Sample records for nanomeghnatisha-ye alyazhi ni100-xcux

  1. Thermal and magnetic characterisation of (Co0.402Fe0.201Ni0.067B0.227Si0.053Nb0.05)100-xCux bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Sarlar, Kagan; Kucuk, Ilker

    2017-03-01

    In this work, Co-based (Co0.402Fe0.201Ni0.067B0.227Si0.053Nb0.05)100-xCux bulk glassy alloys (BMG) with 2 mm diameters were formed by suction-casting method and effect of Cu in this system's thermal stability, glass forming ability and magnetic properties were also investigated. The curves of thermal analysis, obtained using differential scanning calorimetry, show that (Co0.402Fe0.201Ni0.067B0.227Si0.053Nb0.05)100-xCux (x = 0-2) has supercooled liquid region (ΔTx) of about 45 K, and reduced glass transition temperature (Tg/Tl) lies in the range from 0.663 to 0.678. The saturation magnetisation (Js) and coercivity (Hc) for as-cast BMG were in the range of 0.46 T-0.65 T and 13 A/m, respectively.

  2. Electrical switching studies on Si15Te85-xCux bulk (1 ≤ x ≤ 5) glasses

    NASA Astrophysics Data System (ADS)

    Roy, Diptoshi; Nadig, Chinmayi H. S.; Krishnan, Aravindh; Karanam, Akshath; Abhilash, R.; Jagannatha K., B.; Das, Chandasree

    2018-05-01

    Bulk ingots of Si15Te85-xCux (1 ≤ x ≤ 5) glasses are concocted by typical melt quenching technique. XRD validate the non-crystalline feature of the prepared quenched sample. The samples are found to display threshold type of electrical switching behavior. The switching behavior on all the samples is noticed without any disturbances. Compositional dependence of threshold voltage of Si15Te85-xCux (1 ≤ x ≤ 5) glasses has been studied and it has been found that VT increases as the atomic percentage of dopant (copper) increases in the host matrix. The distinguished behavior has been envisaged and correlated to the improvement in network connectivity and rigidity with the addition of Cu.

  3. Hydration mechanisms of two polymorphs of synthetic ye'elimite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cuesta, A.; Álvarez-Pinazo, G.; Sanfélix, S.G.

    2014-09-15

    Ye'elimite is the main phase in calcium sulfoaluminate cements and also a key phase in sulfobelite cements. However, its hydration mechanism is not well understood. Here we reported new data on the hydration behavior of ye'elimite using synchrotron and laboratory powder diffraction coupled to the Rietveld methodology. Both internal and external standard methodologies have been used to determine the overall amorphous contents. We have addressed the standard variables: water-to-ye'elimite ratio and additional sulfate sources of different solubilities. Moreover, we report a deep study of the role of the polymorphism of pure ye'elimites. The hydration behavior of orthorhombic stoichiometric and pseudo-cubicmore » solid-solution ye'elimites is discussed. In the absence of additional sulfate sources, stoichiometric-ye'elimite reacts slower than solid-solution-ye'elimite, and AFm-type phases are the main hydrated crystalline phases, as expected. Moreover, solid-solution-ye'elimite produces higher amounts of ettringite than stoichiometric-ye'elimite. However, in the presence of additional sulfates, stoichiometric-ye'elimite reacts faster than solid-solution-ye'elimite.« less

  4. From climate to global change: Following the footprint of Prof. Duzheng YE's research

    NASA Astrophysics Data System (ADS)

    Fu, Congbin

    2017-10-01

    To commemorate 100 years since the birth of Professor Duzheng YE, this paper reviews the contribution of Ye and his research team to the development from climate to global change science in the past 30 or so years, including: (1) the role of climate change in global change; (2) the critical time scales and predictability of global change; (3) the sensitive regions of global change—transitional zones of climate and ecosystems; and (4) orderly human activities and adaptation to global change, with a focus on the development of a proactive strategy for adaptation to such change.

  5. Alite-ye'elimite cement: Synthesis and mineralogical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Suhua; Snellings, Ruben; Li, Xuerun

    2013-03-15

    Alite-ye'elimite cement is an alternative cement that combines desirable characteristics of calcium sulfoaluminate cements and Portland cement in that it shows improved strength development at early age while retaining high portlandite contents. The key problem in the clinkering process is to produce the alite-ye'elimite phase assemblage so that both phases can co-exist. In this study, a new synthesis method is proposed to achieve the coexistence of alite and ye'elimite consisting of a secondary heat treatment step at 1250 °C after regular Portland clinker firing at 1450 °C. Quantitative X-ray powder diffraction and electron microscopy were used to analyze the phasemore » composition of clinker before and after the secondary heat treatment. The results show that ye'elimite develops during secondary heat treatment of calcium sulphate enriched clinker by reaction of C{sub 3}A and sulphate phases. Additional ferrite is formed as result of rejection of Fe originally in solid solution with C{sub 3}A during ye'elimite formation.« less

  6. The effect of intermetallic compound morphology on Cu diffusion in Sn-Ag and Sn-Pb solder bump on the Ni/Cu Under-bump metallization

    NASA Astrophysics Data System (ADS)

    Jang, Guh-Yaw; Duh, Jenq-Gong

    2005-01-01

    The eutectic Sn-Ag solder alloy is one of the candidates for the Pb-free solder, and Sn-Pb solder alloys are still widely used in today’s electronic packages. In this tudy, the interfacial reaction in the eutectic Sn-Ag and Sn-Pb solder joints was investigated with an assembly of a solder/Ni/Cu/Ti/Si3N4/Si multilayer structures. In the Sn-3.5Ag solder joints reflowed at 260°C, only the (Ni1-x,Cux)3Sn4 intermetallic compound (IMC) formed at the solder/Ni interface. For the Sn-37Pb solder reflowed at 225°C for one to ten cycles, only the (Ni1-x,Cux)3Sn4 IMC formed between the solder and the Ni/Cu under-bump metallization (UBM). Nevertheless, the (Cu1-y,Niy)6Sn5 IMC was observed in joints reflowed at 245°C after five cycles and at 265°C after three cycles. With the aid of microstructure evolution, quantitative analysis, and elemental distribution between the solder and Ni/Cu UBM, it was revealed that Cu content in the solder near the solder/IMC interface played an important role in the formation of the (Cu1-y,Niy)6Sn5 IMC. In addition, the diffusion behavior of Cu in eutectic Sn-Ag and Sn-Pb solders with the Ni/Cu UBM were probed and discussed. The atomic flux of Cu diffused through Ni was evaluated by detailed quantitative analysis in an electron probe microanalyzer (EPMA). During reflow, the atomic flux of Cu was on the order of 1016-1017 atoms/cm2sec in both the eutectic Sn-Ag and Sn-Pb systems.

  7. Ti(Ni,Cu) pseudobinary compounds as efficient negative electrodes for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Emami, Hoda; Cuevas, Fermin; Latroche, Michel

    2014-11-01

    The effect of Ni by Cu substitution on the structural, solid-gas and electrochemical hydrogenation properties of TiNi has been investigated. Pseudo-binary TiNi1-xCux (x ≤ 0.5) compounds have been synthesized by induction melting. They crystallize in B2 structure above 350 K and either in B19‧ (x < 0.1) or B19 (0.2 ≤ x ≤ 0.5) at room temperature (RT). For all compounds, Pressure-Composition Isotherms at 423 K exhibit a single slopping plateau pressure within the range 10-3-1 MPa of hydrogen pressure revealing a metal to hydride transformation. Both the hydrogenation capacity and the hydride stability decrease with Cu-content. The hydrided pseudobinary compounds crystallize in the tetragonal S.G. I4/mmm structure as for TiNi hydride. The electrochemical discharge capacity increases with Cu content from 150 mAh g-1 for TiNi up to 300 mAh g-1 for TiNi0.8Cu0.2 and then decreases again for larger Cu amounts. Electrochemical isotherms and in-situ neutron diffraction measurements at RT demonstrate that such a capacity increase results from a metal to hydride phase transformation in which the hydride phase is destabilized by Cu substitution. The TiNi0.8Cu0.2 compound exhibits interesting cycling stability for 30 cycles and good high-rate capability at D/2 rate. This compound has promising electrochemical properties as compared to commercial LaNi5-type alloys with the advantage of being rare-earth metal free.

  8. Kinetics of Ni2Si growth from pure Ni and Ni(V) films on (111) and (100) Si

    NASA Astrophysics Data System (ADS)

    Harith, M. A.; Zhang, J. P.; Campisano, S. U.; Klaar, H.-J.

    1987-01-01

    The kinetics of Ni2Si growth from pure Ni and from Ni0.93V0.07 films on (111) and (100) silicon has been studied by the combination of He+ backscattering, x-ray diffraction, Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) techniques. The activation energies are 1.5 and 1.0 eV for pure Ni and Ni(V) films, respectively while the pre-exponential factors in Ni(V) are 4 5 orders of magnitude smaller than in the pure Ni case. The variations in the measured rates are related to the different grain size of the growing suicide layers. The vanadium is rejected from the silicide layer and piles up at the metalsilicide interface.

  9. Single-Layer graphene growth on crystalline Ni(111) and Ni(110) and the fate of Carbon on crystalline Ni(100).

    NASA Astrophysics Data System (ADS)

    Araujo, Paulo; Mafra, Daniela; Reina, Alfonso; Shin, Young Cheol; Kim, Ki Kang; Dresselhaus, Mildred; Kong, Jing

    The growth of large area single-layer graphene (1-LG) is studied using ambient pressure CVD on single crystal Ni(111), Ni(110) and Ni(100). By varying both the furnace temperature in the range of 700 - 1100oC and the gas flow through the growth chamber, a uniform growth of high-quality 1-LG is obtained for Ni(111) and Ni(110), but only multilayer graphene (M-LG) growth could be obtained for Ni(100). The experimental results are interpreted to obtain the optimum combination of temperature and gas flow, and the results reported in this manuscript are interpreted through different thermodynamic mechanisms, such as diffusion, segregation and adsorption, which dictate the formation of different carbon structures over the different crystallographic directions of Ni. Characterization with optical microscopy, Raman spectroscopy and optical transmission accordingly support the experimental findings. DOE Award Number DE-SC0001088, College of Arts and Sciences at the University of Alabama, NRF Award Number 2015R1C1A1A02037083 and NSF-DMR 1507806.

  10. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE PAGES

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    2017-02-17

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  11. Water dissociation on Ni(100), Ni(110), and Ni(111) surfaces: Reaction path approach to mode selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seenivasan, H.; Jackson, Bret; Tiwari, Ashwani K.

    We performed a comparative study of mode-selectivity of water dissociation on Ni(100), Ni(110), and Ni(111) surfaces at the same level of theory using a fully quantum approach based on the reaction path Hamiltonian. Calculations show that the barrier to water dissociation on the Ni(110) surface is significantly lower compared to its close-packed counterparts. Transition states for this reaction on all three surfaces involve the elongation of one of the O–H bonds. Furthermore, a significant decrease in the symmetric stretching and bending mode frequencies near the transition state is observed in all three cases and in the vibrational adiabatic approximation, excitationmore » of these softened modes results in a significant enhancement in reactivity. Inclusion of non-adiabatic couplings between modes results in the asymmetric stretching mode showing a similar enhancement of reactivity as the symmetric stretching mode. Dissociation probabilities calculated at a surface temperature of 300 K showed higher reactivity at lower collision energies compared to that of the static surface case, underlining the importance of lattice motion in enhancing reactivity. Mode selective behavior is similar on all the surfaces. Molecules with one-quantum of vibrational excitation in the symmetric stretch, at lower energies (up to 0.45 eV), are more reactive on Ni(110) than the Ni(100) and Ni(111) surfaces. But, the dissociation probabilities approach saturation on all the surfaces at higher incident energy values. Ultimately, Ni(110) is found to be highly reactive toward water dissociation among the low-index nickel surfaces owing to a low reaction barrier resulting from the openness and corrugation of the surface. These results show that the mode-selective behavior does not vary with different crystal facets of Ni qualitatively, but there is a significant quantitative effect.« less

  12. A scanning tunnelling microscopy study of C and N adsorption phases on the vicinal Ni(100) surfaces Ni(810) and Ni(911)

    NASA Astrophysics Data System (ADS)

    Driver, S. M.; Toomes, R. L.; Woodruff, D. P.

    2016-04-01

    The influence of N and C chemisorption on the morphology and local structure of nominal Ni(810) and Ni(911) surfaces, both vicinal to (100) but with [001] and [ 01 1 bar ] step directions, respectively, has been investigated using scanning tunnelling microscopy (STM) and low energy electron diffraction. Ni(911) undergoes substantial step bunching in the presence of both adsorbates, with the (911)/N surface showing (411) facets, whereas for Ni(810), multiple steps 2-4 layers high are more typical. STM atomic-scale images show the (2 × 2)pg 'clock' reconstruction on the (100) terraces of the (810) surfaces with both C and N, although a second c(2 × 2) structure, most readily reconciled with a 'rumpling' reconstruction, is also seen on Ni(810)/N. On Ni(911), the clock reconstruction is not seen on the (100) terraces with either adsorbate, and these images are typified by protrusions on a (1 × 1) mesh. This absence of clock reconstruction is attributed to the different constraints imposed on the lateral movements of the surface Ni atoms adjacent to the up-step edge of the terraces with a [ 01 1 bar ] step direction.

  13. The dissociative chemisorption of CO2 on Ni(100): A quantum dynamics study

    NASA Astrophysics Data System (ADS)

    Farjamnia, Azar; Jackson, Bret

    2017-02-01

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore the dissociative chemisorption of CO2 on Ni(100). The largest barrier to reaction corresponds to the formation of a bent anionic molecular precursor, bound to the surface by about 0.24 eV. The barrier to dissociation from this state is small. Our computed dissociative sticking probabilities on Ni(100) for molecules in the ground state are in very good agreement with available experimental data, reasonably reproducing the variation in reactivity with collision energy. Vibrational excitation of the incident CO2 can enhance reactivity, particularly for incident energies at or below threshold, and there is clear mode specific behavior. Both the vibrational enhancement and the increase in dissociative sticking with surface temperature are much weaker than that found in recent studies of methane and water dissociative chemisorption. The energetics for CO2 adsorption and dissociation on the stepped Ni(711) surface are found to be similar to that on Ni(100), except that the barrier to dissociation from the anionic precursor is even smaller on Ni(711). We predict that the dissociative sticking behavior is similar on the two surfaces.

  14. Structural, thermodynamic, and mechanical properties of WCu solid solutions

    NASA Astrophysics Data System (ADS)

    Liang, C. P.; Wu, C. Y.; Fan, J. L.; Gong, H. R.

    2017-11-01

    Various properties of Wsbnd Cu solid solutions are systematically investigated through a combined use of first-principles calculation, cluster expansion, special quasirandom structures (SQS), and lattice dynamics. It is shown that SQS are effective to unravel the intrinsic nature of solid solutions, and that BCC and FCC W100-xCux solid solutions are energetically more stable when 0 ≤ x ≤ 70 and 70 < x ≤ 100, respectively. Calculations also reveal that the Debye model should be appropriate to derive thermodynamic properties of Wsbnd Cu, and that the coefficients of thermal expansion of W100-xCux solid solutions are much lower than those of corresponding mechanical mixtures. In addition, the G/B values of W100-xCux solid solutions reach a minimum at x = 50, which is fundamentally due to the softening of phonons as well as strong chemical bonding between W and Cu with a mainly metallic feature.

  15. The dissociative chemisorption of CO 2 on Ni(100): A quantum dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farjamnia, Azar; Jackson, Bret

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore the dissociative chemisorption of CO 2 on Ni(100). The largest barrier to reaction corresponds to the formation of a bent anionic molecular precursor, bound to the surface by about 0.24 eV. The barrier to dissociation from this state is small. In our computed dissociative sticking probabilities on Ni(100) for molecules, the ground states are in very good agreement with available experimental data, reasonably reproducing the variation in reactivity with collision energy. Vibrational excitation of the incident CO 2 can enhance reactivity, particularly for incident energiesmore » at or below threshold, and there is clear mode specific behavior. Both the vibrational enhancement and the increase in dissociative sticking with surface temperature are much weaker than that found in recent studies of methane and water dissociative chemisorption. The energetics for CO 2 adsorption and dissociation on the stepped Ni(711) surface are found to be similar to that on Ni(100), except that the barrier to dissociation from the anionic precursor is even smaller on Ni(711). Here, we predict that the dissociative sticking behavior is similar on the two surfaces.« less

  16. The dissociative chemisorption of CO 2 on Ni(100): A quantum dynamics study

    DOE PAGES

    Farjamnia, Azar; Jackson, Bret

    2017-02-21

    A quantum approach based on an expansion in vibrationally adiabatic eigenstates is used to explore the dissociative chemisorption of CO 2 on Ni(100). The largest barrier to reaction corresponds to the formation of a bent anionic molecular precursor, bound to the surface by about 0.24 eV. The barrier to dissociation from this state is small. In our computed dissociative sticking probabilities on Ni(100) for molecules, the ground states are in very good agreement with available experimental data, reasonably reproducing the variation in reactivity with collision energy. Vibrational excitation of the incident CO 2 can enhance reactivity, particularly for incident energiesmore » at or below threshold, and there is clear mode specific behavior. Both the vibrational enhancement and the increase in dissociative sticking with surface temperature are much weaker than that found in recent studies of methane and water dissociative chemisorption. The energetics for CO 2 adsorption and dissociation on the stepped Ni(711) surface are found to be similar to that on Ni(100), except that the barrier to dissociation from the anionic precursor is even smaller on Ni(711). Here, we predict that the dissociative sticking behavior is similar on the two surfaces.« less

  17. Improved magnetic and electrical properties of Cu doped Fe-Ni invar alloys synthesized by chemical reduction technique

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajjad; Ziya, Amer Bashir; Ashiq, Muhammad Naeem; Ibrahim, Ather; Atiq, Shabbar; Ahmad, Naseeb; Shakeel, Muhammad; Khan, Muhammad Azhar

    2016-12-01

    Fe-Ni-Cu invar alloys of various compositions (Fe65Ni35-xCux, x=0, 0.2, 0.6, 1, 1.4 and 1.8) were synthesized via chemical reduction route. These alloys were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM) techniques. The XRD analysis revealed the formation of face centered cubic (fcc) structure. The lattice parameter and the crystallite size of the investigated alloys were calculated and the line broadening indicated the nano-crystallites size of alloy powder. The particle size was estimated from SEM and it decreases by the incorporation of Cu and found to be in the range of 24-40 nm. The addition of Cu in these alloys appreciably enhances the saturation magnetization and it increases from 99 to 123 emu/g. Electrical conductivity has been improved with Cu addition. The thermal conductivity was calculated using the Wiedemann-Franz law.

  18. NEXAFS and XPS characterization of molecular oxygen adsorbed on Ni(100) at 80 K

    NASA Astrophysics Data System (ADS)

    Kim, C. M.; Jeong, H. S.; Kim, E. H.

    2000-07-01

    X-ray photoelectron spectroscopy (XPS), thermal desorption spectroscopy (TDS) and near edge extended X-ray absorption fine structure (NEXAFS) have been combined to investigate the adsorption of oxygen on Ni(100) at 80 K. Three O(1s) XPS features were observed at 530.0, 531.1 and 534.7 eV when the Ni(100) surface was exposed to 600 L of oxygen at 80 K. They are assigned as O 2-, O 1- and molecular oxygen species, respectively. The presence of molecular oxygen has been confirmed by TDS and NEXAFS. Molecular O 2 on Ni(100) is oriented perpendicular to the surface, and the OO bond length is estimated to be 1.24 Å, based on the NEXAFS σ ∗ resonance energy.

  19. Quantum Quench of the Sachdev-Ye-Kitaev Model

    NASA Astrophysics Data System (ADS)

    Steinberg, Julia; Eberlein, Andreas; Sachdev, Subir

    The Sachdev-Ye-Kitaev model is a single site model containing N flavors of fermions with random infinite range interactions. It is exactly solvable in the large N limit and has an emergent reparameterization symmetry in time at low temperatures and strong coupling. This leads to many interesting properties such as locally critical behavior in correlation functions and the saturation of the chaos bound proposed .We start with the generalized Sachdev-Ye-Kitaev with quadratic and quartic interactions. This Hamiltonian has the form of a 0+1d Fermi liquid and contains long-lived quasiparticles at all values of the quadratic coupling. We quench the system into a locally critical state without quasiparticles by turning off the quadratic coupling at some initial time. We numerically study the spectral function at intermediate and long times and determine the timescale in which the system loses memory of the quasiparticles. J.S. is supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE1144152.

  20. Effective surface Debye temperature for NiMnSb(100) epitaxial films

    NASA Astrophysics Data System (ADS)

    Borca, C. N.; Komesu, Takashi; Jeong, Hae-kyung; Dowben, P. A.; Ristoiu, D.; Hordequin, Ch.; Pierre, J.; Nozières, J. P.

    2000-07-01

    The surface Debye temperature of the NiMnSb (100) epitaxial films has been obtained using low energy electron diffraction, inverse photoemission, and core-level photoemission. The normal dynamic motion of the (100) surface results in a value for the effective surface Debye temperature of 145±13 K. This is far smaller than the bulk Debye temperature of 312±5 K obtained from wave vector dependent inelastic neutron scattering. The large difference between these measures of surface and bulk dynamic motion indicates a soft and compositionally different (100) surface.

  1. Magnetic skin layer of NiO(100) probed by polarization-dependent spectromicroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandal, Suman, E-mail: suman.mandal@sscu.iisc.ernet.in; Menon, Krishnakumar S. R., E-mail: krishna.menon@saha.ac.in; Belkhou, Rachid

    2014-06-16

    Using polarization-dependent x-ray photoemission electron microscopy, we have investigated the surface effects on antiferromagnetic (AFM) domain formation. Depth-resolved information obtained from our study indicates the presence of strain-induced surface AFM domains on some of the cleaved NiO(100) crystals, which are unusually thinner than bulk AFM domain wall widths (∼150 nm). Existence of such magnetic skin layer is substantiated by exchange-coupled ferromagnetic Fe domains in Fe/NiO(100), thereby evidencing the influence of this surface AFM domains on interfacial magnetic coupling. Our observations demonstrate a depth evolution of AFM structure in presence of induced surface strain, while the surface symmetry-breaking in absence of inducedmore » strain does not modify the bulk AFM domain structure. Realization of such thin surface AFM layer will provide better microscopic understanding of the exchange bias phenomena.« less

  2. Innovative /ye/ and /we/ sequences in recent loans in Japanese

    NASA Astrophysics Data System (ADS)

    Vance, Timothy; Matsugu, Yuka

    2005-04-01

    The GV sequences /ye/ and /we/ do not occur in Japanese except perhaps in recent loans. Katakana spellings of the relevant loans in authoritative dictionaries are inconsistent, and it is not clear whether native speakers treat them as containing the GV sequences /ye/ and /we/ or as containing the VV sequences /ie/ and /ue/. Native speakers of Japanese with minimal exposure to spoken English were recorded producing some relevant loans in response to picture prompts. The same speakers were also recorded producing some native words containing uncontroversial /ie/ and /ue/ sequences. All the productions are being analyzed acoustically to determine whether they show the expected contrast between GV and VV sequences. A VV sequence is disyllabic (and bimoraic) and should therefore have greater duration and more gradual formant movements than a monosyllabic (and monomoraic) GV sequence. Utterance-initially, a VV sequence should have a LH pitch pattern and should be preceded by a nondistinctive glottal stop, whereas a GV sequence should have a H pitch pattern and should have smooth onset.

  3. Oxidation-driven surface dynamics on NiAl(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Hailang; Chen, Xidong; Li, Liang

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  4. Oxidation-driven surface dynamics on NiAl(100)

    DOE PAGES

    Qin, Hailang; Chen, Xidong; Li, Liang; ...

    2014-12-29

    Atomic steps, a defect common to all crystal surfaces, can play an important role in many physical and chemical processes. However, attempts to predict surface dynamics under nonequilibrium conditions are usually frustrated by poor knowledge of the atomic processes of surface motion arising from mass transport from/to surface steps. Using low-energy electron microscopy that spatially and temporally resolves oxide film growth during the oxidation of NiAl(100) we demonstrate that surface steps are impermeable to oxide film growth. The advancement of the oxide occurs exclusively on the same terrace and requires the coordinated migration of surface steps. The resulting piling upmore » of surface steps ahead of the oxide growth front progressively impedes the oxide growth. This process is reversed during oxide decomposition. The migration of the substrate steps is found to be a surface-step version of the well-known Hele-Shaw problem, governed by detachment (attachment) of Al atoms at step edges induced by the oxide growth (decomposition). As a result, by comparing with the oxidation of NiAl(110) that exhibits unimpeded oxide film growth over substrate steps, we suggest that whenever steps are the source of atoms used for oxide growth they limit the oxidation process; when atoms are supplied from the bulk, the oxidation rate is not limited by the motion of surface steps.« less

  5. Topological Sachdev-Ye-Kitaev model

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Zhai, Hui

    2018-05-01

    In this Rapid Communication, we construct a large-N exactly solvable model to study the interplay between interaction and topology, by connecting the Sachdev-Ye-Kitaev (SYK) model with constant hopping. The hopping forms a band structure that can exhibit both topologically trivial and nontrivial phases. Starting from a topologically trivial insulator with zero Hall conductance, we show that the interaction can drive a phase transition to a topologically nontrivial insulator with quantized nonzero Hall conductance, and a single gapless Dirac fermion emerges when the interaction is fine tuned to the critical point. The finite temperature effect is also considered, and we show that the topological phase with a stronger interaction is less stable against temperature. Our model provides a concrete example to illustrate the interacting topological phases and phase transitions, and can shed light on similar problems in physical systems.

  6. Lock-in of a Chiral Soliton Lattice by Itinerant Electrons

    NASA Astrophysics Data System (ADS)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-03-01

    Chiral magnets often show intriguing magnetic and transport properties associated with their peculiar spin textures. A typical example is a chiral soliton lattice, which is found in monoaxial chiral magnets, such as CrNb3S6 and Yb(Ni1-xCux)3Al9 in an external magnetic field perpendicular to the chiral axis. Here, we theoretically investigate the electronic and magnetic properties in the chiral soliton lattice by a minimal itinerant electron model. Using variational calculations, we find that the period of the chiral soliton lattice can be locked at particular values dictated by the Fermi wave number, in stark contrast to spin-only models. We discuss this behavior caused by the spin-charge coupling as a possible mechanism for the lock-in discovered in Yb(Ni1-xCux)3Al9 [T. Matsumura et al., J. Phys. Soc. Jpn. 86, 124702 (2017)]. We also show that the same mechanism leads to the spontaneous formation of the chiral soliton lattice even in the absence of the magnetic field.

  7. [Design and verification of Luo-Ye pump-based stress formation for cultivation of tissue-engineered blood vessel].

    PubMed

    Liao, Wen-Jun; Chen, Wan-Wen; Wen, Zhang; Wu, Yue-Heng; Li, Dong-Feng; Zhou, Jia-Hui; Zheng, Jian-Yi; Lin, Zhan-Yi

    2016-06-20

    To improve Luo-Ye pump-based stress-forming system and optimize the stimulating effect on smooth muscle cells during cultivation of tissue-engineered blood vessels (TEBV). A new Luo-Ye pump-based TEBV 3D culture system was developed by adding an air pump to the output of the bioreactor. A pressure guide wire was used to measure the stress at different points of the silicone tube inside the TEBV bio-reactor, and fitting curves of the stress changes over time was created using Origin 8.0 software. The TEBVs were constructed by seeding vascular smooth muscle cells (VSMCs) isolated from human umbilical artery on polyglycolic acid (PGA) and cultured under dynamic conditions with 40 mmHg resistance (improved group), dynamic conditions without resistance (control group) or static condition (static group) for 4 weeks. The harvested TEBVs were then examined with HE staining, masson staining, α-SMA immunohistochemical staining, and scanning and transmission electron microscopy with semi-quantitative analysis of collagen content and α-SMA expression. The measured stress values and the fitting curves showed that the stress stimuli from the Luo-Ye pump were enhanced by adding an air pump to the output of the bioreactor. Histological analysis revealed improved VSMC density, collagen content and α-SMA expression in the TEBVs constructed with the improved method as compared with those in the control and static groups. Adding an air pump to the Luo-Ye pump significantly enhances the stress stimulation in the TEBV 3-D culture system to promote the secretion function of VSMCs.

  8. Semiconductor to Metal Transition Characteristics of VO2/NiO Epitaxial Heterostructures Integrated with Si(100)

    NASA Astrophysics Data System (ADS)

    Molaei, Roya

    The novel functionalities of Vanadium dioxide (VO2), such as, several orders of magnitude transition in resistivity and IR transmittance, provide the exciting opportunity for the development of next generation memory, sensor, and field-effect based devices. A critical issue in the development of practical devices based on metal oxides is the integration of high quality epitaxial oxide thin films with the existing silicon technology which is based on silicon (100) substrates. However, silicon is not suitable for epitaxial growth of oxides owing to its tendency to readily form an amorphous oxide layer or silicide at the film-substrate interface. The oxide films deposited directly on silicon exhibit poor crystallinity and are not suitable for device applications. To overcome this challenge, appropriate substrate templates must be developed for the growth of oxide thin films on silicon substrates. The primary objective of this dissertation was to develop an integration methodology of VO2 with Si (100) substrates so they could be used in "smart" sensor type of devices along with other multifunctional devices on the same silicon chip. This was achieved by using a NiO/c- YSZ template layer deposited in situ. It will be shown that if the deposition conditions are controlled properly. This approach was used to integrate VO 2 thin films with Si (100) substrates using pulsed laser deposition (PLD) technique. The deposition methodology of integrating VO2 thin films on silicon using various other template layers will also be discussed. Detailed epitaxial relationship of NiO/c-YSZ/Si(100) heterostructures as a template to growth of VO2 as well as were studied. We also were able to create a p-n junction within a single NiO epilayer through subsequent nanosecond laser annealing, as well as established a structure-property correlation in NiO/c-YSZ/Si(100) thin film epitaxial heterostructures with especial emphasis on the stoichiometry and crystallographic characteristics. Ni

  9. Y&E Lessons in Learning: Youth and Education Program News, Summer 2003

    ERIC Educational Resources Information Center

    Cournoyer, David, Ed.

    2003-01-01

    This Summer 2003 issue of "Y&E Lessons in Learning" contains the following articles: (1) Playgrounds Where All Kids Are Able to Play; (2) Kellogg Foundation Promotes Youth Voices in Special Comic Book; (3) Families for Kids: A Powerful Approach to System Reform; (4) New Program Focuses Community Leaders on Educational Change; (5)…

  10. Adsorption and reaction of propene on Ni(100)

    NASA Astrophysics Data System (ADS)

    Kleyna, R.; Borgmann, D.; Wedler, G.

    1998-05-01

    Photoelectron spectroscopy (UPS, XPS) and thermal desorption techniques were used to study the chemisorption and decomposition reactions of propene on Ni(100). Propene is molecularly adsorbed at temperatures below 150 K. At saturation coverage the TD spectrum shows two propene desorption peaks at 155 and 225 K and three hydrogen desorption peaks at 300, 330 and 380 K with a shoulder at 420 K. No other desorbing species could be detected. The amount of desorption of propene was determined by XPS to be 20% of the saturation coverage. The electronic structure of adsorbed propene and the chemical nature of its decomposition products were deduced from UP and XP spectra taken at saturation coverage. Adsorption at low temperatures results in a π-bonded species which is stable up to 150 K. At temperatures above 150 K the UP spectra point to a σ-bonded species which decomposes further at temperatures above 260 K.

  11. Phase evolution, mechanical and corrosion behavior of Fe(100-x) Ni(x) alloys synthesized by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Singh, Neera; Parkash, Om; Kumar, Devendra

    2018-03-01

    In the present investigation, Fe(100-x) Ni(x) alloys (x = 10, 20, 30, 40 and 50 wt%) were synthesized through the evolution of γ-taenite and α-kamacite phases by powder metallurgy route using commercially available Fe and Ni powders. Mechanically mixed powders of Fe and Ni were compacted at room temperature and sintered at three different temperatures 1000, 1200 and 1250 °C for 1 h. Both Ni concentration and sintering temperature have shown a strong impact on the phase formation, tribological and electrochemical behavior. Micro structural study has shown the formation of taenite (γ-Fe,Ni) and kamacite (α-Fe,Ni) phases in the sintered specimens. An increase in Ni fraction resulted in formation of more taenite which reduces hardness and wear resistance of specimens. Increasing the sintering temperature decreased the defect concentration with enhanced taenite formation, aiding to higher densification. Taenite formed completely in Fe50Ni50 after sintering at 1250 °C. Tribological test revealed the maximum wear resistance for Fe70Ni30 specimen due to the presence of both kamacite and taenite in significant proportions. The formation of taenite as well as the decrease in defect concentration improves the corrosion resistance of the specimens significantly in 1M HCl solution. A maximum corrosion protection efficiency of around ∼87% was achieved in acidic medium for Fe50Ni50, sintered at 1250 °C.

  12. Supersymmetric Sachdev-Ye-Kitaev models

    DOE PAGES

    Fu, Wenbo; Gaiotto, Davide; Maldacena, Juan; ...

    2017-01-13

    We discuss a supersymmetric generalization of the Sachdev-Ye-Kitaev (SYK) model. These are quantum mechanical models involving N Majorana fermions. The supercharge is given by a polynomial expression in terms of the Majorana fermions with random coefficients. The Hamiltonian is the square of the supercharge. The N = 1 model with a single supercharge has unbroken supersymmetry at large N , but nonperturbatively spontaneously broken supersymmetry in the exact theory. We analyze the model by looking at the large N equation, and also by performing numerical computations for small values of N . We also compute the large N spectrum ofmore » “singlet” operators, where we find a structure qualitatively similar to the ordinary SYK model. We also discuss an N = 2 version. In this case, the model preserves supersymmetry in the exact theory and we can compute a suitably weighted Witten index to count the number of ground states, which agrees with the large N computation of the entropy. In both cases, we discuss the supersymmetric generalizations of the Schwarzian action which give the dominant effects at low energies.« less

  13. Auger electron diffraction study of Fe 1- xNi x alloys epitaxially grown on Cu(100)

    NASA Astrophysics Data System (ADS)

    Martin, M. G.; Foy, E.; Chevrier, F.; Krill, G.; Asensio, M. C.

    1999-08-01

    We have combined Auger electron diffraction (AED), low-energy electron diffraction (LEED) and high-energy electron diffraction (RHEED) to examine the structure of Fe xNi 1- x alloys when the Fe content approaches 65%. At this concentration, the 'invar effect' takes place, so the magnetization falls to zero, and the thermal expansion coefficient is very small. The Fe xNi 1- x alloys, grown as metastable thin films by molecular-beam epitaxy on Cu(100) substrates, were studied as a function of the x stoichiometry. In contrast to the related bulk alloy compounds, we observe the collapse of the fcc-to-bcc structural transition in the Fe-rich films. Furthermore, the local atomic structure around Fe and Ni in the alloy has been simultaneously determined by the angular intensity distributions of Fe L 3VV (703 eV) and Ni L 3VV (848 eV) Auger electrons measured as a function of polar and azimuthal angles. For the films deposited at room temperature, we have confirmed the pseudomorphic growth morphology and the uniformity of the alloys.

  14. Growth of C60 thin films on Al2O3/NiAl(100) at early stages

    NASA Astrophysics Data System (ADS)

    Hsu, S.-C.; Liao, C.-H.; Hung, T.-C.; Wu, Y.-C.; Lai, Y.-L.; Hsu, Y.-J.; Luo, M.-F.

    2018-03-01

    The growth of thin films of C60 on Al2O3/NiAl(100) at the earliest stage was studied with scanning tunneling microscopy and synchrotron-based photoelectron spectroscopy under ultrahigh-vacuum conditions. C60 molecules, deposited from the vapor onto an ordered thin film of Al2O3/NiAl(100) at 300 K, nucleated into nanoscale rectangular islands, with their longer sides parallel to direction either [010] or [001] of NiAl. The particular island shape resulted because C60 diffused rapidly, and adsorbed and nucleated preferentially on the protrusion stripes of the crystalline Al2O3 surface. The monolayer C60 film exhibited linear protrusions of height 1-3 Å, due to either the structure of the underlying Al2O3 or the lattice mismatch at the boundaries of the coalescing C60 islands; such protrusions governed also the growth of the second layer. The second layer of the C60 film grew only for a C60 coverage >0.60 ML, implying a layer-by-layer growth mode, and also ripened in rectangular shapes. The thin film of C60 was thermally stable up to 400 K; above 500 K, the C60 islands dissociated and most C60 desorbed.

  15. Identification and Characterization of Functionally Critical, Conserved Motifs in the Internal Repeats and N-terminal Domain of Yeast Translation Initiation Factor 4B (yeIF4B)*

    PubMed Central

    Zhou, Fujun; Walker, Sarah E.; Mitchell, Sarah F.; Lorsch, Jon R.; Hinnebusch, Alan G.

    2014-01-01

    eIF4B has been implicated in attachment of the 43 S preinitiation complex (PIC) to mRNAs and scanning to the start codon. We recently determined that the internal seven repeats (of ∼26 amino acids each) of Saccharomyces cerevisiae eIF4B (yeIF4B) compose the region most critically required to enhance mRNA recruitment by 43 S PICs in vitro and stimulate general translation initiation in yeast. Moreover, although the N-terminal domain (NTD) of yeIF4B contributes to these activities, the RNA recognition motif is dispensable. We have now determined that only two of the seven internal repeats are sufficient for wild-type (WT) yeIF4B function in vivo when all other domains are intact. However, three or more repeats are needed in the absence of the NTD or when the functions of eIF4F components are compromised. We corroborated these observations in the reconstituted system by demonstrating that yeIF4B variants with only one or two repeats display substantial activity in promoting mRNA recruitment by the PIC, whereas additional repeats are required at lower levels of eIF4A or when the NTD is missing. These findings indicate functional overlap among the 7-repeats and NTD domains of yeIF4B and eIF4A in mRNA recruitment. Interestingly, only three highly conserved positions in the 26-amino acid repeat are essential for function in vitro and in vivo. Finally, we identified conserved motifs in the NTD and demonstrate functional overlap of two such motifs. These results provide a comprehensive description of the critical sequence elements in yeIF4B that support eIF4F function in mRNA recruitment by the PIC. PMID:24285537

  16. The dissociative chemisorption of methane on Ni(100) and Ni(111): Classical and quantum studies based on the reaction path Hamiltonian

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastromatteo, Michael; Jackson, Bret, E-mail: jackson@chem.umass.edu

    Electronic structure methods based on density functional theory are used to construct a reaction path Hamiltonian for CH{sub 4} dissociation on the Ni(100) and Ni(111) surfaces. Both quantum and quasi-classical trajectory approaches are used to compute dissociative sticking probabilities, including all molecular degrees of freedom and the effects of lattice motion. Both approaches show a large enhancement in sticking when the incident molecule is vibrationally excited, and both can reproduce the mode specificity observed in experiments. However, the quasi-classical calculations significantly overestimate the ground state dissociative sticking at all energies, and the magnitude of the enhancement in sticking with vibrationalmore » excitation is much smaller than that computed using the quantum approach or observed in the experiments. The origin of this behavior is an unphysical flow of zero point energy from the nine normal vibrational modes into the reaction coordinate, giving large values for reaction at energies below the activation energy. Perturbative assumptions made in the quantum studies are shown to be accurate at all energies studied.« less

  17. (Pt1-xCux)3Cu2B and Pt9Cu3B5, the first examples of copper platinum borides. Observation of superconductivity in a novel boron filled β-Mn-type compound

    NASA Astrophysics Data System (ADS)

    Salamakha, Leonid P.; Sologub, Oksana; Stöger, Berthold; Michor, Herwig; Bauer, Ernst; Rogl, Peter F.

    2015-09-01

    New ternary copper platinum borides have been synthesized by arc melting of pure elements followed by annealing at 600 °C. The structures have been studied by X-ray single crystal and powder diffraction. (Pt1-xCux)3Cu2B (x=0.33) forms a B-filled β-Mn-type structure (space group P4132; a=0.6671(1) nm). Cu atoms are distributed preferentially on the 8c atom sites, whereas the 12d site is randomly occupied by Pt and Cu atoms (0.670(4) Pt±0.330(4) Cu). Boron is located in octahedral voids of the parent β-Mn-type structure. Pt9Cu3B5 (space group P-62m; a=0.9048(3) nm, c=0.2908(1) nm) adopts the Pt9Zn3B5-δ-type structure. It has a columnar architecture along the short translation vector exhibiting three kinds of [Pt6] trigonal prism columns (boron filled, boron semi-filled and empty) and Pt channels with a pentagonal cross section filled with Cu atoms. The striking structural feature is a [Pt6] cluster in form of an empty trigonal prism at the origin of the unit cell, which is surrounded by coupled [BPt6] and [Pt6] trigonal prisms, rotated perpendicularly to the central one. There is no B-B contact as well as Cu-B contact in the structure. The relationships of Pt9Cu3B5 structure with the structure of Ti1+xOs2-xRuB2 as well as with the structure families of metal sulfides and aluminides have been elucidated. (Pt1-xCux)3Cu2B (x=0.3) (B-filled β-Mn-type structure) is a bulk superconductor with a transition temperature of about 2.06 K and an upper critical field μ0HC2(0)WHH of 1.2 T, whereas no superconducting transition has been observed up to 0.3 K in Pt9Cu3B5 (Pt9Zn3B5-δ-type structure) from electrical resistivity measurements.

  18. Ba2NiOsO6: a Dirac-Mott insulator with ferromagnetism near 100 K

    NASA Astrophysics Data System (ADS)

    Feng, Hl; Calder, S.; Ghimire, M.; Yuan, Yh; Shirako, Y.; Tsujimoto, Y.; Matsushita, Y.; Hu, Z.; Kuo, Cy; Tjeng, Lh; Pi, Tw; Soo, Yl; He, Jf; Tanaka, M.; Katsuya, Y.; Richte, M.; Yamaura, Kazunari

    The ferromagnetic semiconductor Ba2NiOsO6(Tmag 100 K) was synthesized at 6 GPa and 1500 ° C. It crystallizes into a double perovskite structure [Fm-3 m; a = 8.0428(1)], where the Ni2+ and Os6+ ions are perfectly ordered at the perovskite B-site. We show that the spin-orbit coupling of Os6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21-kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag<180 K), the spin-gapless semiconductor Mn2CoAl (Tmag 720 K), and the ferromagnetic insulators EuO (Tmag 70 K) and Bi3Cr3O11(Tmag 220 K). It is also qualitatively different from known ferrimagnetic insulator/semiconductors, which are characterized by an antiparallel spin arrangement. Our report of cubic Ba2NiOsO6 heralds a new class of FM insulator oxides, which may be useful in developing a practical magnetic semiconductor that can be employed in spintronic and quantum magnetic devices.

  19. The polarization of Sb overlayers on NiMnSb(100)

    NASA Astrophysics Data System (ADS)

    Komesu, Takashi; Borca, C. N.; Jeong, Hae-Kyung; Dowben, P. A.; Ristoiu, Delia; Nozières, J. P.; Stadler, Shane; Idzerda, Y. U.

    2000-08-01

    We have investigated the induced polarization of paramagnetic Sb overlayers on the Heusler alloy NiMnSb. From combined X-ray absorption spectroscopy (XAS) and spin-polarized inverse photoemission spectroscopy (SPIPES), we can assign some of the unoccupied states of the Heusler alloy NiMnSb. With increasing thickness of the Sb overlayer, there is a decline in the density of states near the Fermi energy, as expected for a semimetal overlayer on a metallic substrate. While the Sb is polarized by the ferromagnetic NiMnSb substrate, consistent with the expectations of mean field theory, the polarization at the center of the surface/overlayer Brillouin zone cannot be easily related to the induced magnetization.

  20. [Concepts of "urinary bladder" and "vesicles (bao)" , "jin ye" (fluid and humor) and "urine" and other associated issues].

    PubMed

    Son, J R; Liu, Y; Ma, Q N; Ju, B Z; Sun, K F; Wu, J D; Zhang, L D; Yang, G L

    2017-09-28

    In the Huang di nei jing ( Huangdi ' s Internal Classic ), jin ye (fluid and humor) is described in two senses, broad and narrow, though not so strictly.Sometimes, jin ye is explained ambiguously as "sweat" and "urine" , as in the phrase "the bladder, being a house of jin ye " , here " jin ye " refers to the urine. In the Qi jue lun pian of Su wen ( Chapter on Qi - Syncope of Plain Questions ) , the " bao " in the sentence "heat of bao moved to bladder" refersto the uterus. In the Shi cong rong lun pian ( Chapter of Readily Inspecting ) of Plain Questions , the "bladder" in the phrase "gallbladder, stomach, large intestine, small intestine, spleen, bao and bladder" , which, being an annotation of " bao " originally, is mistakenly incorporated into the text of the Classic . In the Wu wei lun of Ling shu ( On Five Tastes in Miraculous Pivot ) , the " bao " in " bao of bladder" refers to the external hou (external manifestation) of the bladder, that is the scrotum. In the Bei ji qian jin yao fang ( Essential Prescriptions Worth a Thousand Gold for Emergencies ) , the short sentence " pang guang zou bao " is an error in itself. In the sentence of "settled in the bao and zhi causing to dream of defecation and urination" in the Yin xie fa meng (Dreams due to Evils) of Miraculous Pivot , " bao " refers to uterus, and " zhi " to anus. In Bi lun pian ( Chapter on Impediment ) of Plain Questions , "the man suffered bao bimight feel internal pain when the lesser abdomen and bladder are pressed" , here, " bao " refers to the bladder. In the Wu yin wu wei ( Chapter on Five Sound and Five Tastes ) of Miraculous Pivot , the " bao " in the sentence "thoroughfare vessel and conception vessel all starts from bao " , again, " bao " here refers to the bladder, rather than to the uterus. From the above descriptions of "bladder" and " bao " in the Huangdi ' s Internal Classic , the "bladder" in ancient medical books refers to the substantial bladder, an anatomical organ, and " bao

  1. Oxygen potentials in Ni + NiO and Ni + Cr2O3 + NiCr2O4 systems

    NASA Astrophysics Data System (ADS)

    Kale, G. M.; Fray, D. J.

    1994-06-01

    The chemical potential of O for the coexistence of Ni + NiO and Ni + Cr2O3 + NiCr2O4 equilibria has been measured employing solid-state galvanic cells, (+) Pt, Cu + Cu2O // (Y2O3)ZrO2 // Ni + NiO, Pt (-) and (+) Pt, Ni + NiO // (Y2O3)ZrO2 // Ni + Cr2O3 + NiCr2O4, Pt (-) in the temperature range of 800 to 1300 K and 1100 to 1460 K, respectively. The electromotive force (emf) of both the cells was reversible, reproducible on thermal cycling, and varied linearly with temperature. For the coexistence of the two-phase mixture of Ni + NiO, δΜO 2(Ni + NiO) = -470,768 + 171.77T (±20) J mol-1 (800 ≤ T ≤ 1300 K) and for the coexistence of Ni + Cr2O3 + NiCr2O4, δΜO 2(Ni + Cr2O3 + NiCr2O4) = -523,190 + 191.07T (±100) J mol-1 (1100≤ T≤ 1460 K) The “third-law” analysis of the present results for Ni + NiO gives the value of ‡H{298/o} = -239.8 (±0.05) kJ mol-1, which is independent of temperature, for the formation of one mole of NiO from its elements. This is in excellent agreement with the calorimetric enthalpy of formation of NiO reported in the literature.

  2. Magnetic properties and crystallization kinetics of (Fe 100–xNi x) 80Nb 4Si 2B 14 metal amorphous nanocomposites

    DOE PAGES

    Aronhime, Natan; Zoghlin, Eli; Keylin, Vladimir; ...

    2017-09-26

    Fe-Ni based metal amorphous nanocomposites (MANCs) are investigated in the pseudo-binary alloys (Fe 100–xNi x) 80Nb 4Si 2B 14. To optimize the soft magnetic properties of the nanocomposites, primary and secondary crystallization kinetics must be understood. As such, primary and secondary crystallization temperatures are determined by differential scanning calorimetry, and activation energies are calculated, along with the resulting crystalline phases. Time-temperature-transformation diagrams for primary and secondary crystallization in (Fe 70Ni 30) 80Nb 4Si 2B 14 are presented. Saturation magnetization and Curie temperature are determined. In conclusion, the shape of magnetization vs. time curves for (Fe 30Ni 70) 80Nb 4Si 2Bmore » 14 at various temperatures suggest that the secondary crystal product often consumes some of the primary crystalline product.« less

  3. Effects of surface motion and electron-hole pair excitations in CO2 dissociation and scattering on Ni(100)

    NASA Astrophysics Data System (ADS)

    Luo, Xuan; Zhou, Xueyao; Jiang, Bin

    2018-05-01

    The energy transfer between different channels is an important aspect in chemical reactions at surfaces. We investigate here in detail the energy transfer dynamics in a prototypical system, i.e., reactive and nonreactive scattering of CO2 on Ni(100), which is related to heterogeneous catalytic processes with Ni-based catalysts for CO2 reduction. On the basis of our earlier nine-dimensional potential energy surface for CO2/Ni(100), dynamical calculations have been done using the generalized Langevin oscillator (GLO) model combined with local density friction approximation (LDFA), in which the former accounts for the surface motion and the latter accounts for the low-energy electron-hole pair (EHP) excitation. In spite of its simplicity, it is found that the GLO model yields quite satisfactory results, including the significant energy loss and product energy disposal, trapping, and steering dynamics, all of which agree well with the ab initio molecular dynamics ones where many surface atoms are explicitly involved with high computational cost. However, the GLO model fails to describe the reactivity enhancement due to the lattice motion because it intrinsically does not incorporate the variance of barrier height on the surface atom displacement. On the other hand, in LDFA, the energy transferred to EHPs is found to play a minor role and barely alter the dynamics, except for slightly reducing the dissociation probabilities. In addition, vibrational state-selected dissociative sticking probabilities are calculated and previously observed strong mode specificity is confirmed. Our work suggests that further improvement of the GLO model is needed to consider the lattice-induced barrier lowering.

  4. Cyclic and isothermal oxidation behavior at 1100 and 1200 C of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr alloys

    NASA Technical Reports Server (NTRS)

    Lowell, C. E.

    1973-01-01

    Alloys of Ni-20Cr, Ni-20Cr-3Mn, Ni-20Cr-3Si, and Ni-40Cr were cyclically oxidized at 1100 and 1200 C for up to 100 hours. Oxidation behavior was judged by sample thickness and weight change, metallography, diffraction, and microprobe analysis. The least attacked were Ni-40Cr and Ni-20Cr-3Si. The alloy Ni-20Cr-3Mn was much less attacked than Ni-20Cr, but more than the other alloys. The formation of Cr2O3 accounted for the increased resistance of Ni-Cr and Ni-20Cr-3Si, and the formation of MnCr2O4 accounts for the improvement in Ni-20Cr-3mn over Ni-20Cr.

  5. Ion-beam-induced magnetic and structural phase transformation of Ni-stabilized face-centered-cubic Fe films on Cu(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloss, Jonas; Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2, 616 69 Brno; Shah Zaman, Sameena

    2013-12-23

    Metastable face-centered cubic (fcc) Fe/Cu(100) thin films are good candidates for ion-beam magnetic patterning due to their magnetic transformation upon ion-beam irradiation. However, pure fcc Fe films undergo spontaneous transformation when their thickness exceeds 10 ML. This limit can be extended to approximately 22 ML by deposition of Fe at increased CO background pressures. We show that much thicker films can be grown by alloying with Ni for stabilizing the fcc γ phase. The amount of Ni necessary to stabilize nonmagnetic, transformable fcc Fe films in dependence on the residual background pressure during the deposition is determined and a phasemore » diagram revealing the transformable region is presented.« less

  6. B a 2 NiOs O 6 : A Dirac-Mott insulator with ferromagnetism near 100 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad

    In this study, the ferromagnetic semiconductor Ba 2NiOsO 6 ( T mag ~ 100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [Fm - 3m ; a = 8.0428 ( 1 ) Å], where the Ni 2+ and Os 6+ ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of Os 6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >more » 21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te ( T mag < 180 K ), the spin-gapless semiconductor Mn 2 CoAl ( T mag ~ 720 K ), and the ferromagnetic insulators EuO ( T mag ~ 70 K ) and Bi 3Cr 3O 11 ( T mag ~ 220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba 2NiOsO 6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.« less

  7. B a 2 NiOs O 6 : A Dirac-Mott insulator with ferromagnetism near 100 K

    DOE PAGES

    Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad; ...

    2016-12-28

    In this study, the ferromagnetic semiconductor Ba 2NiOsO 6 ( T mag ~ 100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [Fm - 3m ; a = 8.0428 ( 1 ) Å], where the Ni 2+ and Os 6+ ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of Os 6+ plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >more » 21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te ( T mag < 180 K ), the spin-gapless semiconductor Mn 2 CoAl ( T mag ~ 720 K ), and the ferromagnetic insulators EuO ( T mag ~ 70 K ) and Bi 3Cr 3O 11 ( T mag ~ 220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of Ba 2NiOsO 6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.« less

  8. Low-temperature CO oxidation on Ni(111) and on a Au/Ni(111) surface alloy.

    PubMed

    Knudsen, Jan; Merte, Lindsay R; Peng, Guowen; Vang, Ronnie T; Resta, Andrea; Laegsgaard, Erik; Andersen, Jesper N; Mavrikakis, Manos; Besenbacher, Flemming

    2010-08-24

    From an interplay between scanning tunneling microscopy, temperature programmed desorption, X-ray photoelectron spectroscopy, and density functional theory calculations we have studied low-temperature CO oxidation on Au/Ni(111) surface alloys and on Ni(111). We show that an oxide is formed on both the Ni(111) and the Au/Ni(111) surfaces when oxygen is dosed at 100 K, and that CO can be oxidized at 100 K on both of these surfaces in the presence of weakly bound oxygen. We suggest that low-temperature CO oxidation can be rationalized by CO oxidation on O(2)-saturated NiO(111) surfaces, and show that the main effect of Au in the Au/Ni(111) surface alloy is to block the formation of carbonate and thereby increase the low-temperature CO(2) production.

  9. Study of the scale-up, formulation, ageing and ammonia adsorption capacity of MIL-100(Fe), Cu-BTC and CPO-27(Ni) for use in respiratory protection filters.

    PubMed

    Hindocha, S; Poulston, S

    2017-09-01

    The metal-organic frameworks (MOFs) MIL-100(Fe), Cu-BTC and CPO-27(Ni) were synthesised in 1 kg batches. The materials were then formed in two different industrially relevant ways. Firstly, dry granulation was used to produce pellets which were sieved to give material with a 300-1000 μm size, and the fines were subsequently recycled to mimic a large scale industrial process. Secondly, wet granulation with a polymer was used to produce granules which were again sieved to 300-1000 μm. XRD data shows that the structures of MIL-100(Fe) and CPO-27(Ni) remain intact during both forming processes, whilst Cu-BTC is shown to degrade during processing. This is in line with the ammonia adsorption data obtained for the formed materials which evaluated the ammonia adsorption capacity of the materials using breakthrough measurements. MIL-100(Fe) and CPO-27(Ni) are shown to have capacities of 47 mg g -1 and 62 mg g -1 respectively whilst Cu-BTC has a decreased capacity of 37 mg g -1 from 97 mg g -1 upon forming. The formed materials were also aged at 25 °C and 80% humidity for a week and the ammonia adsorption capacity re-evaluated. As expected, Cu-BTC decomposed under these conditions, whilst MIL-100(Fe) and CPO-27(Ni) show slightly decreased ammonia adsorption capacities of 36 mg g -1 and 60 mg g -1 respectively.

  10. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE PAGES

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal; ...

    2016-10-11

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  11. Comparative study of the oxidation of NiAl(100) by molecular oxygen and water vapor using ambient-pressure X-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Qianqian; Qin, Hailang; Boscoboinik, Jorge Anibal

    The oxidation behavior of NiAl(100) by molecular oxygen and water vapor under a near-ambient pressure of 0.2 Torr is monitored using ambient-pressure X-ray photoelectron spectroscopy. O 2 exposure leads to the selective oxidation of Al at temperatures ranging from 40 to 500 °C. By contrast, H 2O exposure results in the selective oxidation of Al at 40 and 200 °C, and increasing the oxidation temperature above 300 °C leads to simultaneous formation of both Al and Ni oxides. Furthermore, these results demonstrate that the O 2 oxidation forms a nearly stoichiometric Al 2O 3 structure that provides improved protection tomore » the metallic substrate by barring the outward diffusion of metals. By contrast, the H 2O oxidation results in the formation of a defective oxide layer that allows outward diffusion of Ni at elevated temperatures for simultaneous NiO formation.« less

  12. Barrier modification in sub-barrier fusion reaction 64Ni+100Mo using Wong formula with Skyrme forces in semiclassical formalism

    NASA Astrophysics Data System (ADS)

    Kumar, Raj; Gupta, Raj K.

    2011-09-01

    We obtain the nuclear proximity potential by using semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), and use it in the extended l-summed Wong formula under frozen density approximation. This method has the advantage of allowing the use of different Skyrme forces, giving different barriers. Thus, for a given reaction, we could choose a Skyrme force with proper barrier characteristics, not-requiring extra "barrier lowering" or "barrier narrowing" for a best fit to data. For the 64Ni+100Mo reaction, the l-summed Wong formula, with effects of deformations and orientations of nuclei included, fits the fusion-evaporation cross section data exactly for the force GSkI, requiring additional barrier modifications for forces SIII and SV. However, the same for other similar reactions, like 58,64Ni+58,64Ni, fit the data best for SIII force. Hence, the barrier modification effects in l-summed Wong expression depend on the choice of Skyrme force in semiclassical ETF method.

  13. Strongly Correlated Metal Built from Sachdev-Ye-Kitaev Models

    NASA Astrophysics Data System (ADS)

    Song, Xue-Yang; Jian, Chao-Ming; Balents, Leon

    2017-11-01

    Prominent systems like the high-Tc cuprates and heavy fermions display intriguing features going beyond the quasiparticle description. The Sachdev-Ye-Kitaev (SYK) model describes a (0 +1 )D quantum cluster with random all-to-all four-fermion interactions among N fermion modes which becomes exactly solvable as N →∞ , exhibiting a zero-dimensional non-Fermi-liquid with emergent conformal symmetry and complete absence of quasiparticles. Here we study a lattice of complex-fermion SYK dots with random intersite quadratic hopping. Combining the imaginary time path integral with real time path integral formulation, we obtain a heavy Fermi liquid to incoherent metal crossover in full detail, including thermodynamics, low temperature Landau quasiparticle interactions, and both electrical and thermal conductivity at all scales. We find linear in temperature resistivity in the incoherent regime, and a Lorentz ratio L ≡(κ ρ /T ) varies between two universal values as a function of temperature. Our work exemplifies an analytically controlled study of a strongly correlated metal.

  14. Phase Diagram of Planar Matrix Quantum Mechanics, Tensor, and Sachdev-Ye-Kitaev Models.

    PubMed

    Azeyanagi, Tatsuo; Ferrari, Frank; Massolo, Fidel I Schaposnik

    2018-02-09

    We study the Schwinger-Dyson equations of a fermionic planar matrix quantum mechanics [or tensor and Sachdev-Ye-Kitaev (SYK) models] at leading melonic order. We find two solutions describing a high entropy, SYK black-hole-like phase and a low entropy one with trivial IR behavior. There is a line of first order phase transitions that terminates at a new critical point. Critical exponents are nonmean field and differ on the two sides of the transition. Interesting phenomena are also found in unstable and stable bosonic models, including Kazakov critical points and inconsistency of SYK-like solutions of the IR limit.

  15. The effect of Fe2NiO4 and Fe4NiO4Zn magnetic nanoparticles on anaerobic digestion activity.

    PubMed

    Chen, Jian Lin; Steele, Terry W J; Stuckey, David C

    2018-06-11

    Two types of magnetic nanoparticles (MNPs), i.e. Ni ferrite nanoparticles (Fe 2 NiO 4 ) and Ni Zn ferrite nanoparticles (Fe 4 NiO 4 Zn) containing the trace metals Ni and Fe, were added to the anaerobic digestion of synthetic municipal wastewater at concentrations between 1 and 100 mg Ni L -1 in order to compare their effects on biogas (methane) production and sludge activity. Using the production of methane over time as a measure, the assays revealed that anaerobic digestion was stimulated by the addition of 100 mg Ni L -1 in Fe 2 NiO 4 NPs, while it was inhibited by the addition of 1-100 mg Ni L -1 in Fe 4 NiO 4 Zn NPs. Especially at 100 mg Ni L -1 , Fe 4 NiO 4 Zn NPs resulted in a total inhibition of anaerobic digestion. The metabolic activity of the anaerobic sludge was tested using the resazurin reduction assay, and the assay clearly revealed the negative effect of Fe 4 NiO 4 Zn NPs and the positive effect of Fe 2 NiO 4 NPs. Re-feeding fresh synthetic medium reactivated the NPs added to the anaerobic sludge, except for the experiment with 100 mg Ni L -1 addition of Fe 4 NiO 4 Zn NPs. The findings in this present study indicate a possible new strategy for NPs design to enhance anaerobic digestion. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  16. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M., E-mail: manickam-mahendran@tce.edu, E-mail: perialangulam@gmail.com

    2016-05-23

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively.more » At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.« less

  17. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    NASA Astrophysics Data System (ADS)

    Kumar, S. Vinodh; Raja, M. Manivel; Pandi, R. Senthur; Pandyan, R. Kodi; Mahendran, M.

    2016-05-01

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L12 cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.

  18. Asymmetrical interfacial reactions of Ni/SAC101(NiIn)/Ni solder joint induced by current stressing

    NASA Astrophysics Data System (ADS)

    Lin, Chen-Yi; Chiu, Tsung-Chieh; Lin, Kwang-Lung

    2018-03-01

    An electric current can asymmetrically trigger either atomic migration or interfacial reactions between a cathode and an anode. The present study investigated the dissolution of metallization and formation of an interfacial intermetallic compound (IMC) in the Cu/Ni/Sn1.0Ag0.1Cu0.02Ni0.05In/Ni/Cu solder joint at various current densities in the order of 103 A/cm2 at temperatures ranging from 100 °C to 150 °C. The polarization behavior of Ni dissolution and IMC formation under current stressing were systematically investigated. The asymmetrical interfacial reactions of the solder joint were found to be greatly influenced by ambient temperature. The dissolution of Ni and its effect on interfacial IMC formation were also discussed.

  19. Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at. pct W Alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Pinaki P.; Ray, Ranjit K.; Tsuji, Nobuhiro

    2010-11-01

    An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling ( 95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ( left\\{ {00 1} right\\}left< { 100} rightrangle ) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ( left\\{ {0 1 3} right\\}left< { 100} rightrangle ). Low-temperature annealing produces a weak cube texture along with the left\\{ {0 1 3} right\\}left< { 100} rightrangle component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the left\\{ {0 1 3} right\\}left< { 100} rightrangle component. The difference in the relative strengths of the cube, and the left\\{ {0 1 3} right\\}left< { 100} rightrangle components in the two materials is evident from the beginning of recrystallization in which more left\\{ {0 1 3} right\\}left< { 100} rightrangle -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the left\\{ {0 1 3} right\\}left< { 100} rightrangle grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation.

  20. Approximating the Sachdev-Ye-Kitaev model with Majorana wires

    NASA Astrophysics Data System (ADS)

    Chew, Aaron; Essin, Andrew; Alicea, Jason

    The Sachdev-Ye-Kitaev (SYK) model describes a large collection of Majorana fermions coupled via random, `all-to-all' four-fermion interactions. This model enjoys broad interdisciplinary interest because it provides a solvable realization of holography in 0+1 dimensions, exhibits unusual spectral and thermodynamic properties, and shares deep connections to chaos and black holes. We propose a solid-state implementation of the SYK Hamiltonian that employs quantum dots coupled to arrays of topological superconductors hosting Majorana end-states. All-to-all four-Majorana couplings are mediated by interactions in the dot, while the randomness originates from disorder in the hoppings between the Majorana modes and dot levels. Using perturbation theory and explicit numerics, we study the properties of the dot-wire array system under various experimental conditions. Interestingly, our setup not only allows exploration of SYK physics, but also provides a controlled testbed for interaction effects on the topological classification of fermionic phases. Supported by the National Science Foundation (DMR-1341822), Institute for Quantum Information and Matter, and Walter Burke Institute at Caltech. AC gratefully acknowledges support from the Dominic Orr Fellowship.

  1. Dispersive Sachdev-Ye-Kitaev model: Band structure and quantum chaos

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei

    2017-11-01

    The Sachdev-Ye-Kitaev (SYK) model is a concrete model for a non-Fermi liquid with maximally chaotic behavior in (0 +1 ) dimensions. In order to gain some insights into real materials in higher dimensions where fermions could hop between different sites, here we consider coupling a SYK lattice by constant hopping. We call this the dispersive SYK model. Focusing on (1 +1 ) -dimensional homogeneous hopping, by either tuning the temperature or the relative strength of the random interaction (hopping) and constant hopping, we find a crossover between a dispersive metal to an incoherent metal, where the dynamic exponent z changes from 1 to ∞ . We study the crossover by calculating the spectral function, charge density correlator, and the Lyapunov exponent. We further find the Lyapunov exponent becomes larger when the chemical potential is tuned to approach a van Hove singularity because of the large density of states near the Fermi surface. The effect of the topological nontrivial bands is also discussed.

  2. Preferential diffusion in concentrated solid solution alloys: NiFe, NiCo and NiCoCr

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri; Zhang, Yanwen

    2017-02-13

    In single-phase concentrated solid-solution alloys (CSAs), including high entropy alloys (HEAs), remarkable mechanical properties are exhibited, as well as extraordinary corrosion and radiation resistance compared to pure metals and dilute alloys. But, the mechanisms responsible for these properties are unknown in many cases. In this work, we employ ab initio molecular dynamics based on density functional theory to study the diffusion of interstitial atoms in Ni and Ni-based face-centered cubic CSAs including NiFe, NiCo and NiCoCr. We model the defect trajectories over >100 ps and estimate tracer diffusion coefficients, correlation factors and activation energies. Furthermore, we found that the diffusionmore » mass transport in CSAs is not only slower than that in pure components, i.e. sluggish diffusion, but also chemically non-homogeneous. The results obtained here can be used in understanding and predicting the atomic segregation and phase separation in CSAs under irradiation conditions.« less

  3. Shock induced reaction of Ni/Al nanopowder mixture.

    PubMed

    Meng, C M; Wei, J J; Chen, Q Y

    2012-11-01

    Nanopowder Ni/Al mixture (mixed in Al:Ni = 2:1 stoichiometry) was shock compressed by employing single and two-stage light gas gun. The particle size of Al and Ni are 100-200 nm and 50-70 nm respectively, morphologies of Al and Ni are sphere like either. Recovered product was characterized by scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis. According to the XRD spectrum, the mixed powder undergo complete reaction under shock compression, reaction product consist of Ni2Al3, NiAl and corundum structure Al2O3 compound. Grain size of Ni-Al compound is less than 100 nm. With the shock pressure increasing, the ratio of Ni2Al3 decreased obviously. The corundum crystal size is 400-500 nm according to the SEM observation. The results of shock recovery experiments and analysis show that the threshold pressure for reaction of nano size powder Ni/Al mixture is much less than that of micro size powder.

  4. Validation of the YuWell YE690A upper-arm blood pressure monitor, for clinic use and self-measurement, according to the European Society of Hypertension International Protocol revision 2010.

    PubMed

    Chen, Qi; Lei, Lei; Li, Yan; Wang, Ji-Guang

    2017-10-01

    The present study aimed to evaluate the accuracy of the automated oscillometric upper-arm blood pressure monitor YuWell YE690A for blood pressure measurement according to the International Protocol of the European Society of Hypertension revision 2010. Systolic and diastolic blood pressures were measured sequentially in 33 adult Chinese (12 women, 44.2 years of mean age) using a mercury sphygmomanometer (two observers) and the YE690A device (one supervisor). A total of 99 pairs of comparisons were obtained from 33 participants for judgments in two parts with three grading phases. All the blood pressure requirements were fulfilled. The YuWell YE690A device achieved the targets in part 1 of the validation study. The number of absolute differences between device and observers within 5, 10, and 15 mmHg was 79/99, 96/99, and 97/99, respectively, for systolic blood pressure and 72/99, 95/99, and 98/99, respectively, for diastolic blood pressure. The device also fulfilled the criteria in part 2 of the validation study. Thirty-one and 25 participants for systolic and diastolic blood pressure, respectively, had at least two of the three device-observer differences within 5 mmHg (required ≥24). No participant for systolic and two participants for diastolic blood pressure had all the three device-observer comparisons greater than 5 mmHg. The YuWell blood pressure monitor YE690A has passed the requirements of the International Protocol revision 2010 and hence can be recommended for blood pressure measurement in adults.

  5. Examination of Multiphase (Zr,Ti)(V,Cr,Mn,Ni)2 Ni-MH Electrode Alloys: Part II. Solid-State Transformation of the Interdendritic B2 Phase

    NASA Astrophysics Data System (ADS)

    Bendersky, L. A.; Wang, K.; Boettinger, W. J.; Newbury, D. E.; Young, K.; Chao, B.

    2010-08-01

    Solidification microstructure of multicomponent (Zr,Ti)-Ni-(V,Cr,Mn,Co) alloys intended for use as negative electrodes in Ni-metal hydride (Ni-MH) batteries was studied in Part I of this series of articles. Part II of the series examines the complex internal structure of the interdendritic grains formed by solid-state transformation and believed to play an important role in the electrochemical charge/discharge characteristics of the overall alloy composition. By studying one alloy, Zr21Ti12.5V10Cr5.5Mn5.1Co5.0Ni40.2Al0.5Sn0.3, it is shown that the interdendritic grains solidify as a B2 (Ti,Zr)44(Ni,TM)56 phase, and then undergo transformation to Zr7Ni10-type, Zr9Ni11-type, and martensitic phases. The transformations obey orientation relationships between the high-temperature B2 phase and the low-temperature Zr-Ni-type intermetallics, and consequently lead to a multivariant structure. The major orientation relationship for the orthorhombic Zr7Ni10 type is [011]Zr7Ni10//[001]B2; (100)Zr7Ni10//(100)B2. The orientation relationship for the tetragonal Zr9Ni11 type is [001]Zr9Ni11//[001]B2; (130)Zr9Ni11//(100)B2. Binary Ni-Zr and ternary Ti-Ni-Zr phase diagrams were used to rationalize the formation of the observed domain structure.

  6. Shape transitions in strained Cu islands on Ni(100): kinetics versus energetics

    NASA Astrophysics Data System (ADS)

    Shim, Yunsic; Amar, Jacques

    2012-02-01

    We examine the shape transition from compact to ramified islands observed in submonolayer Cu/Ni(100) growth. Recently, it has been argued that this transition is not due to a growth instability but can be understood in terms of energetic arguments. In order to determine the responsible mechanisms we have carried out energetics calculations as well as temperature-accelerated dynamics (TAD) and kinetic Monte Carlo (KMC) simulations. Our results indicate that the shape transition cannot be explained by equilibrium arguments, but is instead due to kinetic effects which are mediated by strain. In particular, by calculating the relevant line-tension and strain energies, we find that the equilibrium critical island-width is at least four orders of magnitude larger than the experimentally observed arm-width. In contrast, our TAD simulations indicate that unexpected concerted motions occurring at step edges are responsible. The energy barriers for these concerted motions decrease with increasing island size and appear to saturate for islands larger than 300 - 400 atoms. By including these strain-induced kinetic processes in our KMC simulations of island-growth, we have been able to explain both the temperature- and coverage-dependence of the island morphology.

  7. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation

    NASA Astrophysics Data System (ADS)

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Dok Kim, Young

    2018-04-01

    NiO/NiCo2O4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (˜20 m2 g-1) than expected for a flat-surface structure (<15 m2 g-1). Herein, we present a study of the catalytic activity of our novel NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo2O4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo2O4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo2O4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  8. Synthesis and catalytic activity of electrospun NiO/NiCo2O4 nanotubes for CO and acetaldehyde oxidation.

    PubMed

    Kim, Il Hee; Lee, Hyerim; Yu, Areum; Jeong, Jae Hwan; Lee, Youngmi; Kim, Myung Hwa; Lee, Chongmok; Kim, Young Dok

    2018-04-27

    NiO/NiCo 2 O 4 nanotubes with a diameter of approximately 100 nm are synthesized using Ni and Co precursors via electro-spinning and subsequent calcination processes. The tubular structure is confirmed via transmission electron microscopy imaging, whereas the structures and elemental compositions of the nanotubes are determined using x-ray diffraction, energy dispersive x-ray spectroscopy, and x-ray photoelectron spectroscopy. N 2 adsorption isotherm data reveal that the surface of the nanotubes consists of micropores, thereby resulting in a significantly higher surface area (∼20 m 2 g -1 ) than expected for a flat-surface structure (<15 m 2 g -1 ). Herein, we present a study of the catalytic activity of our novel NiO/NiCo 2 O 4 nanotubes for CO and acetaldehyde oxidation. The catalytic activity of NiO/NiCo 2 O 4 is superior to Pt below 100 °C for CO oxidation. For acetaldehyde oxidation, the total oxidation activity of NiO/NiCo 2 O 4 for acetaldehyde is comparable with that of Pt. Coexistence of many under-coordinated Co and Ni active sites in our structure is suggested be related to the high catalytic activity. It is suggested that our novel NiO/NiCo 2 O 4 tubular structures with surface microporosity can be of interest for a variety of applications, including the catalytic oxidation of harmful gases.

  9. The fabrication of foam-like 3D mesoporous NiO-Ni as anode for high performance Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Peng, E-mail: huangp07@lzu.edu.cn; Department of Physics, Lanzhou University, Lanzhou 730000; Zhang, Xin

    2015-03-15

    Graphical abstract: Foam-like 3 dimensional (3D) mesoporous NiO on 3D micro-porous Ni was fabricated. - Highlights: • We prepare NiO-Ni foam composite via hydrothermal etching and subsequent annealing. • The NiO exhibits novel foam-like 3D mesoporous architecture. • The NiO-Ni anode shows good cycle stability. - Abstract: Foam-like three dimensional mesoporous NiO on Ni foam was fabricated via facile hydrothermal etching and subsequent annealing treatment. The porous NiO consists of a large number of nanosheets with mean thickness about 50 nm, among which a large number of mesoscopic pores with size ranges from 100 nm to 1 μm distribute. Themore » electrochemical performance of the as-prepared NiO-Ni as anode for lithium ion battery was studied by conventional charge/discharge test, which shows excellent cycle stability and rate capability. It exhibits initial discharge and charge capacities of 979 and 707 mA h g{sup −1} at a charge/discharge rate of 0.7 C, which maintain of 747 and 738 mA h g{sup −1} after 100 cycles. Even after 60 cycles at various rates from 0.06 to 14 C, the 10th discharge and charge capacities of the NiO-Ni electrode can revert to 699 and 683 mA h g{sup −1} when lowering the charge/discharge rate to 0.06 C.« less

  10. Synthesis of u-channelled spherical Fex(CoyNi1-y)100-x Janus colloidal particles with excellent electromagnetic wave absorption performance.

    PubMed

    Li, Hao; Cao, Zhenming; Lin, Jiayao; Zhao, Hui; Jiang, Qiaorong; Jiang, Zhiyuan; Liao, Honggang; Kuang, Qin; Xie, Zhaoxiong

    2018-01-25

    Due to their distinctive structure, inherently anisotropic properties and broad applications, Janus colloidal particles have attracted tremendous attention and it is significant to synthesize high yield Janus colloidal particles in a cost-effective and reliable way. On the other hand, due to the expanded electromagnetic interference problems, it is highly desired to develop excellent electromagnetic wave absorbing materials with an ultra-wide absorption bandwidth for practical application. Herein, a confined liquid-solid redox reaction strategy has been developed to fabricate a series of Fe x (Co y Ni 1-y ) 100-x ternary alloy particles. The as-prepared particles are in the form of u-channelled noncentrosymmetric spheres, one kind of Janus colloidal particles which have been rarely observed. Due to the combination and synergy effects of multi-magnetic metals, the polycrystalline structure and their specific morphology, the as-prepared particles possess multiple magnetic resonance and multiple dielectric relaxation processes, and therefore show excellent electromagnetic wave absorption performances. In particular, the strongest reflection loss (RL) of the Fe 15 (Co 0.2 Ni 0.8 ) 85 Janus colloidal particles is up to -36.9 dB with a thickness of 2.5 mm, and the effective absorption (RL < -10 dB) bandwidth can reach 9.2 GHz (8-17.2 GHz) with a thickness of 2 mm. Such a wide bandwidth has barely been reported for magnetic metal alloys under a single thickness. These results suggest that the Fe x (Co y Ni 1-y ) 100-x Janus particles could be a promising candidate for highly efficient electromagnetic wave absorbing materials for practical application.

  11. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    NASA Astrophysics Data System (ADS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Bigelow, G.; Gaydosh, D.

    2015-12-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni49.9Ti50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni50.3Ti29.7Hf20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g-1, compared to a maximum value of 0.06 J g-1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni50.3Ti29.7Hf20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni50.3Ti29.7Hf20, in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation.

  12. Tunable photoelectric response in NiO-based heterostructures by various orientations

    NASA Astrophysics Data System (ADS)

    Luo, Yidong; Qiao, Lina; Zhang, Qinghua; Xu, Haomin; Shen, Yang; Lin, Yuanhua; Nan, Cewen

    2018-02-01

    We engineered various orientations of NiO layers for NiO-based heterostructures (NiO/Au/STO) to investigate their effects on the generation of hot electrons and holes. Our calculation and experimental results suggested that bandgap engineering and the orientation of the hole transport layer (NiO) were crucial elements for the optimization of photoelectric responses. The (100)-orientated NiO/Au/STO achieved the highest photo-current density (˜30 μA/cm2) compared with (111) and (110)-orientated NiO films, which was attributed to the (100) films's lowest effective mass of photogenerated holes (˜1.82 m0) and the highest efficiency of separating and transferring electron-holes of the (100)-orientated sample. Our results opened a direction to design a high efficiency photoelectric solar cell.

  13. B a2NiOs O6 : A Dirac-Mott insulator with ferromagnetism near 100 K

    NASA Astrophysics Data System (ADS)

    Feng, Hai L.; Calder, Stuart; Ghimire, Madhav Prasad; Yuan, Ya-Hua; Shirako, Yuichi; Tsujimoto, Yoshihiro; Matsushita, Yoshitaka; Hu, Zhiwei; Kuo, Chang-Yang; Tjeng, Liu Hao; Pi, Tun-Wen; Soo, Yun-Liang; He, Jianfeng; Tanaka, Masahiko; Katsuya, Yoshio; Richter, Manuel; Yamaura, Kazunari

    2016-12-01

    The ferromagnetic semiconductor B a2NiOs O6 (Tmag˜100 K ) was synthesized at 6 GPa and 1500 °C. It crystallizes into a double perovskite structure [F m -3 m ; a =8.0428 (1 )Å ], where the N i2 + and O s6 + ions are perfectly ordered at the perovskite B site. We show that the spin-orbit coupling of O s6 + plays an essential role in opening the charge gap. The magnetic state was investigated by density functional theory calculations and powder neutron diffraction. The latter revealed a collinear ferromagnetic order in a >21 kOe magnetic field at 5 K. The ferromagnetic gapped state is fundamentally different from that of known dilute magnetic semiconductors such as (Ga,Mn)As and (Cd,Mn)Te (Tmag<180 K ), the spin-gapless semiconductor M n2CoAl (Tmag˜720 K ), and the ferromagnetic insulators EuO (Tmag˜70 K ) and B i3C r3O11 (Tmag˜220 K ). It is also qualitatively different from known ferrimagnetic insulators and semiconductors, which are characterized by an antiparallel spin arrangement. Our finding of the ferromagnetic semiconductivity of B a2NiOs O6 should increase interest in the platinum group oxides, because this alternative class of materials should be useful in the development of spintronic, quantum magnetic, and related devices.

  14. Phase formation and morphological stability of ultrathin Ni-Co-Pt silicide films formed on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Peng; Wu, Dongping, E-mail: dongpingwu@fudan.edu.cn; Kubart, Tomas

    Ultrathin Ni, Co, and Pt films, each no more than 4 nm in thickness, as well as their various combinations are employed to investigate the competing growth of epitaxial Co{sub 1-y}Ni{sub y}Si{sub 2} films against polycrystalline Pt{sub 1-z}Ni{sub z}Si. The phase formation critically affects the morphological stability of the resulting silicide films, with the epitaxial films being superior to the polycrystalline ones. Any combination of those metals improves the morphological stability with reference to their parent individual metal silicide films. When Ni, Co, and Pt are all included, the precise initial location of Pt does little to affect the final phasemore » formation in the silicide films and the epitaxial growth of Co{sub 1-x}Ni{sub x}Si{sub 2} films is always perturbed, in accordance to thermodynamics that shows a preferential formation of Pt{sub 1-z}Ni{sub z}Si over that of Co{sub 1-y}Ni{sub y}Si{sub 2}.« less

  15. Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys

    DOE PAGES

    Jin, Ke; Zhang, Yanwen; Bei, Hongbin

    2015-09-09

    In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less

  16. Icosahedral quasicrystalline (Ti1.6V0.4Ni)100-xScx alloys: Synthesis, structure and their application in Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Hu, Wen; Yi, Jianhong; Zheng, Biju; Wang, Limin

    2013-06-01

    Thanks to the revolutionary discovery of 5-fold symmetry contributed by Shechtman, quasicrystal is now recognized as another solid-state existing form. As the second largest class of quasicrystals, titanium-based icosahedral quasicrystals are very promising for hydrogen storage applications owing to their inherent abundant interstitial sites and favorable hydrogen-metal chemistry. In this context, (Ti1.6V0.4Ni)100-xScx (x=0.5-6) quaternary icosahedral quasicrystals have been successfully synthesized via arc-melting and subsequent melt-spinning techniques, and then their electrochemical performance toward hydrogen is explored. When the molar ratio of Sc addition is under 1%, a maximum discharge capacity of about 270 mA h g-1 can be delivered. With further increasing Sc amount to 6%, good cycling stability as well as significantly retarded self-discharge rate (capacity retention 94% after 24 h relaxation) is observed. But meanwhile, the discharge capacities fall into 250-240 mA h g-1, and the electrocatalytic activity improvement is highly demanded.

  17. The Portevin-Le Chatelier Effect in the Ni-Based Superalloy IN100

    NASA Astrophysics Data System (ADS)

    Fernandez-Zelaia, Patxi; Adair, Benjamin S.; Barker, Vincent M.; Antolovich, Stephen D.

    2015-12-01

    The Portevin-Le Chatelier (PLC) effect has been studied in the Ni-based superalloy IN100 which is currently used as a disk material in jet engines. A series of tensile tests was carried out at 588 K, 755 K, and 922 K (315 °C, 482 °C, and 649 °C) at plastic strain rates ranging from a low of 6.21 × 10-6 s-1 to a high of 4.92 × 10-2 s-1. The activation energy was determined using the slope of a line on a strain rate/temperature graph which divided the area of the graph into two regions: (1) "PLC behavior observed," and (2) "No PLC behavior observed." A new statistical approach was developed to objectively differentiate between a true PLC effect and experimental uncertainty ( i.e., "noise"). The value of the activation energy was found to be 1.14 eV/atom, which strongly suggests that the rate controlling process was bulk diffusion of C in the lattice. A qualitative model, based on the Orowan equation and slip band dislocation mechanics, was proposed, which unifies the seemingly disparate ideas of the process being controlled by a single atom/dislocation interaction while at the same time exhibiting significant strains during PLC load drops.

  18. Flexible bottom-emitting white organic light-emitting diodes with semitransparent Ni/Ag/Ni anode.

    PubMed

    Koo, Ja-Ryong; Lee, Seok Jae; Lee, Ho Won; Lee, Dong Hyung; Yang, Hyung Jin; Kim, Woo Young; Kim, Young Kwan

    2013-05-06

    We fabricated a flexible bottom-emitting white organic light-emitting diode (BEWOLED) with a structure of PET/Ni/Ag/Ni (3/6/3 nm)/ NPB (50 nm)/mCP (10 nm)/7% FIrpic:mCP (10 nm)/3% Ir(pq)(2) acac:TPBi (5 nm)/7% FIrpic:TPBi (5 nm)/TPBi (10 nm)/Liq (2 nm)/ Al (100 nm). To improve the performance of the BEWOLED, a multilayered metal stack anode of Ni/Ag/Ni treated with oxygen plasma for 60 sec was introduced into the OLED devices. The Ni/Ag/Ni anode effectively enhanced the probability of hole-electron recombination due to an efficient hole injection into and charge balance in an emitting layer. By comparing with a reference WOLED using ITO on glass, it is verified that the flexible BEWOLED showed a similar or better electroluminescence (EL) performance.

  19. Metal-semiconductor interfacial reactions - Ni/Si system

    NASA Technical Reports Server (NTRS)

    Cheung, N. W.; Grunthaner, P. J.; Grunthaner, F. J.; Mayer, J. W.; Ullrich, B. M.

    1981-01-01

    X-ray photoelectron spectroscopy and channeling measurements with MeV He-4(+) ions have been used to probe the structure of the interface in the Ni/Si system. It is found that reactions occur where Ni is deposited on Si at 10 to the -10th torr: Si atoms are displaced from lattice sites, the Ni atoms are in an Si-rich environment, and the Ni/Si interface is graded in composition. Composition gradients are present at both interfaces in the Si/Ni2/Si/Ni system. For the Ni-Si system, cooling the substrate to 100 K slows down the reaction rate. The temperature dependence of the interfacial reactivity indicates the kinetic nature of metal-semiconductor interfaces.

  20. Tribological Behavior and Corrosion Resistance of Electroless Ni-B-W Coatings

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta

    The present study considers the tribological behavior and corrosion resistance of electroless Ni-B-W coatings deposited on AISI 1040 steel substrates. Coating is characterized using scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction technique. In as-deposited condition, coatings are found to be amorphous. On heat treatment, precipitation of crystalline Ni (1 1 1) and its borides take place. For as-deposited coating, the microhardness is obtained as ˜759HV100 which increases to ˜1181HV100 and ˜1098HV100 when heat treated at 350∘C and 450∘C, respectively. Incorporation of W in Ni-B coating results in an increase of hardness by 89HV100 in as-deposited condition. Heat treatment also results in increase in crystallite size of Ni (1 1 1). Wear rate and coefficient of friction (COF) of the coatings are evaluated on a pin-on-disc setup under both dry and lubricated sliding conditions. Wear resistance is observed to improve on heat treatment with an increase in crystallite size while COF deteriorates. However, in as-deposited condition, wear rate and COF of Ni-B-W coatings improve by ˜5 and ˜3 times, respectively, compared with Ni-B coatings. Wear and friction performance of the coatings are enhanced under lubrication due to the columnar structure of the coatings that retain lubricants. Corrosion resistance of Ni-B-W coating in 3.5% NaCl solution gets improved on heat treatment.

  1. Walker Circulation, El Niño and La Niña

    NASA Astrophysics Data System (ADS)

    Halpern, D.

    2014-12-01

    Ocean surface wind vector is likely the critical variable to predict onset, maintenance and dissipation of El Niño and La Niña. Analyses of SeaWinds and ASCAT 10-m height (called "surface") vector winds in the Atlantic, Indian and Pacific Oceans from 1°S-1°N during March 2000 - June 2011 revealed the longitudinal distribution of the surface zonal wind component associated with the Walker Circulation. In the Pacific Ocean east of 140°E and west of 85°W, the mean wind direction was westward towards the maritime continent with maximum mean zonal wind speed (- 6.5 m s-1) at 150°W; east of 85°W the mean direction was toward the convection zone over South America. Four El Niños and five La Niñas occurred from March 2000 - June 2011. In the Pacific from 150°E to 160°W, the average El Niño (La Niña) westward wind speed was 2 m s-1 (1 m s-1) smaller (larger) than normal. In the west Pacific, the variation in westward wind speeds in El Niño and La Niña conditions relative to normal conditions would be expected to substantially uplift the thermocline during El Niño compared to La Niña, which is consistent with conventional wisdom. In the east Pacific from 130°W - 100°W, average El Niño westward wind speeds were less than normal and La Niña conditions by 0.5 m s-1 and 1 m s-1, respectively. The "central" Pacific nature of the El Niños may have influenced the smaller difference between El Niño and La Niña westward wind speeds in the east Pacific compared to the west Pacific. Analyses of longitudinal distributions of thermocline depths will be discussed. Surface zonal wind speeds in the Atlantic and Indian Oceans showed no evidence of El Niño and La Niña; surface meridional winds showed an apparent response in the Indian and Pacific Oceans but not in the Atlantic Ocean. At 700-m height, the MISR zonal wind component in the Atlantic, Indian and Pacific Oceans had similar features as those at the surface, except in the east Pacific where the westward

  2. Oxidation-induced spin reorientation in Co adatoms and CoPd dimers on Ni/Cu(100)

    NASA Astrophysics Data System (ADS)

    Chen, K.; Beeck, T.; Fiedler, S.; Baev, I.; Wurth, W.; Martins, M.

    2016-04-01

    Ultrasmall magnetic clusters and adatoms are of strong current interest because of their possible use in future technological applications. Here, we demonstrate that the magnetic coupling between the adsorbates and the substrate can be significantly changed through oxidation. The magnetic properties of Co adatoms and CoPd dimers deposited on a remanently magnetized Ni/Cu(100) substrate have been investigated by x-ray absorption and x-ray magnetic circular dichroism spectroscopy at the Co L2 ,3 edges. Using spectral differences, pure and oxidized components are distinguished, and their respective magnetic moments are determined. The Co adatoms and the CoPd dimers are coupled ferromagnetically to the substrate, while their oxides, Co-O and CoPd-O, are coupled antiferromagnetically to the substrate. Along with the spin reorientation from the pure to the oxidized state, the magnetic moment of the adatom is highly reduced from Co to Co-O. In contrast, the magnetic moment of the dimer is of similar order for CoPd and CoPd-O.

  3. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  4. Ti, Ni and TiNi nanoparticles physically synthesized by Ar+ beam milling.

    PubMed

    Torres Castro, A; López Cuéllar, E; José Yacamán, M; Ortiz Méndez, U

    2008-12-01

    When the size of a particle decreases around 100 nm or less, there is a change in properties from those shown in the bulk material. In this work approximately 3 nm nanoparticles of Ni, Ti and TiNi bimetallic are produced using physical vapor deposition (PVD). Nanoparticles are characterized by High Resolution Transmission Electron Microscopy (HRTEM), High Angle Annular Dark Field (HAADF), Electron Diffraction (ED). The results show that all nanoparticles maintain the same crystal structure of bulk material but a change in their lattice parameter is produced.

  5. Comparative pharmacokinetics of swertiamarin in rats after oral administration of swertiamarin alone, Qing Ye Dan tablets and co-administration of swertiamarin and oleanolic acid.

    PubMed

    Xu, Gui-li; Li, Hong-liang; He, Jian-chang; Feng, En-fu; Shi, Pan-pan; Liu, Yue-qiong; Liu, Chang-xiao

    2013-08-26

    Qing Ye Dan is a well-known herbal drug that is widely used to treat viral hepatitis in the Yi and Hani minority regions in the Yunnan province of China. An LC-MS/MS method was developed to determine the levels of swertiamarin in rat plasma. Swertiamarin and naringin (internal standard, IS) were extracted from rat plasma using solid-phase extraction (SPE) to purify the samples. The pharmacokinetics of the following different administration methods of swertiamarin in rats were studied: oral administration of swertiamarin alone, a Qing Ye Dan tablet (QYDT) and co-administration of swertiamarin and oleanolic acid, with each method delivering approximately 20mg/kg of swertiamarin. Non-compartmental pharmacokinetic profiles were constructed by using the software DAS (version 2.1.1), and the pharmacokinetic parameters were compared using an unpaired Student's t-test. The results showed that the pharmacokinetic parameters Cmax, AUC0-∞, Vz/F and CLz/F were significantly different (P<0.05) among the three types of swertiamarin administration. The data indicate that oleanolic acid and the other ingredients present in QYDT could affect the pharmacokinetic behaviour of swertiamarin in rats. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Nickel Release, ROS Generation and Toxicity of Ni and NiO Micro- and Nanoparticles

    PubMed Central

    Hedberg, Jonas; Di Bucchianico, Sebastiano; Möller, Lennart; Odnevall Wallinder, Inger; Elihn, Karine; Karlsson, Hanna L.

    2016-01-01

    Occupational exposure to airborne nickel is associated with an elevated risk for respiratory tract diseases including lung cancer. Therefore, the increased production of Ni-containing nanoparticles necessitates a thorough assessment of their physical, chemical, as well as toxicological properties. The aim of this study was to investigate and compare the characteristics of nickel metal (Ni) and nickel oxide (NiO) particles with a focus on Ni release, reactive oxygen species (ROS) generation, cellular uptake, cytotoxicity and genotoxicity. Four Ni-containing particles of both nano-size (Ni-n and NiO-n) and micron-size (Ni-m1 and Ni-m2) were tested. The released amount of Ni in solution was notably higher in artificial lysosomal fluid (e.g. 80–100 wt% for metallic Ni) than in cell medium after 24h (ca. 1–3 wt% for all particles). Each of the particles was taken up by the cells within 4 h and they remained in the cells to a high extent after 24 h post-incubation. Thus, the high dissolution in ALF appeared not to reflect the particle dissolution in the cells. Ni-m1 showed the most pronounced effect on cell viability after 48 h (alamar blue assay) whereas all particles showed increased cytotoxicity in the highest doses (20–40 μg cm2) when assessed by colony forming efficiency (CFE). Interestingly an increased CFE, suggesting higher proliferation, was observed for all particles in low doses (0.1 or 1 μg cm-2). Ni-m1 and NiO-n were the most potent in causing acellular ROS and DNA damage. However, no intracellular ROS was detected for any of the particles. Taken together, micron-sized Ni (Ni-m1) was more reactive and toxic compared to the nano-sized Ni. Furthermore, this study underlines that the low dose effect in terms of increased proliferation observed for all particles should be further investigated in future studies. PMID:27434640

  7. NiCoO2 flowers grown on the aligned-flakes coated Ni foam for application in hybrid energy storage

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Zhao, Huilin; Zhou, JingKuo; Xue, Ruinan; Gao, Jianping

    2016-10-01

    Many NiCoO2 flowers with an average diameter of about 4 μm were grown on the NiCoO2 flakes coated Ni foam (denoted as NiCoO2/Ni foam) through a simple hydrothermal method and confirmed by scanning and transmission electron microscopies, X-ray diffraction and X-ray photoelectron spectrum measurements. The NiCoO2/Ni foam with high specific area and porosity was directly used as the working electrode without any binders. The measured specific capacitance of NiCoO2 grown on Ni foam is 756 F/g at 0.75 A/g using a three-electrode setup in 1 M KOH. Considering the high capacity of NiCoO2 and the good stability of rGO, the NiCoO2/Ni foam//rGO hybrid supercapacitor combining NiCoO2/Ni foam and rGO shows very good properties, such as high specific capacitance (82 F/g at 2 A/g based on the total mass of active materials), high energy density (25.7 Wh/kg at 1500 W/kg based on the total mass of active materials), good stability (about 90% capacitance retention after 2000-cycle at 100 mV/s), and low charge ion transfer resistance.

  8. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; Barnett, Scott A.; Wang, Jun

    2016-02-01

    The coarsening of Ni in Ni-yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors. Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.

  9. A Thermally Stable NiZn/Ta/Ni Scheme to Replace AuBe/Au Contacts in High-Efficiency AlGaInP-Based Light-Emitting Diodes

    NASA Astrophysics Data System (ADS)

    Kim, Dae-Hyun; Park, Jae-Seong; Kang, Daesung; Seong, Tae-Yeon

    2017-08-01

    We developed NiZn/(Ta/)Ni ohmic contacts to replace expensive AuBe/Au contacts commonly used in high-efficiency AlGaInP-based light-emitting diodes (LEDs), and compared the electrical properties of the two contact types. Unlike the AuBe/Au (130 nm/100 nm) contact, the NiZn/Ta/Ni (130 nm/20 nm/100 nm) contact shows improved electrical properties after being annealed at 500°C, with a contact resistivity of 5.2 × 10-6 Ω cm2. LEDs with the NiZn/Ta/Ni contact exhibited a 4.4% higher output power (at 250 mW) than LEDs with the AuBe/Au contact. In contrast to the trend for the AuBe/Au contact, the Ga 2 p core level for the NiZn/Ta/Ni contact shifted toward lower binding energies after being annealed at 500°C. Auger electron spectroscopy (AES) depth profiles showed that annealing the AuBe/Au samples caused the outdiffusion of both Be and P atoms into the metal contact, whereas in the NiZn/Ta/Ni samples, Zn atoms indiffused into the GaP layer. The annealing-induced electrical degradation and ohmic contact formation mechanisms are described and discussed on the basis of the results of x-ray photoemission spectroscopy and AES.

  10. Comparison of silicon, nickel, and nickel silicide (Ni 3Si) as substrates for epitaxial diamond growth

    NASA Astrophysics Data System (ADS)

    Tucker, D. A.; Seo, D.-K.; Whangbo, M.-H.; Sivazlian, F. R.; Stoner, B. R.; Bozeman, S. P.; Sowers, A. T.; Nemanich, R. J.; Glass, J. T.

    1995-07-01

    We carried out experimental and theoretical studies aimed at probing interface interactions of diamond with Si, Ni, and Ni 3Si substrates. Oriented diamond films deposited on (100) silicon were characterized by polar Raman, polar XRD, and cross-sectional HRTEM. These studies show that the diamond-(100)/Si(100) interface does not adopt the 45°-rotation but the 3 : 2-match arrangement. Our extended Hückel tight-binding (EHTB) electronic structure calculations for a model system show that the interface interaction favors the 3 : 2-match arrangement. Growth on polycrystalline Ni 3Si resulted in oriented diamond particles while, under the same growth conditions, largely graphite was formed on the nickel substrate. Our EHTB electronic structure calculations for model systems show that the (111) and (100) surfaces of Ni 3Si have a strong preference for diamond-nucleation over graphite-nucleation, but this is not the case for the (111) and (100) surfaces of Ni.

  11. Crystallography of the NiHfSi Phase in a NiAl (0.5 Hf) Single-Crystal Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Noebe, R. D.; Darolia, R.

    1996-01-01

    Small additions of Hf to conventionally processed NiAl single crystals result in the precipitation of a high density of cuboidal G-phase along with a newly identified silicide phase. Both of these phases form in the presence of Si which is not an intentional alloying addition but is a contaminant resulting from contact with the ceramic shell molds during directional solidification of the single-crystal ingots. The morphology, crystal structure and Orientation Relationship (OR) of the silicide phase in a NiAl (0.5 at.%Hf) single-crystal alloy have been determined using transmission electron microscopy, electron microdiffraction and energy dispersive X-ray spectroscopy. Qualitative elemental analysis and indexing of the electron microdiffraction patterns from the new phase indicate that it is an orthorhombic NiHfSi phase with unit cell parameters, a = 0.639 nm, b = 0.389 nm and c = 0.72 nm, and space group Pnma. The NiHfSi phase forms as thin rectangular plates on NiAl/111/ planes with an OR that is given by NiHfSi(100))(parallel) NiAl(111) and NiHfSi zone axes(010) (parallel) NiAl zone axes (101). Twelve variants of the NiHfSi phase were observed in the alloy and the number of variants and rectangular morphology of NiHfSi plates are consistent with symmetry requirements. Quenching experiments indicate that nucleation of the NiHfSi phase in NiAI(Hf) alloys is aided by the formation of NiAl group of zone axes (111) vacancy loops that form on the NiAl /111/ planes.

  12. Room-temperature ferromagnetic Zn1- x Ni x S nanoparticles

    NASA Astrophysics Data System (ADS)

    Kunapalli, Chaitanya Kumar; Shaik, Kaleemulla

    2018-05-01

    Nickel-doped zinc sulfide nanoparticles (Zn1- x Ni x S) at x = 0.00, 0.02, 0.05, 0.08 and 0.10 were synthesized by solid-state reaction. The (nickel sulfide) NiS and (zinc sulfide) ZnS nanoparticles in desired ratios were taken, mixed and ground for 6 h at a speed rate of 300 rpm using a planetary ball mill. The milled nanoparticles were sintered at 600 °C for 8 h using a high-temperature vacuum furnace. The structural, optical, luminescence and magnetic properties of the Zn1- x Ni x S nanoparticles were characterized by powder X-ray diffraction (XRD), UV-Vis-NIR diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). No change in crystal structure was observed from XRD by substitution of Ni into ZnS lattice. The mean crystallite size was found to be 37 nm. The band gap of Zn1- x Ni x S nanoparticles decreased from 3.57 to 3.37 eV on increasing the dopant concentration. The room-temperature photoluminescence (PL) spectra of Zn1- x Ni x S nanoparticles showed two broad and intense emission peaks at 420 and 438 nm with excitation wavelength of 330 nm. The Zn1- x Ni x S nanoparticles showed ferromagnetism at 100 K and at room temperature (300 K) and also the strength of magnetization increased with Ni concentration. The maximum magnetization value of 0.18 emu/g was observed for x = 0.10 at 100 K. The strength of the magnetization observed at 100 K was higher than that of magnetization observed at 300 K.

  13. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    2016-02-22

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. The finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  14. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE PAGES

    Palumbo, O.; Trequattrini, F.; Pal, N.; ...

    2017-02-01

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  15. Hydrogen absorption properties of amorphous (Ni 0.6Nb 0.4-yTa y ) 100-x Zr x membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palumbo, O.; Trequattrini, F.; Pal, N.

    Ni based amorphous materials have great potential as hydrogen purification membranes. In the present work the melt spun (Ni 0.6Nb 0.4-yTa y) 100-xZr x with y=0, 0.1 and x=20, 30 was studied. Our result of X-ray diffraction spectra of the ribbons showed an amorphous nature of the alloys. Heating these ribbons below T < 400 °C, even in a hydrogen atmosphere (1-10 bar), the amorphous structure was retained. Furthermore, the crystallization process was characterized by differential thermal analysis and the activation energy of such process was obtained. The hydrogen absorption properties of the samples in their amorphous state were studiedmore » by the volumetric method, and the results showed that the addition of Ta did not significantly influence the absorption properties, a clear change of the hydrogen solubility was observed with the variation of the Zr content. The values of the hydrogenation enthalpy changed from ~37 kJ/mol for x=30 to ~9 kJ/mol for x=20. Our analysis of the volumetric data provides the indications about the hydrogen occupation sites during hydrogenation, suggesting that at the beginning of the absorption process the deepest energy levels are occupied, while only shallower energy levels are available at higher hydrogen content, with the available interstitial sites forming a continuum of energy levels.« less

  16. Structural and magnetic properties of FexNi100-x alloys synthesized using Al as a reducing metal

    NASA Astrophysics Data System (ADS)

    Srakaew, N.; Jantaratana, P.; Nipakul, P.; Sirisathitkul, C.

    2017-08-01

    Iron-nickel (Fe-Ni) alloys comprising nine different compositions were rapidly synthesized from the redox reaction using aluminum foils as the reducing metal. Compared with conventional chemical syntheses, this simple approach is relatively safe and allows control over the alloy morphology and magnetic behavior as a function of the alloy composition with minimal oxidation. For alloys having low (10%-30%) Fe content the single face-centered cubic (FCC) FeNi3 phase was formed with nanorods aligned in the (1 1 1) crystalline direction on the cluster surface. This highly anisotropic morphology gradually disappeared as the Fe content was raised to 40%-70% with the alloy structure possessing a mixture of FCC FeNi3 and body-centered cubic (BCC) Fe7Ni3. The FCC phase was entirely replaced by the BCC structure upon further increase the Fe content to 80%-90%. The substitution of Ni by Fe in the crystals and the dominance of the BCC phase over the FCC structure gave rise to enhanced magnetization. By contrast, the coercive field decreased as a function of increasing Fe because of the reduction in shape anisotropy and the rise of saturation magnetization.

  17. Structural stability of characteristic interface for NiTi/Nb Nanowire: First-Principle study

    NASA Astrophysics Data System (ADS)

    Li, G. F.; Zheng, H. Z.; Shu, X. Y.; Peng, P.

    2016-01-01

    Compared with some other conventional interface models, the interface of NiTi(211)/Nb(220) in NiTiNb metal nanocomposite had been simulated and analyzed carefully. Results show that only several interface models, i.e., NiTi(100)/Nb(100)(Ni⃡Nb), NiTi(110)/Nb(110) and NiTi(211)/Nb(220), can be formed accordingly with their negative formation enthalpy. Therein the cohesive energy Δ E and Griffith rupture work W of NiTi(211)/Nb(220) interface model are the lowest among them. Density of states shows that there exists only one electronic bonding peak for NiTi(211)/Nb(220) interface model at -2.5 eV. Electron density difference of NiTi(211)/ Nb(220) shows that the Nb-Nb, Nb-Ti and Nb-Ni bonding characters seem like so peaceful as a fabric twisting every atom, which is different from conventional metallic bonding performance. Such appearance can be deduced that the metallic bonding between Nb-Nb, Nb-Ti and Nb-Ni in NiTi(211)/Nb(220) may be affected by its nanostructure called nanometer size effect. Thus, our findings open an avenue for detailed and comprehensive studies of nanocomposite.

  18. Competition between Chaotic and Nonchaotic Phases in a Quadratically Coupled Sachdev-Ye-Kitaev Model.

    PubMed

    Chen, Xin; Fan, Ruihua; Chen, Yiming; Zhai, Hui; Zhang, Pengfei

    2017-11-17

    The Sachdev-Ye-Kitaev (SYK) model is a concrete solvable model to study non-Fermi liquid properties, holographic duality, and maximally chaotic behavior. In this work, we consider a generalization of the SYK model that contains two SYK models with a different number of Majorana modes coupled by quadratic terms. This model is also solvable, and the solution shows a zero-temperature quantum phase transition between two non-Fermi liquid chaotic phases. This phase transition is driven by tuning the ratio of two mode numbers, and a nonchaotic Fermi liquid sits at the critical point with an equal number of modes. At a finite temperature, the Fermi liquid phase expands to a finite regime. More intriguingly, a different non-Fermi liquid phase emerges at a finite temperature. We characterize the phase diagram in terms of the spectral function, the Lyapunov exponent, and the entropy. Our results illustrate a concrete example of the quantum phase transition and critical behavior between two non-Fermi liquid phases.

  19. [Textual research on Chen Ye and his Jia cang jing yan fang (Family-preserved Empirical Recipes) of the Song Dynasty].

    PubMed

    Zhang, Xuedan; Zhang, Ruqing; Chen, Dexing

    2014-01-01

    Chen Ye, an official of the Southern Song Dynasty, also known as Chen Rihua as his styled name, was born in Changle, Fuzhou in the reign of Shaoxing, and died during the reign of Duanping. He had been consecutively in the positions of Jiang shi lang (Court Gentleman for Ceremonial Service), Zhi zhou (Prefect) of Lingding, the Ti xing (Judicial Commissioner) of Guangdong, the Zong ling (Overseer-general) of Sichuan, Shan ding (Reviser), Shu lin and other positions in Tongzhou, Yuanzhou. His works included 1 volume of Gu ling xian sheng nian pu (Mr. Guling's Chronological Biography), 1 volume of Tan xie (On Humor), 1 volume of Shi hua (Poetry), 8 volumes of Jin yuan li shu (Jin Yuan's Smart Technique), 3 volumes of Yi jian zhi lei bian (Classified Compilation of Yijian's Annals), (Zeng guang) Suo sui lu (Augmented Records of Trivial Matters), 5 volumes of Jia cang jing yan fang (Family-preserved Empirical Recipes). He also compiled the 8-volume Yin jiang zhi (Yinjiang's Annals), published the 2-volume Jia cang ji yao fang (Collected Essential Recipes from Family Preservation), and other proses and poetry. Jia cang jing yan fang was a formulary compiled by Chen Ye, which was lost. Altogether 74 of its recipes were cited in Fu ren da quan liang fang (Complete Effective Prescriptions for Women's Diseases), Shou qin yang lao shu (A Book for Pursuing Seniors' Longevity and Healthcare), Pu ji fang (Prescriptions for Universal Relief) and Yong le da dian (Yongle Encyclopedia).

  20. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio.

    PubMed

    Kovrižnych, Jevgenij A; Sotníková, Ružena; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-03-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems.

  1. Rationally-designed configuration of directly-coated Ni 3S 2/Ni electrode by RGO providing superior sodium storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xiaosheng; Li, Xifei; Bai, Zhimin

    Designing nanocomposite materials is an effective approach for enhancing the performance of sodium-ion batteries (SIBs), and understanding the synergy among components is critically important for new, better materials design. Here in this paper, a directly reduced graphene oxide (RGO) decorated anode electrode was designed and tested for SIBs, in which uniform RGO coating onto the Ni 3S 2/Ni electrode was realized using facile hydrothermal reactions. The results indicate that the RGO/Ni 3S 2/Ni electrode delivers a high reversible specific capacity of 448.6 mAh g -1, high capacity retention of 96.5% after 100 cycles, and excellent rate capability of 263.1 mAhmore » g -1 at 800 mA g -1. Compared with the Ni 3S 2/Ni electrode, the improved performance of the RGO/Ni 3S 2/Ni electrode benefits from RGO-promoted displacement reaction of Ni 3S 2 with sodium. DFT calculations reveal that the RGO layer can significantly improve the electron mobility of the RGO/Ni 3S 2 + Na structure, and the hybrid interaction between the extraneous p orbits of C and indigenous p and d orbits of Ni, as well as p orbits of S is the major reason for why RGO can improve the electrical transport properties.« less

  2. Rationally-designed configuration of directly-coated Ni 3S 2/Ni electrode by RGO providing superior sodium storage

    DOE PAGES

    Song, Xiaosheng; Li, Xifei; Bai, Zhimin; ...

    2018-02-28

    Designing nanocomposite materials is an effective approach for enhancing the performance of sodium-ion batteries (SIBs), and understanding the synergy among components is critically important for new, better materials design. Here in this paper, a directly reduced graphene oxide (RGO) decorated anode electrode was designed and tested for SIBs, in which uniform RGO coating onto the Ni 3S 2/Ni electrode was realized using facile hydrothermal reactions. The results indicate that the RGO/Ni 3S 2/Ni electrode delivers a high reversible specific capacity of 448.6 mAh g -1, high capacity retention of 96.5% after 100 cycles, and excellent rate capability of 263.1 mAhmore » g -1 at 800 mA g -1. Compared with the Ni 3S 2/Ni electrode, the improved performance of the RGO/Ni 3S 2/Ni electrode benefits from RGO-promoted displacement reaction of Ni 3S 2 with sodium. DFT calculations reveal that the RGO layer can significantly improve the electron mobility of the RGO/Ni 3S 2 + Na structure, and the hybrid interaction between the extraneous p orbits of C and indigenous p and d orbits of Ni, as well as p orbits of S is the major reason for why RGO can improve the electrical transport properties.« less

  3. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE PAGES

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.; ...

    2016-02-25

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  4. Effect of Ni content on the morphological evolution of Ni-YSZ solid oxide fuel cell electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen-Wiegart, Yu-chen Karen; Kennouche, David; Scott Cronin, J.

    The coarsening of Ni in Ni–yttria-stabilized zirconia (YSZ) anodes is a potential cause of long term solid oxide fuel cells (SOFC) performance degradation. The specifics of the Ni-YSZ structure—including Ni/YSZ ratio, porosity, and particle size distributions—are normally selected to minimize anode polarization resistance, but they also impact long-term stability. A better understanding of how these factors influence long-term stability is important for designing more durable anodes. The effect of structural details, e.g., Ni-YSZ ratio, on Ni coarsening has not been quantified. Furthermore, prior measurements have been done by comparing evolved structures with control samples, such that sample-to-sample variations introduce errors.more » Here in this paper, we report a four dimensional (three spatial dimensions and time) study of Ni coarsening in Ni-YSZ anode functional layers with different Ni/YSZ ratios, using synchrotron x-ray nano-tomography. The continuous structural evolution was observed and analyzed at sub-100 nm resolution. It is shown quantitatively that increasing the Ni/YSZ ratio increases the Ni coarsening rate. This is due to both increased pore volume and a decrease in the YSZ volume fraction, such that there is more free volume and a less obtrusive YSZ network, both of which allow greater Ni coarsening. The results are shown to be in good agreement with a power-law coarsening model. In conclusion, the finding is critical for informing the design of SOFC electrode microstructures that limit coarsening and performance degradation.« less

  5. Effect of Nb Content on Mechanical Behavior and Structural Properties of W/(Zr55Cu30Al10Ni5)100- x Nb x Composite

    NASA Astrophysics Data System (ADS)

    Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said

    2017-05-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.

  6. Magnetic phase diagrams of amorphous (Ni100-xFex)-metalloid alloys: The key role of the electronic density of states at the Fermi level for the onset of magnetic order

    NASA Astrophysics Data System (ADS)

    Kiss, L. F.; Bakonyi, I.

    2017-11-01

    There have been extended studies on the appearance of ferromagnetism in transition-metal-metalloid (MD) glasses. In particular, the paramagnetic (PM) to ferromagnetic (FM) transition has been investigated on numerous (Ni100-xFex)-MD alloys upon the introduction of Fe where MD can represent a combination of various metalloid elements, while keeping the metal/metalloid ratio constant. It has been reported that adding a sufficient amount of Fe to a Pauli PM Ni-MD alloy matrix first induces a spin-glass (SG) state at low temperatures which goes over to a PM state at higher temperatures. Beyond a certain Fe content, xc, the SG state transforms to a FM state upon increasing the temperature. By plotting the characteristic transition temperatures as a function of the Fe content, a magnetic phase diagram can be constructed for each Ni-Fe-MD system which has a multicritical point (MCP) at xc. By using the reported magnetic phase diagrams of various Ni-Fe-MD alloy systems, it is shown that the critical Fe content, xc scales inversely with the density of states at the Fermi level, N(EF), of the parent Ni-MD matrix. This means that the higher the N(EF), the lower the critical Fe content to induce ferromagnetism in the Ni-MD matrix. This is then discussed in terms of the Stoner enhancement factor, S, which characterizes the tendency of the matrix to become ferromagnetic.

  7. Preparation of high-permeability NiCuZn ferrite.

    PubMed

    Hu, Jun; Yan, Mi

    2005-06-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 degrees C to 930 degrees C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 degrees C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 degrees C because the microstructure of the NiZn ferrite sintered at 930 degrees C is more uniform and compact than that of the NiZn ferrite sintered at 1200 degrees C. The high permeability of 1700 and relative loss coefficient tandelta/mu(i) of 9.0x10(-6) at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite.

  8. Long-term (30 days) toxicity of NiO nanoparticles for adult zebrafish Danio rerio

    PubMed Central

    Kovrižnych, Jevgenij A.; Zeljenková, Dagmar; Rollerová, Eva; Szabová, Elena

    2014-01-01

    Nickel oxide in the form of nanoparticles (NiO NPs) is extensively used in different industrial branches. In a test on adult zebrafish, the acute toxicity of NiO NPs was shown to be low, however longlasting contact with this compound can lead to its accumulation in the tissues and to increased toxicity. In this work we determined the 30-day toxicity of NiO NPs using a static test for zebrafish Danio rerio. We found the 30-day LC50 value to be 45.0 mg/L, LC100 (minimum concentration causing 100% mortality) was 100.0 mg/L, and LC0 (maximum concentration causing no mortality) was 6.25 mg/L for adult individuals of zebrafish. Considering a broad use of Ni in the industry, NiO NPs chronic toxicity may have a negative impact on the population of aquatic organisms and on food web dynamics in aquatic systems. PMID:26038672

  9. Unusual reaction of [NiFe]-hydrogenases with cyanide.

    PubMed

    Hexter, Suzannah V; Chung, Min-Wen; Vincent, Kylie A; Armstrong, Fraser A

    2014-07-23

    Cyanide reacts rapidly with [NiFe]-hydrogenases (hydrogenase-1 and hydrogenase-2 from Escherichia coli) under mild oxidizing conditions, inhibiting the electrocatalytic oxidation of hydrogen as recorded by protein film electrochemistry. Electrochemical, EPR, and FTIR measurements show that the final enzyme product, formed within a second (even under 100% H2), is the resting state known as Ni-B, which contains a hydroxido-bridged species, Ni(III)-μ(OH)-Fe(II), at the active site. "Cyanide inhibition" is easily reversed because it is simply the reductive activation of Ni-B. This paper brings back into focus an observation originally made in the 1940s that cyanide inhibits microbial H2 oxidation and addresses the interesting mechanism by which cyanide promotes the formation of Ni-B. As a much stronger nucleophile than hydroxide, cyanide binds more rapidly and promotes oxidation of Ni(II) to Ni(III); however, it is quickly replaced by hydroxide which is a far superior bridging ligand.

  10. Structure of Cu/Ni Nanowires Obtained by Matrix Synthesis

    NASA Astrophysics Data System (ADS)

    Zhigalina, O. M.; Doludenko, I. M.; Khmelenin, D. N.; Zagorskiy, D. L.; Bedin, S. A.; Ivanov, I. M.

    2018-05-01

    The structure of layered Cu/Ni nanowires obtained by template synthesis in 100-nm channels of track membranes has been investigated by transmission and scanning electron microscopy. The phase composition and main structural features of individual nanowires are determined. It is shown that nanowires consist of alternating Ni ( Fm3m) and Cu ( Fm3m) layers with grains up to 100 nm in size. It is found that nanowires contain also copper oxide crystallites up to 20 nm in size. The elemental composition of individual layers and their mutual arrangement are determined.

  11. Enhanced efficiency and air-stability of NiOX-based perovskite solar cells via PCBM electron transport layer modification with Triton X-100.

    PubMed

    Lee, Kisu; Ryu, Jaehoon; Yu, Haejun; Yun, Juyoung; Lee, Jungsup; Jang, Jyongsik

    2017-11-02

    We modified phenyl-C61-butyric acid methyl ester (PCBM) for use as a stable, efficient electron transport layer (ETL) in inverted perovskite solar cells (PSCs). PCBM containing a surfactant Triton X-100 acts as the ETL and NiO X nanocrystals act as a hole transport layer (HTL). Atomic force microscopy and scanning electron microscopy images showed that surfactant-modified PCBM (s-PCBM) forms a high-quality, uniform, and dense ETL on the rough perovskite layer. This layer effectively blocks holes and reduces interfacial recombination. Steady-state photoluminescence and electrochemical impedance spectroscopy analyses confirmed that Triton X-100 improved the electron extraction performance of PCBM. When the s-PCBM ETL was used, the average power conversion efficiency increased from 10.76% to 15.68%. This improvement was primarily caused by the increases in the open-circuit voltage and fill factor. s-PCBM-based PSCs also showed good air-stability, retaining 83.8% of their initial performance after 800 h under ambient conditions.

  12. Anomalous magnetic behavior in nanocomposite materials of reduced graphene oxide-Ni/NiFe{sub 2}O{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollu, Pratap, E-mail: pk419@cam.ac.uk, E-mail: anirmalagrace@vit.ac.in, E-mail: dhirenb@iitb.ac.in; Prathapani, Sateesh; Varaprasadarao, Eswara K.

    2014-08-04

    Magnetic Reduced Graphene Oxide-Nickel/NiFe{sub 2}O{sub 4} (RGO-Ni/NF) nanocomposite has been synthesized by one pot solvothermal method. Respective phase formations and their purities in the composite are confirmed by High Resolution Transmission Electron Microscope and X Ray Diffraction, respectively. For the RGO-Ni/NF composite material finite-size effects lead to the anomalous magnetic behavior, which is corroborated in temperature and field dependent magnetization curves. Here, we are reporting the behavior of higher magnetization values for Zero Field Cooled condition to that of Field Cooled for the RGO-Ni/NF nanocomposite. Also, the observed negative and positive moments in Hysteresis loops at relatively smaller applied fieldsmore » (100 Oe and 200 Oe) are explained on the basis of surface spin disorder.« less

  13. Preparation of high-permeability NiCuZn ferrite*

    PubMed Central

    Hu, Jun; Yan, Mi

    2005-01-01

    Appropriate addition of CuO/V2O5 and the reduction of the granularity of the raw materials particle decrease the sintering temperature of NiZn ferrite from 1200 °C to 930 °C. Furthermore, the magnetic properties of the NiZn ferrite prepared at low temperature of 930 °C is superior to that of the NiZn ferrite prepared by sintering at high temperature of 1200 °C because the microstructure of the NiZn ferrite sintered at 930 °C is more uniform and compact than that of the NiZn ferrite sintered at 1200 °C. The high permeability of 1700 and relative loss coefficient tanδ/μi of 9.0×10−6 at 100 kHz was achieved in the (Ni0.17Zn0.63Cu0.20)Fe1.915O4 ferrite. PMID:15909348

  14. Optical second-harmonic diffraction study of anisotropic surface diffusion: CO on Ni(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, X.; Zhu, X.D.; Daum, W.

    We describe in detail a technique using optical second-harmonic (SH) diffraction from a one-dimensional laser-induced monolayer grating to probe surface diffusion of adsorbates and its anisotropy on a solid surface. The case of CO on Ni(110) is used as a demonstration. The two orthogonal and independent diffusion tensor components along (1{bar 1}0) and (001) are measured, exhibiting a strong anisotropy in both the activation energy {ital E}{sub diff} and the preexponential factor {ital D}{sub 0} in the diffusion coefficients. A compensation effect between {ital E}{sub diff} and {ital D}{sub 0} is observed. In comparison with CO/Ni(111) and CO/Ni(100), our resultmore » suggests that the Ni(110) surface seen by CO is much smoother than Ni(111) and Ni(100). Both advantages and limitations of the present technique are mentioned and possible complications in the data analysis are discussed.« less

  15. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-09-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  16. Ni-Less” Cathodes for High Energy Density, Intermediate Temperature Na-NiCl 2 Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hee-Jung; Lu, Xiaochuan; Bonnett, Jeffery F.

    Among various battery technologies being considered for stationary energy storage applications, sodium-metal halide (Na-MH) batteries have become one of the most attractive candidates because of the abundance of raw materials, long cycle life, high energy density, and superior safety. However, one of issues limiting its practical application is the relatively expensive nickel (Ni) used in the cathode. In the present work, we focus on of efforts to develop new Ni-based cathodes, and demonstrate that a much higher specific energy density of 405 Wh/kg (23% higher than state-of-the-art Na-MH batteries) can be achieved at an operating temperature of 190oC. Furthermore, 15%more » less Ni is used in the new cathode than that in conventional Na-NiCl2 batteries. Long-term cycling tests also show stable electrochemical performance for over 300 cycles with excellent capacity retention (~100%). The results in this work indicate that these advances can significantly reduce the raw material cost associated with Ni (a 31% reduction) and promote practical applications of Na-MH battery technologies in stationary energy storage systems.« less

  17. Pulsed-Current Electrochemical Codeposition and Heat Treatment of Ti-Dispersed Ni-Matrix Layers

    NASA Astrophysics Data System (ADS)

    Janetaisong, Pathompong; Boonyongmaneerat, Yuttanant; Techapiesancharoenkij, Ratchatee

    2016-08-01

    An electrochemical deposition is a fast and cost-efficient process to produce film or coating. In this research, Ni-Ti electrodeposition is developed by codepositing a Ti-dispersed Ni-matrix layer from a Ni-plating solution suspended with Ti particles. To enhance the coating uniformity and control the atomic composition, the pulsed current was applied to codeposit Ni-Ti layers with varying pulse duty cycles (10 to 100 pct) and frequencies (10 to 100 Hz). The microstructures and compositions of the codeposited layers were analyzed by scanning electron microscopy, X-ray diffraction, and X-ray fluorescent techniques. The pulsed current significantly improved the quality of the Ni-Ti layer as compared to a direct current. The Ni-Ti layers could be electroplated with a controlled composition within 48 to 51 at. pct of Ti. The optimal pulse duty cycle and frequency are 50 pct and 10 Hz, respectively. The standalone Ni-49Ti layers were removed from copper substrates by selective etching method and subsequently heat-treated under Ar-fed atmosphere at 1423 K (1150 °C) for 5 hours. The phase and microstructures of the post-annealed samples exhibit different Ni-Ti intermetallic compounds, including NiTi, Ni3Ti, and NiTi2. Yet, the contamination of TiN and TiO2 was also present in the post-annealed samples.

  18. Developing high-transmittance heterojunction diodes based on NiO/TZO bilayer thin films

    PubMed Central

    2013-01-01

    In this study, radio frequency magnetron sputtering was used to deposit nickel oxide thin films (NiO, deposition power of 100 W) and titanium-doped zinc oxide thin films (TZO, varying deposition powers) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. The structural, optical, and electrical properties of the TZO and NiO thin films and NiO/TZO heterojunction devices were investigated with scanning electron microscopy, X-ray diffraction (XRD) patterns, UV-visible spectroscopy, Hall effect analysis, and current-voltage (I-V) analysis. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of TZO were observable in the NiO/TZO heterojunction devices, indicating that the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. When the sputtering deposition power for the TZO thin films was 100, 125, and 150 W, the I-V characteristics confirmed that a p-n junction characteristic was successfully formed in the NiO/TZO heterojunction devices. We show that the NiO/TZO heterojunction diode was dominated by the space-charge limited current theory. PMID:23634999

  19. Microstructure and Interfacial Shear Strength in W/(Zr55Cu30Al10Ni5)100- x Nb x Composites

    NASA Astrophysics Data System (ADS)

    Mahmoodan, M.; Gholamipour, R.; Mirdamadi, Sh.; Nategh, S.

    2017-11-01

    In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by a gas pressure infiltration process at temperature 950 °C for 5 min. Microstructural studies and mechanical behaviors of the materials have been investigated by scanning electron microscopy, transmission electron microscopy and pullout tests. The mechanical results showed that the interface shear strength in the composite sample with X = 2 increased more than twice compared to the composite sample with X = 0. Based on the microstructural results, the addition of two atomic percent Nb in the matrix composite causes an increase in the diffusion band thickness during the melt infiltration and change in the interface fracture mode as a result of pullout test.

  20. Extraction of nickel from NiFe-LDH into Ni2P@NiFe hydroxide as a bifunctional electrocatalyst for efficient overall water splitting† †Electronic supplementary information (ESI) available: Experimental and computational details and additional data. See DOI: 10.1039/c7sc04569g

    PubMed Central

    Zhang, Fang-Shuai; Wang, Jia-Wei; Luo, Jun; Liu, Rui-Rui

    2017-01-01

    The development of highly efficient, low-cost and stable electrocatalysts for overall water splitting is highly desirable for the storage of intermittent solar energy and wind energy sources. Herein, we show for the first time that nickel can be extracted from NiFe-layered double hydroxide (NiFe-LDH) to generate an Ni2P@FePOx heterostructure. The Ni2P@FePOx heterostructure was converted to an Ni2P@NiFe hydroxide heterostructure (P-NiFe) during water splitting, which displays high electrocatalytic performance for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1.0 M KOH solution, with an overpotential of 75 mV at 10 mA cm–2 for HER, and overpotentials of 205, 230 and 430 mV at 10, 100 and 1000 mA cm–2 for OER, respectively. Moreover, it could afford a stable current density of 10 mA cm–2 for overall water splitting at 1.51 V in 1.0 M KOH with long-term durability (100 h). This cell voltage is among the best reported values for bifunctional electrocatalysts. The results of theoretical calculations demonstrate that P-NiFe displays optimized adsorption energies for both HER and OER intermediates at the nickel active sites, thus dramatically enhancing its electrocatalytic activity. PMID:29675186

  1. Structural and magnetic properties of Ni nanofilms on Ge(001) by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Bocirnea, Amelia Elena; Costescu, Ruxandra Maria; Pasuk, Iuliana; Lungu, George Adrian; Teodorescu, Cristian Mihail

    2017-12-01

    Ni films of 20 nm nominal thickness were grown on Ge(001) substrates by molecular beam epitaxy at several different temperatures from room temperature up to 400 °C. X-ray diffraction and X-ray photoelectron spectroscopy reveal the nucleation of Ni-Ge compounds (NiGe, Ni2Ge, Ni5Ge2) as well as a departure from the fcc Ni structure exhibited by the films at and beyond a temperature of 100 °C. The binding energy of the Ni 2p peak increases from the RT value (852.7 eV) by 0.5-1.1 eV for the Ni/Ge(001) samples, while the Ge 2p binding energy changes by 0.6-0.7 eV after Ni growth compared to a clean Ge(001) substrate (there is only a ±0.15 eV shift among the samples grown on substrates at higher temperatures). By increasing substrate temperature, we obtained higher intermixing of Ni and Ge, but rather than both Ni and Ge interdiffusing, we find that Ni diffuses further into the germanium with higher substrate temperature, forming increasingly Ni-rich Ni-Ge compounds diluted into the Ge matrix. Based on Magneto-optic Kerr Effect measurements, Ni/Ge(001) grown on substrates at 100 and 200 °C does not exhibit a hysteresis loop, while the samples on 300 and 400 °C substrates show magnetic behavior, which we attribute to the magnetic character of hexagonal Ni5Ge2 (which is determined here for the first time to be a ferromagnetic phase).

  2. A Ni-P@NiCo LDH core-shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors.

    PubMed

    Xing, Jiale; Du, Jing; Zhang, Xuan; Shao, Yubo; Zhang, Ting; Xu, Cailing

    2017-08-14

    Recently, transition metal-based nanomaterials have played a key role in the applications of supercapacitors. In this study, nickel phosphide (Ni-P) was simply combined with NiCo LDH via facile phosphorization of Ni foam and subsequent electrodeposition to form core-shell nanorod arrays on the Ni foam; the Ni-P@NiCo LDH was then directly used for a pseudocapacitive electrode. Owing to the splendid synergistic effect between Ni-P and NiCo LDH nanosheets as well as the hierarchical structure of 1D nanorods, 2D nanosheets, and 3D Ni foam, the hybrid electrode exhibited significantly enhanced electrochemical performances. The Ni-P@NiCo LDH electrode showed a high specific capacitance of 12.9 F cm -2 at 5 mA cm -2 (3470.5 F g -1 at a current density of 1.3 A g -1 ) that remained as high as 6.4 F cm -2 at a high current density of 100 mA cm -2 (1700 F g -1 at 27 A g -1 ) and excellent cycling stability (96% capacity retention after 10 000 cycles at 40 mA cm -2 ). Furthermore, the asymmetric supercapacitors (ASCs) were assembled using Ni-P@NiCo LDH as a positive electrode and activated carbon (AC) as a negative electrode. The obtained ASCs delivered remarkable energy density and power density as well as good cycling performance. The enhanced electrochemical activities open a new avenue for the development of supercapacitors.

  3. Study of Sn and SnAgCu Solders Wetting Reaction on Ni/Pd/Au Substrates

    NASA Astrophysics Data System (ADS)

    Liu, C. Y.; Wei, Y. S.; Lin, E. J.; Hsu, Y. C.; Tang, Y. K.

    2016-12-01

    Wetting reactions of pure Sn and Sn-Ag-Cu solder balls on Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates were investigated. The (Au, Pd)Sn4 phase formed in the initial interfacial reaction between pure Sn and Au(100 Å and 1000 Å)/Pd(500 Å)/Ni substrates. Then, the initially formed (Au, Pd)Sn4 compound layer either dissolved or spalled into the molten Sn solder with 3 s of reflowing. The exposed Ni under-layer reacted with Sn solder and formed an interfacial Ni3Sn4 compound. We did not observe spalling compound in the Sn-Ag-Cu case, either on the thin Au (100 Å) or the thick Au (1000 Å) substrates. This implies that the Cu content in the Sn-Ag-Cu solder can efficiently suppress the spalling effect and really stabilize the interfacial layer. Sn-Ag-Cu solder has a better wetting than that of the pure Sn solder, regardless of the Au thickness of the Au/Pd/Ni substrate. For both cases of pure Sn and Sn-Ag-Cu, the initial wetting (<3-s reflowing) on the thin Au (100 Å) substrate is better than that of the thick Au (1000 Å) substrate. Over 3-s reflowing, the wetting on the thicker Au layer (1000 Å) substrate becomes better than the wetting on the thinner Au layer (100 Å) substrate.

  4. Metastable bcc phase formation in 3d ferromagnetic transition metal thin films sputter-deposited on GaAs(100) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minakawa, Shigeyuki, E-mail: s-minakawa@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Futamoto, Masaaki

    2015-05-07

    Co{sub 100−x}Fe{sub x} and Ni{sub 100−y}Fe{sub y} (at. %, x = 0–30, y = 0–60) films of 10 nm thickness are prepared on GaAs(100) substrates at room temperature by using a radio-frequency magnetron sputtering system. The detailed growth behavior is investigated by in-situ reflection high-energy electron diffraction. (100)-oriented Co and Ni single-crystals with metastable bcc structure are formed in the early stage of film growth, where the metastable structure is stabilized through hetero-epitaxial growth. With increasing the thickness up to 2 nm, the Co and the Ni films start to transform into more stable hcp and fcc structures through atomic displacements parallel to bcc(110) slide planes,more » respectively. The stability of bcc phase is improved by adding a small volume of Fe atoms into a Co film. The critical thickness of bcc phase formation is thicker than 10 nm for Co{sub 100−x}Fe{sub x} films with x ≥ 10. On the contrary, the stability of bcc phase for Ni-Fe system is less than that for Co-Fe system. The critical thicknesses for Ni{sub 100−y}Fe{sub y} films with y = 20, 40, and 60 are 1, 3, and 5 nm, respectively. The Co{sub 100−x}Fe{sub x} single-crystal films with metastable bcc structure formed on GaAs(100) substrates show in-plane uniaxial magnetic anisotropies with the easy direction along GaAs[011], similar to the case of Fe film epitaxially grown on GaAs(100) substrate. A Co{sub 100−x}Fe{sub x} film with higher Fe content shows a higher saturation magnetization and a lower coercivity.« less

  5. Excimer laser annealing of NiTi shape memory alloy thin film

    NASA Astrophysics Data System (ADS)

    Xie, Qiong; Huang, Weimin; Hong, Ming Hui; Song, Wendong; Chong, Tow Chong

    2003-02-01

    NiTi Shape Memory Alloy (SMA) is with great potential for actuation in microsystems. It is particularly suitable for medical applications due to its excellent biocompatibility. In MEMS, local annealing of SMA is required in the process of fabrication. In this paper, local annealing of Ni52Ti48 SMA with excimer laser is proposed for the first time. The Ni52Ti48 thin film in a thickness of 5 μm was deposited on Si (100) wafer by sputtering at room temperature. After that, the thin film was annealed by excimer laser (248nm KrF laser) for the first time. Field-Emission Scanning Electron Microscopy (FESEM) and Atomic Force Microscopy (AFM) were used to characterize the surface profile of the deposited film after laser annealing. The phase transformation was measured by Differential Scanning Calorimeter (DSC) test. It is concluded that NiTi film sputtering on Si(100) substrate at room temperature possesses phase transformation after local laser annealing but with cracks.

  6. Thermophilic biofiltration of benzene and toluene.

    PubMed

    Cho, Kyung-Suk; Yoo, Sun-Kyung; Ryu, Hee Wook

    2007-12-01

    In the current studies, we characterized the degradation of a hot mixture of benzene and toluene (BT) gases by a thermophilic biofilter using polyurethane as packing material and high-temperature compost as a microbial source. We also examined the effect of supplementing the biofilter with yeast extract (YE). We found that YE substantially enhanced microbial activity in the thermophilic biofilter. The degrading activity of the biofilter supplied with YE was stable during long-term operation (approximately 100 d) without accumulating excess biomass. The maximum elimination capacity (1,650 g x m(-3) h(-1)) in the biofilter supplemented with YE was 3.5 times higher than that in the biofilter without YE (470 g g x m(-3) h(-1)). At similar retention times, the capacity to eliminate BT for the YE-supplemented biofilter was higher than for previously reported mesophilic biofilters. Thus, thermophilic biofiltration can be used to degrade hydrophobic compounds such as a BT mixture. Finally, 16S rDNA polymerase chain reaction-DGGE (PCR-DGGE) fingerprinting revealed that the thermophilic bacteria in the biofilter included Rubrobacter sp. and Mycobacterium sp.

  7. A robust Ni(II) α-diimine catalyst for high temperature ethylene polymerization.

    PubMed

    Rhinehart, Jennifer L; Brown, Lauren A; Long, Brian K

    2013-11-06

    Sterically demanding Ni(II) α-diimine precatalysts were synthesized utilizing 2,6-bis(diphenylmethyl)-4-methyl aniline. When activated with methylaluminoxane, the catalyst NiBr2(ArN═C(Me)-C(Me)═NAr) (Ar = 2,6 bis(diphenylmethyl)-4-methylbenzene) was highly active, produced well-defined polyethylene at temperatures up to 100 °C (Mw/Mn = 1.09-1.46), and demonstrated remarkable thermal stability at temperatures appropriate for industrially used gas-phase polymerizations (80-100 °C).

  8. Potential therapeutic agents for circulatory diseases from Bauhinia glauca Benth.subsp. pernervosa. (Da Ye Guan Men).

    PubMed

    Tang, Yingzhan; Ling, Junhong; Zhang, Peng; Zhang, Xiangrong; Zhang, Na; Wang, Wenli; Li, Jiayuan; Li, Ning

    2015-08-15

    Because of platelets as critical factor in the formation of pathogenic thrombi, anti-platelet activities have been selected as therapeutic target for various circulatory diseases. In order to find potential therapeutic agents, bioassay-directed separation of Bauhinia glauca Benth.subsp. pernervosa. (called Da Ye Guan Men as a traditional Chinese medicine) was performed to get 29 main components (compounds 1-29) from the bioactive part of this herbal. It was the first time to focus on the composition with anti-platelet aggregation activities for this traditional Chinese medicine. The constituents, characterized from the effective extract, were established on the basis of extensive spectral data analysis. Then their anti-platelet aggregation effects were evaluated systematically. On the basis of the chemical profile and biological assay, it was suggested that the flavonoid composition (5 and 18) should be responsible for the anti-platelet aggregation of the herbal because of their significant activities. The primary structure and activity relationship was also discussed briefly. Copyright © 2015. Published by Elsevier Ltd.

  9. Thickness dependence of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11/NiFe and Mn 80Ir 20/NiFe bilayers

    NASA Astrophysics Data System (ADS)

    Kume, T.; Yamato, T.; Kato, T.; Tsunashima, S.; Iwata, S.

    2007-03-01

    Antiferromagnetic layer thickness dependences of exchange anisotropy for (0 0 1) oriented Mn 89Pt 11 ( tAF nm)/Ni 80Fe 20 (5 nm) and Mn 80Ir 20 ( tAF nm)/Ni 80Fe 20 (5 nm) were investigated. For Mn 89Pt 11/NiFe, the exchange bias field appeared at tAF⩾5 nm. This critical thickness was found to be thicker than that of Mn 80Ir 20/NiFe ( tAF=3 nm). The thickness dependence of exchange bias field agreed well with that of 1-fold Fourier amplitude estimated from in-plane torque curves. The large coercivity of about 100 Oe was found for Mn 89Pt 11/NiFe at tAF=30 nm compared to that of Mn 80Ir 20/NiFe. The large coercivity in Mn 89Pt 11/NiFe bilayers seems to result from the large 4-fold anisotropy in their torque curve.

  10. Enhanced broadband near-infrared luminescence from transparent Yb3+/Ni2+ codoped silicate glass ceramics.

    PubMed

    Wu, Botao; Zhou, Shifeng; Ruan, Jian; Qiao, Yanbo; Chen, Danping; Zhu, Congshan; Qiu, Jianrong

    2008-02-04

    The near-infrared emission intensity of Ni(2+) in Yb(3+)/Ni(2+) codoped transparent MgO-Al(2)O(3)-Ga(2)O(3)-SiO(2)-TiO(2) glass ceramics could be enhanced up to 4.4 times via energy transfer from Yb(3+) to Ni(2+) in nanocrystals. The best Yb(2)O(3) concentration was about 1.00 mol%. For the Yb(3+)/Ni(2+) codoped glass ceramic with 1.00 mol% Yb(2)O(3), a broadband near-infrared emission centered at 1265 nm with full width at half maximum of about 300 nm and lifetime of about 220 mus was observed. The energy transfer mechanism was also discussed.

  11. Water dissociating on rigid Ni(100): A quantum dynamics study on a full-dimensional potential energy surface

    NASA Astrophysics Data System (ADS)

    Liu, Tianhui; Chen, Jun; Zhang, Zhaojun; Shen, Xiangjian; Fu, Bina; Zhang, Dong H.

    2018-04-01

    We constructed a nine-dimensional (9D) potential energy surface (PES) for the dissociative chemisorption of H2O on a rigid Ni(100) surface using the neural network method based on roughly 110 000 energies obtained from extensive density functional theory (DFT) calculations. The resulting PES is accurate and smooth, based on the small fitting errors and the good agreement between the fitted PES and the direct DFT calculations. Time dependent wave packet calculations also showed that the PES is very well converged with respect to the fitting procedure. The dissociation probabilities of H2O initially in the ground rovibrational state from 9D quantum dynamics calculations are quite different from the site-specific results from the seven-dimensional (7D) calculations, indicating the importance of full-dimensional quantum dynamics to quantitatively characterize this gas-surface reaction. It is found that the validity of the site-averaging approximation with exact potential holds well, where the site-averaging dissociation probability over 15 fixed impact sites obtained from 7D quantum dynamics calculations can accurately approximate the 9D dissociation probability for H2O in the ground rovibrational state.

  12. A description of a system of programs for mathematically processing on unified series (YeS) computers photographic images of the Earth taken from spacecraft

    NASA Technical Reports Server (NTRS)

    Zolotukhin, V. G.; Kolosov, B. I.; Usikov, D. A.; Borisenko, V. I.; Mosin, S. T.; Gorokhov, V. N.

    1980-01-01

    A description of a batch of programs for the YeS-1040 computer combined into an automated system for processing photo (and video) images of the Earth's surface, taken from spacecraft, is presented. Individual programs with the detailed discussion of the algorithmic and programmatic facilities needed by the user are presented. The basic principles for assembling the system, and the control programs are included. The exchange format within whose framework the cataloging of any programs recommended for the system of processing will be activated in the future is displayed.

  13. Capture of Hydrogen Using ZrNi

    NASA Technical Reports Server (NTRS)

    Patton, Lisa; Wales, Joshua; Lynch, David; Parrish, Clyde

    2005-01-01

    Water, as ice, is thought to reside in craters at the lunar poles along with CH4 and H2 . A proposed robotic mission for 2012 will utilize metal/metal hydrides for H2 recovery. Specifications are 99% capture of H2 initially at 5 bar and 100C (or greater), and degassing completely at 300C. Of 47-systems examined using the van't Hoff equation, 4 systems, Mg/MgH2, Mg2Ni/Mg2NiH4, ZrNi/ZrNiH2.8, and Pd/PdH0.77, were considered likely candidates for further examination. It is essential, when selecting a system, to also examine questions regarding activation, kinetics, cyclic stability, and gas impurity effects. After considering those issues, ZrN1 was selected as the most promising candidate, as it is easily activated and rapidly forms ZrNiH 2.8 . In addition, it resists oxide poisoning by CO2, and H2O, while some oxidation by O2 is recommended for improved activation . The presence of hydrogen in the as received Zr-Ni alloy from Alfa Aesar posed additional technical problems. X-ray diffraction of the Zr-Ni powder (-325 mesh), with a Zr:Ni wt% ratio of 70:30, was found to consist of ZrH2, ZrNiH2.8, and ZrNi. ZrH2 in the alloy presented the risk that after degassing that both Zr and ZrNi would be present, and thus lead to erroneous results regarding the reactivity of ZrNi with H2 . Fortunately, ZrH2 is a highly stable hydride that does not degas H2 to any significant extent at temperatures below 300C. Based on equilibrium calculations for the decomposition of ZrH2, only 1 millionth of the hydride decomposed at 300C under a N2 atmosphere flowing at 25 ccm for 64 hours, the longest time for pretreatment employed in the investigation. It was possible, from the X-ray results and knowledge of the Zr:Ni ratio, to compute the composition of a pretreated specimen as being 76 wt% ZrNi and the balance ZrH2.

  14. Effect of composition and strain on the electrical properties of LaNiO3 thin films

    NASA Astrophysics Data System (ADS)

    Zhu, Mingwei; Komissinskiy, Philipp; Radetinac, Aldin; Vafaee, Mehran; Wang, Zhanjie; Alff, Lambert

    2013-09-01

    The Ni content of LaNi1-xO3 epitaxial thin films grown by pulsed laser deposition has been varied by ablation from targets with different composition. While tensile strain and Ni substoichiometry reduce the conductivity, nearly stoichiometric and unstrained films show reproducibly resistivities below 100 μΩ × cm. Since the thermodynamic instability of the Ni3+ state drives defect formation, Ni defect engineering is the key to obtain highly conducting LaNiO3 thin films.

  15. Investigation of the thermal annealing effect on electrical properties of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Sleptsov, E. V.; Chernykh, A. V.; Chernykh, S. V.; Dorofeev, A. A.; Gladysheva, N. B.; Kondakov, M. N.; Sleptsova, A. A.; Panichkin, A. V.; Konovalov, M. P.; Didenko, S. I.

    2017-03-01

    Investigation of the thermal annealing effect on Schottky barrier parameters and the leakage current of Ni/Au, Ni/Mo/Au and Mo/Au Schottky barriers on AlGaN/GaN heterostructures has been performed. Improvement of Schottky barrier parameters after annealing of the investigated metallization schemes was observed. Ni/Au and Mo/Au contacts drastically degrade after annealing at the temperatures higher than 400 °C, whereas the Ni/Mo/Au contact exhibits excellent parameters after 500 °C annealing (qϕb = 1.00 eV, n = 1.13 и Ileak = 5 μA).

  16. High electrochemical performances of hierarchical hydrangea macrophylla like NiCo{sub 2}O{sub 4} and NiCo{sub 2}S{sub 4} as anode materials for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Rencheng, E-mail: jinrc427@126.com; Liu, Gang; Liu, Chunping

    2016-08-15

    Graphical abstract: Mesoporous hydrangea macrophylla like NiCo{sub 2}O{sub 4} and NiCo{sub 2}S{sub 4} have been fabricated, which present excellent electrochemical performances as anode materials for Li-ion batteries. - Highlights: • Hierarchical NiCo{sub 2}O{sub 4} is successfully fabricated. • Hierarchical NiCo{sub 2}S{sub 4} is prepared via sulfide anion exchange. • The hierarchical NiCo{sub 2}O{sub 4} and NiCo{sub 2}S{sub 4} exhibit good electrochemical properties. - Abstract: In this work, hierarchical hydrangea macrophylla like NiCo{sub 2}O{sub 4} has been synthesized by solvothermal method followed by calcination treatment in air. By using Na{sub 2}S as sulfur source, the NiCo{sub 2}O{sub 4} is converted intomore » NiCo{sub 2}S{sub 4}. Such hierarchical NiCo{sub 2}O{sub 4} exhibits a high specific capacity and excellent cycling stability (928 mAh g{sup −1} at a current density of 100 mA g{sup −1} after 100 cycles). Even at high current density of 2000 mA g{sup −1}, the electrode still delivers a specific capacity of 371 mAh g{sup −1} after 50 cycles. When the NiCo{sub 2}S{sub 4} is used as anode materials for lithium-ion batteries, a high discharge capacity of 1204 mAh g{sup −1} can be achieved. Meanwhile, the NiCo{sub 2}S{sub 4} electrode displays good cycling stability and rate capability. The excellent electrochemical performances can be attributed to the unique porous structure, which can effectively reduce the diffusion length for lithium ions and electrons, and alleviate volume expansion during the charge-discharge processes.« less

  17. Seaurchin-like hierarchical NiCo2O4@NiMoO4 core-shell nanomaterials for high performance supercapacitors.

    PubMed

    Zhang, Qiang; Deng, Yanghua; Hu, Zhonghua; Liu, Yafei; Yao, Mingming; Liu, Peipei

    2014-11-14

    A novel electrode material of the three-dimensional (3D) multicomponent oxide NiCo2O4@NiMoO4 core-shell was synthesized via a facile two-step hydrothermal method using a post-annealing procedure. The uniform NiMoO4 nanosheets were grown on the seaurchin-like NiCo2O4 backbone to form a NiCo2O4@NiMoO4 core-shell material constructed by interconnected ultrathin nanosheets, so as to produce hierarchical mesopores with a large specific surface area of 100.3 m(2) g(-1). The porous feature and core-shell structure can facilitate the penetration of electrolytic ions and increases the number of electroactive sites. Hence, the NiCo2O4@NiMoO4 material exhibited a high specific capacitance of 2474 F g(-1) and 2080 F g(-1) at current densities of 1 A g(-1) and 20 A g(-1) respectively, suggesting that it has not only a very large specific capacitance, but also a good rate performance. In addition, the capacitance loss was only 5.0% after 1000 cycles of charge and discharge tests at the current density of 10 A g(-1), indicating high stability. The excellent electrochemical performance is mainly attributed to its 3D core-shell and hierarchical mesoporous structures which can provide unobstructed pathways for the fast diffusion and transportation of ions and electrons, a large number of active sites and good strain accommodation.

  18. Sn diffusion during Ni germanide growth on Ge1-xSnx

    NASA Astrophysics Data System (ADS)

    Demeulemeester, J.; Schrauwen, A.; Nakatsuka, O.; Zaima, S.; Adachi, M.; Shimura, Y.; Comrie, C. M.; Fleischmann, C.; Detavernier, C.; Temst, K.; Vantomme, A.

    2011-11-01

    We report on the redistribution of Sn during Ni germanide formation on Ge1-xSnx/100)> and its influence on the thin film growth and properties. These results show that the reaction involves the formation of Ni5Ge3 and NiGe. Sn redistributes homogenously in both phases, in which the Sn/Ge ratio retains the ratio of the as-deposited Ge1-xSnx film. Sn continues to diffuse after full NiGe formation and segregates in two regions: (1) at the interface between the germanide and Ge1-xSnx and (2) at the surface, which has major implications for the thin film and contact properties.

  19. Formation of nickel germanides from Ni layers with thickness below 10 nm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jablonka, Lukas; Kubart, Tomas; Primetzhofer, Daniel

    2017-03-01

    The authors have studied the reaction between a Ge (100) substrate and thin layers of Ni ranging from 2 to 10 nm in thickness. The formation of metal-rich Ni5Ge3Ni5Ge3 was found to precede that of the monogermanide NiGe by means of real-time in situ x-ray diffraction during ramp-annealing and ex situ x-ray pole figure analyses for phase identification. The observed sequential growth of Ni5Ge3Ni5Ge3 and NiGe with such thin Ni layers is different from the previously reported simultaneous growth with thicker Ni layers. The phase transformation from Ni5Ge3Ni5Ge3 to NiGe was found to be nucleation-controlled for Ni thicknesses <5 nm<5more » nm, which is well supported by thermodynamic considerations. Specifically, the temperature for the NiGe formation increased with decreasing Ni (rather Ni5Ge3Ni5Ge3) thickness below 5 nm. In combination with sheet resistance measurement and microscopic surface inspection of samples annealed with a standard rapid thermal processing, the temperature range for achieving morphologically stable NiGe layers was identified for this standard annealing process. As expected, it was found to be strongly dependent on the initial Ni thickness« less

  20. Hybridized boron-carbon nitride fibrous nanostructures on Ni substrates

    NASA Astrophysics Data System (ADS)

    Yap, Yoke Khin; Yoshimura, Masashi; Mori, Yusuke; Sasaki, Takatomo

    2002-04-01

    Stoichiometric BC2N films can be deposited on Si (100) at 800 °C, however, they are phase separated as pure carbon and BN phases. Likewise, hybridized boron-carbon nitride (BCN) films can be synthesized on Ni substrates. On Ni, the carbon and BN phases are hybridized through carbon nitride and boron carbide bonds. These films appeared as fibrous nanostructures. Evidence indicates that the Ni substrate acts as a sink for the carbon and forces the carbon composites to grow on top of the B and N atoms. However, as these films are grown thicker, phase separation occurs again. These results indicate that hybridized BCN phases should now be regarded as semiconducting or superhard nanostructures. High-temperature deposition on Ni substrates might be a solution to the obstacle of preparing hybridized BCN phases.

  1. Microstructure and thermal conductivity of surfactant-free NiO nanostructures

    NASA Astrophysics Data System (ADS)

    Sahoo, Pranati; Misra, Dinesh K.; Salvador, Jim; Makongo, Julien P. A.; Chaubey, Girija S.; Takas, Nathan J.; Wiley, John B.; Poudeu, Pierre F. P.

    2012-06-01

    High purity, nanometer sized surfactant-free nickel oxide (NiO) particles were produced in gram scale using a solution combustion method and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), gas pycnometry and gas adsorption analysis (BET). The average particle size of the as-synthesized NiO increases significantly with the preheating temperature of the furnace, while the specific surface area decreases. A BET specific surface area of ∼100 m2/g was obtained for NiO nanoparticles with size as small as 3 nm synthesized at 300 °C. The thermal conductivity (κ) of pressed pellets of the synthesized NiO nanoparticles obtained using spark plasma sintering (SPS) and uniaxial hot pressing is drastically decreased (∼60%) compared to that of NiO single crystal. This strong reduction in κ with particle size suggests the suitability of the synthesized surfactant-free NiO nanoparticles for use as nanoinclusions when designing high performance materials for waste heat recovery.

  2. {001} Oriented piezoelectric films prepared by chemical solution deposition on Ni foils

    NASA Astrophysics Data System (ADS)

    Yeo, Hong Goo; Trolier-McKinstry, Susan

    2014-07-01

    Flexible metal foil substrates are useful in some microelectromechanical systems applications including wearable piezoelectric sensors or energy harvesters based on Pb(Zr,Ti)O3 (PZT) thin films. Full utilization of the potential of piezoelectrics on metal foils requires control of the film crystallographic texture. In this study, {001} oriented PZT thin films were grown by chemical solution deposition (CSD) on Ni foil and Si substrates. Ni foils were passivated using HfO2 grown by atomic layer deposition in order to suppress substrate oxidation during subsequent thermal treatment. To obtain the desired orientation of PZT film, strongly (100) oriented LaNiO3 films were integrated by CSD on the HfO2 coated substrates. A high level of {001} LaNiO3 and PZT film orientation were confirmed by X-ray diffraction patterns. Before poling, the low field dielectric permittivity and loss tangents of (001) oriented PZT films on Ni are near 780 and 0.04 at 1 kHz; the permittivity drops significantly on poling due to in-plane to out-of-plane domain switching. (001) oriented PZT film on Ni displayed a well-saturated hysteresis loop with a large remanent polarization ˜36 μC/cm2, while (100) oriented PZT on Si showed slanted P-E hysteresis loops with much lower remanent polarizations. The |e31,f| piezoelectric coefficient was around 10.6 C/m2 for hot-poled (001) oriented PZT film on Ni.

  3. Grain size effects on stability of nonlinear vibration with nanocrystalline NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Xia, Minglu; Sun, Qingping

    2017-10-01

    Grain size effects on stability of thermomechanical responses for a nonlinear torsional vibration system with nanocrystalline superelastic NiTi bar are investigated in the frequency and amplitude domains. NiTi bars with average grain size from 10 nm to 100 nm are fabricated through cold-rolling and subsequent annealing. Thermomechanical responses of the NiTi bar as a softening nonlinear damping spring in the torsional vibration system are obtained by synchronised acquisition of rotational angle and temperature under external sinusoidal excitation. It is shown that nonlinearity and damping capacity of the NiTi bar decrease as average grain size of the material is reduced below 100 nm. Therefore jump phenomena of thermomechanical responses become less significant or even vanish and the vibration system becomes more stable. The work in this paper provides a solid experimental base for manipulating the undesired jump phenomena of thermomechanical responses and stabilising the mechanical vibration system through grain refinement of NiTi SMA.

  4. Effect of Cooling Rates on the Transformation Behavior and Mechanical Properties of a Ni-Rich NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Coan, Stephen; Shamimi, Ali; Duerig, T. W.

    2017-12-01

    Slightly nickel-rich Ni-Ti alloys (typically 50.5-51% atomic percent nickel) are commonly used to produce devices that are superelastic at body temperature. This excess nickel can be tolerated in the NiTi matrix when its temperature is above the solvus of about 600 °C, but will precipitate out during lower temperatures. Recent work has been done on exploring the effect lower temperatures have on the material properties of NiTi. Findings showed that properties begin to change at temperatures as low as 100 °C. It is because of these results that it was deemed important to better understand what may be happening during the quenching process itself. Through running a combination of DSC and tensile tests on samples cooled at varying rates, it was found that the cooling rate has an effect on properties when heat treated above a specific temperature. Understanding how quickly the alloy must be cooled to fully retain the supersaturated NiTi matrix is important to optimizing processes and anticipating material properties after a heat treatment.

  5. Reaction between NiO and Al2O3 in NiO/γ-Al2O3 catalysts probed by positronium atom

    NASA Astrophysics Data System (ADS)

    Li, C. Y.; Zhang, H. J.; Chen, Z. Q.

    2013-02-01

    NiO/γ-Al2O3 catalysts with NiO content of 9 wt% and 24 wt% were prepared by solid state reaction method. They are annealed in air at temperatures from 100 °C to 1000 °C. Positron lifetime spectra were measured to study the microstructure variation during annealing process. Four positron lifetime components were resolved with two long lifetime τ3 and τ4, which can be attributed to the ortho-positronium lifetime in microvoids and large pores, respectively. It was found that the longest lifetime τ4 is rather sensitive to the chemical environment of the large pores. The NiO active centers in the catalysts cause decrease of both τ4 and its intensity I4, which is due to the spin-conversion of positronium induced by NiO. However, after heating the catalysts above 600 °C, abnormal increase of the lifetime τ4 is observed. This is due to the formation of NiAl2O4 spinel from the reaction of NiO and γ-Al2O3. The generated NiAl2O4 weakens the spin-conversion effect of positronium, thus leads to the increase of o-Ps lifetime τ4. Formation of NiAl2O4 is further confirmed by both X-ray diffraction and X-ray photoelectron spectroscopy measurements.

  6. Hot-atom versus Eley-Rideal dynamics in hydrogen recombination on Ni(100). I. The single-adsorbate case.

    PubMed

    Martinazzo, R; Assoni, S; Marinoni, G; Tantardini, G F

    2004-05-08

    We compare the efficiency of the Eley-Rideal (ER) reaction with the formation of hot-atom (HA) species in the simplest case, i.e., the scattering of a projectile off a single adsorbate, considering the Hydrogen and Hydrogen-on-Ni(100) system. We use classical mechanics and the accurate embedded diatomics-in-molecules potential to study the collision system over a wide range of collision energies (0.10-1.50 eV), both with a rigid and a nonrigid Ni substrate and for impact on the occupied and neighboring empty cells. In the rigid model metastable and truly bound hot-atoms occur and we find that the cross section for the formation of bound hot-atoms is considerably higher than that for the ER reaction over the whole range of collision energies examined. Metastable hot-atoms form because of the inefficient energy transfer to the adsorbate and have lifetimes of the order 0.1-0.7 ps, depending on the collision energy. When considering the effects of lattice vibrations we find, on average, a consistent energy transfer to the substrate, say 0.1-0.2 eV, which forced us to devise a two-step dynamical model to get rid of the problems associated with the use of periodic boundary conditions. Results for long-lived HA formation due to scattering on the occupied cell at a surface temperature of 120 K agree well with those of the rigid model, suggesting that in the above process the substrate plays only a secondary role and further calculations at surface temperatures of 50 and 300 K are in line with these findings. However, considerably high cross sections for formation of long-lived hot-atoms result also from scattering off the neighboring cells where the energy transfer to the lattice cannot be neglected. Metastable hot-atoms are reduced in number and have usually lifetimes shorter than those of the rigid-model, say less than 0.3 ps. In addition, ER cross sections are only slightly affected by the lattice motion and show a little temperature dependence. Finally, we find also

  7. Universality and Thouless energy in the supersymmetric Sachdev-Ye-Kitaev model

    NASA Astrophysics Data System (ADS)

    García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.

    2018-05-01

    We investigate the supersymmetric Sachdev-Ye-Kitaev (SYK) model, N Majorana fermions with infinite range interactions in 0 +1 dimensions. We have found that, close to the ground state E ≈0 , discrete symmetries alter qualitatively the spectral properties with respect to the non-supersymmetric SYK model. The average spectral density at finite N , which we compute analytically and numerically, grows exponentially with N for E ≈0 . However the chiral condensate, which is normalized with respect the total number of eigenvalues, vanishes in the thermodynamic limit. Slightly above E ≈0 , the spectral density grows exponentially with the energy. Deep in the quantum regime, corresponding to the first O (N ) eigenvalues, the average spectral density is universal and well described by random matrix ensembles with chiral and superconducting discrete symmetries. The dynamics for E ≈0 is investigated by level fluctuations. Also in this case we find excellent agreement with the prediction of chiral and superconducting random matrix ensembles for eigenvalue separations smaller than the Thouless energy, which seems to scale linearly with N . Deviations beyond the Thouless energy, which describes how ergodicity is approached, are universally characterized by a quadratic growth of the number variance. In the time domain, we have found analytically that the spectral form factor g (t ), obtained from the connected two-level correlation function of the unfolded spectrum, decays as 1 /t2 for times shorter but comparable to the Thouless time with g (0 ) related to the coefficient of the quadratic growth of the number variance. Our results provide further support that quantum black holes are ergodic and therefore can be classified by random matrix theory.

  8. Thermostructural behaviour of Ni-Cr materials: modelling of bulk and nanoparticle systems.

    PubMed

    Ortiz-Roldan, Jose M; Rabdel Ruiz-Salvador, A; Calero, Sofía; Montero-Chacón, Francisco; García-Pérez, Elena; Segurado, Javier; Martin-Bragado, Ignacio; Hamad, Said

    2015-06-28

    The thermostructural properties of Ni-Cr materials, as bulk and nanoparticle (NP) systems, have been predicted with a newly developed interatomic potential, for Ni/Cr ratios from 100/0 to 60/40. The potential, which has been fitted using experimental data and further validated using Density Functional Theory (DFT), describes correctly the variation with temperature of lattice parameters and the coefficient of thermal expansion, from 100 K to 1000 K. Using this potential, we have performed Molecular Dynamics (MD) simulations on bulk Ni-Cr alloys of various compositions, for which no experimental data are available. Similarly, NPs with diameters of 3, 5, 7, and 10 nm were studied. We found a very rapid convergence of NP properties with the size of the systems, showing already the 5 nm NPs with a thermostructural behaviour similar to the bulk. MD simulations of two 5 nm NPs show very little sintering and thermally induced damage, for temperatures between 300 K and 1000 K, suggesting that materials formed by agglomeration of Ni-Cr NPs meet the thermostructural stability requirements for catalysis applications.

  9. Synthesis of hierarchical Ni(OH)(2) and NiO nanosheets and their adsorption kinetics and isotherms to Congo red in water.

    PubMed

    Cheng, Bei; Le, Yao; Cai, Weiquan; Yu, Jiaguo

    2011-01-30

    Ni(OH)(2) and NiO nanosheets with hierarchical porous structures were synthesized by a simple chemical precipitation method using nickel chloride as precursors and urea as precipitating agent. The as-prepared samples were characterized by X-ray diffraction, scanning electron microscopy and nitrogen adsorption-desorption isotherms. Adsorption of Congo red (CR) onto the as-prepared samples from aqueous solutions was investigated and discussed. The pore structure analyses indicate that Ni(OH)(2) and NiO nanosheets are composed of at least three levels of hierarchical porous organization: small mesopores (ca. 3-5 nm), large mesopores (ca. 10-50 nm) and macropores (100-500 nm). The equilibrium adsorption data of CR on the as-prepared samples were analyzed by Langmuir and Freundlich models, suggesting that the Langmuir model provides the better correlation of the experimental data. The adsorption capacities for removal of CR was determined using the Langmuir equation and found to be 82.9, 151.7 and 39.7 mg/g for Ni(OH)(2) nanosheets, NiO nanosheets and NiO nanoparticles, respectively. Adsorption data were modeled using the pseudo-first-order, pseudo-second-order and intra-particle diffusion kinetics equations. The results indicate that pseudo-second-order kinetic equation and intra-particle diffusion model can better describe the adsorption kinetics. The as-prepared Ni(OH)(2) and NiO nanosheets are found to be effective adsorbents for the removal of Congo red pollutant from wastewater as a result of their unique hierarchical porous structures and high specific surface areas. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  11. MOF derived Ni/Co/NC catalysts with enhanced properties for oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Hu, Jiapeng; Chen, Juan; Lin, Hao; Liu, Ruilai; Yang, Xiaobing

    2018-03-01

    Designing efficient electrocatalysts for oxygen evolution reaction (OER) is very important for renewable energy storage and conversion devices. In this paper, we introduced a new strategy to synthesize Ni doped Co/NC catalysts (NC is the abbreviation of nitrogen-doped graphitic carbon), which were derived from ZIF-67. All catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM) and oxygen evolution reaction (OER). The results show that Ni was well doped in the Ni/Co/NC catalysts and the doping of Ni has great influence on the OER activity of Ni/Co/NC catalysts. Among these catalysts, 0.50Ni/Co/NC exhibits the highest OER activity. The onset potential of 0.50Ni/Co/NC is 1.47 V, which is superior than the onset potential of Co/NC (1.54 V), 0.25Ni/Co/NC (1.48 V), 1.00Ni/Co/NC (1.53 V). The excellent OER activity of 0.50Ni/Co/NC catalyst makes its potential to be used on renewable energy storage.

  12. Optical and magnetic properties of porous anodic alumina/Ni nanocomposite films

    NASA Astrophysics Data System (ADS)

    Zhang, Jing-Jing; Li, Zi-Yue; Zhang, Zhi-Jun; Wu, Tian-Shan; Sun, Hui-Yuan

    2013-06-01

    A simple method to tune the optical properties of porous anodic alumina (PAA) films embedded with Ni is reported. The films display highly saturated colors after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The ultrashort Ni nanowires (100 nm long and 50 nm in diameter) present only fcc phase and show no apparent averaged effective magnetic anisotropy. The coercivity mechanism of the Ni nanowires in our case is consistent with fanning mechanism based on a chain-of-spheres model. PAA/Ni films with structural color and magnetic properties have friability-resistant feature and can be used in many areas, including decoration, display, and multifunctional anti-counterfeiting technology.

  13. Electronic structure and magnetic properties of Ni-doped SnO2 thin films

    NASA Astrophysics Data System (ADS)

    Sharma, Mayuri; Kumar, Shalendra; Alvi, P. A.

    2018-05-01

    This paper reports the electronic structure and magnetic properties of Ni-doped SnO2 thin film which were grown on Si (100) substrate by PLD (pulse laser deposition) technique under oxygen partial pressure (PO2). For getting electronic structure and magnetic behavior, the films were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and DC magnetization measurements. The NEXAFS study at Ni L3,2 edge has been done to understand the local environment of Ni and Sn ions within SnO2 lattice. DC magnetization measurement shows that the saturation magnetization increases with the increase in substitution of Ni2+ ions in the system.

  14. Effect of pulse frequency on microstructural, nanomechanical, and wear properties of electrodeposited Ni-TiN composite coatings

    NASA Astrophysics Data System (ADS)

    Xia, Fafeng; Tian, Jiyu; Ma, Chunyang; Potts, Matt; Guo, Xue

    2014-12-01

    The current paper reports successful syntheses of Ni-TiN composite coatings by pulse electrodeposition. The effect of pulse frequency on the microstructures, nanomechanical, and wear properties of the coatings was investigated using transmission electron microscopy, X-ray diffraction, nanoindenter, scanning electron microscopy, and wear test instrument. The results showed that the Ni-TiN composite coating prepared at the pulse frequency of 100 Hz showed the presence of a less number of TiN particles and some degrees of aggregation in micro-regions. By contrast, in the Ni-TiN coating deposited at the pulse frequency of 500 Hz, the TiN particles were large in number and dispersed homogeneously, thereby, offering the coating a uniform and fine structure. The average grain diameters of Ni and TiN in the coating prepared at 100 Hz were 154.7 and 44.8 nm, respectively, whereas those for the coating prepared at 500 Hz were 67.3 and 25.9 nm, respectively. The maximum TiN content in the Ni-TiN coating deposited at 800 Hz was approximately 10.5 wt. %. The maximum microhardness and the Young's modulus values for the Ni-TiN composite coatings deposited at 800 Hz were 35.7 GPa and 167.4 GPa, respectively. Furthermore, the Ni-TiN composite coating prepared at 100 Hz had more severe damages, whereas the morphologies of worn surface of the coatings deposited at 500 Hz and 800 Hz were smooth and only a few small pits appeared on the surface.

  15. Exact moments of the Sachdev-Ye-Kitaev model up to order 1 /N 2

    NASA Astrophysics Data System (ADS)

    García-García, Antonio M.; Jia, Yiyang; Verbaarschot, Jacobus J. M.

    2018-04-01

    We analytically evaluate the moments of the spectral density of the q-body Sachdev-Ye-Kitaev (SYK) model, and obtain order 1 /N 2 corrections for all moments, where N is the total number of Majorana fermions. To order 1 /N, moments are given by those of the weight function of the Q-Hermite polynomials. Representing Wick contractions by rooted chord diagrams, we show that the 1 /N 2 correction for each chord diagram is proportional to the number of triangular loops of the corresponding intersection graph, with an extra grading factor when q is odd. Therefore the problem of finding 1 /N 2 corrections is mapped to a triangle counting problem. Since the total number of triangles is a purely graph-theoretic property, we can compute them for the q = 1 and q = 2 SYK models, where the exact moments can be obtained analytically using other methods, and therefore we have solved the moment problem for any q to 1 /N 2 accuracy. The moments are then used to obtain the spectral density of the SYK model to order 1 /N 2. We also obtain an exact analytical result for all contraction diagrams contributing to the moments, which can be evaluated up to eighth order. This shows that the Q-Hermite approximation is accurate even for small values of N.

  16. Spectromicroscopy study of interfacial Co/NiO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    van der Laan, Gerrit; Telling, Neil; Potenza, Alberto

    2010-09-26

    Photoemission electron microscopy (PEEM) with linearly polarized x-rays is used to determine the orientation of antiferromagnetic domains by monitoring the relative peak intensities at the 3d transition metal L{sub 2} absorption edge. In such an analysis the orientations of the x-ray polarization E and magnetization H with respect to the crystalline axes has to be taken into account. We address this problem by presenting a general expression of the angular dependence for both x-ray absorption spectroscopy and x-ray magnetic linear dichroism (XMLD) for arbitrary direction of E and H in the (001) cubic plane. In cubic symmetry the angular dependentmore » XMLD is a linear combination of two spectra with different photon energy dependence, which reduces to one spectrum when E or H is along a high-symmetry axis. The angular dependent XMLD can be separated into an isotropic term, which is symmetric along H, and an anisotropic term, which depends on the orientation of the crystal axes. The anisotropic term has maximal intensity when E and H have equal but opposite angles with respect to the [100] direction. The Ni{sup 2+} L{sub 2} edge has the peculiarity that the isotropic term vanishes, which means that the maximum in the XMLD intensity is observed not only for E {parallel} H {parallel} [100] but also for (E {parallel} [110], H {parallel} [110]). We apply the angular dependent theory to determine the spin orientation near the Co/NiO(100) interface. The PEEM images show that the ferromagnetic Co moments and antiferromagnetic NiO moments are aligned perpendicular to each other. By rotating the sample with respect to the linear x-ray polarization we furthermore find that the perpendicular coupling with the ferromagnetic Co layer at the interface causes a canting of the antiferromagnetic Ni moments. This shows that taking into account the angular dependence of the XMLD in the detailed analysis of PEEM images leads to an accurate retrieval of the spin axes of the

  17. Development of graded Ni-YSZ composite coating on Alloy 690 by Pulsed Laser Deposition technique to reduce hazardous metallic nuclear waste inventory.

    PubMed

    Sengupta, Pranesh; Rogalla, Detlef; Becker, Hans Werner; Dey, Gautam Kumar; Chakraborty, Sumit

    2011-08-15

    Alloy 690 based 'nuclear waste vitrification furnace' components degrade prematurely due to molten glass-alloy interactions at high temperatures and thereby increase the volume of metallic nuclear waste. In order to reduce the waste inventory, compositionally graded Ni-YSZ (Y(2)O(3) stabilized ZrO(2)) composite coating has been developed on Alloy 690 using Pulsed Laser Deposition technique. Five different thin-films starting with Ni80YSZ20 (Ni 80 wt%+YSZ 20 wt%), through Ni60YSZ40 (Ni 60 wt%+YSZ 40 wt%), Ni40YSZ60 (Ni 40 wt%+YSZ 60 wt%), Ni20YSZ80 (Ni 20 wt%+YSZ 80 wt%) and Ni0YSZ100 (Ni 0 wt%+YSZ 100 wt%), were deposited successively on Alloy 690 coupons. Detailed analyses of the thin-films identify them as homogeneous, uniform, pore free and crystalline in nature. A comparative study of coated and uncoated Alloy 690 coupons, exposed to sodium borosilicate melt at 1000°C for 1-6h suggests that the graded composite coating could substantially reduced the chemical interactions between Alloy 690 and borosilicate melt. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Dual functions of zirconium modification on improving the electrochemical performance of Ni-rich LiNi0.8Co0.1Mn0.1O2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xing; Zhang, Kangjia; Wang, Mingshan

    2018-02-28

    Trace amount of Zirconium (Zr) has been adopted to modify the crystal structure and surface of the Ni-rich LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode material. During cycling at 1.0C, the Zr-modified NCM811 shows an improved capacity retention of 92% after 100 cycles, higher than 75% for pristine NMC811. In addition, the Zr-modified NCM811 is capable of delivering a discharge capacity of 107 mAh g-1 at 10.0C rate, much higher than 28 mAh g-1 delivered by pristine material. These improved electrochemical performances are ascribed to the dual functions of Zr modification. On one hand, part of the Zr enters the crystal lattice, which ismore » beneficial for reducing the Li/Ni cation mixing and enhancing the crystal stability of the cathode. On the other hand, the rest of the Zr forms a 1~2 nm thick coating layer on the surface of the NCM811 cathode, which effectively prevents the direct contact between NCM and the electrolyte, thus suppressing the detrimental interfacial reactions. Therefore, the Zr-modified LiNi0.8Co0.1Mn0.1O2 exhibited significantly enhanced cycling stability and charging/discharging rate capability in comparison with the untreated counterpart.« less

  19. First principles exploration of NiO and its ions NiO+ and NiO-

    NASA Astrophysics Data System (ADS)

    Sakellaris, Constantine N.; Mavridis, Aristides

    2013-02-01

    We present a high level ab initio study of NiO and its ions, NiO+ and NiO-. Employing variational multireference configuration interaction (MRCI) and single reference coupled-cluster methods combined with basis sets of quintuple quality, 54, 20, and 10 bound states of NiO, NiO+, and NiO- have been studied. For all these states, complete potential energy curves have been constructed at the MRCI level of theory; in addition, for the ground states of the three species core subvalence (3s23p6/Ni) and scalar relativistic effects have been taken into account. We report energetics, spectroscopic parameters, dipole moments, and spin-orbit coupling constants. The agreement with experiment is in the case of NiO good, but certain discrepancies that need further investigation have arisen in the case of the anion whose ground state remains computationally a tantalizing matter. The cation is experimentally almost entirely unexplored, therefore, the study of many states shall prove valuable to further investigators. The ground state symmetry, bond distances, and binding energies of NiO and NiO+ are (existing experimental values in parenthesis), X3Σ-(X3Σ-), re = 1.606 (1.62712) Å, D0 = 88.5 (89.2 ± 0.7) kcal/mol, and X4Σ-(?), re = 1.60(?) Å, D0 = 55 (62.4 ± 2.4) kcal/mol, respectively. The ground state of NiO- is 4Σ- (but 2Π experimentally) with D0 = 85-87 (89.2 ± 0.7) kcal/mol.

  20. Effect of Zn addition on bulk microstructure of lead-free solder SN100C

    NASA Astrophysics Data System (ADS)

    Nur Nadirah M., K.; Nurulakmal M., S.

    2017-12-01

    This paper reports the effect of adding Zn (0.5 wt% Zn, 1.0 wt% Zn) to the bulk microstructure and intermetallic compound (IMC) formation of commercial SN100C (Sn-0.7Cu-0.05Ni+Ge) lead-free solder alloy. Solder alloys were prepared by melting SN100C ingot and Zn shots, and subsequently casted into steel mold. Samples were ground and polished for XRF, and polished samples were then etched for microstructure analysis. Microstructure of bulk solder and the IMC were observed using SEM equipped with EDX. SEM result showed the addition of 0.5 wt% Zn resulted in increased grain size of β-Sn matrix but further addition of Zn (1 wt%) reduced the size of β-Sn dendrites in the bulk solder. Several intermetallic compounds (IMCs) were observed distributed in the Sn matrix; Cu-Zn, Ni-Zn and Cu-Zn-Ni IMC but in relatively small percentage compared to Cu-Zn and Ni-Zn. These particles could be considered as effective nucleating agent that led to finer β-Sn grains. It is expected that the finer β-Sn will contribute towards higher solder strength and the various IMCs present could act as suppressant for Sn diffusion which will then tend to reduce the IMC growth during thermal aging.

  1. Direct deconvolution of two-state pump-probe X-ray absorption spectra and the structural changes in a 100 ps transient of Ni(II)-tetramesitylporphyrin.

    PubMed

    Della-Longa, S; Chen, L X; Frank, P; Hayakawa, K; Hatada, K; Benfatto, M

    2009-05-04

    Full multiple scattering (FMS) Minuit XANES (MXAN) has been combined with laser pump-probe K-edge X-ray absorption spectroscopy (XAS) to determine the structure of photoexcited Ni(II)tetramesitylporphyrin, Ni(II)TMP, in dilute toluene solution. It is shown that an excellent simulation of the XANES spectrum is obtained, excluding the lowest-energy bound-state transitions. In ground-state Ni(II)TMP, the first-shell and second-shell distances are, respectively, d(Ni-N) = (1.93 +/- 0.02) A and d(Ni-C) = (2.94 +/- 0.03) A, in agreement with a previous EXAFS result. The time-resolved XANES difference spectrum was obtained (1) from the spectra of Ni(II)TMP in its photoexcited T(1) state and its ground state, S(0). The XANES difference spectrum has been analyzed to obtain both the structure and the fraction of the T(1) state. If the T(1) fraction is kept fixed at the value (0.37 +/- 0.10) determined by optical transient spectroscopy, a 0.07 A elongation of the Ni-N and Ni-C distances [d(Ni-N) and d(Ni-C)] is found, in agreement with the EXAFS result. However, an evaluation of both the distance elongation and the T(1) fraction can also be obtained using XANES data only. According to experimental evidence, and MXAN simulations, the T(1) fraction is (0.60 +/- 0.15) with d(Ni-N) = (1.98 +/- 0.03) A (0.05 A elongation). The overall uncertainty of these results depends on the statistical correlation between the distances and T(1) fraction, and the chemical shift of the ionization energy because of subtle changes of metal charge between the T(1) and S(0) states. The T(1) excited-state structure results, independently obtained without the excited-state fraction from optical transient spectroscopy, are still in agreement with previous EXAFS investigations. Thus, full multiple scattering theory applied through the MXAN formalism can be used to provide structural information, not only on the ground-state molecules but also on very short-lived excited states through differential

  2. Energy investigation of effects of O on mechanical properties of NiAl intermetallics.

    PubMed

    Hu, Xue-Lan; Liu, Li-Hua; Zhang, Ying; Lu, Guang-Hong; Wang, Tianmin

    2011-01-19

    We have investigated effects of O on mechanical properties of NiAl by calculating the cleavage energy (γ(C)) and the unstable stacking fault energy (γ(us)) using a first-principles method. O is shown to reduce γ(C)/γ(us) for the [001](110) and [100](001) slip systems, indicating that the presence of O should be associated with the ductility reduction of NiAl. Further, γ(C)/γ(us) of the NiAl-O system can be increased by Cr, suggesting the possibility to suppress the negative effect of O via alloying elements.

  3. The oxidation of Ni-rich Ni-Al intermetallics

    NASA Technical Reports Server (NTRS)

    Doychak, Joseph; Smialek, James L.; Barrett, Charles A.

    1988-01-01

    The oxidation of Ni-Al intermetallic alloys in the beta-NiAl phase field and in the two phase beta-NiAl/gamma'-Ni3Al phase field has been studied between 1000 and 1400 C. The stoichiometric beta-NiAl alloy doped with Zr was superior to other alloy compositions under cyclic and isothermal oxidation. The isothermal growth rates did not increase monotonically as the alloy Al content was decreased. The characteristically ridged alpha-Al2O3 scale morphology, consisting of cells of thin, textured oxide with thick growth ridges at cell boundaries, forms on oxidized beta-NiAl alloys. The correlation of scale features with isothermal growth rates indicates a predominant grain boundary diffusion growth mechanism. The 1200 C cyclic oxidation resistance decreases near the lower end of the beta-NiAl phase field.

  4. Ni(II) biosorption by Cassia fistula (Golden Shower) biomass.

    PubMed

    Hanif, Muhammad Asif; Nadeem, Raziya; Bhatti, Haq Nawaz; Ahmad, Najum Rashid; Ansari, Tariq Mehmood

    2007-01-10

    Cassia fistula is a fast-growing, medium-sized, deciduous tree which is now widely cultivated worldwide as an ornamental tree for its beautiful showy yellow flowers. Methods are required to reuse fallen leaves, branches, stem bark and pods when they start getting all over lawn. This investigation studies the use of these non-useful parts of C. fistula as naturally occurring biosorbent for the batch removal of Ni(II) in a well stirred system under different experimental conditions. The data showed that the maximum pH (pHmax) for efficient sorption of Ni(II) was 6 at which evaluated biosorbent dosage, biosorbent particle size, initial concentrations of Ni(II) and sorption time were 0.1 g/100 mL, <0.255 mm, up to 200 mg/L and 720 min, respectively. The experimental results were analyzed in terms of Langmuir and Freundlich isotherms. The Langmuir isotherm model fitted well to data of Ni(II) biosorption by C. fistula biomass as compared to the model of Freundlich. The kinetic studies showed that the sorption rates could be described better by a second order expression than by a more commonly applied Lagergren equation. The magnitude of the Gibbs free energy values indicates spontaneous nature of the sorption process. The sorption ability of C. fistula biomass for Ni(II) removal tends to be in the order: leavesNi(II) removal was achieved when the initial Ni(II) concentration was 25 mg/L. Due to its outstanding Ni(II) uptake capacity, C. fistula biomass proved to be an excellent biomaterial for accumulating Ni(II) from aqueous solutions.

  5. Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting

    NASA Astrophysics Data System (ADS)

    Liu, Tingting; Asiri, Abdullah M.; Sun, Xuping

    2016-02-01

    In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm-2 at an overpotential of 64 mV for HER and 100 mA cm-2 at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm-2 for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode.In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm-2 at an overpotential of 64 mV for HER and 100 mA cm-2 at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm-2 for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode. Electronic supplementary information (ESI) available: Experimental section and supplementary figures. See DOI: 10.1039/c5nr07170d

  6. Induced spin-polarization of EuS at room temperature in Ni/EuS multilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulopoulos, P., E-mail: poulop@upatras.gr; Materials Science Department, University of Patras, 26504 Patras; Goschew, A.

    2014-03-17

    Ni/EuS multilayers with excellent multilayer sequencing are deposited via e-beam evaporation on the native oxide of Si(100) wafers at 4 × 10{sup −9} millibars. The samples have very small surface and interface roughness and show sharp interfaces. Ni layers are nanocrystalline 4–8 nm thick and EuS layers are 2–4 nm thick and are either amorphous or nanocrystalline. Unlike for Co/EuS multilayers, all Eu ions are in divalent (ferromagnetic) state. We show a direct antiferromagnetic coupling between EuS and Ni layers. At room temperature, the EuS layers are spin-polarized due to the proximity of Ni. Therefore, Ni/EuS is a candidate for room-temperature spintronics applications.

  7. Raman spectroscopy and dielectric Studies of multiple phase transitions in ZnO:Ni

    NASA Astrophysics Data System (ADS)

    Yadav, Harish Kumar; Sreenivas, K.; Gupta, Vinay; Scott, J. F.; Katiyar, R. S.

    2008-03-01

    We present Raman and dielectric data on Ni-doped ZnO (Zn1-xNixO) ceramics as a function of Ni concentration (x =0.03, 0.06, and 0.10) and temperature. A mode (around 130cm-1) is identified as TA(M) [J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753 (1977)] and appears due to an antiferromagnetic phase transition at low temperatures (100K) via the spin-orbit mechanism [P. Moch and C. Dugautier, Phys. Lett. A 43, 169 (1973)]. A strong dielectric anomaly occurs at around 430-460K, depending on Ni concentration, and is due to extrinsic electret effects (Ni ionic conduction) and not to a ferroelectric phase transition.

  8. Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi 0.5Mn 1.5O 4 Electrodes

    DOE PAGES

    Qiao, Ruimin; Wray, L. Andrew; Kim, Jung -Hyun; ...

    2015-11-11

    The LiNi 0.5Mn 1.5O 4 spinel is an appealing cathode material for next generation rechargeable Li-ion batteries due to its high operating voltage of ~4.7 V (vs Li/Li +). Although it is widely believed that the full range of electrochemical cycling involves the redox of Ni(II)/(IV), it has not been experimentally clarified whether Ni(III) exists as the intermediate state or a double-electron transfer takes place. Here, combined with theoretical calculations, we show unambiguous spectroscopic evidence of the Ni(III) state when the LiNi 0.5Mn 1.5O 4 electrode is half charged. This provides a direct verification of single-electron-transfer reactions in LiNi 0.5Mnmore » 1.5O 4 upon cycling, namely, from Ni(II) to Ni(III), then to Ni(IV). Additionally, by virtue of its surface sensitivity, soft X-ray absorption spectroscopy also reveals the electrochemically inactive Ni 2+ and Mn 2+ phases on the electrode surface. Our work provides the long-awaited clarification of the single-electron transfer mechanism in LiNi 0.5Mn 1.5O 4 electrodes. Furthermore, the experimental results serve as a benchmark for further spectroscopic characterizations of Ni-based battery electrodes.« less

  9. Interface mediated enhanced mixing of multilayered Ni-Bi thin films by swift heavy ion irradiation

    NASA Astrophysics Data System (ADS)

    Siva, V.; Chettah, A.; Ojha, S.; Tripathi, A.; Kanjilal, D.; Sahoo, Pratap K.

    2017-10-01

    We report the effect of ion beam mixing of Ni/Bi multilayers using 100 MeV Au ions as a function of irradiation fluences. X-ray diffraction study reveals the higher magnitude of NiBi3 and NiBi phases compared to elemental Ni and Bi after ion irradiation. We observe an evolution of grainy structures to a molten-like surface with increasing ion fluences. These features were also reflected in the Rutherford Backscattering spectrometry spectra, in terms of the enhanced mixing with increasing ion fluences. The experimental findings were understood on the basis of inelastic thermal spike model calculations.

  10. Shape memory behavior of single crystal and polycrystalline Ni-rich NiTiHf high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, Sayed M.

    NiTiHf shape memory alloys have been receiving considerable attention for high temperature and high strength applications since they could have transformation temperatures above 100 °C, shape memory effect under high stress (above 500 MPa) and superelasticity at high temperatures. Moreover, their shape memory properties can be tailored by microstructural engineering. However, NiTiHf alloys have some drawbacks such as low ductility and high work hardening in stress induced martensite transformation region. In order to overcome these limitations, studies have been focused on microstructural engineering by aging, alloying and processing. Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti 29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at. %)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. The effects of the heat treatments on the transformation characteristics and microstructure of the Ni-rich NiTiHf shape memory alloys have been investigated. Transformation temperatures are found to be highly annealing temperature dependent. Generation of nanosize precipitates (˜20 nm in size) after three hours aging at 450 °C and 550 °C improved the strength of the material, resulting in a near perfect dimensional stability under high stress levels (> 1500 MPa) with a work output of 20-30 J cm- 3. Superelastic behavior with 4% recoverable strain was demonstrated at low and high temperatures where stress could reach to a maximum value of more than 2 GPa after three hours aging at 450 and 550 °C for alloys with Ni great than 50.3 at. %. Shape memory properties of polycrystalline Ni50.3Ti29.7 Hf20 alloys were studied via

  11. Thickness-dependent appearance of ferromagnetism in Pd(100) ultrathin films

    NASA Astrophysics Data System (ADS)

    Sakuragi, S.; Sakai, T.; Urata, S.; Aihara, S.; Shinto, A.; Kageshima, H.; Sawada, M.; Namatame, H.; Taniguchi, M.; Sato, T.

    2014-08-01

    We report the appearance of ferromagnetism in thin films of Pd(100), which depends on film thickness in the range of 3-5 nm on SrTiO3(100) substrates. X-ray magnetic circular dichroism measurement shows the intrinsic nature of ferromagnetism in Pd(100) films. The spontaneous magnetization in Pd(100) films, corresponding to is 0.61μB/atom, is comparable to Ni, and it changes in an oscillatory manner depending on film thickness, where the period quantitatively agrees with the theoretical prediction based on the two-dimensional quantum well in the film. This indicates that the discrete electronic states in the quantum well shift to Fermi energy to satisfy the condition for ferromagnetism (Stoner criterion) at a specific film thickness.

  12. [The Role of Calcium in the Conformational Changes of the Recombinant S100A8/S100A9].

    PubMed

    Gheibi, N; Asghari, H; Chegini, K G; Sahmani, M; Moghadasi, M

    2016-01-01

    Calprotectin is a member of the EF-hand proteins, composed of two subunits, S100A8 (MRP8) and S100A9 (MRP14). These proteins are involved in important processes including cell signaling, regulation of inflammatory responses, cell cycle control, differentiation, regulation of ion channel activity and defense against microbial agents in a calcium dependent manner. In the present study, recombinant S100A8 and S100A9 were expressed in E. coli BL21 and then purified using Ni-NTA affinity chromatography. The structure of the S100A8/A9 complex in the presence and absence of calcium was assessed by circular dichroism and fluorescence spectroscopy. The intrinsic fluorescence emission spectra of the S100A8/A9 complex in the presence of calcium showed a reduction in fluorescence intensity, reflecting conformational changes within the protein with the exposure of aromatic residues to the protein surface. The far ultraviolet-circular dichroism spectra of the complex in the presence of calcium revealed minor changes in the regular secondary structure of the complex. Also, increased thermal stability of the S100A8/A9 complex in the presence of calcium was indicated.

  13. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-03-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  14. Textural Evolution During Micro Direct Metal Deposition of NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Khademzadeh, Saeed; Bariani, Paolo F.; Bruschi, Stefania

    2018-07-01

    In this research, a micro direct metal deposition process, newly developed as a potential method for micro additive manufacturing was used to fabricate NiTi builds. The effect of scanning strategy on grain growth and textural evolution was investigated using scanning electron microscope equipped with electron backscattered diffraction detector. Investigations showed that, the angle between the successive single tracks has an important role in grain size distribution and textural evolution of NiTi phase. Unidirectional laser beam scanning pattern developed a fiber texture; conversely, a backward and forward scanning pattern developed a strong < {100} > ‖‖ RD texture on the surface of NiTi cubic samples produced by micro direct metal deposition.

  15. Intrinsic properties and strengthening mechanism of monocrystalline Ni-containing ternary concentrated solid solutions

    DOE PAGES

    Jin, K.; Gao, Y. F.; Bei, H.

    2017-04-07

    Ternary single-phase concentrated solid solution alloys (SP-CSAs), so-called "medium entropy alloys", not only possess notable mechanical and physical properties but also form a model system linking the relatively simple binary alloys to the complex high entropy alloys. Our knowledge of their intrinsic properties is vital to understand the material behavior and to prompt future applications. To this end, three model alloys NiCoFe, NiCoCr, and NiFe-20Cr have been selected and grown as single crystals. We measured their elastic constants using an ultrasonic method, and several key materials properties, such as shear modulus, bulk modulus, elastic anisotropy, and Debye temperatures have beenmore » derived. Furthermore, nanoindentation tests have been performed on these three alloys together with Ni, NiCo and NiFe on their (100) surface, to investigate the strengthening mechanisms. NiCoCr has the highest hardness, NiFe, NiCoFe and NiFe-20Cr share a similar hardness that is apparently lower than NiCoCr; NiCo has the lowest hardness in the alloys, which is similar to elemental Ni. The Labusch-type solid solution model has been applied to interpret the nanoindentation data, with two approaches used to calculate the lattice mismatch. Finally, by adopting an interatomic spacing matrix method, the Labusch model can reasonably predict the hardening effects for the whole set of materials.« less

  16. In-plane orientation and composition dependences of crystal structure and electrical properties of {100}-oriented Pb(Zr,Ti)O3 films grown on (100) Si substrates by metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Okamoto, Shoji; Sankara Rama Krishnan, P. S.; Okamoto, Satoshi; Yokoyama, Shintaro; Akiyama, Kensuke; Funakubo, Hiroshi

    2017-10-01

    In-plane orientation-controlled Pb(Zr x ,Ti1- x )O3 (PZT) films with a thickness of approximately 2 µm and a Zr/(Zr + Ti) ratio of 0.39-0.65 were grown on (100) Si substrates by pulsed metal-organic chemical vapor deposition (MOCVD). In-plane-oriented epitaxial PZT films and in-plane random fiber-textured PZT films with {100} out-of-plane orientation were grown on (100)c SrRuO3//(100)c LaNiO3//(100) CeO2//(100) YSZ//(100) Si and (100)c SrRuO3/(100)c LaNiO3/(111) Pt/TiO2/SiO2/(100) Si substrates, respectively. The effects of Zr/(Zr + Ti) ratio and in-plane orientation on the crystal structure, dielectric, ferroelectric, and piezoelectric properties of the films were systematically investigated. The X-ray diffraction measurement showed that the epitaxial PZT films had a higher volume fraction of (100) orientation than the fiber-textured PZT films in the tetragonal Zr/(Zr + Ti) ratio region. A large difference was not detected between the epitaxial films and the fiber-textured films for Zr/(Zr + Ti) ratio dependence of the dielectric constant, and remanent polarization. However, in the rhombohedral phase region [Zr/(Zr + Ti) = 0.65], coercive field was found to be 1.5-fold different between the epitaxial and fiber-textured PZT films. The maximum field-induced strains measured at 0-100 kV/cm by scanning atomic force microscopy were obtained at approximately Zr/(Zr + Ti) = 0.50 and were about 0.5 and 0.3% for the epitaxial and fiber-textured PZT films, respectively.

  17. Interfacial exchange coupling and magnetization reversal in perpendicular [Co/Ni]N/TbCo composite structures.

    PubMed

    Tang, M H; Zhang, Zongzhi; Tian, S Y; Wang, J; Ma, B; Jin, Q Y

    2015-06-15

    Interfacial exchange coupling and magnetization reversal characteristics in the perpendicular heterostructures consisting of an amorphous ferrimagnetic (FI) TbxCo(100-x) alloy layer exchange-coupled with a ferromagnetic (FM) [Co/Ni]N multilayer have been investigated. As compared with pure TbxCo(100-x) alloy, the magnetization compensation composition of the heterostructures shift to a higher Tb content, implying Co/Ni also serves to compensate the Tb moment in TbCo layer. The net magnetization switching field Hc⊥ and interlayer interfacial coupling field Hex, are not only sensitive to the magnetization and thickness of the switched TbxCo(100-x) or [Co/Ni]N layer, but also to the perpendicular magnetic anisotropy strength of the pinning layer. By tuning the layer structure we achieve simultaneously both large Hc⊥ = 1.31 T and Hex = 2.19 T. These results, in addition to the fundamental interest, are important to understanding of the interfacial coupling interaction in the FM/FI heterostructures, which could offer the guiding of potential applications in heat-assisted magnetic recording or all-optical switching recording technique.

  18. Effect of CeO2 on Cyclic Hot-Corrosion Behavior of Detonation-Gun Sprayed Cr3C2-NiCr Coatings on Ni-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Saladi, Sekar; Menghani, Jyoti; Prakash, Satya

    2015-03-01

    The hot-corrosion behavior of detonation-gun sprayed Cr3C2-NiCr coatings with and without 0.4 wt.% CeO2 additive on Ni-based superalloy inconel-718 is comparatively discussed in the present study. Hot-corrosion studies were carried out at 900 °C for 100 cycles in Na2SO4-60%V2O5 molten salt environment under cyclic heating and cooling conditions on bare and coated superalloys. The thermo-gravimetric technique was used to establish kinetics of hot-corrosion. XRD, FESEM/EDAX, and EDX mapping techniques were used to analyze the corrosion products of bare and coated samples. The results indicate that Cr3C2-NiCr-CeO2-coated superalloy showed better hot-corrosion resistance as compared to bare and Cr3C2-NiCr-coated superalloys. The addition of CeO2 has improved micro-hardness, porosity, and surface roughness values of Cr3C2-NiCr-CeO2 coating. The overall weight gain and parabolic rate constant of Cr3C2-NiCr-CeO2-coated superalloy were found to be lowest in the present study signifying that the addition of CeO2 in Cr3C2-NiCr powder has contributed to the development of adherent and dense oxide scale on the coating at elevated temperature.

  19. Effect of Cu Alloying on S Poisoning of Ni Surfaces and Nanoparticle Morphologies Using Ab-Initio Thermodynamics Calculations.

    PubMed

    Kim, Ji-Su; Kim, Byung-Kook; Kim, Yeong-Cheol

    2015-10-01

    We investigated the effect of Cu alloying on S poisoning of Ni surfaces and nanoparticle morphologies using ab-initio thermodynamics calculations. Based on the Cu segregation energy and the S adsorption energy, the surface energy and nanoparticle morphology of pure Ni, pure Cu, and NiCu alloys were evaluated as functions of the chemical potential of S and the surface orientations of (100), (110), and (111). The constructed nanoparticle morphology was varied as a function of chemical potential of S. We find that the Cu added to Ni for NiCu alloys is strongly segregated into the top surface, and increases the S tolerance of the NiCu nanoparticles.

  20. Unconventional resistivity at the border of metallic antiferromagnetism in NiS2

    NASA Astrophysics Data System (ADS)

    Niklowitz, P. G.; Alireza, P. L.; Steiner, M. J.; Lonzarich, G. G.; Braithwaite, D.; Knebel, G.; Flouquet, J.; Wilson, J. A.

    2008-03-01

    We report low-temperature and high-pressure measurements of the electrical resistivity ρ(T) of the antiferromagnetic compound NiS2 in its high-pressure metallic state. The form of ρ(T,p) suggests the presence of a quantum phase transition at a critical pressure pc=76±5kbar . Near pc , the temperature variation of ρ(T) is similar to that observed in NiS2-xSex near the critical composition x=1 , where metallic antiferromagnetism is suppressed at ambient pressure. In both cases, ρ(T) varies approximately as T1.5 over a wide range below 100K . This lets us assume that the high-pressure metallic phase of stoichiometric NiS2 also develops itinerant antiferromagnetism, which becomes suppressed at pc . However, on closer analysis, the resistivity exponent in NiS2 exhibits an undulating variation with temperature not seen in NiSSe (x=1) . This difference in behavior may be due to the effects of spin-fluctuation scattering of charge carriers on cold and hot spots of the Fermi surface in the presence of quenched disorder, which is higher in NiSSe than in stoichiometric NiS2 .

  1. Precipitation Strengthenable NiTiPd High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Garg, Anita; Benafan, Othmane; Noebe, Ronald; Gaydosh, Darrell; Padula, Santo, II

    2017-01-01

    In binary NiTi alloys, it has long been known that Ni-rich alloys can be heat treated to produce precipitates which both strengthen the matrix against dislocations and improve the behavior of the material under thermal and mechanical cycling. Within recent years, the same effect has been observed in Ni-rich NiTiHf high temperature shape memory alloys and heat treatment regimens have been defined which will reliably produce improved properties. In NiTiPd alloys, precipitation has also been observed, but studies are still underway to define reliable heat treatments and compositions which will provide a balance of strengthening and good thermomechanical properties. For this study, a series of NiTi-32 at.Pd alloys was produced to determine the effect of changing nickeltitanium content on the transformation behavior and heat treatability of the material. Samples were aged at temperatures between 350C and 450C for times up to 100 hours. Actuation type behavior was evaluated using uniaxial constant force thermal cycling (UCFTC) to determine the effect of composition and aging on the material behavior. TEMSEM was used to evaluate the microstructure and determine the types of precipitates formed. The correlation between composition, heat treat, microstructure, and thermomechanical behavior will be addressed and discussed.

  2. Transplantation of Ex Vivo Expanded Umbilical Cord Blood (NiCord) Decreases Early Infection and Hospitalization.

    PubMed

    Anand, Sarah; Thomas, Samantha; Hyslop, Terry; Adcock, Janet; Corbet, Kelly; Gasparetto, Cristina; Lopez, Richard; Long, Gwynn D; Morris, Ashley K; Rizzieri, David A; Sullivan, Keith M; Sung, Anthony D; Sarantopoulos, Stefanie; Chao, Nelson J; Horwitz, Mitchell E

    2017-07-01

    Delayed hematopoietic recovery contributes to increased infection risk following umbilical cord blood (UCB) transplantation. In a Phase 1 study, adult recipients of UCB stem cells cultured ex vivo for 3 weeks with nicotinamide (NiCord) had earlier median neutrophil recovery compared with historical controls. To evaluate the impact of faster neutrophil recovery on clinically relevant early outcomes, we reviewed infection episodes and hospitalization during the first 100 days in an enlarged cohort of 18 NiCord recipients compared with 86 standard UCB recipients at our institution. The median time to neutrophil engraftment was shorter in NiCord recipients compared with standard UCB recipients (12.5 days versus 26 days; P < .001). Compared with standard UCB recipients, NiCord recipients had a significantly reduced risk for total infection (RR, 0.69; P = .01), grade 2-3 (moderate to severe) infection (RR, 0.36; P < .001), bacterial infection (RR, 0.39; P = .003), and grade 2-3 bacterial infection (RR, 0.21; P = .003) by Poisson regression analysis; this effect persisted after adjustment for age, disease stage, and grade II-IV acute GVHD. NiCord recipients also had significantly more time out of the hospital in the first 100 days post-transplantation after adjustment for age and Karnofsky Performance Status (69.9 days versus 49.7 days; P = .005). Overall, transplantation of NiCord was associated with faster neutrophil engraftment, fewer total and bacterial infections, and shorter hospitalization in the first 100 days compared with standard UCB transplantation. In conclusion, rapid hematopoietic recovery from an ex vivo expanded UCB transplantation approach is associated with early clinical benefit. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  3. El Niño Returns

    NASA Astrophysics Data System (ADS)

    El Niño, a climatic disturbance that shifts much of the world's weather pattern every 2-7 years, has returned and is probably near the midpoint of its expected 18-month life cycle, according to an announcement by the National Weather Service (NWS) of the National Oceanic and Atmospheric Administration (NOAA). This El Niño appears to be much milder than its predecessor 4 years ago, from April 1982 to July 1983. That event, the worst in more than 100 years, caused floods and droughts that led to more than 1000 deaths and $2 billion to $8 billion in economic losses.The phenomenon comes about when equatorial winds that normally blow the Pacific Ocean's surface waters from east to west weaken or reverse themselves. The warm surface waters then flow from west to east. Results include a decrease in rainfall in the Philippines, Indonesia, Australia, New Guinea, and Southern Africa; increased rainfall in the South American coast, the southeastern United States, and eastern Africa; and milder than normal weather in the U.S. Pacific Northwest, western Canada, and Alaska. The current El Niño was successfully predicted by at least three different scientific models, according to The New York Times, although the event began somewhat later than expected.

  4. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    NASA Astrophysics Data System (ADS)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  5. Development of B2 Shape Memory Intermetallics Beyond NiAl, CoNiAl and CoNiGa

    NASA Astrophysics Data System (ADS)

    Gerstein, G.; Firstov, G. S.; Kosorukova, T. A.; Koval, Yu. N.; Maier, H. J.

    2018-06-01

    The present study describes the development of shape memory alloys based on NiAl. Initially, this system was considered a promising but unsuccessful neighbour of NiTi. Later, however, shape memory alloys like CoNiAl or CoNiGa were developed that can be considered as NiAl derivatives and already demonstrated good mechanical properties. Yet, these alloys were still inferior to NiTi in most respects. Lately, using a multi-component approach, a CoNiCuAlGaIn high entropy intermetallic compound was developed from the NiAl prototype. This new alloy featured a B2 phase and a martensitic transformation along with a remarkable strength in the as-cast state. In the long-term, this new approach might led to a breakthrough for shape memory alloys in general.

  6. FIB preparation of a NiO Wedge-Lamella and STEM X-ray microanalysis for the determination of the experimental k(O-Ni) Cliff-Lorimer coefficient.

    PubMed

    Armigliato, Aldo; Frabboni, Stefano; Gazzadi, Gian Carlo; Rosa, Rodolfo

    2013-02-01

    A method for the fabrication of a wedge-shaped thin NiO lamella by focused ion beam is reported. The starting sample is an oxidized bulk single crystalline, <100> oriented, Ni commercial standard. The lamella is employed for the determination, by analytical electron microscopy at 200 kV of the experimental k(O-Ni) Cliff-Lorimer (G. Cliff & G.W. Lorimer, J Microsc 103, 203-207, 1975) coefficient, according to the extrapolation method by Van Cappellen (E. Van Cappellen, Microsc Microstruct Microanal 1, 1-22, 1990). The result thus obtained is compared to the theoretical k(O-Ni) values either implemented into the commercial software for X-ray microanalysis quantification of the scanning transmission electron microscopy/energy dispersive spectrometry equipment or calculated by the Monte Carlo method. Significant differences among the three values are found. This confirms that for a reliable quantification of binary alloys containing light elements, the choice of the Cliff-Lorimer coefficients is crucial and experimental values are recommended.

  7. Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments

    DOE PAGES

    Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...

    2015-08-08

    Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less

  8. The reactive element effect of yttrium and yttrium silicon on high temperature oxidation of NiCrAl coating

    NASA Astrophysics Data System (ADS)

    Ramandhany, S.; Sugiarti, E.; Desiati, R. D.; Martides, E.; Junianto, E.; Prawara, B.; Sukarto, A.; Tjahjono, A.

    2018-03-01

    The microstructure formed on the bond coat affects the oxidation resistance, particularly the formation of a protective oxide layer. The adhesion of bond coat and TGO increased significantly by addition of reactive element. In the present work, the effect of yttrium and yttrium silicon as reactive element (RE) on NiCrAl coating was investigated. The NiCrAl (without RE) and NiCrAlX (X:Y or YSi) bond coating were deposited on Hastelloy C-276 substrate by High Velocity Oxygen Fuel (HVOF) method. Isothermal oxidation was carried out at 1000 °C for 100 hours. The results showed that the addition of RE could prevent the breakaway oxidation. Therefore, the coating with reactive element were more protective against high temperature oxidation. Furthermore, the oxidation rate of NiCrAlY coating was lower than NiCrAlYSi coating with the total mass change was ±2.394 mg/cm2 after 100 hours of oxidation. The thickness of oxide scale was approximately 1.18 μm consisting of duplex oxide scale of spinel NiCr2O4 in outer scale and protective α-Al2O3 in inner scale.

  9. Properties of highly (100) oriented Pb(Mg1/3,Nb2/3)O3-PbTiO3 films on LaNiO3 bottom electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Hu, Z. G.; Yue, F. Y.; Yang, G. Y.; Shi, W. Z.; Meng, X. J.; Sun, J. L.; Chu, J. H.

    2007-12-01

    The 70%Pb(Mg1/3,Nb2/3)O3-30%PbTiO3 (PMNT) films have been fabricated on LaNiO3 (LNO) coated silicon substrate. The conductive LNO films act as a seed layer for the growth of PMNT films, which depresses the formation of pyrochlore phase and induces the high (100) preferred orientation of perovskite PMNT films. Compared with the PMNT films grown on platinum bottom electrode, the ferroelectric properties of PMNT films grown on LNO are enhanced. The frequency dependence of complex permittivity from PMNT films on LNO is the conjunct result of polarization relaxation and movement of oxygen vacancy, which can be fitted by the function containing Debye and universal dielectric response models, respectively.

  10. Thermally Induced Interdiffusion and Precipitation in a Ni/Ni 3 Al System

    DOE PAGES

    Sun, C.; Martinez, E.; Aguiar, J. A.; ...

    2015-05-20

    Ordered Ni 3Al intermetallic precipitates constitute the main hardening sources of Ni-based superalloys. Here, we report the interdiffusion and precipitation behavior in a Ni/Ni3Al model system. The deposition of Ni3Al on a pure Ni layer at 500°C generated L12-structured γ' (Ni3Al) precipitates, preferentially at the interface. After annealing at 800°C for 1 h, interdiffusion between Ni and Ni3Al layers occurred, and the γ' precipitates that grew near the parent Ni/Ni 3Al interface are ~2.8 times larger in size than those formed in the matrix. In conclusion, Monte Carlo simulations indicate that vacancies preferentially diffuse along the Ni/Ni 3Al interface, increasingmore » the probability of precipitation.« less

  11. Nonprotective Alumina Growth in Sulfur-Doped NiAl(Zr)

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2000-01-01

    The 1200 C oxidation behavior of NiAl was examined at various levels of sulfur and zirconium dopants to test the possibility of a critical S/Zr ratio required for adhesion. Cyclic furnace testing for 200 1 -hr cycles and interrupted testing for 500 hr were used as screening tests. Pure NiAl and NiAl(Zr) with 0. 14 at.% Zr were chosen as model base compositions; they exhibited normal, slow-growing scales (3 Mg/sq cm) with excellent adhesion for the Zr-doped alloys. NiAl with about 120 ppma S exhibited a substantial weight loss (-20 Mg/sq cm) in cyclic tests and a very large weight gain (+60 Mg/sq cm) in interrupted tests. The major surface phase remained as alpha -Al2O3. Sulfur doping the NiAl(Zr) alloy caused massive weight gains of 80 - 100 Mg/sq cm, swelling, cracking, and nearly complete conversion into NiAl2O4, and alpha- Al2O3. The initial objective of determining critical S/Zr ratios for adhesion was therefore unattainable. Initiation of the catastrophic attack was examined after a 10 hr exposure, revealing a few sites of broad, raised, and cracked ridges. In cross-section, the ridges appeared as modular intrusions, with a complex, fractal, oxide-metal interface. They were primarily alumina (with occasional entrapped islands of NiAl2O4 or pure Ni metal). They possessed a unique microstructure consisting of 0.3 microns lamellae, separated by 0.1 microns open channels. This allowed for rapid growth controlled by gaseous diffusion. The microstructure is discussed in terms of SO2 evolution and a sulfur-driven de-passivation process.

  12. Effects of Ni(2+) on aluminum hydroxide scale formation and transformation on a simulated drinking water distribution system.

    PubMed

    Wang, Wendong; Song, Shan; Zhang, Xiaoni; Mitchell Spear, J; Wang, Xiaochang; Wang, Wen; Ding, Zhenzhen; Qiao, Zixia

    2014-07-01

    Observations of aluminum containing sediments/scales formed within the distribution pipes have been reported for several decades. In this study, the effect of Ni(2+) on the formation and transformation processes of aluminum hydroxide sediment in a simulated drinking water distribution system were investigated using X-ray diffraction spectrum (XRD), Fourier transform infrared spectrum (FT-IR), scanning electron microscope (SEM), and thermodynamic calculation methods. It was determined that the existence of Ni(2+) had notable effects on the formation of bayerite. In the system without Ni(2+) addition, there was no X-ray diffraction signal observed after 400 d of aging. The presence of Ni(2+), however, even when present in small amounts (Ni/Al=1:100) the formation of bayerite would occur in as little as 3d at pH 8.5. As the molar ratio of Ni/Al increase from 1:100 to 1:10, the amount of bayerite formed on the pipeline increased further; meanwhile, the specific area of the pipe scale decreased from 160 to 122 m(2)g(-1). In the system with Ni/Al molar ratio at 1:3, the diffraction spectrum strength of bayerite became weaker, and disappeared when Ni/Al molar ratios increased above 1:1. At these highs Ni/Al molar ratios, Ni5Al4O11⋅18H2O was determined to be the major component of the pipe scale. Further study indicated that the presence of Ni(2+) promoted the formation of bayerite and Ni5Al4O11⋅18H2O under basic conditions. At lower pH (6.5) however, the existence of Ni(2+) had little effect on the formation of bayerite and Ni5Al4O11⋅18H2O, rather the adsorption of amorphous Al(OH)3 for Ni(2+) promoted the formation of crystal Ni(OH)2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. A Threonine Stabilizes the NiC and NiR Catalytic Intermediates of [NiFe]-hydrogenase*

    PubMed Central

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L.; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-01-01

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. PMID:25666617

  14. A threonine stabilizes the NiC and NiR catalytic intermediates of [NiFe]-hydrogenase.

    PubMed

    Abou-Hamdan, Abbas; Ceccaldi, Pierre; Lebrette, Hugo; Gutiérrez-Sanz, Oscar; Richaud, Pierre; Cournac, Laurent; Guigliarelli, Bruno; De Lacey, Antonio L; Léger, Christophe; Volbeda, Anne; Burlat, Bénédicte; Dementin, Sébastien

    2015-03-27

    The heterodimeric [NiFe] hydrogenase from Desulfovibrio fructosovorans catalyzes the reversible oxidation of H2 into protons and electrons. The catalytic intermediates have been attributed to forms of the active site (NiSI, NiR, and NiC) detected using spectroscopic methods under potentiometric but non-catalytic conditions. Here, we produced variants by replacing the conserved Thr-18 residue in the small subunit with Ser, Val, Gln, Gly, or Asp, and we analyzed the effects of these mutations on the kinetic (H2 oxidation, H2 production, and H/D exchange), spectroscopic (IR, EPR), and structural properties of the enzyme. The mutations disrupt the H-bond network in the crystals and have a strong effect on H2 oxidation and H2 production turnover rates. However, the absence of correlation between activity and rate of H/D exchange in the series of variants suggests that the alcoholic group of Thr-18 is not necessarily a proton relay. Instead, the correlation between H2 oxidation and production activity and the detection of the NiC species in reduced samples confirms that NiC is a catalytic intermediate and suggests that Thr-18 is important to stabilize the local protein structure of the active site ensuring fast NiSI-NiC-NiR interconversions during H2 oxidation/production. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Facile one-pot synthesis of Ni2+-doped (NH4)2V3O8 nanoflakes@Ni foam with visible-light-driven photovoltaic behavior for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Zhou, Qingfeng; Gong, Yun; Lin, Jianhua

    2018-05-01

    In the present work, Ni2+-doped (NH4)2V3O8 nanoflakes are in situ grown on Ni foam through a facile one-pot hydrothermal technique in a NH4VO3 aqueous solution. The Ni2+-doped (NH4)2V3O8@Ni foam composite material can be used as binder- and conductivity agent-free electrode in supercapacitor, it manifests a large specific capacitance of 465.5 F g-1 at a current density of 0.2 A g-1 and a superior rate capability of 317.5 F g-1 at 10 A g-1, which is beneficial from its three-dimensional porous architecture cross-linked by the ultrathin Ni2+-doped (NH4)2V3O8 nanoflakes on Ni foam. Meanwhile, the Ni2+-doped (NH4)2V3O8@Ni foam//Activated carbon asymmetric supercapacitor can deliver a maximum energy density of 20.1 W h kg-1 at a power density of 752.0 W kg-1. Significantly, the Ni2+-doped (NH4)2V3O8@Ni foam electrode possesses reversible electrochromic behavior, and it shows obvious visible light-driven photoresponse with much higher specific capacitance (645.3 F g-1 at 0.5 A g-1) under illumination (650 nm > λ > 350 nm, 100 mW cm-2), which is probably associated with the semiconducting characteristics of the spin-polarized (NH4)2V3O8 and the quantum confinement effect of the nanoflakes.

  16. Sequence stratigraphy and environmental background of the late Pleistocene and Holocene occupation in the Southeast Primor'ye (the Russian Far East)

    NASA Astrophysics Data System (ADS)

    Chlachula, Jiri; Krupyanko, Alexander A.

    2016-06-01

    The paper presents the results of Quaternary palaeoecology and geoarchaeology studies in the Zerkal'naya Basin, with new insights about sequenced natural shifts during the prehistoric occupation of this marginally explored NE Asian maritime territory. The Basin is part of the continental drainage system and the main physiographic and biotic corridor for peopling of the transitive coastal interior SE Primor'ye Region. The Final Pleistocene and Holocene environmental (biotic and abiotic) proxy records from the Upper/Final Palaeolithic to early historical sites document a dynamic climate change with vegetation cover transformations within riverine and mountain valley ecosystems of the Russian Far East. Most of the archaeological sites located on the low terraces and bedrock promontories along the main river channel and its tributary streams suggest traditional hunter gathered lifestyles based on seasonal salmon-fishing supplemented by pastoral economy. Tundra-forests with larch trees, dwarf birch thickets and polypod ferns from the basal stratigraphic units of the late Last Glacial occupation sites associated with the Upper Palaeolithic micro-blade and bifacial stone tool traditions (14C-dated to 19,000-12,000 cal yrs BP) indicate rather pronounced conditions and much lower MAT comparing today. Following a final Pleistocene cooling event, a major climate warming marked the onset of Holocene accompanied by a regional humidity increase promoting the formation of a mixed broadleaved-coniferous oak-dominant taiga, and culminating in the mid-Holocene Climatic Optimum. The appearance of mosaic parklands ca. 5,000-4,000 cal yrs BP. may be partly attributed to the expansion of the Far Eastern Neolithic cultures practicing forest clearance for pastures and dwellings. A progressing landscape opening indicated by the spread of light-demanding thickets and birch-dominated riverine biotopes with Artemisia suggests a further vegetation cover transformation during the late Neolithic

  17. Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base Superalloy IN100 (Preprint)

    DTIC Science & Technology

    2009-03-01

    transition fatigue regimes; however, microplasticity (i.e., heterogeneous plasticity at the scale of microstructure) is relevant to understanding fatigue...and Socie [57] considered the affect of microplastic 14 Microstructure-Sensitive Extreme Value Probabilities for High Cycle Fatigue of Ni-Base...considers the local stress state as affected by intergranular interactions and microplasticity . For the calculations given below, the volumes over which

  18. Atomic Layer-Deposited TiO2 Coatings on NiTi Surface

    NASA Astrophysics Data System (ADS)

    Vokoun, D.; Racek, J.; Kadeřávek, L.; Kei, C. C.; Yu, Y. S.; Klimša, L.; Šittner, P.

    2018-02-01

    NiTi shape-memory alloys may release poisonous Ni ions at the alloys' surface. In an attempt to prepare a well-performing surface layer on an NiTi sample, the thermally grown TiO2 layer, which formed during the heat treatment of NiTi, was removed and replaced with a new TiO2 layer prepared using the atomic layer deposition (ALD) method. Using x-ray photoelectron spectroscopy, it was found that the ALD layer prepared at as low a temperature as 100 °C contained Ti in oxidation states + 4 and + 3. As for static corrosion properties of the ALD-coated NiTi samples, they further improved compared to those covered by thermally grown oxide. The corrosion rate of samples with thermally grown oxide was 1.05 × 10-5 mm/year, whereas the corrosion rate of the ALD-coated samples turned out to be about five times lower. However, cracking of the ALD coating occurred at about 1.5% strain during the superelastic mechanical loading in tension taking place via the propagation of a localized martensite band.

  19. Interdiffusion in the Ni/TD-NiCr and Cr/TD-NiCr systems

    NASA Technical Reports Server (NTRS)

    Pawar, A. V.; Tenney, D. R.

    1974-01-01

    The diffusion of Ni and Cr into TD-NiCr has been studied over the 900 to 1100 C temperature range. The diffusion couples were prepared by electroplating Cr and Ni on polished TD-NiCr wafers. Concentration profiles produced as a result of isothermal diffusion at 905, 1000, and 1100 C were determined by electron microprobe analysis. The Boltzmann-Matano analysis was used to determine concentration-dependent diffusion coefficients which were found to compare favorably with previously reported values. These data suggest that 2 vol % ThO2 distribution has no appreciable effect on the rates of diffusion in TD-NiCr with a large grain size. This supports the view that an inert dispersoid in an alloy matrix will not in itself lead to enhanced diffusion unless a short-circuit diffusion structure is stabilized.

  20. Polyoxygenated Cyclohexenoids with Promising α-Glycosidase Inhibitory Activity Produced by Phomopsis sp. YE3250, an Endophytic Fungus Derived from Paeonia delavayi.

    PubMed

    Huang, Rong; Jiang, Bo-Guang; Li, Xiao-Nian; Wang, Ya-Ting; Liu, Si-Si; Zheng, Kai-Xuan; He, Jian; Wu, Shao-Hua

    2018-02-07

    Seven new polyoxygenated cyclohexenoids, namely, phomopoxides A-G (1-7), were isolated from the fermentation broth extract of an endophytic fungal strain Phomopsis sp. YE3250 from the medicinal plant Paeonia delavayi Franch. The structures of these compounds were established by spectroscopic interpretation. The absolute configurations of compounds 1 and 4 were confirmed by X-ray crystallographic analysis and chemical derivative approach. All isolated compounds showed weak cytotoxic activities toward three human tumor cell lines (Hela, MCF-7, and NCI-H460) and weak antifungal activities against five pathogenic fungi (Candida albicans, Aspergillus niger, Pyricularia oryzae, Fusarium avenaceum, and Hormodendrum compactum). In addition, compounds 1-7 showed a promising α-glycosidase inhibitory activity with IC 50 values of 1.47, 1.55, 1.83, 2.76, 2.88, 3.16, and 2.94 mM, respectively, as compared with a positive control of acarbose (IC 50 = 1.22 mM).

  1. Ni62(n,γ) and Ni63(n,γ) cross sections measured at the n_TOF facility at CERN

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Massimi, C.; Berthoumieux, E.; Colonna, N.; Dressler, R.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Kivel, N.; Pignatari, M.; Reifarth, R.; Schumann, D.; Wallner, A.; Altstadt, S.; Andriamonje, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthier, B.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Dillmann, I.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Fernández-Ordóñez, M.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Gramegna, F.; Griesmayer, E.; Gurusamy, P.; Harrisopulos, S.; Heil, M.; Ioannides, K.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Karadimos, D.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Lebbos, E.; Leeb, H.; Leong, L. S.; Losito, R.; Lozano, M.; Manousos, A.; Marganiec, J.; Marrone, S.; Martinez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plag, R.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Tlustos, L.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Versaci, R.; Vlachoudis, V.; Vlastou, R.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.; n TOF Collaboration

    2014-02-01

    The cross section of the Ni62(n,γ) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility n_TOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT=30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni63(n ,γ) reaction was measured for the first time at n_TOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.

  2. The Effect of Metal Composition on Fe-Ni Partition Behavior between Olivine and FeNi-Metal, FeNi-Carbide, FeNi-Sulfide at Elevated Pressure

    NASA Technical Reports Server (NTRS)

    Holzheid, Astrid; Grove, Timothy L.

    2005-01-01

    Metal-olivine Fe-Ni exchange distribution coefficients were determined at 1500 C over the pressure range of 1 to 9 GPa for solid and liquid alloy compositions. The metal alloy composition was varied with respect to the Fe/Ni ratio and the amount of dissolved carbon and sulfur. The Fe/Ni ratio of the metal phase exercises an important control on the abundance of Ni in the olivine. The Ni abundance in the olivine decreases as the Fe/Ni ratio of the coexisting metal increases. The presence of carbon (up to approx. 3.5 wt.%) and sulfur (up to approx. 7.5 wt.%) in solution in the liquid Fe-Ni-metal phase has a minor effect on the partitioning of Fe and Ni between metal and olivine phases. No pressure dependence of the Fe-Ni-metal-olivine exchange behavior in carbon- and sulfur-free and carbon- and sulfur-containing systems was found within the investigated pressure range. To match the Ni abundance in terrestrial mantle olivine, assuming an equilibrium metal-olivine distribution, a sub-chondritic Fe/Ni-metal ratio that is a factor of 17 to 27 lower than the Fe/Ni ratios in estimated Earth core compositions would be required, implying higher Fe concentrations in the core forming metal phase. A simple metal-olivine equilibrium distribution does not seem to be feasible to explain the Ni abundances in the Earth's mantle. An equilibrium between metal and olivine does not exercise a control on the problem of Ni overabundance in the Earth's mantle. The experimental results do not contradict the presence of a magma ocean at the time of terrestrial core formation, if olivine was present in only minor amounts at the time of metal segregation.

  3. On the nature of Ni···Ni interaction in a model dimeric Ni complex.

    PubMed

    Kamiński, Radosław; Herbaczyńska, Beata; Srebro, Monika; Pietrzykowski, Antoni; Michalak, Artur; Jerzykiewicz, Lucjan B; Woźniak, Krzysztof

    2011-06-07

    A new dinuclear complex (NiC(5)H(4)SiMe(2)CHCH(2))(2) (2) was prepared by reacting nickelocene derivative [(C(5)H(4)SiMe(2)CH=CH(2))(2)Ni] (1) with methyllithium (MeLi). Good quality crystals were subjected to a high-resolution X-ray measurement. Subsequent multipole refinement yielded accurate description of electron density distribution. Detailed inspection of experimental electron density in Ni···Ni contact revealed that the nickel atoms are bonded and significant deformation of the metal valence shell is related to different populations of the d-orbitals. The existence of the Ni···Ni bond path explains the lack of unpaired electrons in the complex due to a possible exchange channel.

  4. An alluvial record of El Niño events from northern coastal Peru

    NASA Astrophysics Data System (ADS)

    Wells, Lisa E.

    1987-12-01

    Overbank flood deposits of northern coastal Peru provide the potential for the development of a late Quaternary chronology of El Niño events. Alluvial deposits from the 1982-1983 El Niño event are the basis for establishing a type El Niño deposit. Sedimentary structures suggesting depositional processes range from sheet flows to debris flows, with sheet flood deposits being the most common. The 1982-1983 deposits are characterized by a 50- to 100-cm- thick basal gravel, overlain by a 10- to 100-cm-thick sand bed, grading into a 1- to 10-cm-thick silty sand bed and capped by a very thin layer of silt or clay. The surface of the deposit commonly displays the original shear flow lines crosscut by postdepositional mud cracks and footprints (human and animal). Stacked sequences of flood deposits are present in Pleistocene and Holocene alluvial fill, suggesting that El Niño type events likely occurred throughout the late Quaternary. A relative chronology of the deposits is developed based on terrace and soil stratigraphy and on the degree of preservation of surficial features. A minimum of 15 El Niño events occurred during the Holocene; a minimum of 21 events occurred during the late Pleistocene. Timing of the Holocene events is bracketed by isochrons derived from the archaeologic stratigraphy. Corrected radiocarbon ages from included detrital wood provide the following absolute dates for El Niño events: 1720 ± 60 A.D., 1460 ± 20 A.D., 1380 ± 140 A.D. (error overlaps with the A.D. 1460 event; these may represent a single event), and 1230 ± 60 B.C.

  5. Nickel (Ni) allergic patients with complications to Ni containing joint replacement show preferential IL-17 type reactivity to Ni.

    PubMed

    Summer, Burkhard; Paul, Carina; Mazoochian, Farhad; Rau, Christoph; Thomsen, Marc; Banke, Ingo; Gollwitzer, Hans; Dietrich, Karin-Almut; Mayer-Wagner, Susanne; Ruzicka, Thomas; Thomas, Peter

    2010-07-01

    Some nickel (Ni) allergic patients develop complications following Ni-containing arthroplasty. In the peri-implant tissue of such patients, we had observed lymphocyte dominated inflammation together with IFN-gamma and IL-17 expression. To determine whether Ni stimulation of peripheral blood mononuclear cells (PBMCs) of such patients would lead to a different cytokine pattern as compared to Ni-allergic patients with symptom-free arthroplasty. Based on history and patch testing in 15 Ni-allergic patients (five without implant, five with symptom-free arthroplasty, five with complicated arthroplasty) and five non-allergic individuals, lymphocyte transformation test (LTT) was performed using PBMC. In parallel in vitro cytokine response to Ni was assessed by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). All 15 Ni-allergic individuals showed enhanced LTT reactivity to Ni (mean SI = 8.42 +/- 1.8) compared to the non-allergic control group. Predominant IFN-gamma expression to Ni was found both in the five allergic patients without arthroplasty and also in the five allergic, symptom-free arthroplasty patients. In contrast, in the five Ni-allergic patients with arthroplasty-linked complications a predominant, significant IL-17 expression to Ni was seen but not in patients with symptom-free arthroplasty. The predominant IL-17 type response to Ni may characterize a subgroup of Ni-allergic patients prone to develop lymphocytic peri-implant hyper-reactivity.

  6. Swift heavy ion irradiation effects in Pt/C and Ni/C multilayers

    NASA Astrophysics Data System (ADS)

    Gupta, Ajay; Pandita, Suneel; Avasthi, D. K.; Lodha, G. S.; Nandedkar, R. V.

    1998-12-01

    Irradiation effects of 100 MeV Ag ion irradiation on Ni/C and Pt/C multilayers have been studied using X-ray reflectivity measurements. Modifications are observed in both the multilayers at (dE/dx)e values much below the threshold values for Ni and Pt. This effect is attributed to the discontinuous nature of the metal layers. In both the multilayers interfacial roughness increases with irradiation dose. While Ni/C multilayers exhibit large ion-beam induced intermixing, no observable intermixing is observed in the case of Pt/C multilayer. This difference in the behavior of the two systems suggests a significant role for chemically guided defect motion in the mixing process associated with swift heavy ion irradiation.

  7. Structural phase transition of magnetic [Ni(dmit)2]- salts induced by supramolecular cation structures of (M+)([12]crown-4)2.

    PubMed

    Akutagawa, Tomoyuki; Motokizawa, Takeshi; Matsuura, Kazumasa; Nishihara, Sadafumi; Noro, Shin-ichiro; Nakamura, Takayoshi

    2006-03-30

    Sandwich-type supramolecular cation structures of (M(+))([12]crown-4)(2) complexes (M(+) = Li(+), Na(+), K(+), and Rb(+)) were introduced as countercations to the [Ni(dmit)(2)](-) anion, which bears an S = (1)/(2) spin, to form novel magnetic crystals (dmit(2-) = 2-thione-1,3-dithiole-4,5-dithiolate). The zigzag arrangement of Li(+)([12]crown-4)(2) cations in Li(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salt induced weak intermolecular interactions of [Ni(dmit)(2)](-) dimers, whose magnetic spins were isolated from each other. The molecular arrangements of cations and anions in M(+)([12]crown-4)(2)[Ni(dmit)(2)](-) salts (M(+) = Na(+), K(+), and Rb(+)) were isostructural to each other. In the case of Na(+)([12]crown-4)(2)[Ni(dmit)(2)](-), the space group C2/m changed to C2/c with a lowering in temperature from 298 to 100 K. This structural change occurred at 222.5 K as a first-order phase transition. The space group C2/m (T = 298 K) in the salt K(+)([12]crown-4)(2)[Ni(dmit)(2)](-) also changed to C2/c (T = 100 K), which transition occurred at 270 K. Crystal structural analyses at 298 and 100 K revealed changes in both supramolecular cation conformation and [Ni(dmit)(2)](-) anion arrangements. The transition from C2/m to C2/c crystals generated a dipole moment in the Na(+)([12]crown-4)(2) and K(+)([12]crown-4)(2) structures, which were reconstructed to cancel the net dipole moment of the C2/c crystals. These cation transformations led to changes in intermolecular interactions between the [Ni(dmit)(2)](-) anions via structural rearrangements. The crystal structure of C2/c was stabilized in Rb(+)([12]crown-4)(2)[Ni(dmit)(2)](-) at 298 K. The [Ni(dmit)(2)](-) configuration in these salts with the C2/c space group was a one-dimensional uniform chain, which showed the temperature-dependent magnetic susceptibility of a one-dimensional linear Heisenberg antiferromagnetic chain.

  8. The Ni-rich part of the Al–Ge–Ni phase diagram

    PubMed Central

    Jandl, Isabella; Reichmann, Thomas L.; Richter, Klaus W.

    2013-01-01

    The Ni-rich part of the ternary system Al–Ge–Ni (xNi > 50 at.%) was investigated by means of optical microscopy, powder X-ray diffraction (XRD), differential thermal analysis (DTA) and scanning electron microscopy (SEM). The two isothermal sections at 550 °C and 700 °C were determined. Within these two sections a new ternary phase, designated as τ4, AlyGe9−yNi13±x (hP66, Ga3Ge6Ni13-type) was detected and investigated by single crystal X-ray diffraction. Another ternary low temperature phase, τ5, was found only in the isothermal section at 550 °C around the composition AlGeNi4. This compound was found to crystallise in the Co2Si type structure (oP12, Pnma). The structure was identified by Rietveld refinement of powder data. The NiAs type (B8) phase based on binary Ge3Ni5 revealed an extended solid solubility of Al and the two isotypic compounds AlNi3 and GeNi3 form a complete solid solution. Based on DTA results, six vertical sections at 55, 60, 70, 75 and 80 at.% Ni and at a constant Al:Ni ratio of 1:3 were constructed. Furthermore, the liquidus surface projection and the reaction scheme (Scheil diagram) were completed by combining our results with previous results from the Ni-poor part of the phase diagram. Six invariant ternary reactions were identified in the Ni-rich part of the system. PMID:27087754

  9. Tuning Ni-catalyzed CO 2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation

    DOE PAGES

    Winter, Lea R.; Gomez, Elaine; Yan, Binhang; ...

    2017-10-16

    CO 2 hydrogenation over Fe-modified Ni/CeO 2 catalysts was investigated in a batch reactor using time-resolved in situ FTIR spectroscopy. Low loading of Ni/CeO 2 was associated with high selectivity to CO over CH 4, while higher Ni loading improved CO 2 hydrogenation activity with a reduced CO selectivity. X-ray absorption near-edge structure (XANES) analysis revealed Ni to be metallic for all catalysts including the CO-selective low loading 0.5% Ni catalyst, suggesting that the selectivity trend is due to structural rather than oxidation state effects. The loading amount of 1.5% Ni was selected for co-impregnation with Fe, based on themore » significant shift in product selectivity towards CH 4 for that loading amount, in order to shift the selectivity towards CO while maintaining high activity. Temperature programmed reduction (TPR) results indicated bimetallic interactions between Ni and Fe, and XANES analysis showed that about 70% of Fe in the bimetallic catalysts was oxidized. The Ni-Fe catalysts demonstrated improved selectivity towards CO without significantly compromising activity, coupling the high activity of Ni catalysts and the high CO selectivity of Fe. The general trends in Ni loading and bimetallic modification should guide efforts to develop non-precious metal catalysts for the selective production of CO by CO 2 hydrogenation.« less

  10. Inkjet Printing NiO-Based p-Type Dye-Sensitized Solar Cells.

    PubMed

    Brisse, R; Faddoul, R; Bourgeteau, T; Tondelier, D; Leroy, J; Campidelli, S; Berthelot, T; Geffroy, B; Jousselme, B

    2017-01-25

    Fabrication at low cost of transparent p-type semiconductors with suitable electronic properties is essential toward the scalability of many electronic devices, especially for photovoltaic and photocatalytic applications. In this context, the synthesis of mesoporous NiO films through inkjet printing of a sol-gel ink was investigated for the first time. Nickel chloride and Pluronic F-127, used as nickel oxide precursor and pore-forming agent, respectively, were formulated in a water/ethanol mixture to prepare a jettable ink for Dimatix printer. Multilayer NiO films were formed, and different morphologies could be obtained by playing on the interlayer thermal treatment. At low temperature (30 °C), a porous nanoparticulate-nanofiber dual-pore structure was observed. On the other hand, with a high temperature treatment (450 °C), nanoparticulate denser films without any dual structure were obtained. The mechanism for NiO formation during the final sintering step, investigated by means of X-ray photolectron spectroscopy, shows that a Ni(OH) 2 species is an intermediate between NiCl 2 and NiO. The different morphologies and thicknesses of the NiO films were correlated to their performance in a p-DSSC configuration, using a new push-pull dye (so-called "RBG-174") and an iodine-based electrolyte. Moreover, the positive impact of a nanometric NiO x layer deposited by spin-coating and introduced between FTO and the NiO mesoporous network is highlighted in the present work. The best results were obtained with NiO x /four layer-NiO mesoporous photocathodes of 860 nm, with a current density at the short circuit of 3.42 mA cm -2 (irradiance of 100 mW cm -2 spectroscopically distributed following AM 1.5).

  11. Enhanced methane steam reforming activity and electrochemical performance of Ni0.9Fe0.1-supported solid oxide fuel cells with infiltrated Ni-TiO2 particles

    PubMed Central

    Li, Kai; Jia, Lichao; Wang, Xin; Pu, Jian; Chi, Bo; Li, Jian

    2016-01-01

    Ni0.9Fe0.1 alloy-supported solid oxide fuel cells with NiTiO3 (NTO) infiltrated into the cell support from 0 to 4 wt.% are prepared and investigated for CH4 steam reforming activity and electrochemical performance. The infiltrated NiTiO3 is reduced to TiO2-supported Ni particles in H2 at 650 °C. The reforming activity of the Ni0.9Fe0.1-support is increased by the presence of the TiO2-supported Ni particles; 3 wt.% is the optimal value of the added NTO, corresponding to the highest reforming activity, resistance to carbon deposition and electrochemical performance of the cell. Fueled wet CH4 at 100 mL min−1, the cell with 3 wt.% of NTO demonstrates a peak power density of 1.20 W cm−2 and a high limiting current density of 2.83 A cm−2 at 650 °C. It performs steadily for 96 h at 0.4 A cm−2 without the presence of deposited carbon in the Ni0.9Fe0.1-support and functional anode. Five polarization processes are identified by deconvoluting and data-fitting the electrochemical impedance spectra of the cells under the testing conditions; and the addition of TiO2-supported Ni particles into the Ni0.9Fe0.1-support reduces the polarization resistance of the processes ascribed to CH4 steam reforming and gas diffusion in the Ni0.9Fe0.1-support and functional anode. PMID:27775092

  12. Ni-NiO core-shell inverse opal electrodes for supercapacitors.

    PubMed

    Kim, Jae-Hun; Kang, Soon Hyung; Zhu, Kai; Kim, Jin Young; Neale, Nathan R; Frank, Arthur J

    2011-05-14

    A general template-assisted electrochemical approach was used to synthesize three-dimensional ordered Ni core-NiO shell inverse opals (IOs) as electrodes for supercapacitors. The Ni-NiO IO electrodes displayed pseudo-capacitor behavior, good rate capability and cycling performance. © The Royal Society of Chemistry 2011

  13. Dielectric properties of Ni-coated BaTiO/sub 3-/PMMA composite.

    PubMed

    Park, Jung Min; Lee, Hee Young; Kim, Jeong-Joo; Park, Eun Tae; Chung, Yul-Kyo

    2008-05-01

    Dielectric properties of Ni-coated BaTiO(3)-PMMA (polymethyl methacrylate) composite were studied from an embedded capacitor application viewpoint. Volume loading of up to 50% was attempted, and the results were compared with uncoated BaTiO(3)-PMMA composite. Ni-coating on BaTiO(3) powder was found to greatly improve the dielectric properties of the composite, especially the dielectric constant value. K values of about 100 with temperature-stable X7E characteristics were realized.

  14. An Ultrastable and High-Performance Flexible Fiber-Shaped Ni-Zn Battery based on a Ni-NiO Heterostructured Nanosheet Cathode.

    PubMed

    Zeng, Yinxiang; Meng, Yue; Lai, Zhengzhe; Zhang, Xiyue; Yu, Minghao; Fang, Pingping; Wu, Mingmei; Tong, Yexiang; Lu, Xihong

    2017-11-01

    Currently, the main bottleneck for the widespread application of Ni-Zn batteries is their poor cycling stability as a result of the irreversibility of the Ni-based cathode and dendrite formation of the Zn anode during the charging-discharging processes. Herein, a highly rechargeable, flexible, fiber-shaped Ni-Zn battery with impressive electrochemical performance is rationally demonstrated by employing Ni-NiO heterostructured nanosheets as the cathode. Benefiting from the improved conductivity and enhanced electroactivity of the Ni-NiO heterojunction nanosheet cathode, the as-fabricated fiber-shaped Ni-NiO//Zn battery displays high capacity and admirable rate capability. More importantly, this Ni-NiO//Zn battery shows unprecedented cyclic durability both in aqueous (96.6% capacity retention after 10 000 cycles) and polymer (almost no capacity attenuation after 10 000 cycles at 22.2 A g -1 ) electrolytes. Moreover, a peak energy density of 6.6 µWh cm -2 , together with a remarkable power density of 20.2 mW cm -2 , is achieved by the flexible quasi-solid-state fiber-shaped Ni-NiO//Zn battery, outperforming most reported fiber-shaped energy-storage devices. Such a novel concept of a fiber-shaped Ni-Zn battery with impressive stability will greatly enrich the flexible energy-storage technologies for future portable/wearable electronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Experimental determination of carbon solubility in Fe-Ni-S melts

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; Hastings, Patrick; Von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    To investigate the effect of metal/sulfide and Ni/Fe ratio on the C storage capacity of sulfide melts, we determine carbon solubility in Fe-Ni-S melts with various (Fe + Ni)/S and Ni/Fe via graphite-saturated high-pressure experiments from 2-7 GPa and 1200-1600 °C. Consistent with previous results, C solubility is high (4-6 wt.%) in metal-rich sulfide melts and diminishes with increasing S content. Melts with near M/S = 1 (XS > 0.4) have <0.5 wt.% C in equilibrium with graphite. C solubility is diminished modestly with increased Ni/Fe ratio, but the effect is most pronounced for S-poor melts, and becomes negligible in near-monosulfide compositions. Immiscibility between S-rich and C-rich melts is observed in Ni-poor compositions, but above ∼18 wt.% Ni there is complete miscibility. Because mantle sulfide compositions are expected to have high Ni concentrations, sulfide-carbide immiscibility is unlikely in natural mantle melts. An empirical parameterization of C solubility in Ni-Fe-S melts as a function of S and Ni contents allows estimation of the C storage capacity of sulfide in the mantle. Importantly, as the metal/sulfide (M/S) ratio of the melt increases, C storage increases both because C solubility increases and because the mass fraction of melt is enhanced by addition of metal from surrounding silicates. Under comparatively oxidized conditions where melts are near M/S = 1, as prevails at <250 km depth, bulk C storage is <3 ppm. In the deeper, more reduced mantle where M/S increases, up to 200 ppm C in typical mantle with 200 ± 100 ppm S can be stored in Fe-Ni-S melts. Thus, metal-rich sulfide melts are the principal host of carbon in the deep upper mantle and below. Residual carbon is present either as diamond or, if conditions are highly reduced and total C concentrations are low, solid alloy.

  16. Microstructural Evolution of Ni-Sn Transient Liquid Phase Sintering Bond during High-Temperature Aging

    NASA Astrophysics Data System (ADS)

    Feng, Hongliang; Huang, Jihua; Peng, Xianwen; Lv, Zhiwei; Wang, Yue; Yang, Jian; Chen, Shuhai; Zhao, Xingke

    2018-05-01

    For high-temperature-resistant packaging of new generation power chip, a chip packaging simulation structure of Ni/Ni-Sn/Ni was bonded by a transient liquid-phase sintering process. High-temperature aging experiments were carried out to investigate joint heat stability. The microstructural evolution and mechanism during aging, and mechanical properties after aging were analyzed. The results show that the 30Ni-70Sn bonding layer as-bonded at 340°C for 240 min is mainly composed of Ni3Sn4 and residual Ni particles. When aged at 350°C, because of the difficulty of nucleation for Ni3Sn and quite slow growth of Ni3Sn2, the bonding layer is stable and the strength of that doesn't change obviously with aging time. When aging temperature increased to 500°C, however, the residual Ni particles were gradually dissolved and the bonding layer formed a stable structure with dominated Ni3Sn2 after 36 h. Meanwhile, due to the volume shrinkage (4.43%) from Ni3Sn2 formation, a number of voids were formed. The shear strength shows an increase, resulting from Ni3Sn2 formation, but then it decreases slightly caused by voids. After aging at 500°C for 100 h, shear strength is still maintained at 29.6 MPa. In addition, the mechanism of void formation was analyzed and microstructural evolution model was also established.

  17. Experimental Constraints on Reconstruction of Archean Seawater Ni Isotopic Composition from Banded Iron Formations

    NASA Astrophysics Data System (ADS)

    Wang, S.; Wasylenki, L.

    2016-12-01

    Ni isotope systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater during the Precambrian Eon[1]. The use of BIFs as seawater proxies requires knowing how Ni isotopes fractionated during initial incorporation into iron-rich sediments and during early diagenesis. We conducted experiments to investigate Ni isotope behavior during coprecipitation with ferrihydrite and transformation of ferrihydrite to hematite. Ferrihydrite synthesis at neutral pH demonstrated that dissolved Ni was variably heavier than coprecipitated Ni (Δ60/58Ni = +0.08 to +0.50 ‰), in contrast to the constant offset observed earlier during adsorption to pre-existing ferrihydrite[2]. Experiments at lower pH (<7) yielded negative values of Δ60/58Ni ( -0.18 ‰), suggesting enrichment in heavier isotopes of structurally incorporated Ni relative to dissolved and adsorbed Ni, possibly due to the presence of a small amount of highly fractionated tetrahedral Ni2+ in the ferrihydrite structure. We model our results as equilibrium fractionation among three pools of Ni with systematically varied proportions. We synthesized hematite by transforming Ni-bearing ferrihydrite in aqueous solution at 100 °C and observed significant Ni release from solids (up to 60 %) as pH dropped from 7 to 4.5 - 5.5 during phase transformation. Rinsing hematite with acetic acid released very little Ni (presumably surface-adsorbed) compared to the amounts remaining in solid residues (presumably incorporated). We infer that Δ60/58Ni values (-0.04 to +0.77 ‰) observed in hematite experiments likely reflect Rayleigh fractionation between incorporated and dissolved Ni. The final hematite was slightly lighter than the ferrihydrite had been (by 0.08 ‰), indicating that this phase transformation results in very limited change in Ni isotopic composition, given current analytical uncertainty of ± 0.09 ‰. [1] Wasylenki and Wang (2016) Goldschmidt; [2] Wasylenki et al

  18. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface.

  19. Hydrogen Storage Characteristics of Nanocrystalline and Amorphous Nd-Mg-Ni-Based NdMg12-Type Alloys Synthesized via Mechanical Milling

    NASA Astrophysics Data System (ADS)

    Zhang, Yanghuan; Shang, Hongwei; Hou, Zhonghui; Yuan, Zeming; Yang, Tai; Qi, Yan

    2016-12-01

    In this study, Mg was partially substituted by Ni with the intent of improving the hydrogen storage kinetics performance of NdMg12-type alloy. Mechanical milling technology was adopted to fabricate the nanocrystalline and amorphous NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys. The effects of Ni content and milling duration on the microstructures and hydrogen storage kinetics of as-milled alloys have been systematically investigated. The structures were characterized by XRD and HRTEM. The electrochemical hydrogen storage properties were tested by an automatic galvanostatic system. Moreover, the gaseous hydrogen storage properties were investigated by Sievert apparatus and a differential scanning calorimeter connected with a H2 detector. Hydrogen desorption activation energy of alloy hydrides was estimated by using Arrhenius and Kissinger methods. The results reveal that the increase of Ni content dramatically ameliorates the gaseous and electrochemical hydrogen storage kinetics performance of the as-milled alloys. Furthermore, high rate discharge ability (HRD) reach the maximum value with the variation of milling time. The maximum HRDs of the NdMg11Ni + x wt pct Ni ( x = 100, 200) alloys are 80.24 and 85.17 pct. The improved gaseous hydrogen storage kinetics of alloys via increasing Ni content and milling time can be attributed to a decrease in the hydrogen desorption activation energy.

  20. The role of HH interactions in the formation of ordered structures on Ni and Pd single crystals

    NASA Astrophysics Data System (ADS)

    Muscat, J. P.

    1981-09-01

    The interaction between H adatoms on a surface is calculated within the embedded cluster model of chemisorption. The model is first applied to the case of two H atoms on a free electron surface. The interaction energy is found to be an oscillatory function of the H-H separation Rab. Application of the free electron model to the problem of chemisorption on transition metal surfaces leads to unphysical results with the prediction of formation of ordered H overlayers which are not observed in LEED experiments. We next include the l = 2 TM muffin tins. Results for H adsorption on the low index faces of Ni and Pd substrates are presented. Graphitic structures are predicted for the (111) faces of both Ni and Pd with the H atoms occupying both types of three-fold hollow sites on the surface. This agrees with the results of LEED experiments for H/Ni(111). Comparison with experiment is not possible in the case of H/Pd(111) owing to the lack of low temperature studies for that system. Zig-zag chains with the H atoms adsorbed in sites of three-fold coordination on alternate sides of the TM(110) rows are predicted for both Ni and Pd. This is in agreement with the results of He diffraction experiments for H/Ni(110). No structure determination has been done for H/Pd(110). Adsorption in the four-fold centre sites for H on the (100) faces of Ni and Pd is found to be unfavourable. The H atoms are expected to adsorb in sites of three-fold symmetry below the (100) surface for H on Pd with formation of a c(2 × 2) structure in agreement with the LEED observations. For H/Ni(100) the H atoms are believed to adsorb above the surface, away from the centre site and to bond to two surface Ni atoms. No short-range ordered structures are predicted in this case.

  1. Development of Conventional and Real-Time Reverse Transcription Polymerase Chain Reaction Assays to Detect Tembusu Virus in Culex tarsalis Mosquitoes

    DTIC Science & Technology

    2014-08-11

    methods for determining potential human health hazards , especially in field environment set- tings. We described the development of sensitive and specific...Smith, Department of Microbiology , Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort...2012. Adapted Tembusu-like virus in chickens and geese in China. J Clin Microbiol 50: 2807–2809. 7. Yun T, Ye W, Ni Z, Zhang D, Zhang C, 2012

  2. Physical Characterization of Cu-Ni-P Thin Films aiming at Cu/Cu-Ni-P Thermocouples

    NASA Astrophysics Data System (ADS)

    Tomachevski, F.; Sparvoli, M.; dos Santos Filho, S. G.

    2015-03-01

    Cu-Ni-P thin films have a high-thermoelectric power, which allows the fabrication of very sensitive heat-flux sensors based on planar technology. In this work, (100) silicon surfaces were pre-activated in a diluted hydrofluoric acid solution containing PdCl2. Following, Cu-Ni-P thin films were chemically deposited using an alkaline chemical bath containing 15 g/l NiSO4.6H2O; 0.2 g/l CuSO4.5H2O; 15 g/l Na2HPO2.H2O and 60 g/l Na3C6H5O7.2H2O at temperature of 80 °C where NH4OH was added until pH was 8.0. It was noteworthy that the stoichiometric percentages of Ni and Cu vary substantially for immersion times in the range of 1 to 3 min and they become almost stable at 50% and 35%, respectively, when the immersion time is higher than 3 min. In addition, the percentage of P remains almost constant around 1718 % for all the immersion times studied. On the other hand, the sheet resistance also varies substantially for immersion times in the range of 1 to 3 min. Based on the surface morphology, smaller grains with size in the range of 0.02 to 0.1 μm are initially grown on the silicon surface and exposed regions of silicon without deposits are also observed for immersion times in the range of 1 to 3min. Therefore, the discontinuities and non uniformities of the films are promoting, respectively, the observed behaviours of sheet resistance and stoichiometry.

  3. Synthesis and synchrotron X-ray characterization of two 2D Hoffman related compounds [Ni(p-Xylylenediamine)nNi(CN)4] and [Ni(p-tetrafluoroxylylenediamine)nNi(CN)4

    NASA Astrophysics Data System (ADS)

    Wong-Ng, W.; Culp, J. T.; Siderius, D. W.; Chen, Y. S.

    2018-07-01

    Synchrotron X-ray single crystal structure determination of two 2D Hofmann-related compounds, [Ni(p-Xylyenediamine)n-tetracyanonickelate] (abbreviated as Ni-pXdam) and [Ni(tetrafluoro-p-Xylyenediamine)n-tetracyanonickelate] (abbreviated as Ni-pXdamF4), have been conducted. Both the pXdam and pXdamF4 ligands contain two short chains of -CH2NH2 at the para-positions of a phenyl ring. These flexible chains link the 6-fold coordinated Ni2 sites throughout the network. In Ni-pXdam, the closed-2D network of [Ni-(CN-Ni1/4-)4]∞ is broken into 1D chains, leaving the C≡N groups at the trans-positions of the Ni(CN)4 moiety unbridged. The resulting 1D chains [(trans-)-NC-Ni(CN)2-CN-Ni-]∞ runs along the [010] direction of the unit cell. The pXdam ligands bridge in pair between the Ni atoms of the adjacent chains. The catenation structure of [Ni{(pXdam)}]∞ could be referred to as double -1D. In Ni-pXdamF4, the -CH2NH2 ligands connect the neighboring chains via the 6-fold Ni2 site. Surrounding the 4-fold Ni1 site, the two trans terminal C≡N groups were replaced by the Lewis base NH3 during the synthesis process, therefore preventing the propagation of the 2D net to form a 3D network. Computed pore volume of both compounds indicated that there is not sufficient space in the structure to accommodate gas molecules. In both compounds, hydrogen bonds were found, and solvent of crystallization was absent due to the limited free space in the structure.

  4. On the similarity of the bonding in NiS and NiO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1985-01-01

    The bonding in NiS is found to be quite similar to that in NiO, having an ionic contribution arising from the donation of the Ni 4s electron to the S atom and a covalent component arising from bonds between the Ni 3d and the S 3p. The one-electron d bonds are found to be of equal strength for NiO and NiS, but the two-electron d bonds are weaker for NiS.

  5. Measurement of 59Ni and 63Ni by accelerator mass spectrometry at CIAE

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoming; He, Ming; Ruan, Xiangdong; Xu, Yongning; Shen, Hongtao; Du, Liang; Xiao, Caijin; Dong, Kejun; Jiang, Shan; Yang, Xuran; Lan, Xiaoxi; Wu, Shaoyong; Zhao, Qingzhang; Cai, Li; Pang, Fangfang

    2015-10-01

    The long lived isotopes 59Ni and 63Ni can be used in many areas such as radioactive waste management, neutron dosimetry, cosmic radiation study, and so on. Based on the large accelerator and a big Q3D magnetic spectrometer, the measurement method for 59Ni and 63Ni is under development at the AMS facility at China Institute of Atomic Energy (CIAE). By using the ΔE-Q3D technique with the Q3D magnetic spectrometer, the isobaric interferences were greatly reduced in the measurements of 59Ni and 63Ni. A four anode gas ionization chamber was then used to further identify isobars. With these techniques, the abundance sensitivities of 59Ni and 63Ni measurements are determined as 59Ni/Ni = 1 × 10-13 and 63Ni/Ni = 2 × 10-12, respectively.

  6. Morphology controlled synthesis of 2-D Ni-Ni3S2 and Ni3S2 nanostructures on Ni foam towards oxygen evolution reaction

    NASA Astrophysics Data System (ADS)

    Chaudhari, Nitin Kaduba; Oh, Aram; Sa, Young Jin; Jin, Haneul; Baik, Hionsuck; Kim, Sang Gu; Lee, Suk Joong; Joo, Sang Hoon; Lee, Kwangyeol

    2017-03-01

    Catalysts for oxygen evolution reactions (OER) are at the heart of key renewable energy technologies, and development of non-precious metal catalysts with high activity and stability remain a great challenge in this field. Among various material candidates, metal sulfides are receiving increasing attention. While morphology-dependent catalytic performances are well established in noble metal-based catalysts, relatively little is known for the morphology‒catalytic performance relationship in metal sulfide catalysts. In this study, uniform spider web-like Ni nanosheets-Ni3S2 and honeycomb-like Ni3S2 structures are deposited on nickel foam (Ni3S2/NF) by a facile one-step hydrothermal synthetic route. When used as an oxygen evolution electrode, the spider web-like Ni-Ni3S2/NF with the large exposed surface area shown excellent catalytic activity and stability with an overpotential of 310 mV to achieve at 10 mA/cm2 and a Tafel slope of 63 mV/dec in alkaline media, which is superior to the honeycomb-like structure without Ni nanosheet. The low Tafel slope of the spider web-like Ni-Ni3S2/NF represents one of the best OER kinetics among nickel sulfide-based OER catalysts. The results point to the fact that performance of the metal sulfide electrocatalysts might be fine-tuned and optimized with morphological controls.

  7. Predictability of the Ningaloo Niño/Niña

    PubMed Central

    Doi, Takeshi; Behera, Swadhin K.; Yamagata, Toshio

    2013-01-01

    The seasonal prediction of the coastal oceanic warm event off West Australia, recently named the Ningaloo Niño, is explored by use of a state-of-the-art ocean-atmosphere coupled general circulation model. The Ningaloo Niño/Niña, which generally matures in austral summer, is found to be predictable two seasons ahead. In particular, the unprecedented extreme warm event in February 2011 was successfully predicted 9 months in advance. The successful prediction of the Ningaloo Niño is mainly due to the high prediction skill of La Niña in the Pacific. However, the model deficiency to underestimate its early evolution and peak amplitude needs to be improved. Since the Ningaloo Niño/Niña has potential impacts on regional societies and industries through extreme events, the present success of its prediction may encourage development of its early warning system. PMID:24100593

  8. Evaluating effective pair and multisite interactions for Ni-Mo system

    NASA Astrophysics Data System (ADS)

    Banerjee, Rumu H.; Arya, A.; Banerjee, S.

    2018-04-01

    Cluster expansion (CE) method was used to calculate the energies of various Ni-Mo phases. The clusters comprising of few nearest neighbours can describe any phase of Ni-Mo system by suitable choice of effective pair and multisite interaction parameters (ECI). The ECIs were evaluated in present study by fitting the ground state energies obtained by first principle calculations. The ECIs evaluated for Ni-Mo system were mostly pair clusters followed by triplets and quadruplet clusters with cluster diameters in the range 2.54 - 10.20 Å. The ECI values diminished for multi-body (triplets and quadruplets) clusters as compared to 2-point or pair clusters indicating a good convergence of CE model. With these ECIs the predicted energies of all the Ni-Mo structures across the Mo concentration range 0-100 at% were obtained. The quantitative error in the energies calculated by CE approach and first principle is very small (< 0.026 meV/atom). The appreciable values of 2-point ECIs upto 4th nearest neighbour reveal that two body interactions are dominant in the case of Ni-Mo system. These ECIs are compared with the reported values of compositional dependent effective pair interactions evaluated by first principle as well as by Monte Carlo method.

  9. Femtosecond laser ablation and nanoparticle formation in intermetallic NiAl

    NASA Astrophysics Data System (ADS)

    Jorgensen, David J.; Titus, Michael S.; Pollock, Tresa M.

    2015-10-01

    The ablation behavior of a stoichiometric intermetallic compound β-NiAl subjected to femtosecond laser pulsing in air has been investigated. The single-pulse ablation threshold for NiAl was determined to be 83 ± 4 mJ/cm2 and the transition to the high-fluence ablation regime occurred at 2.8 ± 0.3 J/cm2. Two sizes of nanoparticles consisting of Al, NiAl, Ni3Al and NiO were formed and ejected from the target during high-fluence ablation. Chemical analysis revealed that smaller nanoparticles (1-30 nm) tended to be rich in Al while larger nanoparticles (>100 nm) were lean in Al. Ablation in the low-fluence regime maintained this trend. Redeposited material and nanoparticles remaining on the surface after a single 3.7 J/cm2 pulse, one hundred 1.7 J/cm2 pulses, or one thousand 250 mJ/cm2 pulses were enriched in Al relative to the bulk target composition. Further, the surface of the irradiated high-fluence region was depleted in Al indicating that the fs laser ablation removal rate of the intermetallic constituents in this regime does not scale with the individual pure element ablation thresholds.

  10. Enhanced stability of Zr-doped Ba(CeTb)O(3-δ)-Ni cermet membrane for hydrogen separation.

    PubMed

    Wei, Yanying; Xue, Jian; Fang, Wei; Chen, Yan; Wang, Haihui; Caro, Jürgen

    2015-07-25

    A mixed protonic and electronic conductor material BaCe(0.85)Tb(0.05)Zr(0.1)O(3-δ) (BCTZ) is prepared and a Ni-BCTZ cermet membrane is synthesized for hydrogen separation. Stable hydrogen permeation fluxes can be obtained for over 100 h through the Ni-BCTZ membrane in both dry and humid conditions, which exhibits an excellent stability compared with Ni-BaCe(0.95)Tb(0.05)O(3-δ) membrane due to the Zr doping.

  11. Charge ordering in Ni 1 + / Ni 2 + nickelates: La 4 Ni 3 O 8 and La 3 Ni 2 O 6

    DOE PAGES

    Botana, Antia S.; Pardo, Victor; Pickett, Warren E.; ...

    2016-08-09

    Ab initio calculations allow us to establish a close connection between the Ruddlesden-Popper layered nickelates and cuprates not only in terms of filling of d levels (close to d 9) but also because they show Ni 1+(S = 1/2)/Ni 2+(S = 0) stripe ordering. We obtained the insulating charge-ordered ground state from a combination of structural distortions and magnetic order. The Ni 2+ ions are in a low-spin configuration (S = 0) yielding an antiferromagnetic arrangement of Ni 1+ S = 1/2 ions like the long-sought spin-1/2 antiferromagnetic insulator analog of the cuprate parent materials. Furthermore, the analogy extends further with the main contribution to the bands near the Fermi energy coming from hybridized Ni d more » $$_x$$ 2- $$_y$$ 2 and O $p$ states.« less

  12. Ferromagnetic resonance investigation in as-prepared NiFe/FeMn/NiFe trilayer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, S. J.; Xu, K.; Yu, L. M.

    2007-06-01

    NiFe/FeMn/NiFe trilayer prepared by dc magnetron sputtering was systematically investigated by ferromagnetic resonance technique (FMR) at room temperature. For NiFe/FeMn/NiFe trilayer, there are two distinct resonance peaks both in in-plane and out-of-plane FMR spectra, which are attributed to the two NiFe layers, respectively. The isotropic in-plane resonance field shift is negative for the bottom NiFe layer, while positive for the top NiFe layer. And, such phenomena result from the negative interfacial perpendicular anisotropy at the bottom NiFe/FeMn interface and positive interfacial perpendicular anisotropy at the top FeMn/NiFe interface. The linewidth of the bottom NiFe layer is larger than that ofmore » the top NiFe layer, which might be related to the greater exchange coupling at the bottom NiFe/FeMn interface.« less

  13. Ni Foam-Ni3 S2 @Ni(OH)2 -Graphene Sandwich Structure Electrode Materials: Facile Synthesis and High Supercapacitor Performance.

    PubMed

    Wang, Xiaobing; Hu, Jiangjiang; Su, Yichang; Hao, Jin; Liu, Fanggang; Han, Shuang; An, Jian; Lian, Jianshe

    2017-03-23

    A novel Ni foam-Ni 3 S 2 @Ni(OH) 2 -graphene sandwich-structured electrode (NF-NN-G) with high areal mass loading (8.33 mg cm -2 ) has been developed by sulfidation and hydrolysis reactions. The conductivity of Ni 3 S 2 and Ni(OH) 2 were both improved. The upper layer of Ni(OH) 2 , covered with a thin graphene film, is formed in situ from the surface of the lower layer of Ni 3 S 2 , whereas the Ni 3 S 2 grown on Ni foam substrate mainly acts as a rough support bridging the Ni(OH) 2 and Ni foam. The graphene stabilized the Ni(OH) 2 and the electrochemical properties were effectively enhanced. The as-synthesized NF-NN-G-5mg electrode shows a high specific capacitance (2258 F g -1 at 1 A g -1 or 18.81 F cm -2 at 8.33 mA cm -2 ) and an outstanding rate property (1010 F g -1 at 20 Ag -1 or 8.413 F cm -2 at 166.6 mA cm -2 ). This result is around double the capacitance achieved in previous research on Ni 3 S 2 @Ni(OH) 2 /3DGN composites (3DGN=three-dimensional graphene network). In addition, the as-fabricated NF-NN-G-5mg composite electrode has an excellent cycle life with no capacitance loss after 3000 cycles, indicating a potential application as an efficient electrode. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. NiFe2O4 Spinel Protection Coating for High-Temperature Solid Oxide Fuel Cell Interconnect Application

    NASA Astrophysics Data System (ADS)

    Irankhah, Reza; Raissi, Babak; Maghsoudipour, Amir; Irankhah, Abdullah; Ghashghai, Sasan

    2016-04-01

    In the present study, Ni-Fe spinel powder was synthesized via a solid state reaction. In the next step, the electrophoretic deposition (EPD) method was used to apply the NiFe2O4 spinel, as an oxidation-resistant layer, on a commercially available stainless steel (SUS 430) in a potential range of 100 to 300 V. Microscopic studies of the deposited layers showed that crack-free NiFe2O4 films were obtained at 100 V. The coated and uncoated samples were then pre-sintered in air and 5% H2 bal Ar atmospheres at 900 °C for 3 h followed by cyclic oxidation at 800 °C for 500 h. The investigation of the oxidation resistance of the samples using Energy Dispersive Spectroscopy (EDS) revealed that the NiFe2O4 coating acted as an effective barrier against chromium migration into the coating. The oxidation resistance of 5% H2 bal Ar pre-sintered sample was enhanced with an oxidation rate constant ( K P) of 8.9 × 10-15 g2 cm-4 s-1.

  15. Microstructural Investigation, Raman and Magnetic Studies on Chemically Synthesized Nanocrystalline Ni-Doped Gadolinium Oxide (Gd1.90Ni0.10O3- δ )

    NASA Astrophysics Data System (ADS)

    Sarkar, B. J.; Mandal, J.; Dalal, M.; Bandyopadhyay, A.; Satpati, B.; Chakrabarti, P. K.

    2018-03-01

    Nanocrystalline Ni-doped gadolinium oxide (Gd1.90Ni0.10O3- δ , GNO) is synthesized by co-precipitation method. The as-prepared sample is annealed in vacuum at 700°C for 6 h. Analyses of the x-ray diffractogram by Rietveld refinement method, transmission electron microscopy and Raman spectroscopy of GNO recorded at room temperature confirmed the pure crystallographic phase and complete substitution of Ni-ions in Gd2O3 lattice. Magnetization ( M) as a function of temperature ( T) and magnetic field ( H) is measured by a superconducting quantum interference device magnetometer, which suggests the presence of ferromagnetic/antiferromagnetic phases together with a paramagnetic phase. From the M-T curve it can be shown that the ferromagnetic phase dominates over para-/antiferromagnetic phases in the temperature range of 300-100 K, but from 100 K to 50 K, the antiferromagnetic phase dominates over ferro-/paramagnetic phases. Hysteresis loops recorded at different temperatures indicate the presence of weak ferro-/antiferromagnetism, which dominates in the low field region (˜ 4000 Oe), above which magnetization increases linearly. The sharp increase of magnetization in M-T curve observed in the temperature range of 50-5 K confirms the presence of dominating ferromagnetic plus paramagnetic phase over antiferromagnetic part. For the first time a combined formula generated from three-dimensional (3D) spin wave model and Johnston formula is proposed to analyze the coexistence of different magnetic phases in different temperature ranges. Interestingly, the combined formula successfully explains the co-existence of different magnetic phases along with their contribution at different temperatures. The onset of ferromagnetism in Gd1.90Ni0.10O3- δ is explained by oxygen vacancy mediated F-centre exchange (FCE) coupling mechanism.

  16. Laser ablation synthesis of Si-overdoped Ni1- x O with rocksalt-type derived superstructures and tailored optical properties

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Ling; Lin, Shih-Siang; Zheng, Yuyuan; Shen, Pouyan; Chen, Shuei-Yuan

    2017-04-01

    Si-overdoped Ni1- x O nanocondensates/particulates with novel superstructures were fabricated by pulsed laser ablation (PLA) of Ni in tetraethyl orthosilicate and characterized using electron microscopy and optical spectroscopy. The Si-overdoped and C-H-mediated Ni1- x O turned out to have two kinds of rocksalt-type derived superstructures, i.e., (1) 2 × 2 × 2 type of high-pressure stabilized Ni2SiO4 spinel which occurred as platy domains in the particles with {135} facets and (2) 3 × 3 × 3 type intimately mixed with 1D 6 × (100) throughout the particles with {100}, {110}, and {111} facets. Such shaped and superstructured particles, more or less encapsulated with graphitic carbon and siliceous amorphous phase, showed phase and dopant-tailored optical properties, in particular violet and green photoluminescence and UV-visible absorbance for potential engineering applications and shed light on their occurrence in natural dynamic settings.

  17. Strain and Ni substitution induced ferromagnetism in LaCoO3 thin films

    NASA Astrophysics Data System (ADS)

    Kumar, Ashok; Kumar, Vinod; Kumar, Rajesh; Kumar, Ravi

    2018-05-01

    We have grown epitaxial strained films of LaCoO3 and LaCo0.7Ni0.3O3 on LaAlO3 (100) substrate via pulsed laser deposition. Superconducting quantum interference device magnetization measurements show that, unlike its bulk counterpart, the ground state of the strained LaCoO3 on LAO is ferromagnetic. The saturation magnetization has been found increase strongly from a value of 118 emu/cm3 to 350 emu/ cm3 for Ni substituted thin film. Present study reveals that strain can stabilize FM order in these thin films down to low temperature, which can further be tuned to higher saturation magnetization with the Ni substitution.

  18. Fabrication of ordered Fe–Ni nitride film with equiatomic Fe/Ni ratio

    NASA Astrophysics Data System (ADS)

    Takata, Fumiya; Ito, Keita; Suemasu, Takashi

    2018-05-01

    We successfully grew a single-phase tetragonal FeNiN film with an equiatomic ratio of Fe, Ni, and N on a MgO(001) substrate by molecular beam epitaxy. We then demonstrated the formation of Fe2Ni2N films by extracting N atoms from the FeNiN film. These results suggested that Fe and Ni atoms in the Fe2Ni2N film were L10-ordered along the film plane direction because of the a-axis orientation growth of the FeNiN film on the MgO(001) substrate.

  19. Note: Erosion of W-Ni-Fe and W-Cu alloy electrodes in repetitive spark gaps.

    PubMed

    Wu, Jiawei; Han, Ruoyu; Ding, Weidong; Qiu, Aici; Tang, Junping

    2018-02-01

    A pair of W-Ni-Fe and W-Cu electrodes were tested under 100 kA level pulsed currents for 10 000 shots, respectively. Surface roughness and morphology characteristics of the two pairs of electrodes were obtained and compared. Experimental results indicated cracks divided the W-Cu electrode surface to polygons while the W-Ni-Fe electrode surface remained as a whole with pits and protrusions. Accordingly, the surface roughness of W-Ni-Fe electrodes increased to ∼3 μm while that of W-Cu electrodes reached ∼7 μm at the end of the test. The results reveal that the W-Ni-Fe alloy has a better erosion resistance and potential to be further applied in spark gaps.

  20. Preparation of Copper (Cu)-Nickel (Ni) Alloy Thin Films for Bilayer Graphene Growth

    DTIC Science & Technology

    2016-02-01

    public release; distribution is unlimited. 5 0 50 100 150 200 250 300 350 40 60 80 100 In te ns ity 2 Theta (°) 6:1 Cu/Ni, 15 mT, 400°C...JY, Hong BH. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457:706−710 4. Li XS , Cai WW, An JH

  1. Preparation and characterization of Ni-P/Ni3.1B composite alloy coatings

    NASA Astrophysics Data System (ADS)

    Wang, Yurong; He, Jiawei; Wang, Wenchang; Shi, Jianhua; Mitsuzaki, Naotoshi; Chen, Zhidong

    2014-02-01

    The preparation of Ni-P/Ni3.1B composite alloy coating on the surface of copper was achieved by co-deposition of Ni3.1B nanoparticles with Ni-P coating during electroless plating. Ni-P-B alloy coating was obtained by heat-treating the as-plated Ni-P/Ni3.1B composite coating. The effect of the concentration of sodium alginate, borax, thiourea, Ni3.1B, temperature, and pH value on the deposition rate and B content were investigated and determined to be: 30 g L-1, 10 g L-1, 2 mg L-1, 20 mg L-1, 70 °C and 9.0 , respectively. Sodium alginate and thiourea were played as surfactant for coating Ni3.1B nanoparticles and stabilizer for the plating bath, respectively. Ni-P/Ni3.1B composite coating had good performance such as corrosion resistance and solderability.

  2. Development of buffer layer structure for epitaxial growth of (100)/(001)Pb(Zr,Ti)O3-based thin film on (111)Si wafer

    NASA Astrophysics Data System (ADS)

    Hayasaka, Takeshi; Yoshida, Shinya; Tanaka, Shuji

    2017-07-01

    This paper reports on the development of a novel buffer layer structure, (100)SrRuO3/(100)LaNiO3/(111)Pt/(111)CeO2, for the epitaxial growth of a (100)/(001)-oriented Pb(Zr,Ti)O3 (PZT)-based thin film on a (111)Si wafer. (111)Pt and (111)CeO2 were epitaxially grown on (111)Si straightforwardly. Then, the crystal orientation was forcibly changed from (111) to (100) at the LaNiO3 layer owing to its strong (100)-self-orientation property, which enabled the cube-on-cube epitaxial growth of the subsequent (100)SrRuO3 layer and preferentially (100)/(001)-oriented PZT-based thin film. The PZT-based epitaxial thin films were comprehensively characterized in terms of the crystallinity, in-plane epitaxial relationships, piezoelectricity, and so forth. This buffer layer structure for the epitaxial growth of PZT can be applied to piezoelectric micro-electro-mechanical systems (MEMS) vibrating ring gyroscopes.

  3. Low leakage current Ni/CdZnTe/In diodes for X/ γ-ray detectors

    NASA Astrophysics Data System (ADS)

    Sklyarchuk, V. M.; Gnatyuk, V. A.; Pecharapa, W.

    2018-01-01

    The electrical characteristics of the Ni/Cd1-xZnxTe/In structures with a metal-semiconductor rectifying contact are investigated. The diodes, fabricated on the base of In-doped n-type Cd1-xZnxTe (CZT) crystals with resistivity of ∼1010 Ω ṡ cm, have low leakage current and can be used as X/ γ-ray detectors. The rectifying contact was obtained by vacuum deposition of Ni on the semiconductor surface pretreated with argon plasma. The high barrier rectifying contact allowed us to increase applied reverse bias voltage up to 2500 V at the CZT crystal thickness of 1 mm. Dark (leakage) currents of the diodes with the rectifying contact area of 4 mm2 did not exceed 3-5 nA at bias voltage of 2000 V and room temperature. The charge transport mechanisms in the Ni/CZT/In structures have been interpreted as generation-recombination in the space charge region within the range of reverse bias of 5-100 V and as currents limited by space charge at both forward and reverse bias at V >100 V.

  4. Synthesis and catalytic performance of SiO2@Ni and hollow Ni microspheres

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liu, Yanhua; Shi, Xueting; Yu, Zhengyang; Feng, Libang

    2016-11-01

    Nickel (Ni) catalyst has been widely used in catalytic reducing reactions such as catalytic hydrogenation of organic compounds and catalytic reduction of organic dyes. However, the catalytic efficiency of pure Ni is low. In order to improve the catalytic performance, Ni nanoparticle-loaded microspheres can be developed. In this study, we have prepared Ni nanoparticle-loaded microspheres (SiO2@Ni) and hollow Ni microspheres using two-step method. SiO2@Ni microspheres with raspberry-like morphology and core-shell structure are synthesized successfully using SiO2 microsphere as a template and Ni2+ ions are adsorbed onto SiO2 surfaces via electrostatic interaction and then reduced and deposited on surfaces of SiO2 microspheres. Next, the SiO2 cores are removed by NaOH etching and the hollow Ni microspheres are prepared. The NaOH etching time does no have much influence on the crystal structure, shape, and surface morphology of SiO2@Ni; however, it can change the phase composition evidently. The hollow Ni microspheres are obtained when the NaOH etching time reaches 10 h and above. The as-synthesized SiO2@Ni microspheres exhibit much higher catalytic performance than the hollow Ni microspheres and pure Ni nanoparticles in the catalytic reduction of methylene blue. Meanwhile, the SiO2@Ni catalyst has high stability and hence it can be recycled for reuse.

  5. Directional Solidification and Mechanical Properties of NiAl-NiAlTa Alloys

    NASA Technical Reports Server (NTRS)

    Johnson, D. R.; Chen, X. F.; Oliver, B. F.; Noebe, R. D.; Whittenberger, J. D.

    1995-01-01

    Directional solidification of eutectic alloys is a promising technique for producing in-situ composite materials exhibiting a balance of properties. Consequently, the microstructure, creep strength and fracture toughness of directionally solidified NiAl-NiAlTa alloys were investigated. Directional solidification was performed by containerless processing techniques to minimize alloy contamination. The eutectic composition was found to be NiAl-15.5 at% Ta and well-aligned microstructures were produced at this composition. A near-eutectic alloy of NiAl-14.5Ta was also investigated. Directional solidification of the near-eutectic composition resulted in microstructures consisting of NiAl dendrites surrounded by aligned eutectic regions. The off-eutectic alloy exhibited promising compressive creep strengths compared to other NiAl-based intermetallics, while preliminary testing indicated that the eutectic alloy was competitive with Ni-base single crystal superalloys. The room temperature toughness of these two-phase alloys was similar to that of polycrystalline NiAl even with the presence of the brittle Laves phase NiAlTa.

  6. Hierarchical NiCo2 S4 Nanotube@NiCo2 S4 Nanosheet Arrays on Ni Foam for High-Performance Supercapacitors.

    PubMed

    Chen, Haichao; Chen, Si; Shao, Hongyan; Li, Chao; Fan, Meiqiang; Chen, Da; Tian, Guanglei; Shu, Kangying

    2016-01-01

    Hierarchical NiCo2 S4 nanotube@NiCo2 S4 nanosheet arrays on Ni foam have been successfully synthesized. Owing to the unique hierarchical structure, enhanced capacitive performance can be attained. A specific capacitance up to 4.38 F cm(-2) is attained at 5 mA cm(-2) , which is much higher than the specific capacitance values of NiCo2 O4 nanosheet arrays, NiCo2 S4 nanosheet arrays and NiCo2 S4 nanotube arrays on Ni foam. The hierarchical NiCo2 S4 nanostructure shows superior cycling stability; after 5000 cycles, the specific capacitance still maintains 3.5 F cm(-2) . In addition, through the morphology and crystal structure measurement after cycling stability test, it is found that the NiCo2 S4 electroactive materials are gradually corroded; however, the NiCo2 S4 phase can still be well-maintained. Our results show that hierarchical NiCo2 S4 nanostructures are suitable electroactive materials for high performance supercapacitors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Viscosities of Fe Ni, Fe Co and Ni Co binary melts

    NASA Astrophysics Data System (ADS)

    Sato, Yuzuru; Sugisawa, Koji; Aoki, Daisuke; Yamamura, Tsutomu

    2005-02-01

    Viscosities of three binary molten alloys consisting of the iron group elements, Fe, Ni and Co, have been measured by using an oscillating cup viscometer over the entire composition range from liquidus temperatures up to 1600 °C with high precision and excellent reproducibility. The viscosities measured showed good Arrhenius linearity for all the compositions. The viscosities of Fe, Ni and Co as a function of temperature are as follows: \\eqalign{ & \\log \\eta={-}0.6074 + 2493/T\\qquad for\\quad Fe\\\\ & \\log \\eta={-}0.5695 + 2157/T\\qquad for\\quad Ni \\\\ & \\log \\eta={-}0.6620 + 2430/T\\qquad for\\quad Co.} The isothermal viscosities of Fe-Ni and Fe-Co binary melts increase monotonically with increasing Fe content. On the other hand, in Ni-Co binary melt, the isothermal viscosity decreases slightly and then increases with increasing Co. The activation energy of Fe-Co binary melt increased slightly on mixing, and those of Fe-Ni and Ni-Co melts decreased monotonically with increasing Ni content. The above behaviour is discussed based on the thermodynamic properties of the alloys.

  8. Facile synthesis of Ni/NiO@GO nanocomposites and its enhanced dielectric constant

    NASA Astrophysics Data System (ADS)

    Sarkar, S.; Giri, N.; Mondal, A.; Ray, R.

    2018-05-01

    Ni/NiO embedded Graphene Oxide (GO): Ni/NiO@GO is synthesized by citric acid assisted Pechini-type method. Structural and morphological characterizations are performed by X-ray powdered diffraction (XRD), field emission scanning electron microscopy (FESEM) and tunneling electron microscopy (TEM). Defects in GO sheets are probed by RAMAN spectroscopy. The temperature variation of dielectric constant (ɛR) and dielectric loss (tan δ) are investigated in the temperature range 300 - 400 K. Decoration of GO with Ni/NiO nanoparticles enhances its ɛR by˜55 times. Moreover, its dielectric constant measured at 5 MHz is found to be˜430 times to that of Ni/NiO along with the reduction of dielectric loss by a factor˜0.5. The enhanced dielectric constant makes the composite Ni/NiO@GO a potential candidate for using in ecologically friendly energy storage devices.

  9. A magnetostructural study of linear NiII MnIII NiII, NiII CrIII NiII and triangular Ni(II)3 species containing (pyridine-2-aldoximato)nickel(II) unit as a building block.

    PubMed

    Weyhermüller, Thomas; Wagner, Rita; Khanra, Sumit; Chaudhuri, Phalguni

    2005-08-07

    Three trinuclear complexes, NiII MnIII NiII, NiII CrIII NiII and Ni(II)3 based on (pyridine-2-aldoximato)nickel(II) units are described. Two of them, and , contain metal-centers in linear arrangement, as is revealed by X-ray diffraction. Complex is a homonuclear complex in which the three nickel(II) centers are disposed in a triangular fashion. The compounds were characterized by various physical methods including cyclic voltammetric and variable-temperature (2-290 K) susceptibility measurements. Complexes and display antiferromagnetic exchange coupling of the neighbouring metal centers, while weak ferromagnetic spin exchange between the adjacent Ni II and Cr III ions in is observed. The experimental magnetic data were simulated by using appropriate models.

  10. Kinetics of NiO and NiCl2 Hydrogen Reduction as Precursors and Properties of Produced Ni/Al2O3 and Ni-Pd/Al2O3 Catalysts

    PubMed Central

    Sokić, Miroslav; Kamberović, Željko; Nikolić, Vesna; Marković, Branislav; Korać, Marija; Anđić, Zoran; Gavrilovski, Milorad

    2015-01-01

    The objects of this investigation were the comparative kinetic analysis of the NiO and NiCl2 reduction by hydrogen during an induction period and elimination of the calcination during the synthesis of Ni/Al2O3 catalysts. The effect of temperature and time on NiO and NiCl2 reduction degrees was studied. Avrami I equation was selected as the most favorable kinetic model and used to determine activation energy of the NiO and NiCl2 reduction for the investigated temperature range (623–923 K) and time intervals (1–5 minutes). The investigation enabled reaching conclusions about the reaction ability and rate of the reduction processes. Afterward, Ni/Al2O3 catalysts were obtained by using oxide and chloride precursor for Ni. The catalysts were supported on alumina-based foam and prepared via aerosol route. Properties of the samples before and after low-temperature hydrogen reduction (633 K) were compared. Obtained results indicated that the synthesis of Ni/Al2O3 catalysts can be more efficient if chloride precursor for Ni is directly reduced by hydrogen during the synthesis process, without the calcination step. In addition, Ni-Pd/Al2O3 catalysts with different metal content were prepared by using chloride precursors. Lower reduction temperature was utilized and the chlorides were almost completely reduced at 533 K. PMID:25789335

  11. Effects of Ni particle morphology on cell performance of Na/NiCl2 battery

    NASA Astrophysics Data System (ADS)

    Kim, Mangi; Ahn, Cheol-Woo; Hahn, Byung-Dong; Jung, Keeyoung; Park, Yoon-Cheol; Cho, Nam-ung; Lee, Heesoo; Choi, Joon-Hwan

    2017-11-01

    Electrochemical reaction of Ni particle, one of active cathode materials in the Na/NiCl2 battery, occurs on the particle surface. The NiCl2 layer formed on the Ni particle surface during charging can disconnect the electron conduction path through Ni particles because the NiCl2 layer has very low conductivity. The morphology and size of Ni particles, therefore, need to be controlled to obtain high charge capacity and excellent cyclic retention. Effects of the Ni particle size on the cell performance were investigated using spherical Ni particles with diameters of 0.5 μm, 6 μm, and 50 μm. The charge capacities of the cells with spherical Ni particles increased when the Ni particle size becomes smaller because of their higher surface area but their charge capacities were significantly decreased with increasing cyclic tests owing to the disconnection of electron conduction path. The inferior cyclic retention of charge capacity was improved using reticular Ni particles which maintained the reliable connection for the electron conduction in the Na/NiCl2 battery. The charge capacity of the cell with the reticular Ni particles was higher than the cell with the small-sized spherical Ni particles approximately by 26% at 30th cycle.

  12. One dimensional motion of interstitial clusters and void growth in Ni and Ni alloys

    NASA Astrophysics Data System (ADS)

    Yoshiie, T.; Ishizaki, T.; Xu, Q.; Satoh, Y.; Kiritani, M.

    2002-12-01

    One dimensional (1-D) motion of interstitial clusters is important for the microstructural evolution in metals. In this paper, the effect of 2 at.% alloying with elements Si (volume size factor to Ni: -5.81%), Cu (7.18%), Ge (14.76%) and Sn (74.08%) in Ni on 1-D motion of interstitial clusters and void growth was studied. In neutron irradiated pure Ni, Ni-Cu and Ni-Ge, well developed dislocation networks and voids in the matrix, and no defects near grain boundaries were observed at 573 K to a dose of 0.4 dpa by transmission electron microscopy. No voids were formed and only interstitial type dislocation loops were observed near grain boundaries in Ni-Si and Ni-Sn. The reaction kinetics analysis which included the point defect flow into planar sink revealed the existence of 1-D motion of interstitial clusters in Ni, Ni-Cu and Ni-Ge, and lack of such motion in Ni-Si and Ni-Sn. In Ni-Sn and Ni-Si, the alloying elements will trap interstitial clusters and thereby reduce the cluster mobility, which lead to the reduction in void growth.

  13. Facet-controlled phase separation in supersaturated Au-Ni nanoparticles upon shape equilibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herz, A., E-mail: andreas.herz@tu-ilmenau.de, E-mail: dong.wang@tu-ilmenau.de; Rossberg, D.; Hentschel, M.

    2015-08-17

    Solid-state dewetting is used to fabricate supersaturated, submicron-sized Au-Ni solid solution particles out of thin Au/Ni bilayers by means of a rapid thermal annealing technique. Phase separation in such particles is studied with respect to their equilibrium crystal (or Wulff) shape by subsequent annealing at elevated temperature. It is found that (100) faceting planes of the equilibrated particles are enriched with Ni and (111) faces with Au. Both phases are considered by quantum-mechanical calculations in combination with an error-reduction scheme that was developed to compensate for a missing exchange-correlation potential that would reliably describe both Au and Ni. The observedmore » phase configuration is then related to the minimization of strongly anisotropic elastic energies of Au- and Ni-rich phases and results in a rather unique nanoparticle composite state that is characterized by nearly uniform value of elastic response to epitaxial strains all over the faceted surface. The same conclusion is yielded also by evaluating bi-axial elastic moduli when employing interpolated experimental elastic constants. This work demonstrates a useful route for studying features of physical metallurgy at the mesoscale.« less

  14. Effects of sterilization processes on NiTi alloy: surface characterization.

    PubMed

    Thierry, B; Tabrizian, M; Savadogo, O; Yahia, L

    2000-01-01

    Sterilization is required for using any device in contact with the human body. Numerous authors have studied device properties after sterilization and reported on bulk and surface modifications of many materials after processing. These surface modifications may in turn influence device biocompatibility. Still, data are missing on the effect of sterilization procedures on new biomaterials such as nickel-titanium (NiTi). Herein we report on the effect of dry heat, steam autoclaving, ethylene oxide, peracetic acid, and plasma-based sterilization techniques on the surface properties of NiTi. After processing electropolished NiTi disks with these techniques, surface analyses were performed by Auger electron spectroscopy (AES), atomic force microscopy (AFM), and contact angle measurements. AES analyses revealed a higher Ni concentration (6-7 vs. 1%) and a slightly thicker oxide layer on the surface for heat and ethylene oxide processed materials. Studies of surface topography by AFM showed up to a threefold increase of the surface roughness when disks were dry heat sterilized. An increase of the surface energy of up to 100% was calculated for plasma treated surfaces. Our results point out that some surface modifications are induced by sterilization procedures. Further work is required to assess the effect of these modifications on biocompatibility, and to determine the most appropriate methods to sterilize NiTi. Copyright 2000 John Wiley & Sons, Inc.

  15. Hydrothermal Synthesis and Characterization of Ni-Al Montmorillonite-Like Phyllosilicates

    PubMed Central

    Reinholdt, Marc X.; Brendlé, Jocelyne; Tuilier, Marie-Hélène; Kaliaguine, Serge; Ambroise, Emmanuelle

    2013-01-01

    This work describes the first hydrothermal synthesis in fluoride medium of Ni-Al montmorillonite-like phyllosilicates, in which the only metallic elements in the octahedral sheet are Ni and Al. X-ray diffraction , chemical analysis, thermogravimetric and differential thermal analysis, scanning electron microscopy and transmission electron microscopy confirm that the synthesized samples are montmorillonite-like phyllosilicates having the expected chemical composition. The specific surface areas of the samples are relatively large (>100 m2 g−1) compared to naturally occurring montmorillonites. 29Si and 27Al nuclear magnetic resonance (NMR) indicate substitutions of Al for Si in the tetrahedral sheet. 19F NMR and Ni K-edge extended X-ray absorption fine structure (EXAFS) local probes highlight a clustering of the metal elements and of the vacancies in the octahedral sheet of the samples. These Ni-Al phyllosilicates exhibit a higher local order than in previously synthesized Zn-Al phyllosilicates. Unlike natural montmorillonites, where the distribution of transition metal cations ensures a charge equilibrium allowing a stability of the framework, synthetic montmorillonites entail clustering and instability of the lattice when the content of divalent element in the octahedral sheet exceeds ca. 20%. Synthesis of Ni-Al montmorillonite-like phyllosilicates, was successfully achieved for the first time. These new synthetic materials may find potential applications as catalysts or as materials with magnetic, optical or staining properties. PMID:28348321

  16. Effects of F-treatment on degradation of Mg 2Ni electrode fabricated by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Kim, Jun Sung; Lee, Chang Rae; Choi, Jae Woong; Kang, Sung Goon

    The effects of surface fluorination on the electrochemical charge-discharge properties of a Mg 2Ni electrode, prepared by mechanical alloying in Ni-MH batteries are investigated. After 20 h milling, Mg and Ni powder form nanocrystalline Mg 2Ni. The discharge capacity of this alloy increases greatly on the initial cycle but, due to the formation of a Mg(OH) 2 passive layer, displays rapid degradation in alkaline solution within 10 cycles. In a 6 M KOH+ x M KF electrolyte ( x=0.5, 1, and 2), a continuous and stable fluorinated layer is formed and the durability of the Mg 2Ni electrode increases marketly and a high rate discharge capability is obtained (90-100 mAh/g). Addition of 2 M KF leads to the highest durability of all the electrodes tested. The improvement is due to a thin MgF 2—flourinated layer, which reduces the charge-transfer resistance and protects the Mg 2Ni electrode from forming a Mg(OH) 2 layer.

  17. Efficient acetone sensor based on Ni-doped ZnO nanostructures prepared by spray pyrolysis technique

    NASA Astrophysics Data System (ADS)

    Darunkar, Swapnil S.; Acharya, Smita A.

    2018-05-01

    Ni-doped ZnO thin film was prepared by home-built spray pyrolysis unit for the detection of acetone at 300°C. Scanning electron microscopic (SEM) images of as-developed thin film of undoped ZnO exhibits large quantity of spherical, non-agglomerated particles with uniform size while in Ni-doped ZnO, particles are quite non-uniform in nature. The particle size estimated by using image J are obtained to be around 20-200 nm. Ni-doping effect on band gaps are determined by UV-vis optical spectroscopy and band gap of Ni-doped ZnO is found to be 3.046 eV. Nickel doping exceptionally enhances the sensing response of ZnO as compared to undoped ZnO system. The major role of the Ni-doping is to create more active sites for chemisorbed oxygen on the surface of sensor and correspondingly, to improve the sensing response. The 6 at.% of Ni-doped ZnO exhibits the highest response (92%) for 100 ppm acetone at 300 °C.

  18. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    NASA Astrophysics Data System (ADS)

    Zietek, Slawomir; Ogrodnik, Piotr; Skowroński, Witold; Stobiecki, Feliks; van Dijken, Sebastiaan; Barnaś, Józef; Stobiecki, Tomasz

    2016-08-01

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions for optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.

  19. Thermodynamic characterization of Ni3TeO6, Ni2Te3O8 and NiTe2O5

    NASA Astrophysics Data System (ADS)

    Dawar, Rimpi; Babu, R.; Ananthasivan, K.; Anthonysamy, S.

    2017-09-01

    Measurement of vapour pressure of TeO2(g) over the biphasic mixture Ni3TeO6 (s) + NiO(s) in the temperature range 1143-1272 K was carried out using transpiration-thermogravimetric technique (TTG). Gibbs energy of formation of Ni3TeO6 was obtained from the temperature dependence of vapour pressure of TeO2 (g) generated by the incongruent vapourisation reaction, Ni3TeO6 (s) → NiO(s) + TeO2 (g) + 1/2 O2 in the temperature range 1143-1272 K. An isoperibol type drop calorimeter was used to measure the enthalpy increments of Ni3TeO6, Ni2Te3O8 and NiTe2O5. Thermodynamic functions viz., heat capacity, entropy and Gibbs energy functions of these compounds were derived from the experimentally measured enthalpy increment values. Third-law analysis was carried out to ascertain absence of temperature dependent systematic errors in the measurement of vapour pressure of TeO2 (g). A value of -1265.1 ± 1.5 kJ mol-1 was obtained for Δ Hf,298K o (Ni3TeO6) using third-law analysis.

  20. Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries

    NASA Astrophysics Data System (ADS)

    Han, Yu; Liu, Shuang-yu; Cui, Lei; Xu, Li; Xie, Jian; Xia, Xue-Ke; Hao, Wen-Kui; Wang, Bo; Li, Hui; Gao, Jie

    2018-01-01

    A binder-free Ni3S2 electrode was prepared directly on a graphene-coated Ni foam (G/Ni) substrate through surface sulfiding of substrate using thiourea as the sulfur source in this work. The Ni3S2 showed a flower-like morphology and was uniformly distributed on the G/Ni surface. The flower-like Ni3S2 was composed of cross-arrayed nanoflakes with a diameter and a thickness of 1-2 μm and 50 nm, respectively. The free space in the flowers and the thin feature of Ni3S2 buffered the volume changes and relieved mechanical strain during repeated cycling. The intimate contact with the Ni substrate and the fixing effect of graphene maintained the structural stability of the Ni3S2 electrode during cycling. The G/Ni-supported Ni3S2 maintained a reversible capacity of 250 mAh.g-1 after 100 cycles at 50 mA.g-1, demonstrating the good cycling stability as a result of the unique microstructure of this electrode material.

  1. Creep Behavior of Near-Stoichiometric Polycrystalline Binary NiAl

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2002-01-01

    New and published constant load creep and constant engineering strain rate data on near-stoichiometric binary NiAl in the intermediate temperature range 700 to 1300 K are reviewed. Both normal and inverse primary creep curves are observed depending on stress and temperature. Other characteristics relating to creep of NiAl involving grain size, stress and temperature dependence are critically examined and discussed. At stresses below 25 MPa and temperatures above 1000 K, a new grain boundary sliding mechanism was observed with n approx. 2, Qc approx. 100 kJ/ mol and a grain size exponent of about 2. It is demonstrated that Coble creep and accommodated grain boundary sliding models fail to predict the experimental creep rates by several orders of magnitude.

  2. Superaerophobic P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet arrays grown on Ni foam for electrocatalytic overall water splitting.

    PubMed

    Xi, Wenguang; Yan, Gang; Tan, Huaqiao; Xiao, Liguang; Cheng, Sihang; Khan, Shifa Ullah; Wang, Yonghui; Li, Yangguang

    2018-06-19

    Transition metal (TM) oxides and hydroxides are one of the important candidates for the development of durable and low-cost electrocatalysts towards water splitting. The key issue is exploring effective methods to improve their electrocatalytic activity. Herein, we report a new type of P-doped Ni(OH)2/NiMoO4 hierarchical nanosheet array (abbr. P-Ni(OH)2/NiMoO4) grown on Ni foam (NF), which can act as a highly efficient electrocatalyst towards overall water splitting. Such a composite was obtained by a three-step preparation process. In the first two hydrothermal reactions, the crystalline Ni(OH)2 hierarchical nanosheet arrays were grown on NF and then the low crystallinity NiMoO4 was grafted on the Ni(OH)2 nanosheets. In the third phosphorization step, P element was doped into the composite Ni(OH)2/NiMoO4. Electrocatalytic experiments show that P-Ni(OH)2/NiMoO4 possesses a smaller overpotential (60 mV) and lower Tafel slope (130 mV dec-1) toward HER in 1 M KOH. When it was employed as an integrated water splitting catalyst, only a potential of 1.55 V was required to achieve a current density of 10 mA cm-2. This catalytic activity is even better than those of electrolyzers constructed with noble metals Pt/C∥IrO2. The superior electrocatalytic performance of P-Ni(OH)2/NiMoO4 can be attributed to the high quality of crystalline Ni(OH)2 nanosheet arrays grown on NF, which dramatically improve the conductivity. Furthermore, the hierarchical structure not only increases the surface area and exposes more catalytically active sites, but also provides a superaerophobic surface, which helps to accelerate the release of generated bubbles. Moreover, the synergistic effects between P-Ni(OH)2 and P-NiMoO4 efficiently promote the HER and OER processes also. This work may suggest new a way to explore TM oxide/hydroxide-based durable electrocatalysts with highly efficient electrocatalytic activities towards overall water splitting.

  3. The effect of silicon on the oxidation behavior of NiAlHf coating system

    NASA Astrophysics Data System (ADS)

    Dai, Pengchao; Wu, Qiong; Ma, Yue; Li, Shusuo; Gong, Shengkai

    2013-04-01

    Two types of NiAlHf coatings doped with different content of Si (1 at.% and 2 at.%) were deposited on a Ni3Al based single crystal superalloy IC32 by electron beam physical vapor deposition (EB-PVD) method, respectively. For comparison, NiAlHf coating with 0 at.% Si was also prepared. The oxidation tests were carried out at 1423 K in air. At the initial stage of oxidation, large amount of flake-like θ-Al2O3 was found on NiAlHf coating surface. However, no θ-Al2O3 was observed in 2 at.% Si doped NiAlHf coating except α-Al2O3. It revealed that the Si additions could contribute to the transformation from θ-Al2O3 to α-Al2O3. When oxidation time prolonged to 100 h, it was found that the degradation of NiAlHf coating was very severe with no residual β-phase, which was due to the serious inter-diffusion between the coating and substrate. In contrast, the inter-diffusion in Si-doped coating was reduced with some residual β-phase and R-Ni(Mo, Re) precipitates. The presence of Si could retard the inter-diffusion of elements between coating and substrate, indicating a barrier diffusion effect. As a result, the oxidation resistance of NiAlHf coating was improved significantly.

  4. Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires.

    PubMed

    Ogata, K; Sutter, E; Zhu, X; Hofmann, S

    2011-09-07

    A systematic study of the kinetics of axial Ni silicidation of as-grown and oxidized Si nanowires (SiNWs) with different crystallographic orientations and core diameters ranging from ∼ 10 to 100 nm is presented. For temperatures between 300 and 440 °C the length of the total axial silicide intrusion varies with the square root of time, which provides clear evidence that the rate limiting step is diffusion of Ni through the growing silicide phase(s). A retardation of Ni-silicide formation for oxidized SiNWs is found, indicative of a stress induced lowering of the diffusion coefficients. Extrapolated growth constants indicate that the Ni flux through the silicided NW is dominated by surface diffusion, which is consistent with an inverse square root dependence of the silicide length on the NW diameter as observed for (111) orientated SiNWs. In situ TEM silicidation experiments show that NiSi(2) is the first forming phase for as-grown and oxidized SiNWs. The silicide-SiNW interface is thereby atomically abrupt and typically planar. Ni-rich silicide phases subsequently nucleate close to the Ni reservoir, which for as-grown SiNWs can lead to a complete channel break-off for prolonged silicidation due to significant volume expansion and morphological changes.

  5. Ni-Co laterite deposits

    USGS Publications Warehouse

    Marsh, Erin E.; Anderson, Eric D.

    2011-01-01

    Nickel-cobalt (Ni-Co) laterite deposits are an important source of nickel (Ni). Currently, there is a decline in magmatic Ni-bearing sulfide lode deposit resources. New efforts to develop an alternative source of Ni, particularly with improved metallurgy processes, make the Ni-Co laterites an important exploration target in anticipation of the future demand for Ni. This deposit model provides a general description of the geology and mineralogy of Ni-Co laterite deposits, and contains discussion of the influences of climate, geomorphology (relief), drainage, tectonism, structure, and protolith on the development of favorable weathering profiles. This model of Ni-Co laterite deposits represents part of the U.S. Geological Survey Mineral Resources Program's effort to update the existing models to be used for an upcoming national mineral resource assessment.

  6. Differentiation of Yersinia enterocolitica biotype 1A from pathogenic Yersinia enterocolitica biotypes by detection of β-glucosidase activity: comparison of two chromogenic culture media and Vitek2.

    PubMed

    Karhukorpi, Jari; Päivänurmi, Marjut

    2014-01-01

    Aesculin hydrolysis (ESC) is one of the key reactions in differentiating pathogenic Yersinia enterocolitica biotypes 1B, 2, 3, 4 and 5 from the less-pathogenic biotype 1A. Because the ESC reaction is caused by β-glucosidase (βGLU) activity of the bacteria, we studied whether two commonly used methods (BBL CHROMagar Orientation and Vitek2 Gram-negative identification card) could be used in assessing βGLU activity of 74 Yersinia strains. Both methods were sensitive (100 % and 97 %) and specific (100 % and 100 %) in differentiating βGLU-positive YE BT1A from βGLU-negative Y. enterocolitica biotypes. For a subset of strains (n = 69), a new selective CHROMagar Yersinia showed excellent agreement with the strains' βGLU activity. Thus all the methods evaluated in this study may be used to differentiate between YE BT1A and other Y. enterocolitica biotypes.

  7. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    NASA Technical Reports Server (NTRS)

    Carro, G.; Flanagan, W. F.

    1992-01-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3.

  8. Hydrogen enhanced crack growth in 18 Ni maraging steels

    NASA Technical Reports Server (NTRS)

    Hudak, S. J., Jr.; Wei, R. P.

    1976-01-01

    The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high-purity hydrogen are examined using the crack-tip stress intensity factor K as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly defined K-independent stage (Stage II). Crack growth rates in an 18 Ni (grade 250) maraging steel are examined for temperatures from -6 to +100 C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 plus or minus 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparent Kth (stress intensity level below which no observable crack growth occurs) and the crack growth behavior. Comparison of results on '250' and '300' grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior.

  9. Modeling of NiTiHf using finite difference method

    NASA Astrophysics Data System (ADS)

    Farjam, Nazanin; Mehrabi, Reza; Karaca, Haluk; Mirzaeifar, Reza; Elahinia, Mohammad

    2018-03-01

    NiTiHf is a high temperature and high strength shape memory alloy with transformation temperatures above 100oC. A constitutive model based on Gibbs free energy is developed to predict the behavior of this material. Two different irrecoverable strains including transformation induced plastic strain (TRIP) and viscoplastic strain (VP) are considered when using high temperature shape memory alloys (HTSMAs). The first one happens during transformation at high levels of stress and the second one is related to the creep which is rate-dependent. The developed model is implemented for NiTiHf under uniaxial loading. Finite difference method is utilized to solve the proposed equations. The material parameters in the equations are calibrated from experimental data. Simulation results are captured to investigate the superelastic behavior of NiTiHf. The extracted results are compared with experimental tests of isobaric heating and cooling at different levels of stress and also superelastic tests at different levels of temperature. More results are generated to investigate the capability of the proposed model in the prediction of the irrecoverable strain after full transformation in HTSMAs.

  10. Potentiometric Zinc Ion Sensor Based on Honeycomb-Like NiO Nanostructures

    PubMed Central

    Abbasi, Mazhar Ali; Ibupoto, Zafar Hussain; Hussain, Mushtaque; Khan, Yaqoob; Khan, Azam; Nur, Omer; Willander, Magnus

    2012-01-01

    In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples. PMID:23202217

  11. Structural and magnetic properties of Ni-Zn and Ni-Zn-Co ferrites

    NASA Astrophysics Data System (ADS)

    Knyazev, A. V.; Zakharchuk, I.; Lähderanta, E.; Baidakov, K. V.; Knyazeva, S. S.; Ladenkov, I. V.

    2017-08-01

    Ni-Zn and Ni-Zn-Co ferrite powders with nominal compositions Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 were prepared by the solid-state reaction synthesis with periodic regrinding during the calcination at 1073 K. The structure of Ni0.5Zn0.5Fe2O4 and Ni0.5Zn0.3Co0.2Fe2O4 was refined assuming space group F d-3m. Scanning electron microscopy revealed the average sizes of the crystalline ferrite particles are 130-630 nm for Ni0.5Zn0.5Fe2O4 and 140-350 nm for Ni0.5Zn0.3Co0.2Fe2O4. The room temperature saturation magnetizations are 59.7 emu/g for Ni0.5Zn0.5Fe2O4 and 57.1 emu/g for Ni0.5Zn0.3Co0.2Fe2O4. The coercivity of the samples is found to be much larger than that of bulk ferrites and increases with Co introduction. The Curie temperature tends to increase upon Zn substitution by Co, as well. The temperature dependences of magnetization measured using zero-field cooled and field cooled protocols exhibit large spin frustration and spin-glass-like behavior.

  12. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces.

    PubMed

    Khan, Shams Tabrez; Ahamed, Maqusood; Alhadlaq, Hisham A; Musarrat, Javed; Al-Khedhairy, Abdulaziz

    2013-12-01

    Oral ailments are often treated with antibiotics, which are rendered ineffective as bacteria continue to develop resistance against them. It has been suggested that the nanoparticles (NPs) approach may provide a safer and viable alternative to traditional antibacterial agents. Therefore, nickel (Ni)- and nickel oxide (NiO)-NPs were synthesized, characterized and assessed for their efficacy in reducing oral bacterial load in vitro. Also, the effects of bulk compound NiCl2 (Ni ions), along with the Ni- and NiO-NPs on bacterial exopolysaccharide (EPS) production and biofilm formation on the surface of artificial teeth, and acrylic dentures, were investigated. Total bacteria from a healthy male were collected and adjusted to 4×109cells/ml for all the tests. Effect of the NPs on growth, biofilm formation, EPS production and acid production from glucose was tested using standard protocols. Data revealed that the Ni-NPs (average size 41.23nm) exhibited an IC50 value of 73.37μg/ml against total oral bacteria. While, NiO-NPs (average size 35.67nm) were found less effective with much higher IC50 value of 197.18μg/ml. Indeed, the Ni ions exhibited greater biocidal activity with an IC50 value of 70μg/ml. Similar results were obtained with biofilm inhibition on the surfaces of dental prostheses. The results explicitly suggested the effectiveness of tested Ni compounds on the growth of oral bacteria and biofilm formation in the order as NiCl2>Ni-NPs>NiO-NPs. The results elucidated that Ni-NPs could serve as effective nanoantibiotics against oral bacteria. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Trace element control in binary Ni-25Cr and ternary Ni-30Co-30Cr master alloy castings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detrois, Martin; Jablonski, Paul D.

    Electro-slag remelting (ESR) is used for control of unwanted elements in commercial alloys. This study focuses on master alloys of Ni-25Cr and Ni-30Co-30Cr, processed through a combination of vacuum induction melting (VIM) and electro-slag remelting (ESR). Minor additions were made to control tramp element levels and modify the melting characteristics. Nitrogen and sulfur levels below 10 ppm and oxygen levels below 100 ppm were obtained in the final products. The role of the alloy additions in lowering the tramp element content, the resulting residual inclusions and the melting characteristics were determined computationally and confirmed experimentally. Additions of titanium were beneficialmore » to the control of oxygen levels during VIM and nitrogen levels during ESR. Aluminum additions helped to control oxygen levels during remelting, however, aluminum pickup occurred when excess titanium was present during ESR. The usefulness of these master alloys for use as experimental remelt stock will also be discussed.« less

  14. Growth of Ni-Al alloys on Ni(1 1 1), from Al deposits of various thicknesses: (II) Formation of NiAl over a Ni 3Al interfacial layer

    NASA Astrophysics Data System (ADS)

    Le Pévédic, S.; Schmaus, D.; Cohen, C.

    2007-01-01

    This paper describes the second part of a study devoted to the growth of thin Ni-Al alloys after deposition of Al on Ni(1 1 1). In the previous paper [S. Le Pévédic, D. Schmaus, C. Cohen, Surf. Sci. 600 (2006) 565] we have described the results obtained for ultra-thin Al deposits, leading, after annealing at 750 K, to an epitaxial layer of Ni 3Al(1 1 1). In the present paper we show that this regime is only observed for Al deposits smaller than 8 × 10 15 Al/cm 2 and we describe the results obtained for Al deposits exceeding this critical thickness, up to 200 × 10 15 Al/cm 2. Al deposition was performed at low temperature (around 130 K) and the alloying process was followed in situ during subsequent annealing, by Auger electron spectroscopy, low energy electron diffraction and ion beam analysis-channeling measurements, in an ultra-high vacuum chamber connected to a Van de Graaff accelerator. We evidence the formation, after annealing at 750 K, of a crystallographically and chemically well-ordered NiAl(1 1 0) layer (whose thickness depends on the deposited Al amount), over a Ni 3Al "interfacial" layer (whose thickness—about 18 (1 1 1) planes—is independent of the deposited Al amount). The NiAl overlayer is composed of three variants, at 120° from each other in the surface plane, in relation with the respective symmetries of NiAl(1 1 0) and Ni 3Al(1 1 1). The NiAl layer is relaxed (the lattice parameters of cc-B2 NiAl and fcc-L1 2 Ni 3Al differ markedly), and we have determined its epitaxial relationship. In the case of the thickest alloyed layer formed the results concerning the structure of the NiAl layer have been confirmed and refined by ex situ X-ray diffraction and information on its grain size has been obtained by ex situ Atomic Force Microscopy. The kinetics of the alloying process is complex. It corresponds to an heterogeneous growth leading, above the thin Ni 3Al interfacial layer, to a mixture of Al and NiAl over the whole Al film, up to the

  15. Fine Structure in Multi-Phase Zr8Ni21-Zr7Ni10-Zr2Ni7 Alloy Revealed by Transmission Electron Microscope

    PubMed Central

    Shen, Haoting; Bendersky, Leonid A.; Young, Kwo; Nei, Jean

    2015-01-01

    The microstructure of an annealed alloy with a Zr8Ni21 composition was studied by both scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The presence of three phases, Zr8Ni21, Zr2Ni7, and Zr7Ni10, was confirmed by SEM/X-ray energy dispersive spectroscopy compositional mapping and TEM electron diffraction. Distribution of the phases and their morphology can be linked to a multi-phase structure formed by a sequence of reactions: (1) L → Zr2Ni7 + L’; (2) peritectic Zr2Ni7 + L’ → Zr2Ni7 + Zr8Ni21 + L”; (3) eutectic L” → Zr8Ni21 + Zr7Ni10. The effect of annealing at 960 °C, which was intended to convert a cast structure into a single-phase Zr8Ni21 structure, was only moderate and the resulting alloy was still multi-phased. TEM and crystallographic analysis of the Zr2Ni7 phase show a high density of planar (001) defects that were explained as low-energy boundaries between rotational variants and stacking faults. The crystallographic features arise from the pseudo-hexagonal structure of Zr2Ni7. This highly defective Zr2Ni7 phase was identified as the source of the broad X-ray diffraction peaks at around 38.4° and 44.6° when a Cu-K was used as the radiation source. PMID:28793460

  16. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Zhipeng; Firdoz, Shaik; Ying-Xuan Yap, Esther; Li, Lan; Lu, Xianmao

    2013-05-01

    We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly conductive pathway for electron transport, and efficient material utilization.We report a hierarchical Ni@MnO2 structure consisting of MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors. The Ni@MnO2 structure, which was prepared via a facile electrodeposition method, is highly porous and appears like a forest of pine trees grown vertically on a substrate. At a MnO2 mass loading of 0.35 mg cm-2, the Ni@MnO2 electrode demonstrated a specific capacitance of 1125 F g-1 that is close to the theoretical value. In addition, a remarkable high-rate performance (766 F g-1 at a discharge current density of 100 A g-1) was achieved. Electrochemical tests in a two-electrode configuration for the Ni@MnO2 structure with a high MnO2 loading of 3.6 mg cm-2 showed a low equivalent series resistance (ESR) of 1 Ω and a high specific power of 72 kW kg-1. This superior performance can be attributed to the highly porous and hierarchical structure of Ni@MnO2 that favors rapid diffusion of an electrolyte, highly

  17. Characteristics of storage related capacity loss in Ni/H2 cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari

    1993-01-01

    The changes in the capacity, voltage and pressure profile of flight configuration Ni/H2 cells when they are stored for extended periods is examined. The Ni/H2 cells exhibit capacity fade phenomenon regardless of their design when they are stored at room temperature. Capacity loss also occurs if old cells (5 years old) are stored in a very low rate trickle charge (C/200 rate) condition. A periodic recharge technique leads to pressure rise in the cells. Conventional trickle charge (C/100 rate) helps in minimizing or eliminating the second plateau which is one of the characteristics of the capacity fade phenomenon.

  18. Heteromorphic NiCo2S4/Ni3S2/Ni Foam as a Self-Standing Electrode for Hydrogen Evolution Reaction in Alkaline Solution.

    PubMed

    Liu, Hui; Ma, Xiao; Rao, Yuan; Liu, Yang; Liu, Jialiang; Wang, Luyang; Wu, Mingbo

    2018-04-04

    Considerable works have been devoted on developing high-efficiency nonplatinum electrocatalysts for hydrogen evolution reaction (HER). Herein, 3D heteromorphic NiCo 2 S 4 /Ni 3 S 2 nanosheets network has been constructed on Ni foam (denoted as NiCo 2 S 4 /Ni 3 S 2 /NF) serving as a self-standing electrocatalyst through directly thermal sulfurization of a single-source NiCo-layered double hydroxide precursor. The resultant NiCo 2 S 4 /Ni 3 S 2 /NF electrode exhibits outstanding electrocatalytic HER performance with an extremely low onset overpotential of 15 mV and long-term durability in alkaline solution. Such enhanced HER performance can be credited to (1) the massive exposed active sites provided by mixed transition metal chalcogenides (NiCo 2 S 4 and Ni 3 S 2 ), (2) the strong interfacial interaction at NiCo 2 S 4 /Ni 3 S 2 heterojunction interfaces with the strengthened H binding, and (3) the porous highly conductive Ni foam substrate with accelerated electron transfer. This work opens up a new direction to fabricate effective and non-noble-metal electrodes for water splitting and hydrogen generation.

  19. Low-field spin dynamics of Cr7Ni and Cr7Ni-Cu -Cr 7Ni molecular rings as detected by μ SR

    NASA Astrophysics Data System (ADS)

    Sanna, S.; Arosio, P.; Bordonali, L.; Adelnia, F.; Mariani, M.; Garlatti, E.; Baines, C.; Amato, A.; Sabareesh, K. P. V.; Timco, G.; Winpenny, R. E. P.; Blundell, S. J.; Lascialfari, A.

    2017-11-01

    Muon spin rotation measurements were used to investigate the spin dynamics of heterometallic Cr7Ni and Cr7Ni -Cu-Cr7Ni molecular clusters. In Cr7Ni the magnetic ions are arranged in a quasiplanar ring and interact via an antiferromagnetic exchange coupling constant J , while Cr7Ni -Cu-Cr7Ni is composed of two Cr7Ni linked by a bridging moiety containing one Cu ion, that induces an inter-ring ferromagnetic interaction J'≪J . The longitudinal muon relaxation rate λ collected at low magnetic fields μ0H <0.15 Tesla, shows that the two systems present differences in spin dynamics vs temperature. While both samples exhibit a main peak in the muon relaxation rate vs temperature, at T ˜10 K for Cr7Ni and T ˜8 K for Cr7Ni -Cu-Cr7Ni , the two compounds have distinct additional features: Cr7Ni shows a shoulder in λ (T ) for T <8 K, while Cr7Ni -Cu-Cr7Ni shows a flattening of λ (T ) for T <2 K down to temperatures as low as T =20 mK. The main peak of both systems is explained by a Bloembergen-Purcell-Pound (BPP)-like heuristic fitting model that takes into account of a distribution of electronic spin characteristic times for T >5 K, while the shoulder presented by Cr7Ni can be reproduced by a BPP function that incorporates a single electronic characteristic time theoretically predicted to dominate for T <5 K. The flattening of λ (T ) in Cr7Ni -Cu-Cr7Ni occurring at very low temperature can be tentatively attributed to field-dependent quantum effects and/or to an inelastic term in the spectral density of the electronic spin fluctuations.

  20. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOEpatents

    Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  1. Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction.

    PubMed

    Lee, Eunjik; Park, Ah-Hyeon; Park, Hyun-Uk; Kwon, Young-Uk

    2018-01-01

    In this work, we present facile synthesis of amorphous Ni/Fe mixed (oxy)hydroxide (NiFe(H)) nanoparticles (NPs) and their electrocatalytic performance for oxygen evolution reaction (OER) in alkaline media. a-NiFe(H) NPs have received lots of attention as OER electrocatalysts with many desirable properties. By using a simple sonochemical route, we prepared amorphous Ni and Fe-alkoxide (NiFe(A)) NPs whose composition can be controlled in the entire composition range (Ni 100-x Fe x , 0≤x≤1). These samples are composed of extremely small NiFe(A) NPs with Ni and Fe atoms homogeneously distributed. NiFe(A) NPs are readily converted into corresponding electrocatalytically active NiFe(H) NP by a simple electrochemical treatment. Electrochemical analysis data show that the OER activity of amorphous NiFe(H) samples follows the volcano-type trend when plotted against the Fe content. Ni 70 Fe 30 (H) sample showed the lowest overpotential of 292mV at 10mAcm -2 geo and the lowest Tafel slope of 30.4mVdec -1 , outperforming IrO x /C (326mV, 41.7mVdec -1 ). Our samples are highly durable based on the chronopotentiometry data at the current density of 10mAcm -2 geo for 2h which show that Ni 70 Fe 30 sample maintains the steady-state potential, contrary to the time-varying IrO x /C. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Preparation and properties of TiC-Ni cermets using Ni-plated TiC

    NASA Astrophysics Data System (ADS)

    Shin, Soon-Gi

    2002-04-01

    TiC powders were coated with Ni by a chemical plating technique and the pressed compacts sintered at 1623K. The density of the sintered bodies was 98-99%. Compared with mechanically-mixed powder, Ni-plated TiC powders gave a more uniform microstructure in which TiC particles were well dispersed in the Ni matrix. The cermets exhibited ductile fracture for TiC-70 vol.% Ni and brittle fracture for TiC-30 vol.% Ni. The flexural strength was improved by the homogeneous dispersion of TiC. The thermal expansion coefficient increased with a decrease in Ni content, following a nearly linear law of mixtures on the basis of volume fractions of pure TiC and Ni.

  3. Synthesis of a novel Au nanoparticles decorated Ni-MOF/Ni/NiO nanocomposite and electrocatalytic performance for the detection of glucose in human serum.

    PubMed

    Chen, Jingyuan; Xu, Qin; Shu, Yun; Hu, Xiaoya

    2018-07-01

    A nonenzymatic glucose electrochemical sensor was constructed based on Au nanoparticles (AuNPs) decorated Ni metal-organic-framework (MOF)/Ni/NiO nanocomposite. Ni-MOF/Ni/NiO nanocomposite was synthesized by one-step calcination of Ni-MOF. Then AuNPs were loaded onto the Ni-based nanocomposites' surface through electrostatic adsorption. Through characterization by transmission electron microscopy (TEM), high resolution TEM (HRTEM) and energy disperse spectroscopy (EDS) mapping, it is found that the AuNPs were well distributed on the surface of Ni-based nanocomposite. Cyclic voltammetric (CV) study showed the electrocatalytic activity of Au-Ni nanocomposite was highly improved after loading AuNPs onto it. Amperometric study demonstrated that the Au-Ni nanocomposites modified glassy carbon electrode (GCE) exhibited a high sensitivity of 2133.5 mA M -1 cm -2 and a wide linear range (0.4-900 μM) toward the oxidation of glucose with a detection limit as low as 0.1 μM. Moreover, the reproducibility, selectivity and stability of the sensor all exhibited outstanding performance. We applied the as-fabricated high performance sensor to measure the glucose levels in human serum and obtained satisfactory results. It is believed that AuNPs decorated Ni MOF/Ni/NiO nanocomposite provides a new platform for developing highly performance electrochemical sensors in practical applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Anisotropic growth of NiO nanorods from Ni nanoparticles by rapid thermal oxidation.

    PubMed

    Koga, Kenji; Hirasawa, Makoto

    2013-09-20

    NiO nanorods with extremely high crystallinity were grown by rapid thermal oxidation through exposure of Ni nanoparticles (NPs) heated above 400° C to oxygen. Oxidation proceeds by nucleation of a NiO island on a Ni NP that grows anisotropically to produce a NiO nanorod. This process differs completely from that under mild oxidation conditions, where the surface of the NPs is completely covered with an oxide film during the early stage of oxidation. The observed novel behaviour strongly suggests an interfacial oxidation mechanism driven by the dissolution of adsorbed oxygen into the Ni NP sub-surface region, subsequent diffusion and reaction at the NiO/Ni interface. The early oxidation conditions of metal NPs impose a significant influence on the entire oxidation process at the nanoscale and are therefore inherently important for the precise morphological control of oxidized NPs to design functional nanomaterials.

  5. Electric-field tunable spin diode FMR in patterned PMN-PT/NiFe structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziętek, Slawomir, E-mail: zietek@agh.edu.pl; Skowroński, Witold; Stobiecki, Tomasz

    Dynamic properties of NiFe thin films on PMN-PT piezoelectric substrate are investigated using the spin-diode method. Ferromagnetic resonance (FMR) spectra of microstrips with varying width are measured as a function of magnetic field and frequency. The FMR frequency is shown to depend on the electric field applied across the substrate, which induces strain in the NiFe layer. Electric field tunability of up to 100 MHz per 1 kV/cm is achieved. An analytical model based on total energy minimization and the Landau-Lifshitz-Gilbert equation, taking into account the magnetostriction effect, is used to explain the measured dynamics. Based on this model, conditions formore » optimal electric-field tunable spin diode FMR in patterned NiFe/PMN-PT structures are derived.« less

  6. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE PAGES

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.; ...

    2018-05-09

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  7. Temperature-dependent selective oxidation processes for Ni-5Cr and Ni-4Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruska, Karen; Schreiber, Daniel K.; Olszta, Matthew J.

    The selective oxidation of Ni-5Cr and Ni-4 Al alloys is evaluated during high (800 °C) and low (420 °C) temperature exposures with the oxygen partial pressure moderated by a Ni/NiO powder buffer. Internal oxidation of Cr and Al is observed throughout the matrix and at grain boundaries at 800 °C accompanied by the ejection of Ni onto the surface for both. At 420 °C, matrix internal oxidation was eliminated and only Ni-4 Al exhibited intergranular (IG) oxidation. Surprisingly, a protective surface oxide rapidly formed for Ni-5Cr blocking IG oxidation. Finally, this is contradictory to results in 330–360 °C hydrogenated watermore » environments where both alloys show IG oxidation.« less

  8. 1000 to 1200 K time-dependent compressive deformation of single-crystalline and polycrystalline B2 Ni-40Al

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.; Noebe, R. D.; Kumar, K. S.; Mannan, S. K.; Cullers, C. L.

    1991-01-01

    The 1000-K and 1200-K time-dependent deformation of 100-line-oriented and non-100-line-oriented single crystals of Ni-40Al (made by a modified Bridgman technique) was examined over a large range of strain rates (from 0.1 to 10 to the -7th per sec). The results were compared with those for polycrystalline Ni-40Al made by hot pressing XD synthesized powder. The results from measurements of slow-plastic-strain-rate properties of the two materials show that single crystals offer no strength advantage over polycrystalline material. Both forms were found to deform via a dislocation climb mechanism.

  9. Molecular dynamics simulation study of nanoscale passive oxide growth on Ni-Al alloy surfaces at low temperatures

    NASA Astrophysics Data System (ADS)

    Sankaranarayanan, Subramanian K. R. S.; Ramanathan, Shriram

    2008-08-01

    Oxidation kinetics of Ni-Al (100) alloy surface is investigated at low temperatures (300-600 K) and at different gas pressures using molecular dynamics (MD) simulations with dynamic charge transfer between atoms. Monte Carlo simulations employing the bond order simulation model are used to generate the surface segregated minimum energy initial alloy configurations for use in the MD simulations. In the simulated temperature-pressure-composition regime for Ni-Al alloys, we find that the oxide growth curves follow a logarithmic law beyond an initial transient regime. The oxidation rates for Ni-Al alloys were found to decrease with increasing Ni composition. Structure and dynamical correlations in the metal/oxide/gas environments are used to gain insights into the evolution and morphology of the growing oxide film. Oxidation of Ni-Al alloys is characterized by the absence of Ni-O bond formation. Oxide films formed on the various simulated metal surfaces are amorphous in nature and have a limiting thickness ranging from ˜1.7nm for pure Al to 1.1 nm for 15% Ni-Al surfaces. Oxide scale analysis indicates significant charge transfer as well as variation in the morphology and structure of the oxide film formed on pure Al and 5% Ni-Al alloy. For oxide scales thicker than 1 nm, the oxide structure in case of pure Al exhibits a mixed tetrahedral (AlO4˜37%) and octahedral (AlO6˜19%) environment, whereas the oxide scale on Ni-Al alloy surface is almost entirely composed of tetrahedral environment (AlO4˜60%) with very little AlO6 (<1%) . The oxide growth kinetic curves are fitted to Arrhenius-type plots to get an estimate of the activation energy barriers for metal oxidation. The activation energy barrier for oxidation on pure Al was found to be 0.3 eV lower than that on 5% Ni-Al surface. Atomistic observations as well as calculated dynamical correlation functions indicate a layer by layer growth on pure Al, whereas a transition from an initial island growth mode (<75ps) to a

  10. Surface Composition of NiPd Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Khalil, Joe; Bozzolo, Guillermo; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    Surface segregation in Ni-Pd alloys has been studied using the BFS method for alloys. Not only does the method predict an oscillatory segregation profile but it also indicates that the number of Pd-enriched surface planes can vary as a function of orientation. The segregation profiles were computed as a function of temperature, crystal face, and composition. Pd enrichment of the first layer is observed in (111) and (100) surfaces, and enrichment of the top two layers occurs for (110) surfaces. In all cases, the segregation profile shows oscillations that are actually related to weak ordering tendencies in the bulk. An atom-by-atom analysis was performed to identify the competing mechanisms leading to the observed surface behaviors. Large-scale atomistic simulations were also performed to investigate the temperature dependence of the segregation profiles as well as for analysis of the bulk structures. Finally, the observed surface behaviors are discussed in relation to the bulk phase structure of Ni-Pd alloys, which exhibit a tendency to weakly order.

  11. Microstructural observations in rapidly-solidified and heat-treated Ni3Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-08-01

    The microstructural development following heat treatments of several rapidly-solidified Ni3Al-Cr and Ni3Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100 percent gamma-prime phase - in the form of fine antiphase domains (APD) - or a mixture of gamma-prime (APDs) and beta phases. Upon annealing, the as-solidified microstructures transform to either APD-free gamma-prime or mixtures of gamma and gamma-prime phases. For those compositions where the quenched microstructures were 100 percent gamma-prime it was observed that APD coarsening followed conventional grain-growth kinetics, but when gamma phase precipitated on the APD boundaries the rate constant changed abruptly while themore » time exponent remained unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr5B3. 14 refs.« less

  12. Enhanced endothelial cell density on NiTi surfaces with sub-micron to nanometer roughness

    PubMed Central

    Samaroo, Harry D; Lu, Jing; Webster, Thomas J

    2008-01-01

    The shape memory effect and superelastic properties of NiTi (or Nitinol, a nickel-titanium alloy) have already attracted much attention for various biomedical applications (such as vascular stents, orthodontic wires, orthopedic implants, etc). However, for vascular stents, conventional approaches have required coating NiTi with anti-thrombogenic or anti-inflammatory drug-eluting polymers which as of late have proven problematic for healing atherosclerotic blood vessels. Instead of focusing on the use of drug-eluting anti-thrombogenic or anti-inflammatory proteins, this study focused on promoting the formation of a natural anti-thrombogenic and anti-inflammatory surface on metallic stents: the endothelium. In this study, we synthesized various NiTi substrates with different micron to nanometer surface roughness by using dissimilar dimensions of constituent NiTi powder. Endothelial cell adhesion on these compacts was compared with conventional commercially pure (cp) titanium (Ti) samples. The results after 5 hrs showed that endothelial cells adhered much better on fine grain (<60 μm) compared with coarse grain NiTi compacts (<100 μm). Coarse grain NiTi compacts and conventional Ti promoted similar levels of endothelial cell adhesion. In addition, cells proliferated more after 5 days on NiTi with greater sub-micron and nanoscale surface roughness compared with coarse grain NiTi. In this manner, this study emphasized the positive pole that NiTi with sub-micron to nanometer surface features can play in promoting a natural anti-thrombogenic and anti-inflammatory surface (the endothelium) on a vascular stent and, thus, suggests that more studies should be conducted on NiTi with sub-micron to nanometer surface features. PMID:18488418

  13. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE PAGES

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.; ...

    2018-02-23

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful formore » quantifying fundamental aspects such as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  14. Elastic moduli and thermal expansion coefficients of medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laplanche, Guillaume; Gadaud, P.; Barsch, C.

    Elastic moduli of a set of equiatomic alloys (CrFeCoNi, CrCoNi, CrFeNi, FeCoNi, MnCoNi, MnFeNi, and CoNi), which are medium-entropy subsystems of the CrMnFeCoNi high-entropy alloy were determined as a function of temperature over the range 293 K–1000 K. Thermal expansion coefficients were determined for these alloys over the temperature range 100 K–673 K. All alloys were single-phase and had the face-centered cubic (FCC) crystal structure, except CrFeNi which is a two-phase alloy containing a small amount of body-centered cubic (BCC) precipitates in a FCC matrix. The temperature dependences of thermal expansion coefficients and elastic moduli obtained here are useful for quantifying fundamental aspects suchmore » as solid solution strengthening, and for structural analysis/design. Furthermore, using the above results, the yield strengths reported in literature for these alloys were normalized by their shear moduli to reveal the influence of shear modulus on solid solution strengthening.« less

  15. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  16. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    PubMed Central

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-01-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage. PMID:27406239

  17. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.

    PubMed

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-11

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  18. Nanocrystalline CuNi alloys: improvement of mechanical properties and thermal stability

    NASA Astrophysics Data System (ADS)

    Nogues, Josep; Varea, A.; Pellicer, E.; Sivaraman, K. M.; Pane, S.; Nelson, B. J.; Surinach, S.; Baro, M. D.; Sort, J.

    2014-03-01

    Nanocrystalline metallic films are known to benefit from novel and enhanced physical and chemical properties. In spite of these outstanding properties, nanocrystalline metals typically show relatively poor thermal stability which leads to deterioration of the properties due to grain coarsening. We have studied nanocrystalline Cu1-xNix (0.56 < x < 1) thin films (3 μm-thick) electrodeposited galvanostatically onto Cu/Ti/Si (100) substrates. CuNi thin films exhibit large values of hardness (6.15 < H < 7.21 GPa), which can be tailored by varying the composition. However, pure Ni films (x = 1) suffer deterioration of their mechanical and magnetic properties after annealing during 3 h at relatively low temperatures (TANN > 475 K) due to significant grain growth. Interestingly, alloying Ni with Cu clearly improves the thermal stability of the material because grain coarsening is delayed due to segregation of a Cu-rich phase at grain boundaries, thus preserving both the mechanical and magnetic properties up to higher TANN.

  19. A Ni(iii) complex stabilized by silica nanoparticles as an efficient nanoheterogeneous catalyst for oxidative C-H fluoroalkylation.

    PubMed

    Khrizanforov, Mikhail N; Fedorenko, Svetlana V; Strekalova, Sofia O; Kholin, Kirill V; Mustafina, Asiya R; Zhilkin, Mikhail Ye; Khrizanforova, Vera V; Osin, Yuri N; Salnikov, Vadim V; Gryaznova, Tatyana V; Budnikova, Yulia H

    2016-07-26

    We have developed Ni(III)-doped silica nanoparticles ([(bpy)xNi(III)]@SiO2) as a recyclable, low-leaching, and efficient oxidative functionalization nanocatalyst for aromatic C-H bonds. The catalyst is obtained by doping the complex [(bpy)3Ni(II)] on silica nanoparticles along with its subsequent electrooxidation to [(bpy)xNi(III)] without an additional oxidant. The coupling reaction of arenes with perfluoroheptanoic acid occurs with 100% conversion of reactants in a single step at room temperature under nanoheterogeneous conditions. The catalyst content is only 1% with respect to the substrates under electrochemical regeneration conditions. The catalyst can be easily separated from the reaction mixture and reused a minimum of five times. The results emphasize immobilization on the silica support and the electrochemical regeneration of Ni(III) complexes as a facile route for developing an efficient nanocatalyst for oxidative functionalization.

  20. In-situ observation of the temperature and orientation dependence of the surface concentration of Ni adatoms deposited on Pd

    NASA Astrophysics Data System (ADS)

    Zimnik, Samantha; Dickmann, Marcel; Hugenschmidt, Christoph

    2017-10-01

    We report the direct observation of the in-situ temperature-dependent migration of Ni adatoms in Pd using Positron annihilation induced Auger Electron Spectroscopy (PAES). For this study, a single atomic layer of Ni was grown on Pd with the crystallographic orientations Pd(111), Pd(110) and Pd(100). The sample temperature was increased from room temperature to 350 °C and the intensity of the Ni and Pd signal was evaluated from the recorded PAES spectra. Due to the outstanding surface sensitivity of PAES a clear tendency for Pd segregation at the surface was observed for all samples. Moreover the activation temperature T0 for surface segregation was found to depend strongly on the surface orientation: We determined T0 to 172± 4 °C, 261± 12 °C and 326± 11 °C for Pd(111), Pd(100) and Pd(110), respectively.

  1. The reactivity of Fe/Ni colloid stabilized by carboxymethylcellulose (CMC-Fe/Ni) toward chloroform.

    PubMed

    Jin, Xin; Li, Qun; Yang, Qi

    2018-05-16

    The use of stabilizers can prevent the reactivity loss of nanoparticles due to aggregation. In this study, carboxymethylcellulose (CMC) was selected as the stabilizer to synthesize a highly stable CMC-stabilized Fe/Ni colloid (CMC-Fe/Ni) via pre-aggregation stabilization. The reactivity of CMC-Fe/Ni was evaluated via the reaction of chloroform (CF) degradation. The effect of background solution which composition was affected by the preparation of Fe/Ni (Fe/Ni precursors, NaBH 4 dosage) and the addition of solute (common ions, sulfur compounds) on the reactivity of CMC-Fe/Ni was also investigated. Additionally, the dried CMC-Fe/Ni was used for characterization in terms of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The experimental results indicated that CMC stabilization greatly improved the reactivity of Fe/Ni bimetal and CF (10 mg/L) could be completely degraded by CMC-Fe/Ni (0.1 g/L) within 45 min. The use of different Fe/Ni precursors resulting in the variations of background solution seemed to have no obvious influence on the reactivity of CMC-Fe/Ni, whereas the dosage of NaBH 4 in background solution showed a negative correlation with the reactivity of CMC-Fe/Ni. Besides, the individual addition of external solutes into background solution all had an adverse effect on the reactivity of CMC-Fe/Ni, of which the poisoning effect of sulfides (Na 2 S, Na 2 S 2 O 4 ) was significant than common ions and sulfite.

  2. Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction

    PubMed Central

    Bates, Michael K.; Jia, Qingying; Ramaswamy, Nagappan; Allen, Robert J.; Mukerjee, Sanjeev

    2015-01-01

    We report a Ni–Cr/C electrocatalyst with unprecedented mass-activity for the hydrogen evolution reaction (HER) in alkaline electrolyte. The HER kinetics of numerous binary and ternary Ni-alloys and composite Ni/metal-oxide/C samples were evaluated in aqueous 0.1 M KOH electrolyte. The highest HER mass-activity was observed for Ni–Cr materials which exhibit metallic Ni as well as NiOx and Cr2O3 phases as determined by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) analysis. The onset of the HER is significantly improved compared to numerous binary and ternary Ni-alloys, including Ni–Mo materials. It is likely that at adjacent Ni/NiOx sites, the oxide acts as a sink for OHads, while the metallic Ni acts as a sink for the Hads intermediate of the HER, thus minimizing the high activation energy of hydrogen evolution via water reduction. This is confirmed by in situ XAS studies that show that the synergistic HER enhancement is due to NiOx content and that the Cr2O3 appears to stabilize the composite NiOx component under HER conditions (where NiOx would typically be reduced to metallic Ni0). Furthermore, in contrast to Pt, the Ni(Ox)/Cr2O3 catalyst appears resistant to poisoning by the anion exchange ionomer (AEI), a serious consideration when applied to an anionic polymer electrolyte interface. Furthermore, we report a detailed model of the double layer interface which helps explain the observed ensemble effect in the presence of AEI. PMID:26191118

  3. Effect of Cr contents on the diffusion behavior of Te in Ni-based alloy

    NASA Astrophysics Data System (ADS)

    Jia, Yanyan; Li, Zhefu; Ye, Xiangxi; Liu, Renduo; Leng, Bin; Qiu, Jie; Liu, Min; Li, Zhijun

    2017-12-01

    The embrittlement of Ni-based structural alloys caused by fission production Te is one of the major challenges for molten salt reactors. It has been reported that solution element Cr can prevent the situation of intergranular cracks caused by Te. However, there is no detailed mechanism explanation on this phenomenon. In this study, the effect of Cr on Te diffusion in Ni-Cr binary system was investigated by diffusion experiments at 800 °C for 100 h. Results show that Te reacts with the alloy mainly forming Ni3Te2, and strip shaped Cr3Te4 is only found on the surface of Ni-15%Cr alloy. According to the discussion of thermodynamic chemical reaction process, Cr3Te4 exhibits the best stability and preferential formation compound in Te/Ni-Cr system as its Gibbs free energy of formation is the lowest. With the increase of Cr content in the alloy, the diffusion depth of Te along grain boundaries significantly decreases. Moreover, the formation process of reaction product and diffusion process are described. The diffusion of Te can be suppressed by high content of Cr in Ni-Cr alloy due to the formation of Cr3Te4 and thus the grain boundary is protected from Te corroding.

  4. Ni-Silicide Growth Kinetics in Si and Si/SiO2 Core/Shell Nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hofmann, S.; Sutter, E.; Ogata, K.

    A systematic study of the kinetics of axial Ni silicidation of as-grown and oxidized Si nanowires (SiNWs) with different crystallographic orientations and core diameters ranging from {approx} 10 to 100 nm is presented. For temperatures between 300 and 440 C the length of the total axial silicide intrusion varies with the square root of time, which provides clear evidence that the rate limiting step is diffusion of Ni through the growing silicide phase(s). A retardation of Ni-silicide formation for oxidized SiNWs is found, indicative of a stress induced lowering of the diffusion coefficients. Extrapolated growth constants indicate that the Nimore » flux through the silicided NW is dominated by surface diffusion, which is consistent with an inverse square root dependence of the silicide length on the NW diameter as observed for <111> orientated SiNWs. In situ TEM silicidation experiments show that NiSi{sub 2} is the first forming phase for as-grown and oxidized SiNWs. The silicide-SiNW interface is thereby atomically abrupt and typically planar. Ni-rich silicide phases subsequently nucleate close to the Ni reservoir, which for as-grown SiNWs can lead to a complete channel break-off for prolonged silicidation due to significant volume expansion and morphological changes.« less

  5. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  6. Latest status of El Niño and La Niña

    Science.gov Websites

    Simplified Chinese El Niño and La Niña Latest status (May 2018) In the past month or so, the warming trend returned to normal in April 2018, indicating that the La Niña event had come to an end. Based on the ±o, La Niña, ENSO? The impact of El Niño and La Niña on the climate of Hong Kong Seasonal and

  7. Properties of mechanically alloyed Mg-Ni-Ti ternary hydrogen storage alloys for Ni-MH batteries

    NASA Astrophysics Data System (ADS)

    Ruggeri, Stéphane; Roué, Lionel; Huot, Jacques; Schulz, Robert; Aymard, Luc; Tarascon, Jean-Marie

    MgNiTi x, Mg 1- xTi xNi and MgNi 1- xTi x (with x varying from 0 to 0.5) alloys have been prepared by high energy ball milling and tested as hydrogen storage electrodes. The initial discharge capacities of the Mg-Ni-Ti ternary alloys are inferior to the MgNi electrode capacity. However, an exception is observed with MgNi 0.95Ti 0.05, which has an initial discharge capacity of 575 mAh/g compared to 522 mAh/g for the MgNi electrode. The Mg-Ni-Ti ternary alloys show improved cycle life compared to Mg-Ni binary alloys with the same Mg/Ni atomic ratio. The best cycle life is observed with Mg 0.5Ti 0.5Ni electrode which retains 75% of initial capacity after 10 cycles in comparison to 39% for MgNi electrodes, in addition to improved high-rate dischargeability (HRD). According to the XPS analysis, the cycle life improvement of the Mg 0.5Ti 0.5Ni electrode can be related to the formation of TiO 2 which limits Mg(OH) 2 formation. The anodic polarization curve of Mg 0.5Ti 0.5Ni electrode shows that the current related to the active/passive transition is much less important and that the passive region is more extended than for the MgNi electrode but the corrosion of the electrode is still significant. This suggests that the cycle life improvement would be also associated with a decrease of the particle pulverization upon cycling.

  8. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  9. SmNiO3/NdNiO3 thin film multilayers

    NASA Astrophysics Data System (ADS)

    Girardot, C.; Pignard, S.; Weiss, F.; Kreisel, J.

    2011-06-01

    Rare earth nickelates RENiO3 (RE =rare earth), which attract interest due to their sharp metal-insulator phase transition, are instable in bulk form due to the necessity of an important oxygen pressure to stabilize Ni in its 3+ state of oxidation. Here, we report the stabilization of RE nickelates in [(SmNiO3)t/(NdNiO3)t]n thin film multilayers, t being the thickness of layers alternated n times. Both bilayers and multilayers have been deposited by metal-organic chemical vapor deposition. The multilayer structure and the presence of the metastable phases SmNiO3 and NdNiO3 are evidenced from by x-ray and Raman scattering. Electric measurements of a bilayer structure further support the structural quality of the embedded RE nickelate layers.

  10. NiCo2S4 nanosheet-decorated 3D, porous Ni film@Ni wire electrode materials for all solid-state asymmetric supercapacitor applications.

    PubMed

    Saravanakumar, Balasubramaniam; Jayaseelan, Santhana Sivabalan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk

    2017-12-07

    Wire type supercapacitors with high energy and power densities have generated considerable interest in wearable applications. Herein, we report a novel NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode for high performance supercapacitor application. In this work, a facile method is introduced to fabricate a 3D, porous Ni film deposited on a Ni wire as a flexible electrode, followed by decoration with NiCo 2 S 4 as an electroactive material. The fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire electrode displays a superior performance with an areal and volumetric capacitance of 1.228 F cm -2 and 199.74 F cm -3 , respectively, at a current density of 0.2 mA cm -1 with a maximum volumetric energy and power density (E V : 6.935 mW h cm -3 ; P V : 1.019 W cm -3 ). Finally, the solid state asymmetric wire type supercapacitor is fabricated using the fabricated NiCo 2 S 4 -decorated 3D, porous Ni film@Ni wire as a positive electrode and N-doped reduced graphene oxide (N-rGO) as a negative electrode and this exhibits good areal and volumetric capacitances of C A : 0.12 F cm -2 and C V : 19.57 F cm -2 with a higher rate capability (92%). This asymmetric wire type supercapacitor demonstrates a low leakage current and self-discharge with a maximum volumetric energy (E V : 5.33 mW h cm -3 ) and power (P V : 855.69 mW cm -3 ) density.

  11. The acceleration intermediate phase (NiS and Ni3S2) evolution by nanocrystallization in Li/NiS2 thermal batteries with high specific capacity

    NASA Astrophysics Data System (ADS)

    Jin, Chuanyu; Zhou, Lingping; Fu, Licai; Zhu, Jiajun; Li, Deyi; Yang, Wulin

    2017-06-01

    The intermediate phase of NiS2 is thought to be a bottleneck currently to improve the overall performance of Li/NiS2 thermal batteries because of its low conductivity and close formation enthalpy between NiS2 and the intermediate phase (NiS, Ni3S2, etc). For improving the discharge performances of Li/NiS2 thermal batteries, the nano NiS2 with an average size of 85 ± 5 nm is designated as a cathode material. The electrochemical measurements show that the specific capacity of nano NiS2 cathode is higher than micro NiS2. The nano NiS2 cathode exhibits excellent electrochemical performances with high specific capacities of 794 and 654 mAh g-1 at current density of 0.1 and 0.5 A cm-2 under a cut-off voltage of 0.5 V, respectively. These results show that the rapid intermediate phase evolution from the nanocrystallization can obviously enhance use efficiency of NiS2 and improve discharge performances of thermal batteries.

  12. NiO/NiWO4 Composite Yolk-Shell Spheres with Nanoscale NiO Outer Layer for Ultrasensitive and Selective Detection of Subppm-level p-Xylene.

    PubMed

    Kim, Tae-Hyung; Kwak, Chang-Hoon; Lee, Jong-Heun

    2017-09-20

    NiO/NiWO 4 composite yolk-shell spheres with a nanoscale NiO outer layer were prepared using one-pot ultrasonic spray pyrolysis and their gas sensing characteristics were studied. The NiO/NiWO 4 yolk-shell spheres exhibited an extremely high response to 5 ppm p-xylene (ratio of resistance to gas and air = 343.5) and negligible cross-responses to 5 ppm ethanol, ammonia, carbon monoxide, hydrogen, and benzene, whereas pure NiO yolk-shell spheres showed very low responses and selectivity to all the analyte gases. The detection limit for p-xylene was as low as 22.7 ppb. This ultrasensitive and selective detection of p-xylene is attributed to a synergistic catalytic effect between NiO and NiWO 4 , high gas accessibility with large specific surface area, and increased chemiresistive variation due to the formation of a heterojunction. The NiO/NiWO 4 yolk-shell spheres with a thin NiO outer layer can be used to detect subppm-level p-xylene in a highly sensitive and selective manner for monitoring indoor air pollution.

  13. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  14. Hypothesis on a possible role of El Niño in the occurrence of influenza pandemics

    NASA Astrophysics Data System (ADS)

    Mazzarella, Adriano; Giuliacci, Andrea; Pregliasco, Fabrizio

    2011-08-01

    The El Niño phenomenon is the Earth's strongest climatic fluctuation on an interannual timescale and has a quasi-global impact, although originating in the tropical Pacific Ocean. A very strong El Niño is recognized to cause extreme dryness and wetness in different parts of the world. We show that all the eight well-documented influenza pandemics, starting from the first certain one documented in ad 1580, originated in China and in Russia, a few years after the occurrence of a very strong or after a prolonged strong/moderate El Niño event. At present, the next El Niño will probably occur at the beginning of 2013 (Mazzarella et al. Theor Appl Climatol 100:23-27, 2010), and this forecast may suggest to be well prepared to take appropriate precautionary epidemiological measures.

  15. Valence electronic structure of Ni in Ni Si alloys from relative K X-ray intensity studies

    NASA Astrophysics Data System (ADS)

    Kalayci, Y.; Aydinuraz, A.; Tugluoglu, B.; Mutlu, R. H.

    2007-02-01

    The Kβ-to-Kα X-ray intensity ratio of Ni in Ni 3Si, Ni 2Si and NiSi has been determined by energy dispersive X-ray fluorescence technique. It is found that the intensity ratio of Ni decreases from pure Ni to Ni 2Si and then increases from Ni 2Si to NiSi, in good agreement with the electronic structure calculations cited in the literature. We have also performed band structure calculations for pure Ni in various atomic configurations by means of linear muffin-tin orbital method and used this data with the normalized theoretical intensity ratios cited in the literature to estimate the 3d-occupation numbers of Ni in Ni-Si alloys. It is emphasized that investigation of alloying effect in terms of X-ray intensity ratios should be carried out for the stoichiometric alloys in order to make reliable and quantitative comparisons between theory and experiment in transition metal alloys.

  16. Silicide formation process of Pt added Ni at low temperature: Control of NiSi2 formation

    NASA Astrophysics Data System (ADS)

    Ikarashi, Nobuyuki; Masuzaki, Koji

    2011-03-01

    Transmission electron microscopy (TEM) and ab initio calculations revealed that the Ni-Si reaction around 300 °C is significantly changed by adding Pt to Ni. TEM analysis clarified that NiSi2 was formed in a reaction between Ni thin film (˜1 nm) and Si substrate, while NiSi was formed when Pt was added to the Ni film. We also found that the Ni-adamantane structure, which acts as a precursor for NiSi2 formation around the reaction temperature, was formed in the former reaction but was significantly suppressed in the latter reaction. Theoretical calculations indicated that Pt addition increased stress at the Ni-adamantane structure/Si-substrate interface. The increase in interface stress caused by Pt addition should raise the interface energy to suppress the Ni-adamantane structure formation, leading to NiSi2 formation being suppressed.

  17. Cyclic creep and fatigue of TD-NiCr (thoria-dispersion-strengthened nickel-chromium), TD-Ni, and NiCr sheet at 1200 C

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.; Spera, D. A.; Klima, S. J.

    1972-01-01

    The resistance of thin TD-NiCr sheet to cyclic deformation was compared with that of TD-Ni and a conventional nickel-chromium alloy. Strains were determined by a calibration technique which combines room-temperature strain gage and deflection measurements with high-temperature deflection measurements. Analyses of the cyclic tests using measured tensile and creep-rupture data indicated that the TD-NiCr and NiCr alloy specimens failed by a cyclic creep mechanism. The TD-Ni specimens, on the other hand, failed by a fatigue mechanism.

  18. Microstructure and mechanical properties of zirconium doped NiAl/Cr(Mo) hypoeutectic alloy prepared by injection casting

    NASA Astrophysics Data System (ADS)

    Sheng, L. Y.; Du, B. N.; Guo, J. T.

    2017-01-01

    NiAl based materials has been considered as most potential candidate of turbine blade, due to its excellent high-temperature properties. However the bad room-temperature properties handicap its application. In the present paper, the zirconium doped NiAl/Cr(Mo) hypoeutectic alloy is fabricated by conventional casting and injection casting technology to improve its room-temperature properties. The microstructure and compressive properties at different temperatures of the conventionally-cast and injection-cast were investigated. The results exhibit that the conventionally-cast alloy comprises coarse primary NiAl phase and eutectic cell, which is dotted with irregular Ni2AlZr Heusler phase. Compared with the conventionally-cast alloy, the injection-cast alloy possesses refined the primary NiAl, eutectic cell and eutectic lamella. In addition, the Ni2AlZr Heusler phase become smaller and distribute uniformly. Moreover, the injection casting decrease the area fraction of primary NiAl phase at the cell interior or cell boundaries. The compressive ductility and yield strength of the injection-cast alloy at room temperature increase by about 100% and 35% over those of conventionally-cast alloy, which should be ascribed to the microstructure optimization.

  19. Surface Electrochemical Modification of a Nickel Substrate to Prepare a NiFe-based Electrode for Water Oxidation.

    PubMed

    Guo, Dingyi; Qi, Jing; Zhang, Wei; Cao, Rui

    2017-01-20

    The slow kinetics of water oxidation greatly jeopardizes the efficiency of water electrolysis for H 2 production. Developing highly active water oxidation electrodes with affordable fabrication costs is thus of great importance. Herein, a Ni II Fe III surface species on Ni metal substrate was generated by electrochemical modification of Ni in a ferrous solution by a fast, simple, and cost-effective procedure. In the prepared Ni II Fe III catalyst film, Fe III was incorporated uniformly through controlled oxidation of Fe II cations on the electrode surface. The catalytically active Ni II originated from the Ni foam substrate, which ensured the close contact between the catalyst and the support toward improved charge-transfer efficiency. The as-prepared electrode exhibited high activity and long-term stability for electrocatalytic water oxidation. The overpotentials required to reach water oxidation current densities of 50, 100, and 500 mA cm -2 are 276, 290, and 329 mV, respectively. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Growth kinetics of white graphene (h-BN) on a planarised Ni foil surface

    PubMed Central

    Cho, Hyunjin; Park, Sungchan; Won, Dong-Il; Kang, Sang Ook; Pyo, Seong-Soo; Kim, Dong-Ik; Kim, Soo Min; Kim, Hwan Chul; Kim, Myung Jong

    2015-01-01

    The morphology of the surface and the grain orientation of metal catalysts have been considered to be two important factors for the growth of white graphene (h-BN) by chemical vapour deposition (CVD). We report a correlation between the growth rate of h-BN and the orientation of the nickel grains. The surface of the nickel (Ni) foil was first polished by electrochemical polishing (ECP) and subsequently annealed in hydrogen at atmospheric pressure to suppress the effect of the surface morphology. Atmospheric annealing with hydrogen reduced the nucleation sites of h-BN, which induced a large crystal size mainly grown from the grain boundary with few other nucleation sites in the Ni foil. A higher growth rate was observed from the Ni grains that had the {110} or {100} orientation due to their higher surface energy. PMID:26156068

  1. Effect of Al doping on structural and mechanical properties of Ni-Cd ferrites

    NASA Astrophysics Data System (ADS)

    Shidaganal, Lata C.; Gandhad, Sheela S.; Hiremath, C. S.; Mathad, S. N.; Jeergal, P. R.; Pujar, R. B.

    2018-05-01

    Ferrites are ceramic magnetic materials which behave like a conventional ferromagnetic. Ni-Zn ferrites are commercially used as electromagnetic interfaces in hard disc drives, laptops and other electronic devices. Here we are going to report on the structural and mechanical properties of Al doped Ni-Cd ferrites synthesized by standard double sintering ceramic method by using AR grade Al oxide, Ni oxide, Cd oxide and ferric oxide in molar proportions with a general chemical formula Ni0.5 Cd0.5 Alx Fe2-x O4 where x=0.1 to 0.4.X-ray analysis confirms the formation of single phase FCC spinel structure. The decrease in lattice constant with Al concentration is attributed to Vegard's law. IR spectra indicate prominent absorption bands near 400cm-1and 600cm-1 which are assigned to fundamental vibrations of complexes in A and B sites respectively. SEM micrographs exhibit fine grains without segregation of impurities. The average grain diameter is found vary from 1.00µm to 0.9 µm which is in agreement with Vegard's law.

  2. Highly active and stable Ni-Fe bimetal prepared by ball milling for catalytic hydrodechlorination of 4-chlorophenol.

    PubMed

    Xu, Fuyuan; Deng, Shubo; Xu, Jie; Zhang, Wang; Wu, Min; Wang, Bin; Huang, Jun; Yu, Gang

    2012-04-17

    A novel Ni-Fe bimetal with high dechlorination activity for 4-chlorophenol (4-CP) was prepared by ball milling (BM) in this study. Increasing Ni content and milling time greatly enhanced the dechlorination activity, which was mainly attributed to the homogeneous distribution of Ni nanoparticles (50-100 nm) in bulk Fe visualized by scanning electron microscopy/energy dispersive X-ray spectrometry (SEM/EDS) with image mapping. In comparison with the Ni-Fe bimetal prepared by a chemical solution deposition (CSD) process, the ball milled Ni-Fe bimetal possessed high dechlorination activity and stability before being used up. Dechlorination kinetics indicated that the dechlorination rates of 4-CP increased with increasing Ni-Fe dose but decreased with increasing solution pH. Solution pH had a significant effect on the dechlorination of 4-CP and the passivation of the Ni-Fe bimetal. The enhanced pH during the dechlorination process significantly accelerated the formation of passivating film on the bimetallic surface. The Ni-Fe bimetal at the dose of 60 g/L was reused 10 times without losing dechlorination activity for 4-CP at initial pH less than 6.0, but the gradual passivation was observed at initial pH above 7.0.

  3. Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Toifur, M.; Yuningsih, Y.; Khusnani, A.

    2018-03-01

    In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.

  4. Influence of annealing temperature on the microstructure and magnetic properties of Ni/NiO core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Xiang, Wenfeng; Liu, Yuan; Yao, Jiangfeng; Sun, Rui

    2018-03-01

    Ni/NiO core-shell nanowires (NWs) were synthesized by thermal annealing of Ni NWs and variations in the microstructure, surface morphology, and magnetic properties of the NWs as a function of annealing temperature were investigated. The results showed that the grain size and crystal quality of NiO increased with an increasing annealing temperature. Specially, the effect of annealing temperature was much greater than annealing time for the formation of Ni/NiO NWs during the oxidization process. The total weight gain of the Ni/NiO NWs continuously increased when the annealing temperature was lower than 400 °C and the annealing time was more than 2 h; however, the weight gain of the Ni/NiO NWs was almost constant after annealing for 40 min when the annealing temperature was higher than 500 °C. The thorns on the surface of the Ni/NiO NWs gradually passivated and magnetic properties declined when the annealing temperature was increased from 300 °C to 400 °C. Smooth Ni/NiO NWs with no magnetic properties were prepared when the annealing temperature was over 500 °C. The detail study regarding the formation and evolution of Ni/NiO NWs is of considerable value and may provide useful information regarding the choice of post-treatment parameters for different applications of Ni/NiO NWs.

  5. Static Indentation Load Capacity of the Superelastic 60NiTi for Rolling Element Bearings

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Moore, Lewis E., III; Clifton, Joshua S.

    2012-01-01

    The nickel-rich, binary nickel-titanium alloys, such as 60NiTi (60Ni-40Ti by wt%), are emerging as viable materials for use in mechanical components like rolling element bearings and gears. 60NiTi is a superelastic material that simultaneously exhibits high hardness and a relatively low elastic modulus (approx.100 GPa). These properties result in the potential to endure extremely high indentation loads such as those encountered in bearings, gears and other mechanical components. In such applications, quantifying the load that results in permanent deformation that can affect component performance and life is important. In this paper, the static load capacity is measured by conducting indentation experiments in which 12.7 mm diameter balls made from the ceramic Si3N4 are pressed into highly polished, hardened 60NiTi flat plates. Hertz stress calculations are used to estimate contact stress. The results show that the 60NiTi surface can withstand an approximately 3400 kN load before significant denting (>0.6 microns deep) occurs. This load capacity is approximately twice that of high performance bearing steels suggesting that the potential exists to make highly resilient bearings and components from such materials.

  6. Tuning the porosity of mesoporous NiO through calcining isostructural Ni-MOFs toward supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Hou, Xiang-Yang; Yan, Xiao-Li; Wang, Xiao; Zhai, Quan-Guo

    2018-07-01

    NiO has an unusually high theoretical specific capacitance and possess relatively high electrical conductivity compared to other metal oxides. However, the reported specific capacitance of the NiO-based electrodes is far below the theoretical value up to now. In this paper, three porous NiO materials with different specific surface area were synthesized simply by calcining iso-structural Ni-based MOFs templates. The formation mechanism of NiO was discussed by taking into account the thermal behavior and intrinsic structural features of the Ni-MOFs. Taking advantages of the Ni-MOFs precursors, all prepared NiO compounds are mesoporous and their porosity can be tuned by the structure of MOFs. Specially, due to the high porosity, three NiO exhibited an improved electrochemical performance and the specific discharge capacitances are of 102, 105, and 116 F g-1 at the current density of 1 A g-1, respectively. The specific capacitance of 1-NiO-450 is approximately 93.2% of its maximum value after 3000 cycles, which obviously superior to most of the previously reported NiO electrode materials and suggests their promising applications in supercapacitors.

  7. Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo

    DOE PAGES

    Liu, Bin; Yuan, Fenglin; Jin, Ke; ...

    2015-10-06

    Low-energy recoil events in pure Ni and the equiatomic NiCo alloy are studied using ab initio molecular dynamics simulations. We found that the threshold displacement energies are strongly dependent on orientation and weakly dependent on composition. The minimum threshold displacement energies are along the [1 1 0] direction in both pure Ni and the NiCo alloy. Compared to pure Ni, the threshold displacement energies increase slightly in the NiCo alloy due to stronger bonds in the alloy, irrespective of the element type of the PKA. A single Ni interstitial occupying the center of a tetrahedron formed by four Ni atomsmore » and a <1 0 0> split interstitial is produced in pure Ni by the recoils, while only the <1 0 0> split interstitial is formed in the NiCo alloy. Compared to the replacement sequences in pure Ni, anti-site defect sequences are observed in the alloy, which have high efficiency for both producing defects and transporting energy outside of the cascade core. These results provide insights into energy transfer processes occurring in equiatomic alloys under irradiation.« less

  8. Synthesis and characterization of T[Ni(CN){sub 4}].2pyz with T=Fe, Ni; pyz=pyrazine: Formation of T-pyz-Ni bridges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemus-Santana, A.A.; Rodriguez-Hernandez, J.; Institute of Materials Science and Technology, University of Havana

    2011-08-15

    The formation of T-pyz-Ni bridges (pyz=pyrazine) in the T[Ni(CN){sub 4}].2pyz series is known for T=Mn, Zn, Cd and Co but not with T=Fe, Ni. In this contribution the existence of such bridges also for T=Fe, Ni is discussed. The obtained pillared solids, T[Ni(CN){sub 4}].2pyz, were characterized from XRD, TG, UV-Vis, IR, Raman, Moessbauer and magnetic data. Their crystal structures were refined in the orthorhombic Pmna space group from XRD powder patterns. The structural behavior of these solids on cooling down to 77 K was also studied. In the 180-200 K temperature range the occurrence of a structural transition to amore » monoclinic structure (P2{sub 1}/c space group) was observed. No temperature induced spin transition was observed for Fe[Ni(CN){sub 4}].2pyz. The iron (II) was found to be in high spin electronic state and this configuration is preserved on cooling down to 2 K. The magnetic data indicate the occurrence of a low temperature weak anti-ferromagnetic interaction between T metal centers within the T[Ni(CN){sub 4}] layer. In the paramagnetic region for Ni[Ni(CN){sub 4}].2pyz, a reversible temperature induced spin transition for the inner Ni atom was detected. - Graphical abstract: Rippled sheets structure for the pillared solids T[Ni(CN){sub 4}].2pyz. The pyrazine molecule is found forming T-pyz-Ni bridges between neighboring layers. Highlights: > Pillared 2D solids. > Inorganic-organic solids. > Assembling of molecular blocks. > From 1D and 2D building blocks to 3D solids.« less

  9. A Novel Bimetallic NiMo Carbide Nanowire Array for Efficient Hydrogen Evolution.

    PubMed

    Guo, Lixia; Wang, Jianying; Teng, Xue; Liu, Yangyang; He, Xiaoming; Chen, Zuofeng

    2018-06-12

    Design and fabrication of noble metal-free hydrogen evolution electrocatalysts with high activity is significant to future renewable energy systems. In this work, self-supported NiMo carbide nanowires have been developed on carbon cloth (Ni3Mo3C@NPC NWs/CC; NPC is N,P-doped carbon) through an electropolymerization-assisted procedure. During the synthesis process, NiMoO4 nanowires were first grown on CC through a hydrothermal reaction which is free of any polymer binder like Nafion. The as-prepared NiMoO4 NWs/CC was then coated by a layer of polypyrole (PPy) by electropolymerization that serves as carbon source for the subsequent conversion to Ni3Mo3C@NPC NWs/CC by carbothermal reduction. The experimental results indicate that the judicious choices of the amount of coated PPy and the pyrolysis temperature are essential for obtaining pure phase and nanowire array structure of Ni3Mo3C@NPC NWs/CC. Benefitting from the pure phase of bimetallic carbide, the unique architecture of nanowire array and the self-supported merit, the optimized Ni3Mo3C@NPC NWs/CC electrode exhibits excellent HER performance in both acidic and alkaline media. It requires low overpotentials of 161 mV and 215 mV to afford a high current density of 100 mA cm-2 toward the HER in acidic and alkaline media, respectively, and the catalytic activity is maintained for at least 48 h, which makes it among the best HER electrocatalysts based on metallic carbides yet reported. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Comparative study of the dissociation energies of Ni2 and Ni2(+)

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1992-01-01

    Computations at the internally contracted averaged coupled-pair-functional level of theory yield a dissociation energy (Do) for Ni2(+) that is 0.17 eV larger than that of Ni2. This finding is consistent with the collision-induced dissociation experiments of Lian, Su, and Armentrout, but rules out the results from the resonant two-photon dissociation experiments of Lessen and Brucat, which predict that the Do value of Ni2(+) is about 1 eV larger than that of Ni2.

  11. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE PAGES

    Tong, Yang; Jin, Ke; Bei, Hongbin; ...

    2018-05-26

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  12. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yang; Jin, Ke; Bei, Hongbin

    Severe lattice distortion is presumptively considered as a core effect of high-entropy alloys, but quantitative measurements are still missing. Here, we demonstrate that the lattice distortion in high-entropy alloys can be quantitatively analyzed based on pair distribution function obtained from synchrotron X-ray diffraction. By applying this method to equiatomic NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys, we found that the local lattice distortion in the NiCoCr (0.23%) and FeCoNiCrMn (0.24%) alloys are comparable while negligible in the FeCoNiCr alloy (0.04%). Furthermore, the origin of local lattice distortion in the NiCoCr and FeCoNiCrMn concentrated alloys was discussed.

  13. Stress-induced solid-state amorphization of nanocrystalline Ni and NiZr investigated by atomistic simulations

    NASA Astrophysics Data System (ADS)

    Meraj, Md.; Deng, Chuang; Pal, Snehanshu

    2018-01-01

    In this study, the feasibility of stress induced solid-state amorphization (SSA) of nanocrystalline (NC) Ni and NiZr alloys having ˜10 nm grain size has been investigated under constant tensile load (uniaxial and triaxial) via molecular dynamics simulations. In order to track the structural evaluation in both NC Ni and NiZr alloys during the SSA process, various types of analysis have been used, including simulated X-ray diffraction, centro-symmetry parameter, Voronoi cluster, common neighbor analysis, and radial distribution function. It is found that SSA in both NC Ni and NiZr alloys can only be achieved under triaxial loading conditions, and the hydrostatic tensile stress required for SSA is significantly lower when at. % Zr is increased in the NC NiZr alloy. Specifically, SSA in NC Ni and Ni-5 at. % Zr alloy was observed only when the temperature and hydrostatic tensile stress reached 800 K and 6 GPa, while SSA could occur in NC Ni-10 at. % Zr alloy under just 2 GPa of hydrostatic tensile stress at 300 K.

  14. Electrical resistivity of Co-Ni-Pd and Co-Pd alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jen, S.U.; Chen, T.P.; Chang, S.A.

    1991-11-15

    Three series of ferromagnetic alloys have been made: Co{sub 100{minus}{ital x}}Pd{sub {ital x}}, Co{sub 25}Ni{sub 75{minus}{ital y}}Pd{sub {ital y}} and Co{sub 5{minus}{ital z}}Ni{sub {ital z}}Pd{sub 95}. The electrical resistivity {rho} of these alloys was measured from 4 to 300 K. Their high field ({ital H}{gt}2 T) susceptibility {chi}{sub HF} was obtained with superconducting quantum interference device measurements at 5 K. Comparing the residual resistivity {rho}{sub 0} of Co-Ni and Co-Pd, it is found that the spin-up resistivity {rho}{sub {up arrow}} of Co-Ni follows the Nordheim's rule, while that of Co-Pd peaks at {ital x}=85. This indicates the spin-up {ital d}more » band of Co-Pd is not full for all the {ital x} values. Also, {chi}{sub HF} data reveal the same tendency of the spin-up band. Based on the deviation from Matthiessen's rule of the two-current model, we estimate {alpha}={rho}{sub 0{down arrow}} /{rho}{sub 0{up arrow}}{congruent}2 for the dilute {ital PdCo} alloy, where {rho}{sub 0}={rho}{sub 0{down arrow}} {rho}{sub 0{up arrow}}/({rho}{sub 0{up arrow}}+{rho}{sub 0{down arrow}} ), from the residual resistivity of the ternary Co{sub 5{minus}{ital z}}Ni{sub {ital z}}Pd{sub 95} alloy and from the temperature dependence of {rho}({ital T}) of the binary Co{sub 5}Pd{sub 95} alloy« less

  15. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g-1 at current densities of 1, 2, 5, 10 A g-1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  16. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for high performance supercapacitors.

    PubMed

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-11-14

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g(-1) at current densities of 1, 2, 5, 10 A g(-1), respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials.

  17. Phase-controlled synthesis of α-NiS nanoparticles confined in carbon nanorods for High Performance Supercapacitors

    PubMed Central

    Sun, Chencheng; Ma, Mingze; Yang, Jun; Zhang, Yufei; Chen, Peng; Huang, Wei; Dong, Xiaochen

    2014-01-01

    A facile and phase-controlled synthesis of α-NiS nanoparticles (NPs) embedded in carbon nanorods (CRs) is reported by in-situ sulfurating the preformed Ni/CRs. The nanopore confinement by the carbon matrix is essential for the formation of α-NiS and preventing its transition to β-phase, which is in strong contrast to large aggregated β-NiS particles grown freely without the confinement of CRs. When used as electrochemical electrode, the hybrid electrochemical charge storage of the ultrasmall α-NiS nanoparticels dispersed in CRs is benefit for the high capacitor (1092, 946, 835, 740 F g−1 at current densities of 1, 2, 5, 10 A g−1, respectively.). While the high electrochemical stability (approximately 100% retention of specific capacitance after 2000 charge/discharge cycles) is attributed to the supercapacitor-battery electrode, which makes synergistic effect of capacitor (CRs) and battery (NiS NPs) components rather than a merely additive composite. This work not only suggests a general approach for phase-controlled synthesis of nickel sulfide but also opens the door to the rational design and fabrication of novel nickel-based/carbon hybrid supercapacitor-battery electrode materials. PMID:25394517

  18. Microstructural observations in rapidly-solidified and heat-treated Ni sub 3 Al-Cr alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carro, G.; Flanagan, W.F.

    1992-01-01

    In this paper , the microstructural development following heat treatments of several rapidly-solidified Ni{sub 3}Al-Cr and Ni{sub 3}Al-Cr-B alloys is presented. Depending on composition, the as-solidified samples were either 100% {gamma} phase-in the form of fine anti-phase domains (APD)-or a mixture of {gamma} (APDs) and {beta} phases. Upon annealing, the as-solidified microstructures transform to either APD-free {gamma}or mixtures of {gamma}and {gamma}{prime} phases. For those compositions where the quenched microstructures were 100{gamma}{prime} it was observed that APD coarsening followed conventional grain-growth kinetics, but when {gamma} phase precipitated on the APD boundaries the rate constant changed abruptly while the time exponent remainedmore » unaffected. It was also found that alloys containing critical amounts of chromium and boron are susceptible to precipitation of the boride Cr{sub 5}B{sub 3}.« less

  19. A Facile Molten-Salt Route for Large-Scale Synthesis of NiFe2O4 Nanoplates with Enhanced Lithium Storage Capability.

    PubMed

    Huang, Gang; Du, Xinchuan; Zhang, Feifei; Yin, Dongming; Wang, Limin

    2015-09-28

    Binary metal oxides have been deemed as a promising class of electrode materials for high-performance lithium ion batteries owing to their higher conductivity and electrochemical activity than corresponding monometal oxides. Here, NiFe2O4 nanoplates consisting of nanosized building blocks have been successfully fabricated by a facile, large-scale NaCl and KCl molten-salt route, and the changes in the morphology of NiFe2O4 as a function of the molten-salt amount have been systemically investigated. The results indicate that the molten-salt amount mainly influences the diameter and thickness of the NiFe2O4 nanoplates as well as the morphology of the nanosized building blocks. Cyclic voltammetry (CV) and galvanostatic charge-discharge measurements have been conducted to evaluate the lithium storage properties of the NiFe2O4 nanoplates prepared with a Ni(NO3)2/Fe(NO3)3/KCl/NaCl molar ratio of 1:2:20:60. A high reversible capacity of 888 mAh g(-1) is delivered over 100 cycles at a current density of 100 mA g(-1). Even at a current density of 5000 mA g(-1) , the discharge capacity could still reach 173 mAh g(-1). Such excellent electrochemical performances of the NiFe2O4 nanoplates are contributed to the short Li(+) diffusion distance of the nanosized building blocks and the synergetic effect of the Ni(2+) and Fe(3+) ions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Fast Abiotic Production of Methane at Temperatures Below 100°C

    NASA Astrophysics Data System (ADS)

    Etiope, G.; Ionescu, A.

    2015-12-01

    Fischer-Tropsch Type (FTT) reactions, e.g., the Sabatier synthesis between H2 and CO2, are considered a main source of abiotic methane on Earth and likely on other planets. Several laboratory FTT experiments demonstrated abiotic CH4 production at temperatures above 200°C, by using Fe, Ni or Cr catalysts, simulating hydrothermal conditions in peridotite-hosted systems in mid-ocean ridges. Nevertheless, at least on laboratory experiment time-scale, Fe-Ni-Cr catalysts do not support CH4 generation at T<100°C, such as those of land-based serpentinization systems. We have recently reported rapid production of considerable amounts of CH4 (>800 ppmv in 155 mL bottles after 1 day) via Sabatier reaction at 90, 50 and 25°C, using small concentrations of non-pretreated ruthenium (Ru) equivalent to those occurring in chromitites in continental ultramafic rocks (Etiope & Ionescu, 2014; Geofluids, doi:10.1111/gfl.12106). We have repeated the experiments by using 13C-enriched CO2 and we confirm fast production of CH4at percentage levels. The experiments performed so far show that: 1. considerable amounts of CH4can be produced in dry conditions below 100°C with small quantities of Ru; 2. under the same experimental conditions (<100°C), Fe, Ni and Cr oxides do not produce CH4; 3. low T Sabatier reaction can produce CH4 with a large C isotope fractionation between CO2 and CH4, leading to relatively " light" (13C-depleted) CH4, resembling microbial gas; 4. the CO2-CH4isotope separation decreases over time and by increasing the temperature; 5. minor amounts of C2-C6hydrocarbons are also generated. Our laboratory data are compatible with the isotopic patterns of CH4 naturally occurring in land-based seeps and springs. Our experiments suggest that Ru-enriched chromitites could potentially generate CH4 at low T. Since Ru is reported in Martian meteorites, low T abiotic CH4 production on Mars via Sabatier reaction cannot be excluded (Etiope et al. 2013, Icarus, 224, 276-285).

  1. Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery.

    PubMed

    Yang, Yue; Huang, Guo Yong; Sun, Hongyu; Ahmad, Mashkoor; Mou, Qinyao; Zhang, Hongmei

    2018-06-19

    NiCo 2 O 4 is a potential anode material for lithium ion battery due to its many advantages, such as high theoretical capacitance, low cost, and good electrochemical activity. In this study, mesoporous NiCo 2 O 4 double-hemisphere (3-5 μm) with high surface area (270.68 m 2 ·g -1 ) and excellent electrochemical performances has been synthesized through a facile precipitation method followed with thermal treatment process. The prepared NiCo 2 O 4 is pure phase and can be indexed as a face-centered-cubic with a typical spinel structure. Electrochemical tests show the prepared material has high specific capacities (910 mAh·g -1 at 100 mA·g -1 ), excellent cyclicity (908  mAh·g -1 at 100 mA·g -1 after 60 cycles) and remarkable high rate performance (after 100 cycles, 585 mAh·g -1 at 400 mAh·g -1 , 415 mAh·g -1 at 800 mAh·g -1 and 320 mAh·g -1 at 1600 mAh·g -1 with coulombic efficiencies of almost 100%). The excellent performances of prepared NiCo 2 O 4 are mainly caused by the unique double-hemisphere structure, which has large surface area, gives material more opportunity to contact with electrolyte and facilitates lithium ion spreading into the material along the radical direction, resulting in a promising application for next-generation lithium-ion batteries. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Specific Volumes of the Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) Alloy in the Liquid, Glass, and Crystalline States

    NASA Technical Reports Server (NTRS)

    Ohsaka, K.; Chung, S. K.; Rhim, W. K.; Johnson, W. L.; Peker, A.; Scruggs, D.

    1997-01-01

    The specific volumes of the Zr(41.2)Ti(3.8)Cu(2.5)Ni(10.0)Be(22.5) alloy as a function of temperature, T, are determined by employing an image digitizing technique and numerical calculation methods applied to the electrostatically levitated spherical alloy. The linear fitting of the volumes of the alloy in the liquid, V(sub l), glass, V(sub g) and crystalline V(sub c), states in the temperature ranges shown in parentheses are V(sub l)(T) = 0.1583 + 8.877 x 10(exp -6) T(cu cm/g) (700-1300 K);V(sub g)(T) = 0.1603 + 5.528 x 10(exp -6) T (400-550 K);V(sub c)(T) = 0.1583 + 6.21 x 10(exp -6)T(400-850 K). The average volume thermal expansion coefficients within the temperature ranges are determined to be 5.32, 3.39. and 3.83 x 10(exp -5) (1/K) for the liquid, glass, and crystalline states, respectively.

  3. Length-dependent corrosion behavior, Ni2+ release, cytocompatibility, and antibacterial ability of Ni-Ti-O nanopores anodically grown on biomedical NiTi alloy.

    PubMed

    Hang, Ruiqiang; Liu, Yanlian; Bai, Long; Zhang, Xiangyu; Huang, Xiaobo; Jia, Husheng; Tang, Bin

    2018-08-01

    In the present work, nickel-titanium-oxygen nanopores with different length (0.55-114 μm) were anodically grown on nearly equiatomic nickel-titanium (NiTi) alloy. Length-dependent corrosion behavior, nickel ion (Ni 2+ ) release, cytocompatibility, and antibacterial ability were investigated by electrochemical, analytical chemistry, and biological methods. The results show constructing nanoporous structure on the NiTi alloy improve its corrosion resistance. However, the anodized samples release more Ni 2+ than that of the bare NiTi alloy, suggesting chemical dissolution of the nanopores rather than electrochemical corrosion governs the Ni 2+ release. In addition, the Ni 2+ release amount increases with nanopore length. The anodized samples show good cytocompatibility when the nanopore length is <11 μm. Encouragingly, the length scale covers the one (1-11 μm) that the nanopores showing favorable antibacterial ability. Consequently, the nanopores with length in the range of 1-11 μm are promising as coatings of biomedical NiTi alloy for anti-infection, drug delivery, and other desirable applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Spatially resolved resistance of NiO nanostructures under humid environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobs, Christopher B; Ievlev, Anton; Collins, Liam F

    2016-01-01

    The spatially resolved electrical response of polycrystalline NiO films composed of 40 nm crystallites was investigated under different relative humidity levels (RH). The topological and electrical properties (surface potential and resistance) were characterized with sub 25nm resolution using Kelvin probe force microscopy (KPFM) and conductive scanning probe microscopy under argon atmosphere at 0%, 50%, and 80% relative humidity. The dimensionality of surface features obtained through autocorrelation analysis of topological maps increased linearly with increased relative humidity, as water was adsorbed onto the film surface. Surface potential decreased from about 280mV to about 100 mV and resistance decreased from about 5more » G to about 3 G , in a nonlinear fashion when relative humidity was increased from 0% to 80%. Spatially resolved surface potential and resistance of the NiO films was found to be heterogeneous throughout the film, with distinct domains that grew in size from about 60 nm to 175 nm at 0% and 80% RH levels, respectively. The heterogeneous character of the topological, surface potential, and resistance properties of the polycrystalline NiO film observed under dry conditions decreased with increased relative humidity, yielding nearly homogeneous surface properties at 80% RH, suggesting that the nanoscale potential and resistance properties converge with the mesoscale properties as water is adsorbed onto the NiO film.« less

  5. Peculiarities of thermoelectric half-Heusler phase formation in Gd-Ni-Sb and Lu-Ni-Sb ternary systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romaka, V.V., E-mail: romakav@lp.edu.ua; Romaka, L.; Horyn, A.

    The phase equilibria in the Gd–Ni–Sb and Lu-Ni-Sb ternary systems were studied at 873 K by X-ray and metallographic analyses in the whole concentration range. The interaction of the elements in the Gd–Ni–Sb system results the formation of five ternary compounds at investigated temperature: Gd{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), Gd{sub 5}NiSb{sub 2} (Yb{sub 5}Sb{sub 3}-type), GdNiSb (MgAgAs-type), Gd{sub 3}Ni{sub 6}Sb{sub 5} (Y{sub 3}Ni{sub 6}Sb{sub 5}-type), and GdNi{sub 0.72}Sb{sub 2} (HfCuSi{sub 2}-type). At investigated temperature the Lu-Ni-Sb system is characterized by formation of the LuNiSb (MgAgAs-type), Lu{sub 5}Ni{sub 2}Sb (Mo{sub 5}SiB{sub 2}-type), and Lu{sub 5}Ni{sub 0.56}Sb{sub 2.44} (Yb{sub 5}Sb{sub 3}-type)more » compounds. The disordering in the crystal structure of half-Heusler GdNiSb and LuNiSb was revealed by EPMA and studied by means of Rietveld refinement and DFT modeling. The performed electronic structure calculations are in good agreement with electrical transport property studies. - Graphical abstract: Crystal structure model and electron localization function of Lu{sub 5}Ni{sub 2}Sb. Display Omitted - Highlights: • Gd-Ni-Sb and Lu-Ni-Sb phase diagrams were constructed at 873 K. • GdNiSb and LuNiSb are characterized by disordered crystal structure. • Crystal structure optimization with DFT calculations confirmed crystal structure disorder in GdNiSb and LuNiSb.« less

  6. Total Ni-Cd battery recycling by INMETCO U.S.A.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanewald, R.H.; McComas, D.M.; Onuska, J.C. Jr.

    1997-12-31

    The processing and recycling of various batteries has been occurring at INMETCO (a wholly owned subsidiary of Inco Ltd.) since the early 1980`s. Due to changing environmental regulations, INMETCO`s spent nickel-cadmium (Ni-Cd) and nickel metal hydride (Ni-MH) battery recycling has steadily grown since 1990. INMETCO`s new Cadmium Recovery Operation will be discussed along with its unique ability to recycle/reuse 100% of the battery components on site. Start up results, along with actual cadmium analysis, as well as actual air and water environmental impact will be highlighted. INMETCO has been, and continues to be, the major recycler of stainless steel by-products,more » both hazardous and non-hazardous, back into a stainless steel remelt alloy which is accepted in North America, Europe, and Japan.« less

  7. Shape-Controlled Synthesis of NiCo2 O4 Microstructures and Their Application in Supercapacitors.

    PubMed

    Xiang, Nannan; Ni, Yonghong; Ma, Xiang

    2015-09-01

    The shape-controlled synthesis of NiCo2 O4 microstructures through a facile hydrothermal method and subsequent calcinations was explored. By employing CoSO4 , NiSO4 , and urea as the starting reactants, flower-like NiCo2 O4 microstructures were obtained at 100 °C after 5 h without the assistance of any additive and subsequent calcination at 300 °C for 2 h; dumbbell-like NiCo2 O4 microstructures were prepared at 150 °C after 5 h in the presence of trisodium citrate and subsequent calcination at 300 °C for 2 h. The as-prepared NiCo2 O4 microstructures were characterized by X-ray powder diffraction, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and (high-resolution) transmission electron microscopy. Both the flower-like and dumbbell-like NiCo2 O4 microstructures could be used as electrode materials for supercapacitors, and they exhibited excellent electrochemical performance, including high specific capacitance, good rate capability, and excellent long-term cycle stability. Simultaneously, the shape-dependent electrochemical properties of the product were investigated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Mechanistic insights from DGT and soil solution measurements on the uptake of Ni and Cd by radish.

    PubMed

    Luo, Jun; Cheng, Hao; Ren, Jinghua; Davison, William; Zhang, Hao

    2014-07-01

    This work tests the previously proposed hypothesis that plant uptake of metals is determined dominantly by diffusional controlled or plant limiting uptake mechanisms at, respectively, low and high metal concentrations. Radish (Raphanus sativus) was grown in 13 soils spiked with Ni (10 and 100 mg kg(-1)) and Cd (0.5 and 4 mg kg(-1)) for 4 weeks to investigate the mechanisms affecting plant uptake. Soil solution concentrations, Css, of Ni and Cd were measured, along with the DGT interfacial concentration, CDGT, and the derived effective concentration in soil solution, CE. Free ion activities, aNi(2+) and aCd(2+), were obtained using WHAM 6. Although there was a poor relationship between Ni in radish roots and either Css or aNi(2+) in unamended soils, the distribution of data could be rationalized in terms of the extent of release of Ni from the soil solid phase, as identified by DGT and soil solution measurements. By contrast Ni in radish was linearly related to CE, demonstrating diffusion limited uptake. For soils amended with high concentrations of Ni, linear relationships were obtained for Ni in radish plotted against, Css, aNi(2+), and CE, consistent with the plant controlling uptake. For Ni the hypothesis concerning dominant diffusional and plant limiting uptake mechanisms was demonstrated. Poor relationships between Cd in radish and Css, aCd(2+), and CE, irrespective of amendment by Cd, showed the importance of factors other than diffusional supply, such as rhizosphere and inhibitory processes, and that fulfilment of this hypothesis is plant and metal specific.

  9. On the Ni-Ion release rate from surfaces of binary NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Ševčíková, Jana; Bártková, Denisa; Goldbergová, Monika; Kuběnová, Monika; Čermák, Jiří; Frenzel, Jan; Weiser, Adam; Dlouhý, Antonín

    2018-01-01

    The study is focused on Ni-ion release rates from NiTi surfaces exposed in the cell culture media and human vascular endothelial cell (HUVEC) culture environments. The NiTi surface layers situated in the depth of 70 μm below a NiTi oxide scale are affected by interactions between the NiTi alloys and the bio-environments. The finding was proved with use of inductively coupled plasma mass spectrometry and electron microscopy experiments. As the exclusive factor controlling the Ni-ion release rates was not only thicknesses of the oxide scale, but also the passivation depth, which was two-fold larger. Our experimental data strongly suggested that some other factors, in addition to the Ni concentration in the oxide scale, admittedly hydrogen soaking deep below the oxide scale, must be taken into account in order to rationalize the concentrations of Ni-ions released into the bio-environments. The suggested role of hydrogen as the surface passivation agent is also in line with the fact that the Ni-ion release rates considerably decrease in NiTi samples that were annealed in controlled hydrogen atmospheres prior to bio-environmental exposures.

  10. Simple solution-combustion synthesis of Ni-NiO@C nanocomposites with highly electrocatalytic activity for methanol oxidation

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Ni, Yonghong; Zhai, Muheng

    2018-01-01

    Transition metal and its oxide composite nanomaterials are attracting increasing research interest due to their superior properties and extensive applications in many fields. In this paper, Ni-NiO@C nanocomposites were successfully synthesized in one step via a simple solution-combustion route, employing NiCl2 as the Ni source, oxygen in the atmosphere as the oxygen source, and ethanol as the solvent. The final product was characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), (high resolution) transmission electron microscopy (TEM/HRTEM), and Raman spectra. N2 gas sorption-desorption experiments uncovered that the BET surface area of Ni-NiO@C nanocomposites reached 161.9 m2 g-1, far higher than 34.2 m2 g-1 of Ni-NiO. The electrochemical measurement showed that the as-produced Ni-NiO@C nanocomposites presented better catalytic activity for the electro-oxidation of methanol than Ni-NiO and NiO, which provides a new catalyst selection for the electro-oxidation of methanol.

  11. Investigating the mechanisms of Ni uptake and sub-lethal toxicity in the Atlantic killifish Fundulus heteroclitus in relation to salinity.

    PubMed

    Blewett, Tamzin A; Ransberry, Victoria E; McClelland, Grant B; Wood, Chris M

    2016-04-01

    The Atlantic killifish (Fundulus heteroclitus) is a resilient estuarine species that may be subjected to anthropogenic contamination of its natural habitat, by toxicants such as nickel (Ni). We investigated Ni accumulation and potential modes of Ni toxicity, in killifish, as a function of environmental salinity. Killifish were acclimated to 4 different salinities [0 freshwater (FW), 10, 30 and 100% seawater (SW)] and exposed to 5 mg/L of Ni for 96 h. Tissue Ni accumulation, whole body ions, critical swim speed and oxidative stress parameters were examined. SW was protective against Ni accumulation in the gills and kidney. Addition of Mg and Ca to FW protected against gill Ni accumulation, suggesting competition with Ni for uptake. Concentration-dependent Ni accumulation in the gill exhibited saturable relationships in both FW- and SW-acclimated fish. However SW fish displayed a lower Bmax (i.e. lower number of Ni binding sites) and a lower Km (i.e. higher affinity for Ni binding). No effect of Ni exposure was observed on critical swim speed (Ucrit) or maximum rate of oxygen consumption (MO2max). Markers of oxidative stress showed either no effect (e.g. protein carbonyl formation), or variable effects that appeared to depend more on salinity than on Ni exposure. These data indicate that the killifish is very tolerant to Ni toxicity, a characteristic that may facilitate the use of this species as a site-specific biomonitor of contaminated estuaries. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hydrometallurgical recovery of metals: Ce, La, Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells.

    PubMed

    Sobianowska-Turek, Agnieszka

    2018-04-11

    The utilization of the stream of waste secondary nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) cells, representing annually about 33% of all consumer batteries and accumulators placed on the Polish market, will soon become a big challenge for both legislators and plants dealing with the recycling of this type of hazardous waste. It is due to the fact that no company in Poland operating on the market has a complete technology for the processing of a full stream of waste chemical energy sources produced in this country. Until now, the most commonly used techniques of processing this type of waste were pyrometallurgical process. In this paper, the quantitative and qualitative characteristics of the stream of waste batteries and accumulators collected at separate collection points are presented. The results of metal recovery: caesium, lanthanum, cobalt, iron, manganese, nickel and zinc from the stream of waste Ni-MH cells, type R6 (AA), using hydrometallurgical methods are also offered. The paper demonstrates that one-stage leaching at an initial temperature of 25.0 °C, with 3 M H 2 SO 4 and at the solid to liquid ratio of s/l = 1/10, within 75 min, at a mixing speed of 500 rpm and in a strongly acidic environment should be adopted as optimal parameters for acid leaching of the paramagnetic fraction created after mechanical machining of Ni-MH battery, for which the leaching rates of individual metals were as follows: Ce - 97.7%, La - 88.7%, Co - 79.4%, Fe - 68.5%, Mn - 91.9%, Ni - 66.2% and Zn - 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Magnetic properties of Ni substituted Y-type barium ferrite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Won, Mi Hee; Kim, Chul Sung, E-mail: cskim@kookmin.ac.kr

    2014-05-07

    Y-type barium hexaferrite is attractive material for various applications, such as high frequency antennas and RF devices, because of its interesting magnetic properties. Especially, Ni substituted Y- type hexaferrites have higher magnetic ordering temperature than other Y-type. We have investigated macroscopic and microscopic properties of Y-type barium hexaferrite. Ba{sub 2}Co{sub 2−x}Ni{sub x}Fe{sub 12}O{sub 22} (x = 0, 0.5, 1.0, 1.5, and 2.0) samples are prepared by solid-state reaction method and studied by X-ray diffraction (XRD), vibrating sample magnetometer, and Mössbauer spectroscopy, as well as a network analyzer for high frequency characteristics. The XRD pattern is analyzed by Rietveld refinement method and confirmsmore » the hexagonal structure with R-3m. The hysteresis curve shows ferrimagnetic behavior. Saturation magnetization (M{sub s}) decreases with Ni contents. Ni{sup 2+}, which preferentially occupies the octahedral site with up-spin sub-lattice, has smaller spin value S of 1 than Co{sup 2+} having S = 3/2. The zero-field-cooled (ZFC) measurement of Ba{sub 2}Co{sub 1.5}Ni{sub 0.5}Fe{sub 12}O{sub 22} shows that Curie and spin transition temperatures are found to be 718 K and 209 K, respectively. The Curie temperature T{sub C} is increased with Ni contents, while T{sub S} is decreased with Ni. The Mössbauer spectra were measured at various temperatures and fitted by using a least-squares method with six sextet of six Lorentzian lines for Fe sites, corresponding to the 3b{sub VI}, 6c{sub IV}*, 6c{sub VI}, 18h{sub VI}, 6c{sub IV}, and 3a{sub IV} sites at below T{sub C}. From Mössbauer measurements, we confirmed the spin state of Fe ion to be Fe{sup 3+} and obtained the isomer shift (δ), magnetic hyperfine field (H{sub hf}), and the occupancy ratio of Fe ions at six sub-lattices. The complex permeability and permittivity are measured between 100 MHz and 4 GHz, suggesting that Y-type barium hexaferrite is promising for

  14. Thermoelectric properties of (DyNiSn)1-x(DyNiSb)x composite

    NASA Astrophysics Data System (ADS)

    Synoradzki, Karol; Ciesielski, Kamil; Kępiński, Leszek; Kaczorowski, Dariusz

    2018-05-01

    High temperature thermoelectric properties of bulk and ball-milled cold-pressed (DyNiSn)1-x(DyNiSb)x composite materials have been studied. For bulk pure DyNiSn and DyNiSb samples the Seebeck coefficient reaches - 5.5 μV/K at 480 K and 120 μV/K at 540 K, respectively. Composite materials show metallic-like electrical resistivity and positive sign of Seebeck coefficient with values up to 50 times higher than in pure DyNiSn compound at 1000 K. Only for the sample with x = 0.47, the ball-milling drives to increase of Seebeck coefficient of about 37% at 650 K.

  15. Effects of two-temperature model on cascade evolution in Ni and NiFe

    DOE PAGES

    Samolyuk, German D.; Xue, Haizhou; Bei, Hongbin; ...

    2016-07-05

    We perform molecular dynamics simulations of Ni ion cascades in Ni and equiatomic NiFe under the following conditions: (a) classical molecular dynamics (MD) simulations without consideration of electronic energy loss, (b) classical MD simulations with the electronic stopping included, and (c) using the coupled two-temperature MD (2T-MD) model that incorporates both the electronic stopping and the electron-phonon interactions. Our results indicate that the electronic effects are more profound in the higher-energy cascades, and that the 2T-MD model results in a smaller amount of surviving damage and smaller defect clusters, while less damage is produced in NiFe than in Ni.

  16. Superconductivity in Bi/Ni bilayer system: Clear role of superconducting phases found at Bi/Ni interface

    NASA Astrophysics Data System (ADS)

    Liu, L. Y.; Xing, Y. T.; Merino, I. L. C.; Micklitz, H.; Franceschini, D. F.; Baggio-Saitovitch, E.; Bell, D. C.; Solórzano, I. G.

    2018-01-01

    Bi/Ni bilayers with varying Bi and Ni layer thicknesses have been prepared by (a) pulsed-laser deposition (PLD) at 300 K and (b) thermal evaporation at 4.2 K. A two-step superconducting transition appears on the electrical transport measurements in the samples prepared by PLD. High-resolution transmission and scanning transmission electron microscopy, supported by energy-dispersive x-ray spectroscopy (EDXS) analysis, reveal that two superconducting intermetallic alloys, namely NiBi and NiBi3, are formed by interdiffusion, if the bilayers are prepared at 300 K. The Tc of the two phases behaves very differently in an external magnetic field and the upper critical magnetic fields at zero temperature [Bc 2(0 ) ] were estimated as 1.1 and 7.4 T, respectively. The lower value corresponds to the Bc 2(0) of NiBi3 phase and the higher one is supposed to be of NiBi. These alloys are responsible for the superconductivity and the two-step transition appearing in the Bi/Ni bilayer system. Surprisingly, the Bi-rich phase (NiBi3) is formed near the Ni layer, while the Ni-rich phase (NiBi) is formed far from the Ni layer. The EDXS analysis at nanometer scale clearly shows an unusual increase of Ni concentration near the interface of Bi/substrate. The limited thickness of Bi layer in the interdiffusion process results in an unexpected distribution of Ni concentration. Samples prepared at 4.2 K after annealing at 300 K do not show any superconductivity, which indicates that a nonepitaxial Bi/Ni interface does not induce superconductivity in the case interdiffusion does not occur. These results offer a deeper understanding of the superconductivity in the Bi/Ni bilayer system.

  17. Effects of temperature dependent pre-amorphization implantation on NiPt silicide formation and thermal stability on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Ahmet S.; Wall, Donald; Jordan-Sweet, Jean

    Using temperature controlled Si and C ion implantation, we studied the effects of pre-amorphization implantation on NiPt alloy silicide phase formation. In situ synchrotron x-ray diffraction and resistance measurements were used to monitor phase and morphology evolution in silicide films. Results show that substrate amorphization strongly modulate the nucleation of silicide phases, regardless of implant species. However, morphological stability of the thin films is mainly enhanced by C addition, independently of the amorphization depth.

  18. Fabrication and Characterization of novel W80Ni10Nb10 alloy produced by mechanical alloying

    NASA Astrophysics Data System (ADS)

    Saxena, R.; Patra, A.; Karak, S. K.; Pattanaik, A.; Mishra, S. C.

    2016-02-01

    Nanostructured tungsten (W) based alloy with nominal composition of W80Ni10Nb10 (in wt. %) was synthesized by mechanical alloying of elemental powders of tungsten (W), nickel (Ni), niobium (Nb) in a high energy planetary ball-mill for 20 h using chrome steel as grinding media and toluene as process control agent followed by compaction at 500 MPa pressure for 5 mins and sintering at 1500°C for 2 h in Ar atmosphere. The phase evolution and the microstructure of the milled powder and consolidated product were investigated by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The crystallite size of W in W80Ni10Nb10 powder was reduced from 100 μm at 0 h to 45.6 nm at 10 h and 34.1 nm at 20 h of milling whereas lattice strain increases to 35% at 20 h of milling. The dislocation density shows sharp increase up to 5 h of milling and the rate of increase drops beyond 5 to 20 h of milling. The lattice parameter of tungsten in W80Ni10Nb10 expanded upto 0.04% at 10 h of milling and contracted upto 0.02% at 20 h of milling. The SEM micrograph revealed the presence of spherical and elongated particles in W80Ni10Nb10 powders at 20 h of milling. The particle size decreases from 100 μm to 2 μm with an increase in the milling time from 0 to 20 hours. The crystallite size of W in milled W80Ni10Nb10 alloy as evident from bright field TEM image was in well agreement with the measured crystallite size from XRD. Structure of W in 20 h milled W80Ni10Nb10 alloy was identified by indexing of selected area diffraction (SAD) pattern. Formation of NbNi intermetallic was evident from XRD pattern and SEM micrograph of sintered alloy. Maximum sinterability of 90.8% was achieved in 20 h milled sintered alloy. Hardness and wear study was also conducted to investigate the mechanical behaviour of the sintered product. Hardness of W80Ni10Nb10 alloy reduces with increasing load whereas wear rate increases with increasing load. The evaluated

  19. Experimental constraints on reconstruction of Archean seawater Ni isotopic composition from banded iron formations

    NASA Astrophysics Data System (ADS)

    Wang, Shui-Jiong; Wasylenki, Laura E.

    2017-06-01

    The Ni isotopic systematics in banded iron formations (BIFs) potentially recorded the Ni isotopic composition of ancient seawater over Precambrian geological history. However, the utility of BIFs as proxies requires quantitative knowledge of how Ni isotopes fractionated as dissolved Ni was initially incorporated into iron-rich sediments and how diagenesis may have affected the Ni isotopic systematics. Here we report results of synthesis experiments to investigate the behavior of Ni isotopes during Ni coprecipitation with ferrihydrite and then transformation of ferrihydrite to hematite. Ferrihydrite coprecipitation experiments at neutral pH demonstrated that the dissolved Ni was variably heavier than coprecipitated Ni (likely a mixture of surface-adsorbed and structurally incorporated Ni), with the isotope fractionation becoming larger as the fraction of Ni associated with solid increased (Δ60/58Nisolution-solid = +0.08 to +0.50‰). Further experiments at lower pH (3.7-6.7), in which structurally incorporated Ni likely dominated in solids, documented a decrease in Δ60/58Nisolution-solid from +0.44‰ to -0.18‰ as the pH decreased. The negative value for Δ60/58Nisolution-solid at low pH indicates the enrichment of heavier isotopes in incorporated Ni relative to dissolved and adsorbed Ni, possibly as a result of the presence of a small amount of tetrahedral Ni2+ in addition to octahedral Ni2+ in the ferrihydrite structure. The results of the ferrihydrite experiments thus reflect equilibrium isotope fractionation between three pools of Ni, with δ60/58Ni values in the order of incorporated > dissolved > adsorbed. Hematite was synthesized by transformation of Ni-bearing ferrihydrite in aqueous solution at ∼100 °C. A significant amount of Ni (up to 60%) was released (desorbed) from solids into solutions as pH dropped from ∼7 to 4.5-5.5 upon phase transformation. Rinsing of the synthesized hematite in 2 M acetic acid released only very small amounts of Ni (<4

  20. Cold Spray Deposition of Ni and WC-Reinforced Ni Matrix Composite Coatings

    NASA Astrophysics Data System (ADS)

    Alidokht, S. A.; Vo, P.; Yue, S.; Chromik, R. R.

    2017-12-01

    Ni-WC composites are ideal protective coatings against wear and are often fabricated using laser cladding and thermal spray processes, but the high temperatures of these processes result in decarburization, which deteriorates the performance of the coating. Cold spray has the potential to deposit Ni-WC composite coatings and retain the composition of the initial WC feedstock. However, the insignificant plastic deformation of hard WC particles makes it difficult to build up a high WC content coating by cold spray. By using three different WC powder sizes, the effect of feedstock powder size on WC retention was tested. To improve WC retention, a WC/Ni composite powder in mixture with Ni was also sprayed. Microstructural characterization, including the deformed structure of Ni splats, retention, distribution, and fragmentation of WC, was performed by scanning electron microscopy. An improvement in WC retention was achieved using finer WC particles. Significant improvement in WC particles retention was achieved using WC/Ni composite powder, with the WC content in the coating being close to that of the feedstock.

  1. Interplay between interface structure and magnetism in NiFe/Cu/Ni-based pseudo-spin valves

    NASA Astrophysics Data System (ADS)

    Loving, Melissa G.; Ambrose, Thomas F.; Ermer, Henry; Miller, Don; Naaman, Ofer

    2018-05-01

    Magnetic pseudo spin valves (PSVs) with superconducting Nb electrodes, have been leading candidates for an energy-efficient memory solution compatible with cryogenic operation of ultra-low power superconducting logic. Integration of these PSV Josephson junctions in a standard multi-layer Nb process requires growing high-quality thin magnetic films on a thick Nb bottom electrode (i.e. ≥1.5kÅ, to achieve bulk superconducting properties). However, as deposited, 1.5kÅ Nb exhibits a rough surface with a characteristic rice grain morphology, which severely degrades the switching properties of subsequently deposited PSVs. Therefore, in order to achieve coherent switching throughout a PSV, the Nb interface must be modified. Here, we demonstrate that the Nb surface morphology and PSV crystallinity can be altered with the incorporation of separate 50Å Cu or 100Å Al/50Å Cu non-magnetic seed layers, and demonstrate their impact on the magnetic switching of a 15Å Ni80Fe20/50Å Cu/20Å Ni PSV, at both room temperature and at 10 K. Most notably, these results show that the incorporation of an Al seed layer leads to an improved face centered cubic templating through the bulk of the PSV, and ultimately to superior magnetic switching.

  2. Plasma-driven self-organization of Ni nanodot arrays on Si(100)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levchenko, I.; Ostrikov, K.; Diwan, K.

    The results of the combined experimental and numerical study suggest that nonequilibrium plasma-driven self-organization leads to better size and positional uniformity of nickel nanodot arrays on a Si(100) surface compared with neutral gas-based processes under similar conditions. This phenomenon is explained by introducing the absorption zone patterns, whose areas relative to the small nanodot sizes become larger when the surface is charged. Our results suggest that strongly nonequilibrium and higher-complexity plasma systems can be used to improve ordering and size uniformity in nanodot arrays of various materials, a common and seemingly irresolvable problem in self-organized systems of small nanoparticles.

  3. Cross-sectional transmission electron microscopic study of irradiation induced nano-crystallization of nickel in a W/Ni multilayer.

    PubMed

    Bagchi, Sharmistha; Lalla, N P

    2008-06-11

    The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.

  4. He behavior in Ni and Ni-based equiatomic solid solution alloy

    NASA Astrophysics Data System (ADS)

    Yan, Zhanfeng; Liu, Shaoshuai; Xia, Songqin; Zhang, Yong; Wang, Yugang; Yang, Tengfei

    2018-07-01

    In the current work, pure nickel (99.99 wt.%) and Ni-containing single phase equiatomic solid solution alloy Fe-Co-Cr-Ni were irradiated with 190 keV He ions at room temperature with different fluences and He behavior in both materials are compared. At 1 × 1017 cm-2, TEM observation reveals that only isolated and small He bubbles (1-2 nm) are formed in Fe-Co-Cr-Ni alloy while many small suspected "string"-like He bubbles are observed in nickel at the concentration peak region (5.5 at.%). When the fluence is increased to 5 × 1017 cm-2, average bubble size in nickel increases to ∼8 nm which is almost equal to that in Fe-Co-Cr-Ni, but a higher bubble density is observed in nickel. At the highest dose of 1 × 1018 cm-2, numerous surface blisters and exfoliations occur in nickel which are consistent with TEM observation, while the Fe-Co-Cr-Ni alloy only shows a slight surface blister. Bubble coarsening upon annealing at 500 °C (2 h) is observed at 5 × 1017 cm-2 in both alloys, but a significant larger bubble growth is observed in nickel, suggesting a relatively better resistance to He bubble growth for Fe-Co-Cr-Ni alloy.

  5. H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni-Ti-Hf and Ni-Ti-Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Evirgen, A.; Pons, J.; Karaman, I.; Santamarta, R.; Noebe, R. D.

    2018-03-01

    The distributions of H-phase precipitates in Ni50.3Ti29.7Hf20 and Ni50.3Ti29.7Zr20 alloys formed by aging treatments at 500 and 550 °C or slow furnace cooling and their effects on the thermal martensitic transformation have been investigated by TEM and calorimetry. The comparative study clearly reveals faster precipitate-coarsening kinetics in the NiTiZr alloy than in NiTiHf. For precipitates of a similar size of 10-20 nm in both alloys, the martensite plates in Ni50.3Ti29.7Zr20 have larger widths and span a higher number of precipitates compared with the Ni50.3Ti29.7Hf20 alloy. However, for large H-phase particles with hundreds of nm in length, no significant differences in the martensitic microstructures of both alloy systems have been observed. The martensitic transformation temperatures of Ni50.3Ti29.7Hf20 are 80-90 °C higher than those of Ni50.3Ti29.7Zr20 in the precipitate-free state and in the presence of large particles of hundreds on nm in length, but this difference is reduced to only 10-20 °C in samples with small H-phase precipitates. The changes in the transformation temperatures are consistent with the differences in the precipitate distributions between the two alloy systems observed by TEM.

  6. Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy

    NASA Technical Reports Server (NTRS)

    Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.

    1993-01-01

    Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.

  7. Giant magnetic coercivity in YNi4B-type SmNi3TB (T=Mn-Cu) solid solutions

    NASA Astrophysics Data System (ADS)

    Yao, Jinlei; Yan, Chang; Yapaskurt, V. O.; Morozkin, A. V.

    2016-12-01

    The effects of transition metal substitution for Ni on the magnetic properties of the YNi4B-type SmNi4B via SmNi3TB (T=Mn, Fe, Co, Cu) solid solutions have been investigated. SmNi4B, SmNi3MnB, SmNi3FeB, SmNi3CoB and SmNi3CuB show ferromagnetic ordering at 40 K, 210 K, 322 K, 90 K and 57 K and field sensitive metamagnetic-like transitions at 15 K, 100 K, 185 K, 55 K and 15 K in a magnetic field of 10 kOe, respectively. The magnetocaloric effects of SmNi3TB (T=Mn-Cu) were calculated in terms of isothermal magnetic entropy change (ΔSm). The magnetic entropy ΔSm reaches value of -0.94 J/kg K at 40 K for SmNi4B, -1.5 J/kg K at 205 K for SmNi3MnB, -0.54 J/kg K at 320 K for SmNi3FeB, -0.49 J/kg K at 90 K for SmNi3CoB and -0.54 J/kg K at 60 K for SmNi3CuB in field change of 0-50 kOe around the Curie temperature. They show positive ΔSm of +0.71 J/kg K at ~10 K for SmNi4B, +1.69 J/kg K at 30 K for SmNi3MnB, +0.89 J/kg K at 110 K for SmNi3FeB, +1.08 J/kg K at 25 K for SmNi3CoB and +1.12 J/kg K at 10 K for SmNi3CuB in field change of 0-50 kOe around the low temperature metamagnetic-like transition. Below the field induced transition temperature (change of magnetic structure), SmNi3TB (T=Mn-Cu) exhibits giant magnetic coercivity of 74 kOe at 5 K for SmNi4B, 69 kOe at 20 K (90 kOe at 10 K) for SmNi3MnB, 77 kOe at 60 K for SmNi3FeB, 88 kOe at 20 K for SmNi3CoB and 52 kOe at 5 K for SmNi3CuB.

  8. Crystallization and growth of Ni-Si alloy thin films on inert and on silicon substrates

    NASA Astrophysics Data System (ADS)

    Grimberg, I.; Weiss, B. Z.

    1995-04-01

    The crystallization kinetics and thermal stability of NiSi2±0.2 alloy thin films coevaporated on two different substrates were studied. The substrates were: silicon single crystal [Si(100)] and thermally oxidized silicon single crystal. In situ resistance measurements, transmission electron microscopy, x-ray diffraction, Auger electron spectroscopy, and Rutherford backscattering spectroscopy were used. The postdeposition microstructure consisted of a mixture of amorphous and crystalline phases. The amorphous phase, independent of the composition, crystallizes homogeneously to NiSi2 at temperatures lower than 200 °C. The activation energy, determined in the range of 1.4-2.54 eV, depends on the type of the substrate and on the composition of the alloyed films. The activation energy for the alloys deposited on the inert substrate was found to be lower than for the alloys deposited on silicon single crystal. The lowest activation energy was obtained for nonstoichiometric NiSi2.2, the highest for NiSi2—on both substrates. The crystallization mode depends on the structure of the as-deposited films, especially the density of the existing crystalline nuclei. Substantial differences were observed in the thermal stability of the NiSi2 compound on both substrates. With the alloy films deposited on the Si substrate, only the NiSi2 phase was identified after annealing to temperatures up to 800 °C. In the films deposited on the inert substrate, NiSi and NiSi2 phases were identified when the Ni content in the alloy exceeded 33 at. %. The effects of composition and the type of substrate on the crystallization kinetics and thermal stability are discussed.

  9. Macroscopic and microscopic investigation of Ni(II) sequestration on diatomite by batch, XPS, and EXAFS techniques.

    PubMed

    Sheng, Guodong; Yang, Shitong; Sheng, Jiang; Hu, Jun; Tan, Xiaoli; Wang, Xiangke

    2011-09-15

    Sequestration of Ni(II) on diatomite as a function of time, pH, and temperature was investigated by batch, XPS, and EXAFS techniques. The ionic strength-dependent sorption at pH < 7.0 was consistent with outer-sphere surface complexation, while the ionic strength-independent sorption at pH = 7.0-8.6 was indicative of inner-sphere surface complexation. EXAFS results indicated that the adsorbed Ni(II) consisted of ∼6 O at R(Ni-O) ≈ 2.05 Å. EXAFS analysis from the second shell suggested that three phenomena occurred at the diatomite/water interface: (1) outer-sphere and/or inner-sphere complexation; (2) dissolution of Si which is the rate limiting step during Ni uptake; and (3) extensive growth of surface (co)precipitates. Under acidic conditions, outer-sphere complexation is the main mechanism controlling Ni uptake, which is in good agreement with the macroscopic results. At contact time of 1 h or 1 day or pH = 7.0-8.0, surface coprecipitates occur concurrently with inner-sphere complexes on diatomite surface, whereas at contact time of 1 month or pH = 10.0, surface (co)precipitates dominate Ni uptake. Furthermore, surface loading increases with temperature increasing, and surface coprecipitates become the dominant mechanism at elevated temperature. The results are important to understand Ni interaction with minerals at the solid-water interface, which is helpful to evaluate the mobility of Ni(II) in the natural environment.

  10. Modifying surface properties of KIT-6 zeolite with Ni and V for enhancing catalytic CO methanation

    NASA Astrophysics Data System (ADS)

    Cao, Hong-Xia; Zhang, Jun; Guo, Cheng-Long; Chen, Jingguang G.; Ren, Xiang-Kun

    2017-12-01

    The surface of the KIT-6 zeolite was modified with different amounts of Ni and V to promote the catalytic properties for CO methanation. A series of xNi-yV/KIT-6 with various Ni and V contents were prepared by the incipient-wetness impregnation method. The modified surfaces were characterized using N2 adsorption-desorption, Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), hydrogen temperature-programmed reduction (H2-TPR), Fourier transformed infrared spectroscopy (FT-IR), Raman, X-ray photoelectron spectroscopy (XPS), transmission electron microscope (TEM), and energy-dispersive X-ray spectroscopy (EDX), respectively. The characterization results illustrated that the modification of V species was able to significantly promote low-temperature catalytic performance below 350 °C compared to that of unmodified Ni/KIT-6, which was likely due to an increase in the H2 uptake accompanied by enhanced CO dissociation derived from stronger electron transfer from V species to Ni0. Correspondingly, the xNi-yV/KIT-6 catalysts exhibited a distinct enhancement in CO conversion, CH4 selectivity and CH4 yield over unmodified Ni/KIT-6. Among all catalysts, 20Ni-2V/KIT-6 showed the best catalytic performance, corresponding to nearly 100% CO conversion and 85% CH4 yield at a low temperature of 300 °C. Furthermore, 20Ni-2V/KIT-6 presented enhanced coking-resistant and anti-sintering properties during a 60h-lifetime test at 500 °C and 1 atm with a high weight hourly space velocity (WHSV) of 60000 ml/g/h.

  11. Cavitation resistance of surface composition "Steel-Ni-TiNi-TiNiZr-cBNCo", formed by High-Velocity Oxygen-Fuel spraying

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The object of the study is a multilayered surface composition "Steel - a Multicomponent material with Shape Memory Effect - a wear-resistant layer" under conditions of cavitation effects in sea water. Multicomponent TiNi-based coatings with addition of alloying elements such as Zr in an amount up to 10% mass, allow to create a composite material with a gradient of properties at the interface of layers, which gives new properties to coatings and improves their performance significantly. The use of materials with shape memory effect (SME) as surface layers or in the composition of surface layered compositions allows to provide an effective reaction of materials to the influence of external factors and adaptation to external influences. The surface composite layer cBN-10%Co has high hardness and strength, which ensures its resistance to shock cyclic influences of collapsing caverns. The increased roughness of the surface of a solid surface composite in the form of strong columnar structures ensures the crushing of vacuum voids, redistributing their effect on the entire surface, and not concentrating them in certain zones. In addition, the gradient structure of the multilayer composite coating TiNi-Ti33Ni49Zr18-cBN-10%Co Co makes it possible to create conditions for the relaxation of stresses created by the variable impact load of cavitation caverns and the manifestation of compensating internal forces due to thermo-elastic martensitic transformations of SME materials. The cavitation resistance of the coating TiNi-Ti33Ni49Zr18-cBN-10%Co according to the criterion of mass wear is 15-20 times higher than that of the base material without coating and 10-12 times higher than that of the TiNi-TiNiZr coating. The proposed architecture of the multifunctional gradient composition, "steel-Ni-TiNi- Ti33Ni49Zr18-cBN-10%Co", each layer of which has its functional purpose, allows to increase the service life of parts operating under conditions of cavitation-fatigue loading in

  12. Sonochemical synthesis of porous NiTiO3 nanorods for photocatalytic degradation of ceftiofur sodium.

    PubMed

    Pugazhenthiran, N; Kaviyarasan, K; Sivasankar, T; Emeline, A; Bahnemann, D; Mangalaraja, R V; Anandan, S

    2017-03-01

    Porous NiTiO 3 nanorods were synthesized through the sonochemical route followed by calcination at various temperature conditions. Surface morphology of the samples was tuned by varying the heat treatment temperature from 100 to 600°C. The synthesized NiTiO 3 nanorods were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, diffused reflectance spectroscopy, photoluminescence spectroscopy and Brunauer-Emmett-Teller (BET) analyses. The characterization studies revealed that the NiTiO 3 nanomaterial was tuned to porous and perfectly rod shaped structure during the heat treatment at 600°C. The porous NiTiO 3 nanorods showed visible optical response and thus can be utilized in the photocatalytic degradation of ceftiofur sodium (CFS) under direct sunlight. The photoluminescence intensity of the porous NiTiO 3 nanorods formed while heating at 600°C was lower than that of the as-synthesized NiTiO 3 sample owing to the photogenerated electrons delocalization along the one dimensional nanorods and this delocalization resulted in the reduction of the electron-hole recombination rate. The photocatalytic degradation of ceftiofur sodium (CFS) was carried out using NiTiO 3 nanorods under the direct sunlight irradiation and their intermediate products were analysed through HPLC to deduce the possible degradation mechanism. The porous NiTiO 3 nanorods exhibited an excellent photocatalytic activity towards the CFS degradation and further, the photocatalytic activity was increased by the addition of peroxomonosulfate owing to the simultaneous generation of both OH and SO 4 - . Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Electrodeposition of Ni and CeO₂/Ni Nanotubes for Hydrogen Evolution Reaction Electrode.

    PubMed

    Du, Xiaoqing; Yang, Yumeng; Yi, Chenxi; Chen, Yu; Cai, Chao; Zhang, Zhao

    2018-07-01

    Ni NTs and CeO2-Ni nanotubes (NTs) have been prepared by galvanostatic electrodeposition in anodic aluminum oxide (AAO) Templates. Scanning electron microscope (SEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopic (EDS) and X-ray Diffraction (XRD) are used to characterize the prepared NTs. The results showed that the preparation process of CeO2-Ni NTs was accompanied by the formation of many new phases CeNix (x = 1, 2, 3.5 or 5) and preferential orientation crystal face of Ni in CeO2-Ni NTs is 〈111〉, which is different from that Ni 〈200〉 in Ni NTs. Then linear scan voltammetry (LSV) is applied to test the electrocatalytic activity for hydrogen revolution reaction (HER) of the two electrodes in 1 M NaCl aqueous solution and find that both of the two materials exhibited good performance. Finally, the kinetics analyses from the HER process showed that Tafel slope b was mainly dependent on phase composition and electric conductivity of the electrode, while j0 was mainly dependent on its real specific surface area.

  14. Ag-nanoparticles-decorated NiO-nanoflakes grafted Ni-nanorod arrays stuck out of porous AAO as effective SERS substrates.

    PubMed

    Zhou, Qitao; Meng, Guowen; Huang, Qing; Zhu, Chuhong; Tang, Haibin; Qian, Yiwu; Chen, Bin; Chen, Bensong

    2014-02-28

    NiO-nanoflakes (NiO-NFs) grafted Ni-nanorod (Ni-NR) arrays stuck out of the porous anodic aluminum oxide (AAO) template are achieved by a combinatorial process of AAO-confined electrodeposition of Ni-NRs, selectively etching part of the AAO template to expose the Ni-NRs, wet-etching the exposed Ni-NRs in ammonia to obtain Ni(OH)2-NFs grafted onto the cone-shaped Ni-NRs, and annealing to transform Ni(OH)2-NFs in situ into NiO-NFs. By top-view sputtering, Ag-nanoparticles (Ag-NPs) are decorated on each NiO-NFs grafted Ni-NR (denoted as NiO-NFs@Ni-NR). The resultant Ag-NPs-decorated NiO-NFs@Ni-NR (denoted as Ag-NPs@NiO-NFs@Ni-NR) arrays exhibit not only strong surface-enhanced Raman scattering (SERS) activity but also reproducible SERS-signals over the whole array. It is demonstrated that the strong SERS-activity is mainly ascribed to the high density of sub-10 nm gaps (hot spots) between the neighboring Ag-NPs, the semiconducting NiO-NFs induced chemical enhancement effect, and the lightning rod effect of the cone-shaped Ni-NRs. The three-level hierarchical nanostructure arrays stuck out of the AAO template can be utilized to probe polychlorinated biphenyls (PCBs, a kind of global environmental hazard) with a concentration as low as 5 × 10(-6) M, showing promising potential in SERS-based rapid detection of organic environmental pollutants.

  15. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy

    PubMed Central

    Dong, Zhenbiao; Ning, Congqin

    2017-01-01

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti2Ni phase region, and Ti5Si3 phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm2 at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys. PMID:29088083

  16. Photoelectrochemical Water Splitting Properties of Ti-Ni-Si-O Nanostructures on Ti-Ni-Si Alloy.

    PubMed

    Li, Ting; Ding, Dongyan; Dong, Zhenbiao; Ning, Congqin

    2017-10-31

    Ti-Ni-Si-O nanostructures were successfully prepared on Ti-1Ni-5Si alloy foils via electrochemical anodization in ethylene glycol/glycerol solutions containing a small amount of water. The Ti-Ni-Si-O nanostructures were characterized by field-emission scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and diffuse reflectance absorption spectra. Furthermore, the photoelectrochemical water splitting properties of the Ti-Ni-Si-O nanostructure films were investigated. It was found that, after anodization, three different kinds of Ti-Ni-Si-O nanostructures formed in the α-Ti phase region, Ti₂Ni phase region, and Ti₅Si₃ phase region of the alloy surface. Both the anatase and rutile phases of Ti-Ni-Si-O oxide appeared after annealing at 500 °C for 2 h. The photocurrent density obtained from the Ti-Ni-Si-O nanostructure photoanodes was 0.45 mA/cm² at 0 V (vs. Ag/AgCl) in 1 M KOH solution. The above findings make it feasible to further explore excellent photoelectrochemical properties of the nanostructure-modified surface of Ti-Ni-Si ternary alloys.

  17. Interparticle interactions mediated superspin glass to superferromagnetic transition in Ni-bacterial cellulose aerogel nanocomposites

    NASA Astrophysics Data System (ADS)

    Thiruvengadam, V.; Vitta, Satish

    2016-06-01

    The interparticle interactions in the magnetic nanocomposites play a dominant role in controlling phase transitions: superparamagnetic to superspin glass and to superferromagnetic. These interactions can be tuned by controlling the size and number density of nanoparticles. The aerogel composites, 0.3Ni-BC and 0.7Ni-BC, consisting of Ni nanoparticles distributed in the bacterial cellulose have been used as a model system to study these interactions. Contrary to conventional approach, size of Ni-nanoparticles is not controlled and allowed to form naturally in bacterial cellulose template. The uncontrolled growth of Ni results in the formation of nanoparticles with 3 different size distributions - <10 nm particles along the length of fibrils, 50 nm particles in the intermediate spaces between the fibrils, and >100 nm particles in voids formed by reticulate structure. At room temperature, the composites exhibit a weakly ferromagnetic behaviour with a coercivity of 40 Oe, which increases to 160 Oe at 10 K. The transition from weakly ferromagnetic state to superferromagnetic state at low temperatures is mediated by the superspin glass state at intermediate temperatures via the interparticle interactions aided by nanoparticles present along the length of fibres. A temperature dependent microstructural model has been developed to understand the magnetic behaviour of nanocomposite aerogels.

  18. Fabrication and characterization of NiO based metal-insulator-metal diode using Langmuir-Blodgett method for high frequency rectification

    NASA Astrophysics Data System (ADS)

    Azad, Ibrahim; Ram, Manoj K.; Goswami, D. Yogi; Stefanakos, Elias

    2018-04-01

    Thin film metal-insulator-metal (MIM) diodes have attracted significant attention for use in infrared energy harvesting and detection applications. As demonstrated over the past decades, MIM or metal-insulator-insulator-metal (MIIM) diodes can operate at the THz frequencies range by quantum tunneling of electrons. The aim of this work is to synthesize required ultra-thin insulating layers and fabricate MIM diodes using the Langmuir-Blodgett (LB) technique. The nickel stearate (NiSt) LB precursor film was deposited on glass, silicon (Si), ITO glass and gold coated silicon substrates. The photodesorption (UV exposure) and the thermodesorption (annealing at 100 °C and 350 °C) methods were used to remove organic components from the NiSt LB film and to achieve a uniform homogenous nickel oxide (NiO) film. These ultrathin NiO films were characterized by EDS, AFM, FTIR and cyclic voltammetry methods, respectively. The MIM diode was fabricated by depositing nickel (Ni) on the NiO film, all on a gold (Au) plated silicon (Si) substrate. The current (I)-voltage (V) characteristics of the fabricated diode were studied to understand the conduction mechanism assumed to be tunneling of electron through the ultra-thin insulating layer. The sensitivity of the diode was measured to be as high as 35 V-1. The diode resistance was ˜100 ohms (at a bias voltage of 0.60 V), and the rectification ratio was about 22 (for a signal voltage of ±200 mV). At the bias point, the diode response demonstrated significant non-linearity and high asymmetry, which are very desirable characteristics for applications in infrared detection and harvesting.

  19. Adios El Niño, Hello La Niña?

    NASA Image and Video Library

    2010-06-22

    This image from NASA European Ocean Surface Topography Mission/Jason-2 shows that the moderate El Niño of the past year has officially bowed out, leaving his cool sibling, La Niña, poised to potentially take the equatorial stage.

  20. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn.

    PubMed

    Barczak, Sonia A; Buckman, Jim; Smith, Ronald I; Baker, Annabelle R; Don, Eric; Forbes, Ian; Bos, Jan-Willem G

    2018-03-30

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi 1+y Sn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5-3 mW m -1 K -2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m -1 K -1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn.

  1. Impact of Interstitial Ni on the Thermoelectric Properties of the Half-Heusler TiNiSn

    PubMed Central

    Barczak, Sonia A.; Smith, Ronald I.; Baker, Annabelle R.; Don, Eric; Forbes, Ian

    2018-01-01

    TiNiSn is an intensively studied half-Heusler alloy that shows great potential for waste heat recovery. Here, we report on the structures and thermoelectric properties of a series of metal-rich TiNi1+ySn compositions prepared via solid-state reactions and hot pressing. A general relation between the amount of interstitial Ni and lattice parameter is determined from neutron powder diffraction. High-resolution synchrotron X-ray powder diffraction reveals the occurrence of strain broadening upon hot pressing, which is attributed to the metastable arrangement of interstitial Ni. Hall measurements confirm that interstitial Ni causes weak n-type doping and a reduction in carrier mobility, which limits the power factor to 2.5–3 mW m−1 K−2 for these samples. The thermal conductivity was modelled within the Callaway approximation and is quantitively linked to the amount of interstitial Ni, resulting in a predicted value of 12.7 W m−1 K−1 at 323 K for stoichiometric TiNiSn. Interstitial Ni leads to a reduction of the thermal band gap and moves the peak ZT = 0.4 to lower temperatures, thus offering the possibility to engineer a broad ZT plateau. This work adds further insight into the impact of small amounts of interstitial Ni on the thermal and electrical transport of TiNiSn. PMID:29601547

  2. Low salinity enhances NI-mediated oxidative stress and sub-lethal toxicity to the green shore crab (Carcinus maenas).

    PubMed

    Blewett, Tamzin A; Wood, Chris M

    2015-12-01

    Nickel (Ni) is a metal of environmental concern, known to cause toxicity to freshwater organisms by impairing ionoregulation and/or respiratory gas exchange, and by inducing oxidative stress. However, little is known regarding how nickel toxicity is influenced by salinity. In the current study we investigated the salinity-dependence and mechanisms of sub-lethal Ni toxicity in a euryhaline crab (Carcinus maenas). Crabs were acclimated to three experimental salinities--20, 60 and 100% seawater (SW)--and exposed to 3mg/L Ni for 24h or 96 h. Tissues were dissected for analysis of Ni accumulation, gills were taken for oxidative stress analysis (catalase activity and protein carbonyl content), haemolymph ions were analysed for ionoregulatory disturbance, and oxygen consumption was determined in exercised crabs after 96 h of Ni exposure. Total Ni accumulation was strongly dependant on salinity, with crabs from 20% SW displaying the highest tissue Ni burdens after both 24 and 96-h exposures. After 96 h of exposure, the highest accumulation of Ni occurred in the posterior (ionoregulatory) gills at the lowest salinity, 20% SW. Posterior gill 8 exhibited elevated protein carbonyl levels and decreased catalase activity after Ni exposure, but only in 20% SW. Similarly, decreased levels of haemolymph Mg and K and an increased level of Ca were recorded but only in crabs exposed to Ni for 96 h in 20% SW. Oxygen consumption after exercise was also inhibited in crabs exposed to Ni in 20% SW. These data show for the first time the simultaneous presence of all three modes of sub-lethal Ni toxicity in exposed animals, and indicate a strong salinity dependence of sub-lethal Ni toxicity to the euryhaline crab, C. maenas, a pattern that corresponded to tissue Ni accumulation. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Control of the transition between Ni-C and Ni-SI(a) states by the redox state of the proximal Fe-S cluster in the catalytic cycle of [NiFe] hydrogenase.

    PubMed

    Tai, Hulin; Nishikawa, Koji; Suzuki, Masayuki; Higuchi, Yoshiki; Hirota, Shun

    2014-12-08

    [NiFe] hydrogenase catalyzes the reversible cleavage of H2. The electrons produced by the H2 cleavage pass through three Fe-S clusters in [NiFe] hydrogenase to its redox partner. It has been reported that the Ni-SI(a), Ni-C, and Ni-R states of [NiFe] hydrogenase are involved in the catalytic cycle, although the mechanism and regulation of the transition between the Ni-C and Ni-SI(a) states remain unrevealed. In this study, the FT-IR spectra under light irradiation at 138-198 K show that the Ni-L state of [NiFe] hydrogenase is an intermediate between the transition of the Ni-C and Ni-SI(a) states. The transition of the Ni-C state to the Ni-SI(a) state occurred when the proximal [Fe4S4]p(2+/+) cluster was oxidized, but not when it was reduced. These results show that the catalytic cycle of [NiFe] hydrogenase is controlled by the redox state of its [Fe4S4]p(2+/+) cluster, which may function as a gate for the electron flow from the NiFe active site to the redox partner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photodynamic Effect of Ni Nanotubes on an HeLa Cell Line

    PubMed Central

    Hammad Aziz, Muhammad; Fakhar-e-Alam, M.; Fatima, Mahvish; Shaheen, Fozia; Iqbal, Seemab; Atif, M.; Talha, Muhammad; Mansoor Ali, Syed; Afzal, Muhammad; Majid, Abdul; Shelih Al.Harbi, Thamir; Ismail, Muhammad; Wang, Zhiming M.; AlSalhi, M. S.; Alahmed, Z. A.

    2016-01-01

    Nickel nanomaterials are promising in the biomedical field, especially in cancer diagnostics and targeted therapy, due to their distinctive chemical and physical properties. In this experiment, the toxicity of nickel nanotubes (Ni NTs) were tested in an in vitro cervical cancer model (HeLa cell line) to optimize the parameters of photodynamic therapy (PDT) for their greatest effectiveness. Ni NTs were synthesized by electrodeposition. Morphological analysis and magnetic behavior were examined using a Scanning electron microscope (SEM), an energy dispersive X-ray analysis (EDAX) and a vibrating sample magnetometer (VSM) analysis. Phototoxic and cytotoxic effects of nanomaterials were studied using the Ni NTs alone as well as in conjugation with aminolevulinic acid (5-ALA); this was performed both in the dark and under laser exposure. Toxic effects on the HeLa cell model were evaluated by a neutral red assay (NRA) and by detection of intracellular reactive oxygen species (ROS) production. Furthermore, 10–200 nM of Ni NTs was prepared in solution form and applied to HeLa cells in 96-well plates. Maximum toxicity of Ni NTs complexed with 5-ALA was observed at 100 J/cm2 and 200 nM. Up to 65–68% loss in cell viability was observed. Statistical analysis was performed on the experimental results to confirm the worth and clarity of results, with p-values = 0.003 and 0.000, respectively. Current results pave the way for a more rational strategy to overcome the problem of drug bioavailability in nanoparticulate targeted cancer therapy, which plays a dynamic role in clinical practice. PMID:26990435

  5. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  6. Effects of Tantalum on the Temporal Evolution of a Model Ni-Al-Cr Superalloy During Phase Decomposition

    NASA Technical Reports Server (NTRS)

    Booth, Morrison, Christopher; Seidman, David N.; Noebe, Ronald D.

    2009-01-01

    The effects of a 2.0 at.% addition of Ta to a model Ni-10.0Al-8.5Cr (at.%) superalloy aged at 1073 K are assessed using scanning electron microscopy and atom-probe tomography. The gamma'(Ll2)-precipitate morphology that develops as a result of gamma-(fcc)matrix phase decomposition is found to evolve from a bimodal distribution of spheroidal precipitates, to {001}-faceted cuboids and parallelepipeds aligned along the elastically soft {001}-type directions. The phase compositions and the widths of the gamma'-precipitate/gamma-matrix heterophase interfaces evolve temporally as the Ni-Al-Cr-Ta alloy undergoes quasi-stationary state coarsening after 1 h of aging. Tantalum is observed to partition preferentially to the gamma'-precipitate phase, and suppresses the mobility of Ni in the gamma-matrix sufficiently to cause an accumulation of Ni on the gamma-matrix side of the gamma'/gamma interface. Additionally, computational modeling, employing Thermo-Calc, Dictra and PrecipiCalc, is employed to elucidate the kinetic pathways that lead to phase decomposition in this concentrated Ni-Al-Cr-Ta alloy.

  7. Effect of Ni Core Structure on the Electrocatalytic Activity of Pt-Ni/C in Methanol Oxidation

    PubMed Central

    Kang, Jian; Wang, Rongfang; Wang, Hui; Liao, Shijun; Key, Julian; Linkov, Vladimir; Ji, Shan

    2013-01-01

    Methanol oxidation catalysts comprising an outer Pt-shell with an inner Ni-core supported on carbon, (Pt-Ni/C), were prepared with either crystalline or amorphous Ni core structures. Structural comparisons of the two forms of catalyst were made using transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and methanol oxidation activity compared using CV and chronoamperometry (CA). While both the amorphous Ni core and crystalline Ni core structures were covered by similar Pt shell thickness and structure, the Pt-Ni(amorphous)/C catalyst had higher methanol oxidation activity. The amorphous Ni core thus offers improved Pt usage efficiency in direct methanol fuel cells. PMID:28811402

  8. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192; Shomura, Yasuhito

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenasemore » from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.« less

  9. Effect of NiO spin orientation on the magnetic anisotropy of the Fe film in epitaxially grown Fe/NiO/Ag(001) and Fe/NiO/MgO(001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, W.; Jin, E.; Wu, J.

    Single crystalline Fe/NiO bilayers were epitaxially grown on Ag(001) and on MgO(001), and investigated by Low Energy Electron Diffraction (LEED), Magneto-Optic Kerr Effect (MOKE), and X-ray Magnetic Linear Dichroism (XMLD). We find that while the Fe film has an in-plane magnetization in both Fe/NiO/Ag(001) and Fe/NiO/MgO(001) systems, the NiO spin orientation changes from in-plane direction in Fe/NiO/Ag(001) to out-of-plane direction in Fe/NiO/MgO(001). These two different NiO spin orientations generate remarkable different effects that the NiO induced magnetic anisotropy in the Fe film is much greater in Fe/NiO/Ag(001) than in Fe/NiO/MgO(001). XMLD measurement shows that the much greater magnetic anisotropy inmore » Fe/NiO/Ag(001) is due to a 90{sup o}-coupling between the in-plane NiO spins and the in-plane Fe spins.« less

  10. Honeycomb-like NiCo2S4 nanosheets prepared by rapid electrodeposition as a counter electrode for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yin, Jie; Wang, Yuqiao; Meng, Wenfei; Zhou, Tianyue; Li, Baosong; Wei, Tao; Sun, Yueming

    2017-08-01

    Honeycomb-like nickel cobalt sulfide (NiCo2S4) nanosheets were directly deposited on fluorine-doped tin oxide substrate by a rapid voltammetric deposition method. The method was also controllable and feasible for preparing NiCo2S4 on flexible Ti foil without any heating processes. Compared with Pt, CoS and NiS, NiCo2S4 exhibited low charge-transfer resistances and excellent electrocatalytic activity for {{{{I}}}3}- reduction, acting as a counter electrode for a dye-sensitized solar cell. The NiCo2S4-based solar cell showed higher power conversion efficiency (7.44%) than that of Pt-based solar cell (7.09%) under simulated illumination (AM 1.5 G, 100 mW cm-2). The device based on the flexible NiCo2S4/Ti foil achieved a power conversion efficiency of 5.28% under the above illumination conditions. This work can be extended to flexible and wearable technologies due to its facile technique.

  11. Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.

    PubMed

    Lin, K W; Wei, M R; Guo, J Y

    2009-03-01

    The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.

  12. Corrosive sliding wear behavior of laser clad Mo 2Ni 3Si/NiSi intermetallic coating

    NASA Astrophysics Data System (ADS)

    Lu, X. D.; Wang, H. M.

    2005-05-01

    Many ternary metal silicides such as W 2Ni 3Si, Ti 2Ni 3Si and Mo 2Ni 3Si with the topologically closed-packed (TCP) hP12 MgZn 2 type Laves phase crystal structure are expected to have outstanding wear and corrosion resistance due to their inherent high hardness and sluggish temperature dependence and strong atomic bonds. In this paper, Mo 2Ni 3Si/NiSi intermetallic coating was fabricated on substrate of an austenitic stainless steel AISI321 by laser cladding using Ni-Mo-Si elemental alloy powders. Microstructure of the coating was characterized by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray analysis (EDS). Wear resistance of the coating is evaluated under corrosive sliding wear test condition. Influence of corrosion solutions on the wear resistance of the coating was studied and the wear mechanism was discussed based on observations of worn surface morphology. Results showed that the laser clad Mo 2Ni 3Si/NiSi composite coating have a fine microstructure of Mo 2Ni 3Si primary dendrites and the interdendritic Mo 2Ni 3Si/NiSi eutectics. The coating has excellent corrosive wear resistance compared with austenitic stainless steel AISI321 under acid, alkaline and saline corrosive environments.

  13. Characterization and corrosion behaviour of CoNi alloys obtained by mechanical alloying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olvera, S.; Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Química-Física Aplicada, 28049 Madrid; Sánchez-Marcos, J.

    2014-07-01

    CoNi alloys including Co{sub 30}Ni{sub 70}, Co{sub 50}Ni{sub 50} and Co{sub 70}Ni{sub 30} were prepared via mechanical alloying using Co and Ni powders. The crystallinity and short-range order were studied using X-ray diffraction and X-ray absorption spectroscopy. The results show that the milling process increases the number of vacancies, especially around the Co atoms, while the milling time decreases the crystalline size and enhances the crystallinity. X-ray photoelectron spectroscopy was used to characterise the chemical composition of the samples surface. The magnetic properties were analysed using zero-field cooling, field cooling and a magnetic hysteresis loops. The magnetic saturation moment ismore » approximately 1.05 μ{sub B}/atom; this value decreases with the mechanical alloying time, and it is proportional to the cobalt concentration. The polarization and impedance curves in different media (NaCl, H{sub 2}SO{sub 4} and NaOH) showed similar corrosion resistance values. The corrosion resistance increased in the order NaCl, H{sub 2}SO{sub 4} and NaOH. A good passivation layer was formed in NaOH due to the cobalt and nickel oxides on the particle surfaces. - Highlights: • Ni{sub x}Co{sub 100-x} alloys were synthesized by mechanical alloying • Milling time decrease size and enhances crystallinity. • Oxygen is not present in a significant percentage in bulk but is detected on the surface. • Magnetic saturation moment is 1.05 mB/atom and decrease with mechanical allowing time • Corrosion resistance is higher in NaOH than in NaCl or HCl solutions.« less

  14. The effect of heat treatment on the performance of the Ni/(Zr-Sm oxide) catalysts for carbon dioxide methanation

    NASA Astrophysics Data System (ADS)

    Takano, Hiroyuki; Izumiya, Koichi; Kumagai, Naokazu; Hashimoto, Koji

    2011-07-01

    The active catalysts for methane formation from the gas mixture of CO 2 + 4H 2 with almost 100% methane selectivity were prepared by reduction of the oxide mixture of NiO and ZrO 2 prepared by calcination of aqueous ZrO 2 sol with Sm(NO 3) 3 and Ni(NO 3) 2. The 50 at%Ni-50 at%(Zr-Sm oxide) catalyst consisting of 50 at%Ni-50 at%(Zr + Sm) with Zr/Sm = 5 calcined at 650 or 800 °C showed the highest activity for methanation. The active catalysts were Ni supported on tetragonal ZrO 2, and the activity for methanation increased by an increase in inclusion of Sm 3+ ions substituting Zr 4+ ions in the tetragonal ZrO 2 lattice as a result of an increase in calcination temperature. However, the increase in calcination temperature decreased BET surface area, metal dispersion and hydrogen uptake due to grain growth. Thus, the optimum calcination temperature existed.

  15. Low temperature structural transformation in T[Ni(CN){sub 4}].xpyz with x=1,2; T=Mn,Co,Ni,Zn,Cd; pyz=pyrazine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez-Hernandez, J.; Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana; Lemus-Santana, A.A.

    2010-01-15

    The materials under study are pillared solids T[Ni(CN){sub 4}].xpyz with one and two (x=1,2) pyrazine (pyz) molecules and where T=Mn, Co, Ni, Zn, Cd. Stimulated by their structural features and potential role as prototype of porous solids for hydrogen storage, the structural stability under cryogenic conditions for this series of pillared solids was studied. At low temperature, in the 100-200 K range, the occurrence of a reversible structural transformation was found. For T=Mn, Co, Zn, Cd, with x=2, the structural transformation was observed to occur around 185 K, and the low temperature phase crystallizes with a monoclinic unit cell (spacemore » group Pc). This structure change results from certain charge redistribution on cooling within the involved ligands. For T=Ni with x=1, both the low and high temperature phases crystallize with unit cells of tetragonal symmetry, within the same space group but with a different unit cell volume. In this case the structure change is observed around 120 K. Above that temperature the rotational states for the pyrazine molecule are thermally excited and all the pyrazine molecules in the structure become equivalent. Under this condition the material structure is described using a smaller structural unit. The structural study using X-ray powder diffraction data was complemented with calorimetric and Raman spectroscopy measurements. For the low temperature phases the crystal structures were solved from Patterson methods and then refined using the Rietveld method. - Graphical abstract: Low temperature ordered structure for pyrazine in T[Ni(CN){sub 4}].pyz.« less

  16. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance

    NASA Astrophysics Data System (ADS)

    Hu, Zijun; Chen, Da; Yang, Pan; Yang, Lijun; Qin, Laishun; Huang, Yuexiang; Zhao, Xiaochong

    2018-05-01

    In this work, high-performance inverted planar perovskite solar cells (PSCs) using sol-gel processed Y-doped NiO thin films as hole transport layer (HTL) were demonstrated. Y-doped NiO thin films containing different Y doping concentrations were successfully prepared through a simple sol-gel process. The Y doping could significantly improve the electrical conductivity of NiO thin film, and the photovoltaic performance of Y-doped NiO HTL-based PSC devices outperformed that of the pristine NiO HTL-based device. Notably, the PSC using a 5%Y-NiO HTL exhibited the champion performance with an open-circuit voltage (Voc) of 1.00 V, a short circuit current density (Jsc) of 23.82 mA cm-2, a fill factor (FF) of 68% and a power conversion efficiency (PCE) of 16.31%, resulting in a 27.62% enhancement in PCE in comparison with the NiO device. The enhanced performance of the Y-doped NiO device could be attributed to the improved hole mobility, the high quality compact active layer morphology, the more efficient charge extraction from perovskite absorber as well as the lower recombination probability of charge carriers. Thus, this work provides a simple and effective approach to improve the electrical conductivity of p-type NiO thin films for use as a promising HTL in high performance PSCs.

  17. Nickel distribution and isotopic fractionation in a Brazilian lateritic regolith: Coupling Ni isotopes and Ni K-edge XANES

    NASA Astrophysics Data System (ADS)

    Ratié, G.; Garnier, J.; Calmels, D.; Vantelon, D.; Guimarães, E.; Monvoisin, G.; Nouet, J.; Ponzevera, E.; Quantin, C.

    2018-06-01

    Ultramafic (UM) rocks are known to be nickel (Ni) rich and to weather quickly, which makes them a good candidate to look at the Ni isotope systematics during weathering processes at the Earth's surface. The present study aims at identifying the Ni solid speciation and discussing the weathering processes that produce Ni isotope fractionation in two deep laterite profiles under tropical conditions (Barro Alto, Goiás State, Brazil). While phyllosilicates and to a lower extent goethite are the main Ni-bearing phases in the saprolitic part of the profile, iron (Fe) oxides dominate the Ni budget in the lateritic unit. Nickel isotopic composition (δ60Ni values) has been measured in each unit of the regolith, i.e., rock, saprock, saprolite and laterite (n = 52). δ60Ni varies widely within the two laterite profiles, from -0.10 ± 0.05‰ to 1.43 ± 0.05‰, showing that significant Ni isotope fractionation occurs during the weathering of UM rocks. Overall, our results show that during weathering, the solid phase is depleted in heavy Ni isotopes due to the preferential sorption and incorporation of light Ni isotopes into Fe oxides; the same mechanisms likely apply to the incorporation of Ni into phyllosilicates (type 2:1). However, an isotopically heavy Ni pool is observed in the solid phase at the bottom of the saprolitic unit. This feature can be explained by two hypotheses that are not mutually exclusive: (i) a depletion in light Ni isotopes during the first stage of weathering due to the preferential dissolution of light Ni-containing minerals, and (ii) the sorption or incorporation of isotopically heavy Ni carried by percolating waters (groundwater samples have δ60Ni of 2.20 and 2.27‰), that were enriched in heavy Ni isotopes due to successive weathering processes in the overlying soil and laterite units.

  18. Role of Ni-tolerant Bacillus spp. and Althea rosea L. in the phytoremediation of Ni-contaminated soils.

    PubMed

    Khan, Waheed Ullah; Yasin, Nasim Ahmad; Ahmad, Sajid Rashid; Ali, Aamir; Ahmed, Shakil; Ahmad, Aqeel

    2017-05-04

    In our current study, four nickel-tolerant (Ni-tolerant) bacterial species viz, Bacillus thuringiensis 002, Bacillus fortis 162, Bacillus subtilis 174, and Bacillus farraginis 354, were screened using Ni-contaminated media. The screened microbes exhibited positive results for synthesis of indole acetic acid (IAA), siderophore production, and phosphate solubilization. The effects of these screened microbes on Ni mobility in the soil, root elongation, plant biomass, and Ni uptake in Althea rosea plants grown in Ni-contaminated soil (200 mg Ni kg -1 ) were evaluated. Significantly higher value for water-extractable Ni (38 mg kg -1 ) was observed in case of Ni-amended soils inoculated with B. subtilis 174. Similarly, B. thuringiensis 002, B. fortis 162, and B. subtilis 174 significantly enhanced growth and Ni uptake in A. rosea. The Ni uptake in the shoots and roots of B. subtilis 174-inoculated plants enhanced up to 1.7 and 1.6-fold, respectively, as compared to that in the un-inoculated control. Bacterial inoculation also significantly improved the root and shoot biomass of treated plants. The current study presents a novel approach for bacteria-assisted phytoremediation of Ni-contaminated areas.

  19. Sputtering Yields of Si and Ni from the Ni1-xSix System Studied by Rutherford Backscattering Spectrometry

    NASA Astrophysics Data System (ADS)

    Kim, Su Chol; Yamaguchi, Satoru; Kataoka, Yoshihide; Iwami, Motohiro; Hiraki, Akio; Satou, Mamoru; Fujimoto, Fuminori

    1982-01-01

    Sputtering yields of Si and Ni from thin layer films of Ni-Si compounds (Ni1-xSix), including the pure materials (Ni and Si), caused by 5 keV Ar+ ion bombardment were investigated using backscattering spectrometry. The sputtering yield for Si from Ni1-xSix increased with increasing Si concentration. However, there is an abrupt decrease in the yield for Si concentrations above NiSi2 to pure Si. This is in clear contrast to the sputtering yield of Ni from Ni1-xSix which increased with increasing Ni concentration monotonously. These results are discussed on the basis of both the difference in the atomic density and the electronic state of the alloy.

  20. An experimental study of Fe-Ni exchange between sulfide melt and olivine at upper mantle conditions: implications for mantle sulfide compositions and phase equilibria

    NASA Astrophysics Data System (ADS)

    Zhang, Zhou; von der Handt, Anette; Hirschmann, Marc M.

    2018-03-01

    The behavior of nickel in the Earth's mantle is controlled by sulfide melt-olivine reaction. Prior to this study, experiments were carried out at low pressures with narrow range of Ni/Fe in sulfide melt. As the mantle becomes more reduced with depth, experiments at comparable conditions provide an assessment of the effect of pressure at low-oxygen fugacity conditions. In this study, we constrain the Fe-Ni composition of molten sulfide in the Earth's upper mantle via sulfide melt-olivine reaction experiments at 2 GPa, 1200 and 1400 °C, with sulfide melt X_{{{Ni}}}^{{{Sulfide}}}={{Ni}}/{{Ni+{Fe}}} (atomic ratio) ranging from 0 to 0.94. To verify the approach to equilibrium and to explore the effect of {f_{{{O}2}}} on Fe-Ni exchange between phases, four different suites of experiments were conducted, varying in their experimental geometry and initial composition. Effects of Ni secondary fluorescence on olivine analyses were corrected using the PENELOPE algorithm (Baró et al., Nucl Instrum Methods Phys Res B 100:31-46, 1995), "zero time" experiments, and measurements before and after dissolution of surrounding sulfides. Oxygen fugacities in the experiments, estimated from the measured O contents of sulfide melts and from the compositions of coexisting olivines, were 3.0 ± 1.0 log units more reduced than the fayalite-magnetite-quartz (FMQ) buffer (suite 1, 2 and 3), and FMQ - 1 or more oxidized (suite 4). For the reduced (suites 1-3) experiments, Fe-Ni distribution coefficients K_{{D}}{}={(X_{{{Ni}}}^{{{sulfide}}}/X_{{{Fe}}}^{{{sulfide}}})}/{(X_{{{Ni}}^{{{olivine}}}/X_{{{Fe}}}^{{{olivine}}})}} are small, averaging 10.0 ± 5.7, with little variation as a function of total Ni content. More oxidized experiments (suite 4) give larger values of K D (21.1-25.2). Compared to previous determinations at 100 kPa, values of K D from this study are chiefly lower, in large part owing to the more reduced conditions of the experiments. The observed difference does not seem

  1. Hydroconversion of methyl laurate on bifunctional Ni2P/AlMCM-41 catalyst prepared via in situ phosphorization using triphenylphosphine

    NASA Astrophysics Data System (ADS)

    Zhao, Sha; Zhang, Zhena; Zhu, Kongying; Chen, Jixiang

    2017-05-01

    A series of Ni2P/AlMCM-41-x bifunctional catalysts with different Si/Al ratios (x) were synthesized by in situ phosphorization of Ni/AlMCM-41-x with triphenylphosphine (nominal Ni/P ratio of 0.75) at 300 °C on a fixed-bed reactor. For comparison, NiP/AlMCM-41-5-TPR was also prepared by the TPR method from the supported nickel phosphate with the Ni/P ratio of 1.0, during which metallic Ni rather than Ni2P formed. TEM images show that Ni and Ni2P particles uniformly distributed in Ni2P/AlMCM-41-x and NiP/AlMCM-41-5-TPR. The Ni2P/AlMCM-41-x acidity increased with decreasing the Si/Al ratio. In the hydroconversion of methyl laurate, the conversions were close to 100% on all catalysts at 360 °C, 3.0 MPa, methyl laurate WHSV of 2 h-1 and H2/methyl laurate ratio of 25. As to Ni2P/AlMCM-41-x, with decreasing the Si/Al ratio, the total selectivity to C11 and C12 hydrocarbons decreased, while the total selectivity to isoundecane and isododecane (Si-C11+i-C12) firstly increased and then decreased. Ni2P/AlMCM-41-5 gave the largest Si-C11+i-C12 of 43.2%. While NiP/AlMCM-41-5-TPR gave higher Si-C11+i-C12 than Ni2P/AlMCM-41-5, it was more active for the undesired Csbnd C bond cleavage and methanation. We propose that the in-situ phosphorization adopted here is a promising approach to preparing Ni2P-based bifunctional catalysts.

  2. Influence of Ni on Martensitic Phase Transformations in NiTi Shape Memory Alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frenzel, J.; George, Easo P; Dlouhy, A.

    High-precision data on phase transformation temperatures in NiTi, including numerical expressions for the effect of Ni on M{sub S}, M{sub F}, A{sub S}, A{sub F} and T{sub 0}, are obtained, and the reasons for the large experimental scatter observed in previous studies are discussed. Clear experimental evidence is provided confirming the predictions of Tang et al. 1999 regarding deviations from a linear relation between the thermodynamic equilibrium temperature and Ni concentration. In addition to affecting the phase transition temperatures, increasing Ni contents are found to decrease the width of thermal hysteresis and the heat of transformation. These findings are rationalizedmore » on the basis of the crystallographic data of Prokoshkin et al. 2004 and the theory of Ball and James. The results show that it is important to document carefully the details of the arc-melting procedure used to make shape memory alloys and that, if the effects of processing are properly accounted for, precise values for the Ni concentration of the NiTi matrix can be obtained.« less

  3. Predicting diffusion paths and interface motion in gamma/gamma + beta, Ni-Cr-Al diffusion couples

    NASA Technical Reports Server (NTRS)

    Nesbitt, J. A.; Heckel, R. W.

    1987-01-01

    A simplified model has been developed to predict Beta recession and diffusion paths in ternary gamma/gamma + beta diffusion couples (gamma:fcc, beta: NiAl structure). The model was tested by predicting beta recession and diffusion paths for four gamma/gamma + beta, Ni-Cr-Al couples annealed for 100 hours at 1200 C. The model predicted beta recession within 20 percent of that measured for each of the couples. The model also predicted shifts in the concentration of the gamma phase at the gamma/gamma + beta interface within 2 at. pct Al and 6 at. pct Cr of that measured in each of the couples. A qualitative explanation based on simple kinetic and mass balance arguments has been given which demonstrates the necessity for diffusion in the two-phase region of certain gamma/gamma + beta, Ni-Cr-Al couples.

  4. Phase purity of NiCo2O4, a catalyst candidate for electrolysis of water

    NASA Technical Reports Server (NTRS)

    Singer, J.; Fielder, W. L.; Garlick, R. G.; Negas, T.

    1987-01-01

    NiCo2O4 is shown to be difficult to obtain as a pure phase, and may never have been so obtained. High resolution x-ray diffractometry is required for its precise characterization. Film XRD is not likely to show the asymmetry in the spinel diffraction lines, caused by poorly crystallized NiO, as seen in diffractometer traces. The Co3O4 which is expected to accompany NiO as an impurity in NiCo2O4 syntheses has the same diffraction pattern as the binary oxide. Firings of the co-precipitated hydroxides at 300, 350, and 400 C, including one in pure O2, failed to produce single phase cobaltate. Scanning electron microscopy showed all the sintered products to range over several orders of magnitude in agglomerate/particle size. Surface areas by BET were all in the range 40 to 110 m sq/g, equivalent to particles of 200 to 100 Angstrom diameter. The spinel diffraction line breadths were compatible with those approximate dimensions.

  5. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors.

    PubMed

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-08-21

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g(-1) at the current density of 3.0 A g(-1) and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g(-1) after 5000 charge-discharge cycles.

  6. Shape-controlled synthesis of NiCo2S4 and their charge storage characteristics in supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Yufei; Ma, Mingze; Yang, Jun; Sun, Chencheng; Su, Haiquan; Huang, Wei; Dong, Xiaochen

    2014-07-01

    In this work, a facile hydrothermal approach for the shape-controlled synthesis of NiCo2S4 architectures is reported. Four different morphologies, urchin-, tube-, flower-, and cubic-like NiCo2S4 microstructures, have been successfully synthesized by employing various solvents. The obtained precursors and products have been characterized by X-ray diffraction, field-emission scanning electron microscopy and transmission electron microscopy. It is revealed that the supersaturation of nucleation and crystal growth is determined by the solvent polarity and solubility, which can precisely control the morphology of NiCo2S4 microstructures. The detailed electrochemical performances of the various NiCo2S4 microstructures are investigated by cyclic voltammetry and galvanostatic charge-discharge measurements. The results indicate that the tube-like NiCo2S4 exhibits promising capacitive properties with high capacitance and excellent retention. Its specific capacitance can reach 1048 F g-1 at the current density of 3.0 A g-1 and 75.9% of its initial capacitance is maintained at the current density of 10.0 A g-1 after 5000 charge-discharge cycles.

  7. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite

    PubMed Central

    Dasan, Y. K.; Guan, B. H.; Zahari, M. H.; Chuan, L. K.

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21–25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles. PMID:28081257

  8. Influence of La3+ Substitution on Structure, Morphology and Magnetic Properties of Nanocrystalline Ni-Zn Ferrite.

    PubMed

    Dasan, Y K; Guan, B H; Zahari, M H; Chuan, L K

    2017-01-01

    Lanthanum substituted Ni-Zn ferrite nanoparticles (Ni0.5Zn0.5LaxFe1-xO4; 0.00 ≤x≤ 1.00) synthesized by sol-gel method were presented. X-ray diffraction patterns reveal the typical single phase spinel cubic ferrite structure, with the traces of secondary phase for lanthanum substituted nanocrystals. In addition, the structural analysis also demonstrates that the average crystallite size varied in the range of 21-25 nm. FTIR spectra present the two prominent absorption bands in the range of 400 to 600 cm-1 which are the fingerprint region of all ferrites. Surface morphology of both substituted and unsubstituted Ni-Zn ferrite nanoparticle samples was studied using FESEM technique and it indicates a significant increase in the size of spherical shaped particles with La3+ substitution. Magnetic properties of all samples were analyzed using vibrating sample magnetometer (VSM). The results revealed that saturation magnetization (Ms) and coercivity (Hc) of La3+ substituted samples has decreased as compared to the Ni-Zn ferrite samples. Hence, the observed results affirm that the lanthanum ion substitution has greatly influenced the structural, morphology and magnetic properties of Ni-Zn ferrite nanoparticles.

  9. UV Light-Assisted Synthesis of Highly Efficient Pd-Based Catalyst over NiO for Hydrogenation of o-Chloronitrobenzene

    PubMed Central

    Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang

    2018-01-01

    Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o-chloronitrobenzene (o-CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o-CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o-CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο-CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H2 pressure, 100% conversion of o-CNB, and 81.1% o-CAN selectivity were obtained, even at high molar ratio (8000:1) of o-CNB to Pd. PMID:29662004

  10. Structural and crystal orientation analysis of Al-Si coating on Ni-based superalloy by means of EBSD technique

    NASA Astrophysics Data System (ADS)

    Muslimin, A. N.; Sugiarti, E.; Aritonang, T.; Purawiardi, R. I.; Desiati, R. D.

    2018-03-01

    Ni-based superalloy is widely used for high performance components in power generation turbine due to its excellent mechanical properties. However, Ni-based superalloy has low oxidation resistantance. Therefore, surface coating is required to improve oxidation resistance at high temperatures. Al-Si as a coting material was successfully co-deposited on Ni-based substrate by pack cementation method at 900 °C for about 4 hours. The oxidation test was carried out at high temperature of 1000 °C for 100 hours. Micro structural characterization and analysis on crystal orientation were perfomed by using Field Emission Scanning Electron Microscope (FE-SEM) and Electron Back Scatter Diffraction (EBSD) technique, respectively. The results showed that the coating layer with a homogenous layer and had a thickness of 53 μm consisting of β-NiAl with cubic structure and Ni2Al3 with hexagonal structure. TGO layer was developed after oxidation and had a thickness of about 5 μm consisting of α-Al2O3 and spinel NiCr2O4. The phase composition map and crystal orientation acquired by EBSD technique was also discussed both in TGO and coating layers.

  11. UV Light-Assisted Synthesis of Highly Efficient Pd-Based Catalyst over NiO for Hydrogenation of o-Chloronitrobenzene.

    PubMed

    Jiang, Weidong; Xu, Bin; Fan, Guangyin; Zhang, Kaiming; Xiang, Zhen; Liu, Xiaoqiang

    2018-04-14

    Supported Pd-based catalyst over active nickel oxide (NiO) was repared using the impregnation method companying with UV-light irradiation. Moreover, the catalytic performance of the obtained Pd-based catalysts was evaluated towards the hydrogenation of o -chloronitrobenzene ( o -CNB). Observations indicate that the as-prepared UV-irradiated Pd/NiO catalyst with a mole fraction 0.2% (0.2%Pd/NiO) has higher activity and selectivity in the o -CNB hydrogenation. Especially, UV-light irradiation played a positive role in the improvement of catalytic activity of 0.2%Pd/NiO catalyst, exhibiting an excess 11-fold activity superiority in contrast with non-UV-irradiated 0.2%Pd/NiO catalyst. In addition, it was investigated that effects of varied factors (i.e., reaction time, temperature, o -CNB/Pd ratio, Pd loading, hydrogen pressure) on the selective hydrogenation of ο -CNB catalyzed by UV-irradiated 0.2%Pd/NiO catalyst. Under the reaction conditions of 60 °C, 0.5 h, 1 MPa H₂ pressure, 100% conversion of o -CNB, and 81.1% o -CAN selectivity were obtained, even at high molar ratio (8000:1) of o -CNB to Pd.

  12. Microstructure and wear properties of laser clad Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings

    NASA Astrophysics Data System (ADS)

    Wang, H. M.; Tang, H. B.; Cai, L. X.; Cao, F.; Zhang, L. Y.; Yu, R. L.

    2005-05-01

    Wear resistant Ti2Ni3Si/Ni3Ti multiphase intermetallic coatings with a microstructure consisting of Ti2Ni3Si primary dendrites and interdendritic Ti2Ni3Si/Ni3Ti eutectic were fabricated on a substrate of 0.2% C plain carbon steel by a laser cladding process with Ti-Ni-Si alloy powders. The Ti2Ni3Si/Ni3Ti coatings have excellent wear resistance and a low coefficient of friction under metallic dry sliding wear test conditions with hardened 0.45% C carbon steel as the silide-mating counterpart. The excellent tribological properties of the coating are attributed to the high hardness, strong covalent-dominant atomic bonds of the ternary metal silicide Ti2Ni3Si and to the high yield strength and strong yield anomaly of the intermetallic compound Ni3Ti.

  13. Verifying the Rechargeability of Li-CO2 Batteries on Working Cathodes of Ni Nanoparticles Highly Dispersed on N-Doped Graphene.

    PubMed

    Zhang, Zhang; Wang, Xin-Gai; Zhang, Xu; Xie, Zhaojun; Chen, Ya-Nan; Ma, Lipo; Peng, Zhangquan; Zhou, Zhen

    2018-02-01

    Li-CO 2 batteries could skillfully combine the reduction of "greenhouse effect" with energy storage systems. However, Li-CO 2 batteries still suffer from unsatisfactory electrochemical performances and their rechargeability is challenged. Here, it is reported that a composite of Ni nanoparticles highly dispersed on N-doped graphene (Ni-NG) with 3D porous structure, exhibits a superior discharge capacity of 17 625 mA h g -1 , as the air cathode for Li-CO 2 batteries. The batteries with these highly efficient cathodes could sustain 100 cycles at a cutoff capacity of 1000 mA h g -1 with low overpotentials at the current density of 100 mA g -1 . Particularly, the Ni-NG cathodes allow to observe the appearance/disappearance of agglomerated Li 2 CO 3 particles and carbon thin films directly upon discharge/charge processes. In addition, the recycle of CO 2 is detected through in situ differential electrochemical mass spectrometry. This is a critical step to verify the electrochemical rechargeability of Li-CO 2 batteries. Also, first-principles computations further prove that Ni nanoparticles are active sites for the reaction of Li and CO 2 , which could guide to design more advantageous catalysts for rechargeable Li-CO 2 batteries.

  14. Phase Equilibria of the Sn-Ni-Si Ternary System and Interfacial Reactions in Sn-(Cu)/Ni-Si Couples

    NASA Astrophysics Data System (ADS)

    Fang, Gu; Chen, Chih-chi

    2015-07-01

    Interfacial reactions in Sn/Ni-4.5 wt.%Si and Sn-Cu/Ni-4.5 wt.%Si couples at 250°C, and Sn-Ni-Si ternary phase equilibria at 250°C were investigated in this study. Ni-Si alloys, which are nonmagnetic, can be regarded as a diffusion barrier layer material in flip chip packaging. Solder/Ni-4.5 wt.%Si interfacial reactions are crucial to the reliability of soldered joints. Phase equilibria information is essential for development of solder/Ni-Si materials. No ternary compound is present in the Sn-Ni-Si ternary system at 250°C. Extended solubility of Si in the phases Ni3Sn2 and Ni3Sn is 3.8 and 6.1 at.%, respectively. As more Si dissolves in these phases their lattice constants decrease. No noticeable ternary solubility is observed for the other intermetallics. Interfacial reactions in solder/Ni-4.5 wt.%Si are similar to those for solder/Ni. Si does not alter the reaction phases. No Si solubility in the reaction phases was detected, although rates of growth of the reaction phases were reduced. Because the alloy Ni-4.5 wt.%Si reacts more slowly with solders than pure Ni, the Ni-4.5 wt.%Si alloy could be a potential new diffusion barrier layer material for flip chip packaging.

  15. Phase Equilibria, Crystal Structure and Hydriding/Dehydriding Mechanism of Nd4Mg80Ni8 Compound

    PubMed Central

    Luo, Qun; Gu, Qin-Fen; Zhang, Jie-Yu; Chen, Shuang-Lin; Chou, Kuo-Chih; Li, Qian

    2015-01-01

    In order to find out the optimal composition of novel Nd-Mg-Ni alloys for hydrogen storage, the isothermal section of Nd-Mg-Ni system at 400 °C is established by examining the equilibrated alloys. A new ternary compound Nd4Mg80Ni8 is discovered in the Mg-rich corner. It has the crystal structure of space group I41/amd with lattice parameters of a = b = 11.2743(1) Å and c = 15.9170(2) Å, characterized by the synchrotron powder X-ray diffraction (SR-PXRD). High-resolution transmission electron microscopy (HR-TEM) is used to investigate the microstructure of Nd4Mg80Ni8 and its hydrogen-induced microstructure evolution. The hydrogenation leads to Nd4Mg80Ni8 decomposing into NdH2.61-MgH2-Mg2NiH0.3 nanocomposites, where the high density phase boundaries provide a great deal of hydrogen atoms diffusion channels and nucleation sites of hydrides, which greatly enhances the hydriding/dehydriding (H/D) properties. The Nd4Mg80Ni8 exhibits a good cycle ability. The kinetic mechanisms of H/D reactions are studied by Real Physical Picture (RPP) model. The rate controlling steps are diffusion for hydriding reaction in the temperature range of 100 ~ 350 °C and surface penetration for dehydriding reaction at 291 ~ 347 °C. In-situ SR-PXRD results reveal the phase transformations of Mg to MgH2 and Mg2Ni to Mg2NiH4 as functions of hydrogen pressure and hydriding time. PMID:26471964

  16. Atomic-scale dynamics of edge dislocations in Ni and concentrated solid solution NiFe alloys

    DOE PAGES

    Zhao, Shijun; Osetsky, Yuri N.; Zhang, Yanwen; ...

    2017-01-19

    Single-phase concentrated solid solution alloys (CSAs), including high entropy alloys, exhibit excellent mechanical properties compared to conventional dilute alloys. However, the origin of this observation is not clear yet because the dislocation properties in CSAs are poorly understood. In this work, the mobility of a <110>{111} edge dislocation in pure Ni and equiatomic solid solution Ni 0.5Fe 0.5 (NiFe) is studied using molecular dynamics simulations with different empirical potentials. The threshold stress to initiate dislocation movement in NiFe is found to be much higher compared to pure Ni. The drag coefficient of the dislocation motion calculated from the linear regimemore » of dislocation velocities versus applied stress suggests that the movement of dislocations in NiFe is strongly damped compared to that in Ni. The present results indicate that the mobility of edge dislocations in fcc CSAs are controlled by the fluctuations in local stacking fault energy caused by the local variation of alloy composition.« less

  17. Carbon-embedded Ni nanocatalysts derived from MOFs by a sacrificial template method for efficient hydrogenation of furfural to tetrahydrofurfuryl alcohol.

    PubMed

    Su, Yanping; Chen, Chun; Zhu, Xiaoguang; Zhang, Yong; Gong, Wanbing; Zhang, Haimin; Zhao, Huijun; Wang, Guozhong

    2017-05-16

    We report a fast and simple method for the synthesis of Ni-based metal-organic-frameworks (Ni-MOFs). Due to the existence of nickel ions and an organic ligand, the MOFs are employed as a sacrificial template for the facile preparation of carbon-embedded Ni (Ni/C) catalysts by a direct thermal decomposition method. The obtained Ni/C catalysts exhibit excellent catalytic activity for selectively transforming furfural (FAL) to tetrahydrofurfuryl alcohol (THFOL) due to the Ni nanoparticles (NPs) embedded uniformly in the ligand-derived carbon. The exemplified results illustrate that the catalytic performance of the Ni/C catalyst is greatly affected by the calcination conditions (temperature and time), composition of the Ni-MOF precursor and the catalysis conditions. The conversion of FAL and selectivity of THFOL both reached 100% under the conditions of 120 °C, 1 MPa H 2 pressure and 120 min of hydrogenation over the Ni/C-500 catalyst, derived from the pyrolysis of Ni-MOFs (Ni : BTC mole ratio of 1.0) at 500 °C for 120 min, which exhibits an average nanoparticle size of ∼14 nm and uniform dispersion, and the highest BET surface area (∼92 m 2 g -1 ) among all investigated Ni/C catalysts. This facilely prepared heterogeneous catalyst would be very promising for the replacement of noble metal catalysts for the efficient catalytic conversion of biomass-derived feedstocks into value-added chemicals.

  18. Bibliography of Soviet Laser Developments, Number 55. September-October 1981.

    DTIC Science & Technology

    1983-01-01

    Boldeskul , I.Ye., and A.Ye. Boldeskul (0). Fluorescence and resonant R-amanspctra1 probes in studies on the dynamics of biological and micellar...AKAYEV A 45 BOLDESKUL I YE 72 AKHMANOV S A 87 PAPADZHAN YE 1 79 BOLGAROV L N 11 AKHMEDZHANOV I M 24 BABARSKOV YE V 84 BOL’SHOV L A 84 AKHSAKHALYAN A D

  19. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  20. Hybrid Energy Storage of Ni(OH)2-coated N-doped Graphene Aerogel//N-doped Graphene Aerogel for the Replacement of NiCd and NiMH Batteries.

    PubMed

    Sirisinudomkit, Pichamon; Iamprasertkun, Pawin; Krittayavathananon, Atiweena; Pettong, Tanut; Dittanet, Peerapan; Sawangphruk, Montree

    2017-04-25

    Although Nickel-Cadmium (NiCd) and Nickel-metal hydride (NiMH) batteries have been widely used, their drawbacks including toxic Cd and expensive La alloy at the negative electrodes, low energy density (40-60 Wh/kg for NiCd and 140-300 Wh/L for NiMH), low power density (150 W/kg for NiCd and 1000 W/kg for NiMH), and low working potential (1.2 V) limit their applications. In this work, Cd and La alloy were replaced with N-doped reduced graphene oxide aerogel (N-rGO ae ) providing a hybrid energy storage (HES) having the battery and supercapacitor effects. The HES of Ni(OH) 2 -coated N-rGO ae //N-rGO ae provides 1.5 V, a specific energy of 146 Wh/kg, a maximum specific power of 7705 W/kg, and high capacity retention over 84.6% after 5000 cycles. The mass change at the positive electrode during charging/discharging is 8.5 µg cm -2 owing to the insertion/desertion of solvated OH - into the α-Ni(OH) 2 -coated N-rGO ae . At the negative electrode, the mass change of the solvated K + , physically adsorbed/desorbed to the N-rGO ae , is 7.5 μg cm -2 . In situ X-ray absorption spectroscopy (XAS) shows highly reversible redox reaction of α-Ni(OH) 2 . The as-fabricated device without using toxic Cd and expensive La alloy has a potential as a candidate of NiCd and NiMH.

  1. Atomistic modeling of crystal-to-amorphous transition and associated kinetics in the Ni-Nb system by molecular dynamics simulations.

    PubMed

    Dai, X D; Li, J H; Liu, B X

    2005-03-17

    With the aid of ab initio calculations, an n-body potential of the Ni-Nb system is constructed under the Finnis-Sinclair formalism and the constructed potential is capable of not only reproducing some static physical properties but also revealing the atomistic mechanism of crystal-to-amorphous transition and associated kinetics. With application of the constructed potential, molecular dynamics simulations using the solid solution models reveal that the physical origin of crystal-to-amorphous transition is the crystalline lattice collapsing while the solute atoms are exceeding the critical solid solubilities, which are determined to be 19 atom % Ni and 13 atom % Nb for the Nb- and Ni-based solid solutions, respectively. It follows that an intrinsic glass-forming ability of the Ni-Nb system is within 19-87 atom % Ni, which matches well with that observed in ion beam mixing/solid-state reaction experiments. Simulations using the Nb/Ni/Nb (Ni/Nb/Ni) sandwich models indicate that the amorphous layer at the interfaces grows in a layer-by-layer mode and that, upon dissolving solute atoms, the Ni lattice approaches and exceeds its critical solid solubility faster than the Nb lattice, revealing an asymmetric behavior in growth kinetics. Moreover, an energy diagram is obtained by computing the energetic sequence of the Ni(x)Nb(100)(-)(x) alloy in fcc, bcc, and amorphous structures, respectively, over the entire composition range, and the diagram could serve as a guide for predicting the metastable alloy formation in the Ni-Nb system.

  2. Phonon Dispersion in Amorphous Ni-Alloys

    NASA Astrophysics Data System (ADS)

    Vora, A. M.

    2007-06-01

    The well-known model potential is used to investigate the longitudinal and transverse phonon dispersion curves for six Ni-based binary amorphous alloys, viz. Ni31Dy69, Ni33Y67, Ni36Zr64, Ni50Zr50, Ni60 Nb40, and Ni81B19. The thermodynamic and elastic properties are also computed from the elastic limits of the phonon dispersion curves. The theoretical approach given by Hubbard-Beeby is used in the present study to compute the phonon dispersion curves. Five local field correction functions proposed by Hartree, Taylor, Ichimaru-Utsumi, Farid et al. and Sarkar et al. are employed to see the effect of exchange and correlation in the aforesaid properties.

  3. STUDIES ON ADSORPTION OF 2-CHLORO BIPHENYL ON SEDIMENTS AND SEDIMENT COMPONENTS

    EPA Science Inventory

    Polychlorinated biphenyls, or PCBs, are a family of 209 structurally related chemical compounds (congeners), consisting of two benzene rings and 1 to 10 chlorine atoms. They range from light, oily fluids to heavier, greasy or waxy substances. PCBs were discovered more than 100 ye...

  4. 2003 traffic crash facts annual report

    DOT National Transportation Integrated Search

    2003-01-01

    In 2003, the death rate on Nebraska roadways was 1.6 persons killed per : 100 million vehicle miles traveled. The death rate in Nebraska, from 1961 : to 2003 is represented in Figure 1 (Page 2). Even though the death rate : fluctuates from year to ye...

  5. 2001 traffic crash facts annual report

    DOT National Transportation Integrated Search

    2001-01-01

    In 2001, the death rate on Nebraska roadways was 1.6 persons killed per : 100 million vehicle miles traveled. The death rate in Nebraska, from 1961 to : 2001 is represented in Figure 1 (Page 2). Even though the death rate fluctuates : from year to ye...

  6. Structural and Magnetic Properties of Sputter-Deposited Polycrystalline Ni-Mn-Ga Ferromagnetic Shape-Memory Thin Films

    NASA Astrophysics Data System (ADS)

    Vinodh Kumar, S.; Seenithurai, S.; Manivel Raja, M.; Mahendran, M.

    2015-10-01

    Polycrystalline Ni-Mn-Ga ferromagnetic shape-memory thin films have been deposited on Si (100) substrates using a direct-current magnetron sputtering technique. The microstructure and the temperature dependence of magnetic properties of the films have been investigated by x-ray diffraction, scanning electron microscopy, and thermomagnetic measurements. As-deposited Ni50.2Mn30.6Ga19.2 film showed quasi-amorphous structure with paramagnetic nature at room temperature. When annealed at 873 K, the quasi-amorphous film attained crystallinity and possessed L21 cubic ordering with high magnetic transition temperature. Saturation magnetization and coercivity values for the annealed film were found to be 220 emu/cm3 and 70 Oe, respectively, indicating soft ferromagnetic character with low magnetocrystalline anisotropy. The magnetic transitions of the film deposited at 100 W were above room temperature, making this a potential candidate for use in microelectromechanical system devices.

  7. Long Term Performance Retention Test Using High Power COTS NiCd and NiMH Cells

    NASA Technical Reports Server (NTRS)

    Hall, Dan; Darcy, Eric; Strangways, Brad; Nelson, Tim

    2003-01-01

    This slide presentation reviews the tests and results for performance retention of high powered commercial off the shelf (COTS) NiCd, and NiMH cells. Electromechanical actuators for space flight requires short duration high power batteries. The concern is that NiCd battery designs demonstrate an unfavorable power degradation after long periods of inactivity. Cycling can recover some of the decay, but this reduces the readiness that these batteries must have. Two 5-cell SubC stick test batteries ere chosen using NiCd and NiMH were tested and then the differences for charge maintenance were compared.

  8. Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires

    PubMed Central

    Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di

    2016-01-01

    NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025

  9. Synthesis of nanocrystalline NiO/ZnO heterostructured composite powders by sol-gel auto combustion method and their characterizations

    NASA Astrophysics Data System (ADS)

    Tangcharoen, Thanit; Klysubun, Wantana; Kongmark, Chanapa

    2018-03-01

    Nanocrystalline NiO/ZnO heterostructured composite powders were prepared by the sol-gel auto combustion method, based on nickel and zinc nitrate precursors and using diethanolamine (DEA) as novel fuel. The composition of different NiO and ZnO ratios, ranging from 100/0, 95/5, 90/10, 80/20, 60/40, 50/50, 40/60, 20/80, 10/90, 5/95 to 0/100, were studied. The structural, chemical bonding, morphological, optical, and fluorescence properties including the local atomic structure of each calcined sample were systematically investigated by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), UV-visible diffuse reflectance spectroscopy (UV-DRS), photoluminescence (PL) spectroscopy, and synchrotron X-ray absorption spectroscopy (XAS), respectively. For the ZnO concentration below 20%, both XRD and Raman spectroscopy results revealed only the NiO phase. This conformed to the observation of Zn K-edge and Ni K-edge X-ray absorption near edge structure (XANES). The Zn ions found in the samples of low ZnO concentration exhibited six-fold coordination with oxygen atoms rather than the four-fold coordination found in the wurtzite (WZ) structure of ZnO. In contrast, the Ni ions which are found in the samples of low NiO concentration (≤10%) are coordinated both tetrahedrally and octahedrally by four or six oxygen atoms, respectively, rather than the six-fold coordination which is usually observed for Ni ions in the rock salt (RS) form of NiO. All analytical results obtained from experimental XANES spectra were verified by the theoretical calculation of absorption spectra using the FEFF9.7 code. The UV-DRS results showed that there was an increase in the reflectance efficiency for both infrared and visible light conditions as the content of ZnO increases; meanwhile, the values for the energy gap (Eg) of all composite samples were higher than that of pure NiO and ZnO. In addition, the PL spectra revealed major blue emission bands observed at 490

  10. NiO-Microflower Formed by Nanowire-weaving Nanosheets with Interconnected Ni-network Decoration as Supercapacitor Electrode

    PubMed Central

    Ci, Suqing; Wen, Zhenhai; Qian, Yuanyuan; Mao, Shun; Cui, Shumao; Chen, Junhong

    2015-01-01

    We propose a ‘weaving’ evolution mechanism, by systematically investigating the products obtained in controlled experiments, to demonstrate the formation of Ni-based ‘microflowers’ which consists of multiple characteristic dimensions, in which the three dimensional (3D) NiO ‘microflower’ is constructed by a two-dimensional (2D) nanosheet framework that is derived from weaving one-dimensional (1D) nanowires. We found such unique nanostructures are conducive for the generation of an electrically conductive Ni-network on the nanosheet surface after being exposed to a reducing atmosphere. Our study offers a promising strategy to address the intrinsic issue of poor electrical conductivity for NiO-based materials with significant enhancement of utilization of NiO active materials, leading to a remarkable improvement in the performance of the Ni-NiO microflower based supercapacitor. The optimized Ni-NiO microflower material showed a mass specific capacitance of 1,828 F g−1, and an energy density of 15.9 Wh kg−1 at a current density of 0.5 A g−1. This research not only contributes to understanding the formation mechanism of such ‘microflower’ structures but also offers a promising route to advance NiO based supercapacitor given their ease of synthesis, low cost, and long-term stability. PMID:26165386

  11. Black Hole on a Chip: Proposal for a Physical Realization of the Sachdev-Ye-Kitaev model in a Solid-State System

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Franz, M.

    2017-07-01

    A system of Majorana zero modes with random infinite-range interactions—the Sachdev-Ye-Kitaev (SYK) model—is thought to exhibit an intriguing relation to the horizons of extremal black holes in two-dimensional anti-de Sitter space. This connection provides a rare example of holographic duality between a solvable quantum-mechanical model and dilaton gravity. Here, we propose a physical realization of the SYK model in a solid-state system. The proposed setup employs the Fu-Kane superconductor realized at the interface between a three-dimensional topological insulator and an ordinary superconductor. The requisite N Majorana zero modes are bound to a nanoscale hole fabricated in the superconductor that is threaded by N quanta of magnetic flux. We show that when the system is tuned to the surface neutrality point (i.e., chemical potential coincident with the Dirac point of the topological insulator surface state) and the hole has sufficiently irregular shape, the Majorana zero modes are described by the SYK Hamiltonian. We perform extensive numerical simulations to demonstrate that the system indeed exhibits physical properties expected of the SYK model, including thermodynamic quantities and two-point as well as four-point correlators, and discuss ways in which these can be observed experimentally.

  12. Optimization of NiFe2O4/rGO composite electrode for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Li, Chen; Wang, Xia; Li, Shandong; Li, Qiang; Xu, Jie; Liu, Xiaomin; Liu, Changkun; Xu, Yuanhong; Liu, Jingquan; Li, Hongliang; Guo, Peizhi; Zhao, Xiu Song

    2017-09-01

    The combination of carbon compositing and the proper choice of binders in one system offer an effective strategy for improving electrode performance for lithium ion batteries (LIBs). Here, we focus on the optimization of reduced graphene oxide content in NiFe2O4/reduced graphene oxide (abbreviated to NiFe2O4/rGO) composites and the proper choice of binders to enhance the cycling stability of the NiFe2O4 electrode. The NiFe2O4/rGO composites were fabricated by a hydrothermal-annealing method, in which the mean size of spinel NiFe2O4 nanoparticles was approximately 20 nm. When tested as anode materials for LIBs, the NiFe2O4/rGO electrodes with carboxymethylcellulose (CMC) binder exhibited excellent lithium-storage performance including high reversible capacity, good cycling durability and high-rate capability. The capacity could be retained as high as 1105 mAh g-1 at a current density of 100 mA g-1 for over 50 cycles, even cycled at higher current density of 1000 mA g-1, a capacity of 800 mAh g-1can be obtained, whereas the electrode with the polyvinylidene fluoride (PVDF) binder suffered from rapid capacity decay under the same test conditions. As a result, the NiFe2O4/rGO composites with CMC binder electrode in this work are promising as anodes for high-performance LIBs, resulting from the synergistic effect of optimal graphene content and proper choice of binder.

  13. Porous single-phase NiTi processed under Ca reducing vapor for use as a bone graft substitute.

    PubMed

    Bertheville, Bernard

    2006-03-01

    Porous nickel-titanium alloys (NiTi, nitinol) have recently attracted attention in clinical surgery because they are a very interesting alternative to the more brittle and less machinable conventional porous Ca-based ceramics. The main remaining limitations come from the chemical homogeneity of the as-processed porous nickel-titanium alloys, which always contain undesired secondary Ti- and Ni-rich phases. These are known to weaken the NiTi products, to favor their cavitation corrosion and to decrease their biocompatibility. Elemental nickel must also be avoided because it could give rise to several adverse tissue reactions. Therefore, the synthesis of porous single-phase NiTi alloys by using a basic single-step sintering procedure is an important step towards the processing of safe implant materials. The sintering process used in this work is based on a vapor phase calciothermic reduction operating during the NiTi compound formation. The as-processed porous nickel-titanium microstructure is single-phase and shows a uniformly open pore distribution with porosity of about 53% and pore diameters in the range 20-100 microm. Furthermore, due to the process, fine CaO layers grow on the NiTi outer and inner surfaces, acting as possible promoting agents for the ingrowth of bone cells at the implantation site.

  14. Access to Formally Ni(I) States in a Heterobimetallic NiZn System

    PubMed Central

    Uyeda, Christopher

    2014-01-01

    Heterobimetallic NiZn complexes featuring metal centers in distinct coordination environments have been synthesized using diimine-dioxime ligands as binucleating scaffolds. A tetramethylfuran-containing ligand derivative enables a stable one-electron-reduced S = 1/2 species to be accessed using Cp2Co as a chemical reductant. The resulting pseudo-square planar complex exhibits spectroscopic and crystallographic characteristics of a ligand-centered radical bound to a Ni(II) center. Upon coordination of a π-acidic ligand such as PPh3, however, a five-coordinate Ni(I) metalloradical is formed. The electronic structures of these reduced species provide insight into the subtle effects of ligand structure on the potential and reversibility of the NiII/I couple for complexes of redox-active tetraazamacrocycles. PMID:25614786

  15. Analysis of Surface and Bulk Behavior in Ni-Pd Alloys

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Rondald D.

    2003-01-01

    The most salient features of the surface structure and bulk behavior of Ni-Pd alloys have been studied using the BFS method for alloys. Large-scale atomistic simulations were performed to investigate surface segregation profiles as a function of temperature, crystal face, and composition. Pd enrichment of the first layer was observed in (111) and (100) surfaces, and enrichment of the top two layers occurred for (110) surfaces. In all cases, the segregation profile shows alternate planes enriched and depleted in Pd. In addition, the phase structure of bulk Ni-Pd alloys as a function of temperature and composition was studied. A weak ordering tendency was observed at low temperatures, which helps explain the compositional oscillations in the segregation profiles. Finally, based on atom-by-atom static energy calculations, a comprehensive explanation for the observed surface and bulk features will be presented in terms of competing chemical and strain energy effects.

  16. Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation

    NASA Astrophysics Data System (ADS)

    Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.

    2002-12-01

    The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.

  17. Wear and friction characteristics of electroless Ni-B-W coatings at different operating temperatures

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Arkadeb; Barman, Tapan Kumar; Sahoo, Prasanta

    2018-02-01

    Sodium borohydride reduced electroless nickel alloy coatings have high wear resistance and low coefficient of friction. The present work investigates the deposition and tribological behavior of a ternary variant of the borohydride reduced coating i.e. Ni-B-W. Electroless Ni-B-W coatings were deposited on AISI 1040 steel substrates. In order to improve the mechanical properties of the deposits, they were heat treated at 350 °C for 1 h. The coatings in their as-deposited and heat treated conditions were characterized by scanning electron microscope, energy dispersive x-ray analysis and x-ray diffraction techniques. Ni-B-W coatings are amorphous in their as-deposited state while they become crystalline on heat treatment. In fact a high microhardness of Ni-B-W coatings is also observed in as-deposited condition. The microhardness further improves on heat treatment. Tribological behavior of the heat treated coatings with varying load (10-50 N), sliding speed (0.25-0.42 m s-1) and operating temperature (25 °C-500 °C) were evaluated on a pin-on-disc type test setup while the wear mechanisms were also studied. Tribological behavior of Ni-B-W coatings is enhanced at 500 °C operating temperature in comparison with 100 or 300 °C due to formation of protective oxide scales and microstructural changes due to in-situ heat treatment effect.

  18. Blending Cr 2O 3 into a NiO-Ni electrocatalyst for sustained water splitting

    DOE PAGES

    Gong, Ming; Zhou, Wu; Kenney, Michael James; ...

    2015-08-24

    The rising H 2 economy demands active and durable electrocatalysts based on low-cost, earth-abundant materials for water electrolysis/photolysis. Here we report nanoscale Ni metal cores over-coated by a Cr 2O 3-blended NiO layer synthesized on metallic foam substrates. The Ni@NiO/Cr 2O 3 triphase material exhibits superior activity and stability similar to Pt for the hydrogen-evolution reaction in basic solutions. The chemically stable Cr 2O 3 is crucial for preventing oxidation of the Ni core, maintaining abundant NiO/Ni interfaces as catalytically active sites in the heterostructure and thus imparting high stability to the hydrogen-evolution catalyst. The highly active and stable electrocatalystmore » enables an alkaline electrolyzer operating at 20 mA cm –2 at a voltage lower than 1.5 V, lasting longer than 3 weeks without decay. Thus, the non-precious metal catalysts afford a high efficiency of about 15 % for light-driven water splitting using GaAs solar cells.« less

  19. Characterization and electrochemical properties of Ni(Si)/Ni5Si2 multiphase coatings prepared by HVOF spraying

    NASA Astrophysics Data System (ADS)

    Verdian, M. M.; Raeissi, K.; Salehi, M.

    2012-11-01

    Ni(Si)/Ni5Si2 powders were produced by mechanical alloying (MA) of Ni-25 at.% Si powder mixture. Then, the as-milled powders were sprayed onto copper substrate using high velocity oxy-fuel (HVOF) process. The phase composition and microstructure of the coatings were examined by X-ray diffractometry and scanning electron microscopy. Polarization tests and electrochemical impedance spectroscopy (EIS) measurements were also employed to study corrosion performance of the coatings in 3.5% NaCl solution. The results showed that although single phase Ni3Si was formed during annealing of Ni(Si)/Ni5Si2 powders, but, only Ni(Si) and Ni5Si2 are present in HVOF coatings and no new phase has been formed during spraying. The coatings had microhardness up to 746 HV0.05. Further investigations showed the corrosion performance of multiphase coatings in 3.5% NaCl solution was better than that of copper substrate. The phase transitions during MA, HVOF and annealing processes were discussed in association with Ni-Si phase diagram and nature of each process.

  20. Transition-metal alloying of γ'-Ni3Al : Effects on the ideal uniaxial compressive strength from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Wen, Minru; Wang, Chong-Yu

    2018-01-01

    The addition of transition-metal (TM) elements into the γ' precipitate phase of a Ni-based single-crystal superalloy can significantly affect its mechanical properties, including the intrinsic mechanical property of compressive strength. Using first-principles density functional calculations, the effects of 3 d (Sc-Zn), 4 d (Y-Cd), and 5 d (Hf-Au) TM alloying elements on the ideal uniaxial compressive strength of γ'-Ni3Al were investigated. The stress-strain relationships of pure Ni3Al under [100], [110], and [111] compressive loads and the site occupancy behavior of TM elements in Ni3Al were previously studied using a total-energy method based on density functional theory. Our results showed that the capacity of TM elements for strengthening the ideal compressive strength was associated with the d -electron number. The alloying elements with half-filled d bands (i.e., Cr, Mo, W, Tc, and Re) manifested the greatest efficacy for improving the ideal strength of Ni3Al under a deformation along the weakest compressive direction. Furthermore, the charge redistribution of Ni3Al doped with 5 d elements were also analyzed to understand the strengthening mechanisms of TM elements in the γ'-Ni3Al phase.

  1. Experimental investigation of in-situ transformations of the M 7C3 carbide in the cast Fe-Cr-Ni alloy

    NASA Astrophysics Data System (ADS)

    Kraposhin, V. S.; Kondrat'ev, S. Yu.; Talis, A. L.; Anastasiadi, G. P.

    2017-03-01

    The microstructure and the phase composition of a heat-resistant Fe-Cr-Ni alloy (0. 45C-25Cr-35Ni) has been investigated in the cast state and after annealing at 1150°C for 2-100 h. After a 2-h high-temperature annealing, the fragmentation of the crystal structure of the eutectic M 7C3 carbides into domains of 500 nm in size with a partial transition into M 23C6 carbides is observed. After a 100-h holding, the complete transition of the hexagonal M 7C3 carbides into M 23C6 with a face-centered cubic structure occurs. The carbide transition M 7C3 → M 23 can be considered to be an in situ transformation.

  2. One-step facile synthesis of Ni2P/C as cathode material for Ni/Zn aqueous secondary battery

    NASA Astrophysics Data System (ADS)

    Li, JiLan; Chen, ChangGuo

    2018-01-01

    Nickel phosphides/carbon(Ni2P/C) composites have been successfully synthesized via a simple one-pot hydrothermal method using glucose as carbon source for the first time. By contrast, the pure Ni2P was prepared under the same conditions without glucose. The results show that glucose not only provide the carbon source, but also prevent the aggregation of Ni2P particles. The as-obtained Ni2P/C composites and pure Ni2P were used as cathode material for alkaline Ni/Zn battery. Owing to unique Ni2P/C composites and loose, Ultra thin flower-like shape the synthesized Ni2P/C material delivers high capacity of 176 mAh g-1 at 1 A g-1 and 82 mAh g-1 at 5 A g-1 current density in Ni2P/C-Zn battery. Moreover, it shows a good cycling life that capacity fading only about 6.2% after 1500 cycles. All of these indicate that the prepared Ni2P/C composites may be a new promising cathode material for Ni-Zn rechargeable battery.

  3. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    NASA Astrophysics Data System (ADS)

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-08-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  4. Study on the formation of graphene by ion implantation on Cu, Ni and CuNi alloy

    NASA Astrophysics Data System (ADS)

    Kim, Janghyuk; Kim, Hong-Yeol; Jeon, Jeong Heum; An, Sungjoo; Hong, Jongwon; Kim, Jihyun

    2018-09-01

    This study identifies the details for direct synthesis of graphene by carbon ion implantation on Cu, Ni and CuNi alloy. Firstly, diffusion and concentration of carbon atoms in Cu and Ni are estimated separately. The concentrations of carbon atoms near the surfaces of Cu and Ni after carbon ion implantation and subsequent thermal annealing were correlated with the number of atoms and with the coverage or thickness of graphene. Systematic experiments showed that the Cu has higher carbon diffusivity and graphene coverage than Ni but higher temperatures and longer annealing times are required to synthesize graphene, similar to those in chemical vapor deposition method. The CuNi system shows better graphene coverage and quality than that on a single metal catalyst even after a short annealing time, as it has larger carbon diffusivity and lower carbon solubility than Ni and shows lower activation energy than Cu.

  5. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors.

    PubMed

    Yan, Hailong; Zhang, Deyang; Xu, Jinyou; Lu, Yang; Liu, Yunxin; Qiu, Kangwen; Zhang, Yihe; Luo, Yongsong

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g(-1) at current densities of 5, 10, 15, 20, and 25 A g(-1), respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands.

  6. The atomic level structure of the TiO(2)-NiTi interface.

    PubMed

    Nolan, M; Tofail, S A M

    2010-09-07

    The biocompatibility of NiTi shape memory alloys (SMA) has made possible applications in invasive and minimally invasive biomedical devices. The NiTi intermetallic alloy spontaneously forms a thin passive layer of TiO(2), which provides its biocompatibility. The oxide layer is thought to form as Ti in the alloy reacts with oxygen. In this paper, we study the details of the oxide-alloy interface. The atomic model is the (110) NiTi surface interfaced with the (100) rutile TiO(2) surface; this combination provides the best lattice match of alloy and oxide. When the interface forms, static minimisations and molecular dynamics show that there is no migration of atoms between the alloy and the oxide. In the alloy there are some notable structural relaxations. We find that a columnar structure appears in which alternating long and short Ni-Ti bonds are present in each surface and subsurface plane into the fourth subsurface layer. The oxide undergoes some structural changes as a result of terminal oxygen coordinating to Ti in the NiTi surface. The electronic structure shows that Ti(3+) species are present at the interface, with Ti(4+) in the bulk of the oxide layer and that the metallic character of the alloy is unaffected by the interaction with oxygen, all of which is consistent with experiment. A thermodynamic analysis is used to examine the stability of different possible structures-a perfect interface and one with Ti and O vacancies. We find that under conditions typical of oxidation and shape memory treatments, the most stable interface structure is that with Ti vacancies in the alloy surface, leaving an Ni-rich layer, consistent with the experimental findings for this interface.

  7. NiSe-Ni0.85 Se Heterostructure Nanoflake Arrays on Carbon Paper as Efficient Electrocatalysts for Overall Water Splitting.

    PubMed

    Chen, Yajie; Ren, Zhiyu; Fu, Huiying; Zhang, Xin; Tian, Guohui; Fu, Honggang

    2018-06-01

    Fabricating cost-effective, bifunctional electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in basic media is critical for renewable energy generation. Here, NiSe/CP, Ni 0.85 Se/CP, and NiSe-Ni 0.85 Se/CP heterostructure catalysts with different phase constitutions are successfully prepared through in situ selenylation of a NiO nanoflake array oriented on carbon paper (CP) by tuning the original Ni/Se molar ratio of the raw materials. The relationship between the crystal phase component and electrocatalytic activity is systematically studied. Benefiting from the synergetic effect of the intrinsic metallic state, facile charge transport, abundant catalytic active sites, and multiple electrolyte transmission paths, the optimized NiSe-Ni 0.85 Se/CP exhibits a remarkably higher catalytic activity for both the HER and OER than single-phase NiSe/CP and Ni 0.85 Se/CP. A current density of 10 mA cm -2 at 1.62 V and a high stability can be obtained by using NiSe-Ni 0.85 Se/CP as both the cathode and anode for overall water splitting under alkaline conditions. Density functional theory calculations confirm that H and OH - can be more easily adsorbed on NiSe-Ni 0.85 Se than on NiSe and Ni 0.85 Se. This study paves the way for enhancing the overall water splitting performance of nickel selenides by fabricating heterophase junctions using nickel selenides with different phases. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Pd/RGO modified carbon felt cathode for electro-Fenton removing of EDTA-Ni.

    PubMed

    Zhang, Zhen; Zhang, Junya; Ye, Xiaokun; Hu, Yongyou; Chen, Yuancai

    Ethylenediaminetetraacetic acid (EDTA) forms stable complexes with toxic metals such as nickel due to its strong chelation. The electro-Fenton (EF) process using a cathode made from palladium (Pd), reduced graphene oxide (RGO) and carbon felt, fed with air, exhibited high activities and stability for the removal of 10 mg L(-1) EDTA-Ni solution. Pd/RGO catalyst was prepared by one-pot synthesis; the scanning electron microscopy and X-ray diffraction analysis indicated nanoparticles and RGO were well distributed on carbon felt, forming three dimensional architecture with both large macropores and a mesoporous structure. The cyclic voltammetric results showed that the presence of RGO in Pd/RGO/carbon felt significantly increased the current response of two-electron reduction of O2 (0.45 V). The key factors influencing the removal efficiency of EDTA-Ni, such as pH, current and Fe(2+) concentration, were investigated. Under the optimum conditions, the removal efficiency of EDTA-Ni reached 83.8% after 100 min EF treatment. Mechanism analysis indicated that the introduction of RGO in Pd/RGO/carbon felt significantly enhanced the electrocatalytic activities by inducing •OH in the EF process; direct H2O2 oxidation still accounted for a large amount of EDTA-Ni removal efficiency.

  9. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE PAGES

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh; ...

    2018-03-31

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  10. GeV ion irradiation of NiFe and NiCo: Insights from MD simulations and experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leino, Aleksi A.; Samolyuk, German D.; Sachan, Ritesh

    Concentrated solid solution alloys have attracted rapidly increasing attention due to their potential for designing materials with high tolerance to radiation damage. To tackle the effects of chemical complexity in defect dynamics and radiation response, we present in this paper a computational study on swift heavy ion induced effects in Ni and equiatomic Ni -based alloys (Ni 50Fe 50, Ni 50Co 50) using two-temperature molecular dynamics simulations (2T-MD). The electronic heat conductivity in the two-temperature equations is parameterized from the results of first principles electronic structure calculations. A bismuth ion (1.542 GeV) is selected and single impact simulations performed inmore » each target. We study the heat flow in the electronic subsystem and show that alloying Ni with Co or Fe reduces the heat dissipation from the impact by the electronic subsystem. Simulation results suggest no melting or residual damage in pure Ni while a cylindrical region melts along the ion propagation path in the alloys. In Ni 50Co 50 the damage consists of a dislocation loop structure (d = 2 nm) and isolated point defects, while in Ni 50Fe 50, a defect cluster (d = 4 nm) along the ion path is, in addition, formed. The simulation results are supported by atomic-level structural and defect characterizations in bismuth-irradiated Ni and Ni 50Fe 50. Finally, the significance of the 2T-MD model is demonstrated by comparing the results to those obtained with an instantaneous energy deposition model without consideration of e-ph interactions in pure Ni and by showing that it leads to a different qualitative behavior.« less

  11. Polymer Ni-MH battery based on PEO-PVA-KOH polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen

    An alkaline polymer electrolyte film has been prepared by a solvent-casting method. Poly(vinyl alcohol), PVA is added to improve the ionic conductivity of the electrolyte. The ionic conductivity increases from 10 -7 to 10 -2 S cm -1 at room temperature when the weight percent ratio of poly(ethylene oxide), PEO to PVA is increased from 10:0 to 5:5. The activation energy of the ionic conductivity for the PEO-PVA-KOH polymer electrolyte is 3-8 kJ mol -1. The properties of the electrolyte film are characterized by a wide variety of techniques and it is found that the film exhibits good mechanical stability and high ionic conductivity at room temperature. The application of such electrolyte films to nickel-metal-hydride (Ni-MH) batteries is examined and the electrochemical characteristics of a polymer Ni-MH battery are obtained.

  12. Heterobimetallic [NiFe] Complexes Containing Mixed CO/CN- Ligands: Analogs of the Active Site of the [NiFe] Hydrogenases.

    PubMed

    Perotto, Carlo U; Sodipo, Charlene L; Jones, Graham J; Tidey, Jeremiah P; Blake, Alexander J; Lewis, William; Davies, E Stephen; McMaster, Jonathan; Schröder, Martin

    2018-03-05

    The development of synthetic analogs of the active sites of [NiFe] hydrogenases remains challenging, and, in spite of the number of complexes featuring a [NiFe] center, those featuring CO and CN - ligands at the Fe center are under-represented. We report herein the synthesis of three bimetallic [NiFe] complexes [Ni( N 2 S 2 )Fe(CO) 2 (CN) 2 ], [Ni( S 4 )Fe(CO) 2 (CN) 2 ], and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] that each contain a Ni center that bridges through two thiolato S donors to a {Fe(CO) 2 (CN) 2 } unit. X-ray crystallographic studies on [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ], supported by DFT calculations, are consistent with a solid-state structure containing distinct molecules in the singlet ( S = 0) and triplet ( S = 1) states. Each cluster exhibits irreversible reduction processes between -1.45 and -1.67 V vs Fc + /Fc and [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] possesses a reversible oxidation process at 0.17 V vs Fc + /Fc. Spectroelectrochemical infrared (IR) and electron paramagnetic resonance (EPR) studies, supported by density functional theory (DFT) calculations, are consistent with a Ni III Fe II formulation for [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + . The singly occupied molecular orbital (SOMO) in [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + is based on Ni 3d z 2 and 3p S with the S contributions deriving principally from the apical S-donor. The nature of the SOMO corresponds to that proposed for the Ni-C state of the [NiFe] hydrogenases for which a Ni III Fe II formulation has also been proposed. A comparison of the experimental structures, and the electrochemical and spectroscopic properties of [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] and its [Ni( N 2 S 3 )] precursor, together with calculations on the oxidized [Ni( N 2 S 3 )Fe(CO) 2 (CN) 2 ] + and [Ni( N 2 S 3 )] + forms suggests that the binding of the {Fe(CO)(CN) 2 } unit to the {Ni(CysS) 4 } center at the active site of the [NiFe] hydrogenases suppresses thiolate-based oxidative chemistry involving the bridging thiolate S donors

  13. Transformation characteristics of TiNi/TiNi alloys synthesized by explosive welding

    NASA Astrophysics Data System (ADS)

    Li, Juntao; Zheng, Yanjun; Cui, Lishan

    2007-10-01

    Effects of severe deformation and heat treatment on the transformation behaviors of explosively welded duplex TiNi/TiNi shape memory alloys (SMAs) were investigated by the differential scanning calorimeter (DSC). The explosively welded duplex TiNi/TiNi plate of 0.7 mm in thickness was cold-rolled at room temperature to the extent of 60% reduction in thickness and then annealed at different temperatures (573-973 K) for different time (15 min-10 h). Low temperature (623-723 K) heat treatment led to amorphous crystallization. At higher temperature (873 K), the re-crystallization took place in the specimens. Analysis showed that the change of internal stresses is just the root cause of the change of transformation temperature. The relationships between the transformation behaviors and the heat treatment were discussed in the present report.

  14. Structural features of [NiFeSe] and [NiFe] hydrogenases determining their different properties: a computational approach.

    PubMed

    Baltazar, Carla S A; Teixeira, Vitor H; Soares, Cláudio M

    2012-04-01

    Hydrogenases are metalloenzymes that catalyze the reversible reaction H(2)<->2H(+) + 2e(-), being potentially useful in H(2) production or oxidation. [NiFeSe] hydrogenases are a particularly interesting subgroup of the [NiFe] class that exhibit tolerance to O(2) inhibition and produce more H(2) than standard [NiFe] hydrogenases. However, the molecular determinants responsible for these properties remain unknown. Hydrophobic pathways for H(2) diffusion have been identified in [NiFe] hydrogenases, as have proton transfer pathways, but they have never been studied in [NiFeSe] hydrogenases. Our aim was, for the first time, to characterize the H(2) and proton pathways in a [NiFeSe] hydrogenase and compare them with those in a standard [NiFe] hydrogenase. We performed molecular dynamics simulations of H(2) diffusion in the [NiFeSe] hydrogenase from Desulfomicrobium baculatum and extended previous simulations of the [NiFe] hydrogenase from Desulfovibrio gigas (Teixeira et al. in Biophys J 91:2035-2045, 2006). The comparison showed that H(2) density near the active site is much higher in [NiFeSe] hydrogenase, which appears to have an alternative route for the access of H(2) to the active site. We have also determined a possible proton transfer pathway in the [NiFeSe] hydrogenase from D. baculatum using continuum electrostatics and Monte Carlo simulation and compared it with the proton pathway we found in the [NiFe] hydrogenase from D. gigas (Teixeira et al. in Proteins 70:1010-1022, 2008). The residues constituting both proton transfer pathways are considerably different, although in the same region of the protein. These results support the hypothesis that some of the special properties of [NiFeSe] hydrogenases could be related to differences in the H(2) and proton pathways. © SBIC 2012

  15. Magnetically retrievable nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) spinel nanocatalyst for alcohol oxidation

    NASA Astrophysics Data System (ADS)

    Bhat, Pooja B.; Bhat, Badekai Ramachandra

    2016-03-01

    Ultrasmall nickel hydroxide functionalised AFe2O4 (A = Mn, Ni) nanocatalyst was synthesized by traditional co-precipitation method and was examined for oxidation of aromatic alcohols to carbonyls using hydrogen peroxide as terminal oxidant. A very high surface area of 104.55 m2 g-1 was achieved for ferromagnetic MnFe2O4 and 100.50 m2 g-1 for superparamagnetic NiFe2O4, respectively. Efficient oxidation was observed due to the synergized effect of nickel hydroxide (bronsted base) on Lewis center (Fe) of the nanocatalyst. Catalyst recycling experiments revealed that the ultrasmall nanocatalyst can be easily recovered by external magnet and applied for nearly complete oxidation of alcohols for at least five successive cycles. Furthermore, the nickel hydroxide functionalised ultrasmall nanocatalyst exhibited higher efficiency for benzyl alcohol oxidation compared to Ni(OH)2, bare MnFe2O4 and NiFe2O4. Higher conversion rate was observed for nickel hydroxide functionalised NiFe2O4 compared to MnFe2O4. Ultrasmall magnetic nickel hydroxide functionalised nanocatalyst showed environmental friendly, greener route for the oxidation of alcohols without significant loss in activity and selectivity within successive runs.

  16. A dithiolate-bridged (CN)2(CO)Fe-Ni complex reproducing the IR bands of [NiFe] hydrogenase.

    PubMed

    Tanino, Soichiro; Li, Zilong; Ohki, Yasuhiro; Tatsumi, Kazuyuki

    2009-03-16

    A dithiolate-bridged dinuclear Fe-Ni complex, which has the desired fac-(CN)(2)(CO) ligand set at iron, has been synthesized. Its CN/CO bands in the IR spectrum reproduce those of the Ni-A, Ni-B, and Ni-SU states, which indicate that these octahedral Fe(II) centers have similar electronic properties. This result verifies the assignment of a (CN)(2)(CO)Fe(II) moiety in the active site of [NiFe] hydrogenase.

  17. Formaldehyde sensor based on Ni-doped tetrapod-shaped ZnO nanopowder induced by external magnetic field

    NASA Astrophysics Data System (ADS)

    Bai, Zikui; Xie, Changsheng; Hu, Mulin; Zhang, Shunping

    2008-12-01

    The sensors based on Ni-doped ZnO nanopowder with tetrapod-shape (T-ZnO) were fabricated by screen-printing technique with external magnetic field in different direction. The morphologies and crystal structures of the thick film were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM), respectively. Gas-sensing property of sensors responded to 100 ppm formaldehyde was also detected. The results show that the direction of magnetic field has crucial effect on the sensor sensitivity. The sensors based on 5 wt% Ni-doped T-ZnO induced by magnetic field in parallel direction to the thick film surface, has the optimization sensitivity, the shortest response and recovery time, which are 10.6, 16 and 15 s, respectively. The magnetic-field induction model and the gas-sensing mechanism of the Ni-doped T-ZnO are proposed.

  18. High-pressure and high-temperature phase diagram for Fe0.9Ni0.1-H alloy

    NASA Astrophysics Data System (ADS)

    Shibazaki, Yuki; Terasaki, Hidenori; Ohtani, Eiji; Tateyama, Ryuji; Nishida, Keisuke; Funakoshi, Ken-ichi; Higo, Yuji

    2014-03-01

    Planetary cores are considered to consist of an iron-nickel (Fe-Ni) alloy and light elements and hydrogen is one of plausible light elements in the core. Here we have performed in situ X-ray diffraction experiments on an Fe0.9Ni0.1-H system up to 15.1 GPa and 1673 K, and investigated the effect of Ni on phase relations of FeHx under high pressure and high temperature. The experimental system in the present work was oversaturated with hydrogen. We found a face-center-cubic (fcc) phase (with hydrogen concentration up to x∼1) and a body-center-cubic (bcc) phase (x < 0.1) as stable phases. The partial melting was observed below 6 GPa. We could not observe a double-hexagonal-close-packed (dhcp) phase because of limitations in pressure and temperature conditions. The stability field of each phase of Fe0.9Ni0.1Hx was almost same as that of FeHx. The solidus of Fe0.9Ni0.1Hx was 500-700 K lower than the melting curve of Fe and its liquidus was 400-600 K lower than that of Fe in the pressure range of this study. Both the solidus and liquidus of Fe0.9Ni0.1Hx were depressed at around 3.5 GPa, as was the solidus of FeHx. The hydrogen contents in fcc-Fe0.9Ni0.1Hx just below solidus were slightly lower than those of fcc-FeHx, which suggests that nickel is likely to prevent dissolution of hydrogen into iron. Due to the lower hydrogen solubilities in Fe0.9Ni0.1 compared to Fe, the solidus of Fe0.9Ni0.1Hx is about 100-150 K higher than that of FeHx.

  19. Nickel recovery from electronic waste II electrodeposition of Ni and Ni-Fe alloys from diluted sulfate solutions.

    PubMed

    Robotin, B; Ispas, A; Coman, V; Bund, A; Ilea, P

    2013-11-01

    This study focuses on the electrodeposition of Ni and Ni-Fe alloys from synthetic solutions similar to those obtained by the dissolution of electron gun (an electrical component of cathode ray tubes) waste. The influence of various parameters (pH, electrolyte composition, Ni(2+)/Fe(2+) ratio, current density) on the electrodeposition process was investigated. Scanning electron microscopy (SEM) and X-ray fluorescence analysis (XRFA) were used to provide information about the obtained deposits' thickness, morphology, and elemental composition. By controlling the experimental parameters, the composition of the Ni-Fe alloys can be tailored towards specific applications. Complementarily, the differences in the nucleation mechanisms for Ni, Fe and Ni-Fe deposition from sulfate solutions have been evaluated and discussed using cyclic voltammetry and potential step chronoamperometry. The obtained results suggest a progressive nucleation mechanism for Ni, while for Fe and Ni-Fe, the obtained data points are best fitted to an instantaneous nucleation model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Fe-Ni-bearing serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: new insights from thermodynamic calculations

    NASA Astrophysics Data System (ADS)

    Villanova-de-Benavent, Cristina; Domènech, Cristina; Tauler, Esperança; Galí, Salvador; Tassara, Santiago; Proenza, Joaquín A.

    2017-10-01

    Fe-Ni-bearing serpentine from the saprolite horizon is the main Ni ores in hydrous silicate-type Ni laterites and formed by chemical weathering of partially serpentinized ultramafic rocks under tropical conditions. During lateritization, Mg, Si, and Ni are leached from the surface and transported downwards. Fe2+ is oxidized to Fe3+ and fixed as insoluble Fe-oxyhydroxides (mostly goethite) that incorporate Ni. This Ni is later leached from goethite and incorporated in secondary serpentine and garnierite. As a result, a serpentine-dominated saprolite horizon forms over the ultramafic protolith, overlapped by a Fe-oxyhydroxide-dominated limonite horizon. The serpentine from the protolith (serpentine I) is of hydrothermal origin and yields similar Ni (0.10-0.62 wt.% NiO) and lower Fe (mostly 1.37-5.81 wt.% FeO) concentrations than the primary olivine. In contrast, Fe-Ni-bearing serpentine from the saprolite (serpentine II) shows significantly higher and variable Fe and Ni contents, typically ranging from 2.23 to 15.59 wt.% Fe2O3 and from 1.30 to 7.67 wt.% NiO, suggesting that serpentine get enriched in Fe and Ni under supergene conditions. This study presents detailed mineralogical, textural, and chemical data on this serpentine II, as well as new insights by thermodynamic calculations assuming ideal solution between Fe-, Ni- and Mg-pure serpentines. The aim is to assess if at atmospheric pressure and temperature Fe-Ni-bearing serpentine can be formed by precipitation. Results indicate that the formation of serpentine II under atmospheric pressure and temperature is thermodynamically supported, and pH, Eh, and the equilibrium constant of the reaction are the parameters that affect the results more significantly.

  1. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  2. Enhanced H2S Sensing Performance of a p-type Semiconducting PdO-NiO Nanoscale Heteromixture

    NASA Astrophysics Data System (ADS)

    Balamurugan, C.; Jeong, Y. J.; Lee, D. W.

    2017-10-01

    Semiconducting nanocrystalline nickel oxide (NiO) and PdO-doped NiO heteromixture (2, 5 and 10 wt%) have been synthesized via a metal-citrate complex method. The obtained materials were further characterized using TG/DTA, FT-IR, UV-vis, XRD, XPS, BET/BJH, SEM and TEM analyses to determine their structural and morphological properties. The results indicated that the spherical, uniform PdO nanoparticles were densely deposited on the NiO surface mainly in diameters of 10-15 nm. Moreover, the existence of various defect states was also analyzed with the help of photoluminescence (PL) spectroscopy. The gas response characteristics of synthesized materials were evaluated in the presence and absence of toxic gases such as hydrogen sulfide (H2S), carbon monoxide (CO), liquid petroleum gas (LPG), and ethanol (C2H5OH). The experimental results revealed that the sensitivity and selectivity of the NiO-based sensor material are dependent on the weight% of PdO loading in the NiO nanopowder. Among the investigated compound, the 5 wt% PdO-doped NiO sensor material showed excellent sensitivity and selectivity to 100 ppm H2S with a fast response/recovery characteristics of 6 s and 10 s, respectively. Furthermore, the 5 wt% PdO-doped NiO based sensor showed a linear relationship between the different concentrations of H2S gas and a significantly higher response to H2S even at the low concentration of 20 ppm (43%) at 60 °C. The dominant H2S gas sensing mechanisms in the NiO and 5 wt% PdO-doped NiO nanomaterials are systematically discussed based on the obtained characterization results.

  3. Magnetic properties of mixed spinel BaTiO{sub 3}-NiFe{sub 2}O{sub 4} composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Babusona; Dalal, Biswajit; Dev Ashok, Vishal

    2014-03-28

    Solid solution of nickel ferrite (NiFe{sub 2}O{sub 4}) and barium titanate (BaTiO{sub 3}), (100-x)BaTiO{sub 3}–(x) NiFe{sub 2}O{sub 4} has been prepared by solid state reaction. Compressive strain is developed in NiFe{sub 2}O{sub 4} due to mutual structural interaction across the interface of NiFe{sub 2}O{sub 4} and BaTiO{sub 3} phases. Quantitative analysis of X-ray diffraction and X-ray photo electron spectrum suggest mixed spinel structure of NiFe{sub 2}O{sub 4}. A systematic study of composition dependence of composite indicates BaTiO{sub 3} causes a random distribution of Fe and Ni cations among octahedral and tetrahedral sites during non-equilibrium growth of NiFe{sub 2}O{sub 4}. Themore » degree of inversion decreases monotonically from 0.97 to 0.75 with increase of BaTiO{sub 3} content. Temperature dependence of magnetization has been analyzed by four sublattice model to describe complex magnetic exchange interactions in mixed spinel phase. Curie temperature and saturation magnetization decrease with increase of BaTiO{sub 3} concentration. Enhancement of strain and larger occupancy of Ni{sup 2+} at tetrahedral site increase coercivity up to 200 Oe. Magnetostructual coupling induced by BaTiO{sub 3} improves coercivity in NiFe{sub 2}O{sub 4}. An increase in the demagnetization and homogeneity in magnetization process in NiFe{sub 2}O{sub 4} is observed due to the interaction with diamagnetic BaTiO{sub 3}.« less

  4. Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors

    PubMed Central

    2014-01-01

    Well-aligned nickel oxide (NiO) nanosheets with the thickness of a few nanometers supported on a flexible substrate (Ni foam) have been fabricated by a hydrothermal approach together with a post-annealing treatment. The three-dimensional NiO nanosheets were further used as electrode materials to fabricate supercapacitors, with high specific capacitance of 943.5, 791.2, 613.5, 480, and 457.5 F g-1 at current densities of 5, 10, 15, 20, and 25 A g-1, respectively. The NiO nanosheets combined well with the substrate. When the electrode material was bended, it can still retain 91.1% of the initial capacitance after 1,200 charging/discharging cycles. Compared with Co3O4 and NiO nanostructures, the specific capacitance of NiO nanosheets is much better. These characteristics suggest that NiO nanosheet electrodes are promising for energy storage application with high power demands. PMID:25276099

  5. Climate Prediction Center - El Niño/La Niña Home

    Science.gov Websites

    Composites Cold and Warm episodes (by season) U.S. La Niña Precipitation & Temperature Impacts U.S. El Niño Precipitation & Temperature Impacts U.S. El Niño State Seasonal Precipitation & ; Temperature Impacts Expert Assessment Current Diagnostic Discussion Monitoring & Data Weekly UpdateFigures

  6. Bone Cell–materials Interactions and Ni Ion Release of Anodized Equiatomic NiTi Alloy

    PubMed Central

    Bernard, Sheldon A.; Balla, Vamsi Krishna; Davies, Neal M.; Bose, Susmita; Bandyopadhyay, Amit

    2011-01-01

    Laser processed NiTi alloy was anodized for different durations in H2SO4 electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-materials interactions. The anodized surfaces were assessed for their in vitro cell-materials interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that the anodization creates a surface with nano/micro roughness depending on anodization conditions. The hydrophilicity of NiTi surface was found to improve after anodization due to lower contact angles in cell media, which dropped from 32° to < 5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy comparable to that of cp Ti. Relatively high surface energy, especially polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268 ± 11 to 136 ± 15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improve bone cell-materials interactions and reduce Ni ion release in vitro. PMID:21232641

  7. Effect of heat treatment on morphology evolution of Ti2Ni phase in Ti-Ni-Al-Zr alloy

    NASA Astrophysics Data System (ADS)

    Sheng, Liyuan; Yang, Yang; Xi, Tingfei

    2018-03-01

    The Ti6Al2Zr alloy with 15 wt.% Ni addition was prepared and then heat treated in the research. The microstructure of the alloy and evolution of Ti2Ni precipitate were investigated. The microstructure observations demonstrate that the Ni addition could promote the formation of eutectoid and eutectic structures in Ti-Al-Zr alloy. In the eutectoid structure, the ultrafine Ti2Ni fiber precipitates in the α-Ti matrix, but in the eutectic structure, the fine α-Ti phases precipitate in the Ti2Ni matrix. The heat treatment could change the morphology of Ti2Ni precipitates by thinning, fragmenting, merging and spherizing. In the alloy heat treated at and below 1073K, the coarsening of α-Ti precipitates in eutectic structure and Ti2Ni precipitates in eutectoid structure is the mainly characteristic. In the alloy heat treated above 1073K, the phase transformation of α to β phase is the main characteristic, which changes the morphology and amount of Ti2Ni phase by the solid solution of Ni. The phase transformation temperature of Ti-Ni-Al-Zr alloy is between 1073-1123K, which is increased compared with that of the Ti-Ni binary phase diagram.

  8. Pressure-induced positive electrical resistivity coefficient in Ni-Nb-Zr-H glassy alloy

    NASA Astrophysics Data System (ADS)

    Fukuhara, M.; Gangli, C.; Matsubayashi, K.; Uwatoko, Y.

    2012-06-01

    Measurements under hydrostatic pressure of the electrical resistivity of (Ni0.36Nb0.24Zr0.40)100-xHx (x = 9.8, 11.5, and 14) glassy alloys have been made in the range of 0-8 GPa and 0.5-300 K. The resistivity of the (Ni0.36Nb0.24Zr0.40)86H14 alloy changed its sign from negative to positive under application of 2-8 GPa in the temperature range of 300-22 K, coming from electron-phonon interaction in the cluster structure under pressure, accompanied by deformation of the clusters. In temperature region below 22 K, the resistivity showed negative thermal coefficient resistance by Debye-Waller factor contribution, and superconductivity was observed at 1.5 K.

  9. Thermally stable ohmic contacts to n-type GaAs. VII. Addition of Ge or Si to NiInW ohmic contacts

    NASA Astrophysics Data System (ADS)

    Murakami, Masanori; Price, W. H.; Norcott, M.; Hallali, P.-E.

    1990-09-01

    The effects of Si or Ge addition to NiInW ohmic contacts on their electrical behavior were studied, where the samples were prepared by evaporating Ni(Si) or Ni(Ge) pellets with In and W and annealed by a rapid thermal annealing method. An addition of Si affected the contact resistances of NiInW contacts: the resistances decreased with increasing the Si concentrations in the Ni(Si) pellets and the lowest value of ˜0.1 Ω mm was obtained in the contact prepared with the Ni-5 at. % Si pellets after annealing at temperatures around 800 °C. The contact resistances did not deteriorate during isothermal annealing at 400 °C for more than 100 h, far exceeding process requirements for self-aligned GaAs metal-semiconductor field-effect-transistor devices. In addition, the contacts were compatible with TiAlCu interconnects which have been widely used in the current Si process. Furthermore, the addition of Si to the NiInW contacts eliminated an annealing step for activation of implanted dopants and low resistance (˜0.2 Ω mm) contacts were fabricated for the first time by a ``one-step'' anneal. In contrast, an addition of Ge to the NiInW contacts did not significantly reduce the contact resistances.

  10. Electronic circuits having NiAl and Ni.sub.3 Al substrates

    DOEpatents

    Deevi, Seetharama C.; Sikka, Vinod K.

    1999-01-01

    An electronic circuit component having improved mechanical properties and thermal conductivity comprises NiAl and/or Ni.sub.3 Al, upon which an alumina layer is formed prior to applying the conductive elements. Additional layers of copper-aluminum alloy or copper further improve mechanical strength and thermal conductivity.

  11. Constitution of the Sr-Ni-O system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zinkevich, M.

    2005-09-15

    The constitution of the Sr-Ni-O system was studied experimentally for the first time. Samples were prepared either from SrCO{sub 3} and NiO or from Sr(NO{sub 3}){sub 2} and Ni(NO{sub 3}){sub 2}.6H{sub 2}O and characterized by high-temperature X-ray powder diffraction, scanning electron microscopy, thermogravimetric and differential thermal analyses. In the SrO-NiO quasibinary system an eutectic reaction: liquid-bar SrO+NiO was found to occur at 1396+/-5{sup o}C, while the homogeneity range of terminal solid solutions is negligible. Thermodynamic calculations using the regular solution model for the liquid and rocksalt-type phases were employed to predict liquidus and solidus curves. Three ternary compounds, SrNiO{sub 2.5},more » Sr{sub 5}Ni{sub 4}O{sub 11}, and Sr{sub 9}Ni{sub 7}O{sub 21} were observed in the samples prepared from nitrate solutions, but only Sr{sub 9}Ni{sub 7}O{sub 21} was proved to be thermodynamically stable in air up to 1030+/-6{sup o}C. When heating in air, SrNiO{sub 2.5} and Sr{sub 5}Ni{sub 4}O{sub 11} were found to transform irreversibly into a mixture of Sr{sub 9}Ni{sub 7}O{sub 21} and NiO. Isothermal section of the SrO-NiO-O subsystem, which represents phase equilibria at 950-1030{sup o}C as well as an isobaric section of the Sr-Ni-O system in air were constructed.« less

  12. Ni-MH spent batteries: a raw material to produce Ni-Co alloys.

    PubMed

    Lupi, Carla; Pilone, Daniela

    2002-01-01

    Ni-MH spent batteries are heterogeneous and complex materials, so any kind of metallurgical recovery process needs a mechanical pre-treatment at least to separate irony materials and recyclable plastic materials (like ABS) respectively, in order to get additional profit from this saleable scrap, as well as minimize waste arising from the braking separation process. Pyrometallurgical processing is not suitable to treat Ni-MH batteries mainly because of Rare Earths losses in the slag. On the other hand, the hydrometallurgical method, that offers better opportunities in terms of recovery yield and higher purity of Ni, Co, and RE, requires several process steps as shown in technical literature. The main problems during leach liquor purification are the removal of elements such as Mn, Zn, Cd, dissolved during the leaching step, and the separation of Ni from Co. In the present work, the latter problem is overcome by co-deposition of a Ni-35/40%w Co alloy of good quality. The experiments carried out in a laboratory scale pilot-plant show that a current efficiency higher than 91% can be reached in long duration electrowinning tests performed at 50 degrees C and 4.3 catholyte pH.

  13. Synthesis, characterization and some properties of mononuclear Ni and trinuclear NiFe2 complexes related to the active site of [NiFe]-hydrogenases.

    PubMed

    Song, Li-Cheng; Sun, Xiao-Jing; Zhao, Pei-Hua; Li, Jia-Peng; Song, Hai-Bin

    2012-08-07

    The [N(2)S(2)]-type ligand 1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4) (L) is prepared in 84% yield by a new method and its structure has been confirmed by X-ray crystallography. The new synthetic method involves sequential reaction of 1,2-phenylenedithiol with EtONa followed by treatment of the resulting disodium salt of 1,2-phenylenedithiol with in situ generated 2-(chloromethyl)pyridine from its HCl salt. Further treatment of ligand L with NiCl(2)·6H(2)O or NiI(2) affords the expected new mononuclear Ni complexes Ni[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)]Cl(2) (1) and Ni[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)]I(2) (3) in 87-88% yields, whereas reaction of L with NiBr(2) under similar conditions results in formation of the expected new mononuclear complex Ni[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)]Br(2) (2) and one unexpected new mononuclear complex Ni[1-(2-C(5)H(4)NCH(2)S)-2-(2-C(5)H(4)NCH(2)SC(6)H(4)S)C(6)H(4)]Br(2) (2*) in 82% and 5% yields, respectively. More interestingly, the ligand L-containing novel trinuclear NiFe(2) complex Ni{[1,2-(2-C(5)H(4)NCH(2)S)(2)C(6)H(4)}Fe(2)(CO)(6)(μ(3)-S)(2) (4) is found to be prepared by sequential reaction of (μ-S(2))Fe(2)(CO)(6) with Et(3)BHLi, followed by treatment of the resulting (μ-LiS)(2)Fe(2)(CO)(6) with mononuclear complex 1, 2, or 3 in 12-20% yields. The new complexes 1-4 and 2* are fully characterized by elemental analysis and various spectroscopies, and the crystal structures of 1, 2* and 3 as well as some electrochemical properties of 1-4 are also reported.

  14. Radiation damage buildup and dislocation evolution in Ni and equiatomic multicomponent Ni-based alloys

    NASA Astrophysics Data System (ADS)

    Levo, E.; Granberg, F.; Fridlund, C.; Nordlund, K.; Djurabekova, F.

    2017-07-01

    Single-phase multicomponent alloys of equal atomic concentrations ("equiatomic") have proven to exhibit promising mechanical and corrosion resistance properties, that are sought after in materials intended for use in hazardous environments like next-generation nuclear reactors. In this article, we investigate the damage production and dislocation mobility by simulating irradiation of elemental Ni and the alloys NiCo, NiCoCr, NiCoFe and NiFe, to assess the effect of elemental composition. We compare the defect production and the evolution of dislocation networks in the simulation cells of two different sizes, for all five studied materials. We find that the trends in defect evolution are in good agreement between the different cell sizes. The damage is generally reduced with increased alloy complexity, and the dislocation evolution is specific to each material, depending on its complexity. We show that increasing complexity of the alloys does not always lead to decreased susceptibility to damage accumulation under irradiation. We show that, for instance, the NiCo alloy behaves very similarly to Ni, while presence of Fe or Cr in the alloy even as a third component reduces the saturated level of damage substantially. Moreover, we linked the defect evolution with the dislocation transformations in the alloys. Sudden drops in defect number and large defect fluctuations from the continuous irradiation can be explained from the dislocation activity.

  15. One-pot fabrication of NiFe2O4 nanoparticles on α-Ni(OH)2 nanosheet for enhanced water oxidation

    NASA Astrophysics Data System (ADS)

    Chen, Hong; Yan, Junqing; Wu, Huan; Zhang, Yunxia; Liu, Shengzhong (Frank)

    2016-08-01

    Water splitting has been intensively investigated as a promising solution to resolve the future environmental and energy crises. The oxygen evolution reaction (OER) of the photo- and electric field-induced water splitting limits the development of other reactions, including hydrogen evolution reaction (HER). Fe, Ni and NiFe (hydro) oxide-based catalysts are generally acknowledged among the best candidates of OER catalysts for water splitting. Herein, we developed a one-pot simple hydrothermal process to assemble NiFe2O4 nanoparticles onto the α-Ni(OH)2 nanosheets. The first formed NiFe2O4 under high temperature and pressure environment induces and assists the α-Ni(OH)2 formation without any further additives, because the distance between the neighboring Ni atoms in the cubic NiFe2O4 is similar to that in the α-Ni(OH)2 {003} facets. We have synthesized a series of NiFe2O4/α-Ni(OH)2 compounds and find that the overpotential decreases with the increase of Ni(OH)2 content while the OER kinetics stays unchanged, suggesting that Ni(OH)2 plays a major role in overpotential while NiFe2O4 mainly affects the OER kinetics. The obtained NiFe2O4/α-Ni(OH)2 compounds is also found to be a promising co-catalyst for the photocatalytic water oxidation. In fact, it is even more active than the noble PtOx with acceptable stability for the oxygen generation.

  16. Electromigration effect upon the Sn-0.7 wt% Cu/Ni and Sn-3.5 wt% Ag/Ni interfacial reactions

    NASA Astrophysics Data System (ADS)

    Chen, Chih-ming; Chen, Sinn-wen

    2001-08-01

    This study investigates the effect of electromigration upon the interfacial reactions between the promising lead-free solders, Sn-Cu and Sn-Ag, with Ni substrate. Sandwich-type reaction couples, Sn-0.7 wt% Cu/Ni/Sn-0.7 wt% Cu and Sn-3.5 wt% Ag/Ni/Sn-3.5 wt% Ag, were reacted at 160, 180, and 200 °C for various lengths of time with and without the passage of electric currents. Without passage of electric currents through the couples, only one intermetallic compound Ni3Sn4 with ˜7 at. % Cu solubility was found at both interfaces of the Sn-0.7 wt% Cu/Ni couples. With the passage of an electric current of 500 A/cm2 density, the Cu6Sn5 phase was formed at the solder/Ni interface besides the Ni3Sn4 phase. Similar to those without the passage of electric currents, only the Ni3Sn4 phase was found at the Ni/solder interface. Directions of movement of electrons, Sn, and Cu atoms are the same at the solder/Ni interface, and the growth rates of the intermetallic layers were enhanced. At the Ni/solder interface, the electrons flow in the opposite direction of the Sn and Cu movement, and the growth rates of the intermetallic layers were retarded. Only the Ni3Sn4 phase was formed from the Sn-3.5 wt% Ag/Ni interfacial reaction with and without the passage of electric currents. Similar to the Sn-0.7 wt% Cu/Ni system, the movement of electrons enhances or retards the growth rates of the intermetallic layers at the solder/Ni and Ni/solder interfaces, respectively. Calculation results show the apparent effective charge za* decreases in magnitude with raising temperatures, which indicates the electromigration effect becomes insignificant at higher temperatures.

  17. 3D Computer Models of T- x- y Diagrams, Forming the Fe-Ni-Co-FeS-NiS-CoS Subsystem

    NASA Astrophysics Data System (ADS)

    Lutsyk, V. I.; Vorob'eva, V. P.

    2017-12-01

    3D computer models of Fe-Ni-Co, Fe-Ni-FeS-NiS, Fe-Co-FeS-CoS, Ni-Co-NiS-CoS T- x- y diagrams have been designed. The geometric structure (35 surfaces, two-phase surface of the reaction type change, 17 phase regions) of the Fe-Ni-FeS-NiS T- x- y diagram is investigated in detail. The liquidus hypersurfaces prediction of the Fe-Ni-Co-FeS-NiS-CoS subsystem is represented.

  18. Template-Mediated Ni(II) Dispersion in Mesoporous SiO2 for Preparation of Highly Dispersed Ni Catalysts: Influence of Template Type.

    PubMed

    Ning, Xin; Lu, Yiyuan; Fu, Heyun; Wan, Haiqin; Xu, Zhaoyi; Zheng, Shourong

    2017-06-07

    Supported Ni catalysts on three mesoporous SiO 2 supports (i.e., SBA-15, MCM-41, and HMS) were prepared using a solid-state reaction between Ni(NO 3 ) 2 and organic template-occluded mesoporous SiO 2 . For comparison, supported Ni catalysts on mesoporous SiO 2 synthesized by the conventional impregnation method were also included. The catalysts were characterized by scanning electron microscopy, X-ray diffraction, UV-vis diffuse reflectance spectroscopy, N 2 adsorption, X-ray photoelectron spectroscopy, H 2 temperature-programmed reduction, transmission electron microscopy, and transmission electron microscopy-energy-dispersive X-ray. The catalytic properties of the catalysts were evaluated using gas-phase catalytic hydrodechlorination of 1,2-dichloroethane. The results showed that upon grinding Ni(NO 3 ) 2 with template-occluded mesoporous SiO 2 , strong coordination between Ni 2+ and dodecylamine was identified in the Ni(NO 3 ) 2 -HMS system. Additionally, the results of H 2 temperature-programmed reduction revealed that NiO in calcined NiO/HMS was reduced at higher temperature than those in calcined NiO/SBA-15 and NiO/MCM-41, reflecting the presence of a strong interaction between NiO and mesoporous SiO 2 in NiO/HMS. Consistently, the average particle sizes of metallic Ni were found to be 2.7, 3.4, and 9.6 nm in H 2 -reduced Ni/HMS, Ni/SBA-15, and Ni/MCM-41, respectively, indicative of a much higher Ni dispersion in Ni/HMS. For the catalytic hydrodechlorination of 1,2-dichloroethane, Ni/MCM-41 synthesized by the solid-state reaction method exhibited a catalytic activity similar to that prepared by the impregnation method, while higher catalytic activities were observed on Ni/HMS and Ni/SBA-15 than on their counterparts prepared by the impregnation method. Furthermore, a higher conversion was identified on Ni/HMS than on Ni/SBA-15 and Ni/MCM-41, highlighting the importance of template type for the preparation of highly dispersed metal catalysts on mesoporous Si

  19. Hydrogen generation from deliquescence of ammonia borane using Ni-Co/r-GO catalyst

    NASA Astrophysics Data System (ADS)

    Chou, Chang-Chen; Chen, Bing-Hung

    2015-10-01

    Hydrogen generation from the catalyzed deliquescence/hydrolysis of ammonia borane (AB) using the Ni-Co catalyst supported on the graphene oxide (Ni-Co/r-GO catalyst) under the conditions of limited water supply was studied with the molar feed ratio of water to ammonia borane (denoted as H2O/AB) at 2.02, 3.97 and 5.93, respectively. The conversion efficiency of ammonia borane to hydrogen was estimated both from the cumulative volume of the hydrogen gas generated and the conversion of boron chemistry in the hydrolysates analyzed by the solid-state 11B NMR. The conversion efficiency of ammonia borane could reach nearly 100% under excess water dosage, that is, H2O/AB = 3.97 and 5.93. Notably, the hydrogen storage capacity could reach as high as 6.5 wt.% in the case with H2O/AB = 2.02. The hydrolysates of ammonia borane in the presence of Ni-Co/r-GO catalyst were mainly the mixture of boric acid and metaborate according to XRD, FT-IR and solid-state 11B NMR analyses.

  20. The crystal structures of Ni{sub 3+x}Sn{sub 4}Zn and Ni{sub 6+x}Sn{sub 8}Zn and their structural relations to Ni{sub 3+x}Sn{sub 4}, NiSn and Ni{sub 5−δ}ZnSn{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmetterer, Clemens, E-mail: clemens.schmetterer@univie.ac.at; Effenberger, Herta Silvia; Rajamohan, Divakar

    2016-06-15

    The crystal structures of two new compounds were determined from single-crystal X-ray diffraction measurements: Ni{sub 3+x}Sn{sub 4}Zn, (x~1.35, a=7.110(2) Å, b=4.123(1) Å, c=10.346(3) Å, β=90.23(2)°, space group I2/m, Z=2. R1=0.025, wR2=0.059 for 748 unique reflections, 35 variable parameters) and Ni{sub 6+x}Sn{sub 8}Zn, x~1.35 (a=12.379(3) Å, b=4.095(1) Å, c=12.155(3) Å, β=116.25(3)°, space group C2/m, Z=2. R1=0.026, wR2=0.052 for 1346 unique reflections, 60 variable parameters). In addition, a structural refinement was performed for Ni{sub 3+x}Sn{sub 4}, x~0.13 (a=12.264(3) Å, b=4.066(1) Å, c=5.223(2) Å, β=104.85(3)°, space group C2/m, Z=2. R1=0.019, wR2=0.046 for 617 unique reflections, 29 variable parameters). The three compounds show pronouncedmore » similarities among each other as well as to the crystal structures of surrounding binary Ni–Sn and ternary Ni–Sn–Zn compounds. In particular, the two new compounds form a homologous series with Ni{sub 3+x}Sn{sub 4}, x~0.13. They contain “Ni{sub 4}Sn{sub 4}” and “Ni{sub 2}Sn{sub 4}” building blocks which by different interconnection build up the distinct structures. Topological relations with NiSn and Ni{sub 5−δ}Sn{sub 4}Zn, δ~0.25 are evident. - Graphical abstract: Projection of the structure of Ni{sub 6+x}ZnSn{sub 8}, x~1.35 and constituent building blocks. Display Omitted - Highlights: • The crystal structures of Ni{sub 6+x}Sn{sub 8}Zn and Ni{sub 3+x}Sn{sub 4}Zn were determined using single crystal XRD. • Topological relations to Ni–Sn and Ni–Sn–Zn compounds were established and discussed. • Common structural units were identified and their interconnection patterns described.« less

  1. Influence of Westerly Wind Events stochasticity on El Niño amplitude: the case of 2014 vs. 2015

    NASA Astrophysics Data System (ADS)

    Puy, Martin; Vialard, Jérôme; Lengaigne, Matthieu; Guilyardi, Eric; DiNezio, Pedro N.; Voldoire, Aurore; Balmaseda, Magdalena; Madec, Gurvan; Menkes, Christophe; Mcphaden, Michael J.

    2017-10-01

    The weak El Niño of 2014 was preceded by anomalously high equatorial Pacific Warm Water Volume (WWV) and strong Westerly Wind Events (WWEs), which typically lead to record breaking El Nino, like in 1997 and 2015. Here, we use the CNRM-CM5 coupled model to investigate the causes for the stalled El Niño in 2014 and the necessary conditions for extreme El Niños. This model is ideally suited to study this problem because it simulates all the processes thought to be critical for the onset and development of El Niño. It captures El Niño preconditioning by WWV, the WWEs characteristics and their deterministic behaviour in response to warm pool displacements. Our main finding is, that despite their deterministic control, WWEs display a sufficiently strong stochastic component to explain the distinct evolutions of El Niño in 2014 and 2015. A 100-member ensemble simulation initialized with early-spring equatorial conditions analogous to those observed in 2014 and 2015 demonstrates that early-year elevated WWV and strong WWEs preclude the occurrence of a La Niña but lead to El Niños that span the weak (with few WWEs) to extreme (with many WWEs) range. Sensitivity experiments confirm that numerous/strong WWEs shift the El Niño distribution toward larger amplitudes, with a particular emphasis on summer/fall WWEs occurrence which result in a five-fold increase of the odds for an extreme El Niño. A long simulation further demonstrates that sustained WWEs throughout the year and anomalously high WWV are necessary conditions for extreme El Niño to develop. In contrast, we find no systematic influence of easterly wind events (EWEs) on the El Niño amplitude in our model. Our results demonstrate that the weak amplitude of El Niño in 2014 can be explained by WWEs stochastic variations without invoking EWEs or remote influences from outside the tropical Pacific and therefore its peak amplitude was inherently unpredictable at long lead-time.

  2. Enhanced hydrogen storage properties of MgH2 co-catalyzed with K2NiF6 and CNTs.

    PubMed

    Sulaiman, N N; Ismail, M

    2016-12-06

    The composite of MgH 2 /K 2 NiF 6 /carbon nanotubes (CNTs) is prepared by ball milling, and its hydrogenation properties are studied for the first time. MgH 2 co-catalyzed with K 2 NiF 6 and CNTs exhibited an improvement in the onset dehydrogenation temperature and isothermal de/rehydrogenation kinetics compared with the MgH 2 -K 2 NiF 6 composite. The onset dehydrogenation temperature of MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs is 245 °C, which demonstrated a reduction of 25 °C compared with the MgH 2 + 10 wt% K 2 NiF 6 composite. In terms of rehydrogenation kinetics, MgH 2 doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs samples absorbed 3.4 wt% of hydrogen in 1 min at 320 °C, whereas the MgH 2 + 10 wt% K 2 NiF 6 sample absorbed 2.6 wt% of hydrogen under the same conditions. For dehydrogenation kinetics at 320 °C, the MgH 2 + 10 wt% K 2 NiF 6 + 5 wt% CNTs sample released 3.3 wt% hydrogen after 5 min of dehydrogenation. By contrast, MgH 2 doped with 10 wt% K 2 NiF 6 released 3.0 wt% hydrogen in the same time period. The apparent activation energy, E a , for the dehydrogenation of MgH 2 doped with 10 wt% K 2 NiF 6 reduced from 100.0 kJ mol -1 to 70.0 kJ mol -1 after MgH 2 was co-doped with 10 wt% K 2 NiF 6 and 5 wt% CNTs. Based on the experimental results, the hydrogen storage properties of the MgH 2 /K 2 NiF 6 /CNTs composite is enhanced because of the catalytic effects of the active species of KF, KH and Mg 2 Ni that are formed in situ during dehydrogenation, as well as the unique structure of CNTs.

  3. Selective oxidation of cube textured Ni and Ni-Cr substrate for the formation of cube textured NiO as a component buffer layer for REBa 2Cu 3O 7+ x (REBCO) coated conductors

    NASA Astrophysics Data System (ADS)

    Lockman, Z.; Goldacker, W.; Nast, R.; deBoer, B.; MacManus-Driscoll, J. L.

    2002-08-01

    Thermal oxidation of cube textured, pure Ni and Ni-Cr tapes was undertaken under different oxidation conditions to form cube textured NiO for the use as a first component of buffer layer for the coated conductor. Cube textured NiO was formed on pure Ni after oxidising for more than 130 min in O 2 at 1250 °C. The oxide thickness was >30 μm. Much shorter oxidation times (20-40 min, NiO thickness of ∼5 μm) and lower temperature (1050 °C) were required to form a similar texture on Ni-Cr foils. In addition, NiO formed on Ni-13%Cr was more highly textured than Ni-10%Cr. A Cr 2O 3 inner layer and NiO outer layer was formed on the Ni-Cr alloys.

  4. Synergetic interface between NiO/Ni3S2 nanosheets and carbon nanofiber as binder-free anode for highly reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Jiang, Jialin; Ma, Chao; Yang, Yinbo; Ding, Jingjing; Ji, Hongmei; Shi, Shaojun; Yang, Gang

    2018-05-01

    A novel heterostructure of NiO/Ni3S2 nanoflake is synthesized and composited with carbon nanofibers (CNF) membrane. NiO/Ni3S2 nanoflakes are homogeneously dispersed in CNF network, herein, NiO/Ni3S2 like leaf and CNF like branch. Carbon nanofibers network efficiently prevents the pulverization and buffers the volume changes of NiO/Ni3S2, meanwhile, NiO/Ni3S2 nanoflakes through the conductive channels of carbon nanofibers own improved Li+ diffusion ability and structural stability. The capacity of NiO/Ni3S2/CNF reaches to 519.2 mA g-1 after 200 cycles at the current density of 0.5 A g-1 while NiO/Ni3S2 fades to 71 mAh g-1 after 40 cycles. Owing to the synergetic structure, the resultant binder-free electrode NiO/Ni3S2/carbon nanofibers shows an excellent reversible lithium storage capability.

  5. Bone cell-materials interactions and Ni ion release of anodized equiatomic NiTi alloy.

    PubMed

    Bernard, Sheldon A; Balla, Vamsi Krishna; Davies, Neal M; Bose, Susmita; Bandyopadhyay, Amit

    2011-04-01

    A laser processed NiTi alloy was anodized for different times in H(2)SO(4) electrolyte with varying pH to create biocompatible surfaces with low Ni ion release as well as bioactive surfaces to enhance biocompatibility and bone cell-material interactions. The anodized surfaces were assessed for their in vitro cell-material interactions using human fetal osteoblast (hFOB) cells for 3, 7 and 11 days, and Ni ion release up to 8 weeks in simulated body fluids. The results were correlated with the surface morphologies of anodized surfaces characterized using field-emission scanning electron microscopy (FESEM). The results show that anodization creates a surface with nano/micro-roughness depending on the anodization conditions. The hydrophilicity of the NiTi surface was found to improve after anodization, as shown by the lower contact angles in cell medium, which dropped from 32° to <5°. The improved wettability of anodized surfaces is further corroborated by their high surface energy, comparable with that of commercially pure Ti. Relatively high surface energies, especially the polar component, and nano/micro surface features of anodized surfaces significantly increased the number of living cells and their adherence and growth on these surfaces. Finally, a significant drop in Ni ion release from 268±11 to 136±15 ppb was observed for NiTi surfaces after anodization. This work indicates that anodization of a NiTi alloy has a positive influence on the surface energy and surface morphology, which in turn improves bone cell-material interactions and reduces Ni ion release in vitro. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. The first principle study of Ni{sub 2}ScGa and Ni{sub 2}TiGa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Özduran, Mustafa; Turgut, Kemal; Arikan, Nihat

    2014-10-06

    We computed the electronic structure, elastic moduli, vibrational properties, and Ni{sub 2}TiGa and Ni{sub 2}ScGa alloys in the cubic L2{sub 1} structure. The obtained equilibrium lattice constants of these alloys are in good agreement with available data. In cubic systems, there are three independent elastic constants, namely C{sub 11}, C{sub 12} and C{sub 44}. We calculated elastic constants in L2{sub 1} structure for Ni{sub 2}TiGa and Ni{sub 2}ScGa using the energy-strain method. The electronic band structure, total and partial density of states for these alloys were investigated within density functional theory using the plane-wave pseudopotential method implemented in Quantum-Espresso programmore » package. From band structure, total and projected density of states, we observed metallic characters of these compounds. The electronic calculation indicate that the predominant contributions of the density of states at Fermi level come from the Ni 3d states and Sc 3d states for Ni{sub 2}TiGa, Ni 3d states and Sc 3d states for Ni{sub 2}ScGa. The computed density of states at Fermi energy are 2.22 states/eV Cell for Ni{sub 2}TiGa, 0.76 states/eV Cell for Ni{sub 2}ScGa. The vibrational properties were obtained using a linear response in the framework at the density functional perturbation theory. For the alloys, the results show that the L2{sub 1} phase is unstable since the phonon calculations have imagine modes.« less

  7. Magnetic and conventional shape memory behavior of Mn-Ni-Sn and Mn-Ni-Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius-Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  8. Process development for Ni-Cr-ThO2 and Ni-Cr-Al-ThO2 sheet

    NASA Technical Reports Server (NTRS)

    Cook, R. C.; Norris, L. F.

    1973-01-01

    A process was developed for the production of thin gauge Ni-Cr-ThO2 sheet. The process was based on the elevated temperature deposition of chromium onto a wrought Ni-2%ThO2 sheet and subsequent high temperature diffusion heat treatments to minimize chromium concentration gradients within the sheet. The mechanical properties of the alloy were found to be critically dependent on those of the Ni-2%ThO2 sheet. A similar process for the production of a Ni-Cr-Al-ThO2 alloy having improved oxidation resistance was investigated but the non-reproducible deposition of aluminum from duplex Cr/Al packs precluded successful scale-up. The mechanical properties of the Ni-Cr-Al-ThO2 alloys were generally equivalent to the best Ni-Cr-ThO2 alloy produced in the programme.

  9. Rationalization of Au concentration and distribution in AuNi@Pt core-shell nanoparticles for oxygen reduction reaction

    DOE PAGES

    An, Wei; Liu, Ping

    2015-09-18

    Improving the activity and stability of Pt-based core–shell nanocatalysts for proton exchange membrane fuel cells while lowering Pt loading has been one of the big challenges in electrocatalysis. Here, using density functional theory, we report the effect of adding Au as the third element to enhance the durability and activity of Ni@Pt core–shell nanoparticles (NPs) during the oxygen reduction reaction (ORR). Our results show that the durability and activity of a Ni@Pt NP can be finely tuned by controlling Au concentration and distribution. For a NiAu@Pt NP, the durability can be greatly promoted by thermodynamically favorable segregation of Au tomore » replace the Pt atoms at vertex, edge, and (100) facets on the shell, while still keeping the ORR activity on the active Pt(111) shell as high as that of Ni@Pt nanoparticles. Such behavior strongly depends on a direct interaction with the Ni interlayer. The results not only highlight the importance of interplay between surface strain on the shell and the interlayer–shell interaction in determining the durability and activity but also provide guidance on how to maximize the usage of Au to optimize the performance of core–shell (Pt) nanoparticles. As a result, such understanding has allowed us to discover a novel NiAu@Pt nanocatalyst for the ORR.« less

  10. Stable isotope tracing of Ni and Cu pollution in North-East Norway: Potentials and drawbacks.

    PubMed

    Šillerová, Hana; Chrastný, Vladislav; Vítková, Martina; Francová, Anna; Jehlička, Jan; Gutsch, Marissa R; Kocourková, Jana; Aspholm, Paul E; Nilsson, Lars O; Berglen, Tore F; Jensen, Henning K B; Komárek, Michael

    2017-09-01

    The use of Ni and Cu isotopes for tracing contamination sources in the environment remains a challenging task due to the limited information about the influence of various biogeochemical processes influencing stable isotope fractionation. This work focuses on a relatively simple system in north-east Norway with two possible endmembers (smelter-bedrock) and various environmental samples (snow, soil, lichens, PM 10 ). In general, the whole area is enriched in heavy Ni and Cu isotopes highlighting the impact of the smelting activity. However, the environmental samples exhibit a large range of δ 60 Ni (-0.01 ± 0.03‰ to 1.71 ± 0.02‰) and δ 65 Cu (-0.06 ± 0.06‰ to -3.94 ± 0.3‰) values which exceeds the range of δ 60 Ni and δ 65 Cu values determined in the smelter, i.e. in feeding material and slag (δ 60 Ni from 0.56 ± 0.06‰ to 1.00 ± 0.06‰ and δ 65 Cu from -1.67 ± 0.04‰ to -1.68 ± 0.15‰). The shift toward heavier Ni and Cu δ values was the most significant in organic rich topsoil samples in the case of Ni (δ 60 Ni up to 1.71 ± 0.02‰) and in lichens and snow in the case of Cu (δ 65 Cu up to -0.06 ± 0.06‰ and -0.24 ± 0.04‰, respectively). These data suggest an important biological and biochemical fractionation (microorganisms and/or metal uptake by higher plants, organo-complexation etc.) of Ni and Cu isotopes, which should be quantified separately for each process and taken into account when using the stable isotopes for tracing contamination in the environment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The effect of gradient boracic polyanion-doping on structure, morphology, and cycling performance of Ni-rich LiNi0.8Co0.15Al0.05O2 cathode material

    NASA Astrophysics Data System (ADS)

    Chen, Tao; Li, Xiang; Wang, Hao; Yan, Xinxiu; Wang, Lei; Deng, Bangwei; Ge, Wujie; Qu, Meizhen

    2018-01-01

    A gradient boracic polyanion-doping method is applied to Ni-rich LiNi0.8Co0.15Al0.05O2 (NCA) cathode material in this study to suppress the capacity/potential fade during charge-discharge cycling. Scanning electron microscope (SEM) results show that all samples present spherical morphology and the secondary particle size increases with increasing boron content. X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) results demonstrate that boracic polyanions are successfully introduced into the bulk material and more enriched in the outer layer. XPS analysis further reveals that the valence state of Ni3+ is partly reduced to Ni2+ at the surface due to the incorporation of boracic polyanions. From the electrochemical measurements, B0.015-NCA electrode exhibits excellent cycling performance, even at high potential and elevated temperature. Moreover, the SEM images illustrate the presence of cracks and a thick SEI layer on pristine particles after 100 cycles at high temperature, while the B0.015-NCA particles show an intact structure and thin SEI layer. Electrochemical impedance spectroscopy confirms that the boracic polyanion doping could hinder the impedance increase during cycling at elevated temperature. These results clearly indicate that the gradient boracic polyanion-doping contributes to the remarkable enhancement of structure stability and cycling performance of NCA.

  12. The asymmetric response of Yangtze river basin summer rainfall to El Niño/La Niña

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Dunstone, Nick J.; Scaife, Adam A.; Bett, Philip E.; Li, Chaofan; Lu, Bo; Ren, Hong-Li; Smith, Doug M.; Stephan, Claudia C.

    2018-02-01

    The Yangtze river basin, in South East China, experiences anomalously high precipitation in summers following El Niño. This can lead to extensive flooding and loss of life. However, the response following La Niña has not been well documented. In this study, the response of Yangtze summer rainfall to El Niño/La Niña is found to be asymmetric, with no significant response following La Niña. The nature of this asymmetric response is found to be in good agreement with that simulated by the Met Office seasonal forecast system. Yangtze summer rainfall correlates positively with spring sea surface temperatures in the Indian Ocean and northwest Pacific. Indian Ocean sea surface temperatures are found to respond linearly to El Niño/La Niña, and to have a linear impact on Yangtze summer rainfall. However, northwest Pacific sea surface temperatures respond much more strongly following El Niño and, further, correlate more strongly with positive rainfall years. It is concluded that, whilst delayed Indian Ocean signals may influence summer Yangtze rainfall, it is likely that they do not lead to the asymmetric nature of the rainfall response to El Niño/La Niña.

  13. Ni3Si2 nanowires grown in situ on Ni foam for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Jiang, Yizhe; Li, Zhihui; Li, Beibei; Zhang, Jinying; Niu, Chunming

    2016-07-01

    Ni3Si2 nanowires and nanoawls have grown in situ on the surface of Ni foams by a controlled low pressure chemical vapor deposition process. Structural characterization shows that the individual Ni3Si2 nanowire is single crystal covered with a thin layer (1-2 nm) of SiO2 with a diameter of ∼20-30 nm and length of ten's micrometers. Individual nanoawl with a circular cone shape is polycrystalline. Both Ni3Si2 nanowire and nanoawl samples are evaluated as potential electrode materials for supercapacitors. The nanowire electrode delivers a very high specific capacitance and excellent rate capability. A specific capacitance of 760 F g-1 is measured at current density of 0.5 A g-1, which decreases to 518 F g-1 when the current density increases to 10 A g-1. The capacitance is dominated by pseudocapacitance with a mechanism similar to that of NiO or Ni(OH)2 widely studied in the literature. An asymmetric supercapacitor fabricated by pairing Ni3Si2 nanowire electrode with an activated carbon electrode exhibits energy densities of 17.5 Wh kg-1 and 8.8 Wh kg-1 at power densites of 301 W kg-1 and 3000 W kg-1.

  14. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    NASA Astrophysics Data System (ADS)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  15. Thermal modeling of NiH2 batteries

    NASA Technical Reports Server (NTRS)

    Ponthus, Agnes-Marie; Alexandre, Alain

    1994-01-01

    The following are discussed: NiH2 battery mission and environment; NiH2 cell heat dissipation; Nodal software; model development general philosophy; NiH2 battery model development; and NiH2 experimental developments.

  16. Who is El Niño?

    NASA Astrophysics Data System (ADS)

    Philander, S. George

    It is a curious story, about a phenomenon we first welcomed as a blessing but now view with dismay, if not horror [Philander, 1998]. We named it El Niño for the child Jesus, provided it with relatives—La Niña and ENSO—and are devoting innumerable studies to the description and idealization of this family. These scriptures provide such a broad spectrum of historical, cultural, and scientific perspectives that there is now confusion about the identity of El Niño. Trenberth [1997] summarizes the situation as follows.The atmospheric component tied to El Niño is termed the “Southern Oscillation.” Scientists often call the phenomenon where the atmosphere and ocean collaborate ENSO, short for El Niño-Southern Oscillation. El Niño then corresponds to the warm phase of ENSO. The opposite “La Niña” (“the girl” in Spanish) phase consists of a basinwide cooling of the tropical Pacific and thus the cold phase of ENSO. However, for the public, the term for the whole phenomenon is “El Niño.”

  17. Hear ye? Hear ye! Successful auditory aging.

    PubMed Central

    Gates, G A; Rees, T S

    1997-01-01

    Age-related hearing loss (presbycusis) is a multifactorial process that affects nearly all people in their senior years. Most cases are due to a loss of cochlear hair cell function and are well mediated by communication courtesy and modern amplification technology. Severe hearing loss is generally due to cochlear problems or age-related diseases and may require speech reading, assistive listening devices, and cochlear implants, depending on the degree of loss. Presbycusis may seriously impair communication and contribute to isolation, depression, and possibly dementia. Accurate diagnosis and prompt remediation are widely available but are frequently underused. Geriatric health care and well-being is enhanced by the detection and remediation of communication disorders. PMID:9348755

  18. Visible-light-responsive photocatalysts toward water oxidation based on NiTi-layered double hydroxide/reduced graphene oxide composite materials.

    PubMed

    Li, Bei; Zhao, Yufei; Zhang, Shitong; Gao, Wa; Wei, Min

    2013-10-23

    A visible-light responsive photocatalyst was fabricated by anchoring NiTi-layered double hydroxide (NiTi-LDH) nanosheets to the surface of reduced graphene oxide sheets (RGO) via an in situ growth method; the resulting NiTi-LDH/RGO composite displays excellent photocatalytic activity toward water splitting into oxygen with a rate of 1.968 mmol g(-1) h(-1) and a quantum efficiency as high as 61.2% at 500 nm, which is among the most effective visible-light photocatalysts. XRD patterns and SEM images indicate that the NiTi-LDH nanosheets (diameter: 100-200 nm) are highly dispersed on the surface of RGO. UV-vis absorption spectroscopy exhibits that the introduction of RGO enhances the visible-light absorption range of photocatalysts, which is further verified by the largely decreased band gap (∼1.78 eV) studied by cyclic voltammetry measurements. Moreover, photoluminescence (PL) measurements indicate a more efficient separation of electron-hole pairs; electron spin resonance (ESR) and Raman scattering spectroscopy confirm the electrons transfer from NiTi-LDH nanosheets to RGO, accounting for the largely enhanced carrier mobility and the resulting photocatalytic activity in comparison with pristine NiTi-LDH material. Therefore, this work demonstrates a facile approach for the fabrication of visible-light responsive NiTi-LDH/RGO composite photocatalysts, which can be used as a promising candidate in solar energy conversion and environmental science.

  19. Hydrogen Environment Assisted Cracking of Ultra-High Strength AetMet(Trademark) 100 Steel

    DTIC Science & Technology

    2006-01-01

    landing gear. LV.B. Effect of Steel Composition on Intergranular HEAC Instances of intergranular HEAC and IiHAC in AerMetTm 100 were rarely observed in the...fit the H concentration effect with that of the other elements. While the Maraging and Custom 465TM steels are relatively pure, the H concentration...to -0.9 VsCE and increased cracking at more anodic and more cathodic potentials 471 . Similar effects were noted for HEAC of 18Ni Maraging steel , with

  20. Molecular symmetry determines the mechanism of a very efficient ultrafast excitation-to-heat conversion in Ni-substituted chlorophylls.

    PubMed

    Pilch, Mariusz; Dudkowiak, Alina; Jurzyk, Barbara; Lukasiewicz, Jędrzej; Susz, Anna; Stochel, Grażyna; Fiedor, Leszek

    2013-01-01

    In the Ni-substituted chlorophylls, an ultrafast (<60 fs) deactivation channel is created, which is not present in Ni-porphyrins. This observation prompted us to investigate in detail the mechanism of excitation-to-heat conversion in Ni-substituted chlorophylls, experimentally, using time-resolved laser-induced optoacoustic spectroscopy, and theoretically, using group theory approach. The Ni-substituted chlorophylls show exceptional photostability and the optoacoustic measurements confirm the prompt and very efficient (100%) excitation-into-heat conversion in these complexes. Considering their excellent spectral properties and the loss-free excitation-into-heat conversion they are likely to become a new class of versatile photocalorimetric references. The curious features of the Ni-substituted chlorophylls originate from the symmetry of a ligand field created in the central cavity. The central N-Ni(2+) bonds, formed via the donation of two electrons from each of the sp(2) orbitals of two central nitrogens to an empty [Formula: see text] hybrid centered on Ni(2+), have a considerable covalent character. The extreme rate of excited state relaxation is then not due to a ladder of the metal centered d-states, often invoked in metalloporphyrins, but seems to result from a peculiar topology of the potential energy surface (a saddle-shaped crossing) due to the covalent character of the N-Ni(2+) bonds. This is confirmed by a strong 0→0 character of electronic transitions in these complexes indicating a similarity of their equilibrium geometries in the ground (S(0)) and the excited states (both Q(X) and Q(Y)). The excitation energy is very efficiently converted into molecular vibrations and dissipated as heat, involving the central Ni(2+). These Ni-substituted pigments pose a fine exemplification of symmetry control over properties of excited states of transition metal complexes. Copyright © 2012. Published by Elsevier B.V.