  8. Genotoxicity investigations on nanomaterials.

    PubMed

    Oesch, Franz; Landsiedel, Robert

    2012-07-01

    This review is based on the lecture presented at the April 2010 nanomaterials safety assessment Postsatellite to the 2009 EUROTOX Meeting and summarizes genotoxicity investigations on nanomaterials published in the open scientific literature (up to 2008). Special attention is paid to the relationship between particle size and positive versus negative outcome, as well as the dependence of the outcome on the test used. Salient conclusions and outstanding recommendations emerging from the information summarized in this review are as follows: recognize that nanomaterials are not all the same; therefore know and document what nanomaterial has been tested and in what form; take nanomaterials specific properties into account; in order to make your results comparable with those of others and on other nanomaterials: use or at least include in your studies standardized methods; use in vivo studies to put in vitro results into perspective; take uptake and distribution of the nanomaterial into account; and in order to become able to make extrapolations to risk for human: learn about the mechanism of nanomaterials genotoxic effects. Past experience with standard non-nanosubstances already had shown that mechanisms of genotoxic effects can be complex and their elucidation can be demanding, while there often is an immediate need to assess the genotoxic hazard. Thus, a practical and pragmatic approach to genotoxicity investigations of novel nanomaterials is the use of a battery of standard genotoxicity testing methods covering a wide range of mechanisms. Application of these standard methods to nanomaterials demands, however, adaptations, and the interpretation of results from the genotoxicity testing of nanomaterials needs additional considerations exceeding those used for standard size materials.

  9. Cooperative nanomaterials systems for cancer diagnosis and therapeutics

    NASA Astrophysics Data System (ADS)

    Park, Ji Ho

    The unique electromagnetic and biologic properties of nanomaterials are being harnessed to build powerful new medical technologies. Particularly, there have been recently increasing interests in cancer nanotechnology, wherein nanomaterials play an important role in ultrasensitive imaging, targeting, and therapy of cancer. However, these nanomaterials typically function as individual units and are designed to independently perform their tasks. In this dissertation, new cooperative nanosystems consisting of two distinct nanomaterials that work together to target, identify, or treat tumors in vivo were studied. In the first two chapters, the synthesis of worm-shaped dextran-coated iron oxide nanoparticles (nanoworms, NW) exhibiting substantial in vivo circulation times and significant tumor targeting when coated with tumor-homing peptides were studied. NWs are also found to display a greater magnetic resonance (MR) response than the spherical nanoparticles. Next, two types of multifunctional nanoparticles were fabricated for simultaneous detection and treatment of cancer. Micellar hybrid nanoparticles (MHN) that contain magnetic nanoparticles, quantum dots, and an anti-cancer drug doxorubicin (DOX) within a single PEG-modified phospholipid micelle were first prepared. Simultaneous multimodal imaging (MR and fluorescence) and targeted drug delivery in vitro and in vivo was performed using DOX-incorporated targeted MHN. Secondly, luminescent porous silicon nanoparticles (LPSINP) that were drug-loadable, biodegradable and relatively non-toxic were prepared. In contrast to most inorganic nanomaterials, LPSINP were degraded in vivo in a relatively short time with no noticeable toxicity. The clearance and degradation of intravenously injected LPSINP in the bladder, liver, and spleen were established by whole-body fluorescence imaging. Finally, two types of cooperative nanomaterials systems to amplify targeting and deliver drugs efficiently to regions of tumor invasion were

  10. Characterisation of nanomaterial hydrophobicity using engineered surfaces

    NASA Astrophysics Data System (ADS)

    Desmet, Cloé; Valsesia, Andrea; Oddo, Arianna; Ceccone, Giacomo; Spampinato, Valentina; Rossi, François; Colpo, Pascal

    2017-03-01

    Characterisation of engineered nanomaterials (NMs) is of outmost importance for the assessment of the potential risks arising from their extensive use. NMs display indeed a large variety of physico-chemical properties that drastically affect their interaction with biological systems. Among them, hydrophobicity is an important property that is nevertheless only slightly covered by the current physico-chemical characterisation techniques. In this work, we developed a method for the direct characterisation of NM hydrophobicity. The determination of the nanomaterial hydrophobic character is carried out by the direct measurement of the affinity of the NMs for different collectors. Each collector is an engineered surface designed in order to present specific surface charge and hydrophobicity degrees. Being thus characterised by a combination of surface energy components, the collectors enable the NM immobilisation with surface coverage in relation to their hydrophobicity. The experimental results are explained by using the extended DLVO theory, which takes into account the hydrophobic forces acting between NMs and collectors.

  11. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets.

    PubMed

    Kim, Jeongho; Yu, Il Je

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace.

  12. National Survey of Workplaces Handling and Manufacturing Nanomaterials, Exposure to and Health Effects of Nanomaterials, and Evaluation of Nanomaterial Safety Data Sheets

    PubMed Central

    2016-01-01

    A national survey on workplace environment nanomaterial handling and manufacturing was conducted in 2014. Workplaces relevant to nanomaterials were in the order of TiO2 (91), SiO2 (88), carbon black (84), Ag (35), Al2O3 (35), ZnO (34), Pb (33), and CeO2 (31). The survey results indicated that the number of workplaces handling or manufacturing nanomaterials was 340 (0.27% of total 126,846) workplaces. The number of nanomaterials used and products was 546 (1.60 per company) and 583 (1.71 per company), respectively. For most workplaces, the results on exposure to hazardous particulate materials, including nanomaterials, were below current OELs, yet a few workplaces were above the action level. As regards the health status of workers, 9 workers were diagnosed with a suspected respiratory occupational disease, where 7 were recommended for regular follow-up health monitoring. 125 safety data sheets (SDSs) were collected from the nanomaterial-relevant workplaces and evaluated for their completeness and reliability. Only 4 CNT SDSs (3.2%) included the term nanomaterial, while most nanomaterial SDSs were not regularly updated and lacked hazard information. When taken together, the current analysis provides valuable national-level information on the exposure and health status of workers that can guide the next policy steps for nanomaterial management in the workplace. PMID:27556041

  13. Intracellular Signal Modulation by Nanomaterials

    PubMed Central

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2016-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive Oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can crucially affect the cytotoxicity of nanomaterials and membrane-dependent signaling pathways can be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future. PMID:24683030

  14. Intracellular signal modulation by nanomaterials.

    PubMed

    Hussain, Salik; Garantziotis, Stavros; Rodrigues-Lima, Fernando; Dupret, Jean-Marie; Baeza-Squiban, Armelle; Boland, Sonja

    2014-01-01

    A thorough understanding of the interactions of nanomaterials with biological systems and the resulting activation of signal transduction pathways is essential for the development of safe and consumer friendly nanotechnology. Here we present an overview of signaling pathways induced by nanomaterial exposures and describe the possible correlation of their physicochemical characteristics with biological outcomes. In addition to the hierarchical oxidative stress model and a review of the intrinsic and cell-mediated mechanisms of reactive oxygen species (ROS) generating capacities of nanomaterials, we also discuss other oxidative stress dependent and independent cellular signaling pathways. Induction of the inflammasome, calcium signaling, and endoplasmic reticulum stress are reviewed. Furthermore, the uptake mechanisms can be of crucial importance for the cytotoxicity of nanomaterials and membrane-dependent signaling pathways have also been shown to be responsible for cellular effects of nanomaterials. Epigenetic regulation by nanomaterials, effects of nanoparticle-protein interactions on cell signaling pathways, and the induction of various cell death modalities by nanomaterials are described. We describe the common trigger mechanisms shared by various nanomaterials to induce cell death pathways and describe the interplay of different modalities in orchestrating the final outcome after nanomaterial exposures. A better understanding of signal modulations induced by nanomaterials is not only essential for the synthesis and design of safer nanomaterials but will also help to discover potential nanomedical applications of these materials. Several biomedical applications based on the different signaling pathways induced by nanomaterials are already proposed and will certainly gain a great deal of attraction in the near future.

  15. ECOTOXICOLOGY OF NANOMATERIALS

    EPA Science Inventory

    An overview of issues associated with potential ecological toxicity of nanomaterials with research needs outlined, current literature reviewed and discussion of nanomaterial toxicity relative to concerns that EPA and state risk assessors might have.

  16. Recent advances in exploitation of nanomaterial for arsenic removal from water: a review

    NASA Astrophysics Data System (ADS)

    Wong, WeiWen; Wong, H. Y.; Badruzzaman, A. Borhan M.; Goh, H. H.; Zaman, Mukter

    2017-01-01

    Recently, increasing research efforts have been made to exploit the enormous potential of nanotechnology and nanomaterial in the application of arsenic removal from water. As a result, there are myriad of types of nanomaterials being developed and studied for their arsenic removal capabilities. Nevertheless, challenges such as having a complete understanding of the material properties and removal mechanism make it difficult for researchers to engineer nanomaterials that are best suited for specific water treatment applications. In this review paper, a comprehensive review will be conducted on several selected categories of nanomaterials that possess promising prospects in arsenic removal application. The synthesis process, material properties, as well as arsenic removal performance and removal mechanisms of each of these nanomaterials will be discussed in detail. Fe-based nanomaterials, particularly iron oxide nanoparticles, have displayed advantages in arsenic removal due to their super-paramagnetic property. On the other hand, TiO2-based nanomaterials are the best candidates as photocatalytic arsenic removal agents, having been reported to have more than 200-fold increase in adsorption capacity under UV light irradiation. Zr-based nanomaterials have among the largest BET active area for adsorption—up to 630 m2 g-1—and it has been reported that amorphous ZrO2 performs better than crystalline ZrO2 nanoparticles, having about 1.77 times higher As(III) adsorption capacity. Although Cu-based nanomaterials are relatively uncommon as nano-adsorbents for arsenic in water, recent studies have demonstrated their potential in arsenic removal. CuO nanoparticles synthesized by Martinson et al were reported to have adsorption capacities up to 22.6 mg g-1 and 26.9 mg g-1 for As(V) and As(III) respectively. Among the nanomaterials that have been reviewed in this study, Mg-based nanomaterials were reported to have the highest maximum adsorption capacities for As(V) and As

  17. Nanomaterials in preventive dentistry

    NASA Astrophysics Data System (ADS)

    Hannig, Matthias; Hannig, Christian

    2010-08-01

    The prevention of tooth decay and the treatment of lesions and cavities are ongoing challenges in dentistry. In recent years, biomimetic approaches have been used to develop nanomaterials for inclusion in a variety of oral health-care products. Examples include liquids and pastes that contain nano-apatites for biofilm management at the tooth surface, and products that contain nanomaterials for the remineralization of early submicrometre-sized enamel lesions. However, the treatment of larger visible cavities with nanomaterials is still at the research stage. Here, we review progress in the development of nanomaterials for different applications in preventive dentistry and research, including clinical trials.

  18. Recent progress in boron nanomaterials

    PubMed Central

    Kondo, Takahiro

    2017-01-01

    Abstract Various types of zero, one, and two-dimensional boron nanomaterials such as nanoclusters, nanowires, nanotubes, nanobelts, nanoribbons, nanosheets, and monolayer crystalline sheets named borophene have been experimentally synthesized and identified in the last 20 years. Owing to their low dimensionality, boron nanomaterials have different bonding configurations from those of three-dimensional bulk boron crystals composed of icosahedra or icosahedral fragments. The resulting intriguing physical and chemical properties of boron nanomaterials are fascinating from the viewpoint of material science. Moreover, the wide variety of boron nanomaterials themselves could be the building blocks for combining with other existing nanomaterials, molecules, atoms, and/or ions to design and create materials with new functionalities and properties. Here, the progress of the boron nanomaterials is reviewed and perspectives and future directions are described. PMID:29152014

  19. Procedure and information displays in advanced nuclear control rooms: experimental evaluation of an integrated design.

    PubMed

    Chen, Yue; Gao, Qin; Song, Fei; Li, Zhizhong; Wang, Yufan

    2017-08-01

    In the main control rooms of nuclear power plants, operators frequently have to switch between procedure displays and system information displays. In this study, we proposed an operation-unit-based integrated design, which combines the two displays to facilitate the synthesis of information. We grouped actions that complete a single goal into operation units and showed these operation units on the displays of system states. In addition, we used different levels of visual salience to highlight the current unit and provided a list of execution history records. A laboratory experiment, with 42 students performing a simulated procedure to deal with unexpected high pressuriser level, was conducted to compare this design against an action-based integrated design and the existing separated-displays design. The results indicate that our operation-unit-based integrated design yields the best performance in terms of time and completion rate and helped more participants to detect unexpected system failures. Practitioner Summary: In current nuclear control rooms, operators frequently have to switch between procedure and system information displays. We developed an integrated design that incorporates procedure information into system displays. A laboratory study showed that the proposed design significantly improved participants' performance and increased the probability of detecting unexpected system failures.

  20. Nanoparticle Selective Laser Processing for a Flexible Display Fabrication

    NASA Astrophysics Data System (ADS)

    Seung Hwan Ko,; Heng Pan,; Daeho Lee,; Costas P. Grigoropoulos,; Hee K. Park,

    2010-05-01

    To demonstrate a first step for a novel fabrication method of a flexible display, nanomaterial based laser processing schemes to demonstrate organic light emitting diode (OLED) pixel transfer and organic field effect transistor (OFET) fabrication on a polymer substrate without using any conventional vacuum or photolithography processes were developed. The unique properties of nanomaterials allow laser induced forward transfer of organic light emitting material at low laser energy while maintaining good fluorescence and also allow high resolution transistor electrode patterning at plastic compatible low temperature. These novel processes enable an environmentally friendly and cost effective process as well as a low temperature manufacturing sequence to realize inexpensive, large area, flexible electronics on polymer substrates.

  1. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications.

    PubMed

    Li, Xuanhua; Zhu, Jinmeng; Wei, Bingqing

    2016-06-07

    Hybrid nanostructures composed of graphene or other two-dimensional (2D) nanomaterials and plasmonic metal components have been extensively studied. The unusual properties of 2D materials are associated with their atomically thin thickness and 2D morphology, and many impressive structures enable the metal nanomaterials to establish various interesting hybrid nanostructures with outstanding plasmonic properties. In addition, the hybrid nanostructures display unique optical characteristics that are derived from the close conjunction of plasmonic optical effects and the unique physicochemical properties of 2D materials. More importantly, the hybrid nanostructures show several plasmonic electrical effects including an improved photogeneration rate, efficient carrier transfer, and a plasmon-induced "hot carrier", playing a significant role in enhancing device performance. They have been widely studied for plasmon-enhanced optical signals, photocatalysis, photodetectors (PDs), and solar cells. In this review, the developments in the field of metal/2D hybrid nanostructures are comprehensively described. Preparation of hybrid nanostructures is first presented according to the 2D material type, as well as the metal nanomaterial morphology. The plasmonic properties and the enabled applications of the hybrid nanostructures are then described. Lastly, possible future research in this promising field is discussed.

  2. Catalytic applications of bio-inspired nanomaterials

    NASA Astrophysics Data System (ADS)

    Pacardo, Dennis Kien Balaong

    The biomimetic synthesis of Pd nanoparticles was presented using the Pd4 peptide, TSNAVHPTLRHL, isolated from combinatorial phage display library. Using this approach, nearly monodisperse and spherical Pd nanoparticles were generated with an average diameter of 1.9 +/- 0.4 nm. The peptide-based nanocatalyst were employed in the Stille coupling reaction under energy-efficient and environmentally friendly reaction conditions of aqueous solvent, room temperature and very low catalyst loading. To this end, the Pd nanocatalyst generated high turnover frequency (TOF) value and quantitative yields using ≥ 0.005 mol% Pd as well as catalytic activities with different aryl halides containing electron-withdrawing and electron-donating groups. The Pd4-capped Pd nanoparticles followed the atom-leaching mechanism and were found to be selective with respect to substrate identity. On the other hand, the naturally-occurring R5 peptide (SSKKSGSYSGSKGSKRRIL) was employed in the synthesis of biotemplated Pd nanomaterials which showed morphological changes as a function of Pd:peptide ratio. TOF analysis for hydrogenation of olefinic alcohols showed similar catalytic activity regardless of nanomorphology. Determination of catalytic properties of these bio-inspired nanomaterials are important as they serve as model system for alternative green catalyst with applications in industrially important transformations.

  3. Microtubule-based nanomaterials: Exploiting nature's dynamic biopolymers

    DOE PAGES

    Bachand, George D.; Stevens, Mark J.; Spoerke, Erik David

    2015-04-09

    For more than a decade now, biomolecular systems have served as an inspiration for the development of synthetic nanomaterials and systems that are capable of reproducing many of unique and emergent behaviors of living systems. In addition, one intriguing element of such systems may be found in a specialized class of proteins known as biomolecular motors that are capable of performing useful work across multiple length scales through the efficient conversion of chemical energy. Microtubule (MT) filaments may be considered within this context as their dynamic assembly and disassembly dissipate energy, and perform work within the cell. MTs are onemore » of three cytoskeletal filaments in eukaryotic cells, and play critical roles in a range of cellular processes including mitosis and vesicular trafficking. Based on their function, physical attributes, and unique dynamics, MTs also serve as a powerful archetype of a supramolecular filament that underlies and drives multiscale emergent behaviors. In this review, we briefly summarize recent efforts to generate hybrid and composite nanomaterials using MTs as biomolecular scaffolds, as well as computational and synthetic approaches to develop synthetic one-dimensional nanostructures that display the enviable attributes of the natural filaments.« less

  4. How Do Enzymes 'Meet' Nanoparticles and Nanomaterials?

    PubMed

    Chen, Ming; Zeng, Guangming; Xu, Piao; Lai, Cui; Tang, Lin

    2017-11-01

    Enzymes are fundamental biological catalysts responsible for biological regulation and metabolism. The opportunity for enzymes to 'meet' nanoparticles and nanomaterials is rapidly increasing due to growing demands for applications in nanomaterial design, environmental monitoring, biochemical engineering, and biomedicine. Therefore, understanding the nature of nanomaterial-enzyme interactions is becoming important. Since 2014, enzymes have been used to modify, degrade, or make nanoparticles/nanomaterials, while numerous nanoparticles/nanomaterials have been used as materials for enzymatic immobilization and biosensors and as enzyme mimicry. Among the various nanoparticles and nanomaterials, metal nanoparticles and carbon nanomaterials have received extensive attention due to their fascinating properties. This review provides an overview about how enzymes meet nanoparticles and nanomaterials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Cellulose nanomaterials in water treatment technologies.

    PubMed

    Carpenter, Alexis Wells; de Lannoy, Charles-François; Wiesner, Mark R

    2015-05-05

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials' potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials' beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization.

  6. Toxicity evaluations of various carbon nanomaterials.

    PubMed

    Uo, Motohiro; Akasaka, Tsukasa; Watari, Fumio; Sato, Yoshinori; Tohji, Kazuyuki

    2011-01-01

    After the discovery of fullerene and carbon nanotubes, various carbon nanomaterials were discovered or synthesized. The carbon nanomaterials have remarkable properties, different from bulk materials with the same chemical composition, and are therefore useful for industrial applications. However, the toxicity of nanomaterials may also differ from that of the bulk materials; this difference poses a concern. The physical similarity of nanomaterials to asbestos has led to evaluations for toxicity by many researchers using various methods. In this review, we compile and compare the toxicity evaluations of each carbon nanomaterial.

  7. Radioactive Nanomaterials for Multimodality Imaging

    PubMed Central

    Chen, Daiqin; Dougherty, Casey A.; Yang, Dongzhi; Wu, Hongwei; Hong, Hao

    2016-01-01

    Nuclear imaging techniques, including primarily positron emission tomography (PET) and single-photon emission computed tomography (SPECT), can provide quantitative information for a biological event in vivo with ultra-high sensitivity, however, the comparatively low spatial resolution is their major limitation in clinical application. By convergence of nuclear imaging with other imaging modalities like computed tomography (CT), magnetic resonance imaging (MRI) and optical imaging, the hybrid imaging platforms can overcome the limitations from each individual imaging technique. Possessing versatile chemical linking ability and good cargo-loading capacity, radioactive nanomaterials can serve as ideal imaging contrast agents. In this review, we provide a brief overview about current state-of-the-art applications of radioactive nanomaterials in the circumstances of multimodality imaging. We present strategies for incorporation of radioisotope(s) into nanomaterials along with applications of radioactive nanomaterials in multimodal imaging. Advantages and limitations of radioactive nanomaterials for multimodal imaging applications are discussed. Finally, a future perspective of possible radioactive nanomaterial utilization is presented for improving diagnosis and patient management in a variety of diseases. PMID:27227167

  8. Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules.

    PubMed

    Chen, Ran; Riviere, Jim E

    2017-01-01

    Quantitative analysis of the interactions between nanomaterials and their surrounding environment is crucial for safety evaluation in the application of nanotechnology as well as its development and standardization. In this chapter, we demonstrate the importance of the adsorption of surrounding molecules onto the surface of nanomaterials by forming biocorona and thus impact the bio-identity and fate of those materials. We illustrate the key factors including various physical forces in determining the interaction happening at bio-nano interfaces. We further discuss the mathematical endeavors in explaining and predicting the adsorption phenomena, and propose a new statistics-based surface adsorption model, the Biological Surface Adsorption Index (BSAI), to quantitatively analyze the interaction profile of surface adsorption of a large group of small organic molecules onto nanomaterials with varying surface physicochemical properties, first employing five descriptors representing the surface energy profile of the nanomaterials, then further incorporating traditional semi-empirical adsorption models to address concentration effects of solutes. These Advancements in surface adsorption modelling showed a promising development in the application of quantitative predictive models in biological applications, nanomedicine, and environmental safety assessment of nanomaterials.

  9. Nanomaterials and Global Sustainability.

    PubMed

    Hamers, Robert J

    2017-03-21

    Nanomaterials provide tremendous opportunities to advance human welfare in many areas including energy storage, catalysis, photovoltaic energy conversion, environmental remediation, and agriculture. As nanomaterials become incorporated into commercial processes and consumer products in increasing amounts, it will be essential to develop an understanding of how these materials interact with the environment. The broad spectrum and complexity of nanomaterials drive a need for molecular-level design rules. Ultimately a grand challenge is to use the power of chemistry to ensure that nanoenabled technologies can come to fruition in an environmentally benign manner.

  10. Nanomaterials and Retinal Toxicity

    EPA Science Inventory

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature an...

  11. Pathophysiologic mechanisms of biomedical nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liming, E-mail: wangliming@ihep.ac.cn; Chen, Chunying, E-mail: chenchy@nanoctr.cn

    Nanomaterials (NMs) have been widespread used in biomedical fields, daily consuming, and even food industry. It is crucial to understand the safety and biomedical efficacy of NMs. In this review, we summarized the recent progress about the physiological and pathological effects of NMs from several levels: protein-nano interface, NM-subcellular structures, and cell–cell interaction. We focused on the detailed information of nano-bio interaction, especially about protein adsorption, intracellular trafficking, biological barriers, and signaling pathways as well as the associated mechanism mediated by nanomaterials. We also introduced related analytical methods that are meaningful and helpful for biomedical effect studies in the future.more » We believe that knowledge about pathophysiologic effects of NMs is not only significant for rational design of medical NMs but also helps predict their safety and further improve their applications in the future. - Highlights: • Rapid protein adsorption onto nanomaterials that affects biomedical effects • Nanomaterials and their interaction with biological membrane, intracellular trafficking and specific cellular effects • Nanomaterials and their interaction with biological barriers • The signaling pathways mediated by nanomaterials and related biomedical effects • Novel techniques for studying translocation and biomedical effects of NMs.« less

  12. Self-assembled nanomaterials for photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  13. Antimicrobial and biocompatible properties of nanomaterials.

    PubMed

    Ul-Islam, M; Shehzad, A; Khan, S; Khattak, W A; Ullah, M W; Park, J K

    2014-01-01

    The rapid development of drug-resistant characteristics in pathogenic viral, bacterial, and fungal species and the consequent spread of infectious diseases are currently receiving serious attention. Indeed, there is a pressing demand to explore novel materials and develop new strategies that can address these issues of serious concern. Nanomaterials are currently proving to be the most capable therapeutic agents to cope with such hazards. The exceptional physiochemical properties and impressive antimicrobial capabilities of nanoparticles have provoked their utilization in biomedical fields. Nanomaterials of both organic and inorganic nature have shown the capabilities of disrupting microbial cells through different mechanisms. Along with the direct influence on the microbial cell membrane, DNA and proteins, these nanomaterials produce reactive oxygen species (ROS) that damage cell components and viruses. Currently, a serious hazard associated with these antimicrobial nanomaterials is their toxicity to human and animal cells. Extensive studies have reported the dose, time, and cell-dependent toxicology of various nanomaterials, and some have shown excellent biocompatible properties. Nevertheless, there is still debate regarding the use of nanomaterials for medical applications. Therefore, in this review, the antimicrobial activities of various nanomaterials with details of their acting mechanisms were compiled. The relative toxic and biocompatible behavior of nanomaterials emphasized in this study provides information pertaining to their practical applicability in medical fields.

  14. Self-assembled nanomaterials for photoacoustic imaging.

    PubMed

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  15. Phototoxicity of Selected Nanomaterials

    EPA Science Inventory

    Quantification of exposure to nanomaterials is critical for assessing their environmental hazard and risk. This is an immediate issue for nano-TiO2 because it is one of more common nanomaterials now in commerce, and is difficult to analyze using common acid-digestion techniques. ...

  16. Virtual substrate method for nanomaterials characterization

    PubMed Central

    Da, Bo; Liu, Jiangwei; Yamamoto, Mahito; Ueda, Yoshihiro; Watanabe, Kazuyuki; Cuong, Nguyen Thanh; Li, Songlin; Tsukagoshi, Kazuhito; Yoshikawa, Hideki; Iwai, Hideo; Tanuma, Shigeo; Guo, Hongxuan; Gao, Zhaoshun; Sun, Xia; Ding, Zejun

    2017-01-01

    Characterization techniques available for bulk or thin-film solid-state materials have been extended to substrate-supported nanomaterials, but generally non-quantitatively. This is because the nanomaterial signals are inevitably buried in the signals from the underlying substrate in common reflection-configuration techniques. Here, we propose a virtual substrate method, inspired by the four-point probe technique for resistance measurement as well as the chop-nod method in infrared astronomy, to characterize nanomaterials without the influence of underlying substrate signals from four interrelated measurements. By implementing this method in secondary electron (SE) microscopy, a SE spectrum (white electrons) associated with the reflectivity difference between two different substrates can be tracked and controlled. The SE spectrum is used to quantitatively investigate the covering nanomaterial based on subtle changes in the transmission of the nanomaterial with high efficiency rivalling that of conventional core-level electrons. The virtual substrate method represents a benchmark for surface analysis to provide ‘free-standing' information about supported nanomaterials. PMID:28548114

  17. Nanomaterials for In Vivo Imaging.

    PubMed

    Smith, Bryan Ronain; Gambhir, Sanjiv Sam

    2017-02-08

    In vivo imaging, which enables us to peer deeply within living subjects, is producing tremendous opportunities both for clinical diagnostics and as a research tool. Contrast material is often required to clearly visualize the functional architecture of physiological structures. Recent advances in nanomaterials are becoming pivotal to generate the high-resolution, high-contrast images needed for accurate, precision diagnostics. Nanomaterials are playing major roles in imaging by delivering large imaging payloads, yielding improved sensitivity, multiplexing capacity, and modularity of design. Indeed, for several imaging modalities, nanomaterials are now not simply ancillary contrast entities, but are instead the original and sole source of image signal that make possible the modality's existence. We address the physicochemical makeup/design of nanomaterials through the lens of the physical properties that produce contrast signal for the cognate imaging modality-we stratify nanomaterials on the basis of their (i) magnetic, (ii) optical, (iii) acoustic, and/or (iv) nuclear properties. We evaluate them for their ability to provide relevant information under preclinical and clinical circumstances, their in vivo safety profiles (which are being incorporated into their chemical design), their modularity in being fused to create multimodal nanomaterials (spanning multiple different physical imaging modalities and therapeutic/theranostic capabilities), their key properties, and critically their likelihood to be clinically translated.

  18. Advance in phage display technology for bioanalysis.

    PubMed

    Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong

    2016-06-01

    Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Films of Carbon Nanomaterials for Transparent Conductors

    PubMed Central

    Ho, Xinning; Wei, Jun

    2013-01-01

    The demand for transparent conductors is expected to grow rapidly as electronic devices, such as touch screens, displays, solid state lighting and photovoltaics become ubiquitous in our lives. Doped metal oxides, especially indium tin oxide, are the commonly used materials for transparent conductors. As there are some drawbacks to this class of materials, exploration of alternative materials has been conducted. There is an interest in films of carbon nanomaterials such as, carbon nanotubes and graphene as they exhibit outstanding properties. This article reviews the synthesis and assembly of these films and their post-treatment. These processes determine the film performance and understanding of this platform will be useful for future work to improve the film performance. PMID:28809267

  20. Nano-material and method of fabrication

    DOEpatents

    Menchhofer, Paul A; Seals, Roland D; Howe, Jane Y; Wang, Wei

    2015-02-03

    A fluffy nano-material and method of manufacture are described. At 2000.times. magnification the fluffy nanomaterial has the appearance of raw, uncarded wool, with individual fiber lengths ranging from approximately four microns to twenty microns. Powder-based nanocatalysts are dispersed in the fluffy nanomaterial. The production of fluffy nanomaterial typically involves flowing about 125 cc/min of organic vapor at a pressure of about 400 torr over powder-based nano-catalysts for a period of time that may range from approximately thirty minutes to twenty-four hours.

  1. Nanomaterials for Engineering Stem Cell Responses.

    PubMed

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Modeling Engineered Nanomaterials (ENMs) Fate and ...

    EPA Pesticide Factsheets

    Under the Toxic Substances Control Act (TSCA), the Environmental Protection Agency (EPA) is required to perform new chemical reviews of engineered nanomaterials (ENMs) identified in pre-manufacture notices. However, environmental fate models developed for traditional contaminants are limited in their ability to simulate the environmental behavior of nanomaterials due to incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. We have updated the Water Quality Analysis Simulation Program (WASP), version S, to incorporate nanomaterials as an explicitly simulated state variable. WASPS now has the capability to simulate nanomaterial fate and transport in surface waters and sediments using heteroaggregation, the kinetic process governing the attachment of nanomaterials to particles and subsequently ENM distribution in the aqueous and sediment phases. Unlike dissolved chemicals which use equilibrium partition coefficients, heteroaggregation consists of a particle collision rate and an attachment efficiency ( lXhet) that generally acts as a one direction process. To demonstrate, we used a derived a het value from sediment attachment studies to parameterize WASP for simulation of multi walled carbon nanotube (MWCNT) transport in Brier Creek, a coastal plain river located in central eastern Georgia, USA and a tr

  3. Studying the Interface between Nanomaterials and Biomolecules

    NASA Astrophysics Data System (ADS)

    Torelli, Marco Diego

    As engineered nanomaterials become ubiquitous among society, their inevitable entrance into the environment invites questions as to potential implications. As the field of nanotechnology progresses, responsible development of nanomaterials requires a broad availability of useful tools. To this aim, this work seeks to improve analytical abilities to address fundamental molecular interactions of nanomaterials with biological systems that can be expanded broadly, divided into the following: (1) A model applicable to X-ray photoelectron spectroscopy was developed and validated to correct the over-estimated signal for core:shell nanomaterials that can occur at small particle sizes approaching the electron attenuation length of the material being investigated. (2) To understand the role of underlying substrate in particle interactions, diamond and gold functionalized with a protein resisting molecule (hexaethylene glycol) were compared to test the ability of each to resist adsorption of charged proteins. It was demonstrated that the underlying substrate can have an effect on the ability of to properly resist proteins, with charged proteins adsorbing to gold, believed to be due to the ability of gold to form an image dipole. (3) To advance the use of nanodiamond in biological settings, methods to create robust chemical linkages at single digit sizes were developed. Alkene based oligo(ethylene glycol) molecules were successfully photochemically grafted to fully disaggregated detonation nanodiamond. Because the scalability of such methods currently limits such functionalization broadly, polyelectrolytic wrapping of nanodiamond was developed as a useful and scalable method to produce diamond nanoparticles with varying amine based functionalities. (4) Phage display was adapted as a method to determine chemical functionalities that interact with anatase titanium dioxide below 20 nm. In contrast to finding specific, individual inorganic binding sequences, we lowered the

  4. Photoinduced toxicity of engineered nanomaterials

    NASA Astrophysics Data System (ADS)

    Jones, Philip Scott

    Engineered nanomaterials including metal, metal oxide and carbon based nanomaterials are extensively used in a wide variety of applications to the extent that their presence in the environment is expected to increase dramatically over the next century. These nanomaterials may be photodegraded by solar radiation and thereby release metal ions into the environment that can produce cytotoxic and genotoxic effects. Photoinduced toxicity experiments are performed exposing human lung epithelial carcinoma cells [H1650] to engineered semiconductor nanoparticles such as CdSe quantum dots and ZnO nanoparticles after exposure to 3, 6, and 9 hours of solar simulated radiation. Cytotoxicity and genotoxicity of the metal ions are evaluated using ZnSO4 and CdCl2 solutions for the MTT assay and Comet assay respectively. The objective of the dissertation is to obtain quantitative information about the environmental transformation of engineered nanomaterials and their mechanism of toxicity. This information is critical for addressing the environmental health and safety risks of engineered nanomaterials to workers, consumers and the environment.

  5. One-dimensional nanomaterials for energy storage

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Fan, Yuqi; Gu, Jianhang; Wu, Liming; Passerini, Stefano; Mai, Liqiang

    2018-03-01

    The search for higher energy density, safer, and longer cycling-life energy storage systems is progressing quickly. One-dimensional (1D) nanomaterials have a large length-to-diameter ratio, resulting in their unique electrical, mechanical, magnetic and chemical properties, and have wide applications as electrode materials in different systems. This article reviews the latest hot topics in applying 1D nanomaterials, covering both their synthesis and their applications. 1D nanomaterials can be grouped into the categories: carbon, silicon, metal oxides, and conducting polymers, and we structure our discussion accordingly. Then, we survey the unique properties and application of 1D nanomaterials in batteries and supercapacitors, and provide comments on the progress and advantages of those systems, paving the way for a better understanding of employing 1D nanomaterials for energy storage.

  6. Layered double hydroxide-based nanomaterials as highly efficient catalysts and adsorbents.

    PubMed

    Li, Changming; Wei, Min; Evans, David G; Duan, Xue

    2014-11-01

    Layered double hydroxides (LDHs) are a class of anion clays consisting of brucite-like host layers and interlayer anions, which have attracted increasing interest in the fields of catalysis/adsorption. By virtue of the versatility in composition, morphology, and architecture of LDH materials, as well as their unique structural properties (intercalation, topological transformation, and self-assembly with other functional materials), LDHs display great potential in the design and fabrication of nanomaterials applied in photocatalysis, heterogeneous catalysis, and adsorption/separation processes. Taking advantage of the structural merits and various control synthesis strategies of LDHs, the active center structure (e.g., crystal facets, defects, geometric and electronic states, etc.) and macro-nano morphology can be facilely manipulated for specific catalytic/adsorbent processes with largely enhanced performances. In this review, the latest advancements in the design and preparation of LDH-based functional nanomaterials for sustainable development in catalysis and adsorption are summarized. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nanomaterial Based Sensors for NASA Missions

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.

    2016-01-01

    Nanomaterials such as carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene and metal nanowires have shown interesting electronic properties and therefore have been pursued for a variety of space applications requiring ultrasensitive and light-weight sensor and electronic devices. We have been pursuing development of chemical and biosensors using carbon nanotubes and carbon nanofibers for the last several years and this talk will present the benefits of nanomaterials these applications. More recently, printing approaches to manufacturing these devices have been explored as a strategy that is compatible to a microgravity environment. Nanomaterials are either grown in house or purchased and processed as electrical inks. Chemical modification or coatings are added to the nanomaterials to tailor the nanomaterial to the exact application. The development of printed chemical sensors and biosensors will be discussed for applications ranging from crew life support to exploration missions.

  8. Assembly of ordered carbon shells on semiconducting nanomaterials

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2010-05-11

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  9. Assembly of ordered carbon shells on semiconducting nanomaterials

    DOEpatents

    Sutter, Eli Anguelova; Sutter, Peter Werner

    2012-10-02

    In some embodiments of the invention, encapsulated semiconducting nanomaterials are described. In certain embodiments the nanostructures described are semiconducting nanomaterials encapsulated with ordered carbon shells. In some aspects a method for producing encapsulated semiconducting nanomaterials is disclosed. In some embodiments applications of encapsulated semiconducting nanomaterials are described.

  10. Cellulose Nanomaterials in Water Treatment Technologies

    PubMed Central

    Carpenter, Alexis Wells; de Lannoy, Charles François; Wiesner, Mark R.

    2015-01-01

    Cellulose nanomaterials are naturally occurring with unique structural, mechanical and optical properties. While the paper and packaging, automotive, personal care, construction, and textiles industries have recognized cellulose nanomaterials’ potential, we suggest cellulose nanomaterials have great untapped potential in water treatment technologies. In this review, we gather evidence of cellulose nanomaterials’ beneficial role in environmental remediation and membranes for water filtration, including their high surface area-to-volume ratio, low environmental impact, high strength, functionalizability, and sustainability. We make direct comparison between cellulose nanomaterials and carbon nanotubes (CNTs) in terms of physical and chemical properties, production costs, use and disposal in order to show the potential of cellulose nanomaterials as a sustainable replacement for CNTs in water treatment technologies. Finally, we comment on the need for improved communication and collaboration across the myriad industries invested in cellulose nanomaterials production and development to achieve an efficient means to commercialization. PMID:25837659

  11. Nanomaterials for Cardiac Myocyte Tissue Engineering.

    PubMed

    Amezcua, Rodolfo; Shirolkar, Ajay; Fraze, Carolyn; Stout, David A

    2016-07-19

    Since their synthesizing introduction to the research community, nanomaterials have infiltrated almost every corner of science and engineering. Over the last decade, one such field has begun to look at using nanomaterials for beneficial applications in tissue engineering, specifically, cardiac tissue engineering. During a myocardial infarction, part of the cardiac muscle, or myocardium, is deprived of blood. Therefore, the lack of oxygen destroys cardiomyocytes, leaving dead tissue and possibly resulting in the development of arrhythmia, ventricular remodeling, and eventual heart failure. Scarred cardiac muscle results in heart failure for millions of heart attack survivors worldwide. Modern cardiac tissue engineering research has developed nanomaterial applications to combat heart failure, preserve normal heart tissue, and grow healthy myocardium around the infarcted area. This review will discuss the recent progress of nanomaterials for cardiovascular tissue engineering applications through three main nanomaterial approaches: scaffold designs, patches, and injectable materials.

  12. Nanomaterials for Space Exploration Applications

    NASA Technical Reports Server (NTRS)

    Moloney, Padraig G.

    2006-01-01

    Nano-engineered materials are multi-functional materials with superior mechanical, thermal and electrical properties. Nanomaterials may be used for a variety of space exploration applications, including ultracapacitors, active/passive thermal management materials, and nanofiltration for water recovery. Additional applications include electrical power/energy storage systems, hybrid systems power generation, advanced proton exchange membrane fuel cells, and air revitalization. The need for nanomaterials and their growth, characterization, processing and space exploration applications is discussed. Data is presented for developing solid-supported amine adsorbents based on carbon nanotube materials and functionalization of nanomaterials is examined.

  13. [Nanomaterials in cosmetics--present situation and future].

    PubMed

    Masunaga, Takuji

    2014-01-01

    Cosmetics are consumer products intended to contribute to increasing quality of life and designed for long-term daily use. Due to such features of cosmetics, they are required to ensure quality and safety at a high level, as well as to perform well, in response to consumers' demands. Recently, the technology associated with nanomaterials has progressed rapidly and has been applied to various products, including cosmetics. For example, nano-sized titanium dioxide has been formulated in sunscreen products in pursuit of improving its performance. As some researchers and media have expressed concerns about the safety of nanomaterials, a vague feeling of anxiety has been raised in society. In response to this concern, the Japan Cosmetic Industry Association (JCIA) has begun original research related to the safety assurance of nanomaterials formulated in cosmetics, to allow consumers to use cosmetics without such concerns. This paper describes the activities of the JCIA regarding safety research on nanomaterials, including a survey of the actual usage of nanomaterials in cosmetics, analysis of the existence of nanomaterials on the skin, and assessment of skin carcinogenicity of nano-sized titanium dioxide. It also describes the international status of safety assurance and regulation regarding nanomaterials in cosmetics.

  14. Nanomaterial-Based Electrochemical Biosensors and Bioassays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Mao, Xun; Gurung, Anant

    2010-08-31

    This book chapter summarizes the recent advance in nanomaterials for electrochemical biosensors and bioassays. Biofunctionalization of nanomaterials for biosensors fabrication and their biomedical applications are discussed.

  15. DEVICE TECHNOLOGY. Nanomaterials in transistors: From high-performance to thin-film applications.

    PubMed

    Franklin, Aaron D

    2015-08-14

    For more than 50 years, silicon transistors have been continuously shrunk to meet the projections of Moore's law but are now reaching fundamental limits on speed and power use. With these limits at hand, nanomaterials offer great promise for improving transistor performance and adding new applications through the coming decades. With different transistors needed in everything from high-performance servers to thin-film display backplanes, it is important to understand the targeted application needs when considering new material options. Here the distinction between high-performance and thin-film transistors is reviewed, along with the benefits and challenges to using nanomaterials in such transistors. In particular, progress on carbon nanotubes, as well as graphene and related materials (including transition metal dichalcogenides and X-enes), outlines the advances and further research needed to enable their use in transistors for high-performance computing, thin films, or completely new technologies such as flexible and transparent devices. Copyright © 2015, American Association for the Advancement of Science.

  16. Toxicity of nanomaterials

    PubMed Central

    Sharifi, Shahriar; Behzadi, Shahed; Laurent, Sophie; Forrest, M. Laird; Stroeve, Pieter

    2015-01-01

    Nanoscience has matured significantly during the last decade as it has transitioned from bench top science to applied technology. Presently, nanomaterials are used in a wide variety of commercial products such as electronic components, sports equipment, sun creams and biomedical applications. There are few studies of the long-term consequences of nanoparticles on human health, but governmental agencies, including the United States National Institute for Occupational Safety and Health and Japan’s Ministry of Health, have recently raised the question of whether seemingly innocuous materials such as carbon-based nanotubes should be treated with the same caution afforded known carcinogens such as asbestos. Since nanomaterials are increasing a part of everyday consumer products, manufacturing processes, and medical products, it is imperative that both workers and end-users be protected from inhalation of potentially toxic NPs. It also suggests that NPs may need to be sequestered into products so that the NPs are not released into the atmosphere during the product’s life or during recycling. Further, non-inhalation routes of NP absorption, including dermal and medical injectables, must be studied in order to understand possible toxic effects. Fewer studies to date have addressed whether the body can eventually eliminate nanomaterials to prevent particle build-up in tissues or organs. This critical review discusses the biophysicochemical properties of various nanomaterials with emphasis on currently available toxicology data and methodologies for evaluating nanoparticle toxicity. PMID:22170510

  17. Conductive nanomaterials for printed electronics.

    PubMed

    Kamyshny, Alexander; Magdassi, Shlomo

    2014-09-10

    This is a review on recent developments in the field of conductive nanomaterials and their application in printed electronics, with particular emphasis on inkjet printing of ink formulations based on metal nanoparticles, carbon nanotubes, and graphene sheets. The review describes the basic properties of conductive nanomaterials suitable for printed electronics (metal nanoparticles, carbon nanotubes, and graphene), their stabilization in dispersions, formulations of conductive inks, and obtaining conductive patterns by using various sintering methods. Applications of conductive nanomaterials for electronic devices (transparent electrodes, metallization of solar cells, RFID antennas, TFTs, and light emitting devices) are also briefly reviewed.

  18. Biotechnological synthesis of functional nanomaterials.

    PubMed

    Lloyd, Jonathan R; Byrne, James M; Coker, Victoria S

    2011-08-01

    Biological systems, especially those using microorganisms, have the potential to offer cheap, scalable and highly tunable green synthetic routes for the production of the latest generation of nanomaterials. Recent advances in the biotechnological synthesis of functional nano-scale materials are described. These nanomaterials range from catalysts to novel inorganic antimicrobials, nanomagnets, remediation agents and quantum dots for electronic and optical devices. Where possible, the roles of key biological macromolecules in controlling production of the nanomaterials are highlighted, and also technological limitations that must be addressed for widespread implementation are discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Environmental Risk Assessment of Nanomaterials

    NASA Astrophysics Data System (ADS)

    Bayramov, A. A.

    In this paper, various aspects of modern nanotechnologies and, as a result, risks of nanomaterials impact on an environment are considered. This very brief review of the First International Conference on Material and Information Sciences in High Technologies (2007, Baku, Azerbaijan) is given. The conference presented many reports that were devoted to nanotechnology in biology and business for the developing World, formation of charged nanoparticles for creation of functional nanostructures, nanoprocessing of carbon nanotubes, magnetic and optical properties of manganese-phosphorus nanowires, ultra-nanocrystalline diamond films, and nanophotonics communications in Azerbaijan. The mathematical methods of simulation of the group, individual and social risks are considered for the purpose of nanomaterials risk reduction and remediation. Lastly, we have conducted studies at a plant of polymeric materials (and nanomaterials), located near Baku. Assessments have been conducted on the individual risk of person affection and constructed the map of equal isolines and zones of individual risk for a plant of polymeric materials (and nanomaterials).

  20. Multi-metal oxide ceramic nanomaterial

    DOEpatents

    O'Brien, Stephen; Liu, Shuangyi; Huang, Limin

    2016-06-07

    A convenient and versatile method for preparing complex metal oxides is disclosed. The method uses a low temperature, environmentally friendly gel-collection method to form a single phase nanomaterial. In one embodiment, the nanomaterial consists of Ba.sub.AMn.sub.BTi.sub.CO.sub.D in a controlled stoichiometry.

  1. Graphene-based nanomaterials for nanobiotechnology and biomedical applications.

    PubMed

    Krishna, K Vijaya; Ménard-Moyon, Cécilia; Verma, Sandeep; Bianco, Alberto

    2013-10-01

    Graphene family nanomaterials are currently being extensively explored for applications in the field of nanotechnology. The unique intrinsic properties treasured in their simple molecular design and their ability to work in coherence with other existing nanomaterials make graphene family nanomaterials the most promising candidates for different types of applications. This review highlights the scope and utility of these multifaceted nanomaterials in nanobiotechnology and biomedicine. In a tandem approach, this review presents the smooth inclusion of these nanomaterials into existing designs for creating efficient working models at the nanoscale level as well as discussing their broad future possibilities.

  2. Antibacterial properties and toxicity from metallic nanomaterials

    PubMed Central

    Vimbela, Gina V; Ngo, Sang M; Fraze, Carolyn; Yang, Lei; Stout, David A

    2017-01-01

    The era of antibiotic resistance is a cause of increasing concern as bacteria continue to develop adaptive countermeasures against current antibiotics at an alarming rate. In recent years, studies have reported nanoparticles as a promising alternative to antibacterial reagents because of their exhibited antibacterial activity in several biomedical applications, including drug and gene delivery, tissue engineering, and imaging. Moreover, nanomaterial research has led to reports of a possible relationship between the morphological characteristics of a nanomaterial and the magnitude of its delivered toxicity. However, conventional synthesis of nanoparticles requires harsh chemicals and costly energy consumption. Additionally, the exact relationship between toxicity and morphology of nanomaterials has not been well established. Here, we review the recent advancements in synthesis techniques for silver, gold, copper, titanium, zinc oxide, and magnesium oxide nanomaterials and composites, with a focus on the toxicity exhibited by nanomaterials of multidimensions. This article highlights the benefits of selecting each material or metal-based composite for certain applications while also addressing possible setbacks and the toxic effects of the nanomaterials on the environment. PMID:28579779

  3. The applicability of chemical alternatives assessment for engineered nanomaterials.

    PubMed

    Hjorth, Rune; Hansen, Steffen Foss; Jacobs, Molly; Tickner, Joel; Ellenbecker, Michael; Baun, Anders

    2017-01-01

    The use of alternatives assessment to substitute hazardous chemicals with inherently safer options is gaining momentum worldwide as a legislative and corporate strategy to minimize consumer, occupational, and environmental risks. Engineered nanomaterials represent an interesting case for alternatives assessment approaches, because they can be considered both emerging "chemicals" of concern, as well as potentially safer alternatives to hazardous chemicals. However, comparing the hazards of nanomaterials to traditional chemicals or to other nanomaterials is challenging, and critical elements in chemical hazard and exposure assessment may have to be fundamentally altered to sufficiently address nanomaterials. The aim of this paper is to assess the overall applicability of alternatives assessment methods for nanomaterials and to outline recommendations to enhance their use in this context. The present paper focuses on the adaptability of existing hazard and exposure assessment approaches to engineered nanomaterials as well as strategies to design inherently safer nanomaterials. We argue that alternatives assessment for nanomaterials is complicated by the sheer number of nanomaterials possible. As a result, the inclusion of new data tools that can efficiently and effectively evaluate nanomaterials as substitutes is needed to strengthen the alternatives assessment process. However, we conclude that with additional tools to enhance traditional hazard and exposure assessment modules of alternatives assessment, such as the use of mechanistic toxicity screens and control banding tools, alternatives assessment can be adapted to evaluate engineered nanomaterials as potential substitutes for chemicals of concern and to ensure safer nanomaterials are incorporated in the design of new products. Integr Environ Assess Manag 2017;13:177-187. © 2016 SETAC. © 2016 SETAC.

  4. Nanomaterials for Electrochemical Immunosensing

    PubMed Central

    Pan, Mingfei; Gu, Ying; Yun, Yaguang; Li, Min; Jin, Xincui; Wang, Shuo

    2017-01-01

    Electrochemical immunosensors resulting from a combination of the traditional immunoassay approach with modern biosensors and electrochemical analysis constitute a current research hotspot. They exhibit both the high selectivity characteristics of immunoassays and the high sensitivity of electrochemical analysis, along with other merits such as small volume, convenience, low cost, simple preparation, and real-time on-line detection, and have been widely used in the fields of environmental monitoring, medical clinical trials and food analysis. Notably, the rapid development of nanotechnology and the wide application of nanomaterials have provided new opportunities for the development of high-performance electrochemical immunosensors. Various nanomaterials with different properties can effectively solve issues such as the immobilization of biological recognition molecules, enrichment and concentration of trace analytes, and signal detection and amplification to further enhance the stability and sensitivity of the electrochemical immunoassay procedure. This review introduces the working principles and development of electrochemical immunosensors based on different signals, along with new achievements and progress related to electrochemical immunosensors in various fields. The importance of various types of nanomaterials for improving the performance of electrochemical immunosensor is also reviewed to provide a theoretical basis and guidance for the further development and application of nanomaterials in electrochemical immunosensors. PMID:28475158

  5. Should I stay or should I go? Attentional disengagement from visually unique and unexpected items at fixation.

    PubMed

    Brockmole, James R; Boot, Walter R

    2009-06-01

    Distinctive aspects of a scene can capture attention even when they are irrelevant to one's goals. The authors address whether visually unique, unexpected, but task-irrelevant features also tend to hold attention. Observers searched through displays in which the color of each item was irrelevant. At the start of search, all objects changed color. Critically, the foveated item changed to an unexpected color (it was novel), became a color singleton (it was unique), or both. Saccade latency revealed the time required to disengage overt attention from this object. Singletons resulted in longer latencies, but only if they were unexpected. Conversely, unexpected items only delayed disengagement if they were singletons. Thus, the time spent overtly attending to an object is determined, at least in part, by task-irrelevant stimulus properties, but this depends on the confluence of expectation and visual salience. (c) 2009 APA, all rights reserved.

  6. Current Progress of Nanomaterials in Molecularly Imprinted Electrochemical Sensing.

    PubMed

    Zhong, Chunju; Yang, Bin; Jiang, Xinxin; Li, Jianping

    2018-01-02

    Nanomaterials have received much attention during the past decade because of their excellent optical, electronic, and catalytic properties. Nanomaterials possess high chemical reactivity, also high surface energy. Thus, provide a stable immobilization platform for biomolecules, while preserving their reactivity. Due to the conductive and catalytic properties, nanomaterials can also enhance the sensitivity of molecularly imprinted electrochemical sensors by amplifying the electrode surface, increasing the electron transfer, and catalyzing the electrochemical reactions. Molecularly imprinted polymers that contain specific molecular recognition sites can be designed for a particular target analyte. Incorporating nanomaterials into molecularly imprinted polymers is important because nanomaterials can improve the response signal, increase the sensitivity, and decrease the detection limit of the sensors. This study describes the classification of nanomaterials in molecularly imprinted polymers, their analytical properties, and their applications in the electrochemical sensors. The progress of the research on nanomaterials in molecularly imprinted polymers and the application of nanomaterials in molecularly imprinted polymers is also reviewed.

  7. Engineered Nanomaterials Elicit Cellular Stress Responses

    EPA Science Inventory

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  8. Nano-QSPR Modelling of Carbon-Based Nanomaterials Properties.

    PubMed

    Salahinejad, Maryam

    2015-01-01

    Evaluation of chemical and physical properties of nanomaterials is of critical importance in a broad variety of nanotechnology researches. There is an increasing interest in computational methods capable of predicting properties of new and modified nanomaterials in the absence of time-consuming and costly experimental studies. Quantitative Structure- Property Relationship (QSPR) approaches are progressive tools in modelling and prediction of many physicochemical properties of nanomaterials, which are also known as nano-QSPR. This review provides insight into the concepts, challenges and applications of QSPR modelling of carbon-based nanomaterials. First, we try to provide a general overview of QSPR implications, by focusing on the difficulties and limitations on each step of the QSPR modelling of nanomaterials. Then follows with the most significant achievements of QSPR methods in modelling of carbon-based nanomaterials properties and their recent applications to generate predictive models. This review specifically addresses the QSPR modelling of physicochemical properties of carbon-based nanomaterials including fullerenes, single-walled carbon nanotube (SWNT), multi-walled carbon nanotube (MWNT) and graphene.

  9. Aptamer-conjugated nanomaterials and their applications

    PubMed Central

    Yang, Liu; Ye, Mao; Yang, Ronghua; Fu, Ting; Chen, Yan; Wang, Kemin

    2011-01-01

    The combination of aptamers with novel nanomaterials, including nanomaterial-based aptamer bioconjugates. has attracted considerable interest and has led to a wide variety of applications. In this review, we discuss how a variety of nanomaterials, including gold, silica and magnetic nanoparticles, as well as carbon nanotubes, hydrogels, liposomes and micelles, have been used to functionalize aptamers for a variety of applications. These aptamer functionalized materials have led to advances in amplified biosensing, cancer cell-specific recognition, high-efficiency separation, and targeted drug delivery. PMID:22016112

  10. Nanomaterials as stationary phases and supports in liquid chromatography.

    PubMed

    Beeram, Sandya R; Rodriguez, Elliott; Doddavenkatanna, Suresh; Li, Zhao; Pekarek, Allegra; Peev, Darin; Goerl, Kathryn; Trovato, Gianfranco; Hofmann, Tino; Hage, David S

    2017-10-01

    The development of various nanomaterials over the last few decades has led to many applications for these materials in liquid chromatography (LC). This review will look at the types of nanomaterials that have been incorporated into LC systems and the applications that have been explored for such systems. A number of carbon-based nanomaterials and inorganic nanomaterials have been considered for use in LC, ranging from carbon nanotubes, fullerenes and nanodiamonds to metal nanoparticles and nanostructures based on silica, alumina, zirconia and titanium dioxide. Many ways have been described for incorporating these nanomaterials into LC systems. These methods have included covalent immobilization, adsorption, entrapment, and the synthesis or direct development of nanomaterials as part of a chromatographic support. Nanomaterials have been used in many types of LC. These applications have included the reversed-phase, normal-phase, ion-exchange, and affinity modes of LC, as well as related methods such as chiral separations, ion-pair chromatography and hydrophilic interaction liquid chromatography. Both small and large analytes (e.g., dyes, drugs, amino acids, peptides and proteins) have been used to evaluate possible applications for these nanomaterial-based methods. The use of nanomaterials in columns, capillaries and planar chromatography has been considered as part of these efforts. Potential advantages of nanomaterials in these applications have included their good chemical and physical stabilities, the variety of interactions many nanomaterials can have with analytes, and their unique retention properties in some separation formats. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Techniques for Investigating Molecular Toxicology of Nanomaterials.

    PubMed

    Wang, Yanli; Li, Chenchen; Yao, Chenjie; Ding, Lin; Lei, Zhendong; Wu, Minghong

    2016-06-01

    Nanotechnology has been a rapidly developing field in the past few decades, resulting in the more and more exposure of nanomaterials to human. The increased applications of nanomaterials for industrial, commercial and life purposes, such as fillers, catalysts, semiconductors, paints, cosmetic additives and drug carriers, have caused both obvious and potential impacts on human health and environment. Nanotoxicology is used to study the safety of nanomaterials and has grown at the historic moment. Molecular toxicology is a new subdiscipline to study the interactions and impacts of materials at the molecular level. To better understand the relationship between the molecular toxicology and nanomaterials, this review summarizes the typical techniques and methods in molecular toxicology which are applied when investigating the toxicology of nanomaterials and include six categories: namely; genetic mutation detection, gene expression analysis, DNA damage detection, chromosomal aberration analysis, proteomics, and metabolomics. Each category involves several experimental techniques and methods.

  12. Multifunctional luminescent nanomaterials from NaLa(MoO4)2:Eu3+/Tb3+ with tunable decay lifetimes, emission colors, and enhanced cell viability

    PubMed Central

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Zhao, Bingxin; Jin, Dayong; Lin, Mimi; Yan, Lu; You, Hongpeng; Dai, Liming; Liu, Yong

    2015-01-01

    A facile, but effective, method has been developed for large-scale preparation of NaLa(MoO4)2 nanorods and microflowers co-doped with Eu3+ and Tb3+ ions (abbreviated as: NLM:Ln3+). The as-synthesized nanomaterials possess a pure tetragonal phase with variable morphologies from shuttle-like nanorods to microflowers by controlling the reaction temperature and the amount of ethylene glycol used. Consequently, the resulting nanomaterials exhibit superb luminescent emissions over the visible region from red through yellow to green by simply changing the relative doping ratios of Eu3+ to Tb3+ ions. Biocompatibility study indicates that the addition of NLM:Ln3+ nanomaterials can stimulate the growth of normal human retinal pigment epithelium (ARPE-19) cells. Therefore, the newly-developed NaLa(MoO4)2 nanomaterials hold potentials for a wide range of multifunctional applications, including bioimaging, security protection, optical display, optoelectronics for information storage, and cell stimulation. PMID:26259515

  13. Applications of Nanomaterials in Food Packaging.

    PubMed

    Bumbudsanpharoke, Nattinee; Choi, Jungwook; Ko, Seonghyuk

    2015-09-01

    Nanomaterials have drawn great interest in recent years due to their extraordinary properties that make them advantageous in food packaging applications. Specifically, nanoparticles can impart significant barrier properties, as well as mechanical, optical, catalytic, and antimicrobial properties into packaging. Silver nanoparticles (AgNPs) and nanoclay account for the majority of the nano-enabled food packaging on the market, while others, such as nano-zinc oxide (ZnO) and titanium, share less of the current market. In current food packaging, these nanomaterials are primarily used to impart antimicrobial function and to improve barrier properties, thereby extending the shelf life and freshness of packaged food. On the other hand, there is growing concern about the migration of nanomaterials from food contact materials to foodstuffs and its associated potential risks. Indeed, insufficient data about environmental and human safety assessments of migration and exposure of nanomaterials are hindering their market growth. To overcome this barrier, the public believes that legislation from government agencies is critical. This review provides an overview of the characteristics and functions of major nanomaterials that are commonly applied to food packaging, including available and near- future products. Migration research, safety issues, and public concerns are also discussed.

  14. 2D nanomaterials assembled from sequence-defined molecules

    DOE PAGES

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    2017-10-21

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less

  15. 2D nanomaterials assembled from sequence-defined molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. Here, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. We also discuss the challenges andmore » opportunities in this new field.« less

  16. Nanomaterial-Enabled Wearable Sensors for Healthcare.

    PubMed

    Yao, Shanshan; Swetha, Puchakayala; Zhu, Yong

    2018-01-01

    Highly sensitive wearable sensors that can be conformably attached to human skin or integrated with textiles to monitor the physiological parameters of human body or the surrounding environment have garnered tremendous interest. Owing to the large surface area and outstanding material properties, nanomaterials are promising building blocks for wearable sensors. Recent advances in the nanomaterial-enabled wearable sensors including temperature, electrophysiological, strain, tactile, electrochemical, and environmental sensors are presented in this review. Integration of multiple sensors for multimodal sensing and integration with other components into wearable systems are summarized. Representative applications of nanomaterial-enabled wearable sensors for healthcare, including continuous health monitoring, daily and sports activity tracking, and multifunctional electronic skin are highlighted. Finally, challenges, opportunities, and future perspectives in the field of nanomaterial-enabled wearable sensors are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Techniques for physicochemical characterization of nanomaterials

    PubMed Central

    Lin, Ping-Chang; Lin, Stephen; Wang, Paul C.; Sridhar, Rajagopalan

    2014-01-01

    Advances in nanotechnology have opened up a new era of diagnosis, prevention and treatment of diseases and traumatic injuries. Nanomaterials, including those with potential for clinical applications, possess novel physicochemical properties that have an impact on their physiological interactions, from the molecular level to the systemic level. There is a lack of standardized methodologies or regulatory protocols for detection or characterization of nanomaterials. This review summarizes the techniques that are commonly used to study the size, shape, surface properties, composition, purity and stability of nanomaterials, along with their advantages and disadvantages. At present there are no FDA guidelines that have been developed specifically for nanomaterial based formulations for diagnostic or therapeutic use. There is an urgent need for standardized protocols and procedures for the characterization of nanoparticles, especially those that are intended for use as theranostics. PMID:24252561

  18. Nanomaterials for membrane fouling control: accomplishments and challenges.

    PubMed

    Yang, Qian; Mi, Baoxia

    2013-11-01

    We report a review of recent research efforts on incorporating nanomaterials-including metal/metal oxide nanoparticles, carbon-based nanomaterials, and polymeric nanomaterials-into/onto membranes to improve membrane antifouling properties in biomedical or potentially medical-related applications. In general, nanomaterials can be incorporated into/onto a membrane by blending them into membrane fabricating materials or by attaching them to membrane surfaces via physical or chemical approaches. Overall, the fascinating, multifaceted properties (eg, high hydrophilicity, superparamagnetic properties, antibacterial properties, amenable functionality, strong hydration capability) of nanomaterials provide numerous novel strategies and unprecedented opportunities to fully mitigate membrane fouling. However, there are still challenges in achieving a broader adoption of nanomaterials in the membrane processes used for biomedical applications. Most of these challenges arise from the concerns over their long-term antifouling performance, hemocompatibility, and toxicity toward humans. Therefore, rigorous investigation is still needed before the adoption of some of these nanomaterials in biomedical applications, especially for those nanomaterials proposed to be used in the human body or in contact with living tissue/body fluids for a long period of time. Nevertheless, it is reasonable to predict that the service lifetime of membrane-based biomedical devices and implants will be prolonged significantly with the adoption of appropriate fouling control strategies. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. 2D nanomaterials assembled from sequence-defined molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Peng; Zhou, Guangwen; Chen, Chun-Long

    Two dimensional (2D) nanomaterials have attracted broad interest owing to their unique physical and chemical properties with potential applications in electronics, chemistry, biology, medicine and pharmaceutics. Due to the current limitations of traditional 2D nanomaterials (e.g., graphene and graphene oxide) in tuning surface chemistry and compositions, 2D nanomaterials assembled from sequence-defined molecules (e.g., DNAs, proteins, peptides and peptoids) have recently been developed. They represent an emerging class of 2D nanomaterials with attractive physical and chemical properties. In this mini-review, we summarize the recent progress in the synthesis and applications of this type of sequence-defined 2D nanomaterials. The challenges and opportunitiesmore » in this new field are also discussed.« less

  20. Reinforcement of cement-based matrices with graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  1. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2018-04-03

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  2. Porous substrates filled with nanomaterials

    DOEpatents

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  3. Engineered nanomaterials for solar energy conversion.

    PubMed

    Mlinar, Vladan

    2013-02-01

    Understanding how to engineer nanomaterials for targeted solar-cell applications is the key to improving their efficiency and could lead to breakthroughs in their design. Proposed mechanisms for the conversion of solar energy to electricity are those exploiting the particle nature of light in conventional photovoltaic cells, and those using the collective electromagnetic nature, where light is captured by antennas and rectified. In both cases, engineered nanomaterials form the crucial components. Examples include arrays of semiconductor nanostructures as an intermediate band (so called intermediate band solar cells), semiconductor nanocrystals for multiple exciton generation, or, in antenna-rectifier cells, nanomaterials for effective optical frequency rectification. Here, we discuss the state of the art in p-n junction, intermediate band, multiple exciton generation, and antenna-rectifier solar cells. We provide a summary of how engineered nanomaterials have been used in these systems and a discussion of the open questions.

  4. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    PubMed Central

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  5. Biological interactions of carbon-based nanomaterials: From coronation to degradation.

    PubMed

    Bhattacharya, Kunal; Mukherjee, Sourav P; Gallud, Audrey; Burkert, Seth C; Bistarelli, Silvia; Bellucci, Stefano; Bottini, Massimo; Star, Alexander; Fadeel, Bengt

    2016-02-01

    Carbon-based nanomaterials including carbon nanotubes, graphene oxide, fullerenes and nanodiamonds are potential candidates for various applications in medicine such as drug delivery and imaging. However, the successful translation of nanomaterials for biomedical applications is predicated on a detailed understanding of the biological interactions of these materials. Indeed, the potential impact of the so-called bio-corona of proteins, lipids, and other biomolecules on the fate of nanomaterials in the body should not be ignored. Enzymatic degradation of carbon-based nanomaterials by immune-competent cells serves as a special case of bio-corona interactions with important implications for the medical use of such nanomaterials. In the present review, we highlight emerging biomedical applications of carbon-based nanomaterials. We also discuss recent studies on nanomaterial 'coronation' and how this impacts on biodistribution and targeting along with studies on the enzymatic degradation of carbon-based nanomaterials, and the role of surface modification of nanomaterials for these biological interactions. Advances in technology have produced many carbon-based nanomaterials. These are increasingly being investigated for the use in diagnostics and therapeutics. Nonetheless, there remains a knowledge gap in terms of the understanding of the biological interactions of these materials. In this paper, the authors provided a comprehensive review on the recent biomedical applications and the interactions of various carbon-based nanomaterials. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Grouping nanomaterials to predict their potential to induce pulmonary inflammation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braakhuis, Hedwig M., E-mail: hedwig.braakhuis@rivm.nl; Department of Toxicogenomics, Maastricht University, PO Box 616, 6200 MD Maastricht; Oomen, Agnes G.

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, wemore » discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. - Highlights: • Grouping of nanomaterials helps to gather information in an efficient way with the aim to aid risk assessment. • Different ways of grouping nanomaterials for their risk assessment after inhalation

  7. Describing Nanomaterials: A Uniform Description System

    NASA Astrophysics Data System (ADS)

    Rumble, John; Freiman, Steve; Teague, Clayton

    2014-03-01

    Products involving nanomaterials are growing rapidly and nanoparticles also occur naturally. Materials, scientists, engineers, health officials, and regulators have realized they need a common description system. Led by CODATA and VAMAS, a Uniform Description System (UDS) for nanomaterials is being developed to meet the requirements of a broad range of scientific and technical disciplines and different user communities. The goal of the CODATA/VAMAS effort is the creation of a complete set of descriptors that can be used by all communities, e.g., materials, physics, chemistry, agricultural, medical, etc., interested in nanomaterials. The description system must be relevant to researchers, manufacturers of nanomaterials, materials selectors, and regulators. The purpose of the UDS for materials on the nanoscale is twofold: Uniqueness and Equivalency. The first step in the development of the UDS has been the creation of a Framework that will be used by the different communities to guide in the selection of descriptors relevant to their needs. This talk is a brief description of the draft of such a Framework, and how the framework will be translated into a robust description system with input from many scientific communities including physics. A contribution from the CODATA/VAMAS Working Group on the Description of Nanomaterials.

  8. Size effects of latex nanomaterials on lung inflammation in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inoue, Ken-ichiro; Takano, Hirohisa; Yanagisawa, Rie

    Effects of nano-sized materials (nanomaterials) on sensitive population have not been well elucidated. This study examined the effects of pulmonary exposure to (latex) nanomaterials on lung inflammation related to lipopolysaccharide (LPS) or allergen in mice, especially in terms of their size-dependency. In protocol 1, ICR male mice were divided into 8 experimental groups that intratracheally received a single exposure to vehicle, latex nanomaterials (250 {mu}g/animal) with three sizes (25, 50, and 100 nm), LPS (75 {mu}g/animal), or LPS plus latex nanomaterials. In protocol 2, ICR male mice were divided into 8 experimental groups that intratracheally received repeated exposure to vehicle,more » latex nanomaterials (100 {mu}g/animal), allergen (ovalbumin: OVA; 1 {mu}g/animal), or allergen plus latex nanomaterials. In protocol 1, latex nanomaterials with all sizes exacerbated lung inflammation elicited by LPS, showing an overall trend of amplified lung expressions of proinflammatory cytokines. Furthermore, LPS plus nanomaterials, especially with size less than 50 nm, significantly elevated circulatory levels of fibrinogen, macrophage chemoattractant protein-1, and keratinocyte-derived chemoattractant, and von Willebrand factor as compared with LPS alone. The enhancement tended overall to be greater with the smaller nanomaterials than with the larger ones. In protocol 2, latex nanomaterials with all sizes did not significantly enhance the pathophysiology of allergic asthma, characterized by eosinophilic lung inflammation and Igs production, although latex nanomaterials with less than 50 nm significantly induced/enhanced neutrophilic lung inflammation. These results suggest that latex nanomaterials differentially affect two types of (innate and adaptive immunity-dominant) lung inflammation.« less

  9. Grouping nanomaterials to predict their potential to induce pulmonary inflammation.

    PubMed

    Braakhuis, Hedwig M; Oomen, Agnes G; Cassee, Flemming R

    2016-05-15

    The rapidly expanding manufacturing, production and use of nanomaterials have raised concerns for both worker and consumer safety. Various studies have been published in which induction of pulmonary inflammation after inhalation exposure to nanomaterials has been described. Nanomaterials can vary in aspects such as size, shape, charge, crystallinity, chemical composition, and dissolution rate. Currently, efforts are made to increase the knowledge on the characteristics of nanomaterials that can be used to categorise them into hazard groups according to these characteristics. Grouping helps to gather information on nanomaterials in an efficient way with the aim to aid risk assessment. Here, we discuss different ways of grouping nanomaterials for their risk assessment after inhalation. Since the relation between single intrinsic particle characteristics and the severity of pulmonary inflammation is unknown, grouping of nanomaterials by their intrinsic characteristics alone is not sufficient to predict their risk after inhalation. The biokinetics of nanomaterials should be taken into account as that affects the dose present at a target site over time. The parameters determining the kinetic behaviour are not the same as the hazard-determining parameters. Furthermore, characteristics of nanomaterials change in the life-cycle, resulting in human exposure to different forms and doses of these nanomaterials. As information on the biokinetics and in situ characteristics of nanomaterials is essential but often lacking, efforts should be made to include these in testing strategies. Grouping nanomaterials will probably be of the most value to risk assessors when information on intrinsic characteristics, life-cycle, biokinetics and effects are all combined. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Recent applications of nanomaterials in capillary electrophoresis.

    PubMed

    González-Curbelo, Miguel Ángel; Varela-Martínez, Diana Angélica; Socas-Rodríguez, Bárbara; Hernández-Borges, Javier

    2017-10-01

    Nanomaterials have found an important place in Analytical Chemistry and, in particular, in Separation Science. Among them, metal-organic frameworks, magnetic and non-magnetic nanoparticles, carbon nanotubes and graphene, as well as their combinations, are the most important nanomaterials that have been used up to now. Concerning capillary electromigration techniques, these nanomaterials have also been used as both pseudostationary phases in electrokinetic chromatography (EKC) and as stationary phases in microchip capillary electrophoresis (CE) and capillary electrochromatography (CEC), as a result of their interesting and particular properties. This review article pretends to provide a general and critical revision of the most recent applications of nanomaterials in this field (period 2010-2017). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Safety Aspects of Bio-Based Nanomaterials.

    PubMed

    Catalán, Julia; Norppa, Hannu

    2017-12-01

    Moving towards a bio-based and circular economy implies a major focus on the responsible and sustainable utilization of bio-resources. The emergence of nanotechnology has opened multiple possibilities, not only in the existing industrial sectors, but also for completely novel applications of nanoscale bio-materials, the commercial exploitation of which has only begun during the last few years. Bio-based materials are often assumed not to be toxic. However, this pre-assumption is not necessarily true. Here, we provide a short overview on health and environmental aspects associated with bio-based nanomaterials, and on the relevant regulatory requirements. We also discuss testing strategies that may be used for screening purposes at pre-commercial stages. Although the tests presently used to reveal hazards are still evolving, regarding modifi-cations required for nanomaterials, their application is needed before the upscaling or commercialization of bio-based nanomaterials, to ensure the market potential of the nanomaterials is not delayed by uncertainties about safety issues.

  12. Engineered Nanomaterials: Their Physicochemical Characteristics and How to Measure Them.

    PubMed

    Atluri, Rambabu; Jensen, Keld Alstrup

    2017-01-01

    Numerous types of engineered nanomaterials (ENMs) are commercially available and developments move towards producing more advanced nanomaterials with tailored properties. Such advanced nanomaterials may include chemically doped or modified derivatives with specific surface chemistries; also called higher generation or multiconstituent nanomaterials. To fully enjoy the benefits of nanomaterials, appropriate characterisation of ENMs is necessary for many aspects of their production, use, testing and reporting to regulatory bodies. This chapter introduces both structural and textural properties of nanomaterials with a focus on demonstrating the information that can be achieved by analysis of primary physicochemical characteristics and how such information is critical to understand or assess the possible toxicity of engineered nanomaterials. Many of characterization methods are very specific to obtain particular characteristics and therefore the most widely used techniques are explained and demonstrated.

  13. Classifying Nanomaterial Risks Using Multi-Criteria Decision Analysis

    NASA Astrophysics Data System (ADS)

    Linkov, I.; Steevens, J.; Chappell, M.; Tervonen, T.; Figueira, J. R.; Merad, M.

    There is rapidly growing interest by regulatory agencies and stakeholders in the potential toxicity and other risks associated with nanomaterials throughout the different stages of the product life cycle (e.g., development, production, use and disposal). Risk assessment methods and tools developed and applied to chemical and biological material may not be readily adaptable for nanomaterials because of the current uncertainty in identifying the relevant physico-chemical and biological properties that adequately describe the materials. Such uncertainty is further driven by the substantial variations in the properties of the original material because of the variable manufacturing processes employed in nanomaterial production. To guide scientists and engineers in nanomaterial research and application as well as promote the safe use/handling of these materials, we propose a decision support system for classifying nanomaterials into different risk categories. The classification system is based on a set of performance metrics that measure both the toxicity and physico-chemical characteristics of the original materials, as well as the expected environmental impacts through the product life cycle. The stochastic multicriteria acceptability analysis (SMAA-TRI), a formal decision analysis method, was used as the foundation for this task. This method allowed us to cluster various nanomaterials in different risk categories based on our current knowledge of nanomaterial's physico-chemical characteristics, variation in produced material, and best professional judgement. SMAA-TRI uses Monte Carlo simulations to explore all feasible values for weights, criteria measurements, and other model parameters to assess the robustness of nanomaterial grouping for risk management purposes.1,2

  14. Predictive modeling of nanomaterial exposure effects in biological systems

    PubMed Central

    Liu, Xiong; Tang, Kaizhi; Harper, Stacey; Harper, Bryan; Steevens, Jeffery A; Xu, Roger

    2013-01-01

    Background Predictive modeling of the biological effects of nanomaterials is critical for industry and policymakers to assess the potential hazards resulting from the application of engineered nanomaterials. Methods We generated an experimental dataset on the toxic effects experienced by embryonic zebrafish due to exposure to nanomaterials. Several nanomaterials were studied, such as metal nanoparticles, dendrimer, metal oxide, and polymeric materials. The embryonic zebrafish metric (EZ Metric) was used as a screening-level measurement representative of adverse effects. Using the dataset, we developed a data mining approach to model the toxic endpoints and the overall biological impact of nanomaterials. Data mining techniques, such as numerical prediction, can assist analysts in developing risk assessment models for nanomaterials. Results We found several important attributes that contribute to the 24 hours post-fertilization (hpf) mortality, such as dosage concentration, shell composition, and surface charge. These findings concur with previous studies on nanomaterial toxicity using embryonic zebrafish. We conducted case studies on modeling the overall effect/impact of nanomaterials and the specific toxic endpoints such as mortality, delayed development, and morphological malformations. The results show that we can achieve high prediction accuracy for certain biological effects, such as 24 hpf mortality, 120 hpf mortality, and 120 hpf heart malformation. The results also show that the weighting scheme for individual biological effects has a significant influence on modeling the overall impact of nanomaterials. Sample prediction models can be found at http://neiminer.i-a-i.com/nei_models. Conclusion The EZ Metric-based data mining approach has been shown to have predictive power. The results provide valuable insights into the modeling and understanding of nanomaterial exposure effects. PMID:24098077

  15. Nanomaterials and Retinal Toxicity | Science Inventory | US ...

    EPA Pesticide Factsheets

    The neuroretina should be considered as a potential site of nanomaterial toxicity. Engineered nanomaterials may reach the retina through three potential routes of exposure including; intra­ vitreal injection of therapeutics; blood-borne delivery in the retinal vasculature and then crossing the blood-retinal barrier; and through the choroidal blood supply, crossing the Bruch's membrane and the retinal pigment epithelium (RPE). The blood-retinal barrier is functionally similar to the blood-brain barrier, normally restricting transport of larger sized materials, but particles in the lower nanomaterial size range can be expected to transit. The blood flow to the retinal choroid is, on a tissue mass basis, one of the highest in the body raising the potential for rapid delivery of nanomaterials to the RPE. In vitro, RPE cells rapidly uptake nano particles, transport and agglomerate them in the perinuclear cytoplasm. In vivo studies have shown that the eye can uptake nanomaterials and retain them longer than many other tissues after cessation of exposure. Toxicity from nanomaterials to the neural retina or the RPE would be expected to follow common mechanisms identified for other tissues including generation of reactive oxygen species, alteration of cellular redox status, altered intracellular signaling, and release of toxic metal ions from soluble metallic particles. The retina and other ocular tissues, however, have potential for additional phototoxic mechanism

  16. Electrochemical nonenzymatic sensing of glucose using advanced nanomaterials.

    PubMed

    Dhara, Keerthy; Mahapatra, Debiprosad Roy

    2017-12-13

    An overview (with 376 refs.) is given here on the current state of methods for electrochemical sensing of glucose based on the use of advanced nanomaterials. An introduction into the field covers aspects of enzyme based sensing versus nonenzymatic sensing using nanomaterials. The next chapter cover the most commonly used nanomaterials for use in such sensors, with sections on uses of noble metals, transition metals, metal oxides, metal hydroxides, and metal sulfides, on bimetallic nanoparticles and alloys, and on other composites. A further section treats electrodes based on the use of carbon nanomaterials (with subsections on carbon nanotubes, on graphene, graphene oxide and carbon dots, and on other carbonaceous nanomaterials. The mechanisms for electro-catalysis are also discussed, and several Tables are given where the performance of sensors is being compared. Finally, the review addresses merits and limitations (such as the frequent need for working in strongly etching alkaline solutions and the need for diluting samples because sensors often have analytical ranges that are far below the glucose levels found in blood). We also address market/technology gaps in comparison to commercially available enzymatic sensors. Graphical Abstract Schematic representation of electrochemical nonenzymatic glucose sensing on the nanomaterials modified electrodes. At an applied potential, the nanomaterial-modified electrodes exhibit excellent electrocatalytic activity for direct oxidation of glucose oxidation.

  17. Cellular Stress Responses Elicited by Engineered Nanomaterials

    EPA Science Inventory

    Engineered nanomaterials are being incorporated continuously into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigation of underlying pathwa...

  18. Risk assessment strategies as nanomaterials transition into commercial applications

    NASA Astrophysics Data System (ADS)

    Olson, Mira S.; Gurian, Patrick L.

    2012-03-01

    Commercial applications of nanomaterials are rapidly emerging in the marketplace. The environmental and human health risks of many nanomaterials remain unknown, and prioritizing how to efficiently assess their risks is essential. As nanomaterials are incorporated into a broader range of commercial products, their potential for environmental release and human exposure not only increases, but also becomes more difficult to model accurately. Emphasis may first be placed on estimating potential environmental exposure based on pertinent physical properties of the nanomaterials. Given that the greatest potential for global environmental impacts results from nanomaterials that are both persistent and toxic, this paper advocates screening first for persistence since it is easier to assess than toxicity. For materials that show potential for persistence, a higher burden of proof of their non-toxicity is suggested before they enter the commercial marketplace whereas a lower burden of proof may be acceptable for nanomaterials that are less persistent.

  19. The potential of protein-nanomaterial interaction for advanced drug delivery.

    PubMed

    Peng, Qiang; Mu, Huiling

    2016-03-10

    Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  1. Exploring the possibilities and limitations of a nanomaterials genome.

    PubMed

    Qian, Chenxi; Siler, Todd; Ozin, Geoffrey A

    2015-01-07

    What are we going to do with the cornucopia of nanomaterials appearing in the open and patent literature, every day? Imagine the benefits of an intelligent and convenient means of categorizing, organizing, sifting, sorting, connecting, and utilizing this information in scientifically and technologically innovative ways by building a Nanomaterials Genome founded upon an all-purpose Periodic Table of Nanomaterials. In this Concept article, inspired by work on the Human Genome project, which began in 1989 together with motivation from the recent emergence of the Materials Genome project initiated in 2011 and the Nanoinformatics Roadmap 2020 instigated in 2010, we envision the development of a Nanomaterials Genome (NMG) database with the most advanced data-mining tools that leverage inference engines to help connect and interpret patterns of nanomaterials information. It will be equipped with state-of-the-art visualization techniques that rapidly organize and picture, categorize and interrelate the inherited behavior of complex nanomatter from the information programmed in its constituent nanomaterials building blocks. A Nanomaterials Genome Initiative (NMGI) of the type imagined herein has the potential to serve the global nanoscience community with an opportunity to speed up the development continuum of nanomaterials through the innovation process steps of discovery, structure determination and property optimization, functionality elucidation, system design and integration, certification and manufacturing to deployment in technologies that apply these versatile nanomaterials in environmentally responsible ways. The possibilities and limitations of this concept are critically evaluated in this article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Energy Device Applications of Synthesized 1D Polymer Nanomaterials.

    PubMed

    Huang, Long-Biao; Xu, Wei; Hao, Jianhua

    2017-11-01

    1D polymer nanomaterials as emerging materials, such as nanowires, nanotubes, and nanopillars, have attracted extensive attention in academia and industry. The distinctive, various, and tunable structures in the nanoscale of 1D polymer nanomaterials present nanointerfaces, high surface-to-volume ratio, and large surface area, which can improve the performance of energy devices. In this review, representative fabrication techniques of 1D polymer nanomaterials are summarized, including electrospinning, template-assisted, template-free, and inductively coupled plasma methods. The recent advancements of 1D polymer nanomaterials in energy device applications are demonstrated. Lastly, existing challenges and prospects of 1D polymer nanomaterials for energy device applications are presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Allergic Responses Induced by the Immunomodulatory Effects of Nanomaterials upon Skin Exposure

    PubMed Central

    Yoshioka, Yasuo; Kuroda, Etsushi; Hirai, Toshiro; Tsutsumi, Yasuo; Ishii, Ken J.

    2017-01-01

    Over the past decade, a vast array of nanomaterials has been created through the development of nanotechnology. With the increasing application of these nanomaterials in various fields, such as foods, cosmetics, and medicines, there has been concern about their safety, that is, nanotoxicity. Therefore, there is an urgent need to collect information about the biological effects of nanomaterials so that we can exploit their potential benefits and design safer nanomaterials, while avoiding nanotoxicity as a result of inhalation or skin exposure. In particular, the immunomodulating effect of nanomaterials is one of most interesting aspects of nanotoxicity. However, the immunomodulating effects of nanomaterials through skin exposure have not been adequately discussed compared with the effects of inhalation exposure, because skin penetration by nanomaterials is thought to be extremely low under normal conditions. On the other hand, the immunomodulatory effects of nanomaterials via skin may cause severe problems for people with impaired skin barrier function, because some nanomaterials could penetrate the deep layers of their allergic or damaged skin. In addition, some studies, including ours, have shown that nanomaterials could exhibit significant immunomodulating effects even if they do not penetrate the skin. In this review, we summarize our current knowledge of the allergic responses induced by nanomaterials upon skin exposure. First, we discuss nanomaterial penetration of the intact or impaired skin barrier. Next, we describe the immunomodulating effects of nanomaterials, focusing on the sensitization potential of nanomaterials and the effects of co-exposure of nanomaterials with substances such as chemical sensitizers or allergens, on the onset of allergy, following skin exposure. Finally, we discuss the potential mechanisms underlying the immunomodulating effects of nanomaterials by describing the involvement of the protein corona in the interaction of

  4. Nanomaterials for Defense Applications

    NASA Astrophysics Data System (ADS)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  5. Accelerating the Translation of Nanomaterials in Biomedicine

    PubMed Central

    Mitragotri, Samir; Anderson, Daniel G.; Chen, Xiaoyuan; Chow, Edward K.; Ho, Dean; Kabanov, Alexander V.; Karp, Jeffrey M.; Kataoka, Kazunori; Mirkin, Chad A.; Petrosko, Sarah Hurst; Shi, Jinjun; Stevens, Molly M.; Sun, Shouheng; Teoh, Sweehin; Venkatraman, Subbu S.; Xia, Younan; Wang, Shutao; Gu, Zhen; Xu, Chenjie

    2017-01-01

    Due to their size and tailorable physicochemical properties, nanomaterials are an emerging class of structures utilized in biomedical applications. There are now many prominent examples of nanomaterials being used to improve human health, in areas ranging from imaging and diagnostics to therapeutics and regenerative medicine. An overview of these examples reveals several common areas of synergy and future challenges. This Nano Focus discusses the current status and future potential of promising nanomaterials and their translation from the laboratory to the clinic, by highlighting a handful of successful examples. PMID:26115196

  6. NANOMATERIALS, NANOTECHNOLOGY: APPLICATIONS, CONSUMER PRODUCTS, AND BENEFITS

    EPA Science Inventory

    Nanotechnology is a platform technology that is finding more and more applications daily. Today over 600 consumer products are available globally that utilize nanomaterials. This chapter explores the use of nanomaterials and nanotechnology in three areas, namely Medicine, Environ...

  7. Guiding plant virus particles to integrin-displaying cells

    NASA Astrophysics Data System (ADS)

    Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.

    2012-05-01

    Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity

  8. Nanomaterials and nanofabrication for biomedical applications

    NASA Astrophysics Data System (ADS)

    Cheng, Chao-Min; Chia-Wen Wu, Kevin

    2013-08-01

    Traditional boundaries between materials science and engineering and life sciences are rapidly disintegrating as interdisciplinary research teams develop new materials-science-based tools for exploring fundamental issues in both medicine and biology. With recent technological advances in multiple research fields such as materials science, cell and molecular biology and micro-/nano-technology, much attention is shifting toward evaluating the functional advantages of nanomaterials and nanofabrication, at the cellular and molecular levels, for specific, biomedically relevant applications. The pursuit of this direction enhances the understanding of the mechanisms of, and therapeutic potentials for, some of the most lethal diseases, including cardiovascular diseases, organ fibrosis and cancers. This interdisciplinary approach has generated great interest among researchers working in a wide variety of communities including industry, universities and research laboratories. The purpose of this focus issue in Science and Technology of Advanced Materials is to bridge nanotechnology and biology with medicine, focusing more on the applications of nanomaterials and nanofabrication in biomedically relevant issues. This focus issue, we believe, will provide a more comprehensive understanding of (i) the preparation of nanomaterials and the underlying mechanisms of nanofabrication, and (ii) the linkage of nanomaterials and nanofabrication with biomedical applications. The multidisciplinary focus issue that we have attempted to organize is of interest to various research fields including biomaterials and tissue engineering, bioengineering, nanotechnology and nanomaterials, i.e. chemistry, physics and engineering. Nanomaterials and nanofabrication topics addressed in this focus issue include sensing and diagnosis (e.g. immunosensing and diagnostic devices for diseases), cellular and molecular biology (e.g. probing cellular behaviors and stem cell differentiation) and drug delivery

  9. Recent development of nano-materials used in DNA biosensors.

    PubMed

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future.

  10. Recent Development of Nano-Materials Used in DNA Biosensors

    PubMed Central

    Xu, Kai; Huang, Junran; Ye, Zunzhong; Ying, Yibin; Li, Yanbin

    2009-01-01

    As knowledge of the structure and function of nucleic acid molecules has increased, sequence-specific DNA detection has gained increased importance. DNA biosensors based on nucleic acid hybridization have been actively developed because of their specificity, speed, portability, and low cost. Recently, there has been considerable interest in using nano-materials for DNA biosensors. Because of their high surface-to-volume ratios and excellent biological compatibilities, nano-materials could be used to increase the amount of DNA immobilization; moreover, DNA bound to nano-materials can maintain its biological activity. Alternatively, signal amplification by labeling a targeted analyte with nano-materials has also been reported for DNA biosensors in many papers. This review summarizes the applications of various nano-materials for DNA biosensors during past five years. We found that nano-materials of small sizes were advantageous as substrates for DNA attachment or as labels for signal amplification; and use of two or more types of nano-materials in the biosensors could improve their overall quality and to overcome the deficiencies of the individual nano-components. Most current DNA biosensors require the use of polymerase chain reaction (PCR) in their protocols. However, further development of nano-materials with smaller size and/or with improved biological and chemical properties would substantially enhance the accuracy, selectivity and sensitivity of DNA biosensors. Thus, DNA biosensors without PCR amplification may become a reality in the foreseeable future. PMID:22346713

  11. Biological responses to engineered nanomaterials: Needs for the next decade

    DOE PAGES

    Murphy, Catherine J.; Vartanian, Ariane M.; Geiger, Franz M.; ...

    2015-06-09

    In this study, the interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterialmore » effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.« less

  12. Occupational exposure limits for nanomaterials: state of the art

    NASA Astrophysics Data System (ADS)

    Schulte, P. A.; Murashov, V.; Zumwalde, R.; Kuempel, E. D.; Geraci, C. L.

    2010-08-01

    Assessing the need for and effectiveness of controlling airborne exposures to engineered nanomaterials in the workplace is difficult in the absence of occupational exposure limits (OELs). At present, there are practically no OELs specific to nanomaterials that have been adopted or promulgated by authoritative standards and guidance organizations. The vast heterogeneity of nanomaterials limits the number of specific OELs that are likely to be developed in the near future, but OELs could be developed more expeditiously for nanomaterials by applying dose-response data generated from animal studies for specific nanoparticles across categories of nanomaterials with similar properties and modes of action. This article reviews the history, context, and approaches for developing OELs for particles in general and nanoparticles in particular. Examples of approaches for developing OELs for titanium dioxide and carbon nanotubes are presented and interim OELs from various organizations for some nanomaterials are discussed. When adequate dose-response data are available in animals or humans, quantitative risk assessment methods can provide estimates of adverse health risk of nanomaterials in workers and, in conjunction with workplace exposure and control data, provide a basis for determining appropriate exposure limits. In the absence of adequate quantitative data, qualitative approaches to hazard assessment, exposure control, and safe work practices are prudent measures to reduce hazards in workers.

  13. Granular biodurable nanomaterials: No convincing evidence for systemic toxicity.

    PubMed

    Moreno-Horn, Marcus; Gebel, Thomas

    2014-11-01

    Nanomaterials are usually defined by primary particle diameters ranging from 1 to 100 nm. The scope of this review is an evaluation of experimental animal studies dealing with the systemic levels and putative systemic effects induced by nanoparticles which can be characterized as being granular biodurable particles without known specific toxicity (GBP). Relevant examples of such materials comprise nanosized titanium dioxide (TiO2) and carbon black. The question was raised whether GBP nanomaterials systemically accumulate and may possess a relevant systemic toxicity. With few exceptions, the 56 publications reviewed were not performed using established standard protocols, for example, OECD guidelines but used non-standard study designs. The studies including kinetic investigations indicated that GBP nanomaterials were absorbed and systemically distributed to rather low portions only. There was no valid indication that GPB nanomaterials possess novel toxicological hazard properties. In addition, no convincing evidence for a relevant specific systemic toxicity of GBP nanomaterials could be identified. The minority of the papers reviewed (15/56) investigated both nanosized and microsized GBP materials in parallel. A relevant different translocation of GBP nanomaterials in contrast to GBP micromaterials was not observed in these studies. There was no evidence that GPB nanomaterials possess toxicological properties other than their micromaterial counterparts.

  14. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results

    PubMed Central

    Li, Yang; Fujita, Mayumi; Boraschi, Diana

    2017-01-01

    Given the presence of engineered nanomaterials in consumers’ products and their application in nanomedicine, nanosafety assessment is becoming increasingly important. In particular, immunosafety aspects are being actively investigated. In nanomaterial immunosafety testing strategies, it is important to consider that nanomaterials and nanoparticles are very easy to become contaminated with endotoxin, which is a widespread contaminant coming from the Gram-negative bacterial cell membrane. Because of the potent inflammatory activity of endotoxin, contaminated nanomaterials can show inflammatory/toxic effects due to endotoxin, which may mask or misidentify the real biological effects (or lack thereof) of nanomaterials. Therefore, before running immunosafety assays, either in vitro or in vivo, the presence of endotoxin in nanomaterials must be evaluated. This calls for using appropriate assays with proper controls, because many nanomaterials interfere at various levels with the commercially available endotoxin detection methods. This also underlines the need to develop robust and bespoke strategies for endotoxin evaluation in nanomaterials. PMID:28533772

  15. Engineered Nanomaterials, Sexy New Technology and Potential Hazards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaulieu, R A

    Engineered nanomaterials enhance exciting new applications that can greatly benefit society in areas of cancer treatments, solar energy, energy storage, and water purification. While nanotechnology shows incredible promise in these and other areas by exploiting nanomaterials unique properties, these same properties can potentially cause adverse health effects to workers who may be exposed during work. Dispersed nanoparticles in air can cause adverse health effects to animals not merely due to their chemical properties but due to their size, structure, shape, surface chemistry, solubility, carcinogenicity, reproductive toxicity, mutagenicity, dermal toxicity, and parent material toxicity. Nanoparticles have a greater likelihood of lungmore » deposition and blood absorption than larger particles due to their size. Nanomaterials can also pose physical hazards due to their unusually high reactivity, which makes them useful as catalysts, but has the potential to cause fires and explosions. Characterization of the hazards (and potential for exposures) associated with nanomaterial development and incorporation in other products is an essential step in the development of nanotechnologies. Developing controls for these hazards are equally important. Engineered controls should be integrated into nanomaterial manufacturing process design according to 10CFR851, DOE Policy 456.1, and DOE Notice 456.1 as safety-related hardware or administrative controls for worker safety. Nanomaterial hazards in a nuclear facility must also meet control requirements per DOE standards 3009, 1189, and 1186. Integration of safe designs into manufacturing processes for new applications concurrent with the developing technology is essential for worker safety. This paper presents a discussion of nanotechnology, nanomaterial properties/hazards and controls.« less

  16. Synthesis of camptothecin-loaded gold nanomaterials

    NASA Astrophysics Data System (ADS)

    Xing, Zhimin; Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Zhao, Chunjian; Zhao, Xiuhua; Meng, Ronghua; Tan, Shengnan

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  17. Nanomaterials in the environment

    NASA Astrophysics Data System (ADS)

    Mrowiec, Bozena

    2017-11-01

    This paper considers engineered nanomaterials, deliberately engineered and manufactured to have certain properties and have at least one primary dimension of less than 100 nm. Materials produced with the aid of nanotechnologies are used in many areas of everyday life. Researches with nanomaterials have shown that the physiochemical characteristic of particles can influence their effects in biological systems. The field of nanotechnology has created risk for environment and human health. The toxicity of nanoparticles may be affected by different physicochemical properties, including size, shape, chemistry, surface properties, agglomeration, solubility, and charge, as well as effects from attached functional groups and crystalline structure. The greater surface-area-to-mass ratio of nanoparticles makes them generally more reactive than their macro-sized counterparts. Exposure to nanomaterials can occur at different life-cycle stages of the materials and/or products. The knowledge gaps limiting the understanding of the human and environment hazard and risk of nanotechnology should be explained by the scientific investigations for help to protect human and environmental health and to ensure the benefits of the nanotechnology products without excessive risk of this new technology. In this review are presented the proposal measurement methods for NMs characteristic.

  18. Nanomaterials in the field of design ergonomics: present status.

    PubMed

    Chowdhury, Anirban; Sanjog, J; Reddy, Swathi Matta; Karmakar, Sougata

    2012-01-01

    Application of nanotechnology and nanomaterials is not new in the field of design, but a recent trend of extensive use of nanomaterials in product and/or workplace design is drawing attention of design researchers all over the world. In the present paper, an attempt has been made to describe the diverse use of nanomaterials in product and workplace design with special emphasis on ergonomics (occupational health and safety; thermo-regulation and work efficiency, cognitive interface design; maintenance of workplace, etc.) to popularise the new discipline 'nanoergonomics' among designers, design users and design researchers. Nanoergonomics for sustainable product and workplace design by minimising occupational health risks has been felt by the authors to be an emerging research area in coming years. Use of nanomaterials in the field of design ergonomics is less explored till date. In the present review, an attempt has been made to extend general awareness among ergonomists/designers about applications of nanomaterials/nanotechnology in the field of design ergonomics and about health implications of nanomaterials during their use.

  19. Mechanism of hard-nanomaterial clearance by the liver.

    PubMed

    Tsoi, Kim M; MacParland, Sonya A; Ma, Xue-Zhong; Spetzler, Vinzent N; Echeverri, Juan; Ouyang, Ben; Fadel, Saleh M; Sykes, Edward A; Goldaracena, Nicolas; Kaths, Johann M; Conneely, John B; Alman, Benjamin A; Selzner, Markus; Ostrowski, Mario A; Adeyi, Oyedele A; Zilman, Anton; McGilvray, Ian D; Chan, Warren C W

    2016-11-01

    The liver and spleen are major biological barriers to translating nanomedicines because they sequester the majority of administered nanomaterials and prevent delivery to diseased tissue. Here we examined the blood clearance mechanism of administered hard nanomaterials in relation to blood flow dynamics, organ microarchitecture and cellular phenotype. We found that nanomaterial velocity reduces 1,000-fold as they enter and traverse the liver, leading to 7.5 times more nanomaterial interaction with hepatic cells relative to peripheral cells. In the liver, Kupffer cells (84.8 ± 6.4%), hepatic B cells (81.5 ± 9.3%) and liver sinusoidal endothelial cells (64.6 ± 13.7%) interacted with administered PEGylated quantum dots, but splenic macrophages took up less material (25.4 ± 10.1%) due to differences in phenotype. The uptake patterns were similar for two other nanomaterial types and five different surface chemistries. Potential new strategies to overcome off-target nanomaterial accumulation may involve manipulating intra-organ flow dynamics and modulating the cellular phenotype to alter hepatic cell interactions.

  20. TRANSFORMATION AND FATE OF NANOMATERIALS DURING WASTEWATER TREATMENT AND INCINERATION

    EPA Science Inventory

    This research will produce new data about the characteristics and fate of nanomaterials during biological wastewater treatment and incineration. Such knowledge is necessary for estimating exposure to nanomaterials and developing life cycle risk assessments of nanomaterials. To...

  1. The nanomaterial toolkit for neuroengineering

    NASA Astrophysics Data System (ADS)

    Shah, Shreyas

    2016-10-01

    There is a growing interest in developing effective tools to better probe the central nervous system (CNS), to understand how it works and to treat neural diseases, injuries and cancer. The intrinsic complexity of the CNS has made this a challenging task for decades. Yet, with the extraordinary recent advances in nanotechnology and nanoscience, there is a general consensus on the immense value and potential of nanoscale tools for engineering neural systems. In this review, an overview of specialized nanomaterials which have proven to be the most effective tools in neuroscience is provided. After a brief background on the prominent challenges in the field, a variety of organic and inorganic-based nanomaterials are described, with particular emphasis on the distinctive properties that make them versatile and highly suitable in the context of the CNS. Building on this robust nano-inspired foundation, the rational design and application of nanomaterials can enable the generation of new methodologies to greatly advance the neuroscience frontier.

  2. Simulating the fate and transport of nanomaterials in surface waters

    EPA Science Inventory

    The unique properties of nanomaterials have resulted in their increased production. However, it is unclear how nanomaterials will move and react once released to the environment One approach for addressing possible exposure of nanomaterials in surface waters is by using numerical...

  3. Recent Advances in Ultrathin Two-Dimensional Nanomaterials.

    PubMed

    Tan, Chaoliang; Cao, Xiehong; Wu, Xue-Jun; He, Qiyuan; Yang, Jian; Zhang, Xiao; Chen, Junze; Zhao, Wei; Han, Shikui; Nam, Gwang-Hyeon; Sindoro, Melinda; Zhang, Hua

    2017-05-10

    Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.

  4. Chemical Sensing Applications of ZnO Nanomaterials

    PubMed Central

    Chaudhary, Savita; Umar, Ahmad; Bhasin, K. K.

    2018-01-01

    Recent advancement in nanoscience and nanotechnology has witnessed numerous triumphs of zinc oxide (ZnO) nanomaterials due to their various exotic and multifunctional properties and wide applications. As a remarkable and functional material, ZnO has attracted extensive scientific and technological attention, as it combines different properties such as high specific surface area, biocompatibility, electrochemical activities, chemical and photochemical stability, high-electron communicating features, non-toxicity, ease of syntheses, and so on. Because of its various interesting properties, ZnO nanomaterials have been used for various applications ranging from electronics to optoelectronics, sensing to biomedical and environmental applications. Further, due to the high electrochemical activities and electron communication features, ZnO nanomaterials are considered as excellent candidates for electrochemical sensors. The present review meticulously introduces the current advancements of ZnO nanomaterial-based chemical sensors. Various operational factors such as the effect of size, morphologies, compositions and their respective working mechanisms along with the selectivity, sensitivity, detection limit, stability, etc., are discussed in this article. PMID:29439528

  5. Redox-responsive theranostic nanoplatforms based on inorganic nanomaterials.

    PubMed

    Han, Lu; Zhang, Xiao-Yong; Wang, Yu-Long; Li, Xi; Yang, Xiao-Hong; Huang, Min; Hu, Kun; Li, Lu-Hai; Wei, Yen

    2017-08-10

    Spurred on by advances in materials chemistry and nanotechnology, scientists have developed many novel nanopreparations for cancer diagnosis and therapy. To treat complex malignant tumors effectively, multifunctional nanomedicines with targeting ability, imaging properties and controlled drug release behavior should be designed and exploited. The therapeutic efficiency of loaded drugs can be dramatically improved using redox-responsive nanoplatforms which can sense the differences in the redox status of tumor tissues and healthy ones. Redox-sensitive nanocarriers can be constructed from both organic and inorganic nanomaterials; however, at present, drug delivery nanovectors progressively lean towards inorganic nanomaterials because of their facile synthesis/modification and their unique physicochemical properties. In this review, we focus specifically on the preparation and application of redox-sensitive nanosystems based on mesoporous silica nanoparticles (MSNs), carbon nanomaterials, magnetic nanoparticles, gold nanomaterials and other inorganic nanomaterials. We discuss relevant examples of redox-sensitive nanosystems in each category. Finally, we discuss current challenges and future strategies from the aspect of material design and practical application. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing.

    PubMed

    Jariwala, Deep; Sangwan, Vinod K; Lauhon, Lincoln J; Marks, Tobin J; Hersam, Mark C

    2013-04-07

    In the last three decades, zero-dimensional, one-dimensional, and two-dimensional carbon nanomaterials (i.e., fullerenes, carbon nanotubes, and graphene, respectively) have attracted significant attention from the scientific community due to their unique electronic, optical, thermal, mechanical, and chemical properties. While early work showed that these properties could enable high performance in selected applications, issues surrounding structural inhomogeneity and imprecise assembly have impeded robust and reliable implementation of carbon nanomaterials in widespread technologies. However, with recent advances in synthesis, sorting, and assembly techniques, carbon nanomaterials are experiencing renewed interest as the basis of numerous scalable technologies. Here, we present an extensive review of carbon nanomaterials in electronic, optoelectronic, photovoltaic, and sensing devices with a particular focus on the latest examples based on the highest purity samples. Specific attention is devoted to each class of carbon nanomaterial, thereby allowing comparative analysis of the suitability of fullerenes, carbon nanotubes, and graphene for each application area. In this manner, this article will provide guidance to future application developers and also articulate the remaining research challenges confronting this field.

  7. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.

    PubMed

    Peng, Fei; Su, Yuanyuan; Zhong, Yiling; Fan, Chunhai; Lee, Shuit-Tong; He, Yao

    2014-02-18

    Silicon nanomaterials are an important class of nanomaterials with great potential for technologies including energy, catalysis, and biotechnology, because of their many unique properties, including biocompatibility, abundance, and unique electronic, optical, and mechanical properties, among others. Silicon nanomaterials are known to have little or no toxicity due to favorable biocompatibility of silicon, which is an important precondition for biological and biomedical applications. In addition, huge surface-to-volume ratios of silicon nanomaterials are responsible for their unique optical, mechanical, or electronic properties, which offer exciting opportunities for design of high-performance silicon-based functional nanoprobes, nanosensors, and nanoagents for biological analysis and detection and disease treatment. Moreover, silicon is the second most abundant element (after oxygen) on earth, providing plentiful and inexpensive resources for large-scale and low-cost preparation of silicon nanomaterials for practical applications. Because of these attractive traits, and in parallel with a growing interest in their design and synthesis, silicon nanomaterials are extensively investigated for wide-ranging applications, including energy, catalysis, optoelectronics, and biology. Among them, bioapplications of silicon nanomaterials are of particular interest. In the past decade, scientists have made an extensive effort to construct a silicon nanomaterials platform for various biological and biomedical applications, such as biosensors, bioimaging, and cancer treatment, as new and powerful tools for disease diagnosis and therapy. Nonetheless, there are few review articles covering these important and promising achievements to promote the awareness of development of silicon nanobiotechnology. In this Account, we summarize recent representative works to highlight the recent developments of silicon functional nanomaterials for a new, powerful platform for biological and

  8. Cellulosic Nanomaterials in Food and Nutraceutical Applications: A Review.

    PubMed

    Khan, Avik; Wen, Yangbing; Huq, Tanzina; Ni, Yonghao

    2018-01-10

    Cellulosic nanomaterials (CNMs) are organic, green nanomaterials that are obtained from renewable sources and possess exceptional mechanical strength and biocompatibility. The associated unique physical and chemical properties have made these nanomaterials an intriguing prospect for various applications including the food and nutraceutical industry. From the immobilization of various bioactive agents and enzymes, emulsion stabilization, direct food additives, to the development of intelligent packaging systems or pathogen or pH detectors, the potential food related applications for CNMs are endless. Over the past decade, there have been several reviews published covering different aspects of cellulosic nanomaterials, such as processing-structure-property relationship, physical and chemical properties, rheology, extraction, nanocomposites, etc. In this critical review, we have discussed and provided a summary of the recent developments in the utilization of cellulosic nanomaterials in applications related to food and nutraceuticals.

  9. Comparative assessment of nanomaterial definitions and safety evaluation considerations.

    PubMed

    Boverhof, Darrell R; Bramante, Christina M; Butala, John H; Clancy, Shaun F; Lafranconi, Mark; West, Jay; Gordon, Steve C

    2015-10-01

    Nanomaterials continue to bring promising advances to science and technology. In concert have come calls for increased regulatory oversight to ensure their appropriate identification and evaluation, which has led to extensive discussions about nanomaterial definitions. Numerous nanomaterial definitions have been proposed by government, industry, and standards organizations. We conducted a comprehensive comparative assessment of existing nanomaterial definitions put forward by governments to highlight their similarities and differences. We found that the size limits used in different definitions were inconsistent, as were considerations of other elements, including agglomerates and aggregates, distributional thresholds, novel properties, and solubility. Other important differences included consideration of number size distributions versus weight distributions and natural versus intentionally-manufactured materials. Overall, the definitions we compared were not in alignment, which may lead to inconsistent identification and evaluation of nanomaterials and could have adverse impacts on commerce and public perceptions of nanotechnology. We recommend a set of considerations that future discussions of nanomaterial definitions should consider for describing materials and assessing their potential for health and environmental impacts using risk-based approaches within existing assessment frameworks. Our intent is to initiate a dialogue aimed at achieving greater clarity in identifying those nanomaterials that may require additional evaluation, not to propose a formal definition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. [International trend of guidance for nanomaterial risk assessment].

    PubMed

    Hirose, Akihiko

    2013-01-01

    In the past few years, several kinds of opinions or recommendations on the nanomaterial safety assessment have been published from international or national bodies. Among the reports, the first practical guidance of risk assessment from the regulatory body was published from the European Food Safety Authorities in May 2011, which included the determination of exposure scenario and toxicity testing strategy. In October 2011, European Commission (EC) adopted the definition of "nanomaterial" for regulation. And more recently, Scientific Committee on Consumer Safety of EC released guidance for assessment of nanomaterials in cosmetics in June 2012. A series of activities in EU marks an important step towards realistic safety assessment of nanomaterials. On the other hand, the US FDA announced a draft guidance for industry in June 2011, and then published draft guidance documents for both "Cosmetic Products" and "Food Ingredients and Food Contact Substances" in April 2012. These draft documents do not restrictedly define the physical properties of nanomaterials, but when manufacturing changes alter the dimensions, properties, or effects of an FDA-regulated product, the products are treated as new products. Such international movements indicate that most of nanomaterials with any new properties would be assessed or regulated as new products by most of national authorities in near future, although the approaches are still case by case basis. We will introduce such current international activities and consideration points for regulatory risk assessment.

  11. Should I Stay or Should I Go? Attentional Disengagement from Visually Unique and Unexpected Items at Fixation

    ERIC Educational Resources Information Center

    Brockmole, James R.; Boot, Walter R.

    2009-01-01

    Distinctive aspects of a scene can capture attention even when they are irrelevant to one's goals. The authors address whether visually unique, unexpected, but task-irrelevant features also tend to hold attention. Observers searched through displays in which the color of each item was irrelevant. At the start of search, all objects changed color.…

  12. Nanomaterial Toxicity Screening in Developing Zebrafish Embryos

    EPA Science Inventory

    To assess nanomaterial vertebrate toxicity, a high-content screening assay was created using developing zebrafish, Danio rerio. This included a diverse group of nanomaterials (n=42 total) ranging from metallic (Ag, Au) and metal oxide (CeO2, CuO, TiO2, ZnO) nanoparticles, to non...

  13. Safety and toxicity of nanomaterials for ocular drug delivery applications.

    PubMed

    Mehra, Neelesh K; Cai, Defu; Kuo, Lih; Hein, Travis; Palakurthi, Srinath

    2016-09-01

    Multifunctional nanomaterials are rapidly emerging for ophthalmic delivery of therapeutics to facilitate safe and effective targeting with improved patient compliance. Because of their extremely high area to volume ratio, nanomaterials often have physicochemical properties that are different from those of their larger counterparts. There exists a complex relationship between the physicochemical properties (composition, size, shape, charge, roughness, and porosity) of the nanomaterials and their interaction with the biological system. The eye is a very sensitive accessible organ and is subjected to intended and unintended exposure to nanomaterials. Currently, various ophthalmic formulations are available in the market, while some are underway in preclinical and clinical phases. However, the data on safety, efficacy, and toxicology of these advanced nanomaterials for ocular drug delivery are sparse. Focus of the present review is to provide a comprehensive report on the safety, biocompatibility and toxicities of nanomaterials in the eye.

  14. Expanding Applications of SERS through Versatile Nanomaterials Engineering (Postprint)

    DTIC Science & Technology

    2017-06-22

    AFRL-RX-WP-JA-2017-0341 EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) M. Fernanda...AND SUBTITLE EXPANDING APPLICATIONS OF SERS THROUGH VERSATILE NANOMATERIALS ENGINEERING (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-2-5518 5b...Expanding applications of SERS through versatile nanomaterials engineering M. Fernanda Cardinal, Emma Vander Ende, Ryan A. Hackler, Michael O. McAnally

  15. Two dimensional nanomaterials for flexible supercapacitors.

    PubMed

    Peng, Xu; Peng, Lele; Wu, Changzheng; Xie, Yi

    2014-05-21

    Flexible supercapacitors, as one of most promising emerging energy storage devices, are of great interest owing to their high power density with great mechanical compliance, making them very suitable as power back-ups for future stretchable electronics. Two-dimensional (2D) nanomaterials, including the quasi-2D graphene and inorganic graphene-like materials (IGMs), have been greatly explored to providing huge potential for the development of flexible supercapacitors with higher electrochemical performance. This review article is devoted to recent progresses in engineering 2D nanomaterials for flexible supercapacitors, which survey the evolution of electrode materials, recent developments in 2D nanomaterials and their hybrid nanostructures with regulated electrical properties, and the new planar configurations of flexible supercapacitors. Furthermore, a brief discussion on future directions, challenges and opportunities in this fascinating area is also provided.

  16. Overview of Risk Management for Engineered Nanomaterials

    NASA Astrophysics Data System (ADS)

    Schulte, P. A.; Geraci, C. L.; Hodson, L. L.; Zumwalde, R. D.; Kuempel, E. D.; Murashov, V.; Martinez, K. F.; Heidel, D. S.

    2013-04-01

    Occupational exposure to engineered nanomaterials (ENMs) is considered a new and challenging occurrence. Preliminary information from laboratory studies indicates that workers exposed to some kinds of ENMs could be at risk of adverse health effects. To protect the nanomaterial workforce, a precautionary risk management approach is warranted and given the newness of ENMs and emergence of nanotechnology, a naturalistic view of risk management is useful. Employers have the primary responsibility for providing a safe and healthy workplace. This is achieved by identifying and managing risks which include recognition of hazards, assessing exposures, characterizing actual risk, and implementing measures to control those risks. Following traditional risk management models for nanomaterials is challenging because of uncertainties about the nature of hazards, issues in exposure assessment, questions about appropriate control methods, and lack of occupational exposure limits (OELs) or nano-specific regulations. In the absence of OELs specific for nanomaterials, a precautionary approach has been recommended in many countries. The precautionary approach entails minimizing exposures by using engineering controls and personal protective equipment (PPE). Generally, risk management utilizes the hierarchy of controls. Ideally, risk management for nanomaterials should be part of an enterprise-wide risk management program or system and this should include both risk control and a medical surveillance program that assesses the frequency of adverse effects among groups of workers exposed to nanomaterials. In some cases, the medical surveillance could include medical screening of individual workers to detect early signs of work-related illnesses. All medical surveillance should be used to assess the effectiveness of risk management; however, medical surveillance should be considered as a second line of defense to ensure that implemented risk management practices are effective.

  17. The interplay between carbon nanomaterials and amyloid fibrils in bio-nanotechnology

    NASA Astrophysics Data System (ADS)

    Li, Chaoxu; Mezzenga, Raffaele

    2013-06-01

    Recent advances in bio-nanotechnology have not only rapidly broadened the applications and scope of hybrid nanomaterials in biological fields, but also greatly enriched the examples of ordered materials based on supramolecular self-assembly. Among eminent examples of functional nanostructured materials of undisputed impact in nanotechnology and biological environments, carbon nanomaterials (such as fullerenes, carbon nanotubes and graphene) and amyloid fibrils have attracted great attention because of their unique architectures and exceptional physical properties. Nonetheless, combination of these two classes of nanomaterials into functional hybrids is far from trivial. For example, the presence of carbon nanomaterials can offer either an inhibitory effect or promotion of amyloid fibrillation, depending on the structural architectures of carbon nanomaterials and the starting amyloid proteins/peptides considered. To date, numerous studies have been devoted to evaluating both the biological toxicity of carbon nanomaterials and their use in developing therapies for amyloidosis. At the same time, hybridization of these two classes of nanomaterials offers new possibilities for combining some of their desirable properties into nanocomposites of possible use in electronics, actuators, sensing, biomedicine and structural materials. This review describes recent developments in the hybridization of carbon nanomaterials and amyloid fibrils and discusses the current state of the art on the application of carbon nanomaterial-amyloid fibril hybrids in bio-nanotechnology.

  18. [Degradation and transformation of engineering carbon nanomaterials in the environment: A review].

    PubMed

    Yue, Fang-Ning; Luo, Shui-Ming; Zhang, Cheng-Dong

    2013-02-01

    With the large amount production and application of engineering carbon nanomaterials, their potential ecological risk has attracted extensive attention. The degradation and transformation of the carbon nanomaterials in the environment directly affect the fates and eco-toxicity of the nanomaterials in the environment, and the research of the degradation and transformation processes of the nanomaterials in the environment is the key link for the determination of the environmental capacity of the nanomaterials and for the evaluation of the nanomaterials life cycle in the environment. This paper briefly introduced the chemical transformation, microbial degradation, and photodegradation of the major engineering carbon nanomaterials (carbon nanotubes and fullerene) in the environment, and summarized the environmental and structural factors affecting the degradation of the nanomaterials and the related intrinsic mechanisms. The shortcomings of the related researches and the directions of the future research were also put forward.

  19. Toxicology and cellular effect of manufactured nanomaterials

    DOEpatents

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  20. Reproductive toxicity of carbon nanomaterials: a review

    NASA Astrophysics Data System (ADS)

    Vasyukova, I.; Gusev, A.; Tkachev, A.

    2015-11-01

    In the current review, we assembled the experimental evidences of an association between carbon nanomaterials including carbon black, graphite nanoplatelets, graphene, single- and multi-walled carbon nanotubes, and fullerene exposure and adverse reproductive and developmental effects, in vitro and in vivo studies. It is shown that carbon nanomaterials reveal toxic effect on reproductive system and offspring development of the animals of various system groups to a certain degree depending on carbon crystal structure. Although this paper provides initial information about the potential male and female reproductive toxicity of carbon nanomaterials, further studies, using characterized nanoparticles, relevant routes of administration, and doses closely reflecting all the expected levels of exposure are needed.

  1. Recent advances in nanomaterial-based biosensors for antibiotics detection.

    PubMed

    Lan, Lingyi; Yao, Yao; Ping, Jianfeng; Ying, Yibin

    2017-05-15

    Antibiotics are able to be accumulated in human body by food chain and may induce severe influence to human health and safety. Hence, the development of sensitive and simple methods for rapid evaluation of antibiotic levels is highly desirable. Nanomaterials with excellent electronic, optical, mechanical, and thermal properties have been recognized as one of the most promising materials for opening new gates in the development of next-generation biosensors. This review highlights the current advances in the nanomaterial-based biosensors for antibiotics detection. Different kinds of nanomaterials including carbon nanomaterials, metal nanomaterials, magnetic nanoparticles, up-conversion nanoparticles, and quantum dots have been applied to the construction of biosensors with two main signal-transducing mechanisms, i.e. optical and electrochemical. Furthermore, the current challenges and future prospects in this field are also included to provide an overview for future research directions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Biopharmaceutics and Therapeutic Potential of Engineered Nanomaterials

    PubMed Central

    Liang, Xing-Jie; Chen, Chunying; Zhao, Yuliang; Jia, Lee; Wang, Paul C.

    2009-01-01

    Engineered nanomaterials are at the leading edge of the rapidly developing nanosciences and are founding an important class of new materials with specific physicochemical properties different from bulk materials with the same compositions. The potential for nanomaterials is rapidly expanding with novel applications constantly being explored in different areas. The unique size-dependent properties of nanomaterials make them very attractive for pharmaceutical applications. Investigations of physical, chemical and biological properties of engineered nanomaterials have yielded valuable information. Cytotoxic effects of certain engineered nanomaterials towards malignant cells form the basis for one aspect of nanomedicine. It is inferred that size, three dimensional shape, hydrophobicity and electronic configurations make them an appealing subject in medicinal chemistry. Their unique structure coupled with immense scope for derivatization forms a base for exciting developments in therapeutics. This review article addresses the fate of absorption, distribution, metabolism and excretion (ADME) of engineered nanoparticles in vitro and in vivo. It updates the distinctive methodology used for studying the biopharmaceutics of nanoparticles. This review addresses the future potential and safety concerns and genotoxicity of nanoparticle formulations in general. It particularly emphasizes the effects of nanoparticles on metabolic enzymes as well as the parenteral or inhalation administration routes of nanoparticle formulations. This paper illustrates the potential of nanomedicine by discussing biopharmaceutics of fullerene derivatives and their suitability for diagnostic and therapeutic purposes. Future direction is discussed as well. PMID:18855608

  3. “NaKnowBase”: A Nanomaterials Relational Database

    EPA Science Inventory

    NaKnowBase is an internal relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations...

  4. Morphological transformations of BNCO nanomaterials: Role of intermediates

    NASA Astrophysics Data System (ADS)

    Wang, B. B.; Qu, X. L.; Zhu, M. K.; Levchenko, I.; Baranov, O.; Zhong, X. X.; Xu, S.; Ostrikov, K.

    2018-06-01

    Highly controllable structural transformation of various doped carbon and boron nitride nanomaterials have been achieved with the perspective of their application in microelectronics, optoelectronics, energy devices and catalytic reactions. Specifically, the syntheses of one-dimensional (1D) boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets on silicon coated with gold films in N2-H2 plasma was demonstrated. During the synthesis of nanomaterials, boron carbide was used as carbon and boron sources. The results of characterizations by scanning and transmission electron microscopes, as well as micro-Raman and X-ray photoelectron spectroscopes indicate that the formation of different nanomaterials relates to the growth temperature and quantity of boron carbide. Specifically, 1D tube-like carbon nanorods doped with boron and nitrogen are formed at ∼910 °C using a small quantity of boron carbide, while 2D vertical boron nitride nanosheets doped with carbon and oxygen are grown at ∼870 °C using a large quantity of boron carbide. These studies indicate that the behaviors of a reactive intermediate product B2O3 on surfaces of Au nanoparticles play an important role in the formation of different nanomaterials, i.e., whether the B2O3 molecules deposited on Au nanoparticles are desorbed mainly determines the formation of different nanomaterials. The formation of 2D vertical carbon and oxygen co-doped boron nitride nanosheets is related to the high growth rate of edges of nanosheets. Furthermore, the photoluminescence (PL) properties of 1D boron and nitrogen co-doped tube-like carbon nanorods and 2D vertical carbon and oxygen co-doped boron nitride nanosheets were studied at room temperature. The PL results show that all the nanomaterials generate the ultraviolet, blue, green and red PL bands, but the 2D vertical carbon and oxygen co-doped boron nitride nanosheets emit more and stronger PL bands than

  5. Cellulose-Based Nanomaterials for Energy Applications.

    PubMed

    Wang, Xudong; Yao, Chunhua; Wang, Fei; Li, Zhaodong

    2017-11-01

    Cellulose is the most abundant natural polymer on earth, providing a sustainable green resource that is renewable, degradable, biocompatible, and cost effective. Recently, nanocellulose-based mesoporous structures, flexible thin films, fibers, and networks are increasingly developed and used in photovoltaic devices, energy storage systems, mechanical energy harvesters, and catalysts components, showing tremendous materials science value and application potential in many energy-related fields. In this Review, the most recent advancements of processing, integration, and application of cellulose nanomaterials in the areas of solar energy harvesting, energy storage, and mechanical energy harvesting are reviewed. For solar energy harvesting, promising applications of cellulose-based nanostructures for both solar cells and photoelectrochemical electrodes development are reviewed, and their morphology-related merits are discussed. For energy storage, the discussion is primarily focused on the applications of cellulose-based nanomaterials in lithium-ion batteries, including electrodes (e.g., active materials, binders, and structural support), electrolytes, and separators. Applications of cellulose nanomaterials in supercapacitors are also reviewed briefly. For mechanical energy harvesting, the most recent technology evolution in cellulose-based triboelectric nanogenerators is reviewed, from fundamental property tuning to practical implementations. At last, the future research potential and opportunities of cellulose nanomaterials as a new energy material are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Applications of nanomaterials as vaccine adjuvants

    PubMed Central

    Zhu, Motao; Wang, Rongfu; Nie, Guangjun

    2014-01-01

    Vaccine adjuvants are applied to amplify the recipient's specific immune responses against pathogen infection or malignancy. A new generation of adjuvants is being developed to meet the demands for more potent antigen-specific responses, specific types of immune responses, and a high margin of safety. Nanotechnology provides a multifunctional stage for the integration of desired adjuvant activities performed by the building blocks of tailor-designed nanoparticles. Using nanomaterials for antigen delivery can provide high bioavailability, sustained and controlled release profiles, and targeting and imaging properties resulting from manipulation of the nanomaterials’ physicochemical properties. Moreover, the inherent immune-regulating activity of particular nanomaterials can further promote and shape the cellular and humoral immune responses toward desired types. The combination of both the delivery function and immunomodulatory effect of nanomaterials as adjuvants is thought to largely benefit the immune outcomes of vaccination. In this review, we will address the current achievements of nanotechnology in the development of novel adjuvants. The potential mechanisms by which nanomaterials impact the immune responses to a vaccine and how physicochemical properties, including size, surface charge and surface modification, impact their resulting immunological outcomes will be discussed. This review aims to provide concentrated information to promote new insights for the development of novel vaccine adjuvants. PMID:25483497

  7. Transmission electron microscopy artifacts in characterization of the nanomaterial-cell interactions.

    PubMed

    Leung, Yu Hang; Guo, Mu Yao; Ma, Angel P Y; Ng, Alan M C; Djurišić, Aleksandra B; Degger, Natalie; Leung, Frederick C C

    2017-07-01

    We investigated transmission electron microscopy artifacts obtained using standard sample preparation protocols applied to the investigation of Escherichia coli cells exposed to common nanomaterials, such as TiO 2 , Ag, ZnO, and MgO. While the common protocols for some nanomaterials result only in known issues of nanomaterial-independent generation of anomalous deposits due to fixation and staining, for others, there are reactions between the nanomaterial and chemicals used for post-fixation or staining. Only in the case of TiO 2 do we observe only the known issues of nanomaterial-independent generation of anomalous deposits due to exceptional chemical stability of this material. For the other three nanomaterials, different artifacts are observed. For each of those, we identify causes of the observed problems and suggest alternative sample preparation protocols to avoid artifacts arising from the sample preparation, which is essential for correct interpretation of the obtained images and drawing correct conclusions on cell-nanomaterial interactions. Finally, we propose modified sample preparation and characterization protocols for comprehensive and conclusive investigations of nanomaterial-cell interactions using electron microscopy and for obtaining clear and unambiguous revelation whether the nanomaterials studied penetrate the cells or accumulate at the cell membranes. In only the case of MgO and ZnO, the unambiguous presence of Zn and Mg could be observed inside the cells.

  8. “NaKnowBase”: A Nanomaterials Relational Database

    EPA Science Inventory

    NaKnowBase is a relational database populated with data from peer-reviewed ORD nanomaterials research publications. The database focuses on papers describing the actions of nanomaterials in environmental or biological media including their interactions, transformations and poten...

  9. Nanomaterials as analytical tools for genosensors.

    PubMed

    Abu-Salah, Khalid M; Alrokyan, Salman A; Khan, Muhammad Naziruddin; Ansari, Anees Ahmad

    2010-01-01

    Nanomaterials are being increasingly used for the development of electrochemical DNA biosensors, due to the unique electrocatalytic properties found in nanoscale materials. They offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In particular, nanomaterials such as noble metal nanoparticles (Au, Pt), carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots and metal oxide nanoparticles have been actively investigated for their applications in DNA biosensors, which have become a new interdisciplinary frontier between biological detection and material science. In this article, we address some of the main advances in this field over the past few years, discussing the issues and challenges with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination.

  10. Nanomaterials as Analytical Tools for Genosensors

    PubMed Central

    Abu-Salah, Khalid M.; Alrokyan, Salman A.; Khan, Muhammad Naziruddin; Ansari, Anees Ahmad

    2010-01-01

    Nanomaterials are being increasingly used for the development of electrochemical DNA biosensors, due to the unique electrocatalytic properties found in nanoscale materials. They offer excellent prospects for interfacing biological recognition events with electronic signal transduction and for designing a new generation of bioelectronic devices exhibiting novel functions. In particular, nanomaterials such as noble metal nanoparticles (Au, Pt), carbon nanotubes (CNTs), magnetic nanoparticles, quantum dots and metal oxide nanoparticles have been actively investigated for their applications in DNA biosensors, which have become a new interdisciplinary frontier between biological detection and material science. In this article, we address some of the main advances in this field over the past few years, discussing the issues and challenges with the aim of stimulating a broader interest in developing nanomaterial-based biosensors and improving their applications in disease diagnosis and food safety examination. PMID:22315580

  11. Recent advances in applications of nanomaterials for sample preparation.

    PubMed

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Mesoporous carbon nanomaterials in drug delivery and biomedical application.

    PubMed

    Zhao, Qinfu; Lin, Yuanzhe; Han, Ning; Li, Xian; Geng, Hongjian; Wang, Xiudan; Cui, Yu; Wang, Siling

    2017-01-01

    Recent development of nano-technology provides highly efficient and versatile treatment methods to achieve better therapeutic efficacy and lower side effects of malignant cancer. The exploration of drug delivery systems (DDSs) based on nano-material shows great promise in translating nano-technology to clinical use to benefit patients. As an emerging inorganic nanomaterial, mesoporous carbon nanomaterials (MCNs) possess both the mesoporous structure and the carbonaceous composition, endowing them with superior nature compared with mesoporous silica nanomaterials and other carbon-based materials, such as carbon nanotube, graphene and fullerene. In this review, we highlighted the cutting-edge progress of carbon nanomaterials as drug delivery systems (DDSs), including immediate/sustained drug delivery systems and controlled/targeted drug delivery systems. In addition, several representative biomedical applications of mesoporous carbon such as (1) photo-chemo synergistic therapy; (2) delivery of therapeutic biomolecule and (3) in vivo bioimaging are discussed and integrated. Finally, potential challenges and outlook for future development of mesoporous carbon in biomedical fields have been discussed in detail.

  13. A practical approach to determine dose metrics for nanomaterials.

    PubMed

    Delmaar, Christiaan J E; Peijnenburg, Willie J G M; Oomen, Agnes G; Chen, Jingwen; de Jong, Wim H; Sips, Adriënne J A M; Wang, Zhuang; Park, Margriet V D Z

    2015-05-01

    Traditionally, administered mass is used to describe doses of conventional chemical substances in toxicity studies. For deriving toxic doses of nanomaterials, mass and chemical composition alone may not adequately describe the dose, because particles with the same chemical composition can have completely different toxic mass doses depending on properties such as particle size. Other dose metrics such as particle number, volume, or surface area have been suggested, but consensus is lacking. The discussion regarding the most adequate dose metric for nanomaterials clearly needs a systematic, unbiased approach to determine the most appropriate dose metric for nanomaterials. In the present study, the authors propose such an approach and apply it to results from in vitro and in vivo experiments with silver and silica nanomaterials. The proposed approach is shown to provide a convenient tool to systematically investigate and interpret dose metrics of nanomaterials. Recommendations for study designs aimed at investigating dose metrics are provided. © 2015 SETAC.

  14. Current Trends in Nanomaterial-Based Amperometric Biosensors

    PubMed Central

    Hayat, Akhtar; Catanante, Gaëlle; Marty, Jean Louis

    2014-01-01

    The last decade has witnessed an intensive research effort in the field of electrochemical sensors, with a particular focus on the design of amperometric biosensors for diverse analytical applications. In this context, nanomaterial integration in the construction of amperometric biosensors may constitute one of the most exciting approaches. The attractive properties of nanomaterials have paved the way for the design of a wide variety of biosensors based on various electrochemical detection methods to enhance the analytical characteristics. However, most of these nanostructured materials are not explored in the design of amperometric biosensors. This review aims to provide insight into the diverse properties of nanomaterials that can be possibly explored in the construction of amperometric biosensors. PMID:25494347

  15. Effects of Copper Nanomaterials on Marine Benthic Communities

    EPA Science Inventory

    Copper nanomaterials (CuNMs) are used as an anti-bacterial and anti-fouling agent in numerous commercial and industrial products, including water purifiers, fungicides, wood and touch surfaces. The widespread popularity of copper nanomaterials in consumer products increases the r...

  16. Cognitive issues in head-up displays

    NASA Technical Reports Server (NTRS)

    Fischer, E.; Haines, R. F.

    1980-01-01

    The ability of pilots to recognize and act upon unexpected information, presented in either the outside world or in a head-up display (HUD), was evaluated. Eight commercial airline pilots flew 18 approaches with a flightpath-type HUD and 13 approaches with conventional instruments in a fixed-base 727 simulator. The approaches were flown under conditions of low visibility, turbulence, and wind shear. Vertical and lateral flight performance was measured for five cognitive variables: an unexpected obstacle on runway; vertical and lateral boresight-type offset of the HUD; lateral ILS beam bend-type offset; and no anomaly. Mean response time to the runway obstacle was longer with HUD than without it (4.13 vs 1.75 sec.), and two of the pilots did not see the obstacle at all with the HUD. None of the offsets caused any deterioration in lateral flight performance, but all caused some change in vertical tracking; all offsets seemed to magnify the environmental effects. In all conditions, both vertical and lateral tracking was better with the HUD than with the conventional instruments.

  17. An overview of nanomaterials applied for removing dyes from wastewater.

    PubMed

    Cai, Zhengqing; Sun, Youmin; Liu, Wen; Pan, Fei; Sun, Peizhe; Fu, Jie

    2017-07-01

    Organic dyes are one of the most commonly discharged pollutants in wastewaters; however, many conventional treatment methods cannot treat them effectively. Over the past few decades, we have witnessed rapid development of nanotechnologies, which offered new opportunities for developing innovative methods to treat dye-contaminated wastewater with low price and high efficiency. The large surface area, modified surface properties, unique electron conduction properties, etc. offer nanomaterials with excellent performances in dye-contaminated wastewater treatment. For examples, the agar-modified monometallic/bimetallic nanoparticles have the maximum methylene blue adsorption capacity of 875.0 mg/g, which are several times higher than conventional adsorbents. Among various nanomaterials, the carbonaceous nanomaterials, nano-sized TiO 2 , and graphitic carbon nitride (g-C 3 N 4 ) are considered as the most promising nanomaterials for removing dyes from water phase. However, some challenges, such as high cost and poor separation performance, still limit their engineering application. This article reviewed the recent advances in the nanomaterials used for dye removal via adsorption, photocatalytic degradation, and biological treatment. The modification methods for improving the effectiveness of nanomaterials are highlighted. Finally, the current knowledge gaps of developing nanomaterials on the environmental application were discussed, and the possible further research direction is proposed.

  18. Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials.

    PubMed

    Zhu, Ying; Cai, Xiaoqing; Li, Jiang; Zhong, Zengtao; Huang, Qing; Fan, Chunhai

    2014-04-01

    There have been increasing interests in studying biological effects of nanomaterials, which are nevertheless faced up with many challenges due to the nanoscale dimensions and unique chemical properties of nanomaterials. Synchrotron-based X-ray microscopy, an advanced imaging technology with high spatial resolution and excellent elemental specificity, provides a new platform for studying interactions between nanomaterials and living systems. In this article, we review the recent progress of X-ray microscopic studies on bioeffects of nanomaterials in several living systems including cells, model organisms, animals and plants. We aim to provide an overview of the state of the art, and the advantages of using synchrotron-based X-ray microscopy for characterizing in vitro and in vivo behaviors and biodistribution of nanomaterials. We also expect that the use of a combination of new synchrotron techniques should offer unprecedented opportunities for better understanding complex interactions at the nano-biological interface and accounting for unique bioeffects of nanomaterials. Synchrotron-based X-ray microscopy is a non-destructive imaging technique that enables high resolution spatial mapping of metals with elemental level detection methods. This review summarizes the current use and perspectives of this novel technique in studying the biology and tissue interactions of nanomaterials. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Design and characterization of nanomaterial-biomolecule conjugates

    NASA Astrophysics Data System (ADS)

    Yim, Tae-Jin

    In the field of nanobiotechnology, nanoscale dimensions result in physical properties that differ from more conventional bulk material state. The integration of nanomaterials with biomolecules has begun to be used for unique physical properties, and for biological specific recognition, thereby leading to novel nanomaterial-biomolecule conjugates. The direction of this dissertation is to develop biocatalytic nanomaterial-biomolecule conjugates and to characterize them. For this, biological catalysts are employed to combine with nanomaterials. Two large parts include functional ization of nanomaterials with biomolecules and assembly of nanomaterials using a biological catalyst. First part of this thesis work is the exploration of the biocatalytic properties of nanomaterial-biomolecule conjugates. Si nanocolumns have higher surface area which leads more amount of biocatalytis immobilization than flat Si wafer with the same projected area. The enhanced activity of soybean peroxidase (SBP) immobilized onto Si nanocolumns as novel nanostructured supports is focused. Next, the catalytic activity of immobilized DNAzyme onto multiwalled carbon nanotubes (MWNTs) is compared to that in solution phase, and multiple turnovers are examined. The relationship between hybridization efficiency and activity is investigated as a function of surface density of DNAzyme on MWNTs. Then, cellular delivery of silica nanoparticle-protein conjugates is visually confirmed and therefore the intracellular function of a protein delivered by silica nanoparticle-protein conjugates is proved. For one example of the intracellular function, stable SBP immobilized onto silica nanoparticles to activate a prodrug is demonstrated. Second part of this thesis work is the formation of nanostructured materials through the enzymatic assembly of single-walled carbon nanotubes (SWNTs). Enzymatic polymerization of a phenol compound is applied to the bridging of two or more SWNTs functionalized with phenol

  20. Eating nanomaterials: cruelty-free and safe? the EFSA guidance on risk assessment of nanomaterials in food and feed.

    PubMed

    Sauer, Ursula G

    2011-12-01

    Nanomaterials are increasingly being added to food handling and packaging materials, or directly, to human food and animal feed. To ensure the safety of such engineered nanomaterials (ENMs), in May 2011, the European Food Safety Authority (EFSA) published a guidance document on Risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. It states that risk assessment should be performed by following a step-wise procedure. Whenever human or animal exposure to nanomaterials is expected, the general hazard characterisation scheme requests information from in vitro genotoxicity, toxicokinetic and repeated dose 90-day oral toxicity studies in rodents. Numerous prevailing uncertainties with regard to nanomaterial characterisation and their hazard and risk assessment are addressed in the guidance document. This article discusses the impact of these knowledge gaps on meeting the goal of ensuring human safety. The EFSA's guidance on the risk assessment of ENMs in food and animal feed is taken as an example for discussion, from the point of view of animal welfare, on what level of uncertainty should be considered acceptable for human safety assessment of products with non-medical applications, and whether animal testing should be considered ethically acceptable for such products.

  1. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants.

    PubMed

    Miralles, Pola; Church, Tamara L; Harris, Andrew T

    2012-09-04

    To exploit the promised benefits of engineered nanomaterials, it is necessary to improve our knowledge of their bioavailability and toxicity. The interactions between engineered nanomaterials and vascular plants are of particular concern, as plants closely interact with soil, water, and the atmosphere, and constitute one of the main routes of exposure for higher species, i.e. accumulation through the food chain. A review of the current literature shows contradictory evidence on the phytotoxicity of engineered nanomaterials. The mechanisms by which engineered nanomaterials penetrate plants are not well understood, and further research on their interactions with vascular plants is required to enable the field of phytotoxicology to keep pace with that of nanotechnology, the rapid evolution of which constantly produces new materials and applications that accelerate the environmental release of nanomaterials.

  2. Mobility of coated and uncoated TiO2 nanomaterials in soil columns--Applicability of the tests methods of OECD TG 312 and 106 for nanomaterials.

    PubMed

    Nickel, Carmen; Gabsch, Stephan; Hellack, Bryan; Nogowski, Andre; Babick, Frank; Stintz, Michael; Kuhlbusch, Thomas A J

    2015-07-01

    Nanomaterials are commonly used in everyday life products and during their life cycle they can be released into the environment. Soils and sediments are estimated as significant sinks for those nanomaterials. To investigate and assess the behaviour of nanomaterials in soils and sediments standardized test methods are needed. In this study the applicability of two existing international standardized test guidelines for the testing of nanomaterials, OECD TG 106 "Adsorption/Desorption using a Bath Equilibrium Method" and the OECD TG 312 "Leaching in Soil Columns", were investigated. For the study one coated and two uncoated TiO2 nanomaterials were used, respectively. The results indicate that the OECD TG 106 is not applicable for nanomaterials. However, the test method according to OECD TG 312 was found to be applicable if nano-specific adaptations are applied. The mobility investigations of the OECD TG 312 indicated a material-dependent mobility of the nanomaterials, which in some cases may lead to an accumulation in the upper soil layers. Whereas no significant transport was observed for the uncoated materials for the double-coated material (coating with dimethicone and aluminiumoxide) a significant transport was detected and attributed to the coating. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects.

    PubMed

    Chimene, David; Alge, Daniel L; Gaharwar, Akhilesh K

    2015-12-02

    Two-dimensional (2D) nanomaterials are ultrathin nanomaterials with a high degree of anisotropy and chemical functionality. Research on 2D nanomaterials is still in its infancy, with the majority of research focusing on elucidating unique material characteristics and few reports focusing on biomedical applications of 2D nanomaterials. Nevertheless, recent rapid advances in 2D nanomaterials have raised important and exciting questions about their interactions with biological moieties. 2D nanoparticles such as carbon-based 2D materials, silicate clays, transition metal dichalcogenides (TMDs), and transition metal oxides (TMOs) provide enhanced physical, chemical, and biological functionality owing to their uniform shapes, high surface-to-volume ratios, and surface charge. Here, we focus on state-of-the-art biomedical applications of 2D nanomaterials as well as recent developments that are shaping this emerging field. Specifically, we describe the unique characteristics that make 2D nanoparticles so valuable, as well as the biocompatibility framework that has been investigated so far. Finally, to both capture the growing trend of 2D nanomaterials for biomedical applications and to identify promising new research directions, we provide a critical evaluation of potential applications of recently developed 2D nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Plasmonics of 2D Nanomaterials: Properties and Applications

    PubMed Central

    Li, Yu; Li, Ziwei; Chi, Cheng; Shan, Hangyong; Zheng, Liheng

    2017-01-01

    Plasmonics has developed for decades in the field of condensed matter physics and optics. Based on the classical Maxwell theory, collective excitations exhibit profound light‐matter interaction properties beyond classical physics in lots of material systems. With the development of nanofabrication and characterization technology, ultra‐thin two‐dimensional (2D) nanomaterials attract tremendous interest and show exceptional plasmonic properties. Here, we elaborate the advanced optical properties of 2D materials especially graphene and monolayer molybdenum disulfide (MoS2), review the plasmonic properties of graphene, and discuss the coupling effect in hybrid 2D nanomaterials. Then, the plasmonic tuning methods of 2D nanomaterials are presented from theoretical models to experimental investigations. Furthermore, we reveal the potential applications in photocatalysis, photovoltaics and photodetections, based on the development of 2D nanomaterials, we make a prospect for the future theoretical physics and practical applications. PMID:28852608

  5. Carbon nanomaterials for non-volatile memories

    NASA Astrophysics Data System (ADS)

    Ahn, Ethan C.; Wong, H.-S. Philip; Pop, Eric

    2018-03-01

    Carbon can create various low-dimensional nanostructures with remarkable electronic, optical, mechanical and thermal properties. These features make carbon nanomaterials especially interesting for next-generation memory and storage devices, such as resistive random access memory, phase-change memory, spin-transfer-torque magnetic random access memory and ferroelectric random access memory. Non-volatile memories greatly benefit from the use of carbon nanomaterials in terms of bit density and energy efficiency. In this Review, we discuss sp2-hybridized carbon-based low-dimensional nanostructures, such as fullerene, carbon nanotubes and graphene, in the context of non-volatile memory devices and architectures. Applications of carbon nanomaterials as memory electrodes, interfacial engineering layers, resistive-switching media, and scalable, high-performance memory selectors are investigated. Finally, we compare the different memory technologies in terms of writing energy and time, and highlight major challenges in the manufacturing, integration and understanding of the physical mechanisms and material properties.

  6. Emerging roles of engineered nanomaterials in the food industry.

    PubMed

    Morris, V J

    2011-10-01

    Nanoscience is the study of phenomena and the manipulation of materials at the atomic or molecular level. Nanotechnology involves the design, production and use of structures through control of the size and shape of the materials at the nanometre scale. Nanotechnology in the food sector is an emerging area with considerable research and potential products. There is particular interest in the definition and regulation of engineered nanomaterials. This term covers three classes of nanomaterials: natural and processed nanostructures in foods; particulate nanomaterials metabolized or excreted on digestion; and particulate nanomaterials not broken down on digestion, which accumulate in the body. This review describes examples of these classes and their likely status in the food industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Nanomaterial-Based Electrochemical Immunosensors for Clinically Significant Biomarkers

    PubMed Central

    Ronkainen, Niina J.; Okon, Stanley L.

    2014-01-01

    Nanotechnology has played a crucial role in the development of biosensors over the past decade. The development, testing, optimization, and validation of new biosensors has become a highly interdisciplinary effort involving experts in chemistry, biology, physics, engineering, and medicine. The sensitivity, the specificity and the reproducibility of biosensors have improved tremendously as a result of incorporating nanomaterials in their design. In general, nanomaterials-based electrochemical immunosensors amplify the sensitivity by facilitating greater loading of the larger sensing surface with biorecognition molecules as well as improving the electrochemical properties of the transducer. The most common types of nanomaterials and their properties will be described. In addition, the utilization of nanomaterials in immunosensors for biomarker detection will be discussed since these biosensors have enormous potential for a myriad of clinical uses. Electrochemical immunosensors provide a specific and simple analytical alternative as evidenced by their brief analysis times, inexpensive instrumentation, lower assay cost as well as good portability and amenability to miniaturization. The role nanomaterials play in biosensors, their ability to improve detection capabilities in low concentration analytes yielding clinically useful data and their impact on other biosensor performance properties will be discussed. Finally, the most common types of electroanalytical detection methods will be briefly touched upon. PMID:28788700

  8. Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications.

    PubMed

    Feng, Feng; Wu, Junchi; Wu, Changzheng; Xie, Yi

    2015-02-11

    Recent years have witnessed great developments in inorganic 2D nanomaterials for their unique dimensional confinement and diverse electronic energy bands. Precisely regulating their intrinsic electrical behaviors would bring superior electrical conductivity, rendering 2D nanomaterials ideal candidates for active materials in electrochemical applications when combined with the excellent reaction activity from the inorganic lattice. This Concept focuses on highly conducting inorganic 2D nanomaterials, including intrinsic metallic 2D nanomaterials and artificial highly conductive 2D nanomaterials. The intrinsic metallicity of 2D nanomaterials is derived from their closely packed atomic structures that ensure maximum overlapping of electron orbitals, while artificial highly conductive 2D nanomaterials could be achieved by designed methodologies of surface modification, intralayer ion doping, and lattice strain, in which atomic-scale structural modulation plays a vital role in realizing conducting behaviors. Benefiting from fast electron transfer, high reaction activity, as well as large surface areas arising from the 2D inorganic lattice, highly conducting 2D nanomaterials open up prospects for enhancing performance in electrochemical catalysis and electrochemical capacitors. Conductive 2D inorganic nanomaterials promise higher efficiency for electrochemical applications of energy conversion and storage. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    PubMed

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Surfactin from Bacillus subtilis displays an unexpected anti-Legionella activity.

    PubMed

    Loiseau, Clémence; Schlusselhuber, Margot; Bigot, Renaud; Bertaux, Joanne; Berjeaud, Jean-Marc; Verdon, Julien

    2015-06-01

    A contaminant bacterial strain was found to exhibit an antagonistic activity against Legionella pneumophila, the causative agent of Legionnaires' disease. The bacterial strain was identified as a Bacillus subtilis and named B. subtilis AM1. PCR analysis revealed the presence of the sfp gene, involved in the biosynthesis of surfactin, a lipopeptide with versatile bioactive properties. The bioactive substances were extracted from AM1 cell-free supernatant with ethyl acetate and purified using reversed phase HPLC (RP-HPLC). Subsequent ESI-MS analyses indicated the presence of two active substances with protonated molecular ions at m/z 1008 and 1036 Da, corresponding to surfactin isoforms. Structures of lipopeptides were further determined by tandem mass spectrometry and compared to the spectra of a commercially available surfactin mixture. Surfactin displays an antibacterial spectrum almost restricted to the Legionella genus (MICs range 1-4 μg/mL) and also exhibits a weak activity toward the amoeba Acanthamoeba castellanii, known to be the natural reservoir of L. pneumophila. Anti-biofilm assays demonstrated that 66 μg/mL of surfactin successfully eliminated 90 % of a 6-day-old biofilm. In conclusion, this study reveals for the first time the potent activity of surfactin against Legionella sp. and preformed biofilms thus providing new directions toward the use and the development of lipopeptides for the control of Legionella spread in the environment.

  11. Nanomaterials in consumer's goods: the problems of risk assessment

    NASA Astrophysics Data System (ADS)

    Gmoshinski, I. V.; Khotimchenko, S. A.

    2015-11-01

    Nanotechnology and engineered nanomaterials are currently used in wide variety of cosmetic products, while their use in food industry, packaging materials, household chemicals etc. still includes a limited number of items and does not show a significant upward trend. However, the problem of priority nanomaterials associated risks is relevant due to their high production volumes and an constantly growing burden on the environment and population. In accordance with the frequency of use in mass-produced consumer goods, leading priority nanomaterials are silver nanoparticles (NPs) and (by a wide margin) NPs of gold, platinum, and titanium dioxide. Frequency of nanosized silica introduction into food products as a food additive, at the moment, seems to be underestimated, since the use of this nanomaterial is not declared by manufacturers of products and objective control of its content is difficult. Analysis of literature data on toxicological properties of nanomaterials shows that currently accumulated amount of information is sufficient to establish the safe doses of nanosized silver, gold and titanium dioxide. Data have been provided in a series of studies concerning the effect of oral intake of nanosized silica on the condition of laboratory animals, including on the performance of the immune system. The article examines the existing approaches to the assessment of population exposure to priority nanomaterials, characteristics of existing problems and risk management.

  12. Anisotropic nanomaterials: structure, growth, assembly, and functions

    PubMed Central

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  13. Nanomaterials for Craniofacial and Dental Tissue Engineering.

    PubMed

    Li, G; Zhou, T; Lin, S; Shi, S; Lin, Y

    2017-07-01

    Tissue engineering shows great potential as a future treatment for the craniofacial and dental defects caused by trauma, tumor, and other diseases. Due to the biomimetic features and excellent physiochemical properties, nanomaterials are of vital importance in promoting cell growth and stimulating tissue regeneration in tissue engineering. For craniofacial and dental tissue engineering, the frequently used nanomaterials include nanoparticles, nanofibers, nanotubes, and nanosheets. Nanofibers are attractive for cell invasion and proliferation because of their resemblance to extracellular matrix and the presence of large pores, and they have been used as scaffolds in bone, cartilage, and tooth regeneration. Nanotubes and nanoparticles improve the mechanical and chemical properties of scaffold, increase cell attachment and migration, and facilitate tissue regeneration. In addition, nanofibers and nanoparticles are also used as a delivery system to carry the bioactive agent in bone and tooth regeneration, have better control of the release speed of agent upon degradation of the matrix, and promote tissue regeneration. Although applications of nanomaterials in tissue engineering remain in their infancy with numerous challenges to face, the current results indicate that nanomaterials have massive potential in craniofacial and dental tissue engineering.

  14. Versatile in situ gas analysis apparatus for nanomaterials reactors.

    PubMed

    Meysami, Seyyed Shayan; Snoek, Lavina C; Grobert, Nicole

    2014-09-02

    We report a newly developed technique for the in situ real-time gas analysis of reactors commonly used for the production of nanomaterials, by showing case-study results obtained using a dedicated apparatus for measuring the gas composition in reactors operating at high temperature (<1000 °C). The in situ gas-cooled sampling probe mapped the chemistry inside the high-temperature reactor, while suppressing the thermal decomposition of the analytes. It thus allows a more accurate study of the mechanism of progressive thermocatalytic cracking of precursors compared to previously reported conventional residual gas analyses of the reactor exhaust gas and hence paves the way for the controlled production of novel nanomaterials with tailored properties. Our studies demonstrate that the composition of the precursors dynamically changes as they travel inside of the reactor, causing a nonuniform growth of nanomaterials. Moreover, mapping of the nanomaterials reactor using quantitative gas analysis revealed the actual contribution of thermocatalytic cracking and a quantification of individual precursor fragments. This information is particularly important for quality control of the produced nanomaterials and for the recycling of exhaust residues, ultimately leading toward a more cost-effective continuous production of nanomaterials in large quantities. Our case study of multiwall carbon nanotube synthesis was conducted using the probe in conjunction with chemical vapor deposition (CVD) techniques. Given the similarities of this particular CVD setup to other CVD reactors and high-temperature setups generally used for nanomaterials synthesis, the concept and methodology of in situ gas analysis presented here does also apply to other systems, making it a versatile and widely applicable method across a wide range of materials/manufacturing methods, catalysis, as well as reactor design and engineering.

  15. Microreactor-Assisted Nanomaterial Deposition for Photovoltaic Thin-Film Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-03-01

    This factsheet describes a research project whose goal is to develop and demonstrate a scalable microreactor-assisted nanomaterial deposition pilot platform for the production, purification, functionalization, and solution deposition of nanomaterials for PV applications.

  16. Development of a Nanomaterials One-Week Intersession Course

    ERIC Educational Resources Information Center

    Walters, Keith A.; Bullen, Heather A.

    2008-01-01

    A novel one-week intersession lecture-lab hybrid course on nanomaterials is presented. The course provided a combination of background theory and hands-on laboratory experiments to educate students about nanomaterials and nanotechnology. The design of the course, subject matter, and laboratory experiments are discussed. Topics and level were…

  17. Soft bioelectronics using nanomaterials

    NASA Astrophysics Data System (ADS)

    Lee, Hyunjae; Kim, Dae-Hyeong

    2016-09-01

    Recently, soft bioelectronics has attracted significant attention because of its potential applications in biointegrated healthcare devices and minimally invasive surgical tools. Mechanical mismatch between conventional electronic/optoelectronic devices and soft human tissues/organs, however, causes many challenges in materials and device designs of bio-integrated devices. Intrinsically soft hybrid materials comprising twodimensional nanomaterials are utilized to solve these issues. In this paper, we describe soft bioelectronic devices based on graphene synthesized by a chemical vapor deposition process. These devices have unique advantages over rigid electronics, particularly in biomedical applications. The functionalized graphene is hybridized with other nanomaterials and fabricated into high-performance sensors and actuators toward wearable and minimally invasive healthcare devices. Integrated bioelectronic systems constructed using these devices solve pending issues in clinical medicine while providing new opportunities in personalized healthcare.

  18. Effect of carbon nanomaterials on the germination and growth of rice plants.

    PubMed

    Nair, Remya; Mohamed, M Sheikh; Gao, Wei; Maekawa, Toru; Yoshida, Yasuhiko; Ajayan, Pulickel M; Kumar, D Sakthi

    2012-03-01

    For the successful diverse applications of different nanomaterials in life sciences, it is necessary to understand the ultimate fate, distribution and potential environmental impacts of manufactured nanomaterials. Phytotoxicity studies using higher plants is an important criterion for understanding the toxicity of engineered nanomaterials. We studied the effects of engineered carbon nanomaterials of various dimensionalities (carbon nanotubes, C60, graphene) on the germination of rice seeds. A pronounced increase in the rate of germination was observed for rice seeds in the presence of some of these carbon nanostructures, in particular the nanotubes. Increased water content was observed in the carbon nanomaterial treated seeds during germination compared to controls. The germinated seeds were then grown in a basal growth medium supplemented with carbon nanomaterials for studying their impact on further seedling growth. Treated seedlings appeared to be healthier with well-developed root and shoot systems compared to control seedlings. Our results indicate the possible use for carbon nanomaterials as enhancers in the growth of rice seedlings.

  19. Nanomaterials: a challenge for toxicological risk assessment?

    PubMed

    Haase, Andrea; Tentschert, Jutta; Luch, Andreas

    2012-01-01

    Nanotechnology has emerged as one of the central technologies in the twenty-first century. This judgment becomes apparent by considering the increasing numbers of people employed in this area; the numbers of patents, of scientific publications, of products on the market; and the amounts of money invested in R&D. Prospects originating from different fields of nanoapplication seem unlimited. However, nanotechnology certainly will not be able to meet all of the ambitious expectations communicated, yet has high potential to heavily affect our daily life in the years to come. This might occur in particular in the field of consumer products, for example, by introducing nanomaterials in cosmetics, textiles, or food contact materials. Another promising area is the application of nanotechnology in medicine fueling hopes to significantly improve diagnosis and treatment of all kinds of diseases. In addition, novel technologies applying nanomaterials are expected to be instrumental in waste remediation and in the production of efficient energy storage devices and thus may help to overcome world's energy problems or to revolutionize computer and data storage technologies. In this chapter, we will focus on nanomaterials. After a brief historic and general overview, current proposals of how to define nanomaterials will be summarized. Due to general limitations, there is still no single, internationally accepted definition of the term "nanomaterial." After elaborating on the status quo and the scope of nanoanalytics and its shortcomings, the current thinking about possible hazards resulting from nanoparticulate exposures, there will be an emphasis on the requirements to be fulfilled for appropriate health risk assessment and regulation of nanomaterials. With regard to reliable risk assessments, until now there is still the remaining issue to be resolved of whether or not specific challenges and unique features exist on the nanoscale that have to be tackled and distinctively

  20. Health and safety implications of occupational exposure to engineered nanomaterials.

    PubMed

    Stebounova, Larissa V; Morgan, Hallie; Grassian, Vicki H; Brenner, Sara

    2012-01-01

    The rapid growth and commercialization of nanotechnology are currently outpacing health and safety recommendations for engineered nanomaterials. As the production and use of nanomaterials increase, so does the possibility that there will be exposure of workers and the public to these materials. This review provides a summary of current research and regulatory efforts related to occupational exposure and medical surveillance for the nanotechnology workforce, focusing on the most prevalent industrial nanomaterials currently moving through the research, development, and manufacturing pipelines. Their applications and usage precedes a discussion of occupational health and safety efforts, including exposure assessment, occupational health surveillance, and regulatory considerations for these nanomaterials. Copyright © 2011 Wiley Periodicals, Inc.

  1. Assessing the Implications of Modified Nanomaterials in Bioassay Testing

    EPA Science Inventory

    As nanotechnology advances to product development, filling environmental health and safety knowledge gaps is critical. Nanotoxicology is over-generalized, provided the permutations of nanomaterial variants created by the classes of nanomaterials (carbonaceous, metals, quantum dot...

  2. Engineering of Multifunctional Nanomaterials for Cancer Theranostics

    NASA Astrophysics Data System (ADS)

    Goel, Shreya

    Development of novel imaging probes for cancer diagnosis is critical for early disease detection and management. The past two decades have witnessed a surge in the development and evolution of radiolabeled nanoparticles as a new frontier in personalized cancer nanomedicine. The dynamic synergism of positron emission tomography (PET) and nanotechnology combines the sensitivity and quantitative nature of PET with the multifunctionality and tunability of nanomaterials, which can help overcome certain key challenges in the field. Silica, "generally recognized as safe" (GRAS) by the Food and Drug Administration (FDA) of the United States, has emerged as one of the leading nanomaterials employed for molecular imaging and therapy of a wide variety of diseases, including cancer. However in vivo biodistribution and active targeting of silica-based nanomaterials has remained a relatively under explored area, based mainly on semi-quantitative techniques such as fluorescence imaging. In this dissertation, I explore the concept of radiolabeled silica nanoparticles for vasculature-targeted imaging of different tumor types. Both chelator-based and chelator-free radiolabeling techniques were employed for accurate and quantitative analysis of the in vivo pharmacokinetics of radiolabeled silica nanomaterials. (Chapters 2 and 3) The large surface area, ease of tunability and facile silica chemistry were employed to create multifunctional silica-based materials to simultaneously seek-and-treat cancers, by incorporating multiple components into a single nanoplatform. Photodynamic agent, porphyrin was loaded into the central cavity of hollow mesoporous silica nanoparticles, and the shell was decorated with photothermal nanoparticles, CuS, yielding a multimodal theranostic nanoplatform which could synergistically annihilate the tumor without relapse. (Chapter 4). A major hurdle in the successful clinical translation of nanomaterials is their rapid sequestration by the organs of the

  3. How should the completeness and quality of curated nanomaterial data be evaluated?

    NASA Astrophysics Data System (ADS)

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-05-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict

  4. Understanding the biological and environmental implications of nanomaterials

    NASA Astrophysics Data System (ADS)

    Lin, Sijie

    The last two decades have witnessed the discovery, development, and large-scale manufacturing of novel nanomaterials. While nanomaterials bring in exciting and extraordinary properties in all areas of materials, electronics, mechanics, and medicine, they also could generate potential adverse effects in biological systems and in the environment. The currently limited application of nanomaterials in biological and ecological systems results from the insufficient and often controversial data on describing the complex behaviors of nanomaterials in living systems. The purpose of this dissertation intends to fill such a knowledge void with methodologies from the disciplines of biophysics, biology, and materials science and engineering. Chapter 1 of this dissertation provides a comprehensive review on the structures and properties of carbon nanomaterials (CBNMs), metal oxides, and quantum dots (QDs). This chapter also details the state-of-the-art on the biological applications, ecological applications, and toxicity of nanomaterials. With Chapter 1 serving as a background, Chapters 2-5 present my PhD research, an inquiry on the fate of nanomaterials in biological and ecological systems, on the whole organism and cellular levels. Specifically, CBNMs are introduced to rice plant seedlings and the uptake, translocation and generational transfer of fullerene C70 in the plant compartments are imaged and characterized. The interactions between CBNMs and rice plants on the whole organism level are initiated by the binding between CBNMs and natural organic matter (NOM), driven by the transpiration of water from the roots to the leaves of the plants and mediated by both the physiochemical properties of the CBNMs and plant physiology. In Chapter 3, semiconducting nanocrystals quantum dots (QDs) are introduced to green algae Chlamydomonas to probe the interactions of nanomaterials with ecological systems on the cellular level. The adsorption of QDs onto the algal cell wall is

  5. Fabrication of functional nanomaterials using flame assisted spray pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Purwanto, Agus, E-mail: aguspur@uns.ac.id

    2014-02-24

    Flame assisted spray pyrolysis (FASP) is a class of synthesis method for nanomaterials fabrication. The ability to control nanomaterials characteristics and easy to be-scaled up are the main features of FASP. The crystallinity and particles size of the prepared nanomaterials can be easily controlled by variation of fuel flow rate. The precursor concentration, carrier gas flow rate, and carrier gas can be also used to control the prepared nanomaterials. Energy related nanomaterials preparation uses as the example case in FASP application. These material are yttrium aluminum garnet (YAG:Ce) and tungsten oxide (WO{sub 3}). It needs strategies to produce these materialsmore » into nano-sized order. YAG:Ce nanoparticles only can be synthesized by FASP using the urea addition. The decomposition of urea under high temperature of flame promotes the breakage of YAG:Ce particles into nanoparticles. In the preparation of WO{sub 3}, the high temperature flame can be used to gasify WO{sub 3} solid material. As a result, WO{sub 3} nanoparticles can be prepared easily. Generally, to produce nanoparticles via FASP method, the boiling point of the material is important to determine the strategy which will be used.« less

  6. Electrochemical and optical biosensors based on nanomaterials and nanostructures: a review.

    PubMed

    Li, Ming; Li, Rui; Li, Chang Ming; Wu, Nianqiang

    2011-06-01

    Nanomaterials and nanostructures exhibit unique size-tunable and shape-dependent physicochemical properties that are different from those of bulk materials. Advances of nanomaterials and nanostructures open a new door to develop various novel biosensors. The present work has reviewed the recent progress in electrochemical, surface plasmon resonance (SPR), surface-enhanced Raman scattering (SERS) and fluorescent biosensors based on nanomaterials and nanostructures. An emphasis is put on the research that demonstrates how the performance of biosensors such as the limit of detection, sensitivity and selectivity is improved by the use of nanomaterials and nanostructures.

  7. Surface engineering of graphene-based nanomaterials for biomedical applications.

    PubMed

    Shi, Sixiang; Chen, Feng; Ehlerding, Emily B; Cai, Weibo

    2014-09-17

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications.

  8. Smart nanomaterials for biomedics.

    PubMed

    Choi, Soonmo; Tripathi, Anuj; Singh, Deepti

    2014-10-01

    Nanotechnology has become important in various disciplines of technology and science. It has proven to be a potential candidate for various applications ranging from biosensors to the delivery of genes and therapeutic agents to tissue engineering. Scaffolds for every application can be tailor made to have the appropriate physicochemical properties that will influence the in vivo system in the desired way. For highly sensitive and precise detection of specific signals or pathogenic markers, or for sensing the levels of particular analytes, fabricating target-specific nanomaterials can be very useful. Multi-functional nano-devices can be fabricated using different approaches to achieve multi-directional patterning in a scaffold with the ability to alter topographical cues at scale of less than or equal to 100 nm. Smart nanomaterials are made to understand the surrounding environment and act accordingly by either protecting the drug in hostile conditions or releasing the "payload" at the intended intracellular target site. All of this is achieved by exploiting polymers for their functional groups or incorporating conducting materials into a natural biopolymer to obtain a "smart material" that can be used for detection of circulating tumor cells, detection of differences in the body analytes, or repair of damaged tissue by acting as a cell culture scaffold. Nanotechnology has changed the nature of diagnosis and treatment in the biomedical field, and this review aims to bring together the most recent advances in smart nanomaterials.

  9. Application of nanomaterials in the bioanalytical detection of disease-related genes.

    PubMed

    Zhu, Xiaoqian; Li, Jiao; He, Hanping; Huang, Min; Zhang, Xiuhua; Wang, Shengfu

    2015-12-15

    In the diagnosis of genetic diseases and disorders, nanomaterials-based gene detection systems have significant advantages over conventional diagnostic systems in terms of simplicity, sensitivity, specificity, and portability. In this review, we describe the application of nanomaterials for disease-related genes detection in different methods excluding PCR-related method, such as colorimetry, fluorescence-based methods, electrochemistry, microarray methods, surface-enhanced Raman spectroscopy (SERS), quartz crystal microbalance (QCM) methods, and dynamic light scattering (DLS). The most commonly used nanomaterials are gold, silver, carbon and semiconducting nanoparticles. Various nanomaterials-based gene detection methods are introduced, their respective advantages are discussed, and selected examples are provided to illustrate the properties of these nanomaterials and their emerging applications for the detection of specific nucleic acid sequences. Copyright © 2015. Published by Elsevier B.V.

  10. Copper-based nanomaterials for environmental decontamination - An overview on technical and toxicological aspects.

    PubMed

    Khalaj, Mohammadreza; Kamali, Mohammadreza; Khodaparast, Zahra; Jahanshahi, Akram

    2018-02-01

    Synthesis of the various types of engineered nanomaterials has gained a huge attention in recent years for various applications. Copper based nanomaterials are a branch of this category seem to be able to provide an efficient and cost-effective way for the treatment of the persistent effluents. The present work aimed to study the various parameters may involve in the overall performance of the copper based nanomaterials for environmental clean-up purposes. To this end, the related characteristics of copper based nanomaterials and their effects on the nanomaterials reactivity and the environmental and operating parameters have been critically reviewed. Toxicological study of the copper based nanomaterials has been also considered as a factor with high importance for the selection of a typical nanomaterial with optimum performance and minimum environmental and health subsequent effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Development of risk-based nanomaterial groups for occupational exposure control

    NASA Astrophysics Data System (ADS)

    Kuempel, E. D.; Castranova, V.; Geraci, C. L.; Schulte, P. A.

    2012-09-01

    Given the almost limitless variety of nanomaterials, it will be virtually impossible to assess the possible occupational health hazard of each nanomaterial individually. The development of science-based hazard and risk categories for nanomaterials is needed for decision-making about exposure control practices in the workplace. A possible strategy would be to select representative (benchmark) materials from various mode of action (MOA) classes, evaluate the hazard and develop risk estimates, and then apply a systematic comparison of new nanomaterials with the benchmark materials in the same MOA class. Poorly soluble particles are used here as an example to illustrate quantitative risk assessment methods for possible benchmark particles and occupational exposure control groups, given mode of action and relative toxicity. Linking such benchmark particles to specific exposure control bands would facilitate the translation of health hazard and quantitative risk information to the development of effective exposure control practices in the workplace. A key challenge is obtaining sufficient dose-response data, based on standard testing, to systematically evaluate the nanomaterials' physical-chemical factors influencing their biological activity. Categorization processes involve both science-based analyses and default assumptions in the absence of substance-specific information. Utilizing data and information from related materials may facilitate initial determinations of exposure control systems for nanomaterials.

  12. Production of Two-Dimensional Nanomaterials via Liquid-Based Direct Exfoliation.

    PubMed

    Niu, Liyong; Coleman, Jonathan N; Zhang, Hua; Shin, Hyeonsuk; Chhowalla, Manish; Zheng, Zijian

    2016-01-20

    Tremendous efforts have been devoted to the synthesis and application of two-dimensional (2D) nanomaterials due to their extraordinary and unique properties in electronics, photonics, catalysis, etc., upon exfoliation from their bulk counterparts. One of the greatest challenges that scientists are confronted with is how to produce large quantities of 2D nanomaterials of high quality in a commercially viable way. This review summarizes the state-of-the-art of the production of 2D nanomaterials using liquid-based direct exfoliation (LBE), a very promising and highly scalable wet approach for synthesizing high quality 2D nanomaterials in mild conditions. LBE is a collection of methods that directly exfoliates bulk layered materials into thin flakes of 2D nanomaterials in liquid media without any, or with a minimum degree of, chemical reactions, so as to maintain the high crystallinity of 2D nanomaterials. Different synthetic methods are categorized in the following, in which material characteristics including dispersion concentration, flake thickness, flake size and some applications are discussed in detail. At the end, we provide an overview of the advantages and disadvantages of such synthetic methods of LBE and propose future perspectives. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Distinguishing nanomaterial particles from background airborne particulate matter for quantitative exposure assessment

    NASA Astrophysics Data System (ADS)

    Ono-Ogasawara, Mariko; Serita, Fumio; Takaya, Mitsutoshi

    2009-10-01

    As the production of engineered nanomaterials quantitatively expands, the chance that workers involved in the manufacturing process will be exposed to nanoparticles also increases. A risk management system is needed for workplaces in the nanomaterial industry based on the precautionary principle. One of the problems in the risk management system is difficulty of exposure assessment. In this article, examples of exposure assessment in nanomaterial industries are reviewed with a focus on distinguishing engineered nanomaterial particles from background nanoparticles in workplace atmosphere. An approach by JNIOSH (Japan National Institute of Occupational Safety and Health) to quantitatively measure exposure to carbonaceous nanomaterials is also introduced. In addition to real-time measurements and qualitative analysis by electron microscopy, quantitative chemical analysis is necessary for quantitatively assessing exposure to nanomaterials. Chemical analysis is suitable for quantitative exposure measurement especially at facilities with high levels of background NPs.

  14. In Vitro Cytotoxicity of Silver Nanomaterials in Murine Macrophages

    EPA Science Inventory

    Silver nanomaterials are increasingly used as antimicrobial agents in a variety of products. Although there is considerable potential for human exposure to these nanomaterials, little is known about the health risks associated with their use. Macrophages are prominent immune cell...

  15. Carbon nanomaterials for advanced energy conversion and storage.

    PubMed

    Dai, Liming; Chang, Dong Wook; Baek, Jong-Beom; Lu, Wen

    2012-04-23

    It is estimated that the world will need to double its energy supply by 2050. Nanotechnology has opened up new frontiers in materials science and engineering to meet this challenge by creating new materials, particularly carbon nanomaterials, for efficient energy conversion and storage. Comparing to conventional energy materials, carbon nanomaterials possess unique size-/surface-dependent (e.g., morphological, electrical, optical, and mechanical) properties useful for enhancing the energy-conversion and storage performances. During the past 25 years or so, therefore, considerable efforts have been made to utilize the unique properties of carbon nanomaterials, including fullerenes, carbon nanotubes, and graphene, as energy materials, and tremendous progress has been achieved in developing high-performance energy conversion (e.g., solar cells and fuel cells) and storage (e.g., supercapacitors and batteries) devices. This article reviews progress in the research and development of carbon nanomaterials during the past twenty years or so for advanced energy conversion and storage, along with some discussions on challenges and perspectives in this exciting field. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Observations on the interaction of nanomaterials with bacteria

    NASA Astrophysics Data System (ADS)

    Raja, P. M.; Ajayan, P. M.; Nalamasu, O.; Sharma, A.

    2006-05-01

    Large scale commercial manufacturing of nanomaterials raises the important issue of their environmental fate. With increased production (estimated to be in million gallon range) the nanomaterial interactions with environmental microbial ecology would be significant. However, there are scant studies that have addressed this concern. It is therefore essential to experimentally determine some fundamental parameters to ascertain any environmental stresses related to microbiological interactions of nanomaterials. There are concerns that such an interaction may be similar to the biogeochemical interactions of asbestos fibers, which continues to be an alarming environmental issue. Carbon nanotubes (CNTs) are newly emerging nanomaterials, with a wide range of potential electronic and medical applications. Though CNTs are dimensionally similar to the mineral fibers, they differ morphologically, and can possess different surface chemistries, capable of complex and varied biological interactions within the environment. In this study, we present experimental data that show discernible effects on microbial morphology, biofilm formation, substrate consumption rates and growth of Escherichia coli in the presence of carbon nanotubes with the aim of developing a fundamental understanding of the environmental implications of CNT-microbial interactions.

  17. Nanomaterial-enabled Rapid Detection of Water Contaminants.

    PubMed

    Mao, Shun; Chang, Jingbo; Zhou, Guihua; Chen, Junhong

    2015-10-28

    Water contaminants, e.g., inorganic chemicals and microorganisms, are critical metrics for water quality monitoring and have significant impacts on human health and plants/organisms living in water. The scope and focus of this review is nanomaterial-based optical, electronic, and electrochemical sensors for rapid detection of water contaminants, e.g., heavy metals, anions, and bacteria. These contaminants are commonly found in different water systems. The importance of water quality monitoring and control demands significant advancement in the detection of contaminants in water because current sensing technologies for water contaminants have limitations. The advantages of nanomaterial-based sensing technologies are highlighted and recent progress on nanomaterial-based sensors for rapid water contaminant detection is discussed. An outlook for future research into this rapidly growing field is also provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Food decontamination using nanomaterials

    USDA-ARS?s Scientific Manuscript database

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  19. Nanomaterial disposal by incineration

    EPA Science Inventory

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  20. Final Report: "Energetics of Nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navrotsky, Alexandra; Ross, Nancy; Woodfield, Brian

    2015-02-14

    Nanomaterials, solids with very small particle size, form the basis of new technologies that are revolutionizing fields such as energy, lighting, electronics, medical diagnostics, and drug delivery. These nanoparticles are different from conventional bulk materials in many ways we do not yet fully understand. This project focused on their structure and thermodynamics and emphasized the role of water in nanoparticle surfaces. Using a unique and synergistic combination of high-tech techniques—namely oxide melt solution calorimetry, cryogenic heat capacity measurements, and inelastic neutron scattering—this work has identified differences in structure, thermodynamic stability, and water behavior on nanoparticles as a function of compositionmore » and particle size. The systematics obtained increase the fundamental understanding needed to synthesize, retain, and apply these technologically important nanomaterials and to predict and tailor new materials for enhanced functionality, eventually leading to a more sustainable way of life. Highlights are reported on the following topics: surface energies, thermochemistry of nanoparticles, and changes in stability at the nanoscale; heat capacity models and the gapped phonon spectrum; control of pore structure, acid sites, and thermal stability in synthetic γ-aluminas; the lattice contribution is the same for bulk and nanomaterials; and inelastic neutron scattering studies of water on nanoparticle surfaces.« less

  1. Surface Engineering of Graphene-Based Nanomaterials for Biomedical Applications

    PubMed Central

    2015-01-01

    Graphene-based nanomaterials have attracted tremendous interest over the past decade due to their unique electronic, optical, mechanical, and chemical properties. However, the biomedical applications of these intriguing nanomaterials are still limited due to their suboptimal solubility/biocompatibility, potential toxicity, and difficulties in achieving active tumor targeting, just to name a few. In this Topical Review, we will discuss in detail the important role of surface engineering (i.e., bioconjugation) in improving the in vitro/in vivo stability and enriching the functionality of graphene-based nanomaterials, which can enable single/multimodality imaging (e.g., optical imaging, positron emission tomography, magnetic resonance imaging) and therapy (e.g., photothermal therapy, photodynamic therapy, and drug/gene delivery) of cancer. Current challenges and future research directions are also discussed and we believe that graphene-based nanomaterials are attractive nanoplatforms for a broad array of future biomedical applications. PMID:25117569

  2. Octanol-water distribution of engineered nanomaterials.

    PubMed

    Hristovski, Kiril D; Westerhoff, Paul K; Posner, Jonathan D

    2011-01-01

    The goal of this study was to examine the effects of pH and ionic strength on octanol-water distribution of five model engineered nanomaterials. Distribution experiments resulted in a spectrum of three broadly classified scenarios: distribution in the aqueous phase, distribution in the octanol, and distribution into the octanol-water interface. Two distribution coefficients were derived to describe the distribution of nanoparticles among octanol, water and their interface. The results show that particle surface charge, surface functionalization, and composition, as well as the solvent ionic strength and presence of natural organic matter, dramatically impact this distribution. Distributions of nanoparticles into the interface were significant for nanomaterials that exhibit low surface charge in natural pH ranges. Increased ionic strengths also contributed to increased distributions of nanoparticle into the interface. Similarly to the octanol-water distribution coefficients, which represent a starting point in predicting the environmental fate, bioavailability and transport of organic pollutants, distribution coefficients such as the ones described in this study could help to easily predict the fate, bioavailability, and transport of engineered nanomaterials in the environment.

  3. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2018-06-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  4. Application of nanomaterials in solar thermal energy storage

    NASA Astrophysics Data System (ADS)

    Shamshirgaran, Seyed Reza; Khalaji Assadi, Morteza; Viswanatha Sharma, Korada

    2017-12-01

    Solar thermal conversion technology harvests the sun's energy, rather than fossil fuels, to generate low-cost, low/zero-emission energy in the form of heating, cooling or electrical form for residential, commercial, and industrial sectors. The advent of nanofluids and nanocomposites or phase change materials, is a new field of study which is adapted to enhance the efficiency of solar collectors. The concepts of thermal energy storage technologies are investigated and the role of nanomaterials in energy conversion is discussed. This review revealed that although the exploitation of nanomaterials will boost the performance of solar collectors almost in all cases, this would be accompanied by certain challenges such as production cost, instability, agglomeration and erosion. Earlier studies have dealt with the enhancement of thermal conductivity and heat capacity; however, less attention has been given to the facing challenges. Moreover, no exact criteria can be found for the selection of appropriate nanomaterials and their properties for a specific application. In most research studies, the nanoparticles' material and properties have not been selected based on estimated values so that all the aspects of desired application could be considered simultaneously. The wide spread use of nanomaterials can lead to cost effective solutions as well. Therefore, it seems there should be a sense of techno-economic optimization in exploiting nanomaterials for solar thermal energy storage applications. The optimization should cover the key parameters, particularly nanoparticle type, size, loading and shape which depends on the sort of application and also dispersion technology.

  5. Potential space applications of nanomaterials and standartization issues

    NASA Astrophysics Data System (ADS)

    Voronina, Ekaterina; Novikov, Lev

    Nanomaterials surpass traditional materials for space applications in many aspects due to their unique properties associated with nanoscale size of their constituents. This superiority in mechanical, thermal, electrical and optical properties will evidently inspire a wide range of applications in the next generation spacecraft intended for the long-term (~15-20 years) operation in near-Earth orbits and the automatic and manned interplanetary missions as well as in the construction of inhabited bases on the Moon. Nanocomposites with nanoclays, carbon nanotubes and various nanoparticles as fillers are one of the most promising materials for space applications. They may be used as light-weighted and strong structural materials as well as functional and smart materials of general and specific applications, e.g. thermal stabilization, radiation shielding, electrostatic charge mitigation, protection of atomic oxygen influence and space debris impact, etc. Currently, ISO activity on developing standards concerning different issues of nanomaterials manufacturing and applications is high enough. In this presentation, a brief review of existing standards and standards under development in this field is given. Most such standards are related to nanoparticles and nanotube production and characterization, thus the next important step in this activity is the creation of standards on nanomaterial properties and their behavior in different environmental conditions, including extreme environments. The near-Earth’s space is described as an extreme environment for materials due to high vacuum, space radiation, hot and cold plasma, micrometeoroids and space debris, temperature differences, etc. Existing experimental and theoretical data demonstrate that nanomaterials response to various space environment effects may differ substantially from the one of conventional bulk spacecraft materials. Therefore, it is necessary to determine the space environment components, critical for

  6. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging.

    PubMed

    Wen, Jia; Xu, Yongqian; Li, Hongjuan; Lu, Aiping; Sun, Shiguo

    2015-07-21

    Carbon-based nanomaterials as important agents for biological applications have emerged in the past few years due to their unique optical, electronic, mechanical, and chemical properties. Many of these applications rely on successful surface modifications. This review article comprises two main parts. In the first part, we briefly review the properties and surface modifications of several classes of carbon nanomaterials, mainly carbon nanotubes (CNTs), graphene and its derivatives, carbon dots (CDs) and graphene quantum dots (GQDs), as well as some other forms of carbon-based nanomaterials such as fullerene, carbon nanohorns (CNHs) and carbon nanoonions (CNOs). In the second part, we focus on the biological applications of these carbon nanomaterials, in particular their applications for fluorescence biosensing as well as bioimaging.

  7. A Review of Carbon Nanomaterials' Synthesis via the Chemical Vapor Deposition (CVD) Method.

    PubMed

    Manawi, Yehia M; Samara, Ayman; Al-Ansari, Tareq; Atieh, Muataz A

    2018-05-17

    Carbon nanomaterials have been extensively used in many applications owing to their unique thermal, electrical and mechanical properties. One of the prime challenges is the production of these nanomaterials on a large scale. This review paper summarizes the synthesis of various carbon nanomaterials via the chemical vapor deposition (CVD) method. These carbon nanomaterials include fullerenes, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, carbide-derived carbon (CDC), carbon nano-onion (CNO) and MXenes. Furthermore, current challenges in the synthesis and application of these nanomaterials are highlighted with suggested areas for future research.

  8. 78 FR 36784 - Survey of Nanomaterial Risk Management Practices

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-19

    ...-0010, Docket Number NIOSH-265] Survey of Nanomaterial Risk Management Practices AGENCY: National...), Department of Health and Human Services (HHS). ACTION: Proposed NIOSH Survey of Nanomaterial Risk Management... public meeting and opportunity for comment on a proposed NIOSH survey. The primary purpose of the survey...

  9. Gold Nanomaterials in Consumer Cosmetics Nanoproducts: Analyses, Characterization, and Dermal Safety Assessment.

    PubMed

    Cao, Mingjing; Li, Jiayang; Tang, Jinglong; Chen, Chunying; Zhao, Yuliang

    2016-10-01

    Establishment of analytical methods of engineered nanomaterials in consumer products for their human and environmental risk assessment becomes urgent for both academic and industrial needs. Owing to the difficulties and challenges around nanomaterials in complex media, proper chemical separation and biological assays of nanomaterials from nanoproducts needs to be firstly developed. Herein, a facile and rapid method to separate and analyze gold nanomaterials in cosmetics is reported. Gold nanomaterials are successfully separated from different facial or eye creams and their physiochemical properties are analyzed by quantitative and qualitative state-of-the art techniques with high sensitivity or high spatial resolution. In turn, a protocol including quantification of gold by inductively coupled plasma mass spectrometry and thorough characterization of morphology, size distribution, and surface property by electron microscopes, atomic force microscope, and X-ray photoelectron spectroscope is developed. Subsequently, the preliminary toxicity assessment indicates that gold nanomaterials in cosmetic creams have no observable toxicity to human keratinocytes even after 24 h exposure up to a concentration of 200 μg mL -1 . The environmental scanning electron microscope reveals that gold nanomaterials are mostly attached on the cell membrane. Thus, the present study provides a full analysis protocol for toxicity assessment of gold nanomaterials in consumer products (cosmetic creams). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Metal Oxide Nanomaterial QNAR Models: Available Structural Descriptors and Understanding of Toxicity Mechanisms

    PubMed Central

    Ying, Jiali; Zhang, Ting; Tang, Meng

    2015-01-01

    Metal oxide nanomaterials are widely used in various areas; however, the divergent published toxicology data makes it difficult to determine whether there is a risk associated with exposure to metal oxide nanomaterials. The application of quantitative structure activity relationship (QSAR) modeling in metal oxide nanomaterials toxicity studies can reduce the need for time-consuming and resource-intensive nanotoxicity tests. The nanostructure and inorganic composition of metal oxide nanomaterials makes this approach different from classical QSAR study; this review lists and classifies some structural descriptors, such as size, cation charge, and band gap energy, in recent metal oxide nanomaterials quantitative nanostructure activity relationship (QNAR) studies and discusses the mechanism of metal oxide nanomaterials toxicity based on these descriptors and traditional nanotoxicity tests. PMID:28347085

  11. ZnO nanomaterials based surface acoustic wave ethanol gas sensor.

    PubMed

    Wu, Y; Li, X; Liu, J H; He, Y N; Yu, L M; Liu, W H

    2012-08-01

    ZnO nanomaterials based surface acoustic wave (SAW) gas sensor has been investigated in ethanol environment at room temperature. The ZnO nanomaterials have been prepared through thermal evaporation of high-purity zinc powder. The as-prepared ZnO nanomaterials have been characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray Diffraction (XRD) techniques. The results indicate that the obtained ZnO nanomaterials, including many types of nanostructures such as nanobelts, nanorods, nanowires as well as nanosheets, are wurtzite with hexagonal structure and well-crystallized. The SAW sensor coated with the nanostructured ZnO materials has been tested in ethanol gas of various concentrations at room temperature. A network analyzer is used to monitor the change of the insertion loss of the SAW sensor when exposed to ethanol gas. The insertion loss of the SAW sensor varies significantly with the change of ethanol concentration. The experimental results manifest that the ZnO nanomaterials based SAW ethanol gas sensor exhibits excellent sensitivity and good short-term reproducibility at room temperature.

  12. Nano-materials for adhesive-free adsorbers for bakable extreme high vacuum cryopump surfaces

    DOEpatents

    Stutzman, Marcy; Jordan, Kevin; Whitney, Roy R.

    2016-10-11

    A cryosorber panel having nanomaterials used for the cryosorption material, with nanomaterial either grown directly on the cryopanel or freestanding nanomaterials attached to the cryopanel mechanically without the use of adhesives. Such nanomaterial cryosorber materials can be used in place of conventional charcoals that are attached to cryosorber panels with special low outgassing, low temperature capable adhesives. Carbon nanotubes and other nanomaterials could serve the same purpose as conventional charcoal cryosorbers, providing a large surface area for cryosorption without the need for adhesive since the nanomaterials can be grown directly on a metallic substrate or mechanically attached. The nanomaterials would be capable of being fully baked by heating above 100.degree. C., thereby eliminating water vapor from the system, eliminating adhesives from the system, and allowing a full bake of the system to reduce hydrogen outgassing, with the goal of obtaining extreme high vacuum where the pump can produce pressures below 1.times.10.sup.-12 Torr.

  13. Nanomaterials: certain aspects of application, risk assessment and risk communication.

    PubMed

    Laux, Peter; Tentschert, Jutta; Riebeling, Christian; Braeuning, Albert; Creutzenberg, Otto; Epp, Astrid; Fessard, Valérie; Haas, Karl-Heinz; Haase, Andrea; Hund-Rinke, Kerstin; Jakubowski, Norbert; Kearns, Peter; Lampen, Alfonso; Rauscher, Hubert; Schoonjans, Reinhilde; Störmer, Angela; Thielmann, Axel; Mühle, Uwe; Luch, Andreas

    2018-01-01

    Development and market introduction of new nanomaterials trigger the need for an adequate risk assessment of such products alongside suitable risk communication measures. Current application of classical and new nanomaterials is analyzed in context of regulatory requirements and standardization for chemicals, food and consumer products. The challenges of nanomaterial characterization as the main bottleneck of risk assessment and regulation are presented. In some areas, e.g., quantification of nanomaterials within complex matrices, the establishment and adaptation of analytical techniques such as laser ablation inductively coupled plasma mass spectrometry and others are potentially suited to meet the requirements. As an example, we here provide an approach for the reliable characterization of human exposure to nanomaterials resulting from food packaging. Furthermore, results of nanomaterial toxicity and ecotoxicity testing are discussed, with concluding key criteria such as solubility and fiber rigidity as important parameters to be considered in material development and regulation. Although an analysis of the public opinion has revealed a distinguished rating depending on the particular field of application, a rather positive perception of nanotechnology could be ascertained for the German public in general. An improvement of material characterization in both toxicological testing as well as end-product control was concluded as being the main obstacle to ensure not only safe use of materials, but also wide acceptance of this and any novel technology in the general public.

  14. Nanomaterials design and tests for neural tissue engineering.

    PubMed

    Saracino, Gloria A A; Cigognini, Daniela; Silva, Diego; Caprini, Andrea; Gelain, Fabrizio

    2013-01-07

    Nanostructured scaffolds recently showed great promise in tissue engineering: nanomaterials can be tailored at the molecular level and scaffold morphology may more closely resemble features of extracellular matrix components in terms of porosity, framing and biofunctionalities. As a consequence, both biomechanical properties of scaffold microenvironments and biomaterial-protein interactions can be tuned, allowing for improved transplanted cell engraftment and better controlled diffusion of drugs. Easier said than done, a nanotech-based regenerative approach encompasses different fields of know-how, ranging from in silico simulations, nanomaterial synthesis and characterization at the nano-, micro- and mesoscales to random library screening methods (e.g. phage display), in vitro cellular-based experiments and validation in animal models of the target injury. All of these steps of the "assembly line" of nanostructured scaffolds are tightly interconnected both in their standard analysis techniques and in their most recent breakthroughs: indeed their efforts have to jointly provide the deepest possible analyses of the diverse facets of the challenging field of neural tissue engineering. The purpose of this review is therefore to provide a critical overview of the recent advances in and drawbacks and potential of each mentioned field, contributing to the realization of effective nanotech-based therapies for the regeneration of peripheral nerve transections, spinal cord injuries and brain traumatic injuries. Far from being the ultimate overview of such a number of topics, the reader will acknowledge the intrinsic complexity of the goal of nanotech tissue engineering for a conscious approach to the development of a regenerative therapy and, by deciphering the thread connecting all steps of the research, will gain the necessary view of its tremendous potential if each piece of stone is correctly placed to work synergically in this impressive mosaic.

  15. A brief review of the occurrence, use, and safety of food-related nanomaterials.

    PubMed

    Magnuson, Bernadene A; Jonaitis, Tomas S; Card, Jeffrey W

    2011-08-01

    Nanotechnology and nanomaterials have tremendous potential to enhance the food supply through novel applications, including nutrient and bioactive absorption and delivery systems; ingredient functionality; improved colors and flavors; microbial, allergen, and contaminant detection and control; and food packaging properties and performance. To determine the current state of knowledge regarding the safety of these potential uses of nanomaterials, an appraisal of the published literature on the safety of food-related nanomaterials was undertaken. A method of assessment of reliability of toxicology studies was developed to conduct this appraisal. The review of the toxicology literature on oral exposure to food-related nanomaterials found that the number of studies is limited. Exposure to nanomaterials in the human food chain may occur not only through intentional uses in food manufacturing, but also via uses in agricultural production and carry over from use in other industries. Although a number of analytical methods are useful in physicochemical characterization of manufactured nanomaterials, new methods may be needed to more fully detect and characterize nanomaterials incorporated into foods and in other media. There is a need for additional toxicology studies of sufficient quality and duration on different types of nanomaterials to further our understanding of the characteristics of nanomaterials that affect safety of oral exposure resulting from use in various food applications. © 2011 Institute of Food Technologists®

  16. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials

    PubMed Central

    Oomen, Agnes G.; Bleeker, Eric A. J.; Bos, Peter M. J.; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J. G. M.; Rasmussen, Kirsten; Sánchez Jiménez, Araceli; Scott-Fordsmand, Janeck J.; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-01-01

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments. PMID:26516872

  17. Grouping and Read-Across Approaches for Risk Assessment of Nanomaterials.

    PubMed

    Oomen, Agnes G; Bleeker, Eric A J; Bos, Peter M J; van Broekhuizen, Fleur; Gottardo, Stefania; Groenewold, Monique; Hristozov, Danail; Hund-Rinke, Kerstin; Irfan, Muhammad-Adeel; Marcomini, Antonio; Peijnenburg, Willie J G M; Rasmussen, Kirsten; Jiménez, Araceli Sánchez; Scott-Fordsmand, Janeck J; van Tongeren, Martie; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-10-26

    Physicochemical properties of chemicals affect their exposure, toxicokinetics/fate and hazard, and for nanomaterials, the variation of these properties results in a wide variety of materials with potentially different risks. To limit the amount of testing for risk assessment, the information gathering process for nanomaterials needs to be efficient. At the same time, sufficient information to assess the safety of human health and the environment should be available for each nanomaterial. Grouping and read-across approaches can be utilised to meet these goals. This article presents different possible applications of grouping and read-across for nanomaterials within the broader perspective of the MARINA Risk Assessment Strategy (RAS), as developed in the EU FP7 project MARINA. Firstly, nanomaterials can be grouped based on limited variation in physicochemical properties to subsequently design an efficient testing strategy that covers the entire group. Secondly, knowledge about exposure, toxicokinetics/fate or hazard, for example via properties such as dissolution rate, aspect ratio, chemical (non-)activity, can be used to organise similar materials in generic groups to frame issues that need further attention, or potentially to read-across. Thirdly, when data related to specific endpoints is required, read-across can be considered, using data from a source material for the target nanomaterial. Read-across could be based on a scientifically sound justification that exposure, distribution to the target (fate/toxicokinetics) and hazard of the target material are similar to, or less than, the source material. These grouping and read-across approaches pave the way for better use of available information on nanomaterials and are flexible enough to allow future adaptations related to scientific developments.

  18. Landscape Phage: Evolution from Phage Display to Nanobiotechnology.

    PubMed

    Petrenko, Valery A

    2018-06-07

    The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.

  19. Unexpected Far-Ultraviolet Photometric Characteristics On Mimas

    NASA Astrophysics Data System (ADS)

    Royer, E. M.; Hendrix, A. R.

    2013-12-01

    While infrared and visible are the most common wavelength domains used to investigate planetary surfaces, ultraviolet (UV) data are significant and useful. Here, we present the first far-UV phase curves of Mimas, thus displaying another piece of the Saturnian System puzzle. Our preliminary results shows that, one more time, Mimas surface properties are far from what we was expected. Namely, we observe a leading hemisphere brighter than the trailing hemisphere at some far-UV wavelengths. We used the far-UV channel of the Cassini/UVIS instrument, ranging from 118 to 190 nm. Disk-integrated phase curves for the leading hemisphere and the trailing hemisphere, at 180nm, have been produced. Data points span from 0.5 to 163.5 degrees in phase angle. Mimas displays a leading hemisphere brighter than its trailing hemisphere, when theory and previous Voyager observations at longer wavelengths attest of a brighter trailing hemisphere due to the impact of the E-ring grains on this face of the satellite. Surprisingly, UVIS data show a very bright opposition effect on Mimas leading hemisphere, greater than what is observed on Tethys or Dione leading hemisphere at the same wavelength of 180 nm. Preliminary results of photometric properties modeling seem to indicate an important contribution of the coherent-backscattering process in the opposition surge. Exogenic processes such as bombardment by energetic electrons and/or E-ring grains are discussed to explain this unexpected surface property of Mimas.

  20. Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials

    NASA Astrophysics Data System (ADS)

    Jian, Muqiang; Xie, Huanhuan; Wang, Qi; Xia, Kailun; Yin, Zhe; Zhang, Mingyu; Deng, Ningqin; Wang, Luning; Ren, Tianling; Zhang, Yingying

    2016-07-01

    The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of nanomaterials under conventional OMs with the aid of volatile nanoparticles (NPs), which can be deposited and removed in a controlled manner. The NPs deposited on the surface of nanomaterials render strong light scattering to enable the nanomaterials to become optically visible. For example, this approach enables the observation of individual carbon nanotubes (CNTs) with OMs at low magnification or even with the naked eye. Both supported CNTs on various substrates and suspended CNTs can be observed with this approach. Most importantly, the NPs can be completely removed through moderate heat treatment or laser irradiation, avoiding potential influence on the properties or subsequent applications of nanomaterials. Furthermore, we systematically investigate the deposition of various volatile NPs (up to 14 kinds) for the optical observation of nanomaterials. We also demonstrated the application of this approach on other nanomaterials, including nanowires and graphene. We showed that this approach is facile, controllable, non-destructive, and contamination-free, indicating wide potential applications.The development of nanomaterials has put forward high requirements for characterization techniques. Optical microscopy (OM), with easy accessibility and open operating spaces as compared to scanning electron microscopy, is a good choice to quickly locate materials and to be integrated with other equipment. However, OM is limited by its low resolution. Herein, we present a facile and non-destructive approach for optical observation of

  1. Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.

    PubMed

    Eichmann, Shannon L; Burnham, Nancy A

    2017-09-14

    Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.

  2. A nanomaterial release model for waste shredding using a Bayesian belief network

    NASA Astrophysics Data System (ADS)

    Shandilya, Neeraj; Ligthart, Tom; van Voorde, Imelda; Stahlmecke, Burkhard; Clavaguera, Simon; Philippot, Cecile; Ding, Yaobo; Goede, Henk

    2018-02-01

    The shredding of waste of electrical and electronic equipment (WEEE) and other products, incorporated with nanomaterials, can lead to a substantial release of nanomaterials. Considering the uncertainty, complexity, and scarcity of experimental data on release, we present the development of a Bayesian belief network (BBN) model. This baseline model aims to give a first prediction of the release of nanomaterials (excluding nanofibers) during their mechanical shredding. With a focus on the description of the model development methodology, we characterize nanomaterial release in terms of number, size, mass, and composition of released particles. Through a sensitivity analysis of the model, we find the material-specific parameters like affinity of nanomaterials to the matrix of the composite and their state of dispersion inside the matrix to reduce the nanomaterial release up to 50%. The shredder-specific parameters like number of shafts in a shredder and input and output size of the material for shredding could minimize it up to 98%. The comparison with two experimental test cases shows promising outcome on the prediction capacity of the model. As additional experimental data on nanomaterial release becomes available, the model is able to further adapt and update risk forecasts. When adapting the model with additional expert beliefs, experts should be selected using criteria, e.g., substantial contribution to nanomaterial and/or particulate matter release-related scientific literature, the capacity and willingness to contribute to further development of the BBN model, and openness to accepting deviating opinions. [Figure not available: see fulltext.

  3. FTIR spectroscopy as a tool for nano-material characterization

    NASA Astrophysics Data System (ADS)

    Baudot, Charles; Tan, Cher Ming; Kong, Jeng Chien

    2010-11-01

    Covalently grafting functional molecules to carbon nanotubes (CNTs) is an important step to leverage the excellent properties of that nano-fiber in order to exploit its potential in improving the mechanical and thermal properties of a composite material. While Fourier Transform Infra Red (FTIR) spectroscopy can display the various chemical bonding in a material, we found that the existing database in FTIR library does not cover all the bonding information present in functionalized CNTs because the bond between the grafted molecule and the CNT is new in the FTIR study. In order to extend the applicability of FTIR to nano-material, we present a theoretical method to derive FTIR spectroscopy and compare it with our experimental results. In particular, we illustrate a method for the identification of functional molecules grafted on CNTs, and we are able to confirm that the functional molecules are indeed covalently grafted on the CNTs without any alterations to its functional groups.

  4. Sunlight-induced Transformations of Graphene-based Nanomaterials in Aquatic Environments

    EPA Science Inventory

    Graphene-based nanomaterials and other related carbon nanomaterials (CNMs) can be released from products during their life cycles. Upon entry into aquatic environments, they are potentially transformed by photochemical reactions, oxidation reactions and biological processes, all ...

  5. Biomarkers of nanomaterial exposure and effect: current status

    NASA Astrophysics Data System (ADS)

    Iavicoli, Ivo; Leso, Veruscka; Manno, Maurizio; Schulte, Paul A.

    2014-03-01

    Recent advances in nanotechnology have induced a widespread production and application of nanomaterials. As a consequence, an increasing number of workers are expected to undergo exposure to these xenobiotics, while the possible hazards to their health remain not being completely understood. In this context, biological monitoring may play a key role not only to identify potential hazards from and to evaluate occupational exposure to nanomaterials, but also to detect their early biological effects to better assess and manage risks of exposure in respect of the health of workers. Therefore, the aim of this review is to provide a critical evaluation of potential biomarkers of nanomaterial exposure and effect investigated in human and animal studies. Concerning exposure biomarkers, internal dose of metallic or metal oxide nanoparticle exposure may be assessed measuring the elemental metallic content in blood or urine or other biological materials, whereas specific molecules may be carefully evaluated in target tissues as possible biomarkers of biologically effective dose. Oxidative stress biomarkers, such as 8-hydroxy-deoxy-guanosine, genotoxicity biomarkers, and inflammatory response indicators may also be useful, although not specific, as biomarkers of nanomaterial early adverse health effects. Finally, potential biomarkers from "omic" technologies appear to be quite innovative and greatly relevant, although mechanistic, ethical, and practical issues should all be resolved before their routine application in occupational settings could be implemented. Although all these findings are interesting, they point out the need for further research to identify and possibly validate sensitive and specific biomarkers of exposure and effect, suitable for future use in occupational biomonitoring programs. A valuable contribution may derive from the studies investigating the biological behavior of nanomaterials and the factors influencing their toxicokinetics and reactivity. In

  6. Toxicity of inorganic nanomaterials in biomedical imaging.

    PubMed

    Li, Jinxia; Chang, Xueling; Chen, Xiaoxia; Gu, Zhanjun; Zhao, Feng; Chai, Zhifang; Zhao, Yuliang

    2014-01-01

    Inorganic nanoparticles have shown promising potentials as novel biomedical imaging agents with high sensitivity, high spatial and temporal resolution. To translate the laboratory innovations into clinical applications, their potential toxicities are highly concerned and have to be evaluated comprehensively both in vitro and in vivo before their clinical applications. In this review, we first summarized the in vivo and in vitro toxicities of the representative inorganic nanoparticles used in biomedical imagings. Then we further discuss the origin of nanotoxicity of inorganic nanomaterials, including ROS generation and oxidative stress, chemical instability, chemical composition, the surface modification, dissolution of nanoparticles to release excess free ions of metals, metal redox state, and left-over chemicals from synthesis, etc. We intend to provide the readers a better understanding of the toxicology aspects of inorganic nanomaterials and knowledge for achieving optimized designs of safer inorganic nanomaterials for clinical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Specific heat and thermal conductivity of nanomaterials

    NASA Astrophysics Data System (ADS)

    Bhatt, Sandhya; Kumar, Raghuvesh; Kumar, Munish

    2017-01-01

    A model is proposed to study the size and shape effects on specific heat and thermal conductivity of nanomaterials. The formulation developed for specific heat is based on the basic concept of cohesive energy and melting temperature. The specific heat of Ag and Au nanoparticles is reported and the effect of size and shape has been studied. We observed that specific heat increases with the reduction of particle size having maximum shape effect for spherical nanoparticle. To provide a more critical test, we extended our model to study the thermal conductivity and used it for the study of Si, diamond, Cu, Ni, Ar, ZrO2, BaTiO3 and SrTiO3 nanomaterials. A significant reduction is found in the thermal conductivity for nanomaterials by decreasing the size. The model predictions are consistent with the available experimental and simulation results. This demonstrates the suitability of the model proposed in this paper.

  8. Ice Nucleation Properties of Oxidized Carbon Nanomaterials

    PubMed Central

    2015-01-01

    Heterogeneous ice nucleation is an important process in many fields, particularly atmospheric science, but is still poorly understood. All known inorganic ice nucleating particles are relatively large in size and tend to be hydrophilic. Hence it is not obvious that carbon nanomaterials should nucleate ice. However, in this paper we show that four different readily water-dispersible carbon nanomaterials are capable of nucleating ice. The tested materials were carboxylated graphene nanoflakes, graphene oxide, oxidized single walled carbon nanotubes and oxidized multiwalled carbon nanotubes. The carboxylated graphene nanoflakes have a diameter of ∼30 nm and are among the smallest entities observed so far to nucleate ice. Overall, carbon nanotubes were found to nucleate ice more efficiently than flat graphene species, and less oxidized materials nucleated ice more efficiently than more oxidized species. These well-defined carbon nanomaterials may pave the way to bridging the gap between experimental and computational studies of ice nucleation. PMID:26267196

  9. Considerations on the EU definition of a nanomaterial: science to support policy making.

    PubMed

    Bleeker, Eric A J; de Jong, Wim H; Geertsma, Robert E; Groenewold, Monique; Heugens, Evelyn H W; Koers-Jacquemijns, Marjorie; van de Meent, Dik; Popma, Jan R; Rietveld, Anton G; Wijnhoven, Susan W P; Cassee, Flemming R; Oomen, Agnes G

    2013-02-01

    In recent years, an increasing number of applications and products containing or using nanomaterials have become available. This has raised concerns that some of these materials may introduce new risks for humans or the environment. A clear definition to discriminate nanomaterials from other materials is prerequisite to include provisions for nanomaterials in legislation. In October 2011 the European Commission published the 'Recommendation on the definition of a nanomaterial', primarily intended to provide unambiguous criteria to identify materials for which special regulatory provisions might apply, but also to promote consistency on the interpretation of the term 'nanomaterial'. In this paper, the current status of various regulatory frameworks of the European Union with regard to nanomaterials is described, and major issues relevant for regulation of nanomaterials are discussed. This will contribute to better understanding the implications of the choices policy makers have to make in further regulation of nanomaterials. Potential issues that need to be addressed and areas of research in which science can contribute are indicated. These issues include awareness on situations in which nano-related risks may occur for materials that fall outside the definition, guidance and further development of measurement techniques, and dealing with changes during the life cycle. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    PubMed Central

    Cohignac, Vanessa; Landry, Marion Julie; Boczkowski, Jorge; Lanone, Sophie

    2014-01-01

    The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s) still remain(s) unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity. PMID:28344236

  11. Nanomaterial synthesis and characterization for toxicological studies: TiO2 case study

    USGS Publications Warehouse

    Valsami-Jones, E.; Berhanu, D.; Dybowska, A.; Misra, S.; Boccaccini, A.R.; Tetley, T.D.; Luoma, S.N.; Plant, J.A.

    2008-01-01

    In recent years it has become apparent that the novel properties of nanomaterials may predispose them to a hitherto unknown potential for toxicity. A number of recent toxicological studies of nanomaterials exist, but these appear to be fragmented and often contradictory. Such discrepancies may be, at least in part, due to poor description of the nanomaterial or incomplete characterization, including failure to recognise impurities, surface modifications or other important physicochemical aspects of the nanomaterial. Here we make a case for the importance of good quality, well-characterized nanomaterials for future toxicological studies, combined with reliable synthesis protocols, and we present our efforts to generate such materials. The model system for which we present results is TiO2 nanoparticles, currently used in a variety of commercial products. ?? 2008 The Mineralogical Society.

  12. Development and In Vitro Toxicity Evaluation of Alternative Sustainable Nanomaterials

    EPA Science Inventory

    Novel nanomaterial types are rapidly being developed for the value they may add to consumer products without sufficient evaluation of implications for human health, toxicity, environmental impact and long-term sustainability. Nanomaterials made of metals, semiconductors and vario...

  13. Development and In Vitro Bioactivity Profiling of Alternative Sustainable Nanomaterials

    EPA Science Inventory

    Sustainable, environmentally benign nanomaterials (NMs) are being designed as alternatives based on functionality to conventional metal-based nanomaterials (NMs) in order to minimize potential risk to human health and the environment. Development of rapid methods to evaluate the ...

  14. Biomedical Applications of Zinc Oxide Nanomaterials

    PubMed Central

    Zhang, Yin; Nayak, Tapas R.; Hong, Hao; Cai, Weibo

    2013-01-01

    Nanotechnology has witnessed tremendous advancement over the last several decades. Zinc oxide (ZnO), which can exhibit a wide variety of nanostructures, possesses unique semiconducting, optical, and piezoelectric properties hence has been investigated for a wide variety of applications. One of the most important features of ZnO nanomaterials is low toxicity and biodegradability. Zn2+ is an indispensable trace element for adults (~10 mg of Zn2+ per day is recommended) and it is involved in various aspects of metabolism. Chemically, the surface of ZnO is rich in -OH groups, which can be readily functionalized by various surface decorating molecules. In this review article, we summarized the current status of the use of ZnO nanomaterials for biomedical applications, such as biomedical imaging (which includes fluorescence, magnetic resonance, positron emission tomography, as well as dual-modality imaging), drug delivery, gene delivery, and biosensing of a wide array of molecules of interest. Research in biomedical applications of ZnO nanomaterials will continue to flourish over the next decade, and much research effort will be needed to develop biocompatible/biodegradable ZnO nanoplatforms for potential clinical translation. PMID:24206130

  15. Recent developments and directions in printed nanomaterials

    NASA Astrophysics Data System (ADS)

    Choi, Hyung Woo; Zhou, Tianlei; Singh, Madhusudan; Jabbour, Ghassan E.

    2015-02-01

    In this review, we survey several recent developments in printing of nanomaterials for contacts, transistors, sensors of various kinds, light-emitting diodes, solar cells, memory devices, and bone and organ implants. The commonly used nanomaterials are classified according to whether they are conductive, semiconducting/insulating or biological in nature. While many printing processes are covered, special attention is paid to inkjet printing and roll-to-roll printing in light of their complexity and popularity. In conclusion, we present our view of the future development of this field.

  16. Safety assessment of nanomaterials using an advanced decision-making framework, the DF4nanoGrouping

    NASA Astrophysics Data System (ADS)

    Landsiedel, Robert; Ma-Hock, Lan; Wiench, Karin; Wohlleben, Wendel; Sauer, Ursula G.

    2017-05-01

    As presented at the 2016 TechConnect World Innovation Conference on 22-25 May 2016 in Washington DC, USA, the European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) `Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) consisting of three tiers to assign nanomaterials to four main groups with possible further subgrouping to refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways: intrinsic material properties and system-dependent properties (that depend upon the nanomaterial's respective surroundings), biopersistence, uptake and biodistribution, and cellular and apical toxic effects. Use, release, and exposure route may be applied as `qualifiers' to determine if, e.g., nanomaterials cannot be released from products, which may justify waiving of testing. The four main groups encompass (1) soluble, (2) biopersistent high aspect ratio, (3) passive, and (4) active nanomaterials. The DF4nanoGrouping foresees a stepwise evaluation of nanomaterial properties and effects with increasing biological complexity. In case studies covering carbonaceous nanomaterials, metal oxide, and metal sulfate nanomaterials, amorphous silica and organic pigments (all nanomaterials having primary particle sizes below 100 nm), the usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. The DF4nanoGrouping facilitates grouping and targeted testing of nanomaterials. It ensures that sufficient data for the risk assessment of a nanomaterial are available, and it fosters the use of non-animal methods. No studies are performed that do not provide crucial data. Thereby, the DF4nanoGrouping serves to save both animals and resources.

  17. The effects of nanomaterials on blood coagulation in hemostasis and thrombosis.

    PubMed

    Simak, Jan; De Paoli, Silvia

    2017-09-01

    The blood coagulation balance in the organism is achieved by the interaction of the blood platelets (PLTs) with the plasma coagulation system (PCS) and the vascular endothelial cells. In healthy organism, these systems prevent thrombosis and, in events of vascular damage, enable blood clotting to stop bleeding. The dysregulation of hemostasis may cause serious thrombotic and/or hemorrhagic pathologies. Numerous engineered nanomaterials are being investigated for biomedical purposes and are unavoidably exposed to the blood. Also, nanomaterials may access vascular system after occupational, environmental, or other types of exposure. Thus, it is essential to evaluate the effects of engineered nanomaterials on hemostasis. This review focuses on investigations of nanomaterial interactions with the blood components involved in blood coagulation: the PCS and PLTs. Particular emphases include the pathophysiology of effects of nanomaterials on the PCS, including the kallikrein-kinin system, and on PLTs. Methods for investigating these interactions are briefly described, and a review of the most important studies on the interactions of nanomaterials with plasma coagulation and platelets is provided. WIREs Nanomed Nanobiotechnol 2017, 9:e1448. doi: 10.1002/wnan.1448 For further resources related to this article, please visit the WIREs website. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  18. Theory of mind for processing unexpected events across contexts.

    PubMed

    Dungan, James A; Stepanovic, Michael; Young, Liane

    2016-08-01

    Theory of mind, or mental state reasoning, may be particularly useful for making sense of unexpected events. Here, we investigated unexpected behavior across both social and non-social contexts in order to characterize the precise role of theory of mind in processing unexpected events. We used functional magnetic resonance imaging to examine how people respond to unexpected outcomes when initial expectations were based on (i) an object's prior behavior, (ii) an agent's prior behavior and (iii) an agent's mental states. Consistent with prior work, brain regions for theory of mind were preferentially recruited when people first formed expectations about social agents vs non-social objects. Critically, unexpected vs expected outcomes elicited greater activity in dorsomedial prefrontal cortex, which also discriminated in its spatial pattern of activity between unexpected and expected outcomes for social events. In contrast, social vs non-social events elicited greater activity in precuneus across both expected and unexpected outcomes. Finally, given prior information about an agent's behavior, unexpected vs expected outcomes elicited an especially robust response in right temporoparietal junction, and the magnitude of this difference across participants correlated negatively with autistic-like traits. Together, these findings illuminate the distinct contributions of brain regions for theory of mind for processing unexpected events across contexts. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials

    PubMed Central

    Tan, Chaoliang; Zhang, Hua

    2015-01-01

    Non-layer structured nanomaterials with single- or few-layer thickness have two-dimensional sheet-like structures and possess intriguing properties. Recent years have seen major advances in development of a host of non-layer structured ultrathin two-dimensional nanomaterials such as noble metals, metal oxides and metal chalcogenides. The wet-chemical synthesis has emerged as the most promising route towards high-yield and mass production of such nanomaterials. These nanomaterials are now finding increasing applications in a wide range of areas including catalysis, energy production and storage, sensor and nanotherapy, to name but a few. PMID:26303763

  20. Potential for Occupational Exposure to Engineered Carbon-Based Nanomaterials in Environmental Laboratory Studies

    PubMed Central

    Johnson, David R.; Methner, Mark M.; Kennedy, Alan J.; Steevens, Jeffery A.

    2010-01-01

    Background The potential exists for laboratory personnel to be exposed to engineered carbon-based nanomaterials (CNMs) in studies aimed at producing conditions similar to those found in natural surface waters [e.g., presence of natural organic matter (NOM)]. Objective The goal of this preliminary investigation was to assess the release of CNMs into the laboratory atmosphere during handling and sonication into environmentally relevant matrices. Methods We measured fullerenes (C60), underivatized multiwalled carbon nanotubes (raw MWCNT), hydroxylated MWCNT (MWCNT-OH), and carbon black (CB) in air as the nanomaterials were weighed, transferred to beakers filled with reconstituted freshwater, and sonicated in deionized water and reconstituted freshwater with and without NOM. Airborne nanomaterials emitted during processing were quantified using two hand-held particle counters that measure total particle number concentration per volume of air within the nanometer range (10–1,000 nm) and six specific size ranges (300–10,000 nm). Particle size and morphology were determined by transmission electron microscopy of air sample filters. Discussion After correcting for background particle number concentrations, it was evident that increases in airborne particle number concentrations occurred for each nanomaterial except CB during weighing, with airborne particle number concentrations inversely related to particle size. Sonicating nanomaterial-spiked water resulted in increased airborne nanomaterials, most notably for MWCNT-OH in water with NOM and for CB. Conclusion Engineered nanomaterials can become airborne when mixed in solution by sonication, especially when nanomaterials are functionalized or in water containing NOM. This finding indicates that laboratory workers may be at increased risk of exposure to engineered nanomaterials. PMID:20056572

  1. Synthesis and Technological Innovation of Applying Oxide Nanomaterials in Wastewater Treatment by Flotation

    NASA Astrophysics Data System (ADS)

    Covaliu, C. I.; Moga, I. C.; Matache, M. G.; Paraschiv, G.; Gageanu, I.; Vasile, E.

    2018-06-01

    The appearance and development of nanotechnology gave new and efficient modalities for pollutants removal from wastewaters by using new compounds called nanomaterials which possess unique structural and morphological properties. In this paper we investigated the application of CoFe2O4 nanomaterial for increasing the efficiency of oily wastewater treatment by flotation. CoFe2O4 nanomaterial was prepared by precipitation method. Prior testing their application in wastewater treatment by flotation, the oxide nanomaterial was structural and morphological characterized by XRD and TEM analyses. The influence of CoFe2O4nanomaterial on oily wastewater depollution by flotation process was investigated by measuring the following parameters: treatment efficiency [%] and the stability of froth.

  2. NaKnowBaseTM: The EPA Nanomaterials Research ...

    EPA Pesticide Factsheets

    The ability to predict the environmental and health implications of engineered nanomaterials is an important research priority due to the exponential rate at which nanotechnology is being incorporated into consumer, industrial and biomedical applications. To address this need and develop predictive capability, we have created the NaKnowbaseTM, which provides a platform for the curation and dissemination of EPA nanomaterials data to support functional assay development, hazard risk models and informatic analyses. To date, we have combined relevant physicochemical parameters from other organizations (e.g., OECD, NIST), with those requested for nanomaterial data submitted to EPA under the Toxic Substances Control Act (TSCA). Physiochemical characterization data were collated from >400 unique nanomaterials including metals, metal oxides, carbon-based and hybrid materials evaluated or synthesized by EPA researchers. We constructed parameter requirements and table structures for encoding research metadata, including experimental factors and measured response variables. As a proof of concept, we illustrate how SQL-based queries facilitate a range of interrogations including, for example, relationships between nanoparticle characteristics and environmental or toxicological endpoints. The views expressed in this poster are those of the authors and may not reflect U.S. EPA policy. The purpose of this submission for clearance is an abstract for submission to a scientific

  3. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    PubMed

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Engineering nanomaterials-based biosensors for food safety detection.

    PubMed

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives.

    PubMed

    Navya, P N; Daima, Hemant Kumar

    2016-01-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  6. Rational engineering of physicochemical properties of nanomaterials for biomedical applications with nanotoxicological perspectives

    NASA Astrophysics Data System (ADS)

    Navya, P. N.; Daima, Hemant Kumar

    2016-02-01

    Innovative engineered nanomaterials are at the leading edge of rapidly emerging fields of nanobiotechnology and nanomedicine. Meticulous synthesis, unique physicochemical properties, manifestation of chemical or biological moieties on the surface of materials make engineered nanostructures suitable for a variety of biomedical applications. Besides, tailored nanomaterials exhibit entirely novel therapeutic applications with better functionality, sensitivity, efficiency and specificity due to their customized unique physicochemical and surface properties. Additionally, such designer made nanomaterials has potential to generate series of interactions with various biological entities including DNA, proteins, membranes, cells and organelles at nano-bio interface. These nano-bio interactions are driven by colloidal forces and predominantly depend on the dynamic physicochemical and surface properties of nanomaterials. Nevertheless, recent development and atomic scale tailoring of various physical, chemical and surface properties of nanomaterials is promising to dictate their interaction in anticipated manner with biological entities for biomedical applications. As a result, rationally designed nanomaterials are in extensive demand for bio-molecular detection and diagnostics, therapeutics, drug and gene delivery, fluorescent labelling, tissue engineering, biochemical sensing and other pharmaceuticals applications. However, toxicity and risk associated with engineered nanomaterials is rather unclear or not well understood; which is gaining considerable attention and the field of nanotoxicology is evolving promptly. Therefore, this review explores current knowledge of articulate engineering of nanomaterials for biomedical applications with special attention on potential toxicological perspectives.

  7. Nanomaterial interactions with biomembranes: Bridging the gap between soft matter models and biological context.

    PubMed

    Werner, Marco; Auth, Thorsten; Beales, Paul A; Fleury, Jean Baptiste; Höök, Fredrik; Kress, Holger; Van Lehn, Reid C; Müller, Marcus; Petrov, Eugene P; Sarkisov, Lev; Sommer, Jens-Uwe; Baulin, Vladimir A

    2018-04-03

    Synthetic polymers, nanoparticles, and carbon-based materials have great potential in applications including drug delivery, gene transfection, in vitro and in vivo imaging, and the alteration of biological function. Nature and humans use different design strategies to create nanomaterials: biological objects have emerged from billions of years of evolution and from adaptation to their environment resulting in high levels of structural complexity; in contrast, synthetic nanomaterials result from minimalistic but controlled design options limited by the authors' current understanding of the biological world. This conceptual mismatch makes it challenging to create synthetic nanomaterials that possess desired functions in biological media. In many biologically relevant applications, nanomaterials must enter the cell interior to perform their functions. An essential transport barrier is the cell-protecting plasma membrane and hence the understanding of its interaction with nanomaterials is a fundamental task in biotechnology. The authors present open questions in the field of nanomaterial interactions with biological membranes, including: how physical mechanisms and molecular forces acting at the nanoscale restrict or inspire design options; which levels of complexity to include next in computational and experimental models to describe how nanomaterials cross barriers via passive or active processes; and how the biological media and protein corona interfere with nanomaterial functionality. In this Perspective, the authors address these questions with the aim of offering guidelines for the development of next-generation nanomaterials that function in biological media.

  8. Shape-Controlled Synthesis of Hybrid Nanomaterials via Three-Dimensional Hydrodynamic Focusing

    PubMed Central

    2015-01-01

    Shape-controlled synthesis of nanomaterials through a simple, continuous, and low-cost method is essential to nanomaterials research toward practical applications. Hydrodynamic focusing, with its advantages of simplicity, low-cost, and precise control over reaction conditions, has been used for nanomaterial synthesis. While most studies have focused on improving the uniformity and size control, few have addressed the potential of tuning the shape of the synthesized nanomaterials. Here we demonstrate a facile method to synthesize hybrid materials by three-dimensional hydrodynamic focusing (3D-HF). While keeping the flow rates of the reagents constant and changing only the flow rate of the buffer solution, the molar ratio of two reactants (i.e., tetrathiafulvalene (TTF) and HAuCl4) within the reaction zone varies. The synthesized TTF–Au hybrid materials possess very different and predictable morphologies. The reaction conditions at different buffer flow rates are studied through computational simulation, and the formation mechanisms of different structures are discussed. This simple one-step method to achieve continuous shape-tunable synthesis highlights the potential of 3D-HF in nanomaterials research. PMID:25268035

  9. Shape-controlled synthesis of hybrid nanomaterials via three-dimensional hydrodynamic focusing.

    PubMed

    Lu, Mengqian; Yang, Shikuan; Ho, Yi-Ping; Grigsby, Christopher L; Leong, Kam W; Huang, Tony Jun

    2014-10-28

    Shape-controlled synthesis of nanomaterials through a simple, continuous, and low-cost method is essential to nanomaterials research toward practical applications. Hydrodynamic focusing, with its advantages of simplicity, low-cost, and precise control over reaction conditions, has been used for nanomaterial synthesis. While most studies have focused on improving the uniformity and size control, few have addressed the potential of tuning the shape of the synthesized nanomaterials. Here we demonstrate a facile method to synthesize hybrid materials by three-dimensional hydrodynamic focusing (3D-HF). While keeping the flow rates of the reagents constant and changing only the flow rate of the buffer solution, the molar ratio of two reactants (i.e., tetrathiafulvalene (TTF) and HAuCl4) within the reaction zone varies. The synthesized TTF-Au hybrid materials possess very different and predictable morphologies. The reaction conditions at different buffer flow rates are studied through computational simulation, and the formation mechanisms of different structures are discussed. This simple one-step method to achieve continuous shape-tunable synthesis highlights the potential of 3D-HF in nanomaterials research.

  10. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms

    NASA Astrophysics Data System (ADS)

    Golbamaki, Nazanin; Rasulev, Bakhtiyor; Cassano, Antonio; Marchese Robinson, Richard L.; Benfenati, Emilio; Leszczynski, Jerzy; Cronin, Mark T. D.

    2015-01-01

    Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the

  11. Payload Safety: Risk and Characteristic-Based Control of Engineered Nanomaterials

    NASA Astrophysics Data System (ADS)

    Abou, Seraphin Chally; Saad, Maarouf

    2013-09-01

    In the last decade progress has been made to assist organizations that are developing payloads intended for flight on the International Space Station (ISS) and/or Space Shuttle. Collaboration programs for comprehensive risk assessment have been initiated between the U.S. and the European Union to generate requirements and data needed to comply with payloads safety and to perform risk assessment and controls guidance. Yet, substantial research gaps remain, as do challenges in the translation of these research findings to control for exposure to nanoscale material payloads, and the health effects. Since nanomaterial structures are different from traditional molecules, some standard material properties can change at size of 50nm or less. Changes in material properties at this scale challenge our understanding of hazards posed by nanomaterial payloads in the ISS realistic exposure conditions, and our ability to anticipate, evaluate, and control potential health issues, and safety. The research question addressed in this framework is: what kind of descriptors can be developed for nanomaterial payloads risks assessment? Methods proposed incorporate elements of characteristic- based risk an alysis: (1) to enable characterization of anthropogenic nanomaterials which can result in incidental from natural nanoparticles; and (2) to better understand safety attributes in terms of human health impacts from exposure to varying types of engineered nanomaterials.

  12. Gastrointestinal causes of sudden unexpected death: A review.

    PubMed

    Menezes, Ritesh G; Ahmed, Saba; Pasha, Syed Bilal; Hussain, Syed Ather; Fatima, Huda; Kharoshah, Magdy A; Madadin, Mohammed

    2018-01-01

    Gastrointestinal conditions are a less common cause of sudden unexpected death when compared to other conditions such as cardiovascular conditions, but they are equally important. Various congenital and acquired gastrointestinal conditions that have resulted in sudden unexpected death are discussed. The possible lethal mechanisms behind each condition, along with any associated risk factors or secondary diseases, have been described. Through this article, we aim to highlight the need for physicians to prevent death in such conditions by ensuring that subclinical cases are diagnosed correctly before it is too late and by providing timely and efficacious treatment to the patient concerned. In addition, this review would certainly benefit the forensic pathologist while dealing with cases of sudden unexpected death due to gastrointestinal causes. This article is a review of the major gastrointestinal causes of sudden unexpected death. In addition, related fatal cases encountered occasionally in forensic autopsy practice are also included. There are several unusual and rare causes of life-threatening gastrointestinal bleeding that may lead to sudden unexpected death to cover all the entities in detail. Nevertheless, this article is a general guide to the topic of gastrointestinal causes of sudden unexpected death.

  13. Time-Course Determination of Cellular Stress Responses Elicited by Engineered Nanomaterials

    EPA Science Inventory

    Engineered nanomaterials are being incorporated continuously into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on oxidative stress and inflammation endpoints without further investigating potential pathways. ...

  14. Recent Development of Nanomaterial-Doped Conductive Polymers

    NASA Astrophysics Data System (ADS)

    Asyraf, Mohammad; Anwar, Mahmood; Sheng, Law Ming; Danquah, Michael K.

    2017-12-01

    Conductive polymers (CPs) have received significant research attention in material engineering for applications in microelectronics, micro-scale sensors, electromagnetic shielding, and micro actuators. Numerous research efforts have been focused on enhancing the conductivity of CPs by doping. Various conductive materials, such as metal nanoparticles and carbon-based nanoparticles, and structures, such as silver nanoparticles and graphene nanosheets, have been converted into polypyrrole and polypyrrole compounds as the precursors to developing hybrids, conjugates, or crystal nodes within the matrix to enhance the various structural properties, particularly the electrical conductivity. This article reviews nanomaterial doping of conductive polymers alongside technological advancements in the development and application of nanomaterial-doped polymeric systems. Emphasis is given to conductive nanomaterials such as nano-silver particles and carbon-based nanoparticles, graphene nano-sheets, fullerene, and carbon nanotubes (CNT) as dopants for polypyrrole-based CPs. The nature of induced electrical properties including electromagnetic absorption, electrical capacitance, and conductivities of polypyrrole systems is also discussed. The prospects and challenges associated with the development and application of CPs are also presented.

  15. The unexpected memorial.

    PubMed

    Holloway, Richard L

    2018-03-01

    In this article, the current author tells the story of an unexpected musical memorial he and his fellow band mates performed as a tribute to a man named Gordon "Gizmo," a husband and father. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  16. Nucleobases, nucleosides, and nucleotides: versatile biomolecules for generating functional nanomaterials.

    PubMed

    Pu, Fang; Ren, Jinsong; Qu, Xiaogang

    2018-02-21

    The incorporation of biomolecules into nanomaterials generates functional nanosystems with novel and advanced properties, presenting great potential for applications in various fields. Nucleobases, nucleosides and nucleotides, as building blocks of nucleic acids and biological coenzymes, constitute necessary components of the foundation of life. In recent years, as versatile biomolecules for the construction or regulation of functional nanomaterials, they have stimulated interest in researchers, due to their unique properties such as structural diversity, multiplex binding sites, self-assembly ability, stability, biocompatibility, and chirality. In this review, strategies for the synthesis of nanomaterials and the regulation of their morphologies and functions using nucleobases, nucleosides, and nucleotides as building blocks, templates or modulators are summarized alongside selected applications. The diverse applications range from sensing, bioimaging, and drug delivery to mimicking light-harvesting antenna, the construction of logic gates, and beyond. Furthermore, some perspectives and challenges in this emerging field are proposed. This review is directed toward the broader scientific community interested in biomolecule-based functional nanomaterials.

  17. Emerging Carbon and Post-Carbon Nanomaterial Inks for Printed Electronics.

    PubMed

    Secor, Ethan B; Hersam, Mark C

    2015-02-19

    Carbon and post-carbon nanomaterials present desirable electrical, optical, chemical, and mechanical attributes for printed electronics, offering low-cost, large-area functionality on flexible substrates. In this Perspective, recent developments in carbon nanomaterial inks are highlighted. Monodisperse semiconducting single-walled carbon nanotubes compatible with inkjet and aerosol jet printing are ideal channels for thin-film transistors, while inkjet, gravure, and screen-printable graphene-based inks are better-suited for electrodes and interconnects. Despite the high performance achieved in prototype devices, additional effort is required to address materials integration issues encountered in more complex systems. In this regard, post-carbon nanomaterial inks (e.g., electrically insulating boron nitride and optically active transition-metal dichalcogenides) present promising opportunities. Finally, emerging work to extend these nanomaterial inks to three-dimensional printing provides a path toward nonplanar devices. Overall, the superlative properties of these materials, coupled with versatile assembly by printing techniques, offer a powerful platform for next-generation printed electronics.

  18. Unexpected angular or rotational deformity after corrective osteotomy

    PubMed Central

    2014-01-01

    Background Codman’s paradox reveals a misunderstanding of geometry in orthopedic practice. Physicians often encounter situations that cannot be understood intuitively during orthopedic interventions such as corrective osteotomy. Occasionally, unexpected angular or rotational deformity occurs during surgery. This study aimed to draw the attention of orthopedic surgeons toward the concepts of orientation and rotation and demonstrate the potential for unexpected deformity after orthopedic interventions. This study focused on three situations: shoulder arthrodesis, femoral varization derotational osteotomy, and femoral derotation osteotomy. Methods First, a shoulder model was generated to calculate unexpected rotational deformity to demonstrate Codman’s paradox. Second, femoral varization derotational osteotomy was simulated using a cylinder model. Third, a reconstructed femoral model was used to calculate unexpected angular or rotational deformity during femoral derotation osteotomy. Results Unexpected external rotation was found after forward elevation and abduction of the shoulder joint. In the varization and derotation model, closed-wedge osteotomy and additional derotation resulted in an unexpected extension and valgus deformity, namely, under-correction of coxa valga. After femoral derotational osteotomy, varization and extension of the distal fragment occurred, although the extension was negligible. Conclusions Surgeons should be aware of unexpected angular deformity after surgical procedure involving bony areas. The degree of deformity differs depending on the context of the surgical procedure. However, this study reveals that notable deformities can be expected during orthopedic procedures such as femoral varization derotational osteotomy. PMID:24886469

  19. Multidimensional nanomaterials for the control of stem cell fate

    NASA Astrophysics Data System (ADS)

    Chueng, Sy-Tsong Dean; Yang, Letao; Zhang, Yixiao; Lee, Ki-Bum

    2016-09-01

    Current stem cell therapy suffers low efficiency in giving rise to differentiated cell lineages, which can replace the original damaged cells. Nanomaterials, on the other hand, provide unique physical size, surface chemistry, conductivity, and topographical microenvironment to regulate stem cell differentiation through multidimensional approaches to facilitate gene delivery, cell-cell, and cell-ECM interactions. In this review, nanomaterials are demonstrated to work both alone and synergistically to guide selective stem cell differentiation. From three different nanotechnology families, three approaches are shown: (1) soluble microenvironmental factors; (2) insoluble physical microenvironment; and (3) nano-topographical features. As regenerative medicine is heavily invested in effective stem cell therapy, this review is inspired to generate discussions in the potential clinical applications of multi-dimensional nanomaterials.

  20. Is the risk from nanomaterials perceived as different from the risk of 'chemicals' by the Australian public?

    PubMed

    Capon, Adam; Rolfe, Margaret; Gillespie, James; Smith, Wayne

    2016-04-15

    Manufactured nanomaterials in Australia are managed predominantly through existing chemical regulatory frameworks. Many Australian government regulators have suggested the framing of manufactured nanomaterials as 'chemicals' when communicating about manufactured nanomaterials to the general public. This paper aims to determine whether the Australian public perception of manufactured nanomaterials differs to that of 'chemicals', and to examine the relationship between attitudes towards chemicals and perceptions of nanomaterial risk. We undertook a computerised assisted telephone survey of the Australian public. Analysis was undertaken using descriptive, paired tests of proportion, paired t-test and logistic regression techniques. We explored perceptions of nanomaterial risk and their relationship to perceptions of chemical risk and 'chemical attitudes'. We found that the public perceives nanomaterials in a more favourable light than it does chemicals. Perception of risk from chemicals had the greatest association with perceived nanomaterial risk (adjusted odds ratios between 0.1 and 0.2) and that attitudes to chemicals were associated with perception of nanomaterial risk in some cases. Risk communicators and policy makers need to consider the differences and associations between nanomaterials and chemicals when addressing the regulatory aspects of nanomaterials with the public. This is relevant for communication strategies that attempt to normalise the risks from nanomaterials compared with those of chemicals, especially as nanomaterials are perceived to be less risky than chemicals.

  1. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy.

    PubMed

    Biju, Vasudevanpillai

    2014-02-07

    As prepared nanomaterials of metals, semiconductors, polymers and carbon often need surface modifications such as ligand exchange, and chemical and bioconjugate reactions for various biosensor, bioanalytical, bioimaging, drug delivery and therapeutic applications. Such surface modifications help us to control the physico-chemical, toxicological and pharmacological properties of nanomaterials. Furthermore, introduction of various reactive functional groups on the surface of nanomaterials allows us to conjugate a spectrum of contrast agents, antibodies, peptides, ligands, drugs and genes, and construct multifunctional and hybrid nanomaterials for the targeted imaging and treatment of cancers. This tutorial review is intended to provide an introduction to newcomers about how chemical and bioconjugate reactions transform the surface of nanomaterials such as silica nanoparticles, gold nanoparticles, gold quantum clusters, semiconductor quantum dots, carbon nanotubes, fullerene and graphene, and accordingly formulate them for applications such as biosensing, bioimaging, drug and gene delivery, chemotherapy, photodynamic therapy and photothermal therapy. Nonetheless, controversial reports and our growing concerns about toxicity and pharmacokinetics of nanomaterials suggest the need for not only rigorous in vivo experiments in animal models but also novel nanomaterials for practical applications in the clinical settings. Further reading of original and review articles cited herein is necessary to buildup in-depth knowledge about the chemistry, bioconjugate chemistry and biological applications of individual nanomaterials.

  2. MAPLE deposition of nanomaterials

    NASA Astrophysics Data System (ADS)

    Caricato, A. P.; Arima, V.; Catalano, M.; Cesaria, M.; Cozzoli, P. D.; Martino, M.; Taurino, A.; Rella, R.; Scarfiello, R.; Tunno, T.; Zacheo, A.

    2014-05-01

    The matrix-assisted pulsed laser evaporation (MAPLE) has been recently exploited for depositing films of nanomaterials by combining the advantages of colloidal inorganic nanoparticles and laser-based techniques. MAPLE-deposition of nanomaterials meeting applicative purposes demands their peculiar properties to be taken into account while planning depositions to guarantee a congruent transfer (in terms of crystal structure and geometric features) and explain the deposition outcome. In particular, since nanofluids can enhance thermal conductivity with respect to conventional fluids, laser-induced heating can induce different ablation thermal regimes as compared to the MAPLE-treatment of soft materials. Moreover, nanoparticles exhibit lower melting temperatures and can experience pre-melting phenomena as compared to their bulk counterparts, which could easily induce shape and or crystal phase modification of the material to be deposited even at very low fluences. In this complex scenario, this review paper focuses on examples of MAPLE-depositions of size and shape controlled nanoparticles for different applications highlights advantages and challenges of the MAPLE-technique. The influence of the deposition parameters on the physical mechanisms which govern the deposition process is discussed.

  3. Mammalian play: training for the unexpected.

    PubMed

    Spinka, M; Newberry, R C; Bekoff, M

    2001-06-01

    In this review, we present a new conceptual framework for the study of play behavior, a hitherto puzzling array of seemingly purposeless and unrelated behavioral elements that are recognizable as play throughout the mammalian lineage. Our major new functional hypothesis is that play enables animals to develop flexible kinematic and emotional responses to unexpected events in which they experience a sudden loss of control. Specifically, we propose that play functions to increase the versatility of movements used to recover from sudden shocks such as loss of balance and falling over, and to enhance the ability of animals to cope emotionally with unexpected stressful situations. To obtain this "training for the unexpected," we suggest that animals actively seek and create unexpected situations in play through self-handicapping; that is, deliberately relaxing control over their movements or actively putting themselves into disadvantageous positions and situations. Thus, play is comprised of sequences in which the players switch rapidly between well-controlled movements similar to those used in "serious" behavior and self-handicapping movements that result in temporary loss of control. We propose that this playful switching between in-control and out-of-control elements is cognitively demanding, setting phylogenetic and ontogenetic constraints on play, and is underlain by neuroendocrinological responses that produce a complex emotional state known as "having fun." Furthermore, we propose that play is often prompted by relatively novel or unpredictable stimuli, and is thus related to, although distinct from, exploration. We present 24 predictions that arise from our new theoretical framework, examining the extent to which they are supported by the existing empirical evidence and contrasting them with the predictions of four major alternative hypotheses about play. We argue that our "training for the unexpected" hypothesis can account for some previously puzzling

  4. Developments and Applications of Electrogenerated Chemiluminescence Sensors Based on Micro- and Nanomaterials

    PubMed Central

    Hazelton, Sandra G.; Zheng, Xingwang; Zhao, Julia Xiaojun; Pierce, David T.

    2008-01-01

    A variety of recent developments and applications of electrogenerated chemiluminescence (ECL) for sensors are described. While tris(2,2′-bipyridyl)-ruthenium(II) and luminol have dominated and continue to pervade the field of ECL-based sensors, recent work has focused on use of these lumophores with micro- and nanomaterials. It has also extended to inherently luminescent nanomaterials, such as quantum dots. Sensor configurations including microelectrode arrays and microfluidics are reviewed and, with the recent trend toward increased use of nanomaterials, special attention has been given to sensors which include thin films, nanoparticles and nanotubes. Applications of ECL labels and examples of label-free sensing that incorporate nanomaterials are also discussed. PMID:27873850

  5. Nanomaterial induction of oxidative stress in lung epithelial cells and macrophages

    NASA Astrophysics Data System (ADS)

    Wang, Lin; Pal, Anoop K.; Isaacs, Jacqueline A.; Bello, Dhimiter; Carrier, Rebecca L.

    2014-09-01

    Oxidative stress in the lung epithelial A549 cells and macrophages J774A.1 due to contact with commercially important nanomaterials [i.e., nano-silver (nAg), nano-alumina (nAl2O3), single-wall carbon nanotubes (CNT), and nano-titanium oxide anatase (nTiO2)] was evaluated. Nanomaterial-induced intracellular oxidative stress was analyzed by both H2DCFDA fluorescein probe and GSH depletion, extracellular oxidative stress was assessed by H2HFF fluorescein probes, and the secretion of chemokine IL-8 by A549 cells due to elevation of cellular oxidative stress was also monitored, in order to provide a comprehensive in vitro study on nanomaterial-induced oxidative stress in lung. In addition, results from this study were also compared with an acellular "ferric reducing ability of serum" (FRAS) assay and a prokaryotic cell-based assay in evaluating oxidative damage caused by the same set of nanomaterials, for comparison purposes. In general, it was found that nanomaterial-induced oxidative stress is highly cell-type dependent. In A549 lung epithelial cells, nAg appeared to induce highest level of oxidative stress and cell death followed by CNT, nTiO2, and nAl2O3. Different biological oxidative damage (BOD) assays' (i.e., H2DCFA, GSH, and IL-8 release) results generally agreed with each other, and the same trends of nanomaterial-induced BOD were also observed in acellular FRAS and prokaryotic E. coli K12-based assay. In macrophage J774A.1 cells, nAl2O3 and nTiO2 appeared to induce highest levels of oxidative stress. These results suggest that epithelial and macrophage cell models may provide complimentary information when conducting cell-based assays to evaluate nanomaterial-induced oxidative damage in lung.

  6. Application of dental nanomaterials: potential toxicity to the central nervous system

    PubMed Central

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1–100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood–brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems. PMID:25999717

  7. Application of dental nanomaterials: potential toxicity to the central nervous system.

    PubMed

    Feng, Xiaoli; Chen, Aijie; Zhang, Yanli; Wang, Jianfeng; Shao, Longquan; Wei, Limin

    2015-01-01

    Nanomaterials are defined as materials with one or more external dimensions with a size of 1-100 nm. Such materials possess typical nanostructure-dependent properties (eg, chemical, biological, optical, mechanical, and magnetic), which may differ greatly from the properties of their bulk counterparts. In recent years, nanomaterials have been widely used in the production of dental materials, particularly in light polymerization composite resins and bonding systems, coating materials for dental implants, bioceramics, endodontic sealers, and mouthwashes. However, the dental applications of nanomaterials yield not only a significant improvement in clinical treatments but also growing concerns regarding their biosecurity. The brain is well protected by the blood-brain barrier (BBB), which separates the blood from the cerebral parenchyma. However, in recent years, many studies have found that nanoparticles (NPs), including nanocarriers, can transport through the BBB and locate in the central nervous system (CNS). Because the CNS may be a potential target organ of the nanomaterials, it is essential to determine the neurotoxic effects of NPs. In this review, possible dental nanomaterials and their pathways into the CNS are discussed, as well as related neurotoxicity effects underlying the in vitro and in vivo studies. Finally, we analyze the limitations of the current testing methods on the toxicological effects of nanomaterials. This review contributes to a better understanding of the nano-related risks to the CNS as well as the further development of safety assessment systems.

  8. Carbon-based nanomaterials: multifunctional materials for biomedical engineering.

    PubMed

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2013-04-23

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), and extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications.

  9. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Honghu

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering.more » Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.« less

  10. How should the completeness and quality of curated nanomaterial data be evaluated?†

    PubMed Central

    Marchese Robinson, Richard L.; Lynch, Iseult; Peijnenburg, Willie; Rumble, John; Klaessig, Fred; Marquardt, Clarissa; Rauscher, Hubert; Puzyn, Tomasz; Purian, Ronit; Åberg, Christoffer; Karcher, Sandra; Vriens, Hanne; Hoet, Peter; Hoover, Mark D.; Hendren, Christine Ogilvie; Harper, Stacey L.

    2016-01-01

    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials’ behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated? PMID:27143028

  11. Significance of Intratracheal Instillation Tests for the Screening of Pulmonary Toxicity of Nanomaterials.

    PubMed

    Morimoto, Yasuo; Izumi, Hiroto; Yoshiura, Yukiko; Fujisawa, Yuri; Fujita, Katsuhide

    Inhalation tests are the gold standard test for the estimation of the pulmonary toxicity of respirable materials. Intratracheal instillation tests have been used widely, but they yield limited evidence of the harmful effects of respirable materials. We reviewed the effectiveness of intratracheal instillation tests for estimating the hazards of nanomaterials, mainly using research papers featuring intratracheal instillation and inhalation tests centered on a Japanese national project. Compared to inhalation tests, intratracheal instillation tests induced more acute inflammatory responses in the animal lung due to a bolus effect regardless of the toxicity of the nanomaterials. However, nanomaterials with high toxicity induced persistent inflammation in the chronic phase, and nanomaterials with low toxicity induced only transient inflammation. Therefore, in order to estimate the harmful effects of a nanomaterial, an observation period of 3 months or 6 months following intratracheal instillation is necessary. Among the endpoints of pulmonary toxicity, cell count and percentage of neutrophil, chemokines for neutrophils and macrophages, and oxidative stress markers are considered most important. These markers show persistent and transient responses in the lung from nanomaterials with high and low toxicity, respectively. If the evaluation of the pulmonary toxicity of nanomaterials is performed in not only the acute but also the chronic phase in order to avoid the bolus effect of intratracheal instillation and inflammatory-related factors that are used as endpoints of pulmonary toxicity, we speculate that intratracheal instillation tests can be useful for screening for the identification of the hazard of nanomaterials through pulmonary inflammation.

  12. Decontamination of Surfaces Exposed to Carbonbased Nanotubes and Nanomaterials

    NASA Astrophysics Data System (ADS)

    Karimi, Zahra

    Contamination of surfaces by nanomaterials can happen due to accidental spillage and release or gradual accumulation during processing or handling. Considering the increasingly wide use of nanomaterials in industry and research labs and also taking into account the diversity of physical and chemical properties of different nanomaterials (such as solubility, aggregation/agglomeration, and surface reactivity), there is a pressing need to define reliable nanomaterial-specific decontamination guidelines. In this project, we propose and investigate a potential method for surface decontamination of carbon-based nanomaterials using solvent cleaning and wipes. The results show that the surfactant-assisted removal efficiencies of multi-walled carbon nanotubes, single walled carbon nantubes and single walled carbon nano-horns from silicon wafers through wiping is greater than 95%, 90% and 78%, respectively. The need for further studies to understand the mechanisms of nanomaterial removal from surfaces and development of standard techniques for surface decontamination of nanomaterials is highlighted. Another phase of experiments were performed to examine the efficiency of surfactants to remove multi-walled carbon nanotubes (MWCNTs) from silicon substrates with nano and microscaled features. In the first set of experiments, nanoscale features were induced on silicon wafers using SF6 and O2 plasma. Atomic force microscopy (AFM) was used to observe the surface topology and roughness. In the second set, well-defined microscale topological features were induced on silicon wafers using photo lithography and plasma etching. The etching time was varied to create semi-ellipsoidal pits with average diameter and height of ~ 7-9 microm, and ~ 1-3 microm, respectively. MWCNTs in the form of liquid solution were deposited on the surface of silicon wafers using the spin coating process. For the cleaning process, the contaminated surfaces were first sprayed with different types of surfactant

  13. Remediation of water and wastewater by using engineered nanomaterials: A review.

    PubMed

    Bishoge, Obadia K; Zhang, Lingling; Suntu, Shaldon L; Jin, Hui; Zewde, Abraham A; Qi, Zhongwei

    2018-05-12

    Nanotechnology is currently a fast-rising socioeconomic and political knowledge-based technology owing to the unique characteristics of its engineered nanomaterials. This branch of technology is useful for water and wastewater remediation. Many scientists and researchers have been conducting different studies and experiments on the applications of engineered nanomaterials at the local to international level. This review mainly aims to provide a current overview of existing knowledge on engineered nanomaterials and their applications in water and wastewater remediation. Furthermore, the present risks and challenges of nanotechnology are examined.

  14. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials.

    PubMed

    Huang, Xiao; Tan, Chaoliang; Yin, Zongyou; Zhang, Hua

    2014-04-09

    Two-dimensional (2D) nanomaterials, such as graphene and transition metal dichalcogenides (TMDs), receive a lot of attention, because of their intriguing properties and wide applications in catalysis, energy-storage devices, electronics, optoelectronics, and so on. To further enhance the performance of their application, these 2D nanomaterials are hybridized with other functional nanostructures. In this review, the latest studies of 2D nanomaterial-based hybrid nanostructures are discussed, focusing on their preparation methods, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Carbon Nanomaterials as Reinforcements for Composites

    NASA Technical Reports Server (NTRS)

    Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Carbon nanomaterials including fellerenes, nanotubes (CNT) and nanofibers have been proposed for many applications. One of applications is to use the carbon nanomaterials as reinforcements for composites, especially for polymer matrices. Carbon nanotubes is a good reinforcement for lightweight composite applications due to its low mass density and high Young's modulus. Two obscures need to overcome for carbon nanotubes as reinforcements in composites, which are large quantity production and functioning the nanotubes. This presentation will discuss the carbon nanotube growth by chemical vapor deposition. In order to reduce the cost of producing carbon nanotubes as well as preventing the sliding problems, carbon nanotubes were also synthesized on carbon fibers. The synthesis process and characterization results of nanotubes and nanotubes/fibers will be discussed in the presentation.

  16. Creating biological nanomaterials using synthetic biology.

    PubMed

    Rice, MaryJoe K; Ruder, Warren C

    2014-02-01

    Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.

  17. Fate and risks of nanomaterials in aquatic and terrestrial environments.

    PubMed

    Batley, Graeme E; Kirby, Jason K; McLaughlin, Michael J

    2013-03-19

    Over the last decade, nanoparticles have been used more frequently in industrial applications and in consumer and medical products, and these applications of nanoparticles will likely continue to increase. Concerns about the environmental fate and effects of these materials have stimulated studies to predict environmental concentrations in air, water, and soils and to determine threshold concentrations for their ecotoxicological effects on aquatic or terrestrial biota. Nanoparticles can be added to soils directly in fertilizers orplant protection products or indirectly through application to land or wastewater treatment products such as sludges or biosolids. Nanoparticles may enter aquatic systems directly through industrial discharges or from disposal of wastewater treatment effluents or indirectly through surface runoff from soils. Researchers have used laboratory experiments to begin to understand the effects of nanoparticles on waters and soils, and this Account reviews that research and the translation of those results to natural conditions. In the environment, nanoparticles can undergo a number of potential transformations that depend on the properties both of the nanoparticle and of the receiving medium. These transformations largely involve chemical and physical processes, but they can involve biodegradation of surface coatings used to stabilize many nanomaterial formulations. The toxicity of nanomaterials to algae involves adsorption to cell surfaces and disruption to membrane transport. Higher organisms can directly ingest nanoparticles, and within the food web, both aquatic and terrestrial organisms can accumulate nanoparticles. The dissolution of nanoparticles may release potentially toxic components into the environment. Aggregation with other nanoparticles (homoaggregation) or with natural mineral and organic colloids (heteroaggregation) will dramatically change their fate and potential toxicity in the environment. Soluble natural organic matter may

  18. Redox electrodes comprised of polymer-modified carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Roberts, Mark; Emmett, Robert; Karakaya, Mehmet; Podila, Ramakrishna; Rao, Apparao; Clemson Physics Team; Clemson Chemical Engineering Team

    2013-03-01

    A shift in how we generate and use electricity requires new energy storage materials and systems compatible with hybrid electric transportation and the integration of renewable energy sources. Supercapacitors provide a solution to these needs by combining the high power, rapid switching, and exceptional cycle life of a capacitor with the high energy density of a battery. Our research brings together nanotechnology and materials chemistry to address the limitations of electrode materials. Paper electrodes fabricated with various forms of carbon nanomaterials, such as nanotubes, are modified with redox-polymers to increase the electrode's energy density while maintaining rapid discharge rates. In these systems, the carbon nanomaterials provide the high surface area, electrical conductivity, nanoscale and porosity, while the redox polymers provide a mechanism for charge storage through Faradaic charge transfer. The design of redox polymers and their incorporation into nanomaterial electrodes will be discussed with a focus on enabling high power and high energy density electrodes.

  19. Biocompatible Nanomaterials and Nanodevices Promising for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Firkowska, Izabela; Giannona, Suna; Rojas-Chapana, José A.; Luecke, Klaus; Brüstle, Oliver; Giersig, Michael

    Nanotechnology applied to biology requires a thorough understanding of how molecules, sub-cellular entities, cells, tissues, and organs function and how they are structured. The merging of nanomaterials and life science into hybrids of controlled organization and function is possible, assuming that biology is nanostructured, and therefore man-made nano-materials can structurally mimic nature and complement each other. By taking advantage of their special properties, nanomaterials can stimulate, respond to and interact with target cells and tissues in controlled ways to induce desired physiological responses with a minimum of undesirable effects. To fulfill this goal the fabrication of nano-engineered materials and devices has to consider the design of natural systems. Thus, engineered micro-nano-featured systems can be applied to biology and biomedicine to enable new functionalities and new devices. These include, among others, nanostructured implants providing many advantages over existing, conventional ones, nanodevices for cell manipulation, and nanosensors that would provide reliable information on biological processes and functions.

  20. Synthetic biology engineering of biofilms as nanomaterials factories.

    PubMed

    Nguyen, Peter Q

    2017-06-15

    Bottom-up fabrication of nanoscale materials has been a significant focus in materials science for expanding our technological frontiers. This assembly concept, however, is old news to biology - all living organisms fabricate themselves using bottom-up principles through a vast self-organizing system of incredibly complex biomolecules, a marvelous dynamic that we are still attempting to unravel. Can we use what we have gleaned from biology thus far to illuminate alternative strategies for designer nanomaterial manufacturing? In the present review article, new synthetic biology efforts toward using bacterial biofilms as platforms for the synthesis and secretion of programmable nanomaterials are described. Particular focus is given to self-assembling functional amyloids found in bacterial biofilms as re-engineerable modular nanomolecular components. Potential applications and existing challenges for this technology are also explored. This novel approach for repurposing biofilm systems will enable future technologies for using engineered living systems to grow artificial nanomaterials. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  1. Contributions and mechanisms of action of graphite nanomaterials in ultra high performance concrete

    NASA Astrophysics Data System (ADS)

    Sbia, Libya Ahmed

    Ultra-high performance concrete (UHPC) reaches high strength and impermeability levels by using a relatively large volume fraction of a dense binder with fine microstructure in combination with high-quality aggregates of relatively small particle size, and reinforcing fibers. The dense microstructure of the cementitions binder is achieved by raising the packing density of the particulate matter, which covers sizes ranging from few hundred nanometers to few millimeters. The fine microstructure of binder in UHPC is realized by effective use of pozzolans to largely eliminate the coarse crystalline particles which exist among cement hydrates. UHPC incorporates (steel) fibers to overcome the brittleness of its dense, finely structured cementitious binder. The main thrust of this research is to evaluate the benefits of nanmaterials in UHPC. The dense, finely structure cementitious binder as well as the large volume fraction of the binder in UHPC benefit the dispersion of nanomaterials, and their interfacial interactions. The relatively close spacing of nanomaterials within the cementitious binder of UHPC enables them to render local reinforcement effects in critically stressed regions such as those in the vicinity of steel reinforcement and prestressing strands as well as fibers. Nanomaterials can also raise the density of the binder in UHPC by extending the particle size distribution down to the few nanometers range. Comprehensive experimental studies supported by theoretical investigations were undertake in order to optimize the use of nanomaterials in UHPC, identity the UHPC (mechanical) properties which benefit from the introduction of nanomaterials, and define the mechanisms of action of nanomaterials in UHPC. Carbon nanofiber was the primary nanomaterial used in this investigation. Some work was also conducted with graphite nanoplates. The key hypotheses of the project were as follows: (i) nanomaterials can make important contributions to the packing density of the

  2. A decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping).

    PubMed

    Arts, Josje H E; Hadi, Mackenzie; Irfan, Muhammad-Adeel; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2015-03-15

    The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) 'Nano Task Force' proposes a Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) that consists of 3 tiers to assign nanomaterials to 4 main groups, to perform sub-grouping within the main groups and to determine and refine specific information needs. The DF4nanoGrouping covers all relevant aspects of a nanomaterial's life cycle and biological pathways, i.e. intrinsic material and system-dependent properties, biopersistence, uptake and biodistribution, cellular and apical toxic effects. Use (including manufacture), release and route of exposure are applied as 'qualifiers' within the DF4nanoGrouping to determine if, e.g. nanomaterials cannot be released from a product matrix, which may justify the waiving of testing. The four main groups encompass (1) soluble nanomaterials, (2) biopersistent high aspect ratio nanomaterials, (3) passive nanomaterials, and (4) active nanomaterials. The DF4nanoGrouping aims to group nanomaterials by their specific mode-of-action that results in an apical toxic effect. This is eventually directed by a nanomaterial's intrinsic properties. However, since the exact correlation of intrinsic material properties and apical toxic effect is not yet established, the DF4nanoGrouping uses the 'functionality' of nanomaterials for grouping rather than relying on intrinsic material properties alone. Such functionalities include system-dependent material properties (such as dissolution rate in biologically relevant media), bio-physical interactions, in vitro effects and release and exposure. The DF4nanoGrouping is a hazard and risk assessment tool that applies modern toxicology and contributes to the sustainable development of nanotechnological products. It ensures that no studies are performed that do not provide crucial data and therefore saves animals and resources. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights

  3. Management of nanomaterials safety in research environment.

    PubMed

    Groso, Amela; Petri-Fink, Alke; Magrez, Arnaud; Riediker, Michael; Meyer, Thierry

    2010-12-10

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3--highest hazard to Nano1--lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  4. Management of nanomaterials safety in research environment

    PubMed Central

    2010-01-01

    Despite numerous discussions, workshops, reviews and reports about responsible development of nanotechnology, information describing health and environmental risk of engineered nanoparticles or nanomaterials is severely lacking and thus insufficient for completing rigorous risk assessment on their use. However, since preliminary scientific evaluations indicate that there are reasonable suspicions that activities involving nanomaterials might have damaging effects on human health; the precautionary principle must be applied. Public and private institutions as well as industries have the duty to adopt preventive and protective measures proportionate to the risk intensity and the desired level of protection. In this work, we present a practical, 'user-friendly' procedure for a university-wide safety and health management of nanomaterials, developed as a multi-stakeholder effort (government, accident insurance, researchers and experts for occupational safety and health). The process starts using a schematic decision tree that allows classifying the nano laboratory into three hazard classes similar to a control banding approach (from Nano 3 - highest hazard to Nano1 - lowest hazard). Classifying laboratories into risk classes would require considering actual or potential exposure to the nanomaterial as well as statistical data on health effects of exposure. Due to the fact that these data (as well as exposure limits for each individual material) are not available, risk classes could not be determined. For each hazard level we then provide a list of required risk mitigation measures (technical, organizational and personal). The target 'users' of this safety and health methodology are researchers and safety officers. They can rapidly access the precautionary hazard class of their activities and the corresponding adequate safety and health measures. We succeed in convincing scientist dealing with nano-activities that adequate safety measures and management are promoting

  5. Monitoring migration and transformation of nanomaterials in polymeric composites during accelerated aging

    NASA Astrophysics Data System (ADS)

    Vilar, G.; Fernández-Rosas, E.; Puntes, V.; Jamier, V.; Aubouy, L.; Vázquez-Campos, S.

    2013-04-01

    The incorporation of small amounts of nanoadditives in polymeric compounds can introduce new mechanical, physical, electrical, magnetic, thermal and/or optical properties. The properties of these advanced materials have enabled new applications in several industrial sectors (electronics, automotive, textile...). In particular, for the nanomaterials (NM) described in this work, multi-walled carbon nanotubes (MWCNT) and silicon dioxide nanoparticles (SiO2 NP), the following properties have been described: MWCNT act as nucleating agents in thermoplastics, and change viscosity, affecting dispersion, orientation, and therefore mechanical, thermal, and electrical properties; and SiO2 NP act as flame retardant and display improved electrical and mechanical properties. The work described here is focused on the evaluation of the migration and transformation of NM included in polymer nanocomposites (NC) during accelerated climatic ageing. To this aim, we generated polyamide 6 (PA6) NC with different degree of compatibility between the NM and the polymeric matrix. These NC were submitted to accelerated aging conditions to simulate outdoor conditions (simulation of the use phase of the polymeric NC). The NC contain as nanofillers MWCNT and SiO2 NP with different surface properties to influence the compatibility with the polymeric matrix. The generated NC were evaluated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) with Energy-dispersive X-ray spectroscopy (EDX), thermogravimetry (TGA) and differential scanning calorimetry (DSC) before and after the aging process, to monitor the compatibility of the NM with the matrix: dispersion within the matrix, migration during aging, and modification of the polymer properties. The dispersion of SiO2 NP in the NC depended on their compatibility with the matrix. However, independently of their compatibility with the matrix, SiO2 NP were aggregated at the end of the accelerated aging process. In addition

  6. The application of nanomaterials in controlled drug delivery for bone regeneration.

    PubMed

    Shi, Shuo; Jiang, Wenbao; Zhao, Tianxiao; Aifantis, Katerina E; Wang, Hui; Lin, Lei; Fan, Yubo; Feng, Qingling; Cui, Fu-zhai; Li, Xiaoming

    2015-12-01

    Bone regeneration is a complicated process that involves a series of biological events, such as cellular recruitment, proliferation and differentiation, and so forth, which have been found to be significantly affected by controlled drug delivery. Recently, a lot of research studies have been launched on the application of nanomaterials in controlled drug delivery for bone regeneration. In this article, the latest research progress in this area regarding the use of bioceramics-based, polymer-based, metallic oxide-based and other types of nanomaterials in controlled drug delivery for bone regeneration are reviewed and discussed, which indicates that the controlling drug delivery with nanomaterials should be a very promising treatment in orthopedics. Furthermore, some new challenges about the future research on the application of nanomaterials in controlled drug delivery for bone regeneration are described in the conclusion and perspectives part. Copyright © 2015 Wiley Periodicals, Inc.

  7. Enzyme-Responsive Nanomaterials for Controlled Drug Delivery

    PubMed Central

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2015-01-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials for controlled drug release have achieved significant development and been studied as an important class of drug delivery devices in nanomedicine. In this review, we describe enzymes such as proteases, phospholipase and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area. PMID:25251024

  8. Enzyme-responsive nanomaterials for controlled drug delivery

    NASA Astrophysics Data System (ADS)

    Hu, Quanyin; Katti, Prateek S.; Gu, Zhen

    2014-10-01

    Enzymes underpin physiological function and exhibit dysregulation in many disease-associated microenvironments and aberrant cell processes. Exploiting altered enzyme activity and expression for diagnostics, drug targeting, and drug release is tremendously promising. When combined with booming research in nanobiotechnology, enzyme-responsive nanomaterials used for controlled drug release have achieved significant development and have been studied as an important class of drug delivery strategies in nanomedicine. In this review, we describe enzymes such as proteases, phospholipases and oxidoreductases that serve as delivery triggers. Subsequently, we explore recently developed enzyme-responsive nanomaterials with versatile applications for extracellular and intracellular drug delivery. We conclude by discussing future opportunities and challenges in this area.

  9. Fast identification of the conduction-type of nanomaterials by field emission technique.

    PubMed

    Yang, Xun; Gan, Haibo; Tian, Yan; Peng, Luxi; Xu, Ningsheng; Chen, Jun; Chen, Huanjun; Deng, Shaozhi; Liang, Shi-Dong; Liu, Fei

    2017-10-12

    There are more or less dopants or defects existing in nanomaterials, so they usually have different conduct-types even for the same substrate. Therefore, fast identification of the conduction-type of nanomaterials is very essential for their practical application in functional nanodevices. Here we use the field emission (FE) technique to research nanomaterials and establish a generalized Schottky-Nordheim (SN) model, in which an important parameter λ (the image potential factor) is first introduced to describe the effective image potential. By regarding λ as the criterion, their energy-band structure can be identified: (a) λ = 1: metal; (b) 0.5 < λ < 1: n-type semiconductor; (c) 0 < λ < 0.5: p-type semiconductor. Moreover, this method can be utilized to qualitatively evaluate the doping-degree for a given semiconductor. We test numerically and experimentally a group of nanomaterial emitters and all results agree with our theoretical results very well, which suggests that our method based on FE measurements should be an ideal and powerful tool to fast ascertain the conduction-type of nanomaterials.

  10. Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoming; Chen, Hui-jiuan; Chen, Xiaodong; Alfadhl, Yasir; Yu, Junsheng; Wen, Dongsheng

    2015-03-01

    In recent years, the application of nanomaterials to biological and biomedicine areas has attracted intensive interest. One of the hot topics is the nanomaterial mediated radiofrequency (RF) hyperthermia or ablation, i.e., using RF fields/waves to heat tumor tissues treated with nanomaterials to destroy cancerous cells while minimizing the side-heating effect. However, there are currently many contradictive results reported concerning the heating effect of nanomaterials under a RF field. This paper provided a comprehensive review to nanomaterial mediated RF ablation from both experimental and theoretical aspects. Three heating mechanisms were discussed, i.e., laser heating, magnetic field heating, and electric field heating in RF spectrum, with the focus on the last one. The results showed that while diluted pure metallic nanoparticles could be heated significantly by a laser through the surface plasmon resonance, they cannot be easily heated by a RF electric field. Further studies are proposed focusing on nanoparticle structure and morphology, electromagnetic frequency and localized heating effect to pave the way for future development.

  11. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    NASA Astrophysics Data System (ADS)

    Harper, Bryan; Thomas, Dennis; Chikkagoudar, Satish; Baker, Nathan; Tang, Kaizhi; Heredia-Langner, Alejandro; Lins, Roberto; Harper, Stacey

    2015-06-01

    The integration of rapid assays, large datasets, informatics, and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here, we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality in developing embryonic zebrafish, were established at realistic exposure levels and used to develop a hazard ranking of diverse nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both the core composition and outermost surface chemistry of nanomaterials. The resulting clusters guided the development of a surface chemistry-based model of gold nanoparticle toxicity. Our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. Research should continue to focus on methodologies for determining nanomaterial hazard based on multiple sub-lethal responses following realistic, low-dose exposures, thus increasing the availability of quantitative measures of nanomaterial hazard to support the development of nanoparticle structure-activity relationships.

  12. Characterizing adoption of precautionary risk management guidance for nanomaterials, an emerging occupational hazard.

    PubMed

    Schubauer-Berigan, Mary K; Dahm, Matthew M; Schulte, Paul A; Hodson, Laura; Geraci, Charles L

    2015-01-01

    Exposure to engineered nanomaterials (substances with at least one dimension of 1-100 nm) has been of increased interest, with the recent growth in production and use of nanomaterials worldwide. Various organizations have recommended methods to minimize exposure to engineered nanomaterials. The purpose of this study was to evaluate available data to examine the extent to which studied U.S. companies (which represent a small fraction of all companies using certain forms of engineered nanomaterials) follow the guidelines for reducing occupational exposures to engineered nanomaterials that have been issued by the National Institute for Occupational Safety and Health (NIOSH) and other organizations. Survey data, field reports, and field notes for all NIOSH nanomaterial exposure assessments conducted between 2006 and 2011 were collected and reviewed to: (1) determine the level of adoption of precautionary guidance on engineering controls and personal protective equipment (PPE), and (2) evaluate the reliability of companies' self-reported use of engineering controls and PPE. Use of PPE was observed among 89% [95% confidence interval (CI): 76%-96%] of 46 visited companies, and use of containment-based engineering controls for at least some processes was observed among 83% (95% CI: 76%-96%). In on-site evaluations, more than 90% of the 16 engineered carbonaceous nanomaterial companies that responded to an industrywide survey were observed to be using engineering controls and PPE as reported or more stringently than reported. Since PPE use was slightly more prevalent than engineering controls, better communication may be necessary to reinforce the importance of the hierarchy of controls. These findings may also be useful in conducting exposure assessment and epidemiologic research among U.S. workers handling nanomaterials.

  13. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures.

    PubMed

    Faramarzi, Mohammad Ali; Sadighi, Armin

    2013-03-01

    The synthesis of inorganic nanomaterials and nanostructures by the means of diverse physical, chemical, and biological principles has been developed in recent decades. The nanoscale materials and structures creation continue to be an active area of researches due to the exciting properties of the resulting nanomaterials and their innovative applications. Despite physical and chemical approaches which have been used for a long time to produce nanomaterials, biological resources as green candidates that can replace old production methods have been focused in recent years to generate various inorganic nanoparticles (NPs) or other nanoscale structures. Cost-effective, eco-friendly, energy efficient, and nontoxic produced nanomaterials using diverse biological entities have been received increasing attention in the last two decades in contrast to physical and chemical methods owe using toxic solvents, generate unwanted by-products, and high energy consumption which restrict the popularity of these ways employed in nanometric science and engineering. In this review, the biosynthesis of gold, silver, gold-silver alloy, magnetic, semiconductor nanocrystals, silica, zirconia, titania, palladium, bismuth, selenium, antimony sulfide, and platinum NPs, using bacteria, actinomycetes, fungi, yeasts, plant extracts and also informational bio-macromolecules including proteins, polypeptides, DNA, and RNA have been reported extensively to mention the current status of the biological inorganic nanomaterial production. In other hand, two well-known wet chemical techniques, namely chemical reduction and sol-gel methods, used to produce various types of nanocrystalline powders, metal oxides, and hybrid organic-inorganic nanomaterials have presented. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Soft X-ray spectromicroscopy for speciation, quantitation and nano-eco-toxicology of nanomaterials.

    PubMed

    Lawrence, J R; Swerhone, G D W; Dynes, J J; Korber, D R; Hitchcock, A P

    2016-02-01

    There is a critical need for methods that provide simultaneous detection, identification, quantitation and visualization of nanomaterials at their interface with biological and environmental systems. The approach should allow speciation as well as elemental analysis. Using the intrinsic X-ray absorption properties, soft X-ray scanning transmission X-ray spectromicroscopy (STXM) allows characterization and imaging of a broad range of nanomaterials, including metals, oxides and organic materials, and at the same time is able to provide detailed mapping of biological components. Thus, STXM offers considerable potential for application to research on nanomaterials in biology and the environment. The potential and limitations of STXM in this context are discussed using a range of examples, focusing on the interaction of nanomaterials with microbial cells, biofilms and extracellular polymers. The studies outlined include speciation and mapping of metal-containing nanomaterials (Ti, Ni, Cu) and carbon-based nanomaterials (multiwalled carbon nanotubes, C60 fullerene). The benefits of X-ray fluorescence detection in soft X-ray STXM are illustrated with a study of low levels of Ni in a natural river biofilm. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.

  15. Nanomaterial Dispersion/Dissolution Characterization: Scientific Operating Procedure SOP-F-1

    DTIC Science & Technology

    2016-05-01

    ER D C/ EL S R- 16 -1 Environmental Consequences of Nanotechnologies Nanomaterial Dispersion/Dissolution Characterization Scientific...Nanotechnologies ERDC/EL SR-16-1 May 2016 Nanomaterial Dispersion/Dissolution Characterization Scientific Operating Procedure SOP-F-1 Lesley Miller...diagnostic application. While microscopy represents the only available method for measuring particle size, this is very labor intensive and prone to

  16. Polymer coated CaAl-layered double hydroxide nanomaterials for potential calcium supplement.

    PubMed

    Kim, Tae-Hyun; Lee, Jeong-A; Choi, Soo-Jin; Oh, Jae-Min

    2014-12-05

    We have successfully prepared layered double hydroxide (LDH) nanomaterials containing calcium and aluminum ions in the framework (CaAl-LDH). The surface of CaAl-LDH was coated with enteric polymer, Eudragit®L 100 in order to protect nanomaterials from fast dissolution under gastric condition of pH 1.2. The X-ray diffraction patterns, Fourier transform infrared spectroscopy, scanning electron and transmission electron microscopy revealed that the pristine LDH was well prepared having hydrocalumite structure, and that the polymer effectively coated the surface of LDH without disturbing structure. From thermal analysis, it was determined that only a small amount (less than 1%) of polymer was coated on the LDH surface. Metal dissolution from LDH nanomaterials was significantly reduced upon Eudragit®L 100 coating at pH 1.2, 6.8 and 7.4, which simulates gastric, enteric and plasma conditions, respectively, and the dissolution effect was the most suppressed at pH 1.2. The LDH nanomaterials did not exhibit any significant cytotoxicity up to 1000 μg/mL and intracellular calcium concentration significantly increased in LDH-treated human intestinal cells. Pharmacokinetic study demonstrated absorption efficiency of Eudragit®L 100 coated LDH following oral administration to rats. Moreover, the LDH nanomaterials did not cause acute toxic effect in vivo. All the results suggest the great potential of CaAl-LDH nanomaterials as a calcium supplement.

  17. Recent Applications of Carbon-Based Nanomaterials in Analytical Chemistry: Critical Review

    PubMed Central

    Scida, Karen; Stege, Patricia W.; Haby, Gabrielle; Messina, Germán A.; García, Carlos D.

    2011-01-01

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005–2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. PMID:21458626

  18. Impact of humic/fulvic acid on the removal of heavy metals from aqueous solutions using nanomaterials: a review.

    PubMed

    Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin

    2014-01-15

    Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.

  19. The microwave-assisted ionic-liquid method: a promising methodology in nanomaterials.

    PubMed

    Ma, Ming-Guo; Zhu, Jie-Fang; Zhu, Ying-Jie; Sun, Run-Cang

    2014-09-01

    In recent years, the microwave-assisted ionic-liquid method has been accepted as a promising methodology for the preparation of nanomaterials and cellulose-based nanocomposites. Applications of this method in the preparation of cellulose-based nanocomposites comply with the major principles of green chemistry, that is, they use an environmentally friendly method in environmentally preferable solvents to make use of renewable materials. This minireview focuses on the recent development of the synthesis of nanomaterials and cellulose-based nanocomposites by means of the microwave-assisted ionic-liquid method. We first discuss the preparation of nanomaterials including noble metals, metal oxides, complex metal oxides, metal sulfides, and other nanomaterials by means of this method. Then we provide an overview of the synthesis of cellulose-based nanocomposites by using this method. The emphasis is on the synthesis, microstructure, and properties of nanostructured materials obtained through this methodology. Our recent research on nanomaterials and cellulose-based nanocomposites by this rapid method is summarized. In addition, the formation mechanisms involved in the microwave-assisted ionic-liquid synthesis of nanostructured materials are discussed briefly. Finally, the future perspectives of this methodology in the synthesis of nanostructured materials are proposed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Raman studies of the interactions of fibrous carbon nanomaterials with albumin

    NASA Astrophysics Data System (ADS)

    Wesełucha-Birczyńska, Aleksandra; Morajka, Krzysztof; Stodolak-Zych, Ewa; Długoń, Elżbieta; Dużyja, Maria; Lis, Tomasz; Gubernat, Maciej; Ziąbka, Magdalena; Błażewicz, Marta

    2018-05-01

    Adsorption or immobilization of proteins on synthetic surfaces is a key issue in the context of the biocompatibility of implant materials, especially those intended for the needs of cardiac surgery but also for the construction of biosensors or nanomaterials used as drug carriers. The subject of research was the analysis of Raman spectra of two types of fibrous carbon nanomaterials, of great potential for biomedical applications, incubated with human serum albumin (HSA). The first nanomaterial has been created on the layer of MWCNTs deposited by electrophoretic method (EPD) and then covered by thin film of pyrolytic carbon introduced by chemical vapor deposition process (CVD). The second material was formed from carbonized nanofibers prepared via electrospinning (ESCNFs) of polyacrylonitrile (PAN) precursor and then covered with pyrolytic carbon (CVD). The G-band blue-shift towards the position of about 1600 cm-1, observed for both studied surfaces, clearly indicates the albumin (HSA) adhesion to the surface. The G and G' (2D) peak shift was employed to assess the stress build up on the carbon nanomaterials. The surface nano- and micro-topography as well as the method of ordering the carbon nanomaterial has a significant influence on the mode of surface-protein interaction.

  1. Surface Characterization of Nanomaterials and Nanoparticles. Important needs and challenging opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baer, Donald R.; Engelhard, Mark H.; Johnson, Grant E.

    2013-08-27

    This review examines the characterization challenges inherently associated with understanding nanomaterials and how surface characterization methods can help meet those challenges. In parts of the research community, there is growing recognition that many studies and published reports on the properties and behaviors of nanomaterials have involved inadequate characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. As the importance of nanomaterials in fundamental research and technological applications increases, it is necessary for researchers to recognize the challenges associated with reproducible materials synthesis, maintaining desired materials properties during handling and processing, and themore » dynamic nature of nanomaterials, especially nanoparticles. Researchers also need to understand how characterization approaches (surface and otherwise) can be used to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. The types of information that can be provided by traditional surface sensitive analysis methods (including X-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy and secondary ion mass spectroscopy) and less common or evolving surface sensitive methods (e.g., nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) are discussed and various of their use in nanomaterial research are presented.« less

  2. Glucose Sensors Based on Core@Shell Magnetic Nanomaterials and Their Application in Diabetes Management: A Review.

    PubMed

    Liu, Lin; Lv, Hongying; Teng, Zhenyuan; Wang, Chengyin; Wang, Guoxiu

    2015-01-01

    This review presents a comprehensive attempt to conclude and discuss various glucose biosensors based on core@shell magnetic nanomaterials. Owing to good biocompatibility and stability, the core@shell magnetic nanomaterials have found widespread applications in many fields and draw extensive attention. Most magnetic nanoparticles possess an intrinsic enzyme mimetic activity like natural peroxidases, which invests magnetic nanomaterials with great potential in the construction of glucose sensors. We summarize the synthesis of core@shell magnetic nanomaterials, fundamental theory of glucose sensor and the advances in glucose sensors based on core@shell magnetic nanomaterials. The aim of the review is to provide an overview of the exploitation of the core@shell magnetic nanomaterials for glucose sensors construction.

  3. Unexpected surface implanted layer in static random access memory devices observed by microwave impedance microscope

    NASA Astrophysics Data System (ADS)

    Kundhikanjana, W.; Yang, Y.; Tanga, Q.; Zhang, K.; Lai, K.; Ma, Y.; Kelly, M. A.; Li, X. X.; Shen, Z.-X.

    2013-02-01

    Real-space mapping of doping concentration in semiconductor devices is of great importance for the microelectronics industry. In this work, a scanning microwave impedance microscope (MIM) is employed to resolve the local conductivity distribution of a static random access memory sample. The MIM electronics can also be adjusted to the scanning capacitance microscopy (SCM) mode, allowing both measurements on the same region. Interestingly, while the conventional SCM images match the nominal device structure, the MIM results display certain unexpected features, which originate from a thin layer of the dopant ions penetrating through the protective layers during the heavy implantation steps.

  4. Selenium and tellurium nanomaterials

    NASA Astrophysics Data System (ADS)

    Piacenza, Elena; Presentato, Alessandro; Zonaro, Emanuele; Lampis, Silvia; Vallini, Giovanni; Turner, Raymond J.

    2018-04-01

    Over the last 40 years, the rapid and exponential growth of nanotechnology led to the development of various synthesis methodologies to generate nanomaterials different in size, shape and composition to be applied in various fields. In particular, nanostructures composed of Selenium (Se) or Tellurium (Te) have attracted increasing interest, due to their intermediate nature between metallic and non-metallic elements, being defined as metalloids. Indeed, this key shared feature of Se and Te allows us the use of their compounds in a variety of applications fields, such as for manufacturing photocells, photographic exposure meters, piezoelectric devices, and thermoelectric materials, to name a few. Considering also that the chemical-physical properties of elements result to be much more emphasized when they are assembled at the nanoscale range, huge efforts have been made to develop highly effective synthesis methods to generate Se- or Te-nanomaterials. In this context, the present book chapter will explore the most used chemical and/or physical methods exploited to generate different morphologies of metalloid-nanostructures, focusing also the attention on the major advantages, drawbacks as well as the safety related to these synthetic procedures.

  5. Simulating Exposure Concentrations of Engineered Nanomaterials in Surface Water Systems: Release of WASP8

    NASA Astrophysics Data System (ADS)

    Knightes, C. D.; Bouchard, D.; Zepp, R. G.; Henderson, W. M.; Han, Y.; Hsieh, H. S.; Avant, B. K.; Acrey, B.; Spear, J.

    2017-12-01

    The unique properties of engineered nanomaterials led to their increased production and potential release into the environment. Currently available environmental fate models developed for traditional contaminants are limited in their ability to simulate nanomaterials' environmental behavior. This is due to an incomplete understanding and representation of the processes governing nanomaterial distribution in the environment and by scarce empirical data quantifying the interaction of nanomaterials with environmental surfaces. The well-known Water Quality Analysis Simulation Program (WASP) was updated to incorporate nanomaterial-specific processes, specifically hetero-aggregation with particulate matter. In parallel with this effort, laboratory studies were used to quantify parameter values parameters necessary for governing processes in surface waters. This presentation will discuss the recent developments in the new architecture for WASP8 and the newly constructed Advanced Toxicant Module. The module includes advanced algorithms for increased numbers of state variables: chemicals, solids, dissolved organic matter, pathogens, temperature, and salinity. This presentation will focus specifically on the incorporation of nanomaterials, with the applications of the fate and transport of hypothetical releases of Multi-Walled Carbon Nanotubes (MWCNT) and Graphene Oxide (GO) into the headwaters of a southeastern US coastal plains river. While this presentation focuses on nanomaterials, the advanced toxicant module can also simulate metals and organic contaminants.

  6. AN ASSESSMENT OF THE FATE OF METAL OXIDE NANOMATERIALS IN POROUS MEDIA

    EPA Science Inventory

    Developing procedures for assessing the potential environmental fate and transport of nanomaterials is an active endeavor of the environmental technical research community. Insufficient information exists for estimating the likelihood of nanomaterial deposition on natural surface...

  7. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Bryan; Thomas, Dennis G.; Chikkagoudar, Satish

    The integration of rapid assays, large data sets, informatics and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality, were established at realistic exposure levels and used to develop a predictive model of nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both core composition and outermost surface chemistrymore » of nanomaterials. The resulting clusters guided the development of a predictive model of gold nanoparticle toxicity to embryonic zebrafish. In addition, our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. These findings reveal the need to expeditiously increase the availability of quantitative measures of nanomaterial hazard and broaden the sharing of that data and knowledge to support predictive modeling. In addition, research should continue to focus on methodologies for developing predictive models of nanomaterial hazard based on sub-lethal responses to low dose exposures.« less

  8. Comparative hazard analysis and toxicological modeling of diverse nanomaterials using the embryonic zebrafish (EZ) metric of toxicity

    DOE PAGES

    Harper, Bryan; Thomas, Dennis G.; Chikkagoudar, Satish; ...

    2015-06-04

    The integration of rapid assays, large data sets, informatics and modeling can overcome current barriers in understanding nanomaterial structure-toxicity relationships by providing a weight-of-the-evidence mechanism to generate hazard rankings for nanomaterials. Here we present the use of a rapid, low-cost assay to perform screening-level toxicity evaluations of nanomaterials in vivo. Calculated EZ Metric scores, a combined measure of morbidity and mortality, were established at realistic exposure levels and used to develop a predictive model of nanomaterial toxicity. Hazard ranking and clustering analysis of 68 diverse nanomaterials revealed distinct patterns of toxicity related to both core composition and outermost surface chemistrymore » of nanomaterials. The resulting clusters guided the development of a predictive model of gold nanoparticle toxicity to embryonic zebrafish. In addition, our findings suggest that risk assessments based on the size and core composition of nanomaterials alone may be wholly inappropriate, especially when considering complex engineered nanomaterials. These findings reveal the need to expeditiously increase the availability of quantitative measures of nanomaterial hazard and broaden the sharing of that data and knowledge to support predictive modeling. In addition, research should continue to focus on methodologies for developing predictive models of nanomaterial hazard based on sub-lethal responses to low dose exposures.« less

  9. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    PubMed

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  10. Approaches to Develop Alternative Testing Strategies to Inform Human Health Risk Assessment of Nanomaterials.

    PubMed

    Stone, Vicki; Johnston, Helinor J; Balharry, Dominique; Gernand, Jeremy M; Gulumian, Mary

    2016-08-01

    The development of alternative testing strategies (ATS) for hazard assessment of new and emerging materials is high on the agenda of scientists, funders, and regulators. The relatively large number of nanomaterials on the market and under development means that an increasing emphasis will be placed on the use of reliable, predictive ATS when assessing their safety. We have provided recommendations as to how ATS development for assessment of nanomaterial hazard may be accelerated. Predefined search terms were used to identify the quantity and distribution of peer-reviewed publications for nanomaterial hazard assessment following inhalation, ingestion, or dermal absorption. A summary of knowledge gaps relating to nanomaterial hazard is provided to identify future research priorities and areas in which a rich data set might exist to allow ATS identification. Consultation with stakeholders (e.g., academia, industry, regulators) was critical to ensure that current expert opinion was reflected. The gap analysis revealed an abundance of studies that assessed the local and systemic impacts of inhaled particles, and so ATS are available for immediate use. Development of ATS for assessment of the dermal toxicity of chemicals is already relatively advanced, and these models should be applied to nanomaterials as relatively few studies have assessed the dermal toxicity of nanomaterials to date. Limited studies have investigated the local and systemic impacts of ingested nanomaterials. If the recommendations for research prioritization proposed are adopted, it is envisioned that a comprehensive battery of ATS can be developed to support the risk assessment process for nanomaterials. Some alternative models are available for immediate implementation, while others require more developmental work to become widely adopted. Case studies are included that can be used to inform the selection of alternative models and end points when assessing the pathogenicity of fibers and mode of

  11. Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications.

    PubMed

    Zhu, Chengzhou; Du, Dan; Lin, Yuehe

    2017-03-15

    Due to their unique structures and multifunctionalities, two-dimensional (2D) nanomaterials have aroused increasing interest in the construction of the novel biointerfaces for biosensing applications. Efforts in constructing novel biointerfaces led to exploit the more versatile and tunable graphene-like 2D nanomaterials (e.g. graphitic carbon nitride, boron nitride, transition metal dichalcogenides, and transition metal oxides) with various structural and compositional characteristics. This review highlights recent efforts in the design of graphene-like 2D nanomaterials and their derived biointerfaces and exploitation of their research on fluorescent sensors and a series of electrochemical sensors, including amperometric, electrochemiluminescence, photoelectrochemical and field-effect transistor sensors. Finally, we discuss some critical challenges and future perspectives in this field. Copyright © 2016. Published by Elsevier B.V.

  12. Engineered nanomaterials: toward effective safety management in research laboratories.

    PubMed

    Groso, Amela; Petri-Fink, Alke; Rothen-Rutishauser, Barbara; Hofmann, Heinrich; Meyer, Thierry

    2016-03-15

    It is still unknown which types of nanomaterials and associated doses represent an actual danger to humans and environment. Meanwhile, there is consensus on applying the precautionary principle to these novel materials until more information is available. To deal with the rapid evolution of research, including the fast turnover of collaborators, a user-friendly and easy-to-apply risk assessment tool offering adequate preventive and protective measures has to be provided. Based on new information concerning the hazards of engineered nanomaterials, we improved a previously developed risk assessment tool by following a simple scheme to gain in efficiency. In the first step, using a logical decision tree, one of the three hazard levels, from H1 to H3, is assigned to the nanomaterial. Using a combination of decision trees and matrices, the second step links the hazard with the emission and exposure potential to assign one of the three nanorisk levels (Nano 3 highest risk; Nano 1 lowest risk) to the activity. These operations are repeated at each process step, leading to the laboratory classification. The third step provides detailed preventive and protective measures for the determined level of nanorisk. We developed an adapted simple and intuitive method for nanomaterial risk management in research laboratories. It allows classifying the nanoactivities into three levels, additionally proposing concrete preventive and protective measures and associated actions. This method is a valuable tool for all the participants in nanomaterial safety. The users experience an essential learning opportunity and increase their safety awareness. Laboratory managers have a reliable tool to obtain an overview of the operations involving nanomaterials in their laboratories; this is essential, as they are responsible for the employee safety, but are sometimes unaware of the works performed. Bringing this risk to a three-band scale (like other types of risks such as biological, radiation

  13. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites

    PubMed Central

    2014-01-01

    Advances in adding nanomaterials to various matrices have occurred in tandem with the identification of potential hazards associated with exposure to pure forms of nanomaterials. We searched multiple research publication databases and found that, relative to data generated on potential nanomaterial hazards or exposures, very little attention has focused on understanding the potential and conditions for release of nanomaterials from nanocomposites. However, as a prerequisite to exposure studying release is necessary to inform risk assessments. We identified fifty-four studies that specifically investigated the release of nanomaterials, and review them in the following release scenario groupings: machining, weathering, washing, contact and incineration. While all of the identified studies provided useful information, only half were controlled experiments. Based on these data, the debris released from solid, non-food nanocomposites contains in varying frequencies, a mixture of four types of debris. Most frequently identified are (1) particles of matrix alone, and slightly less often, the (2) matrix particles exhibit the nanomaterial partially or fully embedded; far less frequently is (3) the added nanomaterial entirely dissociated from the matrix identified: and most rare are (4) dissolved ionic forms of the added nanomaterial. The occurrence of specific debris types appeared to be dependent on the specific release scenario and environment. These data highlight that release from nanocomposites can take multiple forms and that additional research and guidance would be beneficial, allowing for more consistent characterization of the release potential of nanomaterials. In addition, these data support calls for method validation and standardization, as well as understanding how laboratory release scenarios relate to real-world conditions. Importantly, as risk is considered to be a function of the inherent hazards of a substance and the actual potential for exposure, data

  14. A review and perspective of existing research on the release of nanomaterials from solid nanocomposites.

    PubMed

    Froggett, Stephan J; Clancy, Shaun F; Boverhof, Darrell R; Canady, Richard A

    2014-04-07

    Advances in adding nanomaterials to various matrices have occurred in tandem with the identification of potential hazards associated with exposure to pure forms of nanomaterials. We searched multiple research publication databases and found that, relative to data generated on potential nanomaterial hazards or exposures, very little attention has focused on understanding the potential and conditions for release of nanomaterials from nanocomposites. However, as a prerequisite to exposure studying release is necessary to inform risk assessments. We identified fifty-four studies that specifically investigated the release of nanomaterials, and review them in the following release scenario groupings: machining, weathering, washing, contact and incineration. While all of the identified studies provided useful information, only half were controlled experiments. Based on these data, the debris released from solid, non-food nanocomposites contains in varying frequencies, a mixture of four types of debris. Most frequently identified are (1) particles of matrix alone, and slightly less often, the (2) matrix particles exhibit the nanomaterial partially or fully embedded; far less frequently is (3) the added nanomaterial entirely dissociated from the matrix identified: and most rare are (4) dissolved ionic forms of the added nanomaterial. The occurrence of specific debris types appeared to be dependent on the specific release scenario and environment. These data highlight that release from nanocomposites can take multiple forms and that additional research and guidance would be beneficial, allowing for more consistent characterization of the release potential of nanomaterials. In addition, these data support calls for method validation and standardization, as well as understanding how laboratory release scenarios relate to real-world conditions. Importantly, as risk is considered to be a function of the inherent hazards of a substance and the actual potential for exposure, data

  15. Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications.

    PubMed

    Kurbanoglu, Sevinc; Ozkan, Sibel A; Merkoçi, Arben

    2017-03-15

    In recent years great progress has been made in applying nanomaterials to design novel biosensors. Use of nanomaterials offers to biosensing platforms exceptional optical, electronic and magnetic properties. Nanomaterials can increase the surface of the transducing area of the sensors that in turn bring an increase in catalytic behaviors. They have large surface-to-volume ratio, controlled morphology and structure that also favor miniaturization, an interesting advantage when the sample volume is a critical issue. Biosensors have great potential for achieving detect-to-protect devices: devices that can be used in detections of pollutants and other treating compounds/analytes (drugs) protecting citizens' life. After a long term focused scientific and financial efforts/supports biosensors are expected now to fulfill their promise such as being able to perform sampling and analysis of complex samples with interest for clinical or environment fields. Among all types of biosensors, enzymatic biosensors, the most explored biosensing devices, have an interesting property, the inherent inhibition phenomena given the enzyme-substrate complex formation. The exploration of such phenomena is making remarkably important their application as research and applied tools in diagnostics. Different inhibition biosensor systems based on nanomaterials modification has been proposed and applied. The role of nanomaterials in inhibition-based biosensors for the analyses of different groups of drugs as well as contaminants such as pesticides, phenolic compounds and others, are discussed in this review. This deep analysis of inhibition-based biosensors that employ nanomaterials will serve researchers as a guideline for further improvements and approaching of these devices to real sample applications so as to reach society needs and such biosensor market demands. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. The Neurotoxic Potential of Engineered Nanomaterials

    EPA Science Inventory

    The expanding development and production of engineered nanomaterials (ENMs) have diverse and far-reaching potential benefits in consumer products, food, drugs, medical devices and for enhancing environmental cleanup and remediation. The knowledge of potential implications of ENMs...

  17. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan; Zhu, Yong

    2016-04-01

    Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode-skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode-skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.

  18. A risk assessment framework for assessing metallic nanomaterials of environmental concern: aquatic exposure and behavior.

    PubMed

    O'Brien, Niall Joseph; Cummins, Enda J

    2011-05-01

    Nanomaterials are finding application in many different environmentally relevant products and processes due to enhanced catalytic, antimicrobial, and oxidative properties of materials at this scale. As the market share of nano-functionalized products increases, so too does the potential for environmental exposure and contamination. This study presents some exposure ranking methods that consider potential metallic nanomaterial surface water exposure and fate, due to nano-functionalized products, through a number of exposure pathways. These methods take into account the limited and disparate data currently available for metallic nanomaterials and apply variability and uncertainty principles, together with qualitative risk assessment principles, to develop a scientific ranking. Three exposure scenarios with three different nanomaterials were considered to demonstrate these assessment methods: photo-catalytic exterior paint (nano-scale TiO₂), antimicrobial food packaging (nano-scale Ag), and particulate-reducing diesel fuel additives (nano-scale CeO₂). Data and hypotheses from literature relating to metallic nanomaterial aquatic behavior (including the behavior of materials that may relate to nanomaterials in aquatic environments, e.g., metals, pesticides, surfactants) were used together with commercial nanomaterial characteristics and Irish natural aquatic environment characteristics to rank the potential concentrations, transport, and persistence behaviors within subjective categories. These methods, and the applied scenarios, reveal where data critical to estimating exposure and risk are lacking. As research into the behavior of metallic nanomaterials in different environments emerges, the influence of material and environmental characteristics on nanomaterial behavior within these exposure- and risk-ranking methods may be redefined on a quantitative basis. © 2010 Society for Risk Analysis.

  19. A mixture toxicity approach to predict the toxicity of Ag decorated ZnO nanomaterials.

    PubMed

    Azevedo, S L; Holz, T; Rodrigues, J; Monteiro, T; Costa, F M; Soares, A M V M; Loureiro, S

    2017-02-01

    Nanotechnology is a rising field and nanomaterials can now be found in a vast variety of products with different chemical compositions, sizes and shapes. New nanostructures combining different nanomaterials are being developed due to their enhancing characteristics when compared to nanomaterials alone. In the present study, the toxicity of a nanostructure composed by a ZnO nanomaterial with Ag nanomaterials on its surface (designated as ZnO/Ag nanostructure) was assessed using the model-organism Daphnia magna and its toxicity predicted based on the toxicity of the single components (Zn and Ag). For that ZnO and Ag nanomaterials as single components, along with its mixture prepared in the laboratory, were compared in terms of toxicity to ZnO/Ag nanostructures. Toxicity was assessed by immobilization and reproduction tests. A mixture toxicity approach was carried out using as starting point the conceptual model of Concentration Addition. The laboratory mixture of both nanomaterials showed that toxicity was dependent on the doses of ZnO and Ag used (immobilization) or presented a synergistic pattern (reproduction). The ZnO/Ag nanostructure toxicity prediction, based on the percentage of individual components, showed an increase in toxicity when compared to the expected (immobilization) and dependent on the concentration used (reproduction). This study demonstrates that the toxicity of the prepared mixture of ZnO and Ag and of the ZnO/Ag nanostructure cannot be predicted based on the toxicity of their components, highlighting the importance of taking into account the interaction between nanomaterials when assessing hazard and risk. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Functional DNA-Containing Nanomaterials: Cellular Applications in Biosensing, Imaging, and Targeted Therapy

    PubMed Central

    2015-01-01

    Conspectus DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell’s nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer–micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand–receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA–nanomaterial complexes can enter cells more easily than free

  1. Functional DNA-containing nanomaterials: cellular applications in biosensing, imaging, and targeted therapy.

    PubMed

    Liang, Hao; Zhang, Xiao-Bing; Lv, Yifan; Gong, Liang; Wang, Ruowen; Zhu, Xiaoyan; Yang, Ronghua; Tan, Weihong

    2014-06-17

    CONSPECTUS: DNA performs a vital function as a carrier of genetic code, but in the field of nanotechnology, DNA molecules can catalyze chemical reactions in the cell, that is, DNAzymes, or bind with target-specific ligands, that is, aptamers. These functional DNAs with different modifications have been developed for sensing, imaging, and therapeutic systems. Thus, functional DNAs hold great promise for future applications in nanotechnology and bioanalysis. However, these functional DNAs face challenges, especially in the field of biomedicine. For example, functional DNAs typically require the use of cationic transfection reagents to realize cellular uptake. Such reagents enter the cells, increasing the difficulty of performing bioassays in vivo and potentially damaging the cell's nucleus. To address this obstacle, nanomaterials, such as metallic, carbon, silica, or magnetic materials, have been utilized as DNA carriers or assistants. In this Account, we describe selected examples of functional DNA-containing nanomaterials and their applications from our recent research and those of others. As models, we have chosen to highlight DNA/nanomaterial complexes consisting of gold nanoparticles, graphene oxides, and aptamer-micelles, and we illustrate the potential of such complexes in biosensing, imaging, and medical diagnostics. Under proper conditions, multiple ligand-receptor interactions, decreased steric hindrance, and increased surface roughness can be achieved from a high density of DNA that is bound to the surface of nanomaterials, resulting in a higher affinity for complementary DNA and other targets. In addition, this high density of DNA causes a high local salt concentration and negative charge density, which can prevent DNA degradation. For example, DNAzymes assembled on gold nanoparticles can effectively catalyze chemical reactions even in living cells. And it has been confirmed that DNA-nanomaterial complexes can enter cells more easily than free single

  2. Facile synthesis of gold nanomaterials with unusual crystal structures.

    PubMed

    Fan, Zhanxi; Huang, Xiao; Chen, Ye; Huang, Wei; Zhang, Hua

    2017-11-01

    Gold (Au) nanomaterials have attracted wide research attention, owing to their high chemical stability, promising catalytic properties, excellent biocompatibility, unique electronic structure and outstanding localized surface plasmon resonance (LSPR) absorption properties; all of which are closely related to their size and shape. Recently, crystal-phase-controlled synthesis of noble metal nanomaterials has emerged as a promising strategy to tune their physicochemical properties. This protocol describes the detailed experimental procedures for the crystal-phase-controlled syntheses of Au nanomaterials with unusual crystal structures under mild conditions. Briefly, pure hexagonal close-packed (hcp) Au square sheets (AuSSs) with a thickness of ∼2.4 nm are synthesized using a graphene-oxide-assisted method in which HAuCl 4 is reduced by oleylamine in a mixture of hexane and ethanol. By using pure hexane as the solvent, well-dispersed ultrathin hcp/face-centered cubic (fcc) Au nanowires with a diameter of ∼1.6 nm on graphene oxide can be obtained. Meanwhile, hcp/fcc Au square-like plates with a side length of 200-400 nm are prepared via the secondary growth of Au on the hcp AuSSs. Remarkably, hexagonal (4H) Au nanoribbons with a thickness of 2.0-6.0 nm can be synthesized with a one-pot colloidal method in which HAuCl 4 is reduced by oleylamine in a mixed solvent of hexane and 1,2-dichloropropane. It takes 17-37 h for the synthesis of these Au nanomaterials with unusual crystal structures. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) are used to characterize the resultant Au nanomaterials, which could have many promising applications, such as biosensing, near-IR photothermal therapy, catalysis and surface-enhanced Raman scattering (SERS).

  3. Cellulose-silica/gold nanomaterials for electronic applications.

    PubMed

    Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo

    2014-10-01

    Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.

  4. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.

    PubMed

    Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji

    2018-07-04

    Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.

  5. Nanomaterials-based biosensors for detection of microorganisms and microbial toxins.

    PubMed

    Sutarlie, Laura; Ow, Sian Yang; Su, Xiaodi

    2017-04-01

    Detection of microorganisms and microbial toxins is important for health and safety. Due to their unique physical and chemical properties, nanomaterials have been extensively used to develop biosensors for rapid detection of microorganisms with microbial cells and toxins as target analytes. In this paper, the design principles of nanomaterials-based biosensors for four selected analyte categories (bacteria cells, toxins, mycotoxins, and protozoa cells), closely associated with the target analytes' properties is reviewed. Five signal transducing methods that are less equipment intensive (colorimetric, fluorimetric, surface enhanced Raman scattering, electrochemical, and magnetic relaxometry methods) is described and compared for their sensory performance (in term oflimit of detection, dynamic range, and response time) for all analyte categories. In the end, the suitability of these five sensing principles for on-site or field applications is discussed. With a comprehensive coverage of nanomaterials, design principles, sensing principles, and assessment on the sensory performance and suitability for on-site application, this review offers valuable insight and perspective for designing suitable nanomaterials-based microorganism biosensors for a given application. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Recent applications of carbon-based nanomaterials in analytical chemistry: critical review.

    PubMed

    Scida, Karen; Stege, Patricia W; Haby, Gabrielle; Messina, Germán A; García, Carlos D

    2011-04-08

    The objective of this review is to provide a broad overview of the advantages and limitations of carbon-based nanomaterials with respect to analytical chemistry. Aiming to illustrate the impact of nanomaterials on the development of novel analytical applications, developments reported in the 2005-2010 period have been included and divided into sample preparation, separation, and detection. Within each section, fullerenes, carbon nanotubes, graphene, and composite materials will be addressed specifically. Although only briefly discussed, included is a section highlighting nanomaterials with interesting catalytic properties that can be used in the design of future devices for analytical chemistry. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. NCCLCS: LIFE CYCLE OF NANOMATERIALS (LCNANO)

    EPA Science Inventory

    Because engineered nanomaterials (NMs) have transformative benefits to individuals and society, they are being incorporated into many products. However, tremendous uncertainty presently exists in our ability to predict or manage risks from nano-enabled products across their...

  8. Green chemical synthesis of silver nanomaterials with maltodextrin.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tallant, David Robert; Lu, Ping; Lambert, Timothy N.

    2010-11-01

    Silver nanomaterials have significant application resulting from their optical properties related to surface enhanced Raman spectroscopy, high electrical conductivity, and anti-microbial impact. A 'green chemistry' synthetic approach for silver nanomaterials minimizes the environmental impact of silver synthesis, as well as lowers the toxicity of the reactive agents. Biopolymers have long been used for stabilization of silver nanomaterials during synthesis, and include gum Arabic, heparin, and common starch. Maltodextrin is a processed derivative of starch with lower molecular weight and an increase in the number of reactive reducing aldehyde groups, and serves as a suitable single reactant for the formation ofmore » metallic silver. Silver nanomaterials can be formed under either a thermal route at neutral pH in water or by reaction at room temperature under more alkaline conditions. Deposited silver materials are formed on substrates from near neutral pH solutions at low temperatures near 50 C. Experimental conditions based on material concentrations, pH and reaction time are investigated for development of deposited films. Deposit morphology and optical properties are characterized using SEM and UV-vis techniques. Silver nanoparticles are generated under alkaline conditions by a dissolution-reduction method from precipitated silver (II) oxide. Synthesis conditions were explored for the rapid development of stable silver nanoparticle dispersions. UV-vis absorption spectra, powder X-ray diffraction (PXRD), dynamic light scattering (DLS), and transmission electron microscopy (TEM) techniques were used to characterize the nanoparticle formation kinetics and the influence of reaction conditions. The adsorbed content of the maltodextrin was characterized using thermogravimetric analysis (TGA).« less

  9. Nanomaterials in cancer-therapy drug delivery system.

    PubMed

    Zhang, Gen; Zeng, Xin; Li, Ping

    2013-05-01

    Nanomaterials can enhance the delivery and treatment efficiency of anti-cancer drugs, and the mechanisms of the tumor-reducing activity of nanomaterials with cancer drug have been investigated. The task for drug to reach pathological areas has facilitated rapid advances in nanomedicine. Herein, we summarize promising findings with respect to cancer therapeutics based on nano-drug delivery vectors. Relatively high toxicity of uncoated nanoparticles restricts the use of these materials in humans. In order to reduce toxicity, many approaches have focused on the encapsulation of nanoparticles with biocompatible materials. Efficient delivery systems have been developed that utilized nanoparticles loaded with high dose of cancer drug in the presence of bilayer molecules. Well-established nanotechnologies have been designed for drug delivery with specific bonding. Surface-modified nanoparticles as vehicles for drug delivery system that contains multiple nano-components, each specially designed to achieve aimed task for the emerging application delivery of therapeutics. Drug-coated polymer nanoparticles could efficiently increase the intracellular accumulation of anti-cancer drugs. This review also introduces the nanomaterials with drug on the induction of apoptosis in cancer cells in vitro and in vivo. Direct interactions between the particles and cellular molecules to cause adverse biological responses are also discussed.

  10. Sensors As Tools for Quantitation, Nanotoxicity and Nanomonitoring Assessment of Engineered Nanomaterials

    EPA Science Inventory

    The discovery of fullerenes in 1985 has ushered in an explosive growth in the applications of engineered nanomaterials and consumer products. Nanotechnology and engineered nanomaterials (ENMs) are being incorporated into a range of commercial products such as consumer electronic...

  11. High-Throughput/High-Content Screening Assays with Engineered Nanomaterials in ToxCast

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  12. Micro-Nanomaterials for Tumor Microwave Hyperthermia: Design, Preparation, and Application.

    PubMed

    Chen, Xue; Tan, Longfei; Liu, Tianlong; Meng, Xianwei

    2017-01-01

    Cancer hyperthermia is attracting much attention in basic science and clinics. Among the hyperthermia techniques, microwave (MW) heating is most commonly used for cancer treatment. It offers highly competitive advantages: faster heat generation from microwave radiation, less susceptibility to heat up local tissues, maneuverability, and depth of penetration in tissues and capability of killing tumor cells. Although the encouraging clinical results are being collected, MW hyperthermia has its own challenges, such as inaccurate targeting and low selectivity, which lead to damage to the surrounding vital organs and tissues. To address these issues, this review aims to introduce micronanomaterials as promising agents for receiving the electromagnetic wave, which should be beneficial for improving the efficacy of MW hyperthermia. We have searched many peer-reviewed papers in medical and chemical material databases about micro-nanomaterials for tumor microwave hyperthermia. Distinguishing features and important progresses are introduced in this review. One hundred and forty papers were chosen and included in this review. Four parts were described, including hyperthermia techniques and the application of micro-nanomaterials, microwave thermal therapy and treatment principle, microwave absorbing micro-nanomaterials, the preparation and application of micro-nanomaterials in microwave thermal therapy. We review the most recent literatures on micro-nanomaterials-based MW heating strategies for cancer treatment, with the aim to give the reader an overview of the state-of-the-art of MW hyperthermia therapy. The future of MW responsive materials will also be discussed, including combination of imaging probes and targeting moieties. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Flows of engineered nanomaterials through the recycling process in Switzerland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caballero-Guzman, Alejandro; Sun, Tianyin; Nowack, Bernd, E-mail: nowack@empa.ch

    Highlights: • Recycling is one of the likely end-of-life fates of nanoproducts. • We assessed the material flows of four nanomaterials in the Swiss recycling system. • After recycling, most nanomaterials will flow to landfills or incineration plants. • Recycled construction waste, plastics and textiles may contain nanomaterials. - Abstract: The use of engineered nanomaterials (ENMs) in diverse applications has increased during the last years and this will likely continue in the near future. As the number of applications increase, more and more waste with nanomaterials will be generated. A portion of this waste will enter the recycling system, formore » example, in electronic products, textiles and construction materials. The fate of these materials during and after the waste management and recycling operations is poorly understood. The aim of this work is to model the flows of nano-TiO{sub 2}, nano-ZnO, nano-Ag and CNT in the recycling system in Switzerland. The basis for this study is published information on the ENMs flows on the Swiss system. We developed a method to assess their flow after recycling. To incorporate the uncertainties inherent to the limited information available, we applied a probabilistic material flow analysis approach. The results show that the recycling processes does not result in significant further propagation of nanomaterials into new products. Instead, the largest proportion will flow as waste that can subsequently be properly handled in incineration plants or landfills. Smaller fractions of ENMs will be eliminated or end up in materials that are sent abroad to undergo further recovery processes. Only a reduced amount of ENMs will flow back to the productive process of the economy in a limited number of sectors. Overall, the results suggest that risk assessment during recycling should focus on occupational exposure, release of ENMs in landfills and incineration plants, and toxicity assessment in a small number of recycled

  14. Parameterizing water quality analysis and simulation program (WASP) for carbon-based nanomaterials

    EPA Science Inventory

    Carbon nanotubes (CNT) and graphenes are among the most popular carbon-based nanomaterials due to their unique electronic, mechanic and structural properties. Exposure modeling of these nanomaterials in the aquatic environment is necessary to predict the fate of these materials. ...

  15. Carbon-Based Nanomaterials: Multi-Functional Materials for Biomedical Engineering

    PubMed Central

    Cha, Chaenyung; Shin, Su Ryon; Annabi, Nasim; Dokmeci, Mehmet R.; Khademhosseini, Ali

    2013-01-01

    Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. These advantageous properties of CBNs are also actively investigated in several areas of biomedical engineering. This Perspective highlights different types of carbon-based nanomaterials currently used in biomedical applications. PMID:23560817

  16. Oxide nanomaterials: synthetic developments, mechanistic studies, and technological innovations.

    PubMed

    Patzke, Greta R; Zhou, Ying; Kontic, Roman; Conrad, Franziska

    2011-01-24

    Oxide nanomaterials are indispensable for nanotechnological innovations, because they combine an infinite variety of structural motifs and properties with manifold morphological features. Given that new oxide materials are almost reported on a daily basis, considerable synthetic and technological work remains to be done to fully exploit this ever increasing family of compounds for innovative nano-applications. This calls for reliable and scalable preparative approaches to oxide nanomaterials and their development remains a challenge for many complex nanostructured oxides. Oxide nanomaterials with special physicochemical features and unusual morphologies are still difficult to access by classic synthetic pathways. The limitless options for creating nano-oxide building blocks open up new technological perspectives with the potential to revolutionize areas ranging from data processing to biocatalysis. Oxide nanotechnology of the 21st century thus needs a strong interplay of preparative creativity, analytical skills, and new ideas for synergistic implementations. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Pursuing two-dimensional nanomaterials for flexible lithium-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Bin; Zhang, Ji-Guang; Shen, Guozhen

    2016-02-01

    Stretchable/flexible electronics provide a foundation for various emerging applications that beyond the scope of conventional wafer/circuit board technologies due to their unique features that can satisfy a broad range of applications such as wearable devices. Stretchable electronic and optoelectronics devices require the bendable/wearable rechargeable Li-ion batteries, thus these devices can operate without limitation of external powers. Various two-dimensional (2D) nanomaterials are of great interest in flexible energy storage devices, especially Li-ion batteries. This is because 2D materials exhibit much more exposed surface area supplying abundant Li-insertion channels and shortened paths for fast lithium ion diffusion. Here, we will review themore » recent developments on the flexible Li-ion batteries based on two dimensional nanomaterials. These researches demonstrated advancements in flexible electronics by incorporating various 2D nanomaterials into bendable batteries to achieve high electrochemical performance, excellent mechanical flexibility as well as electrical stability under stretching/bending conditions.« less

  18. Hybrid 2D-nanomaterials-based electrochemical immunosensing strategies for clinical biomarkers determination.

    PubMed

    Campuzano, S; Pedrero, M; Nikoleli, G-P; Pingarrón, J M; Nikolelis, D P

    2017-03-15

    Owing to the outstanding conductivity and biocompatibility as well as numerous other fascinating properties of two-dimensional (2D)-nanomaterials, 2D-based nanohybrids have shown unparalleled superiorities in the field of electrochemical biosensors. This review highlights latest advances in electrochemical immunosensors for clinical biomarkers based on different hybrid 2D-nanomaterials. Particular attention will be given to hybrid nanostructures involving graphene and other graphene-like 2D-layered nanomaterials (GLNs). Several recent strategies for using such 2D-nanomaterial heterostructures in the development of modern immunosensors, both for tagging or modifying electrode transducers, are summarized and discussed. These hybrid nanocomposites, quite superior than their rival materials, will undoubtedly have an important impact within the near future and not only in clinical areas. Current challenges and future perspectives in this rapidly growing field are also outlined. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Recent advances in aptasensors based on graphene and graphene-like nanomaterials.

    PubMed

    Ping, Jianfeng; Zhou, Yubin; Wu, Yuanyuan; Papper, Vladislav; Boujday, Souhir; Marks, Robert S; Steele, Terry W J

    2015-02-15

    Graphene and graphene-like two-dimensional nanomaterials have aroused tremendous research interest in recent years due to their unique electronic, optical, and mechanical properties associated with their planar structure. Aptamers have exhibited many advantages as molecular recognition elements for sensing devices compared to traditional antibodies. The marriage of two-dimensional nanomaterials and aptamers has emerged many ingenious aptasensing strategies for applications in the fields of clinical diagnosis and food safety. This review highlights current advances in the development and application of two-dimensional nanomaterials-based aptasensors with the focus on two main signal-transducing mechanisms, i.e. electrochemical and optical. A special attention is paid to graphene, a one-atom thick layer of graphite with exceptional properties, representing a fastgrowing field of research. In view of the unique properties of two-dimensional nanostructures and their inherent advantages of synthetic aptamers, we expect that high-performance two-dimensional nanomaterials-based aptasensing devices will find extensive applications in environmental monitoring, biomedical diagnostics, and food safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-03-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  1. Influence of nano-material on the expansive and shrinkage soil behavior

    NASA Astrophysics Data System (ADS)

    Taha, Mohd Raihan; Taha, Omer Muhie Eldeen

    2012-10-01

    This paper presents an experimental study performed on four types of soils mixed with three types of nano-material of different percentages. The expansion and shrinkage tests were conducted to investigate the effect of three type of nano-materials (nano-clay, nano-alumina, and nano-copper) additive on repressing strains in compacted residual soil mixed with different ratios of bentonite (S1 = 0 % bentonite, S2 = 5 % bentonite, S3 = 10 % bentonite, and S4 = 20 % bentonite). The soil specimens were compacted under the condition of maximum dry unit weight and optimum water content ( w opt) using standard compaction test. The physical and mechanical results of the treated samples were determined. The untreated soil values were used as control points for comparison purposes. It was found that with the addition of optimum percentage of nano-material, both the swell strain and shrinkage strain reduced. The results show that nano-material decreases the development of desiccation cracks on the surface of compacted samples without decrease in the hydraulic conductivity.

  2. Recent Developments in 2D Nanomaterials for Chemiresistive-Type Gas Sensors

    NASA Astrophysics Data System (ADS)

    Choi, Seon-Jin; Kim, Il-Doo

    2018-05-01

    Two-dimensional (2D) nanostructures are gaining tremendous interests due to the fascinating physical, chemical, electrical, and optical properties. Recent advances in 2D nanomaterials synthesis have contributed to optimization of various parameters such as physical dimension and chemical structure for specific applications. In particular, development of high performance gas sensors is gaining vast importance for real-time and on-site environmental monitoring by detection of hazardous chemical species. In this review, we comprehensively report recent achievements of 2D nanostructured materials for chemiresistive-type gas sensors. Firstly, the basic sensing mechanism is described based on charge transfer behavior between gas species and 2D nanomaterials. Secondly, diverse synthesis strategies and characteristic gas sensing properties of 2D nanostructures such as graphene, metal oxides, transition metal dichalcogenides (TMDs), metal organic frameworks (MOFs), phosphorus, and MXenes are presented. In addition, recent trends in synthesis of 2D heterostructures by integrating two different types of 2D nanomaterials and their gas sensing properties are discussed. Finally, this review provides perspectives and future research directions for gas sensor technology using various 2D nanomaterials.

  3. Nanotechnology: Nanomaterials are Widely Used in Commerce, but EPA Faces Challenges in Regulating Risk

    DTIC Science & Technology

    2010-05-01

    health and environmental risks from nanomaterials, (3) assessed actions EPA has taken to better understand and regulate the risks posed by...taken to address the potential risks associated with nanomaterials. GAO analyzed selected laws and regulations, reviewed information on EPA’s... risk to human health and the environment depends on a combination of the toxicity of specific nanomaterials and the route and level of exposure to

  4. Polymer-mediated formation of polyoxomolybdate nanomaterials

    NASA Astrophysics Data System (ADS)

    Wan, Quan

    A polymer-mediated synthetic pathway to a polyoxomolybdate nanomaterial is investigated in this work. Block copolymers or homopolymers containing poly(ethylene oxide) (PEO) are mixed with a MoO2(OH)(OOH) aqueous solution to form a golden gel or viscous solution. As revealed by synchrotron X-ray scattering measurements, electron microscopy, and other characterization techniques, the final dark blue polyoxomolybdate product is a highly ordered simple cubic network similar to certain zeolite structure but with a much larger lattice constant of ˜5.2 nm. The average size of the cube-like single crystals is close to 1 mum. Based on its relatively low density (˜2.2 g/cm3), the nanomaterial can be highly porous if the amount of the residual polymer can be substantially reduced. The valence of molybdenum is ˜5.7 based on cerimetric titration, representing the mixed-valence nature of the polyoxomolybdate structure. The self-assembled structures (if any) of the polymer gel do not have any correlation with the final polyoxomolybdate nanostructure, excluding the possible role of polymers being a structure-directing template. On the other hand, the PEO polymer stabilizes the precursor molybdenum compound through coordination between its ether oxygen atoms and molybdenum atoms, and reduces the molybdenum (VI) precursor compound with its hydroxyl group being a reducing agent. The rare simple cubic ordering necessitates the existence of special affinities among the polyoxomolybdate nanosphere units resulted from the reduction reaction. Our mechanism study shows that the acidified condition is necessary for the synthesis of the mixed-valence polyoxomolybdate clusters, while H2O2 content modulates the rate of the reduction reaction. The polymer degradation is evidenced by the observation of a huge viscosity change, and is likely through a hydrolysis process catalyzed by molybdenum compounds. Cube-like polyoxomolybdate nanocrystals with size of ˜40 nm are obtained by means of

  5. Silica formation with nanofiber morphology via helical display of the silaffin R5 peptide on a filamentous bacteriophage.

    PubMed

    Song, In-Wong; Park, Hyojung; Park, Jung Han; Kim, Hyunook; Kim, Seong Hun; Yi, Sung; Jaworski, Justyn; Sang, Byoung-In

    2017-11-24

    Biological systems often generate unique and useful structures, which can have industrial relevance either as direct components or as an inspiration for biomimetic materials. For fabrication of nanoscale silica structures, we explored the use of the silaffin R5 peptide from Cylindrotheca fusiformis expressed on the surface of the fd bacteriophage. By utilizing the biomineralizing peptide component displayed on the bacteriophage surface, we found that low concentrations (0.09 mg/mL of the R5 bacteriophage, below the concentration range used in other studies) could be used to create silica nanofibers. An additional benefit of this approach is the ability of our R5-displaying phage to form silica materials without the need for supplementary components, such as aminopropyl triethoxysilane, that are typically used in such processes. Because this method for silica formation can occur under mild conditions when implementing our R5 displaying phage system, we may provide a relatively simple, economical, and environmentally friendly process for creating silica nanomaterials.

  6. Emerging metrology for high-throughput nanomaterial genotoxicology.

    PubMed

    Nelson, Bryant C; Wright, Christa W; Ibuki, Yuko; Moreno-Villanueva, Maria; Karlsson, Hanna L; Hendriks, Giel; Sims, Christopher M; Singh, Neenu; Doak, Shareen H

    2017-01-01

    The rapid development of the engineered nanomaterial (ENM) manufacturing industry has accelerated the incorporation of ENMs into a wide variety of consumer products across the globe. Unintentionally or not, some of these ENMs may be introduced into the environment or come into contact with humans or other organisms resulting in unexpected biological effects. It is thus prudent to have rapid and robust analytical metrology in place that can be used to critically assess and/or predict the cytotoxicity, as well as the potential genotoxicity of these ENMs. Many of the traditional genotoxicity test methods [e.g. unscheduled DNA synthesis assay, bacterial reverse mutation (Ames) test, etc.,] for determining the DNA damaging potential of chemical and biological compounds are not suitable for the evaluation of ENMs, due to a variety of methodological issues ranging from potential assay interferences to problems centered on low sample throughput. Recently, a number of sensitive, high-throughput genotoxicity assays/platforms (CometChip assay, flow cytometry/micronucleus assay, flow cytometry/γ-H2AX assay, automated 'Fluorimetric Detection of Alkaline DNA Unwinding' (FADU) assay, ToxTracker reporter assay) have been developed, based on substantial modifications and enhancements of traditional genotoxicity assays. These new assays have been used for the rapid measurement of DNA damage (strand breaks), chromosomal damage (micronuclei) and for detecting upregulated DNA damage signalling pathways resulting from ENM exposures. In this critical review, we describe and discuss the fundamental measurement principles and measurement endpoints of these new assays, as well as the modes of operation, analytical metrics and potential interferences, as applicable to ENM exposures. An unbiased discussion of the major technical advantages and limitations of each assay for evaluating and predicting the genotoxic potential of ENMs is also provided. Published by Oxford University Press on

  7. Current trends in nanomaterial embedded field effect transistor-based biosensor.

    PubMed

    Nehra, Anuj; Pal Singh, Krishna

    2015-12-15

    Recently, as metal-, polymer-, and carbon-based biocompatible nanomaterials have been increasingly incorporated into biosensing applications, with various nanostructures having been used to increase the efficacy and sensitivity of most of the detecting devices, including field effect transistor (FET)-based devices. These nanomaterial-based methods also became the ideal for the amalgamation of biomolecules, especially for the fabrication of ultrasensitive, low-cost, and robust FET-based biosensors; these are categorically very successful at binding the target specified entities in the confined gated micro-region for high functionality. Furthermore, the contemplation of nanomaterial-based FET biosensors to various applications encompasses the desire for detection of many targets with high selectivity, and specificity. We assess how such devices have empowered the achievement of elevated biosensor performance in terms of high sensitivity, selectivity and low detection limits. We review the recent literature here to illustrate the diversity of FET-based biosensors, based on various kinds of nanomaterials in different applications and sum up that graphene or its assisted composite based FET devices are comparatively more efficient and sensitive with highest signal to noise ratio. Lastly, the future prospects and limitations of the field are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Relative risk analysis of several manufactured nanomaterials: an insurance industry context.

    PubMed

    Robichaud, Christine Ogilvie; Tanzil, Dicksen; Weilenmann, Ulrich; Wiesner, Mark R

    2005-11-15

    A relative risk assessment is presented for the industrial fabrication of several nanomaterials. The production processes for five nanomaterials were selected for this analysis, based on their current or near-term potential for large-scale production and commercialization: single-walled carbon nanotubes, bucky balls (C60), one variety of quantum dots, alumoxane nanoparticles, and nano-titanium dioxide. The assessment focused on the activities surrounding the fabrication of nanomaterials, exclusive of any impacts or risks with the nanomaterials themselves. A representative synthesis method was selected for each nanomaterial based on its potential for scaleup. A list of input materials, output materials, and waste streams for each step of fabrication was developed and entered into a database that included key process characteristics such as temperature and pressure. The physical-chemical properties and quantities of the inventoried materials were used to assess relative risk based on factors such as volatility, carcinogenicity, flammability, toxicity, and persistence. These factors were first used to qualitatively rank risk, then combined using an actuarial protocol developed by the insurance industry for the purpose of calculating insurance premiums for chemical manufacturers. This protocol ranks three categories of risk relative to a 100 point scale (where 100 represents maximum risk): incident risk, normal operations risk, and latent contamination risk. Results from this analysis determined that relative environmental risk from manufacturing each of these five materials was comparatively low in relation to other common industrial manufacturing processes.

  9. Carbon nanomaterials in biosensors: should you use nanotubes or graphene?

    PubMed

    Yang, Wenrong; Ratinac, Kyle R; Ringer, Simon P; Thordarson, Pall; Gooding, J Justin; Braet, Filip

    2010-03-15

    From diagnosis of life-threatening diseases to detection of biological agents in warfare or terrorist attacks, biosensors are becoming a critical part of modern life. Many recent biosensors have incorporated carbon nanotubes as sensing elements, while a growing body of work has begun to do the same with the emergent nanomaterial graphene, which is effectively an unrolled nanotube. With this widespread use of carbon nanomaterials in biosensors, it is timely to assess how this trend is contributing to the science and applications of biosensors. This Review explores these issues by presenting the latest advances in electrochemical, electrical, and optical biosensors that use carbon nanotubes and graphene, and critically compares the performance of the two carbon allotropes in this application. Ultimately, carbon nanomaterials, although still to meet key challenges in fabrication and handling, have a bright future as biosensors.

  10. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms.

    PubMed

    Wei, Min; Li, Song; Le, Weidong

    2017-10-25

    Stem cells are unspecialized cells that have the potential for self-renewal and differentiation into more specialized cell types. The chemical and physical properties of surrounding microenvironment contribute to the growth and differentiation of stem cells and consequently play crucial roles in the regulation of stem cells' fate. Nanomaterials hold great promise in biological and biomedical fields owing to their unique properties, such as controllable particle size, facile synthesis, large surface-to-volume ratio, tunable surface chemistry, and biocompatibility. Over the recent years, accumulating evidence has shown that nanomaterials can facilitate stem cell proliferation and differentiation, and great effort is undertaken to explore their possible modulating manners and mechanisms on stem cell differentiation. In present review, we summarize recent progress in the regulating potential of various nanomaterials on stem cell differentiation and discuss the possible cell uptake, biological interaction and underlying mechanisms.

  11. Chemical Structure and Surface Modification of Dendritic Nanomaterials Tailored for Therapeutic and Diagnostic Applications.

    PubMed

    Myung, Ja Hye; Hsu, Hao-Jui; Bugno, Jason; Tam, Kevin A; Hong, Seungpyo

    2017-01-01

    Dendritic nanomaterials have attracted a great deal of scientific interest due to their high capacity for multifunctionalization and potential in various biomedical applications, such as drug/gene delivery and diagnostic systems. Depending on the molecular structure and starting monomers, several different types of dendrimers have been developed, including poly(amidoamine) (PAMAM), poly(propylenimine) (PPI), and poly(L-lysine) (PLL) dendrimers, in addition to modified dendritic nanomaterials, such as Janus dendrimers and dendritic block copolymers. The chemical structure and surface modification of dendritic nanomaterials have been found to play a critical role in governing their biological behaviors. In this review, we present a comprehensive overview focusing on the synthesis and chemical structures of dendrimers and modified dendritic nanomaterials that are currently being investigated for drug delivery, gene delivery, and diagnostic applications. In addition, the impact of chemical surface modification and functionalization to the dendritic nanomaterials on their therapeutic and diagnostic applications are highlighted. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Application of Bayesian networks for hazard ranking of nanomaterials to support human health risk assessment.

    PubMed

    Marvin, Hans J P; Bouzembrak, Yamine; Janssen, Esmée M; van der Zande, Meike; Murphy, Finbarr; Sheehan, Barry; Mullins, Martin; Bouwmeester, Hans

    2017-02-01

    In this study, a Bayesian Network (BN) was developed for the prediction of the hazard potential and biological effects with the focus on metal- and metal-oxide nanomaterials to support human health risk assessment. The developed BN captures the (inter) relationships between the exposure route, the nanomaterials physicochemical properties and the ultimate biological effects in a holistic manner and was based on international expert consultation and the scientific literature (e.g., in vitro/in vivo data). The BN was validated with independent data extracted from published studies and the accuracy of the prediction of the nanomaterials hazard potential was 72% and for the biological effect 71%, respectively. The application of the BN is shown with scenario studies for TiO 2 , SiO 2 , Ag, CeO 2 , ZnO nanomaterials. It is demonstrated that the BN may be used by different stakeholders at several stages in the risk assessment to predict certain properties of a nanomaterials of which little information is available or to prioritize nanomaterials for further screening.

  13. Interactions of nanomaterials with biological systems: A study of bio-mineralized nanoparticles and nanoparticle antibiotics

    NASA Astrophysics Data System (ADS)

    Gifford, Jennifer Chappell

    Nature is continually able to out-perform laboratory syntheses of nanomaterials with control of specific properties under ambient temperatures, pressures and pH. The investigation of existing biomolecule-mediated nanoparticle synthesis provides insight and knowledge necessary for duplicating these processes. In this way, peptides or proteins with nanomaterial mediation capabilities can be: 1) explored to further understand the ways in which biomolecules create specific nanoparticles then 2) used to create genetically encodable tags for use in electron tomography. The goal of designing such a tag was to assist in closing the resolution gap that exists in current imaging techniques between approximately 5 nm and 100 nm. Presented in this thesis are examples of peptides and proteins that form iron oxide, silver or gold nanoparticles under discrete circumstances. Three iron oxide-related bacterial proteins -- bacterioferritin, Dps and Mms6 -- were investigated for potential use. Similarly, a silver mineralizing peptide, Ge8, was studied upon attachment to the filamentous protein, FtsZ, and a gold mineralizing peptide, A3, was examined to characterize the way in which it mediates the formation of both Au0 nanoclusters and nanoparticles. Given the established interactions that occur between nanoparticles and biomolecules, it may not be surprising that gold nanoparticles displaying specific ratios of functional groups are able to interact with bacteria, in some cases inhibiting growth or causing cell death as antibiotics. A previously developed small molecule variable ligand display (SMVLD) method was expanded to identify a nanoparticle conjugate with a minimal inhibitory concentration (MIC99.9) of 6 muM for Mycobacterium smegmatis, a common laboratory model for M. tuberculosis and the first example of SMVLD applied to mycobacteria. Nanoparticle structure-activity relationships, modes of action and approximations of mammalian cell toxicities were also explored to expand

  14. Key physicochemical properties of nanomaterials in view of their toxicity: an exploratory systematic investigation for the example of carbon-based nanomaterial

    NASA Astrophysics Data System (ADS)

    Salieri, Beatrice; Pasteris, Andrea; Netkueakul, Woranan; Hischier, Roland

    2017-03-01

    Currently, a noncomprehensive understanding of the physicochemical properties of carbon-based nanomaterial (CBNs), which may affect toxic effects, is still observable. In this study, an exploratory systematic investigation into the key physicochemical properties of multiwall carbon nanotube (MWCNT), single-wall carbon nanotube (SWCNT), and C60-fullerene on their ecotoxicity has been undertaken. We undertook an extensive survey of the literature pertaining to the ecotoxicity of organism representative of the trophic level of algae, crustaceans, and fish. Based on this, a set of data reporting both the physicochemical properties of carbon-based nanomaterial and the observed toxic effect has been established. The relationship between physicochemical properties and observed toxic effect was investigated based on various statistical approaches. Specifically, analysis of variance by one-way ANOVA was used to assess the effect of categorical properties (use of a dispersant or treatments in the test medium, type of carbon-based nanomaterial, i.e., SWCNT, MWCNT, C60-fullerene, functionalization), while multiple regression analysis was used to assess the effect of quantitative properties (i.e., diameter length of nanotubes, secondary size) on the toxicity values. The here described investigations revealed significant relationships among the physicochemical properties and observed toxic effects. The research was mainly affected by the low availability of data and also by the low variability of the studies collected. Overall, our results demonstrate that the here proposed and applied approach could have a major role in identifying the physicochemical properties of relevance for the toxicity of nanomaterial. However, the future success of the approach would require that the ENMs and the experimental conditions used in the toxicity studies are fully characterized.

  15. Method to synthesize metal chalcogenide monolayer nanomaterials

    DOEpatents

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  16. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    PubMed

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    2018-02-01

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Managing the Unexpected: Complexity as Distributed Sensemaking

    NASA Astrophysics Data System (ADS)

    Weick, Karl E.

    In 1998 the Centers for Disease Control (CDC) published a statement of their strategy entitled "Preventing Emerging Infectious Diseases: A Strategy for the 21st Century." They described their central challenge this way: "because we do not know what new diseases will arise, we must always be prepared for the unexpected" (p. vii). Soon after they published that statement CDC was confronted with an unexpected emerging disease, the West Nile Virus, which they misdiagnosed initially.

  18. Aggregation, Deposition and Release of Graphene Oxide Nanomaterials in the Aquatic Environment

    EPA Science Inventory

    Graphene is an atomically thin two dimensional carbon-based nanomaterial that is composed of a single layer of sp2 – hybridized carbon atoms as found in graphite.1, 2 Usage of graphene-based nanomaterials is increasing rapidly and these materials are predicted to be the most abun...

  19. Mechanical properties of cellulose nanomaterials studied by contact resonance atomic force microscopy

    Treesearch

    Ryan Wagner; Robert J. Moon; Arvind Raman

    2016-01-01

    Quantification of the mechanical properties of cellulose nanomaterials is key to the development of new cellulose nanomaterial based products. Using contact resonance atomic force microscopy we measured and mapped the transverse elastic modulus of three types of cellulosic nanoparticles: tunicate cellulose nanocrystals, wood cellulose nanocrystals, and wood cellulose...

  20. Review of ORD Nanomaterial Case Studies Workshop

    EPA Pesticide Factsheets

    The following is a letter report from the Executive Committee of the BOSC concerning the review of the ORD Nanomaterial Case Studies Workshop: Developing a Comprehensive Environmental Assessment Research Strategy for Nanoscale Titanium Dioxide.

  1. 3 CFR - Unexpected Urgent Refugee and Migration Needs

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 3 The President 1 2013-01-01 2013-01-01 false Unexpected Urgent Refugee and Migration Needs... Unexpected Urgent Refugee and Migration Needs Memorandum for the Secretary of State By the authority vested...) of the Migration and Refugee Assistance Act of 1962 (the “Act”), as amended, (22 U.S.C. 2601(c)(1...

  2. 3 CFR - Unexpected Urgent Refugee and Migration Needs

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 3 The President 1 2013-01-01 2013-01-01 false Unexpected Urgent Refugee and Migration Needs Presidential Documents Other Presidential Documents Presidential Determination No. 2012-6 of April 3, 2012 Unexpected Urgent Refugee and Migration Needs Memorandum for the Secretary of State By the authority vested in me as President by the Constitution...

  3. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.

    PubMed

    Divya, Kizhmuri P; Miroshnikov, Mikhail; Dutta, Debjit; Vemula, Praveen Kumar; Ajayan, Pulickel M; John, George

    2016-09-20

    The allure of integrating the tunable properties of soft nanomaterials with the unique optical and electronic properties of metal nanoparticles has led to the development of organic-inorganic hybrid nanomaterials. A promising method for the synthesis of such organic-inorganic hybrid nanomaterials is afforded by the in situ generation of metal nanoparticles within a host organic template. Due to their tunable surface morphology and porosity, soft organic materials such as gels, liquid crystals, and polymers that are derived from various synthetic or natural compounds can act as templates for the synthesis of metal nanoparticles of different shapes and sizes. This method provides stabilization to the metal nanoparticles by the organic soft material and advantageously precludes the use of external reducing or capping agents in many instances. In this Account, we exemplify the green chemistry approach for synthesizing these materials, both in the choice of gelators as soft material frameworks and in the reduction mechanisms that generate the metal nanoparticles. Established herein is the core design principle centered on conceiving multifaceted amphiphilic soft materials that possess the ability to self-assemble and reduce metal ions into nanoparticles. Furthermore, these soft materials stabilize the in situ generated metal nanoparticles and retain their self-assembly ability to generate metal nanoparticle embedded homogeneous organic-inorganic hybrid materials. We discuss a remarkable example of vegetable-based drying oils as host templates for metal ions, resulting in the synthesis of novel hybrid nanomaterials. The synthesis of metal nanoparticles via polymers and self-assembled materials fabricated via cardanol (a bioorganic monomer derived from cashew nut shell liquid) are also explored in this Account. The organic-inorganic hybrid structures were characterized by several techniques such as UV-visible spectroscopy, scanning electron microscopy (SEM), and

  4. Carbon Nanomaterials in Biological Studies and Biomedicine.

    PubMed

    Teradal, Nagappa L; Jelinek, Raz

    2017-09-01

    The "carbon nano-world" has made over the past few decades huge contributions in diverse scientific disciplines and technological advances. While dramatic advances have been widely publicized in using carbon nanomaterials such as fullerenes, carbon nanotubes, and graphene in materials sciences, nano-electronics, and photonics, their contributions to biology and biomedicine have been noteworthy as well. This Review focuses on the use of carbon nanotubes (CNTs), graphene, and carbon quantum dots [encompassing graphene quantum dots (GQDs) and carbon dots (C-dots)] in biologically oriented materials and applications. Examples of these remarkable nanomaterials in bio-sensing, cell- and tissue-imaging, regenerative medicine, and other applications are presented and discussed, emphasizing the significance of their unique properties and their future potential. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Tools for Assessing Ecological Nanomaterial Exposures

    EPA Science Inventory

    Manufactured nanomaterials (MNs) are commonly defined as being commercial products with at least one dimension in the size range of 1 nm to 100 nm that also possess unique properties as the result of their size. Anecdotal evidence suggests that at least 600 MN products a...

  6. Center for Functional Nanomaterials

    ScienceCinema

    BNL

    2017-12-09

    Staff from Brookhaven's new Center for Functional Nanomaterials (CFN) describe how this advanced facility will focus on the development and understanding of nanoscale materials. The CFN provides state-of-the-art capabilities for the fabrication and study of nanoscale materials, with an emphasis on atomic-level tailoring to achieve desired properties and functions. The overarching scientific theme of the CFN is the development and understanding of nanoscale materials that address the Nation's challenges in energy security.

  7. Targeted Nanomaterials for Phototherapy

    PubMed Central

    Chitgupi, Upendra; Qin, Yiru; Lovell, Jonathan F.

    2017-01-01

    Phototherapies involve the irradiation of target tissues with light. To further enhance selectivity and potency, numerous molecularly targeted photosensitizers and photoactive nanoparticles have been developed. Active targeting typically involves harnessing the affinity between a ligand and a cell surface receptor for improved accumulation in the targeted tissue. Targeting ligands including peptides, proteins, aptamers and small molecules have been explored for phototherapy. In this review, recent examples of targeted nanomaterials used in phototherapy are summarized. PMID:29071178

  8. Perspectives on the design of safer nanomaterials and manufacturing processes

    NASA Astrophysics Data System (ADS)

    Geraci, Charles; Heidel, Donna; Sayes, Christie; Hodson, Laura; Schulte, Paul; Eastlake, Adrienne; Brenner, Sara

    2015-09-01

    A concerted effort is being made to insert Prevention through Design principles into discussions of sustainability, occupational safety and health, and green chemistry related to nanotechnology. Prevention through Design is a set of principles, which includes solutions to design out potential hazards in nanomanufacturing including the design of nanomaterials, and strategies to eliminate exposures and minimize risks that may be related to the manufacturing processes and equipment at various stages of the lifecycle of an engineered nanomaterial.

  9. Molecularly Imprinted Nanomaterials for Sensor Applications

    PubMed Central

    Irshad, Muhammad; Iqbal, Naseer; Mujahid, Adnan; Afzal, Adeel; Hussain, Tajamal; Sharif, Ahsan; Ahmad, Ejaz; Athar, Muhammad Makshoof

    2013-01-01

    Molecular imprinting is a well-established technology to mimic antibody-antigen interaction in a synthetic platform. Molecularly imprinted polymers and nanomaterials usually possess outstanding recognition capabilities. Imprinted nanostructured materials are characterized by their small sizes, large reactive surface area and, most importantly, with rapid and specific analysis of analytes due to the formation of template driven recognition cavities within the matrix. The excellent recognition and selectivity offered by this class of materials towards a target analyte have found applications in many areas, such as separation science, analysis of organic pollutants in water, environmental analysis of trace gases, chemical or biological sensors, biochemical assays, fabricating artificial receptors, nanotechnology, etc. We present here a concise overview and recent developments in nanostructured imprinted materials with respect to various sensor systems, e.g., electrochemical, optical and mass sensitive, etc. Finally, in light of recent studies, we conclude the article with future perspectives and foreseen applications of imprinted nanomaterials in chemical sensors. PMID:28348356

  10. Abrasion properties of self-suspended hairy titanium dioxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhang, Jiao-xia; Liu, Si; Yan, Chao; Wang, Xiao-jing; Wang, Lei; Yu, Ya-ming; Li, Shi-yun

    2017-11-01

    Considering the excellent solubility of pyrrolidone ring organic compounds, the synthesized N-(trimethoxysilyl) propyl- N-methyl-2-pyrrolidone chlorides was tethered onto titanium dioxide (TiO2) nanoparticles to improve dispersion of TiO2, and then polyethylene oxide (PEO) oligomer through ion exchange embraced the tethered TiO2 to obtain a novel self-suspended hairy TiO2 nanomaterials without any solvent. A variety of techniques were carried out to illustrate the structure and properties of the self-suspended hairy TiO2 nanomaterials. It was found that TiO2 nanoparticles embody monodispersity in the hybrid system though the "false reunion" phenomenon occurring due to nonpermanent weak physical cross-linking. Remarkably, self-suspended hairy TiO2 nanomaterials exhibit lower viscosity, facilitating maneuverable and outstanding antifriction and wear resistance properties, due to the synergistic lubricating effect between spontaneously forming lubricating film and nano-lubrication of TiO2 cores, overcoming the deficiency of both solid and liquid lubricants. This make them promising candidates for the micro-electromechanic/nano-electromechanic systems (MEMS/NEMS).

  11. Chronic exposure to graphene-based nanomaterials induces behavioral deficits and neural damage in Caenorhabditis elegans.

    PubMed

    Li, Ping; Xu, Tiantian; Wu, Siyu; Lei, Lili; He, Defu

    2017-10-01

    Nanomaterials of graphene and its derivatives have been widely applied in recent years, but whose impacts on the environment and health are still not well understood. In the present study, the potential adverse effects of graphite (G), graphite oxide nanoplatelets (GO) and graphene quantum dots (GQDs) on the motor nervous system were investigated using nematode Caenorhabditis elegans as the assay system. After being characterized using TEM, SEM, XPS and PLE, three nanomaterials were chronically exposed to C. elegans for 6 days. In total, 50-100 mg l -1 GO caused a significant reduction in the survival rate, but G and GDDs showed low lethality on nematodes. After chronic exposure of sub-lethal dosages, three nanomaterials were observed to distribute primarily in the pharynx and intestine; but GQDs were widespread in nematode body. Three graphene-based nanomaterials resulted in significant declines in locomotor frequency of body bending, head thrashing and pharynx pumping. In addition, mean speed, bending angle-frequency and wavelength of the crawling movement were significantly reduced after exposure. Using transgenic nematodes, we found high concentrations of graphene-based nanomaterials induced down-expression of dat-1::GFP and eat-4::GFP, but no significant changes in unc-47::GFP. This indicates that graphene-based nanomaterials can lead to damages in the dopaminergic and glutamatergic neurons. The present data suggest that chronic exposure of graphene-based nanomaterials may cause neurotoxicity risks of inducing behavioral deficits and neural damage. These findings provide useful information to understand the toxicity and safe application of graphene-based nanomaterials. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Entrapping of fullerenes, nanotubes, and inorganic nanoparticles by a DNA-chitosan complex: a method for nanomaterials removal.

    PubMed

    Zinchenko, Anatoly A; Maeda, Noriko; Pu, Shengyan; Murata, Shizuaki

    2013-05-07

    We report a protocol for entrapping of various water-dispersed nanomaterials: fullerenes, multiwall carbon nanotubes, quantum dots (semiconductor nanoparticles), and gold nanorods, into a DNA-chitosan complex. In contrast to small-size nanomaterial particles, the bulky DNA-chitosan interpolyelectrolyte complex incorporating the dispersed nanomaterials can be easily separated from aqueous media by centrifugation, filtration, or decantation. While the removal of nanoparticles by centrifugation is equally efficient for every type of nanoparticles and reaches 100%, the higher efficiency of the nanomaterials removal by other two methods is favored by larger size of nanoparticles. The application of this entrapping protocol for removal of nanomaterials from water is discussed.

  13. Cytotoxicity and Efflux Pump Inhibition Induced by Molybdenum Disulfide and Boron Nitride Nanomaterials with Sheetlike Structure.

    PubMed

    Liu, Su; Shen, Zhuoyan; Wu, Bing; Yu, Yue; Hou, Hui; Zhang, Xu-Xiang; Ren, Hong-Qiang

    2017-09-19

    Sheetlike molybdenum disulfide (MoS 2 ) and boron nitride (BN) nanomaterials have attracted attention in the past few years due to their unique material properties. However, information on adverse effects and their underlying mechanisms for sheetlike MoS 2 and BN nanomaterials is rare. In this study, cytotoxicities of sheetlike MoS 2 and BN nanomaterials on human hepatoma HepG2 cells were systematically investigated at different toxic end points. Results showed that MoS 2 and BN nanomaterials decreased cell viability at 30 μg/mL and induced adverse effects on intracellular ROS generation (≥2 μg/mL), mitochondrial depolarization (≥4 μg/mL), and membrane integrity (≥8 μg/mL for MoS 2 and ≥2 μg/mL for BN). Furthermore, this study first found that low exposure concentrations (0.2-2 μg/mL) of MoS 2 and BN nanomaterials could increase plasma membrane fluidity and inhibit transmembrane ATP binding cassette (ABC) efflux transporter activity, which make both nanomaterials act as a chemosensitizer (increasing arsenic toxicity). Damage to plasma membrane and release of soluble Mo or B species might be two reasons that both nanomaterials inhibit efflux pump activities. This study provides a systematic understanding of the cytotoxicity of sheetlike MoS 2 and BN nanomaterials at different exposure levels, which is important for their safe use.

  14. Multi-criteria decision analysis and environmental risk assessment for nanomaterials

    NASA Astrophysics Data System (ADS)

    Linkov, Igor; Satterstrom, F. Kyle; Steevens, Jeffery; Ferguson, Elizabeth; Pleus, Richard C.

    2007-08-01

    Nanotechnology is a broad and complex discipline that holds great promise for innovations that can benefit mankind. Yet, one must not overlook the wide array of factors involved in managing nanomaterial development, ranging from the technical specifications of the material to possible adverse effects in humans. Other opportunities to evaluate benefits and risks are inherent in environmental health and safety (EHS) issues related to nanotechnology. However, there is currently no structured approach for making justifiable and transparent decisions with explicit trade-offs between the many factors that need to be taken into account. While many possible decision-making approaches exist, we believe that multi-criteria decision analysis (MCDA) is a powerful and scientifically sound decision analytical framework for nanomaterial risk assessment and management. This paper combines state-of-the-art research in MCDA methods applicable to nanotechnology with a hypothetical case study for nanomaterial management. The example shows how MCDA application can balance societal benefits against unintended side effects and risks, and how it can also bring together multiple lines of evidence to estimate the likely toxicity and risk of nanomaterials given limited information on physical and chemical properties. The essential contribution of MCDA is to link this performance information with decision criteria and weightings elicited from scientists and managers, allowing visualization and quantification of the trade-offs involved in the decision-making process.

  15. Two-Dimensional Metal Oxide Nanomaterials for Next-Generation Rechargeable Batteries.

    PubMed

    Mei, Jun; Liao, Ting; Kou, Liangzhi; Sun, Ziqi

    2017-12-01

    The exponential increase in research focused on two-dimensional (2D) metal oxides has offered an unprecedented opportunity for their use in energy conversion and storage devices, especially for promising next-generation rechargeable batteries, such as lithium-ion batteries (LIBs) and sodium-ion batteries (NIBs), as well as some post-lithium batteries, including lithium-sulfur batteries, lithium-air batteries, etc. The introduction of well-designed 2D metal oxide nanomaterials into next-generation rechargeable batteries has significantly enhanced the performance of these energy-storage devices by providing higher chemically active interfaces, shortened ion-diffusion lengths, and improved in-plane carrier-/charge-transport kinetics, which have greatly promoted the development of nanotechnology and the practical application of rechargeable batteries. Here, the recent progress in the application of 2D metal oxide nanomaterials in a series of rechargeable LIBs, NIBs, and other post lithium-ion batteries is reviewed relatively comprehensively. Current opportunities and future challenges for the application of 2D nanomaterials in energy-storage devices to achieve high energy density, high power density, stable cyclability, etc. are summarized and outlined. It is believed that the integration of 2D metal oxide nanomaterials in these clean energy devices offers great opportunities to address challenges driven by increasing global energy demands. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Role of nanomaterial physicochemical properties on fate and toxicity in bacteria and plants

    NASA Astrophysics Data System (ADS)

    Slomberg, Danielle

    Nanomaterials, defined as those having at least one dimension <100 nm, are ubiquitous in nature. However, engineered nanomaterials have gained increasing attention for use in drug-delivery applications and consumer goods. Examination of nanomaterial toxicity, both beneficial (e.g., drug delivery to bacterial pathogens) and detrimental (e.g., death of terrestrial plants), thus warranted. Herein, I present the evaluation of nitric oxide-releasing nanomaterial toxicity to bacteria and silica particle toxicity to plants as a function of nanomaterial physicochemical properties. Nanomaterial toxicity toward planktonic (i.e., free-floating) Pseudomonas aeruginosa and Staphylococcus aureus bacteria was evaluated as a function of scaffold size, shape, and exterior functionality using nitric oxide-releasing (NO) silica particles, dendrimers, and chitosan oligosaccharides. Improved bactericidal efficacy was observed for silica particles with decreased size and increased aspect ratio (i.e., rod-like) due to improved particle-cell interactions. Likewise, better nanomaterial-bacteria association and biocidal action was noted for more hydrophobic NO-releasing dendrimers and chitosan oligosaccharides. Planktonic bacterial killing was not dependent on chitosan molecular weight due to rapid association between the cationic scaffolds and negatively-charged bacterial cell membranes. Given the importance of nanomaterial physicochemical properties in planktonic bacterial killing, the NO-releasing scaffolds were also evaluated against clinically-relevant bacterial biofilms. Similar to planktonic studies, smaller particle sizes proved more efficient in delivering NO throughout the biofilm. Particles with rod-like shape also eradicated biofilms more effectively. The role of NO-releasing dendrimer and chitosan oligosaccharide hydrophobicity was prominent in scaffold diffusion through the biofilm and subsequent NO delivery, with hydrophobic functionalities generally exhibiting better

  17. Enrichment and characterization of ferritin for nanomaterial applications

    NASA Astrophysics Data System (ADS)

    Ghirlando, Rodolfo; Mutskova, Radina; Schwartz, Chad

    2016-01-01

    Ferritin is a ubiquitous iron storage protein utilized as a nanomaterial for labeling biomolecules and nanoparticle construction. Commercially available preparations of horse spleen ferritin, widely used as a starting material, contain a distribution of ferritins with different iron loads. We describe a detailed approach to the enrichment of differentially loaded ferritin molecules by common biophysical techniques such as size exclusion chromatography and preparative ultracentrifugation, and characterize these preparations by dynamic light scattering, and analytical ultracentrifugation. We demonstrate a combination of methods to standardize an approach for determining the chemical load of nearly any particle, including nanoparticles and metal colloids. Purification and characterization of iron content in monodisperse ferritin species is particularly critical for several applications in nanomaterial science.

  18. Health effects of nanomaterials.

    PubMed

    Tetley, T D

    2007-06-01

    With the rapid growth of nanotechnology and future bulk manufacture of nanomaterials comes the need to determine, understand and counteract any adverse health effects of these materials that may occur during manufacture, during use, or accidentally. Nanotechnology is expanding rapidly and will affect many aspects of everyday life; there are already hundreds of products that utilize nanoparticles. Paradoxically, the unique properties that are being exploited (e.g. high surface reactivity and ability to cross cell membranes) might have negative health impacts. The rapid progress in development and use of nanomaterials is not yet matched by toxicological investigations. Epidemiological studies implicate the ultrafine (nano-sized) fraction of particulate air pollution in the exacerbation of cardiorespiratory disease and increased morbidity. Experimental animal studies suggest that the increased concentration of nanoparticles and higher reactive surface area per unit mass, alongside unique chemistry and functionality, is important in the acute inflammatory and chronic response. Some animal models have shown that nanoparticles which are deposited in one organ (e.g. lung and gut) may access the vasculature and target other organs (e.g. brain and liver). The exact relationship between the physicochemistry of a nanoparticle, its cellular reactivity, and its biological and systemic consequences cannot be predicted. It is important to understand such relationships to enjoy the benefits of nanotechnology without being exposed to the hazards.

  19. Nanomaterials incorporated ultrasound contrast agents for cancer theranostics

    PubMed Central

    Fu, Lei; Ke, Heng-Te

    2016-01-01

    Nanotechnology provides various nanomaterials with tremendous functionalities for cancer diagnostics and therapeutics. Recently, theranostics has been developed as an alternative strategy for efficient cancer treatment through combination of imaging diagnosis and therapeutic interventions under the guidance of diagnostic results. Ultrasound (US) imaging shows unique advantages with excellent features of real-time imaging, low cost, high safety and portability, making US contrast agents (UCAs) an ideal platform for construction of cancer theranostic agents. This review focuses on the development of nanomaterials incorporated multifunctional UCAs serving as theranostic agents for cancer diagnostics and therapeutics, via conjugation of superparamagnetic iron oxide nanoparticles (SPIOs), CuS nanoparticles, DNA, siRNA, gold nanoparticles (GNPs), gold nanorods (GNRs), gold nanoshell (GNS), graphene oxides (GOs), polypyrrole (PPy) nanocapsules, Prussian blue (PB) nanoparticles and so on to different types of UCAs. The cancer treatment could be more effectively and accurately carried out under the guidance and monitoring with the help of the achieved theranostic agents. Furthermore, nanomaterials incorporated theranostic agents based on UCAs can be designed and constructed by demand for personalized and accurate treatment of cancer, demonstrating their great potential to address the challenges of cancer heterogeneity and adaptation, which can provide alternative strategies for cancer diagnosis and therapeutics. PMID:27807499

  20. Functional Nanomaterials for Environmental Applications and Bioassemblies

    NASA Astrophysics Data System (ADS)

    Nguyen, Michelle Anne

    The rational design of nanomaterials has yielded new technologies that have revolutionized numerous diverse fields. The work detailed herein first describes the application of photocatalytic nanomaterials towards the environmental remediation of harmful toxins. Specifically, a low-temperature solution-phase synthetic route for size-controlled Cu2O octahedra particles was developed, and these materials were evaluated as catalysts for the photocatalytic degradation of aromatic organic compounds. Moreover, cubic Cu2O/Pd composite structures were fabricated and demonstrated to be effective photocatalysts for the generation of H2 and the reductive dehalogenation of polychlorinated biphenyls, well-known carcinogens present at many contaminated sites around the world. This photocatalytic approach to environmental remediation exemplifies the adaptation of light-driven technologies and sustainable practices to energy-intensive catalytic systems. In addition, this work also investigates the organic/inorganic interface of peptide-mediated Au nanoparticles as a means to identify rational design principles for materials binding peptide sequences for the advancement of stimuli-responsive bionanoassemblies. Factors inherent to peptide sequences that can promote strong materials-binding affinity and/or effective nanoparticle stabilization capability were identified in order to progress biomimetic technologies. These findings were elucidated using a combinational approach of peptide binding experiments to Au in partnership with molecular dynamics simulations. Overall, this work demonstrates the growing applications of nanomaterials in remediation technologies and aids in the understanding of the origins of peptide material affinity and nanoparticle stabilization.

  1. Immobilization Techniques in the Fabrication of Nanomaterial-Based Electrochemical Biosensors: A Review

    PubMed Central

    Putzbach, William; Ronkainen, Niina J.

    2013-01-01

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene. PMID:23580051

  2. Determination of optical band gap of powder-form nanomaterials with improved accuracy

    NASA Astrophysics Data System (ADS)

    Ahsan, Ragib; Khan, Md. Ziaur Rahman; Basith, Mohammed Abdul

    2017-10-01

    Accurate determination of a material's optical band gap lies in the precise measurement of its absorption coefficients, either from its absorbance via the Beer-Lambert law or diffuse reflectance spectrum via the Kubelka-Munk function. Absorption coefficients of powder-form nanomaterials calculated from absorbance spectrum do not match those calculated from diffuse reflectance spectrum, implying the inaccuracy of the traditional optical band gap measurement method for such samples. We have modified the Beer-Lambert law and the Kubelka-Munk function with proper approximations for powder-form nanomaterials. Applying the modified method for powder-form nanomaterial samples, both absorbance and diffuse reflectance spectra yield exactly the same absorption coefficients and therefore accurately determine the optical band gap.

  3. Immobilization techniques in the fabrication of nanomaterial-based electrochemical biosensors: a review.

    PubMed

    Putzbach, William; Ronkainen, Niina J

    2013-04-11

    The evolution of 1st to 3rd generation electrochemical biosensors reflects a simplification and enhancement of the transduction pathway. However, in recent years, modification of the transducer with nanomaterials has become increasingly studied and imparts many advantages. The sensitivity and overall performance of enzymatic biosensors has improved tremendously as a result of incorporating nanomaterials in their fabrication. Given the unique and favorable qualities of gold nanoparticles, graphene and carbon nanotubes as applied to electrochemical biosensors, a consolidated survey of the different methods of nanomaterial immobilization on transducer surfaces and enzyme immobilization on these species is beneficial and timely. This review encompasses modification of enzymatic biosensors with gold nanoparticles, carbon nanotubes, and graphene.

  4. Assessing the Environmental Safety of Engineered Nanomaterials

    EPA Science Inventory

    Nanotechnology research in the United States is coordinated under the National Nano-technology Initiative with the goal of fostering development and implementation of nanomaterials and products that incorporate them and assuring that they are environmentally safe. The environmen...

  5. Synthesis of carbon nanomaterials from different pyrolysis techniques: a review

    NASA Astrophysics Data System (ADS)

    Umer Zahid, Muhammad; Pervaiz, Erum; Hussain, Arshad; Shahzad, Muhammad Imran; Niazi, Muhammad Bilal Khan

    2018-05-01

    In the current age, the significance of carbon-based nanomaterials for many applications has made the efforts for the facile synthesis methods from abundantly available wastes in a cost-effective way. Pyrolysis in a broad spectrum is commonly employed for the synthesis of carbon nanostructures by thermally treating the organic waste. The mechanism of growth of the nanoparticles determines the functional distribution of nanoparticles based on the growing size, medium, and physio-chemical properties. Carbon nanomaterial’s growth is a complicated process which is profoundly influenced by temperature, catalyst, and type of precursor. Nowadays, significant progress has been made in improving nanomaterial’s growth techniques, opening new paths for commercial production of carbon-based nanomaterials. The most promising are the methods involving hydrocarbon-rich organic waste as the feed source. In this review, synthesis of carbon-based nanomaterials, specifically carbon nanotubes (CNTs), Carbon nanofibers (CNFs) and Graphene (G) are discussed by different pyrolysis techniques. Furthermore, the review explores recent advancements made in the context of pyrolysis.

  6. Recent Advances in Bismuth-Based Nanomaterials for Photoelectrochemical Water Splitting.

    PubMed

    Bhat, Swetha S M; Jang, Ho Won

    2017-08-10

    In recent years, bismuth-based nanomaterials have drawn considerable interest as potential candidates for photoelectrochemical (PEC) water splitting owing to their narrow band gaps, nontoxicity, and low costs. The unique electronic structure of bismuth-based materials with a well-dispersed valence band comprising Bi 6s and O 2p orbitals offers a suitable band gap to harvest visible light. This Review presents significant advancements in exploiting bismuth-based nanomaterials for solar water splitting. An overview of the different strategies employed and the new ideas adopted to improve the PEC performance of bismuth-based nanomaterials are discussed. Morphology control, the construction of heterojunctions, doping, and co-catalyst loading are several approaches that are implemented to improve the efficiency of solar water splitting. Key issues are identified and guidelines are suggested to rationalize the design of efficient bismuth-based materials for sunlight-driven water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment.

    PubMed

    Liang, Shu-Xuan; Jin, Yu; Liu, Wei; Li, Xiliang; Shen, Shi-Gang; Ding, Ling

    2017-04-01

    The effect of the combined application of nano-hydroxyapatite (NHAP) or nano-carbon black (NCB) on the phytoextraction of Pb by ryegrass was investigated as an enhanced remediation technique for soils by field-scale experiment. After the addition of 0.2% NHAP or NCB to the soil, temporal variation of the uptake of Pb in aboveground parts and roots were observed. Ryegrass shoot concentrations of Pb were lower with nano-materials application than without nano-materials for the first month. However, the shoot concentrations of Pb were significantly increased with nano-materials application, in particular NHAP groups. The ryegrass root concentrations of Pb were lower with nano-materials application for the first month. These results indicated that nano-materials had significant effects on stabilization of lead, especially at the beginning of the experiment. Along with the experimental proceeding, phytotoxicity was alleviated after the incorporation of nano-materials. The ryegrass biomass was significantly higher with nano-materials application. Consequently, the Pb phytoextraction potential of ryegrass significantly increased with nano-materials application compared to the gounps without nano-materials application. The total removal rates of soil Pb were higher after combined application of NHAP than NCB. NHAP is more suitable than NCB for in-situ remediation of Pb-contaminated soils. The ryegrass translocation factor exhibited a marked increase with time. It was thought that the major role of NHP and NBA might be to alleviate the Pb phytotoxicity and increase biomass of plants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials.

    PubMed

    Wu, Zhen-Yu; Liang, Hai-Wei; Chen, Li-Feng; Hu, Bi-Cheng; Yu, Shu-Hong

    2016-01-19

    Three dimensional (3D) carbon nanomaterials exhibit great application potential in environmental protection, electrochemical energy storage and conversion, catalysis, polymer science, and advanced sensors fields. Current methods for preparing 3D carbon nanomaterials, for example, carbonization of organogels, chemical vapor deposition, and self-assembly of nanocarbon building blocks, inevitably involve some drawbacks, such as expensive and toxic precursors, complex equipment and technological requirements, and low production ability. From the viewpoint of practical application, it is highly desirable to develop a simple, cheap, and environmentally friendly way for fabricating 3D carbon nanomaterials in large scale. On the other hand, in order to extend the application scope and improve the performance of 3D carbon nanomaterials, we should explore efficient strategies to prepare diverse functional nanomaterials based on their 3D carbon structure. Recently, many researchers tend to fabricate high-performance 3D carbon-based nanomaterials from biomass, which is low cost, easy to obtain, and nontoxic to humans. Bacterial cellulose (BC), a typical biomass material, has long been used as the raw material of nata-de-coco (an indigenous dessert food of the Philippines). It consists of a polysaccharide with a β-1,4-glycosidic linkage and has a interconnected 3D porous network structure. Interestingly, the network is made up of a random assembly of cellulose nanofibers, which have a high aspect ratio with a diameter of 20-100 nm. As a result, BC has a high specific surface area. Additionally, BC hydrogels can be produced on an industrial scale via a microbial fermentation process at a very low price. Thus, it can be an ideal platform for design of 3D carbon-based functional nanomaterials. Before our work, no systematic work and summary on this topic had been reported. This Account presents the concepts and strategies of our studies on BC in the past few years, that is

  9. Shape-selective synthesis of Sn(MoO4)2 nanomaterials for catalysis and supercapacitor applications.

    PubMed

    Sakthikumar, K; Ede, Sivasankara Rao; Mishra, Soumyaranjan; Kundu, Subrata

    2016-06-07

    Size and shape-selective Sn(MoO4)2 nanomaterials have been synthesized for the first time using a simple hydrothermal route by the reaction of Sn(ii) chloride salt with sodium molybdate in CTAB micellar media under stirring at 60 °C temperature for about three hours. Needle-like and flake-like Sn(MoO4)2 nanomaterials were synthesized by optimizing the CTAB to metal salt molar ratio and by controlling other reaction parameters. The eventual diameter and length of the nanoneedles are ∼100 ± 10 nm and ∼850 ± 100 nm respectively. The average diameter of the flakes is ∼250 ± 50 nm. The synthesized Sn(MoO4)2 nanomaterials can be used in two potential applications, namely, catalytic reduction of nitroarenes and as an anodic material in electrochemical supercapacitors. From the catalysis study, it was observed that the Sn(MoO4)2 nanomaterials could act as a potential catalyst for the successful photochemical reduction of nitroarenes into their respective aminoarenes within a short reaction time. From the supercapacitor study, it was observed that the Sn(MoO4)2 nanomaterials of different shapes show different specific capacitance (Cs) values and the highest Cs value was observed for Sn(MoO4)2 nanomaterials having a flake-like morphology. The highest Cs value observed was 109 F g(-1) at a scan rate of 5 mV s(-1) for the flake-like Sn(MoO4)2 nanomaterials. The capacitor shows an excellent long cycle life along with 70% retention of the Cs value, even after 4000 consecutive cycles at a current density of 8 mA cm(-2). Other than the applications in catalysis and supercapacitors, the synthesized nanomaterials can find further applications in photoluminescence, sensor and other energy-related devices.

  10. Engineered nanomaterials: Exposures, hazards and risk prevention.

    EPA Science Inventory

    Nanotechnology presents the possibility of revolutionizing many aspects of our lives. People in many settings (academic, small and large industrial, and the general public) are either developing or using engineered nanomaterials (ENMs). However, understanding of the health and sa...

  11. The Nanomaterial Data Curation Initiative: A Collaborative Approach to Assessing, Evaluating, and Advancing the State of the Field

    EPA Science Inventory

    The Nanomaterial Data Curation Initiative (NDCI) explores the critical aspect of data curation within the development of informatics approaches to understanding nanomaterial behavior. Data repositories and tools for integrating and interrogating complex nanomaterial datasets are...

  12. Reliable nanomaterial classification of powders using the volume-specific surface area method

    NASA Astrophysics Data System (ADS)

    Wohlleben, Wendel; Mielke, Johannes; Bianchin, Alvise; Ghanem, Antoine; Freiberger, Harald; Rauscher, Hubert; Gemeinert, Marion; Hodoroaba, Vasile-Dan

    2017-02-01

    The volume-specific surface area (VSSA) of a particulate material is one of two apparently very different metrics recommended by the European Commission for a definition of "nanomaterial" for regulatory purposes: specifically, the VSSA metric may classify nanomaterials and non-nanomaterials differently than the median size in number metrics, depending on the chemical composition, size, polydispersity, shape, porosity, and aggregation of the particles in the powder. Here we evaluate the extent of agreement between classification by electron microscopy (EM) and classification by VSSA on a large set of diverse particulate substances that represent all the anticipated challenges except mixtures of different substances. EM and VSSA are determined in multiple labs to assess also the level of reproducibility. Based on the results obtained on highly characterized benchmark materials from the NanoDefine EU FP7 project, we derive a tiered screening strategy for the purpose of implementing the definition of nanomaterials. We finally apply the screening strategy to further industrial materials, which were classified correctly and left only borderline cases for EM. On platelet-shaped nanomaterials, VSSA is essential to prevent false-negative classification by EM. On porous materials, approaches involving extended adsorption isotherms prevent false positive classification by VSSA. We find no false negatives by VSSA, neither in Tier 1 nor in Tier 2, despite real-world industrial polydispersity and diverse composition, shape, and coatings. The VSSA screening strategy is recommended for inclusion in a technical guidance for the implementation of the definition.

  13. The concept of bio-corona in modulating the toxicity of engineered nanomaterials (ENM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westmeier, Dana; Stauber, Roland H.; Docter, Dominic, E-mail: docter@uni-mainz.de

    Besides the wide use of engineered nanomaterials (ENM) in technical products, their application spectrum in biotechnology and biomedicine is steadily increasing. In complex physiological environments the physico-chemical properties and the behavior of nanoparticles (NPs) are challenging to characterize. Biomolecules rapidly adsorb to the nanomaterial, leading to the formation of the protein/biomolecule corona, which critically affects the nanomaterials' (patho)biological and technical identities. This formation can trigger an immune response and affect nanoparticles' toxicity and targeting capabilities. In this review, we provide a survey of recent findings on the (protein)corona-nanoparticle interaction and discuss how the corona modulates both cytotoxicity and the immunemore » response as well as to improve the efficacy of targeted delivery of nanocarriers. - Highlights: • “Nanotoxicology” has emerged an autonomous field with an explosive growth. • Nanomaterials adsorb (bio)molecules forming the so-called (bio)molecule corona. • (Fine-)tune of the corona composition could enable new possibilities in nanomedicine.« less

  14. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery.

    PubMed

    Chen, Daiqin; Dougherty, Casey A; Zhu, Kaicheng; Hong, Hao

    2015-07-28

    Carbon based nanomaterials have attracted significant attention over the past decades due to their unique physical properties, versatile functionalization chemistry, and biological compatibility. In this review, we will summarize the current state-of-the-art applications of carbon nanomaterials in cancer imaging and drug delivery/therapy. The carbon nanomaterials will be categorized into fullerenes, nanotubes, nanohorns, nanodiamonds, nanodots and graphene derivatives based on their morphologies. The chemical conjugation/functionalization strategies of each category will be introduced before focusing on their applications in cancer imaging (fluorescence/bioluminescence, magnetic resonance (MR), positron emission tomography (PET), single-photon emission computed tomography (SPECT), photoacoustic, Raman imaging, etc.) and cargo (chemo/gene/therapy) delivery. The advantages and limitations of each category and the potential clinical utilization of these carbon nanomaterials will be discussed. Multifunctional carbon nanoplatforms have the potential to serve as optimal candidates for image-guided delivery vectors for cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Shape, size and temperature dependency of thermal expansion, lattice parameter and bulk modulus in nanomaterials

    NASA Astrophysics Data System (ADS)

    Goyal, M.; Gupta, B. R. K.

    2018-06-01

    A theoretical model is described here for studying the effect of temperature on nanomaterials. The thermodynamic equation of state (EoS) proposed by Goyal and Gupta in High Temp.-High Press. 45, 163 (2016); Oriental J. Chem. 32( 4), 2193 (2016), is extended in the present study using Qi and Wang model [ Mater. Chem. Phys. 88, 280 (2004)]. The thermal expansion coefficient is expressed in terms of shape and size and used to obtain the isobaric EoS of nanomaterials for the change in volume V/{V_0}. The variation in V/{V_0} with temperature is estimated for spherical nanoparticles, nanowires and nanofilms. It is found that the volume thermal expansivity decreases as size of the nanomaterial increases, whereas V/{V_0} increases with temperature across nanomaterials of different sizes. The lattice parameter variation with temperature is studied in Zn nanowires, Se and Ag nanoparticles. It is found that lattice constant increases with increase in temperature. Also, bulk modulus is found to increase with temperature in nanomaterials. The results obtained from the present model are compared with the available experimental data. A good consistency between the compared results confirms the suitability of the present model for studying thermal properties of the nanomaterials.

  16. Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors

    DOE PAGES

    Zhou, Ming; Guo, Shaojun

    2015-07-17

    The rapid development of nanoscience and nanotechnology provides new opportunities for the sustainable progress of nanoscale catalysts (i.e., nanocatalysts). The introduction of nanocatalysts into electronic devices implants their novel functions into electronic sensing systems, resulting in the testing of many advanced electrochemical sensors and the fabrication of some highly sensitive, selective, and stable sensing platforms. In this Review, we will summarize recent significant progress on exploring advanced carbon nanomaterials (such as carbon nanotubes, graphene, highly ordered mesoporous carbons, and electron cyclotron resonance sputtered nanocarbon film) as nanoscale electrocatalysts (i.e., nanoelectrocatalysts) for constructing the catalytic nanointerfaces of electronic devices to achievemore » high-sensitivity and high-selectivity electrochemical sensors. Furthermore, different mechanisms for the extraordinary and unique electrocatalytic activities of these carbon nanomaterials will be also highlighted, compared and discussed. An outlook on the future trends and developments in this area will be provided at the end. Notably, to elaborate the nature of carbon nanomaterial, we will mainly focus on the electrocatalysis of single kind of carbon materials rather than their hybrid composite materials. As a result, we expect that advanced carbon nanomaterials with unique electrocatalytic activities will continue to attract increasing research interest and lead to new opportunities in various fields of research.« less

  17. Electrocatalytic interface based on novel carbon nanomaterials for advanced electrochemical sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Ming; Guo, Shaojun

    The rapid development of nanoscience and nanotechnology provides new opportunities for the sustainable progress of nanoscale catalysts (i.e., nanocatalysts). The introduction of nanocatalysts into electronic devices implants their novel functions into electronic sensing systems, resulting in the testing of many advanced electrochemical sensors and the fabrication of some highly sensitive, selective, and stable sensing platforms. In this Review, we will summarize recent significant progress on exploring advanced carbon nanomaterials (such as carbon nanotubes, graphene, highly ordered mesoporous carbons, and electron cyclotron resonance sputtered nanocarbon film) as nanoscale electrocatalysts (i.e., nanoelectrocatalysts) for constructing the catalytic nanointerfaces of electronic devices to achievemore » high-sensitivity and high-selectivity electrochemical sensors. Furthermore, different mechanisms for the extraordinary and unique electrocatalytic activities of these carbon nanomaterials will be also highlighted, compared and discussed. An outlook on the future trends and developments in this area will be provided at the end. Notably, to elaborate the nature of carbon nanomaterial, we will mainly focus on the electrocatalysis of single kind of carbon materials rather than their hybrid composite materials. As a result, we expect that advanced carbon nanomaterials with unique electrocatalytic activities will continue to attract increasing research interest and lead to new opportunities in various fields of research.« less

  18. Sustainable Synthesis of Nanomaterials Using Microwave irradiation

    EPA Science Inventory

    The presentation summarizes our recent activity in MW-assisted synthesis of nanomaterials under benign conditions. Shape-controlled aqueous synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using -D-glucose, sucrose, and maltose will be...

  19. Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences

    PubMed Central

    Li, Ming; Yu, Aoyang; Zhu, Ye

    2018-01-01

    This review presents an overview on the application of latent fingerprint development techniques in forensic sciences. At present, traditional developing methods such as powder dusting, cyanoacrylate fuming, chemical method, and small particle reagent method, have all been gradually compromised given their emerging drawbacks such as low contrast, sensitivity, and selectivity, as well as high toxicity. Recently, much attention has been paid to the use of fluorescent nanomaterials including quantum dots (QDs) and rare earth upconversion fluorescent nanomaterials (UCNMs) due to their unique optical and chemical properties. Thus, this review lays emphasis on latent fingerprint development based on QDs and UCNMs. Compared to latent fingerprint development by traditional methods, the new methods using fluorescent nanomaterials can achieve high contrast, sensitivity, and selectivity while showing reduced toxicity. Overall, this review provides a systematic overview on such methods. PMID:29657570

  20. ISA-TAB-Nano: a specification for sharing nanomaterial research data in spreadsheet-based format.

    PubMed

    Thomas, Dennis G; Gaheen, Sharon; Harper, Stacey L; Fritts, Martin; Klaessig, Fred; Hahn-Dantona, Elizabeth; Paik, David; Pan, Sue; Stafford, Grace A; Freund, Elaine T; Klemm, Juli D; Baker, Nathan A

    2013-01-14

    The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of nanomaterials. Owing to the lack of standardization in representing and sharing nanomaterial data, most of the data currently shared via publications and data resources are incomplete, poorly-integrated, and not suitable for meaningful interpretation and re-use of the data. Specifically, in its current state, data cannot be effectively utilized for the development of predictive models that will inform the rational design of nanomaterials. We have developed a specification called ISA-TAB-Nano, which comprises four spreadsheet-based file formats for representing and integrating various types of nanomaterial data. Three file formats (Investigation, Study, and Assay files) have been adapted from the established ISA-TAB specification; while the Material file format was developed de novo to more readily describe the complexity of nanomaterials and associated small molecules. In this paper, we have discussed the main features of each file format and how to use them for sharing nanomaterial descriptions and assay metadata. The ISA-TAB-Nano file formats provide a general and flexible framework to record and integrate nanomaterial descriptions, assay data (metadata and endpoint measurements) and protocol information. Like ISA-TAB, ISA-TAB-Nano supports the use of ontology terms to promote standardized descriptions and to facilitate search and integration of the data. The ISA-TAB-Nano specification has been submitted as an ASTM work item to obtain community feedback and to provide a nanotechnology data-sharing standard for public development and adoption.

  1. ISA-TAB-Nano: A Specification for Sharing Nanomaterial Research Data in Spreadsheet-based Format

    PubMed Central

    2013-01-01

    Background and motivation The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of nanomaterials. Owing to the lack of standardization in representing and sharing nanomaterial data, most of the data currently shared via publications and data resources are incomplete, poorly-integrated, and not suitable for meaningful interpretation and re-use of the data. Specifically, in its current state, data cannot be effectively utilized for the development of predictive models that will inform the rational design of nanomaterials. Results We have developed a specification called ISA-TAB-Nano, which comprises four spreadsheet-based file formats for representing and integrating various types of nanomaterial data. Three file formats (Investigation, Study, and Assay files) have been adapted from the established ISA-TAB specification; while the Material file format was developed de novo to more readily describe the complexity of nanomaterials and associated small molecules. In this paper, we have discussed the main features of each file format and how to use them for sharing nanomaterial descriptions and assay metadata. Conclusion The ISA-TAB-Nano file formats provide a general and flexible framework to record and integrate nanomaterial descriptions, assay data (metadata and endpoint measurements) and protocol information. Like ISA-TAB, ISA-TAB-Nano supports the use of ontology terms to promote standardized descriptions and to facilitate search and integration of the data. The ISA-TAB-Nano specification has been submitted as an ASTM work item to obtain community feedback and to provide a nanotechnology data-sharing standard for public development and adoption. PMID

  2. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications.

    PubMed

    Krishna, Katla Sai; Li, Yuehao; Li, Shuning; Kumar, Challa S S R

    2013-11-01

    The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature

    DOE PAGES

    Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.; ...

    2017-08-08

    Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less

  4. Biotemplated synthesis of inorganic materials: An emerging paradigm for nanomaterial synthesis inspired by nature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krajina, Brad A.; Proctor, Amy C.; Schoen, Alia P.

    Biomineralization, the process by which biological systems direct the synthesis of inorganic structures from organic templates, is an exquisite example of nanomaterial self-assembly in nature. Its products include the shells of mollusks and the bones and teeth of vertebrates. By comparison, conventional inorganic synthesis techniques provide limited control over inorganic nanomaterial architecture. Inspired by biomineralization in nature, over the last two decades, the field of biotemplating has emerged as a new paradigm for inorganic nanomaterial assembly, wherein researchers seek to design novel nano-structures in which inorganic nanomaterial synthesis is directed from an underlying biomolecular template. Here, we review the motivation,more » mechanistic understanding, progress, and challenges for the field of biotemplating. We highlight the interdisciplinary nature of this field, and survey a broad range of examples of bio-templated engineering: ranging from strategies that exploit the inherent capabilities of proteins in nature, to genetically-engineered systems that unlock new capabilities for self-assembly with biomolecules. Here, we illustrate that the use of biological materials as templates for inorganic self-assembly holds tremendous potential for nanomaterial engineering, with applications that range from electronics and energy to medicine.« less

  5. A Critical Review of Glucose Biosensors Based on Carbon Nanomaterials: Carbon Nanotubes and Graphene

    PubMed Central

    Zhu, Zhigang; Garcia-Gancedo, Luis; Flewitt, Andrew J.; Xie, Huaqing; Moussy, Francis; Milne, William I.

    2012-01-01

    There has been an explosion of research into the physical and chemical properties of carbon-based nanomaterials, since the discovery of carbon nanotubes (CNTs) by Iijima in 1991. Carbon nanomaterials offer unique advantages in several areas, like high surface-volume ratio, high electrical conductivity, chemical stability and strong mechanical strength, and are thus frequently being incorporated into sensing elements. Carbon nanomaterial-based sensors generally have higher sensitivities and a lower detection limit than conventional ones. In this review, a brief history of glucose biosensors is firstly presented. The carbon nanotube and grapheme-based biosensors, are introduced in Sections 3 and 4, respectively, which cover synthesis methods, up-to-date sensing approaches and nonenzymatic hybrid sensors. Finally, we briefly outline the current status and future direction for carbon nanomaterials to be used in the sensing area. PMID:22778628

  6. Novel Magnetic Nanomaterials Inspired by Magnetotactic Baterial: Topical Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prozorov, Tanya; Bazylinki, Dennis A.; Mallapragada, Surya K.

    2013-05-14

    Magnetotactic bacteria, known to produce magnetic nanocrystals with uniform shapes and sizes at physiological conditions, serve as an inspiration and source of a number of biological macromolecules used for the biomimetic synthesis of a variety of magnetic nanomaterials. This review discusses the current state of understanding of magnetosome biomineralization in magnetotactic bacteria, as well as the ways in which iron biomineralization processes can be utilized for tailored in vivo formation of complex magnetic nanomaterials, not occurring in magnetotactic bacteria naturally. The review assesses the current efforts on in vitro synthesis of a variety of magnetic nanoparticles using bioinspired approaches bymore » utilizing mineralization proteins from magnetotactic bacteria, and surveys biomimetic strategies for the rational synthesis of various magnetic nanomaterials under ambient conditions. Finally, this review presents magnetic characterization of nanoparticles, highlighting differences in magnetic behavior between magnetic nanoparticles produced using bioinspired in vivo and in vitro strategies, compared to those produced using conventional methods. This in turn impacts their utility in a wide range of applications for magnetic nanoparticles, which are examined in detail, where bioinspired synthesis methods have potentially provided added advantages.« less

  7. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization.

    PubMed

    Kaur, Inder; Ellis, Laura-Jayne; Romer, Isabella; Tantra, Ratna; Carriere, Marie; Allard, Soline; Mayne-L'Hermite, Martine; Minelli, Caterina; Unger, Wolfgang; Potthoff, Annegret; Rades, Steffi; Valsami-Jones, Eugenia

    2017-12-25

    The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology.

  8. Dispersion of Nanomaterials in Aqueous Media: Towards Protocol Optimization

    PubMed Central

    Kaur, Inder; Ellis, Laura-Jayne; Romer, Isabella; Tantra, Ratna; Carriere, Marie; Allard, Soline; Mayne-L'Hermite, Martine; Minelli, Caterina; Unger, Wolfgang; Potthoff, Annegret; Rades, Steffi; Valsami-Jones, Eugenia

    2017-01-01

    The sonication process is commonly used for de-agglomerating and dispersing nanomaterials in aqueous based media, necessary to improve homogeneity and stability of the suspension. In this study, a systematic step-wise approach is carried out to identify optimal sonication conditions in order to achieve a stable dispersion. This approach has been adopted and shown to be suitable for several nanomaterials (cerium oxide, zinc oxide, and carbon nanotubes) dispersed in deionized (DI) water. However, with any change in either the nanomaterial type or dispersing medium, there needs to be optimization of the basic protocol by adjusting various factors such as sonication time, power, and sonicator type as well as temperature rise during the process. The approach records the dispersion process in detail. This is necessary to identify the time points as well as other above-mentioned conditions during the sonication process in which there may be undesirable changes, such as damage to the particle surface thus affecting surface properties. Our goal is to offer a harmonized approach that can control the quality of the final, produced dispersion. Such a guideline is instrumental in ensuring dispersion quality repeatability in the nanoscience community, particularly in the field of nanotoxicology. PMID:29364209

  9. Tuning the Energy Gap of SiCH3 Nanomaterials Under Elastic Strain

    NASA Astrophysics Data System (ADS)

    Ma, Shengqian; Li, Feng; Geng, Jiguo; Zhu, Mei; Li, Suyan; Han, Juguang

    2018-05-01

    SiCH3 nanomaterials have been studied using the density functional theory. When the nanosheets and nanoribbons (armchair and zigzag) are introduced, their energy gap is modulated under elastic strain and width. The results show that the band gap of SiCH3 nanomaterials can be easily tuned using elastic strains and widths. Surprisingly, the band gap can be modulated along two directions, namely, compressing and stretching. The band gap decreases when increasing stretching strain or decreasing compressing strain. In addition, the band gap decreases when increasing the nanoribbon width. For energy gap engineering, the band gap can be tuned by strains and widths. Therefore, the SiCH3 nanomaterials play important roles in potential applications for strain sensors, electronics, and optical electronics.

  10. Engineered metal based nanomaterials in aqueous environments: Interactions, transformations and implications

    NASA Astrophysics Data System (ADS)

    Mudunkotuwa, Imali Ama

    Nanoscience and nanotechnology offer potential routes towards addressing critical issues such as clean and sustainable energy, environmental protection and human health. Specifically, metal and metal oxide nanomaterials are found in a wide range of applications and therefore hold a greater potential of possible release into the environment or for the human to be exposed. Understanding the aqueous phase behavior of metal and metal oxide nanomaterials is a key factor in the safe design of these materials because their interactions with living systems are always mediated through the aqueous phase. Broadly the transformations in the aqueous phase can be classified as dissolution, aggregation and adsorption which are dependent and linked processes to one another. The complexity of these processes at the liquid-solid interface has therefore been one of the grand challenges that has persisted since the beginning of nanotechnology. Although classical models provide guidance for understanding dissolution and aggregation of nanoparticles in water, there are many uncertainties associated with the recent findings. This is often due to a lack of fundamental knowledge of the surface structure and surface energetics for very small particles. Therefore currently the environmental health and safety studies related to nanomaterials are more focused on understanding the surface chemistry that governs the overall processes in the liquid-solid interfacial region at the molecular level. The metal based nanomaterials focused on in this dissertation include TiO2, ZnO, Cu and CuO. These are among the most heavily used in a number of applications ranging from uses in the construction industry to cosmetic formulation. Therefore they are produced in large scale and have been detected in the environment. There is debate within the scientific community related to their safety as a result of the lack of understanding on the surface interactions that arise from the detailed nature of the surfaces

  11. Case studies putting the decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping) into practice.

    PubMed

    Arts, Josje H E; Irfan, Muhammad-Adeel; Keene, Athena M; Kreiling, Reinhard; Lyon, Delina; Maier, Monika; Michel, Karin; Neubauer, Nicole; Petry, Thomas; Sauer, Ursula G; Warheit, David; Wiench, Karin; Wohlleben, Wendel; Landsiedel, Robert

    2016-04-01

    Case studies covering carbonaceous nanomaterials, metal oxide and metal sulphate nanomaterials, amorphous silica and organic pigments were performed to assess the Decision-making framework for the grouping and testing of nanomaterials (DF4nanoGrouping). The usefulness of the DF4nanoGrouping for nanomaterial hazard assessment was confirmed. In two tiers that rely exclusively on non-animal test methods followed by a third tier, if necessary, in which data from rat short-term inhalation studies are evaluated, nanomaterials are assigned to one of four main groups (MGs). The DF4nanoGrouping proved efficient in sorting out nanomaterials that could undergo hazard assessment without further testing. These are soluble nanomaterials (MG1) whose further hazard assessment should rely on read-across to the dissolved materials, high aspect-ratio nanomaterials (MG2) which could be assessed according to their potential fibre toxicity and passive nanomaterials (MG3) that only elicit effects under pulmonary overload conditions. Thereby, the DF4nanoGrouping allows identifying active nanomaterials (MG4) that merit in-depth investigations, and it provides a solid rationale for their sub-grouping to specify the further information needs. Finally, the evaluated case study materials may be used as source nanomaterials in future read-across applications. Overall, the DF4nanoGrouping is a hazard assessment strategy that strictly uses animals as a last resort. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas.

    PubMed

    Luo, Bin; Liu, Shaomin; Zhi, Linjie

    2012-03-12

    A 'gold rush' has been triggered all over the world for exploiting the possible applications of graphene-based nanomaterials. For this purpose, two important problems have to be solved; one is the preparation of graphene-based nanomaterials with well-defined structures, and the other is the controllable fabrication of these materials into functional devices. This review gives a brief overview of the recent research concerning chemical and thermal approaches toward the production of well-defined graphene-based nanomaterials and their applications in energy-related areas, including solar cells, lithium ion secondary batteries, supercapacitors, and catalysis. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Coupling carbon nanomaterials with photochromic molecules for the generation of optically responsive materials

    PubMed Central

    Zhang, Xiaoyan; Hou, Lili; Samorì, Paolo

    2016-01-01

    Multifunctional carbon-based nanomaterials offer routes towards the realization of smart and high-performing (opto)electronic (nano)devices, sensors and logic gates. Meanwhile photochromic molecules exhibit reversible transformation between two forms, induced by the absorption of electromagnetic radiation. By combining carbon-based nanomaterials with photochromic molecules, one can achieve reversible changes in geometrical structure, electronic properties and nanoscale mechanics triggering by light. This thus enables a reversible modulation of numerous physical and chemical properties of the carbon-based nanomaterials towards the fabrication of cognitive devices. This review examines the state of the art with respect to these responsive materials, and seeks to identify future directions for investigation. PMID:27067387

  14. Editorial: Functional nanomaterials for energy applications

    DOE PAGES

    Devan, Rupesh S.; Ma, Yuan -Ron; Kim, Jin -Hyeok; ...

    2015-02-16

    In order to leap forward from the energy crisis issues and improve lifestyle, we all are looking positively toward nanomaterials or nanostructures. Thus, the exploration of new features of both typical and novel materials at the nanoscale level is playing important role in the development of innovative and improved energy technologies that have the capability of conserve/convert energy at large extend. By tailoring the surface morphology of materials in its nanoforms, the functional properties can be significantly adapted and specifically combined to produce highly potent multifunctional materials for conversion, storage, and consumption of energy in various forms. The papers selectedmore » for this special issue represent a good panel for addressing various energy applications including solar cell, fuel cells, nanofluid twisters, and gas sensors. Of course, the selected topic and the papers are not an exhaustive representation of the utilization of functional nanomaterials for energy applications. Nevertheless, they represent the rich and many-facet knowledge, which we have the pleasure of sharing with the readers.« less

  15. [PHYSIOLOGY AND PHARMACOLOGICAL PROPERTIES OF NANOMATERIALS].

    PubMed

    Chekman, I S

    2015-01-01

    Literature data and results of our department studies on theoretical and practical basics of nanoscience were summarized in the article. Much attention is paid to research in the field of physical, chemical, biological, medical, physiological, pharmacological, and toxicological properties of nanomaterials with the aim of their wider implementation into practice lately. The discovery of new quantum/wave properties of nanoparticles is of particular importance. The author of the article advances an idea: wave properties of nanomaterials play greater role with a decrease in particle size. The preponderance of wave properties compared with corpuscular ones in nanostructures determines a great change in their physical. chemical properties and an increase in physical, mechanical biological, physiological, pharmacological, and toxicologica activity. The idea advanced in the article hasn't been verified by theoretical or experimental studies for now. Joined efforts of scientists of different scientific fields are needed. A confirmation of hypothesis by specific findings will be of great importance for physiology, medicine, pharmacology and promote an implementation of new efficacious preparations into clinical practice. New fundamental discoveries could be made only by multidisciplinary approach.

  16. Nanomaterials for Sensor Applications

    DOE PAGES

    Márquez, Francisco; Morant, Carmen

    2015-01-15

    A large part of the advances in nanotechnology have been directed towards the development of highspeed electronics, more efficient catalysts, and sensors. This latter group of applications has great relevance and unprecedented development potential for the coming years. Some of the main objectives for the development of sensors have focused on making more sensitive, effective and specific sensing devices. The improvement of these systems and the increase of specificity are clearly associated with a decrease in size of the components, which can lead to obtaining more rapid action, almost in real time. Nanomaterials currently used in sensor development include amore » long list of nanostructured systems, as for example: Metal nanotubes, nanowires, nanofibers, nanocomposites, nanorods, nanoparticles, nanostructured polymers, and different allotropes of carbon as carbon nanotubes, graphene or fullerenes, among others [1]. These nanomaterials are characterized by having unique physicochemical properties, including high electrical and thermal conductivity, extremely high surface area/volume ratio, high mechanical strength and even excellent catalytic properties [1] [2]. These materials, may exhibit relevant physicochemical behavior, such as quantization or electronic confinement effects, which can be used in the development of all kinds of sensors [2]. So far, sensors have been developed for determination and quantification of gases, radiation, biomolecules, microorganisms, etc. [2] [3]. The sensors developed so far usually use the system lock and key, wherein the selective receptor (lock) is selectively anchored to the analyte of interest (or key). This system has great limitations when analyzing the analyte in the presence of other analytes, which can alter the sensitivity or specificity of the measure, as occurs in sensors used in biomedical applications [3] [4]. One possible solution is based on the development of sensor arrays, consisting of a combination of

  17. Learning from nature: binary cooperative complementary nanomaterials.

    PubMed

    Su, Bin; Guo, Wei; Jiang, Lei

    2015-03-01

    In this Review, nature-inspired binary cooperative complementary nanomaterials (BCCNMs), consisting of two components with entirely opposite physiochemical properties at the nanoscale, are presented as a novel concept for the building of promising materials. Once the distance between the two nanoscopic components is comparable to the characteristic length of some physical interactions, the cooperation between these complementary building blocks becomes dominant and endows the macroscopic materials with novel and superior properties. The first implementation of the BCCNMs is the design of bio-inspired smart materials with superwettability and their reversible switching between different wetting states in response to various kinds of external stimuli. Coincidentally, recent studies on other types of functional nanomaterials contribute more examples to support the idea of BCCNMs, which suggests a potential yet comprehensive range of future applications in both materials science and engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Environmental and biological applications and implications of soft and condensed nanomaterials

    NASA Astrophysics Data System (ADS)

    Chen, Pengyu

    Recent innovations and growth of nanotechnology have spurred exciting technological and commercial developments of nanomaterails. Their appealing physical and physicochemical properties offer great opportunities in biological and environmental applications, while in the meantime may compromise human health and environmental sustainability through either unintentional exposure or intentional discharge. Accordingly, this dissertation exploits the physicochemical behavior of soft dendritic polymers for environmental remediation and condensed nano ZnO tetrapods for biological sensing (Chapter two-four), and further delineate the environmental implications of such nanomaterials using algae- the major constituent of the aquatic food chain-as a model system (Chapter five). This dissertation is presented as follows. Chapter one presents a general review of the characteristic properties, applications, forces dictating nanomaterials, and their biological and environmental implications of the most produced and studied soft and condensed nanomaterials. In addition, dendritic polymers and ZnO nanomaterials are thoroughly reviewed separately. Chapter two investigates the physicochemical properties of poly(amidoamine)-tris(hydroxymethyl)amidomethane- dendrimer for its potential applications in water purification. The binding mechanisms and capacities of this dendrimer in hosting major environmental pollutants including cationic copper, anionic nitrate, and polyaromatic phenanthrene are discussed. Chapter three exploits a promising use of dendrimers for removal of potentially harmful discharged nanoparticles (NPs). Specifically, fullerenols are used as a model nanomaterial, and their interactions with two different generations of dendrimers are studied using spectrophotometry and thermodynamics methods. Chapter four elucidates two novel optical schemes for sensing environmental pollutants and biological compounds using dendrimer-gold nanowire complex and gold-coated ZnO tetrapods

  19. Flight Avionics Sequencing Telemetry (FAST) DIV Latching Display

    NASA Technical Reports Server (NTRS)

    Moore, Charlotte

    2010-01-01

    The NASA Engineering (NE) Directorate at Kennedy Space Center provides engineering services to major programs such as: Space Shuttle, Inter national Space Station, and the Launch Services Program (LSP). The Av ionics Division within NE, provides avionics and flight control syste ms engineering support to LSP. The Launch Services Program is respons ible for procuring safe and reliable services for transporting critical, one of a kind, NASA payloads into orbit. As a result, engineers mu st monitor critical flight events during countdown and launch to asse ss anomalous behavior or any unexpected occurrence. The goal of this project is to take a tailored Systems Engineering approach to design, develop, and test Iris telemetry displays. The Flight Avionics Sequen cing Telemetry Delta-IV (FAST-D4) displays will provide NASA with an improved flight event monitoring tool to evaluate launch vehicle heal th and performance during system-level ground testing and flight. Flight events monitored will include data from the Redundant Inertial Fli ght Control Assembly (RIFCA) flight computer and launch vehicle comma nd feedback data. When a flight event occurs, the flight event is ill uminated on the display. This will enable NASA Engineers to monitor c ritical flight events on the day of launch. Completion of this project requires rudimentary knowledge of launch vehicle Guidance, Navigatio n, and Control (GN&C) systems, telemetry, and console operation. Work locations for the project include the engineering office, NASA telem etry laboratory, and Delta launch sites.

  20. Overview of EPA Office of Research and Development (ORD) Research Activities Related to Nanomaterials

    EPA Science Inventory

    The product is the presentation - a draft set of slides is attached. The presentation is organized around a comprehensive framework for nanomaterial evaluation published last year (Boyes et al., 2017). The framework considers nanomaterial enabled products across their life span...

  1. SAMPLING AND ANALYSIS OF NANOMATERIALS IN THE ENVIRONMENT: A STATE-OF-THE-SCIENCE REVIEW

    EPA Science Inventory

    This state-of-the-science review was undertaken to identify and assess currently available sampling and analysis methods to identify and quantify the occurrence of nanomaterials in the environment. The environmental and human health risks associated with nanomaterials are largely...

  2. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review

    PubMed Central

    Yang, Cheng; Denno, Madelaine E.; Pyakurel, Poojan; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. PMID:26320782

  3. Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review.

    PubMed

    Yang, Cheng; Denno, Madelaine E; Pyakurel, Poojan; Venton, B Jill

    2015-08-05

    Carbon nanomaterials are advantageous for electrochemical sensors because they increase the electroactive surface area, enhance electron transfer, and promote adsorption of molecules. Carbon nanotubes (CNTs) have been incorporated into electrochemical sensors for biomolecules and strategies have included the traditional dip coating and drop casting methods, direct growth of CNTs on electrodes and the use of CNT fibers and yarns made exclusively of CNTs. Recent research has also focused on utilizing many new types of carbon nanomaterials beyond CNTs. Forms of graphene are now increasingly popular for sensors including reduced graphene oxide, carbon nanohorns, graphene nanofoams, graphene nanorods, and graphene nanoflowers. In this review, we compare different carbon nanomaterial strategies for creating electrochemical sensors for biomolecules. Analytes covered include neurotransmitters and neurochemicals, such as dopamine, ascorbic acid, and serotonin; hydrogen peroxide; proteins, such as biomarkers; and DNA. The review also addresses enzyme-based electrodes that are used to detect non-electroactive species such as glucose, alcohols, and proteins. Finally, we analyze some of the future directions for the field, pointing out gaps in fundamental understanding of electron transfer to carbon nanomaterials and the need for more practical implementation of sensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory

    PubMed Central

    Kuiken, Todd; Vejerano, Eric P; McGinnis, Sean P; Hochella, Michael F; Rejeski, David; Hull, Matthew S

    2015-01-01

    Summary To document the marketing and distribution of nano-enabled products into the commercial marketplace, the Woodrow Wilson International Center for Scholars and the Project on Emerging Nanotechnologies created the Nanotechnology Consumer Products Inventory (CPI) in 2005. The objective of this present work is to redevelop the CPI by leading a research effort to increase the usefulness and reliability of this inventory. We created eight new descriptors for consumer products, including information pertaining to the nanomaterials contained in each product. The project was motivated by the recognition that a diverse group of stakeholders from academia, industry, and state/federal government had become highly dependent on the inventory as an important resource and bellweather of the pervasiveness of nanotechnology in society. We interviewed 68 nanotechnology experts to assess key information needs. Their answers guided inventory modifications by providing a clear conceptual framework best suited for user expectations. The revised inventory was released in October 2013. It currently lists 1814 consumer products from 622 companies in 32 countries. The Health and Fitness category contains the most products (762, or 42% of the total). Silver is the most frequently used nanomaterial (435 products, or 24%); however, 49% of the products (889) included in the CPI do not provide the composition of the nanomaterial used in them. About 29% of the CPI (528 products) contain nanomaterials suspended in a variety of liquid media and dermal contact is the most likely exposure scenario from their use. The majority (1288 products, or 71%) of the products do not present enough supporting information to corroborate the claim that nanomaterials are used. The modified CPI has enabled crowdsourcing capabilities, which allow users to suggest edits to any entry and permits researchers to upload new findings ranging from human and environmental exposure data to complete life cycle

  5. Microwave assisted scalable synthesis of titanium ferrite nanomaterials

    NASA Astrophysics Data System (ADS)

    Shukla, Abhishek; Bhardwaj, Abhishek K.; Singh, S. C.; Uttam, K. N.; Gautam, Nisha; Himanshu, A. K.; Shah, Jyoti; Kotnala, R. K.; Gopal, R.

    2018-04-01

    Titanium ferrite magnetic nanomaterials are synthesized by one-step, one pot, and scalable method assisted by microwave radiation. Effects of titanium content and microwave exposure time on size, shape, morphology, yield, bonding nature, crystalline structure, and magnetic properties of titanium ferrite nanomaterials are studied. As-synthesized nanomaterials are characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), Raman spectroscopy, transmission electron microscopy (TEM), and vibrating sample magnetometer measurements. XRD measurements depict the presence of two phases of titanium ferrite into the same sample, where crystallite size increases from ˜33 nm to 37 nm with the increase in titanium concentration. UV-Vis measurement showed broad spectrum in the spectral range of 250-600 nm which reveals that its characteristic peaks lie between ultraviolet and visible region; ATR-FTIR and Raman measurements predict iron-titanium oxide structures that are consistent with XRD results. The micrographs of TEM and selected area electron diffraction patterns show formation of hexagonal shaped particles with a high degree of crystallinity and presence of multi-phase. Energy dispersive spectroscopy measurements confirm that Ti:Fe compositional mass ratio can be controlled by tuning synthesis conditions. Increase of Ti defects into titanium ferrite lattice, either by increasing titanium precursor or by increasing exposure time, enhances its magnetic properties.

  6. 77 FR 21389 - Unexpected Urgent Refugee and Migration Needs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... April 3, 2012 Unexpected Urgent Refugee and Migration Needs Memorandum for the Secretary of State By the... 2(c)(1) of the Migration and Refugee Assistance Act of 1962 (the ``Act''), as amended, (22 U.S.C... United States Emergency Refugee and Migration Assistance Fund, for the purpose of meeting unexpected and...

  7. Nanomaterials at the neural interface.

    PubMed

    Scaini, Denis; Ballerini, Laura

    2018-06-01

    Interfacing the nervous system with devices able to efficiently record or modulate the electrical activity of neuronal cells represents the underlying foundation of future theranostic applications in neurology and of current openings in neuroscience research. These devices, usually sensing cell activity via microelectrodes, should be characterized by safe working conditions in the biological milieu together with a well-controlled operation-life. The stable device/neuronal electrical coupling at the interface requires tight interactions between the electrode surface and the cell membrane. This neuro-electrode hybrid represents the hyphen between the soft nature of neural tissue, generating electrical signals via ion motions, and the rigid realm of microelectronics and medical devices, dealing with electrons in motion. Efficient integration of these entities is essential for monitoring, analyzing and controlling neuronal signaling but poses significant technological challenges. Improving the cell/electrode interaction and thus the interface performance requires novel engineering of (nano)materials: tuning at the nanoscale electrode's properties may lead to engineer interfacing probes that better camouflaged with their biological target. In this brief review, we highlight the most recent concepts in nanotechnologies and nanomaterials that might help reducing the mismatch between tissue and electrode, focusing on the device's mechanical properties and its biological integration with the tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The insurability of nanomaterial production risk

    NASA Astrophysics Data System (ADS)

    Mullins, Martin; Murphy, Finbarr; Baublyte, Lijana; McAlea, Eamonn M.; Tofail, Syed A. M.

    2013-04-01

    Without insurance the long-term sustainability of nanotechnology is questionable, but insurance companies are encumbered by their institutional memory of losses from the asbestos crisis and the absence of suitable actuarial models to measure the potential risks of nanotechnology. Here we propose a framework that supports the transfer of nanomaterial production risk to the insurance sector.

  9. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    PubMed

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  10. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials

    PubMed Central

    Iavicoli, Ivo; Leso, Veruscka; Schulte, Paul A.

    2016-01-01

    Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. PMID:26724381

  11. 77 FR 24722 - Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ...] Draft Guidance for Industry: Safety of Nanomaterials in Cosmetic Products; Availability AGENCY: Food and... Cosmetic Products.'' The draft guidance, when finalized, will represent FDA's current thinking on the safety assessment of nanomaterials in cosmetic products. This guidance is intended to assist industry in...

  12. Pulmonary exposure to carbonaceous nanomaterials and sperm quality.

    PubMed

    Skovmand, Astrid; Jacobsen Lauvås, Anna; Christensen, Preben; Vogel, Ulla; Sørig Hougaard, Karin; Goericke-Pesch, Sandra

    2018-01-31

    Semen quality parameters are potentially affected by nanomaterials in several ways: Inhaled nanosized particles are potent inducers of pulmonary inflammation, leading to the release of inflammatory mediators. Small amounts of particles may translocate from the lungs into the lung capillaries, enter the systemic circulation and ultimately reach the testes. Both the inflammatory response and the particles may induce oxidative stress which can directly affect spermatogenesis. Furthermore, spermatogenesis may be indirectly affected by changes in the hormonal milieu as systemic inflammation is a potential modulator of endocrine function. The aim of this study was to investigate the effects of pulmonary exposure to carbonaceous nanomaterials on sperm quality parameters in an experimental mouse model. Effects on sperm quality after pulmonary inflammation induced by carbonaceous nanomaterials were investigated by intratracheally instilling sexually mature male NMRI mice with four different carbonaceous nanomaterials dispersed in nanopure water: graphene oxide (18 μg/mouse/i.t.), Flammruss 101, Printex 90 and SRM1650b (0.1 mg/mouse/i.t. each) weekly for seven consecutive weeks. Pulmonary inflammation was determined by differential cell count in bronchoalveolar lavage fluid. Epididymal sperm concentration and motility were measured by computer-assisted sperm analysis. Epididymal sperm viability and morphological abnormalities were assessed manually using Hoechst 33,342/PI flourescent and Spermac staining, respectively. Epididymal sperm were assessed with regard to sperm DNA integrity (damage). Daily sperm production was measured in the testis, and testosterone levels were measured in blood plasma by ELISA. Neutrophil numbers in the bronchoalveolar fluid showed sustained inflammatory response in the nanoparticle-exposed groups one week after the last instillation. No significant changes in epididymal sperm parameters, daily sperm production or plasma testosterone levels

  13. Comparative Study of the Electrochemical, Biomedical, and Thermal Properties of Natural and Synthetic Nanomaterials

    NASA Astrophysics Data System (ADS)

    Ghaemi, Ferial; Abdullah, Luqman Chuah; Kargarzadeh, Hanieh; Abdi, Mahnaz M.; Azli, Nur Farhana Waheeda Mohd; Abbasian, Maryam

    2018-04-01

    In this research, natural nanomaterials including cellulose nanocrystal (CNC), nanofiber cellulose (NFC), and synthetic nanoparticles such as carbon nanofiber (CNF) and carbon nanotube (CNT) with different structures, sizes, and surface areas were produced and analyzed. The most significant contribution of this study is to evaluate and compare these nanomaterials based on the effects of their structures and morphologies on their electrochemical, biomedical, and thermal properties. Based on the obtained results, the natural nanomaterials with low dimension and surface area have zero cytotoxicity effects on the living cells at 12.5 and 3.125 μg/ml concentrations of NFC and CNC, respectively. Meanwhile, synthetic nanomaterials with the high surface area around 15.3-21.1 m2/g and significant thermal stability (480 °C-600 °C) enhance the output of electrode by creating a higher surface area and decreasing the current flow resistance.

  14. Catalytic CVD synthesis of boron nitride and carbon nanomaterials - synergies between experiment and theory.

    PubMed

    McLean, Ben; Eveleens, Clothilde A; Mitchell, Izaac; Webber, Grant B; Page, Alister J

    2017-10-11

    Low-dimensional carbon and boron nitride nanomaterials - hexagonal boron nitride, graphene, boron nitride nanotubes and carbon nanotubes - remain at the forefront of advanced materials research. Catalytic chemical vapour deposition has become an invaluable technique for reliably and cost-effectively synthesising these materials. In this review, we will emphasise how a synergy between experimental and theoretical methods has enhanced the understanding and optimisation of this synthetic technique. This review examines recent advances in the application of CVD to synthesising boron nitride and carbon nanomaterials and highlights where, in many cases, molecular simulations and quantum chemistry have provided key insights complementary to experimental investigation. This synergy is particularly prominent in the field of carbon nanotube and graphene CVD synthesis, and we propose here it will be the key to future advances in optimisation of CVD synthesis of boron nitride nanomaterials, boron nitride - carbon composite materials, and other nanomaterials generally.

  15. Icosahedral plant viral nanoparticles - bioinspired synthesis of nanomaterials/nanostructures.

    PubMed

    Narayanan, Kannan Badri; Han, Sung Soo

    2017-10-01

    Viral nanotechnology utilizes virus nanoparticles (VNPs) and virus-like nanoparticles (VLPs) of plant viruses as highly versatile platforms for materials synthesis and molecular entrapment that can be used in the nanotechnological fields, such as in next-generation nanoelectronics, nanocatalysis, biosensing and optics, and biomedical applications, such as for targeting, therapeutic delivery, and non-invasive in vivo imaging with high specificity and selectivity. In particular, plant virus capsids provide biotemplates for the production of novel nanostructured materials with organic/inorganic moieties incorporated in a very precise and controlled manner. Interestingly, capsid proteins of spherical plant viruses can self-assemble into well-organized icosahedral three-dimensional (3D) nanoscale multivalent architectures with high monodispersity and structural symmetry. Using viral genetic and protein engineering of icosahedral viruses with a variety of sizes, the interior, exterior and the interfaces between coat protein (CP) subunits can be manipulated to fabricate materials with a wide range of desirable properties allowing for biomineralization, encapsulation, infusion, controlled self-assembly, and multivalent ligand display of nanoparticles or molecules for varied applications. In this review, we discuss the various functional nanomaterials/nanostructures developed using the VNPs and VLPs of different icosahedral plant viruses and their nano(bio)technological and nanomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iavicoli, Ivo, E-mail: ivo.iavicoli@unina.it

    Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigeneticmore » alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. - Highlights: • To define susceptible populations is important for risk assessment and management; • Genetic susceptibility may influence the individual response to nanomaterial exposure; • Susceptibility factors in workplace settings have both scientific and ethical issues.« less

  17. Structural imaging biomarkers of sudden unexpected death in epilepsy

    PubMed Central

    Wandschneider, Britta; Koepp, Matthias; Scott, Catherine; Micallef, Caroline; Balestrini, Simona; Sisodiya, Sanjay M.; Thom, Maria; Harper, Ronald M.; Sander, Josemir W.; Vos, Sjoerd B.; Duncan, John S.; Lhatoo, Samden

    2015-01-01

    Sudden unexpected death in epilepsy is a major cause of premature death in people with epilepsy. We aimed to assess whether structural changes potentially attributable to sudden death pathogenesis were present on magnetic resonance imaging in people who subsequently died of sudden unexpected death in epilepsy. In a retrospective, voxel-based analysis of T1 volume scans, we compared grey matter volumes in 12 cases of sudden unexpected death in epilepsy (two definite, 10 probable; eight males), acquired 2 years [median, interquartile range (IQR) 2.8] before death [median (IQR) age at scanning 33.5 (22) years], with 34 people at high risk [age 30.5 (12); 19 males], 19 at low risk [age 30 (7.5); 12 males] of sudden death, and 15 healthy controls [age 37 (16); seven males]. At-risk subjects were defined based on risk factors of sudden unexpected death in epilepsy identified in a recent combined risk factor analysis. We identified increased grey matter volume in the right anterior hippocampus/amygdala and parahippocampus in sudden death cases and people at high risk, when compared to those at low risk and controls. Compared to controls, posterior thalamic grey matter volume, an area mediating oxygen regulation, was reduced in cases of sudden unexpected death in epilepsy and subjects at high risk. The extent of reduction correlated with disease duration in all subjects with epilepsy. Increased amygdalo-hippocampal grey matter volume with right-sided changes is consistent with histo-pathological findings reported in sudden infant death syndrome. We speculate that the right-sided predominance reflects asymmetric central influences on autonomic outflow, contributing to cardiac arrhythmia. Pulvinar damage may impair hypoxia regulation. The imaging findings in sudden unexpected death in epilepsy and people at high risk may be useful as a biomarker for risk-stratification in future studies. PMID:26264515

  18. The effect of processing on the properties of CuInS2 nanomaterials synthesized by simple hot injection route

    NASA Astrophysics Data System (ADS)

    Chen, Qin-Miao; Zhou, Fang-Fang; Yuan, Hong-Chun; Chen, Jin; Ni, Yi; Zhu, Xi-Fang; Dou, Xiao-Ming

    2017-07-01

    Chalcopyrite and wurtzite CuInS2 (CIS) nanomaterials were synthesized from Cu2+, In3+, thiourea with or without triethanolamine (TEA) by simple hot injection method at low temperature. The effect of synthesis duration on the various properties of the synthesized CIS nanomaterials was studied. It shows that for chalcopyrite CIS, the optimal synthesis duration is 60 min and the synthesized nanomaterial is in spherical shape with diameter of about 90 nm. However, for the wurtzite CIS, the optimal synthesis duration should reach 150 min and the synthesized nanomaterial looks like nanoplate with thicknesses of ˜10 nm and diameters near 100 nm. The photovoltaic characteristics of two types of nanomaterials are quite different. This study may contribute to the synthesis of CIS nanomaterials at low temperatures.

  19. Positron Emission Tomography Imaging Using Radiolabeled Inorganic Nanomaterials

    PubMed Central

    Sun, Xiaolian; Cai, Weibo; Chen, Xiaoyuan

    2015-01-01

    CONSPECTUS Positron emission tomography (PET) is a radionuclide imaging technology that plays an important role in preclinical and clinical research. With administration of a small amount of radiotracer, PET imaging can provide a noninvasive, highly sensitive, and quantitative readout of its organ/tissue targeting efficiency and pharmacokinetics. Various radiotracers have been designed to target specific molecular events. Compared with antibodies, proteins, peptides, and other biologically relevant molecules, nanoparticles represent a new frontier in molecular imaging probe design, enabling the attachment of different imaging modalities, targeting ligands, and therapeutic payloads in a single vector. We introduce the radiolabeled nanoparticle platforms that we and others have developed. Due to the fundamental differences in the various nanoparticles and radioisotopes, most radiolabeling methods are designed case-by-case. We focus on some general rules about selecting appropriate isotopes for given types of nanoparticles, as well as adjusting the labeling strategies according to specific applications. We classified these radiolabeling methods into four categories: (1) complexation reaction of radiometal ions with chelators via coordination chemistry; (2) direct bombardment of nanoparticles via hadronic projectiles; (3) synthesis of nanoparticles using a mixture of radioactive and nonradioactive precursors; (4) chelator-free postsynthetic radiolabeling. Method 1 is generally applicable to different nanomaterials as long as the surface chemistry is well-designed. However, the addition of chelators brings concerns of possible changes to the physicochemical properties of nanomaterials and detachment of the radiometal. Methods 2 and 3 have improved radiochemical stability. The applications are, however, limited by the possible damage to the nanocomponent caused by the proton beams (method 2) and harsh synthetic conditions (method 3). Method 4 is still in its infancy

  20. Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design

    NASA Astrophysics Data System (ADS)

    Potthoff, Annegret; Weil, Mirco; Meißner, Tobias; Kühnel, Dana

    2015-12-01

    During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure—physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.

  1. Towards sensible toxicity testing for nanomaterials: proposal for the specification of test design.

    PubMed

    Potthoff, Annegret; Weil, Mirco; Meißner, Tobias; Kühnel, Dana

    2015-12-01

    During the last decade, nanomaterials (NM) were extensively tested for potential harmful effects towards humans and environmental organisms. However, a sound hazard assessment was so far hampered by uncertainties and a low comparability of test results. The reason for the low comparability is a high variation in the (1) type of NM tested with regard to raw material, size and shape and (2) procedures before and during the toxicity testing. This calls for tailored, nanomaterial-specific protocols. Here, a structured approach is proposed, intended to lead to test protocols not only tailored to specific types of nanomaterials, but also to respective test system for toxicity testing. There are existing standards on single procedures involving nanomaterials, however, not all relevant procedures are covered by standards. Hence, our approach offers a detailed way of weighting several plausible alternatives for e.g. sample preparation, in order to decide on the procedure most meaningful for a specific nanomaterial and toxicity test. A framework of several decision trees (DT) and flow charts to support testing of NM is proposed as a basis for further refinement and in-depth elaboration. DT and flow charts were drafted for (1) general procedure-physicochemical characterisation, (2) choice of test media, (3) decision on test scenario and application of NM to liquid media, (4) application of NM to the gas phase, (5) application of NM to soil and sediments, (6) dose metrics, (S1) definition of a nanomaterial, and (S2) dissolution. The applicability of the proposed approach was surveyed by using experimental data retrieved from studies on nanoscale CuO. This survey demonstrated the DT and flow charts to be a convenient tool to systematically decide upon test procedures and processes, and hence pose an important step towards harmonisation of NM testing.

  2. Methods of Economic Valuation of The Health Risks Associated with Nanomaterials

    NASA Astrophysics Data System (ADS)

    Shalhevet, S.; Haruvy, N.

    The worldwide market for nanomaterials is growing rapidly, but relatively little is still known about the potential risks associated with these materials. The potential health hazards associated with exposure to nanomaterials may lead in the future to increased health costs as well as increased economic costs to the companies involved, as has happened in the past in the case of asbestos. Therefore, it is important to make an initial estimate of the potential costs associated with these health hazards, and to prepare ahead with appropriate health insurance for individuals and financial insurance for companies. While several studies have examined the environmental and health hazards of different nanomaterials by performing life cycle impact assessments, so far these studies have concentrated on the cost of production, and did not estimate the economic impact of the health hazards. This paper discusses methods of evaluating the economic impact of potential health hazards on the public. The proposed method is based on using life cycle impact assessment studies of nanomaterials to estimate the DALYs (Disability Adjusted Life Years) associated with the increased probability of these health hazards. The economic valuation of DALY's can be carried out based on the income lost and the costs of medical treatment. The total expected increase in cost depends on the increase in the statistical probability of each disease.

  3. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications.

    PubMed

    Barako, Michael T; Gambin, Vincent; Tice, Jesse

    2018-04-02

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  4. Biochemical Effects of six Ti02 and four Ce02 Nanomaterials ...

    EPA Pesticide Factsheets

    Abstract The potential mammalian hepatotoxicity of nanomaterials were explored in dose-response and structure-activity studies with human hepatic HepG2 cells exposed to between 10 and 1000 ug/ml of six different TiO2 and four CeO2 nanomaterials for 3 days. Various biochemical parameters were then evaluated to study cytotoxicity, cell growth, hepatic function and oxidative stress. Few indications of cytotoxicity were observed between 10 and 100 ug/ml. In the 300 to 1000 ug/ml exposure range a moderate to substantial degree of cytotoxicity was observed. The percent of lactic dehydrogenase released from cells was the most sensitive cytotoxicity parameter. There were four major biochemical effects observed. By far decreased activities of glucose 6-phosphate dehydrogenase was the major finding of this enzymatic study with some significant decreases observed at 10 ug/ml. In the range of 100 to 1000 ug/ml, the activities of superoxide dismutase, glutathione reductase and glutathione peroxidase were decreased by many nanomaterials. There are six factors that contribute to substantial oxidative stress in cultured hepatocytes (decreased GSH content, and reduced G6PDH, GRD, GPX, SOD and altered catalase activities). Cytotoxicity per se did not seem to fully explain the patterns of biological responses observed. With respect to structure-activity, nanomaterials of CeO2 were more effective than TiO2 in reducing glutathione reductase and SOD activ

  5. Integrated nanomaterials for extreme thermal management: a perspective for aerospace applications

    NASA Astrophysics Data System (ADS)

    Barako, Michael T.; Gambin, Vincent; Tice, Jesse

    2018-04-01

    Nanomaterials will play a disruptive role in next-generation thermal management for high power electronics in aerospace platforms. These high power and high frequency devices have been experiencing a paradigm shift toward designs that favor extreme integration and compaction. The reduction in form factor amplifies the intensity of the thermal loads and imposes extreme requirements on the thermal management architecture for reliable operation. In this perspective, we introduce the opportunities and challenges enabled by rationally integrating nanomaterials along the entire thermal resistance chain, beginning at the high heat flux source up to the system-level heat rejection. Using gallium nitride radio frequency devices as a case study, we employ a combination of viewpoints comprised of original research, academic literature, and industry adoption of emerging nanotechnologies being used to construct advanced thermal management architectures. We consider the benefits and challenges for nanomaterials along the entire thermal pathway from synthetic diamond and on-chip microfluidics at the heat source to vertically-aligned copper nanowires and nanoporous media along the heat rejection pathway. We then propose a vision for a materials-by-design approach to the rational engineering of complex nanostructures to achieve tunable property combinations on demand. These strategies offer a snapshot of the opportunities enabled by the rational design of nanomaterials to mitigate thermal constraints and approach the limits of performance in complex aerospace electronics.

  6. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors.

    PubMed

    Wang, Houyu; He, Yao

    2017-02-03

    During the past decades, owing to silicon nanomaterials' unique optical properties, benign biocompatibility, and abundant surface chemistry, different dimensional silicon nanostructures have been widely employed for rationally designing and fabricating high-performance fluorescent sensors for the detection of various chemical and biological species. Among of these, zero-dimensional silicon nanoparticles (SiNPs) and one-dimensional silicon nanowires (SiNWs) are of particular interest. Herein, we focus on reviewing recent advances in silicon nanomaterials-based fluorescent sensors from a broad perspective and discuss possible future directions. Firstly, we introduce the latest achievement of zero-dimensional SiNP-based fluorescent sensors. Next, we present recent advances of one-dimensional SiNW-based fluorescent sensors. Finally, we discuss the major challenges and prospects for the development of silicon-based fluorescent sensors.

  7. Exposure control strategies in the carbonaceous nanomaterial industry.

    PubMed

    Dahm, Matthew M; Yencken, Marianne S; Schubauer-Berigan, Mary K

    2011-06-01

    Little is known about exposure control strategies currently being implemented to minimize exposures during the production or use of nanomaterials in the United States. Our goal was to estimate types and quantities of materials used and factors related to workplace exposure reductions among companies manufacturing or using engineered carbonaceous nanomaterials (ECNs). Information was collected through phone surveys on work practices and exposure control strategies from 30 participating producers and users of ECN. The participants were classified into three groups for further examination. We report here the use of exposure control strategies. Observed patterns suggest that large-scale manufacturers report greater use of nanospecific exposure control strategies particularly for respiratory protection. Workplaces producing or using ECN generally report using engineering and administrative controls as well as personal protective equipment to control workplace employee exposure.

  8. High-Rate Assembly of Nanomaterials on Insulating Surfaces Using Electro-Fluidic Directed Assembly.

    PubMed

    Yilmaz, Cihan; Sirman, Asli; Halder, Aditi; Busnaina, Ahmed

    2017-08-22

    Conductive or semiconducting nanomaterials-based applications such as electronics and sensors often require direct placement of such nanomaterials on insulating surfaces. Most fluidic-based directed assembly techniques on insulating surfaces utilize capillary force and evaporation but are diffusion limited and slow. Electrophoretic-based assembly, on the other hand, is fast but can only be utilized for assembly on a conductive surface. Here, we present a directed assembly technique that enables rapid assembly of nanomaterials on insulating surfaces. The approach leverages and combines fluidic and electrophoretic assembly by applying the electric field through an insulating surface via a conductive film underneath. The approach (called electro-fluidic) yields an assembly process that is 2 orders of magnitude faster compared to fluidic assembly. By understanding the forces on the assembly process, we have demonstrated the controlled assembly of various types of nanomaterials that are conducting, semiconducting, and insulating including nanoparticles and single-walled carbon nanotubes on insulating rigid and flexible substrates. The presented approach shows great promise for making practical devices in miniaturized sensors and flexible electronics.

  9. Mechanisms Underlying Cytotoxicity Induced by Engineered Nanomaterials: A Review of In Vitro Studies

    PubMed Central

    Nogueira, Daniele R.; Mitjans, Montserrat; Rolim, Clarice M. B.; Vinardell, M. Pilar

    2014-01-01

    Engineered nanomaterials are emerging functional materials with technologically interesting properties and a wide range of promising applications, such as drug delivery devices, medical imaging and diagnostics, and various other industrial products. However, concerns have been expressed about the risks of such materials and whether they can cause adverse effects. Studies of the potential hazards of nanomaterials have been widely performed using cell models and a range of in vitro approaches. In the present review, we provide a comprehensive and critical literature overview on current in vitro toxicity test methods that have been applied to determine the mechanisms underlying the cytotoxic effects induced by the nanostructures. The small size, surface charge, hydrophobicity and high adsorption capacity of nanomaterial allow for specific interactions within cell membrane and subcellular organelles, which in turn could lead to cytotoxicity through a range of different mechanisms. Finally, aggregating the given information on the relationships of nanomaterial cytotoxic responses with an understanding of its structure and physicochemical properties may promote the design of biologically safe nanostructures. PMID:28344232

  10. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    EPA Science Inventory

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  11. Biomolecular Programming of Discrete Nanomaterials for Sensors, Templates and Mimics of Natural Nanoscale Assemblies

    DTIC Science & Technology

    2016-10-17

    AFRL-AFOSR-VA-TR-2016-0343 BIOMOLECULAR PROGRAMMING OF DISCRETE NANOMATERIALS FOR SENSORS, TEMPLATES AND MIMICS OF NATURAL NANOSCALE ASSEMBLIES...Performance 3. DATES COVERED (From - To) 01 Jun 2011 to 31 May 2016 4. TITLE AND SUBTITLE BIOMOLECULAR PROGRAMMING OF DISCRETE NANOMATERIALS FOR SENSORS

  12. Experimental investigation of interactions between proteins and carbon nanomaterials

    NASA Astrophysics Data System (ADS)

    Sengupta, Bishwambhar

    The global market for nanomaterials based products is forecasted to reach $1 trillion per annum per annum for 2015. Engineered nanomaterials (ENMs) exhibit unique physicochemical properties with potential to impact diverse aspects of society through applications in electronics, renewable energy, and medicine. While the research and proposed applications of ENMs continue to grow rapidly, the health and safety of ENMs still remains a major concern to the public as well as to policy makers and funding agencies. It is now widely accepted that focused efforts are needed for identifying the list of physicochemical descriptors of ENM before they can be evaluated for nanotoxicity and biological response. This task is surprisingly challenging, as many physicochemical properties of ENMs are closely inter related and cannot be varied independently (e.g. increasing the size of an ENM can introduce additional defects). For example, varying toxic response may ensue due to different methods of nanomaterial preparation, dissimilar impurities and defects. Furthermore, the inadvertent coating of proteins on ENM surface in any biological milieu results in the formation of the so-called "protein/bio-corona" which can in turn alter the fate of ENMs and their biological response. Carbon nanomaterials (CNMs) such as carbon nanotubes, graphene, and graphene oxide are widely used ENMs. It is now known that defects in CNMs play an important role not only in materials properties but also in the determination of how materials interact at the nano-bio interface. In this regard, this work investigates the influence of defect-induced hydrophilicity on the bio-corona formation using micro Raman, photoluminescence, infrared spectroscopy, electrochemistry, and molecular dynamics simulations. Our results show that the interaction of proteins (albumin and fibrinogen) with CNMs is strongly influenced by charge transfer between them, inducing protein unfolding which enhances conformational entropy and

  13. The eNanoMapper database for nanomaterial safety information.

    PubMed

    Jeliazkova, Nina; Chomenidis, Charalampos; Doganis, Philip; Fadeel, Bengt; Grafström, Roland; Hardy, Barry; Hastings, Janna; Hegi, Markus; Jeliazkov, Vedrin; Kochev, Nikolay; Kohonen, Pekka; Munteanu, Cristian R; Sarimveis, Haralambos; Smeets, Bart; Sopasakis, Pantelis; Tsiliki, Georgia; Vorgrimmler, David; Willighagen, Egon

    2015-01-01

    The NanoSafety Cluster, a cluster of projects funded by the European Commision, identified the need for a computational infrastructure for toxicological data management of engineered nanomaterials (ENMs). Ontologies, open standards, and interoperable designs were envisioned to empower a harmonized approach to European research in nanotechnology. This setting provides a number of opportunities and challenges in the representation of nanomaterials data and the integration of ENM information originating from diverse systems. Within this cluster, eNanoMapper works towards supporting the collaborative safety assessment for ENMs by creating a modular and extensible infrastructure for data sharing, data analysis, and building computational toxicology models for ENMs. The eNanoMapper database solution builds on the previous experience of the consortium partners in supporting diverse data through flexible data storage, open source components and web services. We have recently described the design of the eNanoMapper prototype database along with a summary of challenges in the representation of ENM data and an extensive review of existing nano-related data models, databases, and nanomaterials-related entries in chemical and toxicogenomic databases. This paper continues with a focus on the database functionality exposed through its application programming interface (API), and its use in visualisation and modelling. Considering the preferred community practice of using spreadsheet templates, we developed a configurable spreadsheet parser facilitating user friendly data preparation and data upload. We further present a web application able to retrieve the experimental data via the API and analyze it with multiple data preprocessing and machine learning algorithms. We demonstrate how the eNanoMapper database is used to import and publish online ENM and assay data from several data sources, how the "representational state transfer" (REST) API enables building user friendly

  14. Characterization of Carbon Onion Nanomaterials for Environmental Remediation

    EPA Science Inventory

    The unique properties of carbonaceous nanomaterials, including small particle size, high surface area, and manipulatable surface chemistry, provide high potential for their application to environmental remediation. While research has devoted to develop nanotechnology for environm...

  15. Biocompatible nanomaterials based on dendrimers, hydrogels and hydrogel nanocomposites for use in biomedicine

    NASA Astrophysics Data System (ADS)

    Khoa Nguyen, Cuu; Quyen Tran, Ngoc; Phuong Nguyen, Thi; Hai Nguyen, Dai

    2017-03-01

    Over the past decades, biopolymer-based nanomaterials have been developed to overcome the limitations of other macro- and micro- synthetic materials as well as the ever increasing demand for the new materials in nanotechnology, biotechnology, biomedicine and others. Owning to their high stability, biodegradability, low toxicity, and biocompatibility, biopolymer-based nanomaterials hold great promise for various biomedical applications. The pursuit of this review is to briefly describe our recent studies regarding biocompatible biopolymer-based nanomaterials, particularly in the form of dendrimers, hydrogels, and hydrogel composites along with the synthetic and modification approaches for the utilization in drug delivery, tissue engineering, and biomedical implants. Moreover, in vitro and in vivo studies for the toxicity evaluation are also discussed.

  16. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells.

    PubMed

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei; Yang, Yingping

    2018-01-15

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research.

  17. Recent Advances of Rare-Earth Ion Doped Luminescent Nanomaterials in Perovskite Solar Cells

    PubMed Central

    Qiao, Yu; Li, Shuhan; Liu, Wenhui; Ran, Meiqing; Lu, Haifei

    2018-01-01

    Organic-inorganic lead halide based perovskite solar cells have received broad interest due to their merits of low fabrication cost, a low temperature solution process, and high energy conversion efficiencies. Rare-earth (RE) ion doped nanomaterials can be used in perovskite solar cells to expand the range of absorption spectra and improve the stability due to its upconversion and downconversion effect. This article reviews recent progress in using RE-ion-doped nanomaterials in mesoporous electrodes, perovskite active layers, and as an external function layer of perovskite solar cells. Finally, we discuss the challenges facing the effective use of RE-ion-doped nanomaterials in perovskite solar cells and present some prospects for future research. PMID:29342950

  18. Nanomaterials and Water Purification: Opportunities and Challenges

    NASA Astrophysics Data System (ADS)

    Savage, Nora; Diallo, Mamadou S.

    2005-10-01

    Advances in nanoscale science and engineering suggest that many of the current problems involving water quality could be resolved or greatly ameliorated using nanosorbents, nanocatalysts, bioactive nanoparticles, nanostructured catalytic membranes and nanoparticle enhanced filtration among other products and processes resulting from the development of nanotechnology. Innovations in the development of novel technologies to desalinate water are among the most exciting and promising. Additionally, nanotechnology-derived products that reduce the concentrations of toxic compounds to sub-ppb levels can assist in the attainment of water quality standards and health advisories. This article gives an overview of the use of nanomaterials in water purification. We highlight recent advances on the development of novel nanoscale materials and processes for treatment of surface water, groundwater and industrial wastewater contaminated by toxic metal ions, radionuclides, organic and inorganic solutes, bacteria and viruses. In addition, we discuss some challenges associated with the development of cost effective and environmentally acceptable functional nanomaterials for water purification.

  19. Nanomaterials and preservation mechanisms of architecture monuments

    NASA Astrophysics Data System (ADS)

    Ion, Rodica-Mariana; Radu, Adrian; Teodorescu, Sofia; Fierǎscu, Irina; Fierǎscu, Radu-Claudiu; Ştirbescu, Raluca-Maria; Dulamǎ, Ioana Daniela; Şuicǎ-Bunghez, Ioana-Raluca; Bucuricǎ, Ioan Alin; Ion, Mihaela-Lucia

    2016-12-01

    Knowledge of the chemical composition of the building materials of the monuments may help us to preserve and protect them from the pollution of our cities. The aim of this work is to characterize the materials of the walls from ancient buildings, the decay products that could be appear due to the action of pollution and a new method based on nanomaterials (hydroxyapatite -HAp) for a conservative preservation of the treated walls. Some analytical techniques have been used, as follow: X-ray fluorescence energy dispersive (EDXRF) (for the relative abundance of major, minor and trace elements), FTIR and Raman spectroscopy (for stratigraphic study of cross-sections of multi-layered materials found in wall paintings), Optical microscopy (OM), (for morphology of the wall samples). The nanomaterial suspension HAp applied on the sample surface by spraying, decreased the capillary water uptake, do not modify significantly the color of the samples and induced a reduced mass loss for the treated samples.

  20. Why don't you like me? Midfrontal theta power in response to unexpected peer rejection feedback.

    PubMed

    van der Molen, M J W; Dekkers, L M S; Westenberg, P M; van der Veen, F M; van der Molen, M W

    2017-02-01

    Social connectedness theory posits that the brain processes social rejection as a threat to survival. Recent electrophysiological evidence suggests that midfrontal theta (4-8Hz) oscillations in the EEG provide a window on the processing of social rejection. Here we examined midfrontal theta dynamics (power and inter-trial phase synchrony) during the processing of social evaluative feedback. We employed the Social Judgment paradigm in which 56 undergraduate women (mean age=19.67 years) were asked to communicate their expectancies about being liked vs. disliked by unknown peers. Expectancies were followed by feedback indicating social acceptance vs. rejection. Results revealed a significant increase in EEG theta power to unexpected social rejection feedback. This EEG theta response could be source-localized to brain regions typically reported during activation of the saliency network (i.e., dorsal anterior cingulate cortex, insula, inferior frontal gyrus, frontal pole, and the supplementary motor area). Theta phase dynamics mimicked the behavior of the time-domain averaged feedback-related negativity (FRN) by showing stronger phase synchrony for feedback that was unexpected vs. expected. Theta phase, however, differed from the FRN by also displaying stronger phase synchrony in response to rejection vs. acceptance feedback. Together, this study highlights distinct roles for midfrontal theta power and phase synchrony in response to social evaluative feedback. Our findings contribute to the literature by showing that midfrontal theta oscillatory power is sensitive to social rejection but only when peer rejection is unexpected, and this theta response is governed by a widely distributed neural network implicated in saliency detection and conflict monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Current Trends in Sensors Based on Conducting Polymer Nanomaterials

    PubMed Central

    Yoon, Hyeonseok

    2013-01-01

    Conducting polymers represent an important class of functional organic materials for next-generation electronic and optical devices. Advances in nanotechnology allow for the fabrication of various conducting polymer nanomaterials through synthesis methods such as solid-phase template synthesis, molecular template synthesis, and template-free synthesis. Nanostructured conducting polymers featuring high surface area, small dimensions, and unique physical properties have been widely used to build various sensor devices. Many remarkable examples have been reported over the past decade. The enhanced sensitivity of conducting polymer nanomaterials toward various chemical/biological species and external stimuli has made them ideal candidates for incorporation into the design of sensors. However, the selectivity and stability still leave room for improvement. PMID:28348348

  2. Pulmonary toxicity of nanomaterials: a critical comparison of published in vitro assays and in vivo inhalation or instillation studies.

    PubMed

    Landsiedel, Robert; Sauer, Ursula G; Ma-Hock, Lan; Schnekenburger, Jürgen; Wiemann, Martin

    2014-11-01

    To date, guidance on how to incorporate in vitro assays into integrated approaches for testing and assessment of nanomaterials is unavailable. In addressing this shortage, this review compares data from in vitro studies to results from in vivo inhalation or intratracheal instillation studies. Globular nanomaterials (ion-shedding silver and zinc oxide, poorly soluble titanium dioxide and cerium dioxide, and partly soluble amorphous silicon dioxide) and nanomaterials with higher aspect ratios (multiwalled carbon nanotubes) were assessed focusing on the Organisation for Economic Co-Operation and Development (OECD) reference nanomaterials for these substances. If in vitro assays are performed with dosages that reflect effective in vivo dosages, the mechanisms of nanomaterial toxicity can be assessed. In early tiers of integrated approaches for testing and assessment, knowledge on mechanisms of toxicity serves to group nanomaterials thereby reducing the need for animal testing.

  3. Functionalization and Dispersion of Carbon Nanomaterials Using an Environmentally Friendly Ultrasonicated Ozonolysis Process.

    PubMed

    Yeo, Eudora S Y; Mathys, Gary I; Brack, Narelle; Thostenson, Erik T; Rider, Andrew N

    2017-05-30

    Functionalization of carbon nanomaterials is often a critical step that facilitates their integration into larger material systems and devices. In the as-received form, carbon nanomaterials, such as carbon nanotubes (CNTs) or graphene nanoplatelets (GNPs), may contain large agglomerates. Both agglomerates and impurities will diminish the benefits of the unique electrical and mechanical properties offered when CNTs or GNPs are incorporated into polymers or composite material systems. Whilst a variety of methods exist to functionalize carbon nanomaterials and to create stable dispersions, many the processes use harsh chemicals, organic solvents, or surfactants, which are environmentally unfriendly and may increase the processing burden when isolating the nanomaterials for subsequent use. The current research details the use of an alternative, environmentally friendly technique for functionalizing CNTs and GNPs. It produces stable, aqueous dispersions free of harmful chemicals. Both CNTs and GNPs can be added to water at concentrations up to 5 g/L and can be recirculated through a high-powered ultrasonic cell. The simultaneous injection of ozone into the cell progressively oxidizes the carbon nanomaterials, and the combined ultrasonication breaks down agglomerates and immediately exposes fresh material for functionalization. The prepared dispersions are ideally suited for the deposition of thin films onto solid substrates using electrophoretic deposition (EPD). CNTs and GNPs from the aqueous dispersions can be readily used to coat carbon- and glass-reinforcing fibers using EPD for the preparation of hierarchical composite materials.

  4. Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of biosensors for healthcare.

    PubMed

    Kumar, Sandeep; Ahlawat, Wandit; Kumar, Rajesh; Dilbaghi, Neeraj

    2015-08-15

    Technological advancements worldwide at rapid pace in the area of materials science and nanotechnology have made it possible to synthesize nanoparticles with desirable properties not exhibited by the bulk material. Among variety of available nanomaterials, graphene, carbon nanotubes, zinc oxide and gold nanopartilces proved to be elite and offered amazing electrochemical biosensing. This encourages us to write a review which highlights the recent achievements in the construction of genosensor, immunosensor and enzymatic biosensor based on the above nanomaterials. Carbon based nanomaterials offers a direct electron transfer between the functionalized nanomaterials and active site of bioreceptor without involvement of any mediator which not only amplifies the signal but also provide label free sensing. Gold shows affinity towards immunological molecules and is most routinely used for immunological sensing. Zinc oxide can easily immobilize proteins and hence offers a large group of enzyme based biosensor. Modification of the working electrode by introduction of these nanomaterials or combination of two/three of above nanomaterials together and forming a nanocomposite reflected the best results with excellent stability, reproducibility and enhanced sensitivity. Highly attractive electrochemical properties and electrocatalytic activity of these elite nanomaterials have facilitated achievement of enhanced signal amplification needed for the construction of ultrasensitive electrochemical affinity biosensors for detection of glucose, cholesterol, Escherichia coli, influenza virus, cancer, human papillomavirus, dopamine, glutamic acid, IgG, IgE, uric acid, ascorbic acid, acetlycholine, cortisol, cytosome, sequence specific DNA and amino acids. Recent researches for bedside biosensors are also discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.

    PubMed

    Lai, David Y

    2012-01-01

    A challenge-facing hazard identification and safety evaluation of engineered nanomaterials being introduced to market is the diversity and complexity of the types of materials with varying physicochemical properties, many of which can affect their toxicity by different mechanisms. In general, in vitro test systems have limited usefulness for hazard identification of nanoparticles due to various issues. Meanwhile, conducting chronic toxicity/carcinogenicity studies in rodents for every new nanomaterial introduced into the commerce is impractical if not impossible. New toxicity testing systems which rely on predictive, high-throughput technologies may be the ultimate goal of evaluating the potential hazard of nanomaterials. However, at present, this approach alone is unlikely to succeed in evaluating the toxicity of the wide array of nanomaterials and requires validation from in vivo studies. This article proposes a paradigm for toxicity testing and elucidation of the molecular mechanisms of reference materials for specific nanomaterial classes/subclasses using short-term in vivo animal studies in conjunction with high-throughput screenings and mechanism-based short-term in vitro assays. The hazard potential of a particular nanomaterial can be evaluated by conducting only in vitro high-throughput assays and mechanistic studies and comparing the data with those of the reference materials in the specific class/subclass-an approach in line with the vision for 'Toxicity Testing in the 21st Century' of chemicals. With well-designed experiments, testing nanomaterials of varying/selected physicochemical parameters may be able to identify the physicochemical parameters contributing to toxicity. The data so derived could be used for the development of computer model systems to predict the hazard potential of specific nanoparticles based on property-activity relationships. Copyright © 2011 John Wiley & Sons, Inc.

  6. Biomarkers of susceptibility: State of the art and implications for occupational exposure to engineered nanomaterials.

    PubMed

    Iavicoli, Ivo; Leso, Veruscka; Schulte, Paul A

    2016-05-15

    Rapid advances and applications in nanotechnology are expected to result in increasing occupational exposure to nano-sized materials whose health impacts are still not completely understood. Scientific efforts are required to identify hazards from nanomaterials and define risks and precautionary management strategies for exposed workers. In this scenario, the definition of susceptible populations, which may be at increased risk of adverse effects may be important for risk assessment and management. The aim of this review is to critically examine available literature to provide a comprehensive overview on susceptibility aspects potentially affecting heterogeneous responses to nanomaterials workplace exposure. Genetic, genotoxic and epigenetic alterations induced by nanomaterials in experimental studies were assessed with respect to their possible function as determinants of susceptibility. Additionally, the role of host factors, i.e. age, gender, and pathological conditions, potentially affecting nanomaterial toxicokinetic and health impacts, were also analysed. Overall, this review provides useful information to obtain insights into the nanomaterial mode of action in order to identify potentially sensitive, specific susceptibility biomarkers to be validated in occupational settings and addressed in risk assessment processes. The findings of this review are also important to guide future research into a deeper characterization of nanomaterial susceptibility in order to define adequate risk communication strategies. Ultimately, identification and use of susceptibility factors in workplace settings has both scientific and ethical issues that need addressing. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments

    PubMed Central

    Goode, Angela E.; Skepper, Jeremy N.; Thorley, Andrew J.; Seiffert, Joanna M.; Chung, K. Fan; Tetley, Teresa D.; Shaffer, Milo S. P.; Ryan, Mary P.

    2015-01-01

    Electron microscopy has been applied widely to study the interaction of nanomaterials with proteins, cells and tissues at nanometre scale. Biological material is most commonly embedded in thermoset resins to make it compatible with the high vacuum in the electron microscope. Room temperature sample preparation protocols developed over decades provide contrast by staining cell organelles, and aim to preserve the native cell structure. However, the effect of these complex protocols on the nanomaterials in the system is seldom considered. Any artefacts generated during sample preparation may ultimately interfere with the accurate prediction of the stability and reactivity of the nanomaterials. As a case study, we review steps in the room temperature preparation of cells exposed to silver nanomaterials (AgNMs) for transmission electron microscopy imaging and analysis. In particular, embedding and staining protocols, which can alter the physicochemical properties of AgNMs and introduce artefacts thereby leading to a misinterpretation of silver bioreactivity, are scrutinised. Recommendations are given for the application of cryogenic sample preparation protocols, which simultaneously fix both particles and diffusible ions. By being aware of the advantages and limitations of different sample preparation methods, compromises or selection of different correlative techniques can be made to draw more accurate conclusions about the data. PMID:25606708

  8. Advances in the design of nanomaterial-based electrochemical affinity and enzymatic biosensors for metabolic biomarkers: A review.

    PubMed

    Farzin, Leila; Shamsipur, Mojtaba; Samandari, Leila; Sheibani, Shahab

    2018-05-02

    This review (with 340 refs) focuses on methods for specific and sensitive detection of metabolites for diagnostic purposes, with particular emphasis on electrochemical nanomaterial-based sensors. It also covers novel candidate metabolites as potential biomarkers for diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis. Following an introduction into the field of metabolic biomarkers, a first major section classifies electrochemical biosensors according to the bioreceptor type (enzymatic, immuno, apta and peptide based sensors). A next section covers applications of nanomaterials in electrochemical biosensing (with subsections on the classification of nanomaterials, electrochemical approaches for signal generation and amplification using nanomaterials, and on nanomaterials as tags). A next large sections treats candidate metabolic biomarkers for diagnosis of diseases (in the context with metabolomics), with subsections on biomarkers for neurodegenerative diseases, autism spectrum disorder and hepatitis. The Conclusion addresses current challenges and future perspectives. Graphical abstract This review focuses on the recent developments in electrochemical biosensors based on the use of nanomaterials for the detection of metabolic biomarkers. It covers the critical metabolites for some diseases such as neurodegenerative diseases, autism spectrum disorder and hepatitis.

  9. Gene toxicity studies on titanium dioxide and zinc oxide nanomaterials used for UV-protection in cosmetic formulations.

    PubMed

    Landsiedel, Robert; Ma-Hock, Lan; Van Ravenzwaay, Ben; Schulz, Markus; Wiench, Karin; Champ, Samantha; Schulte, Stefan; Wohlleben, Wendel; Oesch, Franz

    2010-12-01

    Titanium dioxide and zinc oxide nanomaterials, used as UV protecting agents in sunscreens, were investigated for their potential genotoxicity in in vitro and in vivo test systems. Since standard OECD test methods are designed for soluble materials and genotoxicity testing for nanomaterials is still under revision, a battery of standard tests was used, covering different endpoints. Additionally, a procedure to disperse the nanomaterials in the test media and careful characterization of the dispersed test item was added to the testing methods. No genotoxicity was observed in vitro (Ames' Salmonella gene mutation test and V79 micronucleus chromosome mutation test) or in vivo (mouse bone marrow micronucleus test and Comet DNA damage assay in lung cells from rats exposed by inhalation). These results add to the still limited data base on genotoxicity test results with nanomaterials and provide congruent results of a battery of standard OECD test methods applied to nanomaterials.

  10. Evaluation of Compatibility of ToxCast High-Throughput/High-Content Screening Assays with Engineered Nanomaterials

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  11. In Vitro Testing of Engineered Nanomaterials in the EPA’s ToxCast Program (WC9)

    EPA Science Inventory

    High-throughput and high-content screens are attractive approaches for prioritizing nanomaterial hazards and informing targeted testing due to the impracticality of using traditional toxicological testing on the large numbers and varieties of nanomaterials. The ToxCast program a...

  12. Three-dimensional macro-structures of two-dimensional nanomaterials.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng

    2016-10-21

    If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.

  13. Novel and Improved Nanomaterials, Chemistries and Apparatus for Nanobiotechnology: the NACBO project.

    PubMed

    Bruce, Ian James

    2011-02-01

    This article outlines the nature and activities of the recently completed EU Framework Programme 6 Integrated Project, Novel and Improved Nanomaterials, Chemistries and Apparatus for Nanobiotechnology (NACBO). This project was designed to yield new nanomaterials, surface activation and synthetic nucleic acid chemistries, procedures and hardware for applications in forensics and diagnostics. It provides details on the project's structure and partnership along with its principal objectives and successes in terms of publications and commercial exploitation.

  14. Biomedical Applications of Nanomaterials as Therapeutics.

    PubMed

    Ng, Cheng-Teng; Baeg, Gyeong-Hun; Yu, Liya E; Ong, Choon-Nam; Bay, Boon-Huat

    2018-01-01

    As nanomaterials possess attractive physicochemical properties, immense research efforts have been channeled towards their development for biological and biomedical applications. In particular, zinc nanomaterials (nZnOs) have shown great potential for use in in the medical and pharmaceutical fields, and as tools for novel antimicrobial treatment, thereby capitalizing on their unique antimicrobial effects. We conducted a literature search using databases to retrieve the relevant articles related to the synthesis, properties and current applications of nZnOs in the diagnosis and treatment of diseases. A total of 86 publications were selected for inclusion in this review. Besides studies on the properties and the methodology for the synthesis of nZnOs, many studies have focused on the application of nZnOs as delivery agents, biosensors and antimicrobial agents, as well as in bioimaging. This review gives an overview of the current development of nZnOs for their potential use as theranostic agents. However, more comprehensive studies are needed to better assess the valuable contributions and the safety of nZnOs in nanomedicine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Nanomaterial Case Studies: Nanoscale Titanium Dioxide ...

    EPA Pesticide Factsheets

    This draft document presents two case studies of nanoscale titanium dioxide (nano-TiO2) used (1) to remove arsenic from drinking water and (2) as an active ingredient in topical sunscreen. The draft case studies are organized around a comprehensive environmental assessment approach that combines a product life cycle framework with the risk assessment paradigm. The document does not draw conclusions about potential risks. Rather, the case studies are intended to help identify what needs to be known in order to conduct a comprehensive environmental assessment of the potential risks related to nano-TiO2. This draft document is part of a process that will inform the development of EPA’s research strategy to support nanomaterial risk assessments. The complex properties of various nanomaterials make evaluating them in the abstract or with generalizations difficult if not impossible. Thus, this document focuses on two specific uses of nano-TiO2, as a drinking water treatment and as topical sunscreen. These case studies do not represent completed or even preliminary assessments; rather, they present the structure for identifying and prioritizing research needed to support future assessments.

  16. [Development of the unexpected reality scale for childcare training].

    PubMed

    Matsuda, Yuko; Shitara, Saeko; Hamada, Shoko

    2016-10-01

    This study aimed to develop a scale for unexpected reality for childcare training (Study 1) and examine the change and influence it exerts on the efficacy of preschool teachers (Study 2). In Study 1, the sample consisted of 571 university and junior college students enrolled in a childcare course. After exploratory factor analysis, four factors were extracted: “actual feelings for childcare as a field of study,” “difficulties faced during involvement with children,” “negative aspects of the childcare worker,” and “severity of work.” The study’s scale was shown to be internally consistent and valid. In Study 2, the sample consisted of 122 junior college students enrolled in a childcare course. The results showed that the high-scoring groups of each unexpected reality subscales experienced less unexpected reality in the subsequent training session. Moreover, the results of multiple regression showed that preschool teacher efficacy was predicted positively by “actual feelings for childcare as a field of study” and negatively by “difficulties faced during involvement with children.” Thus, we suggest that for effective pre- and post-guidance of childcare training, unexpected realities should be considered.

  17. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials

    NASA Astrophysics Data System (ADS)

    Zeng, Sheng; Kar, Piyush; Thakur, Ujwal Kumar; Shankar, Karthik

    2018-02-01

    As the search for efficient catalysts for CO2 photoreduction continues, nanostructured perovskite oxides have emerged as a class of high-performance photocatalytic materials. The perovskite oxide candidates for CO2 photoreduction are primarily nanostructured forms of titanates, niobates, tantalates and cobaltates. These materials form the focus of this review article because they are much sought-after due to their nontoxic nature, adequate chemical stability, and tunable crystal structures, bandgaps and surface energies. As compared to conventional semiconductors and nanomaterial catalysts, nanostructured perovskite oxides also exhibit an extended optical-absorption edge, longer charge carrier lifetimes, and favorable band-alignment with respect to reduction potential of activated CO2 and reduction products of the same. While CO2 reduction product yields of several hundred μmol-1 h-1 are observed with many types of perovskite oxide nanomaterials in stand-alone forms, yield of such quantities are not common with semiconductor nanomaterials of other types. In this review, we present current state-of-the-art synthesis methods to form perovskite oxide nanomaterials, and procedures to engineer their bandgaps. This review also presents a comprehensive summary and discussion on crystal structures, defect distribution, morphologies and electronic properties of the perovskite oxides, and correlation of these properties to CO2 photoreduction performance. This review offers researchers key insights for developing advanced perovskite oxides in order to further improve the yields of CO2 reduction products.

  18. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.

    PubMed

    Gawande, Manoj B; Shelke, Sharad N; Zboril, Radek; Varma, Rajender S

    2014-04-15

    The magic of microwave (MW) heating technique, termed the Bunsen burner of the 21st century, has emerged as a valuable alternative in the synthesis of organic compounds, polymers, inorganic materials, and nanomaterials. Important innovations in MW-assisted chemistry now enable chemists to prepare catalytic materials or nanomaterials and desired organic molecules, selectively, in almost quantitative yields and with greater precision than using conventional heating. By controlling the specific MW parameters (temperature, pressure, and ramping of temperature) and choice of solvents, researchers can now move into the next generation of advanced nanomaterial design and development. Microwave-assisted chemical reactions are now well-established practices in the laboratory setting although some controversy lingers as to how MW irradiation is able to enhance or influence the outcome of chemical reactions. Much of the discussion has focused on whether the observed effects can, in all instances, be rationalized by purely thermal Arrhenius-based phenomena (thermal microwave effects), that is, the importance of the rapid heating and high bulk reaction temperatures that are achievable using MW dielectric heating in sealed reaction vessels, or whether these observations can be explained by so-called "nonthermal" or "specific microwave" effects. In recent years, innovative and significant advances have occurred in MW hardware development to help delineate MW effects, especially the use of silicon carbide (SiC) reaction vessels and the accurate measurement of temperature using fiber optic (FO) temperature probes. SiC reactors appear to be good alternatives to MW transparent borosilicate glass, because of their high microwave absorptivity, and as such they serve as valuable tools to demystify the claimed magical MW effects. This enables one to evaluate the influence of the electromagnetic field on the specific chemical reactions, under truly identical conventional heating

  19. An overview—Functional nanomaterials for lithium rechargeable batteries, supercapacitors, hydrogen storage, and fuel cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hua Kun, E-mail: hua@uow.edu.au

    2013-12-15

    Graphical abstract: Nanomaterials play important role in lithium ion batteries, supercapacitors, hydrogen storage and fuel cells. - Highlights: • Nanomaterials play important role for lithium rechargeable batteries. • Nanostructured materials increase the capacitance of supercapacitors. • Nanostructure improves the hydrogenation/dehydrogenation of hydrogen storage materials. • Nanomaterials enhance the electrocatalytic activity of the catalysts in fuel cells. - Abstract: There is tremendous worldwide interest in functional nanostructured materials, which are the advanced nanotechnology materials with internal or external dimensions on the order of nanometers. Their extremely small dimensions make these materials unique and promising for clean energy applications such as lithiummore » ion batteries, supercapacitors, hydrogen storage, fuel cells, and other applications. This paper will highlight the development of new approaches to study the relationships between the structure and the physical, chemical, and electrochemical properties of functional nanostructured materials. The Energy Materials Research Programme at the Institute for Superconducting and Electronic Materials, the University of Wollongong, has been focused on the synthesis, characterization, and applications of functional nanomaterials, including nanoparticles, nanotubes, nanowires, nanoporous materials, and nanocomposites. The emphases are placed on advanced nanotechnology, design, and control of the composition, morphology, nanostructure, and functionality of the nanomaterials, and on the subsequent applications of these materials to areas including lithium ion batteries, supercapacitors, hydrogen storage, and fuel cells.« less

  20. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    NASA Astrophysics Data System (ADS)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix