Sample records for nanometer silica functionalized

  1. Sample Desorption/Onization From Mesoporous Silica

    DOEpatents

    Iyer, Srinivas; Dattelbaum, Andrew M.

    2005-10-25

    Mesoporous silica is shown to be a sample holder for laser desorption/ionization of mass spectrometry. Supported mesoporous silica was prepared by coating an ethanolic silicate solution having a removable surfactant onto a substrate to produce a self-assembled, ordered, nanocomposite silica thin film. The surfactant was chosen to provide a desired pore size between about 1 nanometer diameter and 50 nanometers diameter. Removal of the surfactant resulted in a mesoporous silica thin film on the substrate. Samples having a molecular weight below 1000, such as C.sub.60 and tryptophan, were adsorbed onto and into the mesoporous silica thin film sample holder and analyzed using laser desorption/ionization mass spectrometry.

  2. Nanometer-sized ceria-coated silica-iron oxide for the reagentless microextraction/preconcentration of heavy metals in environmental and biological samples followed by slurry introduction to ICP-OES.

    PubMed

    Dados, A; Paparizou, E; Eleftheriou, P; Papastephanou, C; Stalikas, C D

    2014-04-01

    A slurry suspension sampling technique is developed and optimized for the rapid microextraction of heavy metals and analysis using nanometer-sized ceria-coated silica-iron oxide particles and inductively coupled plasma optical emission spectrometry (ICP-OES). Magnetic-silica material is synthesized by a co-precipitation and sol-gel method followed by ceria coating through a precipitation. The large particles are removed using a sedimentation-fractionation procedure and a magnetic homogeneous colloidal suspension of ceria-modified iron oxide-silica is produced for microextraction. The nanometer-sized particles are separated from the sample solution magnetically and analyzed with ICP-OES using a slurry suspension sampling approach. The ceria-modified iron oxide-silica does not contain any organic matter and this probably justifies the absence of matrix effect on plasma atomization capacity, when increased concentrations of slurries are aspirated. The As, Be, Mo, Cr, Cu, Pb, Hg, Sb, Se and V can be preconcentrated by the proposed method at pH 6.0 while Mn, Cd, Co and Ni require a pH ≥ 8.0. Satisfactory values are obtained for the relative standard deviations (2-6%), recoveries (88-102%), enrichment factors (14-19) and regression correlation coefficients as well as detectability, at sub-μg L(-1) levels. The applicability of magnetic ceria for the microextraction of metal ions in combination with the slurry introduction technique using ICP is substantiated by the analysis of environmental water and urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  4. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  5. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  6. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  7. Function of membrane protein in silica nanopores: incorporation of photosynthetic light-harvesting protein LH2 into FSM.

    PubMed

    Oda, Ippei; Hirata, Kotaro; Watanabe, Syoko; Shibata, Yutaka; Kajino, Tsutomu; Fukushima, Yoshiaki; Iwai, Satoshi; Itoh, Shigeru

    2006-01-26

    A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.

  8. Cellulose-silica/gold nanomaterials for electronic applications.

    PubMed

    Kim, Gwang-Hoon; Ramesh, Sivalingam; Kim, Joo-Hyung; Jung, Dongsoo; Kim, Heung Soo

    2014-10-01

    Cellulose and one dimensional nano-material composite has been investigated for various industrial applications due to their optical, mechanical and electrical properties. In present investigation, cellulose/silica and silica-gold hybrid biomaterials were prepared by sol-gel covalent cross-linking process. The tetraethoxysiliane (TEOS) and gold precursors and γ-aminopropyltriethoxysilane (γ-APTES) as coupling agent were used for sol-gel cross-linking process. The chemical and morphological properties of cellulose/silica and cellulose/silica-gold nano-materials via covalent cross-linking hybrids were confirmed by FTIR, XRD, SEM, and TEM analysis. In the sol-gel process, the inorganic particles were dispersed in the cellulose host matrix at the nanometer scale, bonding to the cellulose through the covalent bonds.

  9. Orthogonal chemical functionalization of patterned gold on silica surfaces

    PubMed Central

    Léonard, Didier; Le Mogne, Thierry; Zuttion, Francesca; Chevalier, Céline; Phaner-Goutorbe, Magali; Souteyrand, Éliane

    2015-01-01

    Summary Single-step orthogonal chemical functionalization procedures have been developed with patterned gold on silica surfaces. Different combinations of a silane and a thiol were simultaneously deposited on a gold/silica heterogeneous substrate. The orthogonality of the functionalization (i.e., selective grafting of the thiol on the gold areas and the silane on the silica) was demonstrated by X-ray photoelectron spectroscopy (XPS) as well as time-of-flight secondary ion mass spectrometry (ToF–SIMS) mapping. The orthogonal functionalization was used to immobilize proteins onto gold nanostructures on a silica substrate, as demonstrated by atomic force microscopy (AFM). These results are especially promising in the development of future biosensors where the selective anchoring of target molecules onto nanostructured transducers (e.g., nanoplasmonic biosensors) is a major challenge. PMID:26734519

  10. In vitro effects of cisplatin-functionalized silica nanoparticles on chondrocytes

    NASA Astrophysics Data System (ADS)

    Bhowmick, Tridib Kumar; Yoon, Diana; Patel, Minal; Fisher, John; Ehrman, Sheryl

    2010-10-01

    In this study, we evaluated the combined effect of a known toxic molecule, cisplatin, in combination with relatively nontoxic nanoparticles, amorphous fumed silica, on chondrocyte cells. Cisplatin was attached to silica nanoparticles using aminopropyltriethoxy silane as a linker molecule, and characterized in terms of size, shape, specific surface area, as well as the dissolution of cisplatin from the silica surface. The primary particle diameter of the as-received silica nanoparticles ranged from 7.1 to 61 nm, estimated from measurements of specific surface area, and the primary particles were aggregated. The effects of cisplatin-functionalized silica particles with different specific surface areas (41, 85, 202, 237, and 297 m2/g) were compared in vitro on chondrocytes, the parenchymal cell of hyaline cartilage. The results show that adverse effects on cell function, as evidenced by reduced metabolic activity measured by the MTT assay and increased membrane permeability observed using the Live/Dead stain, can be correlated with specific surface area of the silica. Cisplatin-functionalized silica nanoparticles with the highest specific surface area incited the greatest response, which was almost equivalent to that induced by free cisplatin. This result suggests the importance of particle specific surface area in interactions between cells and surface-functionalized nanomaterials.

  11. Analysis of Lipid Phase Behavior and Protein Conformational Changes in Nanolipoprotein Particles upon Entrapment in Sol–Gel-Derived Silica

    PubMed Central

    2015-01-01

    The entrapment of nanolipoprotein particles (NLPs) and liposomes in transparent, nanoporous silica gel derived from the precursor tetramethylorthosilicate was investigated. NLPs are discoidal patches of lipid bilayer that are belted by amphiphilic scaffold proteins and have an average thickness of 5 nm. The NLPs in this work had a diameter of roughly 15 nm and utilized membrane scaffold protein (MSP), a genetically altered variant of apolipoprotein A-I. Liposomes have previously been examined inside of silica sol–gels and have been shown to exhibit instability. This is attributed to their size (∼150 nm) and altered structure and constrained lipid dynamics upon entrapment within the nanometer-scale pores (5–50 nm) of the silica gel. By contrast, the dimensional match of NLPs with the intrinsic pore sizes of silica gel opens the possibility for their entrapment without disruption. Here we demonstrate that NLPs are more compatible with the nanometer-scale size of the porous environment by analysis of lipid phase behavior via fluorescence anisotropy and analysis of scaffold protein secondary structure via circular dichroism spectroscopy. Our results showed that the lipid phase behavior of NLPs entrapped inside of silica gel display closer resemblance to its solution behavior, more so than liposomes, and that the MSP in the NLPs maintain the high degree of α-helix secondary structure associated with functional protein–lipid interactions after entrapment. We also examined the effects of residual methanol on lipid phase behavior and the size of NLPs and found that it exerts different influences in solution and in silica gel; unlike in free solution, silica entrapment may be inhibiting NLP size increase and/or aggregation. These findings set precedence for a bioinorganic hybrid nanomaterial that could incorporate functional integral membrane proteins. PMID:25062385

  12. Chitosan-silica complex membranes from sulfonic acid functionalized silica nanoparticles for pervaporation dehydration of ethanol-water solutions.

    PubMed

    Liu, Ying-Ling; Hsu, Chih-Yuan; Su, Yu-Huei; Lai, Juin-Yih

    2005-01-01

    Nanosized silica particles with sulfonic acid groups (ST-GPE-S) were utilized as a cross-linker for chitosan to form a chitosan-silica complex membranes, which were applied to pervaporation dehydration of ethanol-water solutions. ST-GPE-S was obtained from reacting nanoscale silica particles with glycidyl phenyl ether, and subsequent sulfonation onto the attached phenyl groups. The chemical structure of the functionalized silica was characterized with FTIR, (1)H NMR, and energy-dispersive X-ray. Homogeneous dispersion of the silica particles in chitosan was observed with electronic microscopies, and the membranes obtained were considered as nanocomposites. The silica nanoparticles in the membranes served as spacers for polymer chains to provide extra space for water permeation, so as to bring high permeation rates to the complex membranes. With addition of 5 parts per hundred of functionalized silica into chitosan, the resulting membrane exhibited a separation factor of 919 and permeation flux of 410 g/(m(2) h) in pervaporation dehydration of 90 wt % ethanol aqueous solution at 70 degrees C.

  13. Effect of occupational silica exposure on pulmonary function.

    PubMed

    Hertzberg, Vicki Stover; Rosenman, Kenneth D; Reilly, Mary Jo; Rice, Carol H

    2002-08-01

    To assess the effect of occupational silica exposure on pulmonary function. Epidemiologic evaluation based on employee interview, plant walk-through, and information abstracted from company medical records, employment records, and industrial hygiene measurements. Drawn from 1,072 current and former hourly wage workers employed before January 1, 1986. Thirty-six individuals with radiographic evidence of parenchymal changes consistent with asbestosis or silicosis were excluded. In addition, eight individuals whose race was listed as other than white or black were excluded. Analysis of spirometry data (FVC, FEV1, FEV1/FVC) only using the test results that met American Thoracic Society criteria for reproducibility and acceptability shows decreasing percent-predicted FVC and FEV1 and decreasing FEV1/FVC in relationship to increasing silica exposure among smokers. Logistic regression analyses of abnormal FVC and abnormal FEV1 values (where abnormal is defined as < 95% confidence limit for predicted using the Knudson prediction equations) show odds ratios of 1.49 and 1.68, respectively, for occurrence of abnormal result with 40 years of exposure at the Occupational Safety and Health Administration (OSHA)-allowable level of 0.1 mg/m3. Longitudinal analyses of FVC and FEV1 measurements show a 1.6 mL/yr and 1.1 mL/yr, respectively, decline per milligram/cubic meter mean silica exposure (p = 0.011 and p = 0.001, respectively). All analyses were adjusted for weight, height, age, ethnicity, smoking status, and other silica exposures. Systematic problems leading to measurement error were possible, but would have been nondifferential in effect and not related to silica measurements. There is a consistent association between increased pulmonary function abnormalities and estimated measures of cumulative silica exposure within the current allowable OSHA regulatory level. Despite concerns about the quality control of the pulmonary function measurements use in these analyses, our

  14. Functionalized mesoporous silica materials for molsidomine adsorption: Thermodynamic study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alyoshina, Nonna A.; Parfenyuk, Elena V., E-mail: evp@iscras.ru

    2013-09-15

    A series of unmodified and organically modified mesoporous silica materials was prepared. The unmodified mesoporous silica was synthesized via sol–gel synthesis in the presence of D-glucose as pore-forming agent. The functionalized by phenyl, aminopropyl and mercaptopropyl groups silica materials were prepared via grafting. The fabricated adsorbent materials were characterized by Fourier transform infrared spectroscopy (FTIR) analysis, N{sub 2} adsorption/desorption and elemental analysis methods. Then their adsorption properties for mesoionic dug molsidomine were investigated at 290–313 K and physiological pH value. Thermodynamic parameters of molsidomine adsorption on the synthesized materials have been calculated. The obtained results showed that the adsorption processmore » of molsidomine on the phenyl modified silica is the most quantitatively and energetically favorable. The unmodified and mercaptopropyl modified silica materials exhibit significantly higher adsorption capacities and energies for molsidomine than the aminopropyl modified sample. The effects are discussed from the viewpoint of nature of specific interactions responsible for the adsorption. - Graphical abstract: Comparative analysis of the thermodynamic characteristics of molsidomine adsorption showed that the adsorption process on mesoporous silica materials is controlled by chemical nature of surface functional groups. Molsidomine adsorption on the phenyl modified silica is the most quantitatively and energetically favorable. Taking into account ambiguous nature of mesoionic compounds, it was found that molsidomine is rather aromatic than dipolar. Display Omitted - Highlights: • Unmodified and organically modified mesoporous silica materials were prepared. • Molsidomine adsorption on the silica materials was studied. • Phenyl modified silica shows the highest adsorption capacity and favorable energy. • Molsidomine exhibits the lowest affinity to aminopropyl modified silica.« less

  15. Fabrication of Controllable Pore and Particle Size of Mesoporous Silica Nanoparticles via a Liquid-phase Synthesis Method and Its Absorption Characteristics

    NASA Astrophysics Data System (ADS)

    Nandiyanto, Asep Bayu Dani; Iskandar, Ferry; Okuyama, Kikuo

    2011-12-01

    Monodisperse spherical mesoporous silica nanoparticles were successfully synthesized using a liquid-phase synthesis method. The result showed particles with controllable pore size from several to tens nanometers with outer diameter of several tens nanometers. The ability in the control of pore size and outer diameter was altered by adjusting the precursor solution ratios. In addition, we have conducted the adsorption ability of the prepared particles. The result showed that large organic molecules were well-absorbed to the prepared silica porous particles, in which this result was not obtained when using commercial dense silica particle and/or hollow silica particle. With this result, the prepared mesoporous silica particles may be used efficiently in various applications, such as sensors, pharmaceuticals, environmentally sensitive pursuits, etc.

  16. Nanostructured Silica/Gold-Cellulose-Bonded Amino-POSS Hybrid Composite via Sol-Gel Process and Its Properties.

    PubMed

    Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-Jun; Hong, Gwang-Wook; Kim, Joo-Hyung

    2017-12-01

    It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

  17. Nanostructured Silica/Gold-Cellulose-Bonded Amino-POSS Hybrid Composite via Sol-Gel Process and Its Properties

    NASA Astrophysics Data System (ADS)

    Ramesh, Sivalingam; Kim, Heung Soo; Lee, Young-June; Hong, Gwang-Wook; Kim, Joo-Hyung

    2017-06-01

    It is demonstrated in this paper that silica nanoparticles coated with core/shell gold provide efficient thermal, optical, and morphological properties with respect to the cellulose-polyhedral oligomeric silsesquioxanes (POSS) hybrid system. The one-step synthesis of a silica/gold nanocomposite is achieved with a simultaneous hydrolysis and reduction of gold chloride in the presence of formic acid, and the trimethoxysilane group acts as a silica precursor. The focus here comprises the synthesis of cellulose-POSS and silica/gold hybrid nanocomposites using the following two methods: (1) an in situ sol-gel process and (2) a polyvinyl alcohol/tetrakis (hydroxymethyl)phosphonium chloride process. Accordingly, the silica/gold core/shell nanoparticles are synthesized. The growth and attachment of the gold nanoparticles onto the functionalized surface of the silica at the nanometer scale is achieved via both the sol-gel and the tetrakis (hydroxymethyl) phosphonium chloride processes. The cellulose-POSS-silica/gold nanocomposites are characterized according to Fourier transformed infrared spectroscopy, Raman, X-ray diffraction, UV, photoluminescence, SEM, energy-dispersive X-ray spectroscopy, TEM, thermogravimetric, and Brunauer-Emmett-Teller analyses.

  18. Functionalized mesoporous silica nanoparticles for oral delivery of budesonide

    NASA Astrophysics Data System (ADS)

    Yoncheva, K.; Popova, M.; Szegedi, A.; Mihaly, J.; Tzankov, B.; Lambov, N.; Konstantinov, S.; Tzankova, V.; Pessina, F.; Valoti, M.

    2014-03-01

    Non-functionalized and amino-functionalized mesoporous silica nanoparticle were loaded with anti-inflammatory drug budesonide and additionally post-coated with bioadhesive polymer (carbopol). TEM images showed spherical shape of the nanoparticles and slightly higher polydispersity after coating with carbopol. Nitrogen physisorption and thermogravimetic analysis revealed that more efficient loading and incorporation into the pores of nanoparticles was achieved with the amino-functionalized silica carrier. Infrared spectra indicated that the post-coating of these nanoparticles with carbopol led to the formation of bond between amino groups of the functionalized carrier and carboxyl groups of carbopol. The combination of amino-functionalization of the carrier with the post-coating of the nanoparticles sustained budesonide release. Further, an in vitro model of inflammatory bowel disease showed that the cytoprotective effect of budesonide loaded in the post-coated silica nanoparticles on damaged HT-29 cells was more pronounced compared to the cytoprotection obtained with pure budesonide.

  19. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into amore » final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.« less

  20. High reactive sulphide chemically supported on silica surface to prepare functional nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Lijuan; Guo, Xiaohui; Jia, Zhixin; Tang, Yuhan; Wu, Lianghui; Luo, Yuanfang; Jia, Demin

    2018-06-01

    A solid-phase preparation method was applied to obtain a novel, green and effective functional nanoparticle, silica-supported sulfur monochloride (silica-s-S2Cl2), by the chemical reaction between chlorine atom and silicon hydroxyl on the silica surface. Through this chemical reaction, silica surface supported with high content of sulfur, and the functional nanoparticles can not only vulcanize the rubber instead of sulfur or other vulcanizing agent with high performance, but also improve the filler-rubber interaction as a modifier due to the improved modification effect. 29Si NMR, Raman spectroscopy, Element analysis and TGA confirm that the sulfur monochloride is chemically bonded on the silica surface. Cure properties measurement, morphology of filler dispersion, mechanical properties measurement, immobilized polymer layer and oxidation induction time increment together show that the novel vulcanizing agent silica-s-S2Cl2 instead of sulfur in rubber vulcanization gives rise to significant improvement in the crosslinking density and the interfacial adhesion between silica particles and the rubber matrix, which is on account of the promoted vulcanizing on the functional silica nanoparticles surface with the supported sulfur.

  1. Controlled growth of silica-titania hybrid functional nanoparticles through a multistep microfluidic approach.

    PubMed

    Shiba, K; Sugiyama, T; Takei, T; Yoshikawa, G

    2015-11-11

    Silica/titania-based functional nanoparticles were prepared through controlled nucleation of titania and subsequent encapsulation by silica through a multistep microfluidic approach, which was successfully applied to obtaining aminopropyl-functionalized silica/titania nanoparticles for a highly sensitive humidity sensor.

  2. Enhanced stab resistance of armor composites with functionalized silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Mahfuz, Hassan; Clements, Floria; Rangari, Vijaya; Dhanak, Vinod; Beamson, Graham

    2009-03-01

    Traditionally shear thickening fluid (STF) reinforced with Kevlar has been used to develop flexible armor. At the core of the STF-Kevlar composites is a mixture of polyethylene glycol (PEG) and silica particles. This mixture is often known as STF and is consisted of approximately 45 wt % PEG and 55 wt % silica. During rheological tests, STF shows instantaneous spike in viscosity above a critical shear rate. Fabrication of STF-Kevlar composites requires preparation of STF, dilution with ethanol, and then impregnation with Kevlar. In the current approach, nanoscale silica particles were dispersed directly into a mixture of PEG and ethanol through a sonic cavitation process. Two types of silica nanoparticles were used in the investigation: 30 nm crystalline silica and 7 nm amorphous silica. The admixture was then reinforced with Kevlar fabric to produce flexible armor composites. In the next step, silica particles are functionalized with a silane coupling agent to enhance bonding between silica and PEG. The performance of the resulting armor composites improved significantly. As evidenced by National Institute of Justice spike tests, the energy required for zero-layer penetration (i.e., no penetration) jumped twofold: from 12 to 25 J cm2/g. The source of this improvement has been traced to the formation of siloxane (Si-O-Si) bonds between silica and PEG and superior coating of Kevlar filaments with particles. Fourier transform infrared, x-ray photoemission spectroscopy, and scanning electron microscopy studies were performed to examine chemical bonds, elemental composition, and particle dispersion responsible for such improvement. In summary, our experiments have demonstrated that functionalization of silica particles followed by direct dispersion into PEG resulted in superior Kevlar composites having much higher spike resistance.

  3. Removal of formaldehyde from air using functionalized silica supports.

    PubMed

    Ewlad-Ahmed, Abdunaser M; Morris, Michael A; Patwardhan, Siddharth V; Gibson, Lorraine T

    2012-12-18

    This paper demonstrates the use of functionalized meso-silica materials (MCM-41 or SBA-15) as adsorbents for formaldehyde (H₂CO) vapor from contaminated air. Additionally new green nanosilica (GNs) materials were prepared via a bioinspired synthesis route and were assessed for removal of H₂CO from contaminated indoor air. These exciting new materials were prepared via rapid, 15 min, environmentally friendly synthesis routes avoiding any secondary pollution. They provided an excellent platform for functionalization and extraction of H₂CO demonstrating similar performance to the conventional meso-silica materials. To the authors' knowledge this is the first reported practical application of this material type. Prior to trapping, all materials were functionalized with amino-propyl groups which led to chemisorption of H₂CO; removing it permanently from air. No retention of H₂CO was achieved with nonfunctionalized material and it was observed that best extraction performance required a dynamic adsorption setup when compared to passive application. These results demonstrate the first application of GNs as potential adsorbents and functionalized meso-silica for use in remediation of air pollution in indoor air.

  4. Rod-shaped silica particles derivatized with elongated silver nanoparticles immobilized within mesopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mnasri, Najib; Materials, Environment and Energy Laboratory; Charnay, Clarence

    Silver-derivatized silica particles possessing a non-spherical morphology and surface plasmon resonance properties have been achieved. Nanometer-sized silica rods with uniformly sized mesopore channels were prepared first making use of alkyltrimethyl ammonium surfactants as porogens and the 1:0.10 tetraethyl orthosilicate (TEOS) : 3-aminopropyltriethoxysilane (APTES) mixture as a silicon source. Silica rods were subsequently functionalized by introducing elongated silver nanoparticles within the intra-particle mesopores thanks to the AgNO{sub 3} reduction procedure based on the action of hemiaminal groups previously located on the mesopore walls. The textural and structural features of the samples were inferred from the combined characterization studies including SEM andmore » TEM microscopy, nitrogen adsorption-desorption at 77 K, powder XRD in the small- and wide-angle region, as well as UV–visible spectroscopy. {sup 129}Xe NMR spectroscopy appeared particularly useful to obtain a correct information about the porous structure of rod-shaped silica particles and the silver incorporation within their intra-particle mesopores. - Highlights: • Mesoporous monodisperse submicron-sized silica rods were achieved. • Silver nanoparticles were located lengthwise within the intra-particle mesopores. • Textural and plasmonic properties of particles studied by {sup 129}Xe NMR and UV–Vis.« less

  5. Structure and dynamics of spin-labeled insulin entrapped in a silica matrix by the sol-gel method.

    PubMed

    Vanea, E; Gruian, C; Rickert, C; Steinhoff, H-J; Simon, V

    2013-08-12

    The structure and conformational dynamics of insulin entrapped into a silica matrix was monitored during the sol to maturated-gel transition by electron paramagnetic resonance (EPR) spectroscopy. Insulin was successfully spin-labeled with iodoacetamide and the bifunctional nitroxide reagent HO-1944. Room temperature continuous wave (cw) EPR spectra of insulin were recorded to assess the mobility of the attached spin labels. Insulin conformation and its distribution within the silica matrix were studied using double electron-electron resonance (DEER) and low-temperature cw-EPR. A porous oxide matrix seems to form around insulin molecules with pore diameters in the order of a few nanometers. Secondary structure of the encapsulated insulin investigated by Fourier transform infrared spectroscopy proved a high structural integrity of insulin even in the dried silica matrix. The results show that silica encapsulation can be used as a powerful tool to effectively isolate and functionally preserve biomolecules during preparation, storage, and release.

  6. Surfactant anchoring and aggregate structure at silica nanoparticles: a persuasive facade for the adsorption of azo dye.

    PubMed

    Chaudhary, Savita; Sood, Aastha; Mehta, S K

    2014-09-01

    Nanotechnology's aptitude to silhouette matter at the scale of the nanometer has unlocked the flap to new inventions of applications in material science and nanomedicine. Engineered silica nanoparticles are key actor of this strategy. The amphitheatre of silica nanoparticles is inexplicably bilateral. Silica particles play essential function in everyday commercial purposes for instance energy storage, chemical and biological sensors, food processing and catalysis. One of the most appealing applications to emerge in the recent years is the use of silica particles for cleaning up contaminants in groundwater, soil and sediments. Herein this work, surfactant modified silica nanoparticles with unique surface and pore properties as well as high surface areas have been extensively investigated as an alternative for the dye removal. The physical and chemical characterizations of adsorbent have been studied using FTIR and scanning electron microscopy. The present investigation aims to explore the comparative effect of different surfactants during the formation of the target composite materials. The effects of various parameters like pH, adsorbent doses, dye concentration, addition of salt have also been investigated. These findings indicate that the nano silica particles are effective materials for dye removal and can be used to alleviate environmental problems.

  7. Morphology conserving aminopropyl functionalization of hollow silica nanospheres in toluene

    NASA Astrophysics Data System (ADS)

    Dobó, Dorina G.; Berkesi, Dániel; Kukovecz, Ákos

    2017-07-01

    Inorganic nanostructures containing cavities of monodisperse diameter distribution find applications in e.g. catalysis, adsorption and drug delivery. One of their possible synthesis routes is the template assisted core-shell synthesis. We synthesized hollow silica spheres around polystyrene cores by the sol-gel method. The polystyrene template was removed by heat treatment leaving behind a hollow spherical shell structure. The surface of the spheres was then modified by adding aminopropyl groups. Here we present the first experimental evidence that toluene is a suitable alternative functionalization medium for the resulting thin shells, and report the comprehensive characterization of the amino-functionalized hollow silica spheres based on scanning electron microscopy, transmission electron microscopy, N2 adsorption, FT-IR spectroscopy, Raman spectroscopy and electrokinetic potential measurement. Both the presence of the amino groups and the preservation of the hollow spherical morphology were unambiguously proven. The introduction of the amine functionality adds amphoteric character to the shell as shown by the zeta potential vs. pH function. Unlike pristine silica particles, amino-functionalized nanosphere aqueous sols can be stable at both acidic and basic conditions.

  8. Functionalized nanoporous silicas for the immobilization of penicillin acylase

    NASA Astrophysics Data System (ADS)

    Maria Chong, A. S.; Zhao, X. S.

    2004-10-01

    Nanoporous silica materials with uniform pore size and ordered structure have drawn growing interest of researchers since 1990s. A large-pore nanoporous material, SBA-15, was functionalized with organosilanes by co-condensation method in the presence of nonionic triblock copolymer P123 as a template under acidic conditions. The functionalization was demonstrated by using five organosilanes, namely 3-aminopropyltriethoxysilane (APTES), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltriethoxysilane (VTES), and 4-(triethoxysilyl)butyronitrile (TSBN), which modified the surface properties of the silica materials, enabling the materials to be a promising support for immobilization of biological molecules. The functionalized SBA-15 materials exhibited long-range ordering of two-dimensional hexagonal pore arrays of size ranging from 66 to 90 Å as demonstrated by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and physical adsorption techniques. A variety of organosilane density in the range of 0.5-2.6 mmol/g was achieved as revealed by elemental analysis and solid-state nuclear magnetic resonance (NMR) techniques. The functionalized materials displayed improved properties for immobilization of penicillin acylase (PA) in comparison with pure-silica SBA-15. Such improvement is believed to be due to the enhanced surface hydrophobicity and electrostatic interactions of the functional groups with the enzyme.

  9. Microspectroscopic analysis of green fluorescent proteins infiltrated into mesoporous silica nanochannels.

    PubMed

    Ma, Yujie; Rajendran, Prayanka; Blum, Christian; Cesa, Yanina; Gartmann, Nando; Brühwiler, Dominik; Subramaniam, Vinod

    2011-04-01

    The infiltration of enhanced green fluorescent protein (EGFP) into nanochannels of different diameters in mesoporous silica particles was studied in detail by fluorescence microspectroscopy at room temperature. Silica particles from the MCM-41, ASNCs and SBA-15 families possessing nanometer-sized (3-8 nm in diameter) channels, comparable to the dimensions of the infiltrated guest protein EGFP (barrel structure with dimensions of 2.4 nm × 4.2 nm), were used as hosts. We found that it is necessary to first functionalize the surfaces of the silica particles with an amino-silane for effective encapsulation of EGFP. We demonstrated successful infiltration of the protein into the nanochannels based on fluorescence microspectroscopy and loading capacity calculations, even for nanochannel diameters approaching the protein dimensions. We studied the spatial distributions of the EGFPs within the silica particles by confocal laser scanning microscopy (CLSM) and multimode microscopy. Upon infiltration, the fluorescence lifetime drops as expected for an emitter embedded in a high refractive index medium. Further, the spectral properties of EGFP are preserved, confirming the structural integrity of the infiltrated protein. This inorganic-protein host-guest system is an example of a nanobiophotonic hybrid system that may lead to composite materials with novel optical properties. Copyright © 2010 Elsevier Inc. All rights reserved.

  10. Amine-functionalized magnetic mesoporous silica nanoparticles for DNA separation

    NASA Astrophysics Data System (ADS)

    Sheng, Wei; Wei, Wei; Li, Junjian; Qi, Xiaoliang; Zuo, Gancheng; Chen, Qi; Pan, Xihao; Dong, Wei

    2016-11-01

    We report a modified approach for the functionalized magnetic mesoporous silica nanoparticles (MMSN) using polymer microspheres incorporated with magnetic nanoparticles in the presence of cetyltrimethylammonium bromide (CTAB) and the core-shell magnetic silica nanoparticles (MSN). These particles were functionalized with amino groups via the addition of aminosilane directly to the particle sol. We then evaluate their DNA separation abilities and find the capacity of DNA binding significantly increased (210.22 μg/mg) compared with normal magnetic silica spheres (138.44 μg/mg) by using an ultraviolet and visible spectrophotometer (UV). The morphologies, magnetic properties, particle size, pore size, core-shell structure and Zeta potential are characterized by Fourier transform infrared spectroscopy (FT-IR), vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM), Powder X-ray diffraction (XRD), and dynamic light scattering (DLS). This work demonstrates that our MMSN own an excellent potential application in bioseparation and drug delivery.

  11. Centrifugal sedimentation for selectively packing channels with silica microbeads in three-dimensional micro/nanofluidic devices.

    PubMed

    Gong, Maojun; Bohn, Paul W; Sweedler, Jonathan V

    2009-03-01

    Incorporation of nanofluidic elements into microfluidic channels is one approach for adding filtration and partition functionality to planar microfluidic devices, as well as providing enhanced biomolecular separations. Here we introduce a strategy to pack microfluidic channels with silica nanoparticles and microbeads, thereby indirectly producing functional nanostructures; the method allows selected channels to be packed, here demonstrated so that a separation channel is packed while keeping an injection channel unpacked. A nanocapillary array membrane is integrated between two patterned microfluidic channels that cross each other in vertically separated layers. The membrane serves both as a frit for bead packing and as a fluid communication conduit between microfluidic channels. Centrifugal force-assisted sedimentation is then used to selectively pack the microfluidic channels using an aqueous silica bead suspension loaded into the appropriate inlet reservoirs. This packing approach may be used to simultaneously pack multiple channels with silica microbeads having different sizes and surface properties. The chip design and packing method introduced here are suitable for packing silica particles in sizes ranging from nanometers to micrometers and allow rapid (approximately 10 min) packing with high quality. The liquid/analyte transport characteristics of these packed micro/nanofluidic devices have potential utility in a wide range of applications, including electroosmotic pumping, liquid chromatographic separations, and electrochromatography.

  12. Three-dimensional single-molecule localization with nanometer accuracy using Metal-Induced Energy Transfer (MIET) imaging

    NASA Astrophysics Data System (ADS)

    Karedla, Narain; Chizhik, Anna M.; Stein, Simon C.; Ruhlandt, Daja; Gregor, Ingo; Chizhik, Alexey I.; Enderlein, Jörg

    2018-05-01

    Our paper presents the first theoretical and experimental study using single-molecule Metal-Induced Energy Transfer (smMIET) for localizing single fluorescent molecules in three dimensions. Metal-Induced Energy Transfer describes the resonant energy transfer from the excited state of a fluorescent emitter to surface plasmons in a metal nanostructure. This energy transfer is strongly distance-dependent and can be used to localize an emitter along one dimension. We have used Metal-Induced Energy Transfer in the past for localizing fluorescent emitters with nanometer accuracy along the optical axis of a microscope. The combination of smMIET with single-molecule localization based super-resolution microscopy that provides nanometer lateral localization accuracy offers the prospect of achieving isotropic nanometer localization accuracy in all three spatial dimensions. We give a thorough theoretical explanation and analysis of smMIET, describe its experimental requirements, also in its combination with lateral single-molecule localization techniques, and present first proof-of-principle experiments using dye molecules immobilized on top of a silica spacer, and of dye molecules embedded in thin polymer films.

  13. Fabrication and characterization of epoxy/silica functionally graded composite material

    NASA Astrophysics Data System (ADS)

    Misra, N.; Kapusetti, G.; Pattanayak, D. K.; Kumar, A.

    2011-09-01

    Increased use of composites in aerospace and defense application induces the search for heat resistant material. In present study silica reinforced epoxy functionally graded material using quartz fabric is prepared with different thickness. The gradation in silica : epoxy matrix is maintained with one side pure epoxy to opposite side pure silica. Thermal and mechanical behaviour of the composites were studied. It was found that the temperature gradient of 350°C to 950°C could be maintained for 2 to 5 min if the thickness of insulating silica layer is increased from 0.5 mm to 16 mm. Mechanical properties such as flexural modulus and strength of FGM composites were also evaluated. Strength and modulus decreased with increase of insulating layer.

  14. Altering the concentration of silica tunes the functional properties of collagen-silica composite scaffolds to suit various clinical requirements.

    PubMed

    Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran

    2015-12-01

    The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Spontaneous formation of multiple land-and-groove structures of silica thin films

    NASA Astrophysics Data System (ADS)

    Takeda, Yasuhiko; Matsuoka, Yoriko; Motohiro, Tomoyoshi

    1999-05-01

    We found spontaneous formation of microscopic multiple land-and-groove structures of silica thin films. Silica and nickel were simultaneously deposited onto glass substrates from two opposite oblique directions to form columnar structures of silica among which nickel nanoparticles were embedded. Then nickel was dissolved in hydrochloric acid solution. After the dissolution of the nickel particles the columns of silica became very unstable and coalesced to form the multiple land-and-groove structures. The grooves are oriented to the direction perpendicular to the two deposition directions. The distances between the neighboring grooves are fairly uniform, and can be controlled between several hundred nanometers and several microns by changing the film thickness and the ratio of the nickel deposition rate to the silica deposition rate. The process found here may propose a new class of micro fabrication techniques in contrast to the artificial photolithography.

  16. Silica Fume Functionalized With Amine-Based Additives as a Modifier to Enhance Asphalt Resistance to Oxidation

    NASA Astrophysics Data System (ADS)

    Abutalib, Nader Turki

    This dissertation investigates the practical feasibility of functionalizing silica fume particles with the amine groups in Bio-binder and pure APTES chemical to disperse silica fume in asphalt binder matrix to produce silica-fume-modified binder (SFMB). Dispersed silica fume was then introduced to asphalt to reduce oxidative aging. It has been widely reported that asphalt binder oxidation is one of the phenomena that reduces the service life of asphalt pavement by negatively affecting its rheological properties. This in turn can lead to a more brittle pavement, which is more prone to cracks due to thermal stress and traffic loading. It has been shown that the introduction of 4% silica fume to asphalt can reduce asphalt oxidative aging. However, the challenge with a higher percentage of silica fume was found to be the agglomeration of nano- particles to form micro-size clusters, which can reduce the effectiveness of silica fume while making asphalt binder more susceptible to shear. Therefore, this dissertation studies the effectiveness of functionalizing the SFMB to reduce asphalt oxidative aging while alleviating the agglomeration effect. To do so, various percentages of bio-binder (BB) and bio-char (BC) were introduced to SFMB, and the rheological properties and high-temperature performance of each specimen were evaluated by measuring the rotational viscosity and complex shear modulus before and after oxidative aging. It is hypothesized that fine-graded BC and BB with nano- to micro-level particles can be used to reduce asphalt oxidation and create a new generation of low- agglomeration SFMB with higher resistance to oxidative aging. To further study the effects of functionalization on dispersion of silica fume, silica fume particles were produced with different functional groups: amine (APTES) groups and phosphonate (THPMP) groups. Agglomeration studies using a scanning electron microscope and zeta potential analysis indicate that modifying asphalt binder with

  17. Surface functionalization of microwave plasma-synthesized silica nanoparticles for enhancing the stability of dispersions

    NASA Astrophysics Data System (ADS)

    Sehlleier, Yee Hwa; Abdali, Ali; Schnurre, Sophie Marie; Wiggers, Hartmut; Schulz, Christof

    2014-08-01

    Gas phase-synthesized silica nanoparticles were functionalized with three different silane coupling agents (SCAs) including amine, amine/phosphonate and octyltriethoxy functional groups and the stability of dispersions in polar and non-polar dispersing media such as water, ethanol, methanol, chloroform, benzene, and toluene was studied. Fourier transform infrared spectroscopy showed that all three SCAs are chemically attached to the surface of silica nanoparticles. Amine-functionalized particles using steric dispersion stabilization alone showed limited stability. Thus, an additional SCA with sufficiently long hydrocarbon chains and strong positively charged phosphonate groups was introduced in order to achieve electrosteric stabilization. Steric stabilization was successful with hydrophobic octyltriethoxy-functionalized silica nanoparticles in non-polar solvents. The results from dynamic light scattering measurements showed that in dispersions of amine/phosphonate- and octyltriethoxy-functionalized silica particles are dispersed on a primary particle level. Stable dispersions were successfully prepared from initially agglomerated nanoparticles synthesized in a microwave plasma reactor by designing the surface functionalization.

  18. Organic-inorganic hybrid mesoporous silicas: functionalization, pore size, and morphology control.

    PubMed

    Park, Sung Soo; Ha, Chang-Sik

    2006-01-01

    Topological design of mesoporous silica materials, pore architecture, pore size, and morphology are currently major issues in areas such as catalytic conversion of bulky molecules, adsorption, host-guest chemistry, etc. In this sense, we discuss the pore size-controlled mesostructure, framework functionalization, and morphology control of organic-inorganic hybrid mesoporous silicas by which we can improve the applicability of mesoporous materials. First, we explain that the sizes of hexagonal- and cubic-type pores in organic-inorganic hybrid mesoporous silicas are well controlled from 24.3 to 98.0 A by the direct micelle-control method using an organosilica precursor and surfactants with different alkyl chain lengths or triblock copolymers as templates and swelling agents incorporated in the formed micelles. Second, we describe that organic-inorganic hybrid mesoporous materials with various functional groups form various external morphologies such as rod, cauliflower, film, rope, spheroid, monolith, and fiber shapes. Third, we discuss that transition metals (Ti and Ru) and rare-earth ions (Eu(3+) and Tb(3+)) are used to modify organic-inorganic hybrid mesoporous silica materials. Such hybrid mesoporous silica materials are expected to be applied as excellent catalysts for organic reactions, photocatalysis, optical devices, etc. c) 2006 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.

  19. Design and functionalization of photocatalytic systems within mesoporous silica.

    PubMed

    Qian, Xufang; Fuku, Kojirou; Kuwahara, Yasutaka; Kamegawa, Takashi; Mori, Kohsuke; Yamashita, Hiromi

    2014-06-01

    In the past decades, various photocatalysts such as TiO2, transition-metal-oxide moieties within cavities and frameworks, or metal complexes have attracted considerable attention in light-excited catalytic processes. Owing to high surface areas, transparency to UV and visible light as well as easily modified surfaces, mesoporous silica-based materials have been widely used as excellent hosts for designing efficient photocatalytic systems under the background of environmental remediation and solar-energy utilization. This Minireview mainly focuses on the surface-chemistry engineering of TiO2/mesoporous silica photocatalytic systems and fabrication of binary oxides and nanocatalysts in mesoporous single-site-photocatalyst frameworks. Recently, metallic nanostructures with localized surface plasmon resonance (LSPR) have been widely studied in catalytic applications harvesting light irradiation. Accordingly, silver and gold nanostructures confined in mesoporous silica and their corresponding catalytic activity enhanced by the LSPR effect will be introduced. In addition, the integration of metal complexes within mesoporous silica materials for the construction of functional inorganic-organic supramolecular photocatalysts will be briefly described. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Hydrophobic and optical characteristics of graphene and graphene oxide films transferred onto functionalized silica particles deposited glass surface

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.

    2018-06-01

    Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.

  1. Functional nanometer-scale structures

    NASA Astrophysics Data System (ADS)

    Chan, Tsz On Mario

    Nanometer-scale structures have properties that are fundamentally different from their bulk counterparts. Much research effort has been devoted in the past decades to explore new fabrication techniques, model the physical properties of these structures, and construct functional devices. The ability to manipulate and control the structure of matter at the nanoscale has made many new classes of materials available for the study of fundamental physical processes and potential applications. The interplay between fabrication techniques and physical understanding of the nanostructures and processes has revolutionized the physical and material sciences, providing far superior properties in materials for novel applications that benefit society. This thesis consists of two major aspects of my graduate research in nano-scale materials. In the first part (Chapters 3--6), a comprehensive study on the nanostructures based on electrospinning and thermal treatment is presented. Electrospinning is a well-established method for producing high-aspect-ratio fibrous structures, with fiber diameter ranging from 1 nm--1 microm. A polymeric solution is typically used as a precursor in electrospinning. In our study, the functionality of the nanostructure relies on both the nanostructure and material constituents. Metallic ions containing precursors were added to the polymeric precursor following a sol-gel process to prepare the solution suitable for electrospinning. A typical electrospinning process produces as-spun fibers containing both polymer and metallic salt precursors. Subsequent thermal treatments of the as-spun fibers were carried out in various conditions to produce desired structures. In most cases, polymer in the solution and the as-spun fibers acted as a backbone for the structure formation during the subsequent heat treatment, and were thermally removed in the final stage. Polymers were also designed to react with the metallic ion precursors during heat treatment in some

  2. Water Contact Angle Dependence with Hydroxyl Functional Groups on Silica Surfaces under CO2 Sequestration Conditions.

    PubMed

    Chen, Cong; Zhang, Ning; Li, Weizhong; Song, Yongchen

    2015-12-15

    Functional groups on silica surfaces under CO2 sequestration conditions are complex due to reactions among supercritical CO2, brine and silica. Molecular dynamics simulations have been performed to investigate the effects of hydroxyl functional groups on wettability. It has been found that wettability shows a strong dependence on functional groups on silica surfaces: silanol number density, space distribution, and deprotonation/protonation degree. For neutral silica surfaces with crystalline structure (Q(3), Q(3)/Q(4), Q(4)), as silanol number density decreases, contact angle increases from 33.5° to 146.7° at 10.5 MPa and 318 K. When Q(3) surface changes to an amorphous structure, water contact angle increases 20°. Water contact angle decreases about 12° when 9% of silanol groups on Q(3) surface are deprotonated. When the deprotonation degree increases to 50%, water contact angle decreases to 0. The dependence of wettability on silica surface functional groups was used to analyze contact angle measurement ambiguity in literature. The composition of silica surfaces is complicated under CO2 sequestration conditions, the results found in this study may help to better understand wettability of CO2/brine/silica system.

  3. Dual-function beam splitter of a subwavelength fused-silica grating.

    PubMed

    Feng, Jijun; Zhou, Changhe; Zheng, Jiangjun; Cao, Hongchao; Lv, Peng

    2009-05-10

    We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550 nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

  4. Aqueous route to facile, efficient and functional silica coating of metal nanoparticles at room temperature

    NASA Astrophysics Data System (ADS)

    Shah, Kwok Wei; Sreethawong, Thammanoon; Liu, Shu-Hua; Zhang, Shuang-Yuan; Tan, Li Sirh; Han, Ming-Yong

    2014-09-01

    Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also applied to prepare highly surface-enhanced Raman scattering (SERS)-active Ag@SiO2-SH NPs with different types of Raman molecules for highly sensitive SERS-based applications in various fields.Various metal (Ag, Au, and Pt)@thiol-functionalized silica (SiO2-SH) nanoparticles (NPs) are successfully prepared at room temperature by a facile, efficient, functional, universal and scalable coating process in alcohol-free aqueous solution using pre-hydrolyzed 3-(mercaptopropyl)trimethoxysilane (MPTMS). The controlled pre-hydrolysis of the silane precursor in water and the consecutive condensation processes are the key to achieve the effective and uniform silica coating on metal NPs in aqueous solution. The thickness of the silica shell is tuned by simply varying the coating time. The silica shell can act as an effective protecting layer for Ag NPs in Ag@SiO2-SH NPs under conditions for silica coating in aqueous solution; however, it leads to a directional dissolution of Ag NPs in a more strongly basic ammonia solution. The environmentally friendly silica coating process in water is also

  5. Quaternary ammonium-functionalized silica sorbents for the solid-phase extraction of aromatic amines under normal phase conditions.

    PubMed

    Vidal, Lorena; Robin, Orlane; Parshintsev, Jevgeni; Mikkola, Jyri-Pekka; Riekkola, Marja-Liisa

    2013-04-12

    Quaternary ammonium-functionalized silica materials were synthesized and applied for solid-phase extraction (SPE) of aromatic amines, which are classified as priority pollutants by US Environmental Protection Agency. Hexamethylenetetramine used for silica surface modification for the first time was employed as SPE sorbent under normal phase conditions. Hexaminium-functionalized silica demonstrated excellent extraction efficiencies for o-toluidine, 4-ethylaniline and quinoline (recoveries 101-107%), while for N,N-dimethylaniline and N-isopropylaniline recoveries were from low to moderate (14-46%). In addition, the suitability of 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica as SPE sorbent was tested under normal phase conditions. The recoveries achieved for the five aromatic amines ranged from 89 to 99%. The stability of the sorbent was evaluated during and after 150 extractions. Coefficients of variation between 4.5 and 10.2% proved a high stability of the synthesized sorbent. Elution was carried out using acetonitrile in the case of hexaminium-functionalized silica and water for 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent. After the extraction the analytes were separated and detected by liquid chromatography ultraviolet detection (LC-UV). The retention mechanism of the materials was primarily based on polar hydrogen bonding and π-π interactions. Comparison made with activated silica proved the quaternary ammonium-functionalized materials to offer different selectivity and better extraction efficiencies for aromatic amines. Finally, 1-alkyl-3-(propyl-3-sulfonate) imidazolium-functionalized silica sorbent was successfully tested for the extraction of wastewater and soil samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    2008-05-06

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  7. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, Paul J.; Baskaran, Suresh; Bontha, Jagannadha R.; Liu, Jun

    1999-01-01

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).

  8. The effect of concentration in the patterning of silica particles by the soft lithographic technique

    NASA Astrophysics Data System (ADS)

    Singh, Akanksha; Malek, Chantal Khan; Kulkarni, Sulabha K.

    2008-12-01

    Soft lithography provides remarkable surface patterning techniques to organize colloidal particles for a wide variety of applications. In particular, micromolding in capillaries (MIMIC) has emerged as a patterning method in the nanometer to micrometer scale in a single step by using templating and directing nanoparticles via capillary forces in the channel. The present work reports the results of the micropatterning of monodispersed silica particles of ~338 ± 2 nm size in ethanol medium, using MIMIC on silicon substrates. The effect of the concentration of silica particles on the patterning has been investigated. The patterns are well aligned and completely filled at 2 wt% concentration of silica particles.

  9. Immune response to functionalized mesoporous silica nanoparticles for targeted drug delivery

    NASA Astrophysics Data System (ADS)

    Heidegger, Simon; Gößl, Dorothée; Schmidt, Alexandra; Niedermayer, Stefan; Argyo, Christian; Endres, Stefan; Bein, Thomas; Bourquin, Carole

    2015-12-01

    Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized antigen-presenting cells such as dendritic cells. The silica nanoparticles showed a favorable toxicity profile and did not affect the viability of primary immune cells from the spleen in relevant concentrations. Cargo-free MSN induced only very low immune responses in primary cells as determined by surface expression of activation markers and release of pro-inflammatory cytokines such as Interleukin-6, -12 and -1β. In contrast, when surface-functionalized MSN with a pH-responsive polymer capping were loaded with an immune-activating drug, the synthetic Toll-like receptor 7 agonist R848, a strong immune response was provoked. We thus demonstrate that MSN represent an efficient drug delivery vehicle to primary immune cells that is both non-toxic and non-inflammagenic, which is a prerequisite for the use of these particles in biomedical applications.Multifunctional mesoporous silica nanoparticles (MSN) have attracted substantial attention with regard to their high potential for targeted drug delivery. For future clinical applications it is crucial to address safety concerns and understand the potential immunotoxicity of these nanoparticles. In this study, we assess the biocompatibility and functionality of multifunctional MSN in freshly isolated, primary murine immune cells. We show that the functionalized silica nanoparticles are rapidly and efficiently taken up into the endosomal compartment by specialized

  10. Functionalization and Characterization of Metal Oxide Coatings of Stainless Steel and Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Slaney, Anne Margaret

    The development of tolerogens, fabricated devices eliciting tolerance toward incompatible donor ABO antigens in implant patients, is the ultimate goal of this project. This would permit ABO incompatible organ transplants, increase the donor pool for patients, increase efficiency in the use of available organs, reduce waitlist times and reduce mortality rates of patients. Stainless steel stents and silica nanoparticles were chosen as platforms for the stationary and circulating tolerogens. Stainless steel was coated with silica by solgel dip-coating, electrodeposition, and atomic layer deposition (ALD). The coatings were evaluated by CV, EIS, SEM, AFM, VASE, FTIR, XPS, and AES. Of the silica films, those deposited by ALD provided superior insulating, conformal, and thin coatings. These silica ALD films outperformed even titania ALD films upon stressing. Silica ALD films were subsequently functionalized with mixtures of silane derivatives of poly(ethylene glycol) (PEG), to prevent nonspecific protein binding, and monosaccharides (MS) or trisaccharide and tetrasaccharide (TS) antigens. Functionalizations were characterized by FTIR, XPS and UV-Vis following enzyme-linked lectin assays (ELLAs) or enzyme-linked immunosorbent assays (ELISAs). Effective functionalization allowing biological availability and activity even after incubation in blood plasma was confirmed. Microarray microscope slides were similarly developed with all ABO antigen subtypes, characterized by ToF-SIMS and ELISA, and proved useful in detecting antibodies in human blood samples. Silica nanoparticles, including fluorescent and magnetic varieties, in a range of sizes were prepared by sol-gel synthesis. The nanoparticles were evaluated by SEM, DLS, zeta potential measurements, fluorescence imaging, flow cytometry, two-photon excitation fluorescence correlation spectroscopy and TEM. Different dye incorporation methods were used for effective detection of NPs, and additional silica layers improved

  11. Synthesis of novel thiol-functionalized mesoporous silica nanorods and their sorbent properties on heavy metals

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Cai, Qiang; Sun, Lin-Hao; Zhang, Wei; Jiang, Xing-Yu

    2012-09-01

    Novel thiol-functionalized mesoporous silica nanorods (MSNRs) were synthesized through a base co-condensation method, in which two organoalkoxysilanes, tetraethoxylsilane (TEOS) and bis[3-(triethoxysilyl)propyl]tetrasulfide (TESPT), were used as silica precursors simultaneously. TESPT was firstly used for both morphology control and inner surface functionalization of mesoporous silica hybrid materials. The microstructures as well as porous character of the MSNRs were characterized by means of SEM, XRD, TEM and N2 sorption measurements. Infrared spectrum analysis and heavy metal ions (Ag+ and Cd2+) adsorption measurements were carried out to confirm the functionalized framework of MSNRs.

  12. A novel octadecylsilane functionalized graphene oxide/silica composite stationary phase for high performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Wang, Shuai; Liu, Shujuan; Liu, Xia; Jiang, Shengxiang

    2012-08-01

    An octadecylsilane functionalized graphene oxide/silica stationary phase was fabricated by assembling graphene oxide onto the silica particles through an amide bond and subsequent immobilization of octadecylsilane. The chromatographic properties of the stationary phase were investigated by reversed-phase chromatography with alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenolic compounds as the analytes. All the compounds achieved good separation on the column. The comparison between a C18 commercial column and the new stationary phase indicated that the existence of π-electron system of graphene oxide allows π-π interaction between analyte and octadecylsilane functionalized graphene oxide/silica stationary phase except for hydrophobic interaction, while only hydrophobic interaction presented between analyte and C18 commercial column. This suggests that some analytes can be better separated on the octadecylsilane functionalized graphene oxide/silica column. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fluoroalkyl-functionalized Silica Particles: Synthesis, Characterization, and Wetting Characteristics (Preprint)

    DTIC Science & Technology

    2011-05-03

    effect of residual silanol content on the  moisture  uptake properties of the  modified silica  particles  was determined by measuring the water uptake of...procedure). The surface functionalization of silica particles was performed using Schlenk line techniques, taking great care to minimize moisture ...conditions, causing condensation of silanols in and around pores, as well as in between particle intersections. This “closing off” of pores, greatly reduces

  14. Mesoporous-silica films, fibers, and powders by evaporation

    DOEpatents

    Bruinsma, P.J.; Baskaran, S.; Bontha, J.R.; Liu, J.

    1999-07-13

    This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s). 24 figs.

  15. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    PubMed

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  16. A novel approach for preparation and in situ tensile testing of silica glass membranes in the TEM

    NASA Astrophysics Data System (ADS)

    Mačković, Mirza; Przybilla, Thomas; Dieker, Christel; Herre, Patrick; Romeis, Stefan; Stara, Hana; Schrenker, Nadine; Peukert, Wolfgang; Spiecker, Erdmann

    2017-04-01

    The mechanical behavior of glasses in the micro- and/or nanometer regime increasingly gains importance in nowadays modern technology. However, suitable small scale preparation and mechanical testing approaches for a reliable assessment of the mechanical properties of glasses still remain a big challenge. In the present work, a novel approach for site-specific preparation and quantitative in situ tensile testing of thin silica glass membranes in the transmission electron microscope is presented. Thereby, advanced focused ion beam techniques are used for the preparation of nanoscale dog bone shaped silica glass specimens suitable for in situ tensile testing. Small amounts of gallium are detected on the surface of the membranes resulting from redeposition effects during the focused ion beam preparation procedure. Possible structural changes of silica glass upon irradiation with electrons and gallium ions are investigated by controlled irradiation experiments, followed by a structural analysis using Raman spectroscopy. While moderate electron beam irradiation does not alter the structure of silica glass, ion beam irradiation results in minor densification of the silica glass membranes. In situ tensile testing of membranes under electron beam irradiation results in distinctive elongations without fracture confirming the phenomenon of superplasticity. In contrast, in situ tensile testing in the absence of the electron beam reveals an elastic/plastic deformation behavior, and finally leads to fracture of the membranes. The Young’s moduli of the glass membranes pulled at beam off conditions in the TEM are comparable with values known for bulk fused silica, while the tensile strength is in the range of values reported for silica glass fibers with comparable dimensions. The impact of electron beam irradiation on the mechanical properties of silica glass membranes is further discussed. The results of the present work open new avenues for dedicated preparation and

  17. Polyhydroxy glucose functionalized silica for the dehydration of bio-ethanol distillate.

    PubMed

    Tang, Baokun; Bi, Wentao; Row, Kyung Ho

    2014-07-01

    Although most of the water in a bio-ethanol fermentation broth can be removed by distillation, a small amount of water remains in the bio-ethanol distillate as the water-ethanol azeotrope. To improve the use of ethanol as a fuel, glucose-modified silica, as an adsorbent, was prepared using a facile method and applied to the dehydration of bio-ethanol distillate. The factors affecting the adsorption capacity of the adsorbent, such as the particle size, initial concentration of water in the samples, adsorption temperature and adsorbent dose, were examined by measuring the adsorption kinetics and equilibrium. The Langmuir, Freundlich and Temkin isotherms were used to evaluate the adsorption efficiency. Of these, the Freundlich and Temkin isotherms showed a good correlation with the experimental data. The Langmuir isotherm showed some deviation from the experimental results, and indicated that adsorption in this case was not a simple monolayer adsorption. The property of the adsorbent was attributed to functionalized silica with many hydroxyl groups on its surface. An examination of the separation factors of water/ethanol revealed the modified silica to have preferential selectivity for water. Compared to activated carbon and silica, glucose-modified silica exhibited higher adsorption capacity for water under the same adsorption conditions. In addition, the glucose-modified silica adsorbent exhibited a relatively constant adsorption capacity for five adsorption/desorption cycles.

  18. Synthesis of internally functionalized silica nanoparticles for theranostic applications

    NASA Astrophysics Data System (ADS)

    Walton, Nathan Isaac

    This thesis addresses the synthesis and characterization of novel inorganic silica nanoparticle hybrids. It focuses in large part on their potential applications in the medical field. Silica acts as a useful carrier for a variety of compounds and this thesis silica will demonstrate its use as a carrier for boron or gadolinium. Boron-10 and gadolinium-157 have been suggested for the radiological treatment of tumor cells through the process called neutron capture therapy (NCT). Gadolinium is also commonly used as a Magnetic Resonance Imaging (MRI) contrast agent. Particles that carry it have potential theranostic applications of both imaging and treating tumors. Chapter 1 presents a background on synthetic strategies and usages of silica nanoparticles, and NCT theory. Chapter 2 describes a procedure to create mesoporous metal chelating silica nanoparticles, mDTTA. This is achieved via a co-condensation of tetraethoxysilane (TEOS) and 3-trimethoxysilyl-propyl diethylenetriamine (SiDETA) followed by a post-synthesis modification step with bromoacetic acid (BrAA). These particles have a large surface area and well-defined pores of ~2 nm. The mDTTA nanoparticles were used to chelate the copper(II), cobalt(II) and gadolinium(III). The chelating of gadolinium is the most interesting since it can be used as a MRI contrast agent and a neutron capture therapeutic. The synthetic procedure developed also allows for the attachment of a fluorophore that gives the gadolinium chelating mDTTA nanoparticles a dual imaging modality. Chapter 3 presents the synthetic method used to produce two classes of large surface area organically modified silica (ORMOSIL) nanoparticles. Condensating the organosilane vinyltrimethoxysilane in a micellar solution results in nanoparticles that are either surface rough (raspberry-like) or mesoporous nanoparticles, which prior to this thesis has not been demonstrated in ORMOSIL chemistry. Furthermore, the vinyl functionalities are modified, using

  19. Adsorption enhancement of elemental mercury onto sulphur-functionalized silica gel adsorbents.

    PubMed

    Johari, Khairiraihanna; Saman, Norasikin; Mat, Hanapi

    2014-01-01

    In this study, elemental mercury (EM) adsorbents were synthesized using tetraethyl orthosilicate (TEOS) and 3-mercaptopropyl trimethoxysilane as silica precursors. The synthesized silica gel (SG)-TEOS was further functionalized through impregnation with elemental sulphur and carbon disulphide (CS2). The SG adsorbents were then characterized by using scanning electron microscope, Fourier transform infra-red spectrophotometer, nitrogen adsorption/desorption, and energy-dispersive X-ray diffractometer. The EM adsorption of the SG adsorbents was determined using fabricated fixed-bed adsorber. The EM adsorption results showed that the sulphur-functionalized SG adsorbents had a greater Hgo breakthrough adsorption capacity, confirming that the presence of sulphur in silica matrices can improve Hgo adsorption performance due to their high affinity towards mercury. The highest Hgo adsorption capacity was observed for SG-TEOS(CS2) (82.62 microg/g), which was approximately 2.9 times higher than SG-TEOS (28.47 microg/g). The rate of Hgo adsorption was observed higher for sulphur-impregnated adsorbents, and decreased with the increase in the bed temperatures.

  20. Incorporating silica into cyanate ester-based network by sol-gel method: Structure and properties of subnano- and nanocomposites

    NASA Astrophysics Data System (ADS)

    Bershtein, V.; Fainleib, A.; Kirilenko, D.; Yakushev, P.; Gusakova, K.; Lavrenyuk, N.; Ryzhov, V.

    2016-05-01

    A series of Cyanate Ester Resins (CER)-based composites containing 0.01-10 wt. % silica, introduced by sol-gel method, was synthesized using tetraethoxysilane (TEOS) and γ-aminopropyltrimethoxysilane (APTMS), and their nanostructure and properties were characterized by means of STEM/EDXS, Far-IR spectroscopy, DMA and DSC methods. It was revealed that the most substantial positive impact on CER dynamics, thermal and mechanical properties is attained at ultra-low silica contents, e.g., at 0.1 wt. % silica where Tg and modulus increase, respectively, by 50° and 60%. In this case, silica nanoclusters are absent in the composite, and only chemically incorporated silica junctions of subnanometric size in the densely-crosslinked CER network could be implied. These composites can be designated as "polymer subnanocomposites". Contrarily, formation of silica nanoclusters and especially their aggregates of hundreds nanometers in size at silica contents of 2-10 wt. % led to the distinct negative impact on the matrix properties.

  1. 2-Hydroxy-naphthyl functionalized mesoporous silica for fluorescence sensing and removal of aluminum ions.

    PubMed

    Das, Trisha; Roy, Ankita; Uyama, Hiroshi; Roy, Partha; Nandi, Mahasweta

    2017-06-06

    Mesoporous silica functionalized with a 2-hydroxy-naphthyl moiety has been synthesized and characterized by standard techniques like powder X-ray diffraction, N 2 adsorption/desorption studies, transmission electron microscopy and spectral studies like FT-IR, UV-visible, fluorescence and 13 C and 29 Si solid state NMR. The functionalized silica material showed significant enhancement in its emission intensity in the presence of Al 3+ ions whereas other metal ions could not bring about any increase in its emission intensity. They either quench the emission or do not alter the intensity significantly making the functionalized material a fluorescence chemosensor for Al 3+ . The sensitivity of the probe towards Al 3+ has been determined to be high with a low limit of detection value. As functionalized silica is not soluble in common solvents, it has been effectively used to bind and remove Al 3+ from a solution. Theoretical calculations on a model system have been performed to investigate the electronic spectral transitions.

  2. Electrochemistry at Nanometer-Scaled Electrodes

    ERIC Educational Resources Information Center

    Watkins, John J.; Bo Zhang; White, Henry S.

    2005-01-01

    Electrochemical studies using nanometer-scaled electrodes are leading to better insights into electrochemical kinetics, interfacial structure, and chemical analysis. Various methods of preparing electrodes of nanometer dimensions are discussed and a few examples of their behavior and applications in relatively simple electrochemical experiments…

  3. Cysteine-functionalized silica-coated magnetite nanoparticles as potential nanoadsorbents

    NASA Astrophysics Data System (ADS)

    Enache, Daniela F.; Vasile, Eugenia; Simonescu, Claudia M.; Răzvan, Anca; Nicolescu, Alina; Nechifor, Aurelia-Cristina; Oprea, Ovidiu; Pătescu, Rodica-Elena; Onose, Cristian; Dumitru, Florina

    2017-09-01

    Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been prepared by the deposition of silica onto magnetite nanoparticles via controlled hydrolysis of TEOS. The new formed silica surface has been functionalized by grafting 3-(triethoxysilyl) propyl isocyanate (ICPTES) and, subsequently, by condensation of isocyanate moiety with cysteine. The morphology of magnetic silica nanoparticles has been investigated by FTIR, PXRD, TEM-HRTEM/SEM/EDX as well as TG experiments. HRTEM microscopy revealed that the Fe3O4, Fe3O4@SiO2 and Fe3O4@SiO2@ICPTES-cysteine nanoparticles are all of spherical shape with particle of ca. 10-30 nm diameters and the silica-coated magnetites have a core-shell structure. Fe3O4, Fe3O4@SiO2, and Fe3O4@SiO2@ICPTES-cysteine MNPs have been tested for their sorption capacity of Pb(II) from synthetic aqueous solutions and the influence of pH solution, contact time, initial heavy metal ion concentrations, and adsorption isotherms on the sorption behavior were also studied. The kinetic studies revealed that the Pb(II) sorption process is mainly controlled by chemical mechanisms. Fe3O4@SiO2@ICPTES-cysteine, with a sorption capacity of 81.8 mg Pb(II)/g, has the potential to be an efficient Pb(II) adsorbent.

  4. Nanostructure formation and regulation during low-energy ion beam sputtering of fused silica surfaces

    NASA Astrophysics Data System (ADS)

    Liao, Wenlin; Dai, Yi-Fan; Nie, Xutao; Nie, Xuqing; Xu, Mingjin

    2017-12-01

    Ion beam sputtering (IBS) possesses strong surface nanostructuring behaviors, where dual microscopic phenomenon can be aroused to induce the formation of ultrasmooth surfaces or regular nanostructures. Low-energy IBS of fused silica surfaces is investigated to discuss the formation mechanism and the regulation of the IBS-induced nanostructures. The research results indicate that these microscopic phenomena can be attributed to the interaction of the IBS-induced surface roughening and smoothing effects, and the interaction process strongly depends on the sputtering conditions. Alternatively, ultrasmooth surface or regular nanostructure can be selectively generated through the regulation of the nanostructuring process, and the features of the generated nanostructures, such as amplitude and period, also can be regulated. Consequently, two different technology aims of nanofabrication, including nanometer-scale and nanometer-precision fabrication, can be realized, respectively. These dual microscopic mechanisms distinguish IBS as a promising nanometer manufacturing technology for the optical surfaces.

  5. Preparation and characterization of chemically functionalized silica-coated magnetic nanoparticles as a DNA separator.

    PubMed

    Kang, Kiho; Choi, Jinsub; Nam, Joong Hee; Lee, Sang Cheon; Kim, Kyung Ja; Lee, Sang-Won; Chang, Jeong Ho

    2009-01-15

    The work describes a simple and convenient process for highly efficient and direct DNA separation with functionalized silica-coated magnetic nanoparticles. Iron oxide magnetic nanoparticles and silica-coated magnetic nanoparticles were prepared uniformly, and the silica coating thickness could be easily controlled in a range from 10 to 50 nm by changing the concentration of silica precursor (TEOS) including controlled magnetic strength and particle size. A change in the surface modification on the nanoparticles was introduced by aminosilanization to enhance the selective DNA separation resulting from electrostatic interaction. The efficiency of the DNA separation was explored via the function of the amino-group numbers, particle size, the amount of the nanoparticles used, and the concentration of NaCl salt. The DNA adsorption yields were high in terms of the amount of triamino-functionalized nanoparticles used, and the average particle size was 25 nm. The adsorption efficiency of aminofunctionalized nanoparticles was the 4-5 times (80-100%) higher compared to silica-coated nanoparticles only (10-20%). DNA desorption efficiency showed an optimum level of over 0.7 M of the NaCl concentration. To elucidate the agglomeration of nanoparticles after electrostatic DNA binding, the Guinier plots were calculated from small-angle X-ray diffractions in a comparison of the results of energy diffraction TEM and confocal laser scanning microscopy. Additionally, the direct separation of human genomic DNA was achieved from human saliva and whole blood with high efficiency.

  6. Risk Evaluation of Construction Workers' Exposure to Silica Dust and the Possible Lung Function Impairments.

    PubMed

    Tavakol, Elahe; Azari, Mansour; Zendehdel, Rezvan; Salehpour, Sousan; Khodakrim, Soheila; Nikoo, Saeed; Saranjam, Behzad

    2017-06-01

    Aerosols generated during construction activities are an integral part of building operations. Considering the nature of materials used in construction activities, respirable dust contains crystalline silica and particulates not otherwise specified (PNOS). Due to lack of data regarding the occupational health status of Iranian construction workers, the objective of this study was to evaluate occupational exposure to silica and to examine their respiratory health status. In this cross sectional study, 85 construction workers and 40 controls (without active exposure to construction dust) were studied. The workers' exposure to PNOS and silica aerosols was monitored by the NIOSH method No.0600 and a new Fourier transform infrared spectroscopy (FTIR)-based method, respectively. All subjects were also monitored for lung function parameters, such as forced expiratory volume/forced vital capacity (FEV 1 /FVC), peak expiratory flow rate (PEFR), forced expiratory flow (FEF 25-75 ), FVC, and FEV 1 . The mean exposure of workers to respirable PNOS and silica was 9.8 (0.35) and 0.13 (0.019) mg/m 3 , respectively. The groups of construction workers showed significant differences in exposure to PNOS ( P < 0.001) and silica ( P = 0.007). The mean pulmonary function parameters, including FEV 1 % and FVC%, were significantly lower among construction workers, compared to the control group ( P < 0.001 and P = 0.009, respectively). The pulmonary status of 51.8% of construction workers showed moderate restriction, while 4.70% exhibited obstruction. Considering the construction workers' excessive exposure to PNOS and silica, besides depressed lung function parameters, they can be classified as a high-risk group for respiratory diseases.

  7. Physicochemical Characterization of Functional Lignin–Silica Hybrid Fillers for Potential Application in Abrasive Tools

    PubMed Central

    Strzemiecka, Beata; Klapiszewski, Łukasz; Jamrozik, Artur; Szalaty, Tadeusz J.; Matykiewicz, Danuta; Sterzyński, Tomasz; Voelkel, Adam; Jesionowski, Teofil

    2016-01-01

    Functional lignin–SiO2 hybrid fillers were prepared for potential application in binders for phenolic resins, and their chemical structure was characterized. The properties of these fillers and of composites obtained from them with phenolic resin were compared with those of systems with lignin or silica alone. The chemical structure of the materials was investigated by Fourier transform infrared spectroscopy (FT-IR) and carbon-13 nuclear magnetic resonance spectroscopy (13C CP MAS NMR). The thermal stability of the new functional fillers was examined by thermogravimetric analysis–mass spectrometry (TG-MS). Thermo-mechanical properties of the lignin–silica hybrids and resin systems were investigated by dynamic mechanical thermal analysis (DMTA). The DMTA results showed that abrasive composites with lignin–SiO2 fillers have better thermo-mechanical properties than systems with silica alone. Thus, fillers based on lignin might provide new, promising properties for the abrasive industry, combining the good properties of lignin as a plasticizer and of silica as a filler improving mechanical properties. PMID:28773639

  8. Synthesis and surface functionalization of silica nanoparticles for nanomedicine

    PubMed Central

    Liberman, Alexander; Mendez, Natalie; Trogler, William C.; Kummel, Andrew C.

    2014-01-01

    There are a wide variety of silica nanoformulations being investigated for biomedical applications. Silica nanoparticles can be produced using a wide variety of synthetic techniques with precise control over their physical and chemical characteristics. Inorganic nanoformulations are often criticized or neglected for their poor tolerance; however, extensive studies into silica nanoparticle biodistributions and toxicology have shown that silica nanoparticles may be well tolerated, and in some case are excreted or are biodegradable. Robust synthetic techniques have allowed silica nanoparticles to be developed for applications such as biomedical imaging contrast agents, ablative therapy sensitizers, and drug delivery vehicles. This review explores the synthetic techniques used to create and modify an assortment of silica nanoformulations, as well as several of the diagnostic and therapeutic applications. PMID:25364083

  9. Probing Local Ionic Dynamics in Functional Oxides: From Nanometer to Atomic Scale

    NASA Astrophysics Data System (ADS)

    Kalinin, Sergei

    2014-03-01

    Vacancy-mediated electrochemical reactions in oxides underpin multiple applications ranging from electroresistive memories, to chemical sensors to energy conversion systems such as fuel cells. Understanding the functionality in these systems requires probing reversible (oxygen reduction/evolution reaction) and irreversible (cathode degradation and activation, formation of conductive filaments) electrochemical processes. In this talk, I summarize recent advances in probing and controlling these transformations locally on nanometer level using scanning probe microscopy. The localized tip concentrates the electric field in the nanometer scale volume of material, inducing local transition. Measured simultaneously electromechanical response (piezoresponse) or current (conductive AFM) provides the information on the bias-induced changes in material. Here, I illustrate how these methods can be extended to study local electrochemical transformations, including vacancy dynamics in oxides such as titanates, LaxSr1-xCoO3, BiFeO3, and YxZr1-xO2. The formation of electromechanical hysteresis loops and their bias-, temperature- and environment dependences provide insight into local electrochemical mechanisms. In materials such as lanthanum-strontium cobaltite, mapping both reversible vacancy motion and vacancy ordering and static deformation is possible, and can be corroborated by post mortem STEM/EELS studies. In ceria, a broad gamut of electrochemical behaviors is observed as a function of temperature and humidity. The possible strategies for elucidation ionic motion at the electroactive interfaces in oxides using high-resolution electron microscopy and combined ex-situ and in-situ STEM-SPM studies are discussed. In the second part of the talk, probing electrochemical phenomena on in-situ grown surfaces with atomic resolution is illustrated. I present an approach based on the multivariate statistical analysis of the coordination spheres of individual atoms to reveal

  10. Acid-base equilibria inside amine-functionalized mesoporous silica.

    PubMed

    Yamaguchi, Akira; Namekawa, Manato; Kamijo, Toshio; Itoh, Tetsuji; Teramae, Norio

    2011-04-15

    Acid-base equilibria and effective proton concentration inside a silica mesopore modified with a trimethyl ammonium (TMAP) layer were studied by steady-state fluorescence experiments. The mesoporous silica with a dense TMAP layer (1.4 molecules/nm(2)) was prepared by a post grafting of N-trimethoxysilylpropyl-N,N,N-trimethylammonium at surfactant-templated mesoporous silica (diameter of silica framework =3.1 nm). The resulting TMAP-modified mesoporous silica strongly adsorbed of anionic fluorescence indicator dyes (8-hydroxypyrene-1,3,6-trisulfonate (pyranine), 8-aminopyrene-1,3,6-trisulfonate (APTS), 5,10,15,20-tetraphenyl-21H,23H-porphinetetrasulfonic acid disulfuric acid (TPPS), 2-naphthol-3,6-disulfonate (2NT)) and fluorescence excitation spectra of these dyes within TMAP-modified mesoporous silica were measured by varying the solution pH. The fluorescence experiments revealed that the acid-base equilibrium reactions of all pH indicator dyes within the TMAP-modified silica mesopore were quite different from those in bulk water. From the analysis of the acid-base equilibrium of pyranine, the following relationships between solution pH (pH(bulk)) and the effective proton concentration inside the pore (pH(pore)) were obtained: (1) shift of pH(pore) was 1.8 (ΔpH(pore)=1.8) for the pH(bulk) change from 2.1 to 9.1 (ΔpH(bulk)=7.0); (2) pH(pore) was not simply proportional to pH(bulk); (3) the inside of the TMAP-modified silica mesopore was suggested to be in a weak acidic or neutral condition when pH(bulk) was changed from 2.0 to 9.1. Since these relationships between pH(bulk) and pH(pore) could explain the acid-base equilibria of other pH indicator dyes (APTS, TPPS, 2NT), these relationships were inferred to describe the effective proton concentration inside the TMAP-modified silica mesopore. © 2011 American Chemical Society

  11. Quantification of endocytosis using a folate functionalized silica hollow nanoshell platform

    PubMed Central

    Sandoval, Sergio; Mendez, Natalie; Alfaro, Jesus G.; Yang, Jian; Aschemeyer, Sharraya; Liberman, Alex; Trogler, William C.; Kummel, Andrew C.

    2015-01-01

    Abstract. A quantification method to measure endocytosis was designed to assess cellular uptake and specificity of a targeting nanoparticle platform. A simple N-hydroxysuccinimide ester conjugation technique to functionalize 100-nm hollow silica nanoshell particles with fluorescent reporter fluorescein isothiocyanate and folate or polyethylene glycol (PEG) was developed. Functionalized nanoshells were characterized using scanning electron microscopy and transmission electron microscopy and the maximum amount of folate functionalized on nanoshell surfaces was quantified with UV-Vis spectroscopy. The extent of endocytosis by HeLa cervical cancer cells and human foreskin fibroblast (HFF-1) cells was investigated in vitro using fluorescence and confocal microscopy. A simple fluorescence ratio analysis was developed to quantify endocytosis versus surface adhesion. Nanoshells functionalized with folate showed enhanced endocytosis by cancer cells when compared to PEG functionalized nanoshells. Fluorescence ratio analyses showed that 95% of folate functionalized silica nanoshells which adhered to cancer cells were endocytosed, while only 27% of PEG functionalized nanoshells adhered to the cell surface and underwent endocytosis when functionalized with 200 and 900  μg, respectively. Additionally, the endocytosis of folate functionalized nanoshells proved to be cancer cell selective while sparing normal cells. The developed fluorescence ratio analysis is a simple and rapid verification/validation method to quantify cellular uptake between datasets by using an internal control for normalization. PMID:26315280

  12. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pei, Yuchen; Xiao, Chaoxian; Goh, Tian -Wei

    2015-10-20

    Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. Amore » series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV–Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA–IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. Lastly, these results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.« less

  13. Salt permeation and exclusion in hydroxylated and functionalized silica pores.

    PubMed

    Leung, Kevin; Rempe, Susan B; Lorenz, Christian D

    2006-03-10

    We use combined ab initio molecular dynamics (AIMD), grand canonical Monte Carlo, and molecular dynamics techniques to study the effect of pore surface chemistry and confinement on the permeation of salt into silica nanopore arrays filled with water. AIMD shows that 11.6 A diameter hydroxylated silica pores are relatively stable in water, whereas amine groups on functionalized pore surfaces abstract silanol protons, turning into NH3+. Free energy calculations using an ab initio parametrized force field show that the hydroxylated pores strongly attract Na+ and repel Cl- ions. Pores lined with NH3+ have the reverse surface charge polarity. Finally, studies of ions in carbon nanotubes suggest that hydration of Cl- is more strongly frustrated by pure confinement effects than Na+.

  14. Silica functionalized Cu(II) acetylacetonate Schiff base complex: An efficient catalyst for the oxidative condensation reaction of benzyl alcohol with amines

    NASA Astrophysics Data System (ADS)

    Anbarasu, G.; Malathy, M.; Karthikeyan, P.; Rajavel, R.

    2017-09-01

    Silica functionalized Cu(II) acetylacetonate Schiff base complex via the one pot reaction of silica functionalized 3-aminopropyltriethoxysilane with acetyl acetone and copper acetate has been reported. The synthesized material was well characterized by analytical techniques such as FT-IR, UV-DRS, XRD, SEM-EDX, HR-TEM, EPR, ICP-AES and BET analysis. The characterization results confirmed the grafting of Cu(II) Schiff base complex on the silica surface. The catalytic activity of synthesized silica functionalized Cu(II) acetylacetonate Schiff base complex was evaluated through the oxidative condensation reaction of benzyl alcohol to imine.

  15. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization.

    PubMed

    Bumb, Ambika; Sarkar, Susanta K; Billington, Neil; Brechbiel, Martin W; Neuman, Keir C

    2013-05-29

    Fluorescent nanodiamonds (FNDs) emit in the near-IR and do not photobleach or photoblink. These properties make FNDs better suited for numerous imaging applications compared with commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here we present a method for encapsulating nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution.

  16. Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization

    PubMed Central

    Bumb, Ambika; Sarkar, Susanta K.; Billington, Neil; Brechbiel, Martin W.; Neuman, Keir C.

    2013-01-01

    Fluorescent nanodiamonds (FNDs) emit in the near infrared and do not photo-bleach or photoblink. These properties make FNDs better suited for numerous imaging applications in comparison to commonly used fluorescence agents such as organic dyes and quantum dots. However, nanodiamonds do not form stable suspensions in aqueous buffer, are prone to aggregation, and are difficult to functionalize. Here, we present a method to encapsulate nanodiamonds with silica using an innovative liposome-based encapsulation process that renders the particle surface biocompatible, stable, and readily functionalized through routine linking chemistries. Furthermore, the method selects for a desired particle size and produces a monodisperse agent. We attached biotin to the silica-coated FNDs and tracked the three-dimensional motion of a biotinylated FND tethered by a single DNA molecule with high spatial and temporal resolution. PMID:23581827

  17. Organically Modified Silicas on Metal Nanowires

    PubMed Central

    2010-01-01

    Organically modified silica coatings were prepared on metal nanowires using a variety of silicon alkoxides with different functional groups (i.e., carboxyl groups, polyethylene oxide, cyano, dihydroimidazole, and hexyl linkers). Organically modified silicas were deposited onto the surface of 6-μm-long, ∼300-nm-wide, cylindrical metal nanowires in suspension by the hydrolysis and polycondensation of silicon alkoxides. Syntheses were performed at several ratios of tetraethoxysilane to an organically modified silicon alkoxide to incorporate desired functional groups into thin organosilica shells on the nanowires. These coatings were characterized using transmission electron microscopy, X-ray photoelectron spectroscopy, and infrared spectroscopy. All of the organically modified silicas prepared here were sufficiently porous to allow the removal of the metal nanowire cores by acid etching to form organically modified silica nanotubes. Additional functionality provided to the modified silicas as compared to unmodified silica prepared using only tetraethoxysilane precursors was demonstrated by chromate adsorption on imidazole-containing silicas and resistance to protein adsorption on polyethyleneoxide-containing silicas. Organically modified silica coatings on nanowires and other nano- and microparticles have potential application in fields such as biosensing or nanoscale therapeutics due to the enhanced properties of the silica coatings, for example, the prevention of biofouling. PMID:20715881

  18. Surface functionalization of mesoporous silica SBA-15 by liquid-phase grafting of zirconium phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Sheng; Hagaman, Edward; Ma, Zhen

    2010-01-01

    The introduction of mesoporous silicas in the 1990s has offered new opportunities for the engineering of ordered catalytic nanoreactors, but the acid properties of mesoporous silicas are rather poor. Herein, mesoporous silica (SBA-15) surfaces were functionalized by zirconium phosphate via two methods recently developed in our group. Zr(OPr){sub 4} and POCl{sub 3} were used as appropriate precursors in both methods. The main difference between these methods lies in whether Zr(OPr){sub 4} is grafted onto SBA-15 first and POCl{sub 3} second (method 1) or the grafting process takes place in one pot, with SBA-15, Zr(OPr){sub 4}, and POCl{sub 3} altogether (methodmore » 2). More zirconium phosphate could be grafted by repeating the above procedures. The materials were characterized by ICP-OES, XRD, N{sub 2} adsorption-desorption, TEM, {sup 31}P and {sup 29}Si MAS NMR, and NH{sub 3}-TPD, and their applications in catalytic isopropanol dehydration, cumene cracking, and metal-ion adsorption were demonstrated. Aluminum phosphate-modified SBA-15 samples could be obtained via these two methods as well. This work enriches the family of metal phosphate-functionalized mesoporous silicas as new solid acid catalysts.« less

  19. Catalytic reduction of organic dyes at gold nanoparticles impregnated silica materials: influence of functional groups and surfactants

    NASA Astrophysics Data System (ADS)

    Azad, Uday Pratap; Ganesan, Vellaichamy; Pal, Manas

    2011-09-01

    Gold nanoparticles (Au NPs) in three different silica based sol-gel matrixes with and without surfactants are prepared. They are characterized by UV-vis absorbance and transmission electron microscopic (TEM) studies. The size and shape of Au NPs varied with the organo-functional group present in the sol-gel matrix. In the presence of mercaptopropyl functionalized organo-silica, large sized (200-280 nm) spherical Au NPs are formed whereas in the presence of aminopropyl functionalized organo-silica small sized (5-15 nm) Au NPs are formed inside the tube like organo-silica. Further, it is found that Au NPs act as efficient catalyst for the reduction of organic dyes. The catalytic rate constant is evaluated from the decrease in absorbance of the dye molecules. Presence of cationic or anionic surfactants greatly influences the catalytic reaction. The other factors like hydrophobicity of the organic dyes, complex formation of the dyes with anionic surfactants, repulsion between dyes and cationic surfactant, adsorption of dyes on the Au NPs also play important role on the reaction rate.

  20. Sensitive electrochemical immunoassay for 2,4,6-trinitrotoluene based on functionalized silica nanoparticle labels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jun; Liu, Guodong; Wu, Hong

    2008-03-03

    We present a poly(guanine)-functionalized silica nanoparticle (NP) label-based electrochemical immunoassay for sensitively detecting 2,4,6-trinitrotoluene (TNT). This immunoassay takes advantage of magnetic bead–based platform for competitive displacement immunoreactions and separation, and use electroactive nanoparticles as labels for signal amplification. For this assay, anti-TNT-coated magnetic beads interacted with TNT analog-conjugated poly(guanine)-silica NPs and formed analog-anti-TNT immunocomplexes on magnetic beads. The immunocomplexes coated magnetic beads were exposed to TNT samples, which resulted in displacing the analog conjugated poly(guanine) silica NPs into solution by TNT. In contrast, there are no guanine residues releasing into the solution in the absence of TNT. The reaction solutionmore » was then separated from the magnetic beads and transferred to the electrode surface for electrochemical measurements of guanine oxidation with Ru(bpy)32+ as mediator. The sensitivity of this TNT assay was greatly enhanced through dual signal amplifications: 1) a large amount of guanine residues on silica nanoparticles is introduced into the test solution by displacement immunoreactions and 2) a Ru(bpy)32+-induced guanine catalytic oxidation further enhances the electrochemical signal. Some experimental parameters for the nanoparticle label-based electrochemical immunoassay were studied and the performance of this assay was evaluated. The method is found to be very sensitive and the detection limit of this assay is ~ 0.1 ng mL-1 TNT. The electrochemical immunoassay based on the poly[guanine]-functionalized silica NP label offers a new approach for sensitive detection of explosives.« less

  1. Active Iron Sites of Disordered Mesoporous Silica Catalyst FeKIL-2 in the Oxidation of Volatile Organic Compounds (VOC)

    PubMed Central

    Rangus, Mojca; Mazaj, Matjaž; Dražić, Goran; Popova, Margarita; Tušar, Nataša Novak

    2014-01-01

    Iron-functionalized disordered mesoporous silica (FeKIL-2) is a promising, environmentally friendly, cost-effective and highly efficient catalyst for the elimination of volatile organic compounds (VOCs) from polluted air via catalytic oxidation. In this study, we investigated the type of catalytically active iron sites for different iron concentrations in FeKIL-2 catalysts using advanced characterization of the local environment of iron atoms by a combination of X-ray Absorption Spectroscopy Techniques (XANES, EXAFS) and Atomic-Resolution Scanning Transmission Electron Microscopy (AR STEM). We found that the molar ratio Fe/Si ≤ 0.01 leads to the formation of stable, mostly isolated Fe3+ sites in the silica matrix, while higher iron content Fe/Si > 0.01 leads to the formation of oligonuclear iron clusters. STEM imaging and EELS techniques confirmed the existence of these clusters. Their size ranges from one to a few nanometers, and they are unevenly distributed throughout the material. The size of the clusters was also found to be similar, regardless of the nominal concentration of iron (Fe/Si = 0.02 and Fe/Si = 0.05). From the results obtained from sample characterization and model catalytic tests, we established that the enhanced activity of FeKIL-2 with the optimal Fe/Si = 0.01 ratio can be attributed to: (1) the optimal concentration of stable isolated Fe3+ in the silica support; and (2) accelerated diffusion of the reactants in disordered mesoporous silica (FeKIL-2) when compared to ordered mesoporous silica materials (FeSBA-15, FeMCM-41). PMID:28788674

  2. Forces between functionalized silica nanoparticles in solution

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Lorenz, Christian D.; Grest, Gary S.

    2009-05-01

    To prevent the flocculation and phase separation of nanoparticles in solution, nanoparticles are often functionalized with short chain surfactants. Here we present fully atomistic molecular dynamics simulations which characterize how these functional coatings affect the interactions between nanoparticles and with the surrounding solvent. For 5-nm-diameter silica nanoparticles coated with poly(ethylene oxide) (PEO) oligomers in water, we determined the hydrodynamic drag on two approaching nanoparticles moving through solvent and on a single nanoparticle as it approaches a planar surface. In most circumstances, macroscale fluid theory accurately predicts the drag on these nanoscale particles. Good agreement is seen with Brenner’s analytical solutions for wall separations larger than the soft nanoparticle radius. For two approaching coated nanoparticles, the solvent-mediated (velocity independent) and lubrication (velocity-dependent) forces are purely repulsive and do not exhibit force oscillations that are typical of uncoated rigid spheres.

  3. Biomedical Applications of Functionalized Hollow Mesoporous Silica Nanoparticles: Focusing on Molecular Imaging

    PubMed Central

    Shi, Sixiang; Chen, Feng; Cai, Weibo

    2013-01-01

    Hollow mesoporous silica nanoparticles (HMSNs), with a large cavity inside each original mesoporous silica nanoparticle (MSN), have recently gained increasing interest due to their tremendous potential for cancer imaging and therapy. The last several years have witnessed a rapid development in engineering of functionalized HMSNs (i.e. f-HMSNs) with various types of inorganic functional nanocrystals integrated into the system for imaging and therapeutic applications. In this review article, we summarize the recent progress in the design and biological applications of f-HMSNs, with a special emphasis on molecular imaging. Commonly used synthetic strategies for the generation of high quality HMSNs will be discussed in detail, followed by a systematic review of engineered f-HMSNs for optical, positron emission tomography, magnetic resonance, and ultrasound imaging in preclinical studies. Lastly, we also discuss the challenges and future research directions regarding the use of f-HMSNs for cancer imaging and therapy. PMID:24279491

  4. Monomer functionalized silica coated with Ag nanoparticles for enhanced SERS hotspots

    NASA Astrophysics Data System (ADS)

    Newmai, M. Boazbou; Verma, Manoj; Kumar, P. Senthil

    2018-05-01

    Mesoporous silica (SiO2) spheres are well-known for their excellent chromatographic properties such as the relatively high specific surface, large pore volume, uniform particle size, narrow pore size distribution with favorable pore connectivity; whereas the noble metal Ag nanoparticles have unique size/shape dependant surface plasmon resonance with wide ranging applications. Thus, the desire to synchronize both their properties for specific applications has naturally prompted research in the design and synthesis of core-shell type novel nanoAg@mesoSiO2 nanocomposites, which display potential utility in applications such as photothermal therapy, photocatalysis, molecular sensing, and photovoltaics. In the present work, SiO2 spheres were carefully functionalized with the monomer, N-vinyl pyrrolidone (NVP), which cohesively controls the uniform mass transfer of Ag+ metal ions, thereby enabling its sequential reduction to zerovalent Ag (in the presence of slightly excess NaOH) by electron transfer from nucleophilic attack of the NVP vinyl group by the water molecules even under ambient conditions. Complete metal nanoshell coverage of the silica surface was obtained after multiple Ag deposition cycles, as systematically confirmed from the BET, TEM, optical and FTIR characterization. Our present Ag-coated silica spheres were directly utilized as viable SERS substrates with high sensitivity in contrast with other long chain polymer/surfactant coated silica spheres, owing to the presence of significant number of nanogaps enhanced SERS 'hotspots', which were methodically analyzed utilizing two example analytes, such as crystal violet (CV) and calendula officinalis (CaF).

  5. Functionalization of SBA-15 mesoporous silica by Cu-phosphonate units: Probing of synthesis route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laskowski, Lukasz, E-mail: lukasz.laskowski@kik.pcz.pl; Czestochowa University of Technology, Institute of Physics, Al. Armii Krajowej 19, 42-201 Czestochowa; Laskowska, Magdalena, E-mail: magdalena.laskowska@onet.pl

    2014-12-15

    Mesoporous silica SBA-15 containing propyl-copper phosphonate units was investigated. The structure of mesoporous samples was tested by N{sub 2} isothermal sorption (BET and BHJ analysis), TEM microscopy and X-Ray scattering. Quantitative analysis EDX has given information about proportions between component atoms in the sample. Quantitative elemental analysis has been carried out to support EDX. To examine bounding between copper atoms and phosphonic units the Raman spectroscopy was carried out. As a support of Raman scattering, the theoretical calculations were made based on density functional theory, with the B3LYP method. By comparison of the calculated vibrational spectra of the molecule withmore » experimental results, distribution of the active units inside silica matrix has been determined. - Graphical abstract: The present study is devoted to mesoporous silica SBA-15 containing propyl-copper phosphonate units. The species were investigated to confirm of synthesis procedure correctness by the micro-Raman technique combined with DFT numerical simulations. Complementary research was carried out to test the structure of mesoporous samples. - Highlights: • SBA-15 silica functionalized with propyl-copper phosphonate units was synthesized. • Synthesis efficiency probed by Raman study supported with DFT simulations. • Homogenous distribution of active units was proved. • Synthesis route enables precise control of distance between copper ions.« less

  6. Amine functionalized cubic mesoporous silica nanoparticles as an oral delivery system for curcumin bioavailability enhancement

    NASA Astrophysics Data System (ADS)

    Budi Hartono, Sandy; Hadisoewignyo, Lannie; Yang, Yanan; Meka, Anand Kumar; Antaresti; Yu, Chengzhong

    2016-12-01

    In the present work, a simple method was used to develop composite curcumin-amine functionalized mesoporous silica nanoparticles (MSN). The nanoparticles were used to improve the bioavailability of curcumin in mice through oral administration. We investigated the effect of particle size on the release profile, solubility and oral bioavailability of curcumin in mice, including amine functionalized mesoporous silica micron-sized-particles (MSM) and MSN (100-200 nm). Curcumin loaded within amine functionalized MSN (MSN-A-Cur) had a better release profile and a higher solubility compared to amine MSM (MSM-A-Cur). The bioavailability of MSN-A-Cur and MSM-A-Cur was considerably higher than that of ‘free curcumin’. These results indicate promising features of amine functionalized MSN as a carrier to deliver low solubility drugs with improved bioavailability via the oral route.

  7. Influence of Cytokines and Soluble Receptors in the Quality of Life and Functional Capacity of Workers Exposed to Silica.

    PubMed

    Braz, Nayara Felicidade Tomaz; Carneiro, Ana Paula Scalia; Avelar, Núbia Carelli Pereira de; Miranda, Aline Silva de; Lacerda, Ana Cristina Rodrigues; Teixeira, Mauro Martins; Teixeira, Antônio Lúcio; Mendonça, Vanessa Amaral

    2016-03-01

    The aim of the study was to evaluate the plasma levels of inflammatory mediators in subjects exposed to silica, with and without silicosis compared with unexposed control group; and to check the association between inflammatory mediators with pulmonary function, quality of life, functional capacity, and dyspnea grade. Inflammatory mediators were measured by enzyme-linked immunosorbent assay. There were 30 subjects exposed to silica and 24 control group. Interleukin-6 plasma levels were higher in subjects exposed to silica with and without silicosis than in the control group. There was a positive correlation between radiological severity and the quality of life, whereas there was a negative correlation between radiological severity and pulmonary function. A negative correlation between sTNFR1 plasma level and functional capacity was found. Interleukin-10 was negatively correlated with the quality of life total score and was positively correlated with the functional capacity and pulmonary function.

  8. Enhanced Adsorption of Trivalent Arsenic from Water by Functionalized Diatom Silica Shells

    PubMed Central

    Zhang, Zhijian; Xu, Liping; Zhang, Chunlong

    2015-01-01

    The potential of porous diatom silica shells as a naturally abundant low-cost sorbent for the removal of arsenic in aqueous solutions was investigated in a batch study. The objective of this work was to chemically modify the silica shells of a diatom Melosira sp. with bifunctional (thiol and amino) groups to effectively remove arsenic in its toxic As(III) form (arsenite) predominant in the aquatic environment. Sorption experiments with this novel sorbent were conducted under varying conditions of pH, time, dosage, and As(III) concentration. A maximum adsorption capacity of 10.99 mg g-1 was achieved within 26 h for a solution containing 12 mg L-1 As(III) at pH 4 and sorbent dosage of 2 g L-1. The functionalized diatom silica shells had a surface morphological change which was accompanied by increased pore size at the expense of reduced specific surface area and total pore volume. As(III) adsorption was best fitted with the Langmuir-Freundlich model, and the adsorption kinetic data using pore surface diffusion model showed that both the external (film) and internal (intraparticle) diffusion can be rate-determining for As(III) adsorption. Fourier transform infrared spectroscopy (FTIR) indicated that the thiol and amino groups potentially responsible for As(III) adsorption were grafted on the surface of diatom silica shells. X-ray photoelectron spectroscopy (XPS) further verified that this unique sorbent proceeded via a chemisorption mechanism through the exchange between oxygen-containing groups of neutral As(III) and thiol groups, and through the surface complexation between As(III) and protonated nitrogen and hydroxyl groups. Results indicate that this functionalized bioadsorbent with a high As(III) adsorption capacity holds promise for the treatment of As(III) containing wastewater. PMID:25837498

  9. Silica based hybrid materials for drug delivery and bioimaging.

    PubMed

    Bagheri, Elnaz; Ansari, Legha; Abnous, Khalil; Taghdisi, Seyed Mohammad; Charbgoo, Fahimeh; Ramezani, Mohammad; Alibolandi, Mona

    2018-05-10

    Silica hybrid materials play an important role in improvement of novel progressive functional nanomaterials. Study in silica hybrid functional materials is supported by growing interest in providing intelligent materials that combine best of the inorganic silica structure along with organic or biological realms. Hybrid silica materials do not only provide fantastic opportunities for the design of novel materials for research but their represented unique properties open versatile applications specifically in nanomedicine since it was recognized by US FDA as a safe material for human trials. By combining various materials with different characteristics along with silica NPs as building blocks, silica-based hybrid vehicles were developed. In this regard, silica-based hybrid materials have shown great capabilities as unique carriers for bioimaging and/or drug delivery purposes. In the aforementioned hybrid systems, silica was preferred as a main building block of the hybrid structure, which is easily functionalized with different materials, bio-molecules and targeting ligands while providing biocompatibility for the system. This review will cover a full description of different hybrids of silica nanoparticles including silica-polymer, silica-protein, silica-peptide, silica-nucleic acid, silica-gold, silica-quantum dot, and silica-magnetic nanoparticles and their applications as therapeutic or imaging systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Monodisperse core-shell particles composed of magnetite and dye-functionalized mesoporous silica

    NASA Astrophysics Data System (ADS)

    Eurov, D. A.; Kurdyukov, D. A.; Medvedev, A. V.; Kirilenko, D. A.; Yakovlev, D. R.; Golubev, V. G.

    2017-08-01

    Hybrid particles with a core-shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

  11. Effective holographic recordings in the photopolymer nanocomposites with functionalized silica nanoparticle and polyurethane matrix

    NASA Astrophysics Data System (ADS)

    Han, Samsook; Lee, Muncheul; Kim, Byung Kyu

    2011-11-01

    Effective holographic nanocomposites were developed by the surface-functionalized silica nanoparticles and two acrylate monomers/polyurethane (PU) matrix polymer. The functionalization was done with silane compounds carrying long alkyl chain or vinyl group. We evaluated the holographic nanocomposite films by the diffraction efficiency, volume shrinkage, optical loss, and the film morphology. It was found that acrylate monomers/PU system gave higher diffraction efficiency than those of two monomers due to the high refractive index mismatch between the acrylate-rich and PU-rich regions. With the modification of silica particle, up to 35% of particle loading was possible to give a maximum diffraction efficiency of 93.6% for a film of 20 μm in thickness, along with improved refractive index modulation and the sensitivity.

  12. Complex biomembrane mimetics on the sub-nanometer scale

    DOE PAGES

    Heberle, Frederick A.; Pabst, Georg

    2017-07-17

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  13. Complex biomembrane mimetics on the sub-nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heberle, Frederick A.; Pabst, Georg

    Biomimetic lipid vesicles are indispensable tools for gaining insight into the biophysics of cell physiology on the molecular level. The level of complexity of these model systems has steadily increased, and now spans from domain forming lipid mixtures to asymmetric lipid bilayers. We review recent progress in the development and application of elastic neutron and X-ray scattering techniques for studying these systems in situ and under physiologically relevant conditions on the nanometer to sub-nanometer length scales. Particularly we focus on: (i) structural details of coexisting liquid-ordered and liquid-disordered domains, including their thickness and lipid packing mismatch as a function ofmore » a size transition from nanoscopic to macroscopic domains; (ii) membrane-mediated protein partitioning into lipid domains; (iii) the role of the aqueous medium in tuning interactions between membranes and domains; and (iv) leaflet specific structure in asymmetric bilayers and passive lipid flip-flop.« less

  14. Infrared Reflectance Spectroscopy of Porous Silicas

    NASA Astrophysics Data System (ADS)

    Guiton, Theresa Anne

    Fourier transform infrared (FTIR) specular reflectance spectroscopy was used to examine the fundamental phonon behavior of a series of porous silicas including porous Vycor, xerogels, aerogels, and colloidal solids. The spectra were deconvoluted using Kramers-Kronig analysis techniques, and the corresponding optical constants were determined via the Fresnel equations. The resulting spectra represent the first compilation of such data for low density silicas. The porous silicas revealed unique resonance modes for the imaginary dielectric function and energy loss function. A key distinction amongst the spectra was the change in the band shape of the antisymmetric Si-O-Si stretching modes. For instance, as the porosity level of the particulate systems increased, the peak maxima of the imaginary dielectric functions shifted to higher frequencies while the peak maxima of the associated energy loss function shifted to lower frequencies. In essence, with increasing porosity, the peak maxima of the imaginary dielectric functions and the energy loss functions were converging towards frequencies intermediate to the transverse optical and longitudinal optical modes of fused silica. A similar trend was not observed for the semi-continuous silica matrices. Maxwell Garnett effective medium modeling verified that these modes were a function of the porous microstructure and can be attributed to surface phonon modes. The effect of surface phonon modes was also evident in the absorption coefficient data. However, contrary to the traditional view that changes in the absorption spectra of porous silicas are strictly due to molecular structure, this study has demonstrated that variations can be attributed--both qualitatively and quantitatively--to electrostatic screening effects of finite particles.

  15. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  16. Influence of nanometer scale particulate fillers on some properties of microfilled composite resin.

    PubMed

    Garoushi, Sufyan; Lassila, Lippo V J; Vallittu, Pekka K

    2011-07-01

    The aim of this study was to evaluate the effect of different weight fractions of nanometer sized particulate filler on properties of microfilled composite resin. Composite resin was prepared by mixing 33 wt% of resin matrix to the 67 wt% of silane treated microfine silica particulate fillers with various fractions of nanometer sized fillers (0, 10, 15, 20, 30 wt%) using a high speed mixing machine. Test specimens made of the composites were tested with a three-point bending test with a speed of 1.0 mm/min until fracture. Surface microhardess (Vicker's microhardness) was also determined. The volumetric shrinkage in percent was calculated as a buoyancy change in distilled water by means of the Archimedes principle. The degree of monomer conversion (DC%) of the experimental composites containing different nanofiller fractions was measured using FTIR spectroscopy. Surface roughness (Ra) was determined using a surface profilometer. Nanowear measurements were carried out using a nanoindentation device. The water uptake of specimens was also measured. Parameters were statistically analysed by ANOVA (P < 0.05). The group without nanofillers showed the highest flexural strength and modulus, DC% and Ra value. The group with 30% nanofillers had the highest water uptake and volumetric shrinkage. No significant difference was found in Vicker's microhardness and the nanowear of the composites. The plain microfilled composite demonstrated superior properties compared to the composites loaded with nanofillers with the exception of surface roughness.

  17. Laser damage of free-standing nanometer membranes

    NASA Astrophysics Data System (ADS)

    Morimoto, Yuya; Roland, Iännis; Rennesson, Stéphanie; Semond, Fabrice; Boucaud, Philippe; Baum, Peter

    2017-12-01

    Many high-field/attosecond and ultrafast electron diffraction/microscopy experiments on condensed matter require samples in the form of free-standing membranes with nanometer thickness. Here, we report the measurement of the laser-induced damage threshold of 11 different free-standing nanometer-thin membranes of metallic, semiconducting, and insulating materials for 1-ps, 1030-nm laser pulses at 50 kHz repetition rate. We find a laser damage threshold that is very similar to each corresponding bulk material. The measurements also reveal a band gap dependence of the damage threshold as a consequence of different ionization rates. These results establish the suitability of free-standing nanometer membranes for high-field pump-probe experiments.

  18. Morphological and textural characterization of functionalized particulate silica xerogels

    NASA Astrophysics Data System (ADS)

    de Miranda, Lazaro A.; Mohallem, Nelcy D. S.; de Magalhães, Welington F.

    2006-03-01

    The functionalization of xerogels for use in chromatography and catalysis was carried out by solubilization of amorphous silica using a soxhlet extractor. Xerogels were prepared by sol-gel method using tetraethoxysilane, TEOS, ethanol, and water in a 1/3/10 molar ratio with HCl and HF as catalysts. The samples were prepared in monolithic form and dried at 70 °C and 550 °C for 1 h each. After functionalization, changes in textural and morphological characteristics of xerogels were investigated by means of nitrogen gas adsorption, positron annihilation lifetime spectroscopy (PALS), and scanning electron microscopy (SEM). As the analysis methods are based on different physical principles, the results are complementary, leading to a good knowledge of the texture of the samples studied.

  19. Biomembrane disruption by silica-core nanoparticles: effect of surface functional group measured using a tethered bilayer lipid membrane

    PubMed Central

    Liu, Ying; Zhang, Zhen; Zhang, Quanxuan; Baker, Gregory L.; Worden, R. Mark

    2013-01-01

    Engineered nanomaterials (ENM) have desirable properties that make them well suited for many commercial applications. However, a limited understanding of how ENM’s properties influence their molecular interactions with biomembranes hampers efforts to design ENM that are both safe and effective. This paper describes the use of a tethered bilayer lipid membrane (tBLM) to characterize biomembrane disruption by functionalized silica-core nanoparticles. Electrochemical impedance spectroscopy was used to measure the time trajectory of tBLM resistance following nanoparticle exposure. Statistical analysis of parameters from an exponential resistance decay model was then used to quantify and analyze differences between the impedance profiles of nanoparticles that were unfunctionalized, amine-functionalized, or carboxyl-functionalized. All of the nanoparticles triggered a decrease in membrane resistance, indicating nanoparticle-induced disruption of the tBLM. Hierarchical clustering allowed the potency of nanoparticles for reducing tBLM resistance to be ranked in the order amine > carboxyl ~ bare silica. Dynamic light scattering analysis revealed that tBLM exposure triggered minor coalescence for bare and amine-functionalized silica nanoparticles but not for carboxyl-functionalized silica nanoparticles. These results indicate that the tBLM method can reproducibly characterize ENM-induced biomembrane disruption and can distinguish the BLM-disruption patterns of nanoparticles that are identical except for their surface functional groups. The method provides insight into mechanisms of molecular interaction involving biomembranes and is suitable for miniaturization and automation for high-throughput applications to help assess the health risk of nanomaterial exposure or identify ENM having a desired mode of interaction with biomembranes. PMID:24060565

  20. Inorganic Nanocrystals Functionalized Mesoporous Silica Nanoparticles: Fabrication and Enhanced Bio-applications

    NASA Astrophysics Data System (ADS)

    Zhao, Tiancong; Nguyen, Nam-Trung; Xie, Yang; Sun, Xiaofei; Li, Qin; Li, Xiaomin

    2017-12-01

    Mesoporous SiO2 nanoparticles (MSNs) are one of the most promising materials for bio-related applications due to advantages such as good biocompatibility, tunable mesopores and large pore volume. However, unlike the inorganic nanocrystals with abundant physical properties, MSNs alone lack functional features. Thus, they are not sufficiently suitable for bio-applications that require special functions. Consequently, MSNs are often functionalized by incorporating inorganic nanocrystals, which provide a wide range of intriguing properties. This review focuses on inorganic nanocrystals functionalized MSNs, both their fabrication and bio-applications. Some of the most utilized methods for coating mesoporous silica (mSiO2) on nanoparticles were summarized. Magnetic, fluorescence and photothermal inorganic nanocrystals functionalized MSNs were taken as examples to demonstrate the bio-applications. Furthermore, asymmetry of MSNs and their effects on functions were also highlighted.

  1. Synthesis and Characterization of Bionanoparticle-Silica Composites and Mesoporous Silica with Large Pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niu, Z.; Yang, L.; Kabisatpathy, S.

    2009-03-24

    A sol-gel process has been developed to incorporate bionanoparticles, such as turnip yellow mosaic virus, cowpea mosaic virus, tobacco mosaic virus, and ferritin into silica, while maintaining the integrity and morphology of the particles. The structures of the resulting materials were characterized by transmission electron microscopy, small angle X-ray scattering, and N{sub 2} adsorption-desorption analysis. The results show that the shape and surface morphology of the bionanoparticles are largely preserved after being embedded into silica. After removal of the bionanoparticles by calcination, mesoporous silica with monodisperse pores, having the shape and surface morphology of the bionanoparticles replicated inside the silica,more » was produced,. This study is expected to lead to both functional composite materials and mesoporous silica with structurally well-defined large pores.« less

  2. Improving the controlled release of water-insoluble emodin from amino-functionalized mesoporous silica

    NASA Astrophysics Data System (ADS)

    Xu, Yunqiang; Wang, Chunfeng; Zhou, Guowei; Wu, Yue; Chen, Jing

    2012-06-01

    Several types of amino-functionalized mesoporous silica, including F5-SBA-15, F10-SBA-15, and F15-SBA-15 were prepared through co-condensation of tetraethoxysilane (TEOS) and (3-aminopropyl)triethoxysilane (APTES) in varying molar ratios (5 mol%, 10 mol%, and 15 mol%) via a hydrothermal process. The materials obtained were characterized by means of small-angle X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, Fourier transformed infrared spectra, and X-ray photoelectron spectroscopy. Increasing APTES molar ratios decreased the degree of orderliness of the functionalized mesoporous silica. Pure and amino-functionalized SBA-15 samples were employed as supports for the controlled release of water-insoluble drug emodin. Loading experiments showed that drug loading capacities mainly depended on the surface areas and pore diameters of the carriers. Controlled release profiles of emodin-loaded samples were studied in phosphate buffered saline (PBS, pH 7.4), and results indicated that the emodin release rate could be controlled by surface amino-functionalized carriers. Emodin loaded on functionalized mesoporous supports exhibited a lower release rate than that of loaded on pure SBA-15, emodin loaded on F10-SBA-15 showed the smallest release amount (71.74 wt%) after stirring in PBS for 60 h. Findings suggest that functionalized mesoporous SBA-15 is a promising carrier for achieving prolonged release time periods.

  3. Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery

    NASA Astrophysics Data System (ADS)

    Vivero-Escoto, Juan Luis

    Mesoporous silica nanoparticles (MSNs) are a highly promising platform for intracellular controlled release of drugs and biomolecules. Despite that the application of MSNs in the field of intracellular drug delivery is still at its infancy very exciting breakthroughs have been achieved in the last years. A general review of the most recent progress in this area of research is presented, including a description of the latest findings on the pathways of entry into live mammalian cells together with the intracellular trafficking, a summary on the contribution of MSNs to the development of site-specific drug delivery systems, a report on the biocompatibility of this material in vitro andin vivo, and a discussion on the most recent breakthroughs in the synthesis and application of stimuli-responsive mesoporous silica-based delivery vehicles. A gold nanoparticles (AuNPs)-capped MSNs-based intracellular photoinduced drug delivery system (PR-AuNPs-MSNs) for the controlled release of anticancer drug inside of human fibroblast and liver cells was synthesized and characterized. We found that the mesoporous channels of MSNs could be efficiently capped by the photoresponsive AuNPs without leaking the toxic drug, paclitaxel, inside of human cells. Furthermore, we demonstrated that the cargo-release property of this PR-AuNPs-MSNs system could be easily photo-controlled under mild and biocompatible conditions in vitro. In collaboration with Renato Mortera (a visiting student from Italy), a MSNs based intracellular delivery system for controlled release of cell membrane impermeable cysteine was developed. A large amount of cysteine molecules were covalently attached to the silica surface of MSNs through cleavable disulfide linkers. These cysteine-containing nanoparticles were efficiently endocytosed by human cervical cancer cells HeLa. These materials exhibit 450 times higher cell growth inhibition capability than that of the conventional N-acetylcysteine prodrug. The ability to

  4. Cyclodextrin-functionalized mesostructured silica nanoparticles for removal of polycyclic aromatic hydrocarbons.

    PubMed

    Topuz, Fuat; Uyar, Tamer

    2017-07-01

    Polycyclic aromatic hydrocarbons (PAHs) are the byproducts of the incomplete combustion of carbon-based fuels, and have high affinity towards DNA strands, ultimately exerting their carcinogenic effects. They are ubiquitousenvironmental contaminants,and can accumulate on tissues due to their lipophilic nature. In this article, we describe a novel concept for PAH removal from aqueous solutions using cyclodextrin-functionalized mesostructured silica nanoparticles (CDMSNs) and pristine mesostructured silica nanoparticles (MSNs). The adsorption applications of MSNs are greatly restricted due to the absence of surface functional groups on such particles. In this regard, cyclodextrins can serve as ideal functional molecules with their toroidal, cone-type structure, capable of inclusion-complex formation with many hydrophobic molecules, including genotoxic PAHs. The CDMSNs were synthesized by the surfactant-templated, NaOH-catalyzed condensation reactions of tetraethyl orthosilicate (TEOS) in the presence of two different types of cyclodextrin (i.e. hydroxypropyl-β-cyclodextrin (HP-β-CD) and native β-cyclodextrin (β-CD)). The physical incorporation of CD moieties was supported by XPS, FT-IR, NMR, TGA and solid-state 13 C NMR. The CDMSNs were treated with aqueous solutions of five different PAHs (e.g. pyrene, anthracene, phenanthrene, fluorene and fluoranthene). The functionalization of MSNs with cyclodextrin moieties significantly boosted the sorption capacity (q) of the MSNs up to ∼2-fold, and the q ranged between 0.3 and 1.65mg per gram CDMSNs, of which the performance was comparable to that of the activated carbon. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. COHESION OF AMORPHOUS SILICA SPHERES: TOWARD A BETTER UNDERSTANDING OF THE COAGULATION GROWTH OF SILICATE DUST AGGREGATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kimura, Hiroshi; Wada, Koji; Senshu, Hiroki

    2015-10-10

    Adhesion forces between submicrometer-sized silicate grains play a crucial role in the formation of silicate dust agglomerates, rocky planetesimals, and terrestrial planets. The surface energy of silicate dust particles is the key to their adhesion and rolling forces in a theoretical model based on contact mechanics. Here we revisit the cohesion of amorphous silica spheres by compiling available data on the surface energy for hydrophilic amorphous silica in various circumstances. It turned out that the surface energy for hydrophilic amorphous silica in a vacuum is a factor of 10 higher than previously assumed. Therefore, the previous theoretical models underestimated themore » critical velocity for the sticking of amorphous silica spheres, as well as the rolling friction forces between them. With the most plausible value of the surface energy for amorphous silica spheres, theoretical models based on the contact mechanics are in harmony with laboratory experiments. Consequently, we conclude that silicate grains with a radius of 0.1 μm could grow to planetesimals via coagulation in a protoplanetary disk. We argue that the coagulation growth of silicate grains in a molecular cloud is advanced either by organic mantles rather than icy mantles or, if there are no mantles, by nanometer-sized grain radius.« less

  6. Experimental stress–strain analysis of tapered silica optical fibers with nanofiber waist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holleis, S.; Hoinkes, T.; Wuttke, C.

    2014-04-21

    We experimentally determine tensile force–elongation diagrams of tapered optical fibers with a nanofiber waist. The tapered optical fibers are produced from standard silica optical fibers using a heat and pull process. Both, the force–elongation data and scanning electron microscope images of the rupture points indicate a brittle material. Despite the small waist radii of only a few hundred nanometers, our experimental data can be fully explained by a nonlinear stress–strain model that relies on material properties of macroscopic silica optical fibers. This is an important asset when it comes to designing miniaturized optical elements as one can rely on themore » well-founded material characteristics of standard optical fibers. Based on this understanding, we demonstrate a simple and non-destructive technique that allows us to determine the waist radius of the tapered optical fiber. We find excellent agreement with independent scanning electron microscope measurements of the waist radius.« less

  7. Facile synthesis of novel magnetic silica nanoparticles functionalized with layer-by-layer detonation nanodiamonds for secretome study.

    PubMed

    Li, Hong; Wang, Yi; Zhang, Lei; Lu, Haojie; Zhou, Zhongjun; Wei, Liming; Yang, Pengyuan

    2015-12-07

    Novel magnetic silica nanoparticles functionalized with layer-by-layer detonation nanodiamonds (dNDs) were prepared by coating single submicron-size magnetite particles with silica and subsequently modified with dNDs. The resulting layer-by-layer dND functionalized magnetic silica microspheres (Fe3O4@SiO2@[dND]n) exhibit a well-defined magnetite-core-silica-shell structure and possess a high content of magnetite, which endow them with high dispersibility and excellent magnetic responsibility. Meanwhile, dNDs are known for their high affinity and biocompatibility towards peptides or proteins. Thus, a novel convenient, fast and efficient pretreatment approach of low-abundance peptides or proteins was successfully established with Fe3O4@SiO2@[dND]n microspheres. The signal intensity of low-abundance peptides was improved by at least two to three orders of magnitude in mass spectrometry analysis. The novel microsphere also showed good tolerance to salt. Even with a high concentration of salt, peptides or proteins could be isolated effectively from samples. Therefore, the convenient and efficient enrichment process of this novel layer-by-layer dND-functionalized microsphere makes it a promising candidate for isolation of protein in a large volume of culture supernatant for secretome analysis. In the application of Fe3O4@SiO2@[dND]n in the secretome of hepatoma cells, 1473 proteins were identified and covered a broad range of pI and molecular weight, including 377 low molecular weight proteins.

  8. Derived and thiourea-functionalized silica for cadmium removal: isotherm, kinetic and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Omotunde, Iyanu; Okoronkwo, Afamefuna; Oluwashina, Olugbenga

    2018-03-01

    The present study explored the feasibility of using derived and thiourea-functionalized silica as adsorbent for the removal of cadmium under different experimental conditions. Effects of various parameters such as function of point of zero charge (pHPZC), solution pH, sorbent-sorbate resident time and ratio, concentration and temperature were investigated. The sorption of cadmium followed the pseudo-second-order rate kinetics. Thermodynamic studies revealed that the sorption of cadmium was endothermic and spontaneous, with good affinity toward the sorbent. Various isotherm models, viz. Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Harkins-Jura, and Halsey isotherms were used to analyze the equilibrium data at different temperatures. The Freundlich, Halsey, Langmuir, and Temkin models were found to be in good agreement with the experimental data with high R 2, low RMSE, and low χ 2 values. The results show that the sorption capacity increases with an increase in solution temperature from 28 to 65 °C. The maximum sorption capacity calculated from Langmuir isotherm was 27.55 and 28.41 mg g-1 for derived and thiourea-functionalized silica, respectively, at optimum condition of pH 5 and contact time of 120 min.

  9. Silica/Polymer and Silica/Polymer/Fiber Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Ou, Danny; Stepanian, Christopher J.; Hu, Xiangjun

    2010-01-01

    Aerogels that consist, variously, of neat silica/polymer alloys and silica/polymer alloy matrices reinforced with fibers have been developed as materials for flexible thermal-insulation blankets. In comparison with prior aerogel blankets, these aerogel blankets are more durable and less dusty. These blankets are also better able to resist and recover from compression . an important advantage in that maintenance of thickness is essential to maintenance of high thermal-insulation performance. These blankets are especially suitable as core materials for vacuum- insulated panels and vacuum-insulated boxes of advanced, nearly seamless design. (Inasmuch as heat leakage at seams is much greater than heat leakage elsewhere through such structures, advanced designs for high insulation performance should provide for minimization of the sizes and numbers of seams.) A silica/polymer aerogel of the present type could be characterized, somewhat more precisely, as consisting of multiply bonded, linear polymer reinforcements within a silica aerogel matrix. Thus far, several different polymethacrylates (PMAs) have been incorporated into aerogel networks to increase resistance to crushing and to improve other mechanical properties while minimally affecting thermal conductivity and density. The polymethacrylate phases are strongly linked into the silica aerogel networks in these materials. Unlike in other organic/inorganic blended aerogels, the inorganic and organic phases are chemically bonded to each other, by both covalent and hydrogen bonds. In the process for making a silica/polymer alloy aerogel, the covalent bonds are introduced by prepolymerization of the methacrylate monomer with trimethoxysilylpropylmethacrylate, which serves as a phase cross-linker in that it contains both organic and inorganic monomer functional groups and hence acts as a connector between the organic and inorganic phases. Hydrogen bonds are formed between the silanol groups of the inorganic phase and the

  10. Synthesis and characterization of amorphous mesoporous silica using TEMPO-functionalized amphiphilic templates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vries, Wilke de; Doerenkamp, Carsten; Zeng, Zhaoyang

    Inorganic–organic hybrid materials based on amorphous mesoporous silica containing organized nitroxide radicals within its mesopores have been prepared using the micellar self-assembly of TEOS solutions containing the nitroxide functionalized amphiphile (4-(N,N-dimethyl-N-hexadecylammonium)-2,2,6, 6-tetramethyl-piperidin-N-oxyl-iodide) (CAT-16). This template has been used both in its pure form and in various mixtures with cetyl trimethylammonium bromide (CTAB). The samples have been characterized by chemical analysis, N{sub 2} sorption studies, magnetic susceptibility measurements, and various spectroscopic methods. While electron paramagnetic resonance (EPR) spectra indicate that the strength of the intermolecular spin–spin interactions can be controlled via the CAT-16/CTAB ratio, nuclear magnetic resonance (NMR) data suggest thatmore » these interactions are too weak to facilitate cooperative magnetism. - Graphical abstract: The amphiphilic radical CAT-16 is used as a template for the synthesis of amorphous mesoporous silica. The resulting paramagnetic hybrid materials are characterized by BET, FTIR, NMR, EPR and magnetic susceptibility studies. - Highlights: • Amphiphilic CAT-16 as a template for mesoporous silica. • Comprehensive structural characterization by BET, FTIR; EPR and NMR. • Strength of radical-radical interactions tuable within CAT-16/CTAB mixtures.« less

  11. Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging.

    PubMed

    Fussell, Andrew L; Mah, Pei Ting; Offerhaus, Herman; Niemi, Sanna-Mari; Salonen, Jarno; Santos, Hélder A; Strachan, Clare

    2014-11-01

    This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals, including poorly water-soluble drugs, by allowing the incorporation of drug into nanometer-sized pores. In this work, the loading of two poorly water-soluble model drugs, itraconazole and griseofulvin, in MCM-41 silica microparticles is characterized qualitatively, using the novel approach of CARS microscopy, which has advantages over other analytical approaches used to date and is non-destructive, rapid, label free, confocal and has chemical and physical specificity. The study investigated the effect of two solvent-based loading methods, namely immersion and rotary evaporation, and microparticle size on the three-dimensional (3-D) distribution of the two loaded drugs. Additionally, hyperspectral CARS microscopy was used to confirm the amorphous nature of the loaded drugs. Z-stacked CARS microscopy suggested that the drug, but not the loading method or particle size range, affected 3-D drug distribution. Hyperspectral CARS confirmed that the drug loaded in the MCM-41 silica microparticles was in an amorphous form. The results show that CARS microscopy and hyperspectral CARS microscopy can be used to provide further insights into the structural nature of loaded mesoporous silica microparticles as biomaterials. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Colorimetric-Based Detection of TNT Explosives Using Functionalized Silica Nanoparticles

    PubMed Central

    Idros, Noorhayati; Ho, Man Yi; Pivnenko, Mike; Qasim, Malik M.; Xu, Hua; Gu, Zhongze; Chu, Daping

    2015-01-01

    This proof-of-concept study proposes a novel sensing mechanism for selective and label-free detection of 2,4,6-trinitrotoluene (TNT). It is realized by surface chemistry functionalization of silica nanoparticles (NPs) with 3-aminopropyl-triethoxysilane (APTES). The primary amine anchored to the surface of the silica nanoparticles (SiO2-NH2) acts as a capturing probe for TNT target binding to form Meisenheimer amine–TNT complexes. A colorimetric change of the self-assembled (SAM) NP samples from the initial green of a SiO2-NH2 nanoparticle film towards red was observed after successful attachment of TNT, which was confirmed as a result of the increased separation between the nanoparticles. The shift in the peak wavelength of the reflected light normal to the film surface (λpeak) and the associated change of the peak width were measured, and a merit function taking into account their combined effect was proposed for the detection of TNT concentrations from 10−12 to 10−4 molar. The selectivity of our sensing approach is confirmed by using TNT-bound nanoparticles incubated in AptamerX, with 2,4-dinitrotoluene (DNT) and toluene used as control and baseline, respectively. Our results show the repeatable systematic color change with the TNT concentration and the possibility to develop a robust, easy-to-use, and low-cost TNT detection method for performing a sensitive, reliable, and semi-quantitative detection in a wide detection range. PMID:26046595

  13. Artificial submicron or nanometer speckle fabricating technique and electron microscope speckle photography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Zhanwei; Xie Huimin; Fang Daining

    2007-03-15

    In this article, a novel artificial submicro- or nanometer speckle fabricating technique is proposed by taking advantage of submicro or nanometer particles. In the technique, submicron or nanometer particles were adhered to an object surface by using ultrasonic dispersing technique. The particles on the object surface can be regarded as submicro or nanometer speckle by using a scanning electronic microscope at a special magnification. In addition, an electron microscope speckle photography (EMSP) method is developed to measure in-plane submicron or nanometer deformation of the object coated with the artificial submicro or nanometer speckles. The principle of artificial submicro or nanometermore » speckle fabricating technique and the EMSP method are discussed in detail in this article. Some typical applications of this method are offered. The experimental results verified that the artificial submicro or nanometer speckle fabricating technique and EMSP method is feasible.« less

  14. Chemical functionalization of diatom silica microparticles for adsorption of gold (III) ions.

    PubMed

    Yu, Yang; Addai-Mensah, Jonas; Losic, Dusan

    2011-12-01

    Diatom silica microparticles from natural diatomaceous earth (DE) silica have been functionalized with 3-mercaptopropyltrimethoxysilane (MPTMS) and their application for adsorption of gold (III) ions from aqueous solutions is demonstrated. Fourier transform infrared spectroscopy (FTIR) and X-ray Photoelectron spectroscopy (XPS) analyses of the MPTMS modified diatom microparticles revealed that the silane layer with functional group (-SH) was successfully introduced to the diatom surface. The adsorption study of Au(III) ions using MPTMS-DE indicated that the process depends on initial gold (III) concentration and pH showing maximum adsorption capacity at pH = 3. The Au(III) adsorption kinetics results showed that the adsorption was very fast and followed a pseudo-second-order reaction model. The Langmuir model was used to provide a sound mechanistic basis for the theoretical of the adsorption equilibrium data. Gold recovery from MPTMS-DE structures was also investigated by using acidified thiourea solution and found to be high (> 95%). These results show that chemically modified DE microparticles can be used as a new, cost effective and environmentally benign adsorbent suitable for adsorption of gold metal ions from aqueous solutions.

  15. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells.

    PubMed

    Zhou, Yuhua; Yang, Jing; Su, Haibin; Zeng, Jie; Jiang, San Ping; Goddard, William A

    2014-04-02

    We have developed for fuel cells a novel proton exchange membrane (PEM) using inorganic phosphotungstic acid (HPW) as proton carrier and mesoporous silica as matrix (HPW-meso-silica) . The proton conductivity measured by electrochemical impedance spectroscopy is 0.11 S cm(-1) at 90 °C and 100% relative humidity (RH) with a low activation energy of ∼14 kJ mol(-1). In order to determine the energetics associated with proton migration within the HPW-meso-silica PEM and to determine the mechanism of proton hopping, we report density functional theory (DFT) calculations using the generalized gradient approximation (GGA). These DFT calculations revealed that the proton transfer process involves both intramolecular and intermolecular proton transfer pathways. When the adjacent HPWs are close (less than 17.0 Å apart), the calculated activation energy for intramolecular proton transfer within a HPW molecule is higher (29.1-18.8 kJ/mol) than the barrier for intermolecular proton transfer along the hydrogen bond. We find that the overall barrier for proton movement within the HPW-meso-silica membranes is determined by the intramolecular proton transfer pathway, which explains why the proton conductivity remains unchanged when the weight percentage of HPW on meso-silica is above 67 wt %. In contrast, the activation energy of proton transfer on a clean SiO2 (111) surface is computed to be as high as ∼40 kJ mol(-1), confirming the very low proton conductivity on clean silica surfaces observed experimentally.

  16. Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.

    PubMed

    Borges, Endler M

    2015-04-01

    Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed. © Crown copyright 2014.

  17. Sub-chronic toxicity study in rats orally exposed to nanostructured silica

    PubMed Central

    2014-01-01

    Background Synthetic Amorphous Silica (SAS) is commonly used in food and drugs. Recently, a consumer intake of silica from food was estimated at 9.4 mg/kg bw/day, of which 1.8 mg/kg bw/day was estimated to be in the nano-size range. Food products containing SAS have been shown to contain silica in the nanometer size range (i.e. 5 – 200 nm) up to 43% of the total silica content. Concerns have been raised about the possible adverse effects of chronic exposure to nanostructured silica. Methods Rats were orally exposed to 100, 1000 or 2500 mg/kg bw/day of SAS, or to 100, 500 or 1000 mg/kg bw/day of NM-202 (a representative nanostructured silica for OECD testing) for 28 days, or to the highest dose of SAS or NM-202 for 84 days. Results SAS and NM-202 were extensively characterized as pristine materials, but also in the feed matrix and gut content of the animals, and after in vitro digestion. The latter indicated that the intestinal content of the mid/high-dose groups had stronger gel-like properties than the low-dose groups, implying low gelation and high bioaccessibility of silica in the human intestine at realistic consumer exposure levels. Exposure to SAS or NM-202 did not result in clearly elevated tissue silica levels after 28-days of exposure. However, after 84-days of exposure to SAS, but not to NM-202, silica accumulated in the spleen. Biochemical and immunological markers in blood and isolated cells did not indicate toxicity, but histopathological analysis, showed an increased incidence of liver fibrosis after 84-days of exposure, which only reached significance in the NM-202 treated animals. This observation was accompanied by a moderate, but significant increase in the expression of fibrosis-related genes in liver samples. Conclusions Although only few adverse effects were observed, additional studies are warranted to further evaluate the biological relevance of observed fibrosis in liver and possible accumulation of silica in the spleen in the NM-202

  18. Nanometals for Solar-to-Chemical Energy Conversion: From Semiconductor-Based Photocatalysis to Plasmon-Mediated Photocatalysis and Photo-Thermocatalysis.

    PubMed

    Meng, Xianguang; Liu, Lequan; Ouyang, Shuxin; Xu, Hua; Wang, Defa; Zhao, Naiqin; Ye, Jinhua

    2016-08-01

    Nanometal materials play very important roles in solar-to-chemical energy conversion due to their unique catalytic and optical characteristics. They have found wide applications from semiconductor photocatalysis to rapidly growing surface plasmon-mediated heterogeneous catalysis. The recent research achievements of nanometals are reviewed here, with regard to applications in semiconductor photocatalysis, plasmonic photocatalysis, and plasmonic photo-thermocatalysis. As the first important topic discussed here, the latest progress in the design of nanometal cocatalysts and their applications in semiconductor photocatalysis are introduced. Then, plasmonic photocatalysis and plasmonic photo-thermocatalysis are discussed. A better understanding of electron-driven and temperature-driven catalytic behaviors over plasmonic nanometals is helpful to bridge the present gap between the communities of photocatalysis and conventional catalysis controlled by temperature. The objective here is to provide instructive information on how to take the advantages of the unique functions of nanometals in different types of catalytic processes to improve the efficiency of solar-energy utilization for more practical artificial photosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The Management of Silica in Los Alamos National Laboratory Tap Water - A Study of Silica Solubility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlberg, C.; Worland, V.P.; Kozubal, M.A.

    1999-07-01

    Well water at Los Alamos National Laboratory (LANL) has a silica (SiO{sub 2}) content of 60 to 100 mg/L, with 4 mg/L of magnesium, 13 mg/L calcium and lesser concentrations of other ions. On evaporation in cooling towers, when the silica concentration reaches 150 to 220 mg/L, silica deposits on heat transfer surfaces. When the high silica well water is used in the reprocessing of plutonium, silica remains in solution at the end of the process and creates a problem of removal from the effluent prior to discharge or evaporation. The work described in this Report is divided into twomore » major parts. The first part describes the behavior of silica when the water is evaporated at various conditions of pH and in the presence of different classes of anions: inorganic and organic. In the second part of this work it was found that precipitation (floccing) of silica was a function of solution pH and mole ratio of metal to silica.« less

  20. Controlled release of silyl ether camptothecin from thiol-ene click chemistry-functionalized mesoporous silica nanoparticles.

    PubMed

    Yan, Yue; Fu, Jie; Wang, Tianfu; Lu, Xiuyang

    2017-03-15

    As efficient drug carriers, stimuli-responsive mesoporous silica nanoparticles are at the forefront of research on drug delivery systems. An acid-responsive system based on silyl ether has been applied to deliver a hybrid prodrug. Thiol-ene click chemistry has been successfully utilized for tethering this prodrug to mesoporous silica nanoparticles. Here, by altering the steric bulk of the substituent on the silicon atom, the release rate of a model drug, camptothecin, was controlled. The synthesized drug delivery system was investigated by analytical methods to confirm the functionalization and conjugation of the mesoporous silica nanoparticles. Herein, trimethyl silyl ether and triethyl silyl ether were selected to regulate the release rate. Under normal plasma conditions (pH 7.4), both types of camptothecin-loaded mesoporous silica nanoparticles (i.e., MSN-Me-CPT and MSN-Et-CPT) did not release the model drug. However, under in vitro acidic conditions (pH 4.0), based on a comparison of the release rates, camptothecin was released from MSN-Me-CPT more rapidly than from MSN-Et-CPT. To determine the biocompatibility of the modified mesoporous silica nanoparticles and the in vivo camptothecin uptake behavior, MTT assays with cancer cells and confocal microscopy observations were conducted, with positive results. These functionalized nanoparticles could be useful in clinical treatments requiring controlled drug release. As the release rate of drug from drug-carrier plays important role in therapy effects, trimethyl silyl ether (TMS) and triethyl silyl ether (TES) were selected as acid-sensitive silanes to control the release rates of model drugs conjugated from MSNs by thiol-ene click chemistry. The kinetic profiles of TMS and TES materials have been studied. At pH 4.0, the release of camptothecin from MSN-Et-CPT occurred after 2h, whereas MSN-Me-CPT showed immediate drug release. The results showed that silyl ether could be used to control release rates of drugs from

  1. Preparation, purification, and characterization of aminopropyl-functionalized silica sol.

    PubMed

    Pálmai, Marcell; Nagy, Lívia Naszályi; Mihály, Judith; Varga, Zoltán; Tárkányi, Gábor; Mizsei, Réka; Szigyártó, Imola Csilla; Kiss, Teréz; Kremmer, Tibor; Bóta, Attila

    2013-01-15

    A new, simple, and "green" method was developed for the surface modification of 20 nm diameter Stöber silica particles with 3-aminopropyl(diethoxy)methylsilane in ethanol. The bulk polycondensation of the reagent was inhibited and the stability of the sol preserved by adding a small amount of glacial acetic acid after appropriate reaction time. Centrifugation, ultrafiltration, and dialysis were compared in order to choose a convenient purification technique that allows the separation of unreacted silylating agent from the nanoparticles without destabilizing the sol. The exchange of the solvent to acidic water during the purification yielded a stable colloid, as well. Structural and morphological analysis of the obtained aminopropyl silica was performed using transmission electron microscopy (TEM), dynamic light scattering (DLS) and zeta potential measurements, Fourier-transform infrared (FTIR), (13)C and (29)Si MAS nuclear magnetic resonance (NMR) spectroscopies, as well as small angle X-ray scattering (SAXS). Our investigations revealed that the silica nanoparticle surfaces were partially covered with aminopropyl groups, and multilayer adsorption followed by polycondensation of the silylating reagent was successfully avoided. The resulting stable aminopropyl silica sol (ethanolic or aqueous) is suitable for biomedical uses due to its purity. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Copper Ferrocyanide Functionalized Core-Shell Magnetic Silica Composites for the Selective Removal of Cesium Ions from Radioactive Liquid Waste.

    PubMed

    Lee, Hyun Kyu; Yang, Da Som; Oh, Wonzin; Choi, Sang-June

    2016-06-01

    The copper ferrocyanide functionalized core-shell magnetic silica composite (mag@silica-CuFC) was prepared and was found to be easily separated from aqueous solutions by using magnetic field. The synthesized mag@silica-CuFC composite has a high sorption ability of Cs owing to its strong affinity for Cs as well as the high surface area of the supports. Cs sorption on the mag@silica-CuFC composite quickly reached the sorption equilibrium after 2 h of contact time. The effect of the presence of salts with a high concentration of up to 3.5 wt% on the efficiency of Cs sorption onto the composites was also studied. The maximum sorption ability was found to be maintained in the presence of up to 3.5 wt% of NaCl in the solution. Considering these results, the mag@silica-CuFC composite has great potential for use as an effective sorbent for the selective removal of radioactive Cs ions.

  3. PNIPAm grafted amino-functionalized mesoporous silica for thermo-responsive chromium elimination

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kim, Jinwon; Lee, Hyesun

    2017-12-01

    In this study, the effective elimination of Cr(VI) was achieved by thermo-responsive polymer-grafted amino-functionalized mesoporous silica (MS@APTES@PNIPAm) in aqueous solution. The MS@APTES@PNIPAm was successfully synthesized by the coupling of 3-MOP and N-isopropyl acrylamide (NIPAm) in 3-aminoproyltriethoxysilane (APTES) grafted mesoporous silica surface. The thermo-responsive elimination of Cr(VI) was demonstrated at various pH levels and at room temperature and 40 °C, respectively. The characterization of the synthesized materials was achieved by scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and nitrogen (N2) adsorption-desorption. The maximum adsorption of hexavalent chromium on MS@APTES@PNIPAm in aqueous solution was 123.8 mg g-1 at 40 °C in pH 2.5. Furthermore, the results of isotherm and kinetic experiments demonstrated that the adsorption behavior of Cr(VI) on MS@APTES@PNIPAm was well fitted to a Langmuir plot with a pseudo-second-order and intra-particle diffusion model.

  4. Application of maximum-likelihood estimation in optical coherence tomography for nanometer-class thickness estimation

    NASA Astrophysics Data System (ADS)

    Huang, Jinxin; Yuan, Qun; Tankam, Patrice; Clarkson, Eric; Kupinski, Matthew; Hindman, Holly B.; Aquavella, James V.; Rolland, Jannick P.

    2015-03-01

    In biophotonics imaging, one important and quantitative task is layer-thickness estimation. In this study, we investigate the approach of combining optical coherence tomography and a maximum-likelihood (ML) estimator for layer thickness estimation in the context of tear film imaging. The motivation of this study is to extend our understanding of tear film dynamics, which is the prerequisite to advance the management of Dry Eye Disease, through the simultaneous estimation of the thickness of the tear film lipid and aqueous layers. The estimator takes into account the different statistical processes associated with the imaging chain. We theoretically investigated the impact of key system parameters, such as the axial point spread functions (PSF) and various sources of noise on measurement uncertainty. Simulations show that an OCT system with a 1 μm axial PSF (FWHM) allows unbiased estimates down to nanometers with nanometer precision. In implementation, we built a customized Fourier domain OCT system that operates in the 600 to 1000 nm spectral window and achieves 0.93 micron axial PSF in corneal epithelium. We then validated the theoretical framework with physical phantoms made of custom optical coatings, with layer thicknesses from tens of nanometers to microns. Results demonstrate unbiased nanometer-class thickness estimates in three different physical phantoms.

  5. Pozzolanic activity and durability of nano silica, micro silica and silica gel contained concrete

    NASA Astrophysics Data System (ADS)

    Al Ghabban, Ahmed; Al Zubaidi, Aseel B.; Fakhri, Zahraa

    2018-05-01

    This paper aims to investigate the influence of replacement of cement with nano silica, micro silica and silica gel admixtures on pozzolanic activity, the replacement ratio was10% for all admixture, silica gel used in two forms (beads and crushed powder). Also, the water absorption test was investigated for obtaining the durability properties of concrete, in specimens for this test admixtures were added in four different dosages 1%, 2%, 3% and 4% by weight of the cementitious material into the concrete mixture. Experimental investigations of modified concrete were conducted after 28 days of water curing. Results showed that mixes of nano silica and crushed silica gel showed a higher pozzolanic activity index. For the water absorption test, all mixes incorporating nano silica, micro silica and silica gel showed lower absorption than control mixes best result were noticed with crushed silica gel and nano silica mixes. DTA analysis confirms the results for both poisonous activity and water absorption.

  6. Infrared Spectroscopic Study on Structural Change and Interfacial Interaction in Rubber Composites Filled with Silica-Kaolin Hybrid Fillers

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Guan, J.; Hu, H.; Gao, H.; Zhang, L.

    2016-07-01

    A series of natural rubber/styrene butadiene rubber/polybutadiene rubber composites was prepared with nanometer silica and micron kaolin by a dry modification process, mechanical compounding, and mold vulcanization. Fourier transform infrared spectroscopy and a scanning electron microscope were used to investigate the structural changes and interfacial interactions in composites. The results showed that the "seesaw" structure was formed particularly with the incorporation of silica particles in the preparation process, which would be beneficial to the dispersibility of fillers in the rubber matrix. The kaolinite platelets were generally arranged in directional alignment. Kaolinite with smaller particle size and low-defect structure was more stable in preparation, but kaolinite with larger particle size and high defect structure tended to change the crystal structure. The composite prepared in this research exhibited excellent mechanical and thermal properties.

  7. High-temperature high-pressure properties of silica from Quantum Monte Carlo and Density Functional Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.; Driver, K.; Wu, Z.; Militzer, B.; Rios, P. L.; Towler, M.; Needs, R.

    2009-03-01

    We have used diffusion quantum Monte Carlo (DMC) with the CASINO code with thermal free energies from phonons computed using density functional perturbation theory (DFPT) with the ABINIT code to obtain phase transition curves and thermal equations of state of silica phases under pressure. We obtain excellent agreement with experiments for the metastable phase transition from quartz to stishovite. The local density approximation (LDA) incorrectly gives stishovite as the ground state. The generalized gradient approximation (GGA) correctly gives quartz as the ground state, but does worse than LDA for the equations of state. DMC, variational quantum Monte Carlo (VMC), and DFT all give good results for the ferroelastic transition of stishovite to the CaCl2 structure, and LDA or the WC exchange correlation potentials give good results within a given silica phase. The δV and δH from the CaCl2 structure to α-PbO2 is small, giving uncertainly in the theoretical transition pressure. It is interesting that DFT has trouble with silica transitions, although the electronic structures of silica are insulating, simple closed-shell with ionic/covalent bonding. It seems like the errors in DFT are from not precisely giving the ion sizes.

  8. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Pt n/SiO 2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O 2 exposure and annealing in H 2. Here, the clusters are found tomore » be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L 3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  9. Functional mesoporous silica nanoparticles for bio-imaging applications.

    PubMed

    Cha, Bong Geun; Kim, Jaeyun

    2018-03-22

    Biomedical investigations using mesoporous silica nanoparticles (MSNs) have received significant attention because of their unique properties including controllable mesoporous structure, high specific surface area, large pore volume, and tunable particle size. These unique features make MSNs suitable for simultaneous diagnosis and therapy with unique advantages to encapsulate and load a variety of therapeutic agents, deliver these agents to the desired location, and release the drugs in a controlled manner. Among various clinical areas, nanomaterials-based bio-imaging techniques have advanced rapidly with the development of diverse functional nanoparticles. Due to the unique features of MSNs, an imaging agent supported by MSNs can be a promising system for developing targeted bio-imaging contrast agents with high structural stability and enhanced functionality that enable imaging of various modalities. Here, we review the recent achievements on the development of functional MSNs for bio-imaging applications, including optical imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), ultrasound imaging, and multimodal imaging for early diagnosis. With further improvement in noninvasive bio-imaging techniques, the MSN-supported imaging agent systems are expected to contribute to clinical applications in the future. This article is categorized under: Diagnostic Tools > In vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology. © 2018 Wiley Periodicals, Inc.

  10. Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates

    NASA Astrophysics Data System (ADS)

    Bae, Changdeuck; Kim, Hyunchul; Yang, Yunjeong; Yoo, Hyunjun; Montero Moreno, Josep M.; Bachmann, Julien; Nielsch, Kornelius; Shin, Hyunjung

    2013-06-01

    An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications.An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of

  11. Multifunctional clickable and protein-repellent magnetic silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Estupiñán, Diego; Bannwarth, Markus B.; Mylon, Steven E.; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-01-01

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the

  12. Ion-Exchange-Induced Selective Etching for the Synthesis of Amino-Functionalized Hollow Mesoporous Silica for Elevated-High-Temperature Fuel Cells.

    PubMed

    Zhang, Jin; Liu, Jian; Lu, Shanfu; Zhu, Haijin; Aili, David; De Marco, Roland; Xiang, Yan; Forsyth, Maria; Li, Qingfeng; Jiang, San Ping

    2017-09-20

    As differentiated from conventional synthetic processes, amino-functionalized hollow mesoporous silica (NH 2 -HMS) has been synthesized using a new and facile strategy of ion-exchange-induced selective etching of amino-functionalized mesoporous silica (NH 2 -meso-silica) by an alkaline solution. Nuclear magnetic resonance (NMR) spectroscopy and in situ time-resolved small-angle X-ray scattering (SAXS) reveal that ion-exchange-induced selective etching arises from the gradient distribution of OH - in the NH 2 -meso-silica nanospheres. Moreover, the ion-exchange-induced selective etching mechanism is verified through a successful synthesis of hollow mesoporous silica. After infiltration with phosphotungstic acid (PWA), PWA-NH 2 -HMS nanoparticles are dispersed in the poly(ether sulfone)-polyvinylpyrrolidone (PES-PVP) matrix, forming a hybrid PWA-NH 2 -HMS/PES-PVP nanocomposite membrane. The resultant nanocomposite membrane with an optimum loading of 10 wt % of PWA-NH 2 -HMS showed an enhanced proton conductivity of 0.175 S cm -1 and peak power density of 420 mW cm -2 at 180 °C under anhydrous conditions. Excellent durability of the hybrid composite membrane fuel cell has been demonstrated at 200 °C. The results of this study demonstrated the potential of the facile synthetic strategy in the fabrication of NH 2 -HMS with controlled mesoporous structure for application in nanocomposite membranes as a technology platform for elevated-temperature proton exchange membrane fuel cells.

  13. Characterization of the adsorption of water vapor and chlorine on microcrystalline silica

    NASA Technical Reports Server (NTRS)

    Skiles, J. A.; Wightman, J. P.

    1979-01-01

    The characterization of water adsorption on silica is necessary to an understanding of how hydrogen chloride interacts with silica. The adsorption as a function of outgas temperatures of silica and as a function of the isotherm temperature was studied. Characterization of the silica structure by infrared analysis, X-ray diffraction and differential scanning calorimetry, surface area determinations, characterization of the sample surface by electron spectroscopy for chemical analysis (ESCA), and determinations of the heat of immersion in water of silica were investigated. The silica with a scanning electron microscope was examined.

  14. Cellular membrane trafficking of mesoporous silica nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, I-Ju

    This dissertation mainly focuses on the investigation of the cellular membrane trafficking of mesoporous silica nanoparticles. We are interested in the study of endocytosis and exocytosis behaviors of mesoporous silica nanoparticles with desired surface functionality. The relationship between mesoporous silica nanoparticles and membrane trafficking of cells, either cancerous cells or normal cells was examined. Since mesoporous silica nanoparticles were applied in many drug delivery cases, the endocytotic efficiency of mesoporous silica nanoparticles needs to be investigated in more details in order to design the cellular drug delivery system in the controlled way. It is well known that cells can engulfmore » some molecules outside of the cells through a receptor-ligand associated endocytosis. We are interested to determine if those biomolecules binding to cell surface receptors can be utilized on mesoporous silica nanoparticle materials to improve the uptake efficiency or govern the mechanism of endocytosis of mesoporous silica nanoparticles. Arginine-glycine-aspartate (RGD) is a small peptide recognized by cell integrin receptors and it was reported that avidin internalization was highly promoted by tumor lectin. Both RGD and avidin were linked to the surface of mesoporous silica nanoparticle materials to investigate the effect of receptor-associated biomolecule on cellular endocytosis efficiency. The effect of ligand types, ligand conformation and ligand density were discussed in Chapter 2 and 3. Furthermore, the exocytosis of mesoporous silica nanoparticles is very attractive for biological applications. The cellular protein sequestration study of mesoporous silica nanoparticles was examined for further information of the intracellular pathway of endocytosed mesoporous silica nanoparticle materials. The surface functionality of mesoporous silica nanoparticle materials demonstrated selectivity among the materials and cancer and normal cell lines. We aimed to

  15. Multifunctional clickable and protein-repellent magnetic silica nanoparticles.

    PubMed

    Estupiñán, Diego; Bannwarth, Markus B; Mylon, Steven E; Landfester, Katharina; Muñoz-Espí, Rafael; Crespy, Daniel

    2016-02-07

    Silica nanoparticles are versatile materials whose physicochemical surface properties can be precisely adjusted. Because it is possible to combine several functionalities in a single carrier, silica-based materials are excellent candidates for biomedical applications. However, the functionality of the nanoparticles can get lost upon exposure to biological media due to uncontrolled biomolecule adsorption. Therefore, it is important to develop strategies that reduce non-specific protein-particle interactions without losing the introduced surface functionality. Herein, organosilane chemistry is employed to produce magnetic silica nanoparticles bearing differing amounts of amino and alkene functional groups on their surface as orthogonally addressable chemical functionalities. Simultaneously, a short-chain zwitterion is added to decrease the non-specific adsorption of biomolecules on the nanoparticles surface. The multifunctional particles display reduced protein adsorption after incubation in undiluted fetal bovine serum as well as in single protein solutions (serum albumin and lysozyme). Besides, the particles retain their capacity to selectively react with biomolecules. Thus, they can be covalently bio-functionalized with an antibody by means of orthogonal click reactions. These features make the described multifunctional silica nanoparticles a promising system for the study of surface interactions with biomolecules, targeting, and bio-sensing.

  16. Double-Layer Surface Modification of Polyamide Denture Base Material by Functionalized Sol-Gel Based Silica for Adhesion Improvement.

    PubMed

    Hafezeqoran, Ali; Koodaryan, Roodabeh

    2017-09-21

    Limited surface treatments have been proposed to improve the bond strength between autopolymerizing resin and polyamide denture base materials. Still, the bond strength of autopolymerizing resins to nylon polymer is not strong enough to repair the fractured denture effectively. This study aimed to introduce a novel method to improve the adhesion of autopolymerizing resin to polyamide polymer by a double layer deposition of sol-gel silica and N-2-(aminoethyl)-3-aminopropyltrimethoxysilane (AE-APTMS). The silica sol was synthesized by acid-catalyzed hydrolysis of tetraethylorthosilicate (TEOS) as silica precursors. Polyamide specimens were dipped in TEOS-derived sol (TS group, n = 28), and exposed to ultraviolet (UV) light under O 2 flow for 30 minutes. UV-treated specimens were immersed in AE-APTMS solution and left for 24 hours at room temperature. The other specimens were either immersed in AE-APTMS solution (AP group, n = 28) or left untreated (NT group, n = 28). Surface characterization was investigated by fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Two autopolymerizing resins (subgroups G and T, n = 14) were bonded to the specimens, thermocycled, and then tested for shear bond strength with a universal testing machine. Data were analyzed with one-way ANOVA followed by Tukey's HSD (α = 0.05). FTIR spectra of treated surfaces confirmed the chemical modification and appearance of functional groups on the polymer. One-way ANOVA revealed significant differences in shear bond strength among the study groups. Tukey's HSD showed that TS T and TS G groups had significantly higher shear bond strength than control groups (p = 0.001 and p < 0.001, respectively). Moreover, bond strength values of AP T were statistically significant compared to controls (p = 0.017). Amino functionalized TEOS-derived silica coating is a simple and cost-effective method for improving the bond strength between the autopolymerizing resin and polyamide

  17. Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring.

    PubMed

    Chen, Fang; Hableel, Ghanim; Zhao, Eric Ruike; Jokerst, Jesse V

    2018-07-01

    The idea of multifunctional nanomedicine that enters the human body to diagnose and treat disease without major surgery is a long-standing dream of nanomaterials scientists. Nanomaterials show incredible properties that are not found in bulk materials, but achieving multi-functionality on a single material remains challenging. Integrating several types of materials at the nano-scale is critical to the success of multifunctional nanomedicine device. Here, we describe the advantages of silica nanoparticles as a tool for multifunctional nano-devices. Silica nanoparticles have been intensively studied in drug delivery due to their biocompatibility, degradability, tunable morphology, and ease of modification. Moreover, silica nanoparticles can be integrated with other materials to obtain more features and achieve theranostic capabilities and multimodality for imaging applications. In this review, we will first compare the properties of silica nanoparticles with other well-known nanomaterials for bio-applications and describe typical routes to synthesize and integrate silica nanoparticles. We will then highlight theranostic and multimodal imaging application that use silica-based nanoparticles with a particular interest in real-time monitoring of therapeutic molecules. Finally, we will present the challenges and perspective on future work with silica-based nanoparticles in medicine. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Covalent Immobilization of (-)-Riboflavin on Polymer Functionalized Silica Particles: Application in the Photocatalytic E→Z Isomerization of Polarized Alkenes.

    PubMed

    Metternich, Jan B; Sagebiel, Sven; Lückener, Anne; Lamping, Sebastian; Ravoo, Bart Jan; Gilmour, Ryan

    2018-03-20

    The covalent immobilization of the biomimetic, photo-organocatalyst (-)-riboflavin on silica micro- and nanoparticles via atom transfer radical polymerization (ATRP) is disclosed. Given the effectiveness of (-)-riboflavin as a versatile, environmentally benign photocatalyst, an immobilization strategy based on acrylate-linker modification of the catalyst core and controlled polymerization on initiator pre-functionalized silica particles has been developed. Validation of this approach is demonstrated in the E→Z isomerization of a benchmark cinnamonitrile (Z/E up to 88:12) with 0.97 mol % catalyst loading. Characterization of the immobilized photocatalyst supports covalent embedding of the catalyst in the polymeric brushes on the silica particle surface. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Silica sol as grouting material: a physio-chemical analysis.

    PubMed

    Sögaard, Christian; Funehag, Johan; Abbas, Zareen

    2018-01-01

    At present there is a pressing need to find an environmentally friendly grouting material for the construction of tunnels. Silica nanoparticles hold great potential of replacing the organic molecule based grouting materials currently used for this purpose. Chemically, silica nanoparticles are similar to natural silicates which are essential components of rocks and soil. Moreover, suspensions of silica nanoparticles of different sizes and desired reactivity are commercially available. However, the use of silica nanoparticles as grouting material is at an early stage of its technological development. There are some critical parameters such as long term stability and functionality of grouted silica that need to be investigated in detail before silica nanoparticles can be considered as a reliable grouting material. In this review article we present the state of the art regarding the chemical properties of silica nanoparticles commercially available, as well as experience gained from the use of silica as grouting material. We give a detailed description of the mechanisms underlying the gelling of silica by different salt solutions such as NaCl and KCl and how factors such as particle size, pH, and temperature affect the gelling and gel strength development. Our focus in this review is on linking the chemical properties of silica nanoparticles to the mechanical properties to better understand their functionality and stability as grouting material. Along the way we point out areas which need further research.

  20. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization.

    PubMed

    Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan

    2016-01-08

    A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me₃ES), diethoxydimethylsilane (Me₂DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules.

  1. Aminopropyl-Silica Hybrid Particles as Supports for Humic Acids Immobilization

    PubMed Central

    Sándor, Mónika; Nistor, Cristina Lavinia; Szalontai, Gábor; Stoica, Rusandica; Nicolae, Cristian Andi; Alexandrescu, Elvira; Fazakas, József; Oancea, Florin; Donescu, Dan

    2016-01-01

    A series of aminopropyl-functionalized silica nanoparticles were prepared through a basic two step sol-gel process in water. Prior to being aminopropyl-functionalized, silica particles with an average diameter of 549 nm were prepared from tetraethyl orthosilicate (TEOS), using a Stöber method. In a second step, aminopropyl-silica particles were prepared by silanization with 3-aminopropyltriethoxysilane (APTES), added drop by drop to the sol-gel mixture. The synthesized amino-functionalized silica particles are intended to be used as supports for immobilization of humic acids (HA), through electrostatic bonds. Furthermore, by inserting beside APTES, unhydrolysable mono-, di- or trifunctional alkylsilanes (methyltriethoxy silane (MeTES), trimethylethoxysilane (Me3ES), diethoxydimethylsilane (Me2DES) and 1,2-bis(triethoxysilyl)ethane (BETES)) onto silica particles surface, the spacing of the free amino groups was intended in order to facilitate their interaction with HA large molecules. Two sorts of HA were used for evaluating the immobilization capacity of the novel aminosilane supports. The results proved the efficient functionalization of silica nanoparticles with amino groups and showed that the immobilization of the two tested types of humic acid substances was well achieved for all the TEOS/APTES = 20/1 (molar ratio) silica hybrids having or not having the amino functions spaced by alkyl groups. It was shown that the density of aminopropyl functions is low enough at this low APTES fraction and do not require a further spacing by alkyl groups. Moreover, all the hybrids having negative zeta potential values exhibited low interaction with HA molecules. PMID:28787834

  2. Sensing Properties of GO and Amine-Silica Nanoparticles Functionalized QCM Sensors for Detection of Formaldehyde

    NASA Astrophysics Data System (ADS)

    Wang, Zhenqiang; Yang, Mingqing; He, Junhui

    2014-12-01

    In the current work, graphene oxides (GO) and Amine-Functionalized Silica Nanoparticles (NH2-SNs) were used as sensing layer on quart crystal microbalance (QCM) for detection of HCHO gas. The GO and NH2-SNs functionalized QCM resonators all had a significant response to HCHO gas. The sensitivity of GO functionalized QCM resonator is 0.04 Hz/(μgṡppm), which is four times as high as that of NH2-SNs functionalized QCM resonator (0.01 Hz/(μgṡppm)). The GO functionalized QCM resonators would be of benefit in area of environmental applications.

  3. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amonette, James E.; Matyáš, Josef

    Silica aerogels have a rich history and offer an unusual assembly of gas- and solid-phase properties that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. We present salient features of the research behind these different applications, and, where appropriate, critical aspects that affect the practical use ofmore » the aerogels are noted. Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. Finally, the review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.« less

  4. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amonette, James E.; Matyáš, Josef

    Silica aerogels have a rich history and a unique, fascinating gas-phase chemistry that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. Salient features of the research behind these different applications are presented, and, where appropriate, critical aspects that affect the practical use of the aerogels are noted.more » Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. The review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.« less

  5. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    DOE PAGES

    Amonette, James E.; Matyáš, Josef

    2017-09-01

    Silica aerogels have a rich history and offer an unusual assembly of gas- and solid-phase properties that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. We present salient features of the research behind these different applications, and, where appropriate, critical aspects that affect the practical use ofmore » the aerogels are noted. Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. Finally, the review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.« less

  6. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  7. Stimuli-responsive polyaniline coated silica microspheres and their electrorheology

    NASA Astrophysics Data System (ADS)

    Park, Dae Eun; Choi, Hyoung Jin; Vu, Cuong Manh

    2016-05-01

    Silica/polyaniline (PANI) core-shell structured microspheres were synthesized by coating the surface of silica micro-beads with PANI and applied as a candidate inorganic/polymer composite electrorheological (ER) material. The silica micro-beads were initially modified using N-[(3-trimethoxysilyl)-propyl] aniline to activate an aniline functional group on the silica surface for a better PANI coating. The morphology of the PANI coating on the silica surface was examined by scanning electron microscopy and the silica/PANI core-shell structure was confirmed by transmission electron microscopy. The chemical structure of the particles was confirmed by Fourier transform infrared spectroscopy. Rotational rheometry was performed to confirm the difference in the ER properties between pure silica and silica/PANI microsphere-based ER fluids when dispersed in silicone oil.

  8. Selective adsorption mechanisms of antilipidemic and non-steroidal anti-inflammatory drug residues on functionalized silica-based porous materials in a mixed solute.

    PubMed

    Suriyanon, Nakorn; Permrungruang, Jutima; Kaosaiphun, Jidanan; Wongrueng, Aunnop; Ngamcharussrivichai, Chawalit; Punyapalakul, Patiparn

    2015-10-01

    The selective adsorption mechanisms of naproxen (NAP), acetaminophen (ACT), and clofibric acid (CFA) on silica-based porous materials were examined by single and mixed-batch adsorption. Effects of the types and densities of surface functional groups on adsorption capacities were determined, including the role of hydrophobic and hydrophilic dissolved organic matters (DOMs). Hexagonal mesoporous silica (HMS), superparamagnetic HMS (HMS-SP) and SBA-15 were functionalized and applied as adsorbents. Compared with powdered activated carbon (PAC), amine-functionalized HMS had a better adsorption capacity for CFA, but PAC possessed a higher adsorption capacity for the other pharmaceuticals than HMS and its two derivatives. In contrast to PAC, the adsorption capacity of the mesoporous silicas varied with the solution pH, being highest at pH 5. Electrostatic interactions and hydrogen bonding were found to be the main mechanisms. Increase in grafted amine group density on silica surfaces can enhance the CFA adsorption capacity. Further, hydrophilic DOM can decrease CFA adsorption capacities on amino-grafted adsorbents by adsorption site competition, while hydrophobic DOM can interfere with CFA adsorption by the interaction between hydrophobic DOM and CFA. Finally, in a competitive adsorption study, the adsorption capacity of hydrophilic adsorbents for acidic pharmaceuticals varied with their pKa values. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Sculpting Silica Colloids by Etching Particles with Nonuniform Compositions

    PubMed Central

    2017-01-01

    We present the synthesis of new shapes of colloidal silica particles by manipulating their chemical composition and subsequent etching. Segments of silica rods, prepared by the ammonia catalyzed hydrolysis and condensation of tetraethylorthosilicate (TEOS) from polyvinylpyrrolidone loaded water droplets, were grown under different conditions. Upon decreasing temperature, delaying ethanol addition, or increasing monomer concentration, the rate of dissolution of the silica segment subsequently formed decreased. A watery solution of NaOH (∼mM) selectively etched these segments. Further tuning the conditions resulted in rod–cone or cone–cone shapes. Deliberately modulating the composition along the particle’s length by delayed addition of (3-aminopropyl)-triethoxysilane (APTES) also allowed us to change the composition stepwise. The faster etching of this coupling agent in neutral conditions or HF afforded an even larger variety of particle morphologies while in addition changing the chemical functionality. A comparable step in composition was applied to silica spheres. Biamine functional groups used in a similar way as APTES caused a charge inversion during the growth, causing dumbbells and higher order aggregates to form. These particles etched more slowly at the neck, resulting in a biconcave silica ring sandwiched between two silica spheres, which could be separated by specifically etching the functionalized layer using HF. PMID:28413261

  10. Study on the neotype zirconia's implant coated nanometer hydroxyapatite ceramics

    NASA Astrophysics Data System (ADS)

    Zhu, J. W.; Yang, D. W.

    2007-07-01

    In recent years, biologic ceramics is a popular material of implants and bioactive surface modification of dental implant became a research emphasis, which aims to improve bioactivity of implants materials and acquire firmer implants-bone interface. The zirconia ceramic has excellent mechanical properties and nanometer HA ceramics is a bioceramic well known for its bioactivity, therefore, nanometer HA ceramics coating on zirconia, allows combining the excellent mechanical properties of zirconia substrates with its bioactivity. This paper shows a new method for implant shape design and bioactive modification of dental implants surface. Zirconia's implant substrate was prepared by sintered method, central and lateral tunnels were drilled in the zirconia hollow porous cylindrical implants by laser processing. The HA powders and needle-like HA crystals were made by a wet precipitation and calcining method. Its surface was coated with nanometer HA ceramics which was used brush HA slurry and vacuum sintering. Mechanical testing results revealed that the attachment strength of nanometer HA ceramics coated zirconia samples is high. SEM and interface observation after inserted experiment indicated that calcium and phosphor content increased and symmetrically around coated implant-bone tissue interface. A significantly higher affinity index was demonstrated in vivo by histomorphometric evaluation in coated versus uncoated implants. SEM analysis demonstrated better bone adhesion to the material in coated implant at any situation. In addition, the hollow porous cylindrical implant coated with nanometer HA ceramics increase the interaction of bone and implant, the new bone induced into the surface of hollow porous cylindrical implant and through the most tunnels filled into central hole. The branch-like structure makes the implant and bone a body, which increased the contact area and decreased elastic ratio. Therefore, the macroscopical and microcosmic nested structure of

  11. Two choices for the functionalization of silica nanoparticles with gallic acid: characterization of the nanomaterials and their antimicrobial activity against Paenibacillus larvae

    NASA Astrophysics Data System (ADS)

    Vico, Tamara A.; Arce, Valeria B.; Fangio, María F.; Gende, Liesel B.; Bertran, Celso A.; Mártire, Daniel O.; Churio, María S.

    2016-11-01

    Silica nanoparticles attached to gallic acid were synthesized from 7-nm diameter fumed silica particles by different functionalization methods involving the condensation of hydroxyl or carboxyl groups. The particles were characterized by thermal analyses and UV-vis, FTIR, NMR, and EPR spectroscopies. In comparison to free gallic acid, enhanced stability and increased antimicrobial activity against Paenibacillus larvae were found for the functionalized nanoparticles. Thus, both derivatization strategies result in improved properties of the natural polyphenol as antimicrobial agent for the treatment of honeybee pathologies.

  12. Atomistic Simulations of Hydrodynamic and Interaction Forces on Functionalized Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lane, J. Matthew D.; Ismail, Ahmed E.; Chandross, Michael; Lorenz, Christian D.; Grest, Gary S.

    2009-03-01

    It is often desired to prevent the flocculation and phase separation of nanoparticles in solution. This can be accomplished either by manipulating the solvent or by tailoring the surface chemistry of the nanoparticles through functionalization with a monolayer of oligomer chains. Since it is not known how these functionalized coatings affect the interactions between nanoparticles and with the surrounding solvent, we present results from a series of molecular dynamics simulations of polyethylene oxide (PEO) coated silica nanoparticles of varying size (5 to 20 nm diameter) in water. For a single nanoparticle we determined the Stokes drag on the nanoparticle as it moves through the solvent and as it approaches a wall. Due to hydrodynamic interactions there are large finite size effects which we estimate by varying the size of the simulation cell. We also determined both solvent-mediated (velocity-independent) and lubrication (velocity-dependent) forces between two nanoparticles as a function of the coverage and chain length of the PEO chains.

  13. Size effect of optical silica microsphere pressure sensors

    NASA Astrophysics Data System (ADS)

    Jiao, Xinbing; Hao, Ruirui; Pan, Qian; Zhao, Xinwei; Bai, Xue

    2018-07-01

    Two types of optical pressure sensors with silica microspheres are proposed. The size effect of optical silica microsphere pressure sensors is studied by using a single-wavelength laser beam and polarimeters. The silica microspheres with diameters of 1.0 μm, 1.5 μm and 2.0 μm are prepared on garnet substrates by a self-assembly method. The pressure and the optical properties of the silica microspheres are measured by a resistance strain sensor and Thorlabs Stokes polarimeters as a function of the external direct current (DC) voltage. The optical silica microsphere sensor in transmission mode is suitable for pressure measuring. The results show that the pressure increases, while the diameter of the silica microspheres decreases. The maximum internal pressure can reach up to 7.3 × 107 Pa when the diameter of the silica microspheres is 1.0 μm.

  14. Nanometal Skin of Plasmonic Heterostructures for Highly Efficient Near-Field Scattering Probes

    NASA Astrophysics Data System (ADS)

    Zito, Gianluigi; Rusciano, Giulia; Vecchione, Antonio; Pesce, Giuseppe; di Girolamo, Rocco; Malafronte, Anna; Sasso, Antonio

    2016-08-01

    In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

  15. Oxidation-induced structural changes in sub-nanometer platinum supported on alumina

    DOE PAGES

    DeBusk, Melanie Moses; Allard, Jr, Lawrence Frederick; Blom, Douglas Allen; ...

    2015-06-26

    Platinum supported on alumina is an essential component of emission treatment catalysts used in transportation. Theoretical, experimental, and mechanistic aspects of platinum particles supported on a variety of supports have been extensively studied; however, available experimental information on the behavior of single vs. sub-nanometer platinum is extremely limited. To bridge the knowledge gap between single supported platinum and well-formed supported platinum nanoparticles, we have carried out synthesis, characterization, and CO and NO oxidation studies of sub-nanometer platinum supported on α, θ, and γ-Al 2O 3 and monitored changes in structure upon exposure to CO and NO oxidation conditions. Furthermore, wemore » find that sub-nanometer Pt is highly effective for CO oxidation due to high platinum dispersion but is not very efficient as NO oxidation catalyst. Lastly, sub-nanometer platinum agglomerates rapidly under CO or NO oxidation conditions to form nanoparticles.« less

  16. Rapid, conformal gas-phase formation of silica (SiO2) nanotubes from water condensates.

    PubMed

    Bae, Changdeuck; Kim, Hyunchul; Yang, Yunjeong; Yoo, Hyunjun; Montero Moreno, Josep M; Bachmann, Julien; Nielsch, Kornelius; Shin, Hyunjung

    2013-07-07

    An innovative atomic layer deposition (ALD) concept, with which nanostructures of water condensates with high aspect ratio at equilibrium in cylindrical nanopores can be transformed uniformly into silica (SiO2) at near room temperature and ambient pressure, has been demonstrated for the first time. As a challenging model system, we first prove the conversion of cylindrical water condensates in porous alumina membranes to silica nanotubes (NTs) by introducing SiCl4 as a metal reactant without involving any catalytic reaction. Surprisingly, the water NTs reproducibly transformed into silica NTs, where the wall thickness of the silica NTs deposited per cycle was found to be limited by the amount of condensed water, and it was on the orders of ten nanometers per cycle (i.e., over 50 times faster than that of conventional ALD). More remarkably, the reactions only took place for 10-20 minutes or less without vacuum-related equipment. The thickness of initially adsorbed water layers in cylindrical nanopores was indirectly estimated from the thickness of formed SiO2 layers. With systematic experimental designs, we tackle the classical Kelvin equation in the nanosized pores, and the role of van der Waals forces in the nanoscale wetting phenomena, which is a long-standing issue lacking experimental insight. Moreover, we show that the present strategy is likely generalized to other oxide systems such as TiO2. Our approach opens up a new avenue for ultra-simple preparation of porous oxides and allows for the room temperature formation of dielectric layers toward organic electronic and photovoltaic applications.

  17. Constrained Geometry Organotitanium Catalysts Supported on Nanosized Silica for Ethylene (co)Polymerization.

    PubMed

    Li, Kuo-Tseng; Wu, Ling-Huey

    2017-05-05

    Supported olefin polymerization catalysts can prevent reactor-fouling problems and produce uniform polymer particles. Constrained geometry complexes (CGCs) have less sterically hindered active sites than bis-cyclopentadienyl metallocene catalysts. In the literature, micrometer-sized silica particles were used for supporting CGC catalysts, which might have strong mass transfer limitations. This study aims to improve the activity of supported CGC catalysts by using nanometer-sized silica. Ti[(C₅Me₄)SiMe₂(N t Bu)]Cl₂, a "constrained-geometry" titanium catalyst, was supported on MAO-treated silicas (nano-sized and micro-sized) by an impregnation method. Ethylene homo-polymerization and co-polymerization with 1-octene were carried out in a temperature range of 80-120 °C using toluene as the solvent. Catalysts prepared and polymers produced were characterized. For both catalysts and for both reactions, the maximum activities occurred at 100 °C, which is significantly higher than that (60 °C) reported before for supported bis-cyclopentadienyl metallocene catalysts containing zirconium, and is lower than that (≥140 °C) used for unsupported Ti[(C₅Me₄)SiMe₂(N t Bu)]Me₂ catalyst. Activities of nano-sized catalyst were 2.6 and 1.6 times those of micro-sized catalyst for homopolymerization and copolymerization, respectively. The former produced polymers with higher crystallinity and melting point than the latter. In addition, copolymer produced with nanosized catalyst contained more 1-octene than that produced with microsized catalyst.

  18. Silaffins in Silica Biomineralization and Biomimetic Silica Precipitation

    PubMed Central

    Lechner, Carolin C.; Becker, Christian F. W.

    2015-01-01

    Biomineralization processes leading to complex solid structures of inorganic material in biological systems are constantly gaining attention in biotechnology and biomedical research. An outstanding example for biomineral morphogenesis is the formation of highly elaborate, nano-patterned silica shells by diatoms. Among the organic macromolecules that have been closely linked to the tightly controlled precipitation of silica in diatoms, silaffins play an extraordinary role. These peptides typically occur as complex posttranslationally modified variants and are directly involved in the silica deposition process in diatoms. However, even in vitro silaffin-based peptides alone, with and without posttranslational modifications, can efficiently mediate biomimetic silica precipitation leading to silica material with different properties as well as with encapsulated cargo molecules of a large size range. In this review, the biomineralization process of silica in diatoms is summarized with a specific focus on silaffins and their in vitro silica precipitation properties. Applications in the area of bio- and nanotechnology as well as in diagnostics and therapy are discussed. PMID:26295401

  19. Plasmonic properties and enhanced fluorescence of gold and dye-doped silica nanoparticle aggregates

    NASA Astrophysics Data System (ADS)

    Green, Nathaniel Scott

    The development of metal-enhanced fluorescence has prompted a great interest in augmenting the photophysical properties of fluorescent molecules with noble metal nanostructures. Our research efforts, outlined in this dissertation, focus on augmenting properties of fluorophores by conjugation with gold nanostructures. The project goals are split into two separate efforts; the enhancement in brightness of fluorophores and long distance non-radiative energy transfer between fluorophores. We believe that interacting dye-doped silica nanoparticles with gold nanoparticles can facilitate both of these phenomena. Our primary research interest is focused on optimizing brightness, as this goal should open a path to studying the second goal of non-radiative energy transfer. The two major challenges to this are constructing suitable nanomaterials and functionalizing them to promote plasmonically active complexes. The synthesis of dye-doped layered silica nanoparticles allows for control over the discrete location of the dye and a substrate that can be surface functionalized. Controlling the exact location of the dye is important to create a silica spacer, which promotes productive interactions with metal nanostructures. Furthermore, the synthesis of silica nanoparticles allows for various fluorophores to be studied in similar environments (removing solvent and other chemo-sensitive issues). Functionalizing the surface of silica nanoparticles allows control over the degree of silica and gold nanoparticle aggregation in solution. Heteroaggregation in solution is useful for producing well-aggregated clusters of many gold around a single silica nanoparticle. The dye-doped surface functionalized silica nanoparticles can than be mixed efficiently with gold nanomaterials. Aggregating multiple gold nanospheres around a single dye-doped silica nanoparticle can dramatically increase the fluorescent brightness of the sample via metal-enhanced fluorescence due to increase plasmonic

  20. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    NASA Astrophysics Data System (ADS)

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and

  1. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO 2-Functionalized Mesoporous Silica Nanoparticles

    DOE PAGES

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.; ...

    2017-08-21

    Exploiting specific interactions with titania (TiO 2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO 2 has many potential advantages over bulk and mesoporous TiO 2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO 2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO 2 content (up to 636 mg TiO2/g). The adsorption isotherms of twomore » polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO 2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO 2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO 2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.« less

  2. Adsorption and Recovery of Polyphenolic Flavonoids Using TiO 2-Functionalized Mesoporous Silica Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. Arif; Wallace, William T.; Islam, Syed Z.

    Exploiting specific interactions with titania (TiO 2) has been proposed for the separation and recovery of a broad range of biomolecules and natural products, including therapeutic polyphenolic flavonoids which are susceptible to degradation, such as quercetin. Functionalizing mesoporous silica with TiO 2 has many potential advantages over bulk and mesoporous TiO 2 as an adsorbent for natural products, including robust synthetic approaches leading to high surface area, stable separation platforms. Here, TiO 2 surface functionalized mesoporous silica nanoparticles (MSNPs) are synthesized and characterized as a function of TiO 2 content (up to 636 mg TiO2/g). The adsorption isotherms of twomore » polyphenolic flavonoids, quercetin and rutin, were determined (0.05-10 mg/ml in ethanol), and a 100-fold increase in the adsorption capacity was observed relative to functionalized nonporous particles with similar TiO 2 surface coverage. An optimum extent of functionalization (approximately 440 mg TiO 2/g particles) is interpreted from characterization techniques including grazing incidence x-ray scattering (GIXS), high resolution transmission electron microscopy (HRTEM) and nitrogen adsorption, which examined the interplay between the extent of TiO 2 functionalization and the accessibility of the porous structures. The recovery of flavonoids is demonstrated using ligand displacement in ethanolic citric acid solution (20% w/v), in which greater than 90% recovery can be achieved in a multistep extraction process. The radical scavenging activity (RSA) of the recovered and particle-bound quercetin as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay demonstrates greater than 80% retention of antioxidant activity by both particle-bound and recovered quercetin. In conclusion, these mesoporous titanosilicate materials can serve as a synthetic platform to isolate, recover, and potentially deliver degradation-sensitive natural products to biological systems.« less

  3. One-step synthesis of amine-functionalized hollow mesoporous silica nanoparticles as efficient antibacterial and anticancer materials.

    PubMed

    Hao, Nanjing; Jayawardana, Kalana W; Chen, Xuan; Yan, Mingdi

    2015-01-21

    In this study, amine-functionalized hollow mesoporous silica nanoparticles with an average diameter of ∼100 nm and shell thickness of ∼20 nm were prepared by an one-step process. This new nanoparticulate system exhibited excellent killing efficiency against mycobacterial (M. smegmatis strain mc(2) 651) and cancer cells (A549).

  4. Biomimetic silica encapsultation of living cells

    NASA Astrophysics Data System (ADS)

    Jaroch, David Benjamin

    Living cells perform complex chemical processes on size and time scales that artificial systems cannot match. Cells respond dynamically to their environment, acting as biological sensors, factories, and drug delivery devices. To facilitate the use of living systems in engineered constructs, we have developed several new approaches to create stable protective microenvironments by forming bioinspired cell-membrane-specific silica-based encapsulants. These include vapor phase deposition of silica gels, use of endogenous membrane proteins and polysaccharides as a site for silica nucleation and polycondensation in a saturated environment, and protein templated ordered silica shell formation. We demonstrate silica layer formation at the surface of pluripotent stem-like cells, bacterial biofilms, and primary murine and human pancreatic islets. Materials are characterized by AFM, SEM and EDS. Viability assays confirm cell survival, and metabolite flux measurements demonstrate normal function and no major diffusion limitations. Real time PCR mRNA analysis indicates encapsulated islets express normal levels of genetic markers for β-cells and insulin production. The silica glass encapsulant produces a secondary bone like calcium phosphate mineral layer upon exposure to media. Such bioactive materials can improve device integration with surrounding tissue upon implantation. Given the favorable insulin response, bioactivity, and long-term viability observed in silica-coated islets, we are currently testing the encapsulant's ability to prevent immune system recognition of foreign transplants for the treatment of diabetes. Such hybrid silica-cellular constructs have a wide range of industrial, environmental, and medical applications.

  5. o-Vanillin functionalized mesoporous silica – coated magnetite nanoparticles for efficient removal of Pb(II) from water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culita, Daniela C., E-mail: danaculita@yahoo.co.uk; Simonescu, Claudia Maria; Patescu, Rodica-Elena

    2016-06-15

    o-Vanillin functionalized mesoporous silica – coated magnetite (Fe{sub 3}O{sub 4}@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N{sub 2} adsorption–desorption technique and magnetic measurements. The capacity of Fe{sub 3}O{sub 4}@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica – coated magnetite (Fe{sub 3}O{sub 4}@MCM-41) and amino – modified mesoporous silica coated magnetite (Fe{sub 3}O{sub 4}@MCM-41-NH{sub 2}). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximummore » adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80–90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe{sub 3}O{sub 4}@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water. - Graphical abstract: A novel magnetic adsorbent based on o-vanillin functionalized mesoporous silica – coated magnetite was synthesized and fully characterized and its adsorption capacity for Pb(II) ions in aqueous solutions was evaluated. The maximum adsorption capacity for Pb(II) ions was determined to be 155.71 mg g{sup −1}. The adsorption rate was very high at the beginning of the adsorption process, 90% of the total amount of Pb(II) being removed within the first 60 min. Display Omitted.« less

  6. Effect of silica nanoparticles with variable size and surface functionalization on human endothelial cell viability and angiogenic activity

    NASA Astrophysics Data System (ADS)

    Guarnieri, Daniela; Malvindi, Maria Ada; Belli, Valentina; Pompa, Pier Paolo; Netti, Paolo

    2014-02-01

    Silica nanoparticles could be promising delivery vehicles for drug targeting or gene therapy. However, few studies have been undertaken to determine the biological behavior effects of silica nanoparticles on primary endothelial cells. Here we investigated uptake, cytotoxicity and angiogenic properties of silica nanoparticle with positive and negative surface charge and sizes ranging from 25 to 115 nm in primary human umbilical vein endothelial cells. Dynamic light scattering measurements and nanoparticle tracking analysis were used to estimate the dispersion status of nanoparticles in cell culture media, which was a key aspect to understand the results of the in vitro cellular uptake experiments. Nanoparticles were taken up by primary endothelial cells in a size-dependent manner according to their degree of agglomeration occurring after transfer in cell culture media. Functionalization of the particle surface with positively charged groups enhanced the in vitro cellular uptake, compared to negatively charged nanoparticles. However, this effect was contrasted by the tendency of particles to form agglomerates, leading to lower internalization efficiency. Silica nanoparticle uptake did not affect cell viability and cell membrane integrity. More interestingly, positively and negatively charged 25 nm nanoparticles did not influence capillary-like tube formation and angiogenic sprouting, compared to controls. Considering the increasing interest in nanomaterials for several biomedical applications, a careful study of nanoparticle-endothelial cells interactions is of high relevance to assess possible risks associated to silica nanoparticle exposure and their possible applications in nanomedicine as safe and effective nanocarriers for vascular transport of therapeutic agents.

  7. Nanometer-scale features in dolomite from Pennsylvanian rocks, Paradox Basin, Utah

    NASA Astrophysics Data System (ADS)

    Gournay, Jonas P.; Kirkland, Brenda L.; Folk, Robert L.; Lynch, F. Leo

    1999-07-01

    Scanning electron microscopy reveals an association between early dolomite in the Pennsylvanian Desert Creek (Paradox Fm.) and small (approximately 0.1 μm) nanometer-scale textures, termed `nannobacteria'. Three diagenetically distinct dolomites are present: early dolomite, limpid dolomite, and baroque dolomite. In this study, only the early dolomite contained nanometer-scale features. These textures occur as discrete balls and rods, clumps of balls, and chains of balls. Precipitation experiments demonstrate that these textures may be the result of precipitation in an organic-rich micro-environment. The presence of these nanometer-scale textures in Pennsylvanian rocks suggests that these early dolomites precipitated in organic-rich, bacterial environments.

  8. CO₂ sorption kinetics of scaled-up polyethylenimine-functionalized mesoporous silica sorbent.

    PubMed

    Al-Marri, M J; Khader, M M; Tawfik, M; Qi, G; Giannelis, E P

    2015-03-31

    Two CO2 solid sorbents based on polyethylenimine, PEI (M(n) ∼ 423 and 10K), impregnated into mesoporous silica (MPS) foam prepared in kilogram quantities via a scale-up process were synthesized and systematically characterized by a range of analytical and surface techniques. The mesoporous silica sorbent impregnated with lower molecular weight PEI, PEI-423/MPS, showed higher capacity toward CO2 sorption than the sorbent functionalized with the higher molecular weight PEI (PEI-10K/MPS). On the other hand, PEI-10K/MPS exhibited higher thermal stability than PEI-423/MPS. The kinetics of CO2 adsorption on both PEI/MPS fitted well with a double-exponential model. According to this model CO2 adsorption can be divided into two steps: the first is fast and is attributed to CO2 adsorption on the sorbent surface; the second is slower and can be related to the diffusion of CO2 within and between the mesoporous particles. In contrast, the desorption process obeyed first-order kinetics with activation energies of 64.3 and 140.7 kJ mol(-1) for PEI-423/MPS and PEI-10K/MPS, respectively. These studies suggest that the selection of amine is critical as it affects not only sorbent capacity and stability but also the energy penalty associated with sorbent regeneration.

  9. Impact of Colloidal Silica on Silicone Oil-Silica Mixed Antifoams

    NASA Astrophysics Data System (ADS)

    Yuan, Zheng

    Antifoams are utilized as an industrial additive to control undesired foam during processing. This study focuses on the impact of silica on the antifoam stability. Antifoam stability refers to the ability to maintain efficiency in foam destruction after prolonged shelf storage. Common antifoams are a mixture of hydrophobic silica particles and silicone oil. Based on the general mechanisms of antifoam action discussed in Chapter 1, silica particles play a significant role in foam destruction. Silica particles contribute to foam control by facilitating the entry and the penetration depth of oil-silica globules into surfactant-water films (foam bubble walls). The size, morphology and hydrophobicity of silica can be manipulated to generate optimal antifoam globules. For example, the two silicas with good shelf life performance (8375 and 9512) had the largest silica particles and both showed a tendency to aggregate in toluene solution. We conclude that improved shelf life is related to the propensity of PDMS oil to adsorb on silica, which leads to aggregation and particle size increase. We measured the time-evolution of dynamic light scattering (DLS) from 3-vol% antifoam dissolved in toluene (Chapter 2). For the sample with the largest hydrodynamic radius (9512) the scattered intensity decreased significantly after applying ultrasonic dispersion. Decreasing intensity also occurred for 8375 albeit at later times. The decrease of intensity is attributed to the growth and precipitation of oil-silica globules. The concentration dependence of light scattering confirmed the growth-precipitation hypothesis. FT-IR (Chapter 3) was consistent with precipitation due to oil adsorption, but the data were not definitive. Chapter 4 examines the time-evolution of silica structures by static light scattering and X-ray scattering. The combined data are consistent with a hierarchical structure for silica. Agglomeration occurred fastest for 9512, which is consistent with DLS observations

  10. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups

    PubMed Central

    Szili, Endre J.; Kumar, Sunil; Smart, Roger St. C.; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H.

    2009-01-01

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups. PMID:19809536

  11. Membranes for nanometer-scale mass fast transport

    DOEpatents

    Bakajin, Olgica [San Leandro, CA; Holt, Jason [Berkeley, CA; Noy, Aleksandr [Belmont, CA; Park, Hyung Gyu [Oakland, CA

    2011-10-18

    Nanoporous membranes comprising single walled, double walled, and multiwalled carbon nanotubes embedded in a matrix material were fabricated for fluid mechanics and mass transfer studies on the nanometer scale and commercial applications. Average pore size can be 2 nm to 20 nm, or seven nm or less, or two nanometers or less. The membrane can be free of large voids spanning the membrane such that transport of material such as gas or liquid occurs exclusively through the tubes. Fast fluid, vapor, and liquid transport are observed. Versatile micromachining methods can be used for membrane fabrication. A single chip can comprise multiple membranes. These membranes are a robust platform for the study of confined molecular transport, with applications in liquid and gas separations and chemical sensing including desalination, dialysis, and fabric formation.

  12. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k 0 , of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  13. Porous Architecture of SPS Thick YSZ Coatings Structured at the Nanometer Scale (~50 nm)

    NASA Astrophysics Data System (ADS)

    Bacciochini, Antoine; Montavon, Ghislain; Ilavsky, Jan; Denoirjean, Alain; Fauchais, Pierre

    2010-01-01

    Suspension plasma spraying (SPS) is a fairly recent technology that is able to process sub-micrometer-sized or nanometer-sized feedstock particles and permits the deposition of coatings thinner (from 20 to 100 μm) than those resulting from conventional atmospheric plasma spraying (APS). SPS consists of mechanically injecting within the plasma flow a liquid suspension of particles of average diameter varying between 0.02 and 1 μm. Due to the large volume fraction of the internal interfaces and reduced size of stacking defects, thick nanometer- or sub-micrometer-sized coatings exhibit better properties than conventional micrometer-sized ones (e.g., higher coefficients of thermal expansion, lower thermal diffusivity, higher hardness and toughness, better wear resistance, among other coating characteristics and functional properties). They could hence offer pertinent solutions to numerous emerging applications, particularly for energy production, energy saving, etc. Coatings structured at the nanometer scale exhibit nanometer-sized voids. Depending upon the selection of operating parameters, among which plasma power parameters (operating mode, enthalpy, spray distance, etc.), suspension properties (particle size distribution, powder mass percentage, viscosity, etc.), and substrate characteristics (topology, temperature, etc.), different coating architectures can be manufactured, from dense to porous layers, from connected to non-connected network. Nevertheless, the discrimination of porosity in different classes of criteria such as size, shape, orientation, specific surface area, etc., is essential to describe the coating architecture. Moreover, the primary steps of the coating manufacturing process affect significantly the coating porous architecture. These steps need to be further understood. Different types of imaging experiments were performed to understand, describe and quantify the pore level of thick finely structured ceramics coatings.

  14. Selective hydrophobic derivatization on the surface of helical silica nanotubes

    NASA Astrophysics Data System (ADS)

    Jin, Sun-Mi; Sung, Ji Yeong; Sim, Eun-Kyung; Jo, Nam-Ju; Kim, Jong Wook; Lee, Sumin; Jin, Jong Sung

    2018-02-01

    The chiral 1,2-diphenylethylenediamine derivative that is capable of spontaneous self-assembly was employed as an organogel template to produce a helical mesoporous silica nanotube containing gelators therein by following sol-gel polycondensation of TEOS. The synthesis enabled the successful introduction of the hydrocarbon of octyl silane (hydrophobic functional group) onto the outer surface of the silica nanotube while preserving the hydrophilic silanol (Sisbnd OH) group on internal surface of silica nanotube free from the gelators. This synthetic condition consists of a pre-stage of the introduction of a hydrophobic hydrocarbon functional group onto the outer surface of the silica nanotube selectively, and the post-stage washing of the gelators was presented together with a method analyzing the actions of organogels in the respective experimental processes.

  15. Investigation of heterogeneous asymmetric dihydroxylation over OsO{sub 4}-(QN){sub 2}PHAL catalysts of functionalized bimodal mesoporous silica with ionic liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu, Shenjie; Sun, Jihong, E-mail: jhsun@bjut.edu.cn; Li, Yuzhen

    2011-08-15

    Highlights: {yields} Functionalized bimodal mesoporous silica with MTMSPIm{sup +}Cl{sup -}. {yields} Mesoporous catalyst immobilized with OsO{sub 4}-(QN){sub 2}PHAL. {yields} Catalysts for asymmetric dihydroxylation reaction with high yield and enatioselectivity. {yields} Recyclable catalysts. -- Abstract: A novel synthesis of the functionalized bimodal mesoporous silica with ionic liquid (FBMMs) was performed. After grafting 1-methyl-3-(trimethoxysilyl)propylimidazolium chloride onto the surface of bimodal mesoporous silicas, 1,4-bis(9-O-quininyl)phthalazine ((QN){sub 2}-PHAL) and K{sub 2}Os(OH){sub 4}.2H{sub 2}O were immobilized onto the modified FBMMs by adsorption or ionic exchange methods, and then, the asymmetric dihydroxylation reaction was carried out by using solid catalysts. Techniques such as X-ray diffraction, Fourier Transformmore » Infrared spectroscopy, N{sub 2} adsorption and desorption were employed to characterize their structure and properties. The results showed that the mesoporous ordering degree of bimodal mesoporous silica decreased after functionalization and immobilization of OsO{sub 4}-(QN){sub 2}PHAL. Being very effective in asymmetric dihydroxylation with high yield and enantioselectivity, the prepared heterogeneous solid catalyst could be recycled for five times with little loss of enantioselectivity, with comparison of those results obtained in homophase system. Moreover, the effect of Osmium catalyst on asymmetric dihydroxylation was investigated.« less

  16. l-Cysteine-modified silver-functionalized silica-based material as an efficient solid-phase extraction adsorbent for the determination of bisphenol A.

    PubMed

    Li, Yuanyuan; Zhu, Nan; Li, Bingxiang; Chen, Tong; Ma, Yulong; Li, Qiang

    2018-02-01

    A new silver-functionalized silica-based material with a core-shell structure based on silver nanoparticle-coated silica spheres was synthesized, and silver nanoparticles were modified using strongly bound l-cysteine. l-Cysteine-silver@silica was characterized by scanning electron microscopy and FTIR spectroscopy. Then, a solid-phase extraction method based on l-cysteine-silver@silica was developed and successfully used for bisphenol A determination prior to HPLC analysis. The results showed that the l-cysteine-silver@silica as an adsorbent exhibited good enrichment capability for bisphenol A, and the maximum adsorption saturation was 20.93 mg/g. Moreover, a short adsorption equilibrium time was obtained due to the presence of silver nanoparticles on the surface of the silica. The extraction efficiencies were then optimized by varying the eluents and pH. Under the optimized conditions, good linearity for bisphenol A was obtained in the range from 0.4 to 4.0 μM (R 2  > 0.99) with a low limit of detection (1.15 ng/mL). The spiked recoveries from tap water and milk samples were satisfactory (85-102%) with relative standard deviations below 5.2% (n = 3), which indicated that the method was suitable for the analysis of bisphenol A in complex samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Silica-based mesoporous nanoparticles for controlled drug delivery

    PubMed Central

    Kwon, Sooyeon; Singh, Rajendra K; Perez, Roman A; Abou Neel, Ensanya A

    2013-01-01

    Drug molecules with lack of specificity and solubility lead patients to take high doses of the drug to achieve sufficient therapeutic effects. This is a leading cause of adverse drug reactions, particularly for drugs with narrow therapeutic window or cytotoxic chemotherapeutics. To address these problems, there are various functional biocompatible drug carriers available in the market, which can deliver therapeutic agents to the target site in a controlled manner. Among the carriers developed thus far, mesoporous materials emerged as a promising candidate that can deliver a variety of drug molecules in a controllable and sustainable manner. In particular, mesoporous silica nanoparticles are widely used as a delivery reagent because silica possesses favourable chemical properties, thermal stability and biocompatibility. Currently, sol-gel-derived mesoporous silica nanoparticles in soft conditions are of main interest due to simplicity in production and modification and the capacity to maintain function of bioactive agents. The unique mesoporous structure of silica facilitates effective loading of drugs and their subsequent controlled release. The properties of mesopores, including pore size and porosity as well as the surface properties, can be altered depending on additives used to fabricate mesoporous silica nanoparticles. Active surface enables functionalisation to modify surface properties and link therapeutic molecules. The tuneable mesopore structure and modifiable surface of mesoporous silica nanoparticle allow incorporation of various classes of drug molecules and controlled delivery to the target sites. This review aims to present the state of knowledge of currently available drug delivery system and identify properties of an ideal drug carrier for specific application, focusing on mesoporous silica nanoparticles. PMID:24020012

  18. Enzymatic hydrolysate-induced displacement reaction with multifunctional silica beads doped with horseradish peroxidase-thionine conjugate for ultrasensitive electrochemical immunoassay.

    PubMed

    Lin, Youxiu; Zhou, Qian; Lin, Yuping; Tang, Dianping; Niessner, Reinhard; Knopp, Dietmar

    2015-08-18

    A novel (invertase) enzymatic hydrolysate-triggered displacement reaction strategy with multifunctional silica beads, doped with horseradish peroxidase-thionine (HRP-Thi) conjugate, was developed for competitive-type electrochemical immunoassay of small molecular aflatoxin B1 (AFB1). The competitive-type displacement reaction was carried out on the basis of the affinity difference between enzymatic hydrolysate (glucose) and its analogue (dextran) for concanavalin A (Con A) binding sites. Initially, thionine-HRP conjugates were doped into nanometer-sized silica beads using the reverse micelle method. Then monoclonal anti-AFB1 antibody and Con A were covalently conjugated to the silica beads. The immunosensor was prepared by means of immobilizing the multifunctional silica beads on a dextran-modified sensing interface via the dextran-Con A binding reaction. Gold nanoparticles functionalized with AFB1-bovine serum albumin conjugate (AFB1-BSA) and invertase were utilized as the trace tag. Upon target AFB1 introduction, a competitive-type immunoreaction was implemented between the analyte and the labeled AFB1-BSA on the nanogold particles for the immobilized anti-AFB1 antibody on the electrode. The invertase followed by gold nanoparticles hydrolyzed sucrose into glucose and fructose. The produced glucose displaced the multifunctional silica beads from the electrode based on the classical dextran-Con A-glucose system, thus decreasing the catalytic efficiency of the immobilized HRP on the electrode relative to that of the H2O2-thionine system. Under optimal conditions, the detectable electrochemical signal increased with the increasing target AFB1 in a dynamic working range from 3.0 pg mL(-1) to 20 ng mL(-1) with a detection limit of 2.7 pg mL(-1). The strong bioconjugation with two nanostructures also resulted in a good repeatability and interassay precision down to 9.3%. Finally, the methodology was further validated for analysis of naturally contaminated or spiked AFB1

  19. Aligned silica nanowires on the inner wall of bubble-like silica film: the growth mechanism and photoluminescence.

    PubMed

    Chen, Yiqing; Zhou, Qingtao; Jiang, Haifeng; Su, Yong; Xiao, Haihua; Zhu, Li-Ang; Xu, Liang

    2006-02-28

    Large area, aligned amorphous silica nanowires grow on the inner wall of bubble-like silica film, which is prepared by thermal evaporation of a molten gallium-silicon alloy in a flow of ammonia. These nanowires are 10-20 nm in diameter and 0.5-1.5 µm in length. The bubble-like silica film functions as a substrate, guiding the growth of silica nanowires by a vapour-solid process. This work helps us to clearly elucidate the growth mechanism of aligned amorphous silica nanowires, ruling out the possibility of liquid gallium acting as a nucleation substrate for the growth of the aligned silica nanowires. A broad emission band from 290 to 600 nm is observed in the photoluminescence (PL) spectrum of these nanowires. There are seven PL peaks: two blue emission peaks at 430 nm (2.88 eV) and 475 nm (2.61 eV); and five ultraviolet emission peaks at 325 nm (3.82 eV), 350 nm (3.54 eV), 365 nm (3.40 eV), 385 nm (3.22 eV) and 390 nm (3.18 eV), which may be related to various oxygen defects.

  20. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale

    NASA Astrophysics Data System (ADS)

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öǧüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F.

    2018-02-01

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS2 , MoSe2 , WS2 , or WSe2 , are directly determined and mapped.

  1. Mapping Thermal Expansion Coefficients in Freestanding 2D Materials at the Nanometer Scale.

    PubMed

    Hu, Xuan; Yasaei, Poya; Jokisaari, Jacob; Öğüt, Serdar; Salehi-Khojin, Amin; Klie, Robert F

    2018-02-02

    Two-dimensional materials, including graphene, transition metal dichalcogenides and their heterostructures, exhibit great potential for a variety of applications, such as transistors, spintronics, and photovoltaics. While the miniaturization offers remarkable improvements in electrical performance, heat dissipation and thermal mismatch can be a problem in designing electronic devices based on two-dimensional materials. Quantifying the thermal expansion coefficient of 2D materials requires temperature measurements at nanometer scale. Here, we introduce a novel nanometer-scale thermometry approach to measure temperature and quantify the thermal expansion coefficients in 2D materials based on scanning transmission electron microscopy combined with electron energy-loss spectroscopy to determine the energy shift of the plasmon resonance peak of 2D materials as a function of sample temperature. By combining these measurements with first-principles modeling, the thermal expansion coefficients (TECs) of single-layer and freestanding graphene and bulk, as well as monolayer MoS_{2}, MoSe_{2}, WS_{2}, or WSe_{2}, are directly determined and mapped.

  2. New strategy for surface functionalization of periodic mesoporous silica based on meso-HSiO1.5.

    PubMed

    Xie, Zhuoying; Bai, Ling; Huang, Suwen; Zhu, Cun; Zhao, Yuanjin; Gu, Zhong-Ze

    2014-01-29

    Organic functionalization of periodic mesoporous silicas (PMSs) offers a way to improve their excellent properties and wide applications owing to their structural superiority. In this study, a new strategy for organic functionalization of PMSs is demonstrated by hydrosilylation of the recently discovered "impossible" periodic mesoporous hydridosilica, meso-HSiO1.5. This method overcomes the disadvantages of present pathways for organic functionalization of PMSs with organosilica. Moreover, compared to the traditional functionalization on the surface of porous silicon by hydrosilylation, the template-synthesized meso-HSiO1.5 is more flexible to access functional-groups-loaded PMSs with adjustable microstructures. The new method and materials will have wider applications based on both the structure and surface superiorities.

  3. Nucleation of polystyrene latex particles in the presence of gamma-methacryloxypropyltrimethoxysilane: functionalized silica particles.

    PubMed

    Bourgeat-Lami, Elodie; Insulaire, Mickaelle; Reculusa, Stéphane; Perro, Adeline; Ravaine, Serge; Duguet, Etienne

    2006-02-01

    Silica/polystyrene nanocomposite particles with different morphologies were synthesized through emulsion polymerization of styrene in the presence of silica particles previously modified by gamma-methacryloxypropyltrimethoxysilane (MPS). Grafting of the silane molecule was performed by direct addition of MPS to the aqueous silica suspension in the presence of an anionic surfactant under basic conditions. The MPS grafting density on the silica surface was determined using the depletion method and plotted against the initial MPS concentration. The influence of the MPS grafting density, the silica particles size and concentration and the nature of the surfactant on the polymerization kinetics and the particles morphology was investigated. When the polymerization was performed in the presence of an anionic surfactant, transmission electron microscopy images showed the formation of polymer spheres around silica for MPS grafting densities lower than typically 1 micromole x m(-2) while the conversion versus time curves indicated a strong acceleration effect under such conditions. In contrast, polymerizations performed in the presence of a larger amount of MPS moieties or in the presence of a non ionic emulsifier resulted in the formation of "excentered" core-shell morphologies and lower polymerization rates. The paper identifies the parameters that allow to control particles morphology and polymerization kinetics and describes the mechanism of formation of the nanocomposite colloids.

  4. Silica coating of nanoparticles by the sonogel process.

    PubMed

    Chen, Quan; Boothroyd, Chris; Tan, Gim Hong; Sutanto, Nelvi; Soutar, Andrew McIntosh; Zeng, Xian Ting

    2008-02-05

    A modified aqueous sol-gel route was developed using ultrasonic power for the silica coating of indium tin oxide (ITO) nanoparticles. In this approach, organosilane with an amino functional group was first used to cover the surface of as-received nanoparticles. Subsequent silica coating was initiated and sustained under power ultrasound irradiation in an aqueous mixture of surface-treated particles and epoxy silane. This process resulted in a thin but homogeneous coverage of silica on the particle surface. Particles coated with a layer of silica show better dispersability in aqueous and organic media compared with the untreated powder. Samples were characterized by high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), and the zeta potential.

  5. The use of functionalized zirconocenes as precursors to silica-supported zirconocene olefin polymerization catalysts

    NASA Astrophysics Data System (ADS)

    Cheng, Xu

    2001-07-01

    Me3Si substituents adjacent to Cp2MCl2 (M = Ti, Zr, Hf) are converted to BrMe2Si groups using BBr 3. The high reactivity of the Si-Br bonds toward nucleophiles such as water suggested that these substituents could react with hydroxylated silica surfaces, immobilizing the metallocenes. This dissertation concerns the syntheses of electrophile-functionalized zirconocene dihalide complexes and their use as precursors to silica-supported metallocene olefin polymerization catalysts. First we extended the metallocene "functionalization" chemistry to obtain substituents bearing more than one electrophilic bond. (Me3Sn) 2C5H4 combined with CpZrCl3 in toluene to afford (eta5-Me3Sn-C5H4)CpZrCl 2 (A). Reactions of A with electrophiles (E-X = Cl2B-Cl, I-Cl, and I-I) afforded (eta5-XMe 2Sn-C5H4)CpZrCl2 (and E-Me) cleanly. The reaction of A with BBr3 afforded either (eta5-BrMe2Sn-C5H4)CpZrBr2 (25 °C, 10 min) or (eta5-Br2MeSn-C5H 4)CpZrBr2 (25 °C, 15 h). Ph2MeSi-C5H 4Li combined with ZrCl4•2THF to afford (eta 5-Ph2MeSi-C5H4)2ZrCl 2 (B). The reaction of B with BCl3 led to incomplete cleavage of the Ph-Si bonds, however treatment of B with BBr3 afforded (eta5-Br2MeSi-C 5H4)2ZrBr2 (C) efficiently. X-ray crystal structures of (eta5-ClMe2Sn-C 5H4)CpZrCl2•1/2toluene, (eta 5-Br2MeSn-C5H4)CpZrBr2•THF, B, and C were obtained. Metallocene C reacts with water to afford an oligosiloxane-supported zirconocene dibromide. Spectroscopic characterization suggested a stereoregular structure in which the metallocene units have meso symmetry. The oligomeric substance showed high activity for homogeneous ethylene polymerization. Supported metallocene olefin polymerization catalysts were prepared by combining a functionalized metallocene precursor (Cp2ZrBr 2 bearing either BrMe2Si or Br2MeSi groups) and partially dehydroxylated silica. The activities of the immobilized zirconocene catalysts decreased and the stabilities increased with increasing number of tethers. The immobilized catalyst

  6. Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: principles, synthesis, and applications.

    PubMed

    Chen, Yu; Chen, Hang-Rong; Shi, Jian-Lin

    2014-01-21

    Colloidal hollow mesoporous silica nanoparticles (HMSNs) are aspecial type of silica-based nanomaterials with penetrating mesopore channels on their shells. HMSNs exhibit unique structural characteristics useful for diverse applications: Firstly, the hollow interiors can function as reservoirs for enhanced loading of guest molecules, or as nanoreactors for the growth of nanocrystals or for catalysis in confined spaces. Secondly, the mesoporous silica shell enables the free diffusion of guest molecules through the intact shell. Thirdly, the outer silica surface is ready for chemical modifications, typically via its abundant Si-OH bonds. As early as 2003, researchers developed a soft-templating methodto prepare hollow aluminosilicate spheres with penetrating mesopores in a cubic symmetry pattern on the shells. However, adapting this method for applications on the nanoscale, especially for biomedicine, has proved difficult because the soft templating micelles are very sensitive to liquid environments, making it difficult to tune key parameters such as dispersity, morphology and structure. In this Account, we present the most recent developments in the tailored construction of highly dispersive and monosized HMSNs using simple silica-etching chemistry, and we discuss these particles' excellent performance in diverse applications. We first introduce general principles of silica-etching chemistry for controlling the chemical composition and the structural parameters (particle size, pore size, etching modalities, yolk-shell nanostructures, etc.) of HMSNs. Secondly, we include recent progress in constructing heterogeneous, multifunctional, hollow mesoporous silica nanorattles via several methods for diverse applications. These elaborately designed HMSNs could be topologically transformed to prepare hollow mesoporous carbon nanoparticles or functionalized to produce HMSN-based composite nanomaterials. Especially in biomedicine, HMSNs are excellent as carriers to deliver

  7. o-Vanillin functionalized mesoporous silica - coated magnetite nanoparticles for efficient removal of Pb(II) from water

    NASA Astrophysics Data System (ADS)

    Culita, Daniela C.; Simonescu, Claudia Maria; Patescu, Rodica-Elena; Dragne, Mioara; Stanica, Nicolae; Oprea, Ovidiu

    2016-06-01

    o-Vanillin functionalized mesoporous silica - coated magnetite (Fe3O4@MCM-41-N-oVan) was synthesized and fully characterized by X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, N2 adsorption-desorption technique and magnetic measurements. The capacity of Fe3O4@MCM-41-N-oVan to adsorb Pb(II) from aqueous solutions was evaluated in comparison with raw mesoporous silica - coated magnetite (Fe3O4@MCM-41) and amino - modified mesoporous silica coated magnetite (Fe3O4@MCM-41-NH2). The effect of adsorption process parameters such us pH, contact time, initial Pb(II) concentration was also investigated. The adsorption data were successfully fitted with the Langmuir model, exhibiting a maximum adsorption capacity of 155.71 mg/g at pH=4.4 and T=298 K. The results revealed that the adsorption rate was very high at the beginning of the adsorption process, 80-90% of the total amount of Pb(II) being removed within the first 60 min, depending on the initial concentration. The results of the present work suggest that Fe3O4@MCM-41-N-oVan is a suitable candidate for the separation of Pb(II) from contaminated water.

  8. Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Kinsey, Erin; Li, Chunyan; Mu, Linlin; Bai, Lingyun; Clifford, Heather; Darnault, Christophe

    2016-04-01

    Rheological Properties of Silica Nanoparticles in Brine and Brine-Surfactant Systems Ashley R. Pales, Erin Kinsey, Chunyan Li, Linlin Mu, Lingyun Bai, Heather Clifford, and Christophe J. G. Darnault Department of Environmental Engineering and Earth Sciences, Laboratory of Hydrogeoscience and Biological Engineering, L.G. Rich Environmental Laboratory, Clemson University, Clemson, SC, USA Nanofluids are suspensions of nanometer sized particles in any fluid base, where the nanoparticles effect the properties of the fluid base. Commonly, nanofluids are water based, however, other bases such as ethylene-glycol, glycerol, and propylene-glycol, have been researched to understand the rheological properties of the nanofluids. This work aims to understand the fundamental rheological properties of silica nanoparticles in brine based and brine-surfactant based nanofluids with temperature variations. This was done by using variable weight percent of silica nanoparticles from 0.001% to 0.1%. Five percent brine was used to create the brine based nanofluids; and 5% brine with 2CMC of Tween 20 nonionic surfactant (Sigma-Aldrich) was used to create the brine-surfactant nanofluid. Rheological behaviors, such as shear rate, shear stress, and viscosity, were compared between these nanofluids at 20C and at 60C across the varied nanoparticle wt%. The goal of this work is to provide a fundamental basis for future applied testing for enhanced oil recovery. It is hypothesized that the addition of surfactant will have a positive impact on nanofluid properties that will be useful for enhance oil recovery. Differences have been observed in preliminary data analysis of the rheological properties between these two nanofluids indicating that the surfactant is having the hypothesized effect.

  9. Cellular complexity captured in durable silica biocomposites

    PubMed Central

    Kaehr, Bryan; Townson, Jason L.; Kalinich, Robin M.; Awad, Yasmine H.; Swartzentruber, B. S.; Dunphy, Darren R.; Brinker, C. Jeffrey

    2012-01-01

    Tissue-derived cultured cells exhibit a remarkable range of morphological features in vitro, depending on phenotypic expression and environmental interactions. Translation of these cellular architectures into inorganic materials would provide routes to generate hierarchical nanomaterials with stabilized structures and functions. Here, we describe the fabrication of cell/silica composites (CSCs) and their conversion to silica replicas using mammalian cells as scaffolds to direct complex structure formation. Under mildly acidic solution conditions, silica deposition is restricted to the molecularly crowded cellular template. Inter- and intracellular heterogeneity from the nano- to macroscale is captured and dimensionally preserved in CSCs following drying and subjection to extreme temperatures allowing, for instance, size and shape preserving pyrolysis of cellular architectures to form conductive carbon replicas. The structural and behavioral malleability of the starting material (cultured cells) provides opportunities to develop robust and economical biocomposites with programmed structures and functions. PMID:23045634

  10. Fracture behavior of silica nanoparticle filled epoxy resin

    NASA Astrophysics Data System (ADS)

    Dittanet, Peerapan

    This dissertation involves the addition of silica nanoparticles to a lightly crosslinked, model epoxy resin and investigates the effect of nanosilica content and particle size on glass transition temperature (Tg), coefficient of thermal expansion (CTE), Young's modulus (E), yield stress, and fracture toughness. This study aims to understand the influence of silica nanoparticle size, bimodal particle size distribution and silica content on the toughening behavior. The toughening mechanisms were determined using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and transmission optical microscopy (TOM). The approach identifies toughening mechanisms and develops a toughening model from unimodal-particle size systems first, then extends these concepts to various mixtures micron- and nanometer-size particles in a similar model epoxy. The experimental results revealed that the addition of nanosilica did not have a significant effect on Tg or the yield stress of epoxy resin, i.e. the yield stress and Tg remained constant regardless of nanosilica particle size. As expected, the addition of nanosilica had a significant impact on CTE, modulus and fracture toughness. The CTE values of nanosilica-filled epoxies were found to decrease with increasing nanosilica content, which can be attributed to the much lower CTE of the nanosilica fillers. Interestingly, the decreases in CTE showed strong particle size dependence. The Young's modulus was also found to significantly improve with addition of nanosilica and increase with increasing filler content. However, the particle size did not exhibit any effect on the Young's modulus. Finally, the fracture toughness and fracture energy showed significant improvements with the addition of nanosilica, and increased with increasing filler content. The effect of particle size on fracture toughness was negligible. Observation of the fracture surfaces using SEM and TOM showed evidence of debonding of nanosilica particles

  11. Properties of antibacterial polypropylene/nanometal composite fibers

    USDA-ARS?s Scientific Manuscript database

    Melt spinning of polypropylene fibers containing silver and zinc nanoparticles was investigated. The nanometals were generally uniformly dispersed in polypropylene, but aggregation of these materials was observed on fiber surface and in fiber cross-sections. The mechanical properties of the resulted...

  12. Chronic obstructive pulmonary disease and occupational exposure to silica.

    PubMed

    Rushton, Lesley

    2007-01-01

    Prolonged exposure to high levels of silica has long been known to cause silicosis This paper evaluates the evidence for an increased risk of chronic obstructive pulmonary disease (COPD) in occupations and industries in which exposure to crystalline silica is the primary exposure, with a focus on the magnitude of risks and levels of exposure causing disabling health effects. The literature suggests consistently elevated risks of developing COPD associated with silica exposure in several occupations, including the construction industry; tunneling; cement industry; brick manufacturing; pottery and ceramic work; silica sand, granite and diatomaceous earth industries; gold mining; and iron and steel founding, with risk estimates being high in some, even after taking into account the effect of confounders like smoking. Average dust levels vary from about 0.5 mg.m3 to over 10 mg.m3 and average silica levels from 0.04 to over 5 mg.m3, often well above occupational standards. Factors influencing the variation from industry to industry in risks associated with exposure to silica-containing dusts include (a) the presence of other minerals in the dust, particularly when associated with clay minerals; (b) the size of the particles and percentage of quartz; (c) the physicochemical characteristics, such as whether the dust is freshly fractured. Longitudinal studies suggest that loss of lung function occurs with exposure to silica dust at concentrations of between 0.1 and 0.2 mg.m3, and that the effect of cumulative silica dust exposure on airflow obstruction is independent of silicosis. Nevertheless, a disabling loss of lung function in the absence of silicosis would not occur until between 30 and 40 years exposure.

  13. Adsorption of mycotoxins in beverages onto functionalized mesoporous silicas

    USDA-ARS?s Scientific Manuscript database

    Mycotoxins, natural toxins produced by fungi, are a global concern as contaminates of agricultural commodities. Exposure to these toxins can be reduced by the use of binding materials. Templated mesoporous silicas are promising materials with favorable adsorptive properties for dyes, ions, and toxin...

  14. Folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell composite particles: synthesis and application in drug release.

    PubMed

    Yang, Dandan; Wei, Kaiwei; Liu, Qi; Yang, Yong; Guo, Xue; Rong, Hongren; Cheng, Mei-Ling; Wang, Guoxiu

    2013-07-01

    A drug delivery system was designed by deliberately combining the useful functions into one entity, which was composed of magnetic ZnFe2O4 hollow microsphere as the core, and mesoporous silica with folic acid molecules as the outer shell. Amine groups coated magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NH2) composite particles were first synthesized by a one-pot direct co-condensation method. Subsequently a novel kind of folic acid-functionalized magnetic ZnFe2O4 hollow microsphere core/mesoporous silica shell (MZHM-MSS-NHFA) composite particles were synthesized by conjugating folic acid as targeted molecule to MZHM-MSS-NH2. Ibuprofen, a well-known antiphlogistic drug, was used as a model drug to assess the loading and releasing behavior of the composite microspheres. The results show that the MZHM-MSS-NHFA system has the higher capacity of drug storage and good sustained drug-release property. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Organosilane-functionalized graphene quantum dots and their encapsulation into bi-layer hollow silica spheres for bioimaging applications.

    PubMed

    Wen, Ting; Yang, Baocheng; Guo, Yanzhen; Sun, Jing; Zhao, Chunmei; Zhang, Shouren; Zhang, Miao; Wang, Yonggang

    2014-11-14

    Graphene quantum dots (GQDs) represent an important class of luminescent quantum dots owing to their low toxicity and superior biocompatibility. Chemical functionalization of GQDs and subsequent combination with other materials further provide attractive techniques for advanced bioapplications. Herein, we report the facile fabrication of fluorescent organosilane-functionalized graphene quantum dots (Si-GQDs) and their embedding into mesoporous hollow silica spheres as a biolabel for the first time. Well-proportioned Si-GQDs with bright and excitation dependent tunable emissions in the visible region were obtained via a simple and economical solvothermal route adopting graphite oxide as a carbon source and 3-(2-aminoethylamino)-propyltrimethoxysilane as a surface modifier. The as-synthesized Si-GQDs can be well dispersed and stored in organic solvents, easily manufactured into transparent film and bulk form, and particularly provide great potential to be combined with other materials. As a proof-of-principle experiment, we demonstrate the successful incorporation of Si-GQDs into hollow mesoporous silica spheres and conduct preliminary cellular imaging experiments. Interestingly, the Si-GQDs not only serve as fluorescent chromophores in the composite material, but also play a crucial role in the formation of mesoporous hollow silica spheres with a distinctive bi-layer architecture. The layer thickness and optical properties can be precisely controlled by simply adjusting the silane coupling agent addition procedure in the preparation process. Our demonstration of low-cost Si-GQDs and their encapsulation into multifunctional composites may expand the applications of carbon-based nanomaterials for future biomedical imaging and other optoelectronic applications.

  16. Preparation and Characterization of Single Ion Conductors from High Surface Area Fumed Silica

    NASA Technical Reports Server (NTRS)

    Zhang, H.; Maitra, P.; Liu, B.; Wunder, S. L.; Lin, H.-P.; Salomon, M.; Hagedorn, Norman H. (Technical Monitor)

    2002-01-01

    Anions that can form dissociative salts with Li(+) have been prepared and covalently attached to high surface area fumed silica. When blended with polyethylene oxide (PEO), the functionalized fumed silica suppresses the crystallization of the PEO, provides dimensional stability, and serves as a single ion conductor. Since functionalized fumed silica is easily dispersed in common polar solvents, it can be incorporated in both the polymer electrolyte and the electrodes.

  17. Silica Materials for Medical Applications

    PubMed Central

    Vallet-Regí, María; Balas, Francisco

    2008-01-01

    The two main applications of silica-based materials in medicine and biotechnology, i.e. for bone-repairing devices and for drug delivery systems, are presented and discussed. The influence of the structure and chemical composition in the final characteristics and properties of every silica-based material is also shown as a function of the both applications presented. The adequate combination of the synthesis techniques, template systems and additives leads to the development of materials that merge the bioactive behavior with the drug carrier ability. These systems could be excellent candidates as materials for the development of devices for tissue engineering. PMID:19662110

  18. Environmental and Biomedical Applications of Iron Oxide/Mesoporous Silica Core-Shell Nanocomposites

    NASA Astrophysics Data System (ADS)

    Egodawatte, Shani Nirasha

    Mesoporous silica has shown great potential as an adsorbent for environmental contaminants and as a host for imaging and therapeutic agents. Mesoporous silica materials have a high surface area, tunable pore sizes and well defined surface properties which are governed by the surface hydroxyl groups. Surface modification of the mesoporous silica can tailor the adsorption properties for a specific metal ion or a small drug molecule by providing better sites for chelation or electrostatic interactions. Iron oxide / mesoporous silica core shell materials couple the favorable properties of both the iron oxide and mesoporous silica materials. The core-shell materials have higher adsorption properties compared to the parent material. With magnetic iron oxide nanoparticle cores, an additional magnetic property is introduced that can be used as magnetic recovery or separation. Heavy metals such as Chromium (Cr) and Arsenic (As) discharged from residential and environmental sources pose a serious threat to human health as well as groundwater pollution. In this thesis, iron oxide nanoparticles and nanofibers were coated with mesoporous silica and functionalized with (3-aminopropyl)triethoxysilane (APTES) using the post synthesis grafting method. The parent and the functionalized magnetic silica samples were characterized using powder X-ray diffraction (pXRD), thermal gravimetric analysis (TGA), Fourier Transform Infrared (FTIR) spectroscopy and nitrogen adsorption desorption isotherms for surface area and pore volumes. These materials were evaluated for Cr(III) and As(III)/As(V) adsorption from aqueous solutions in the optimum pH range for the specific metal. The aminopropyl functionalized magnetic mesoporous silica displayed the highest adsorption capacity for Cr(III) and Cu(II) of all the materials evaluated in this study. The high heavy metal adsorption capacity was attributed to a synergistic effect of iron oxide nanoparticles and amine functionalization on mesoporous

  19. High efficiency protein separation with organosilane assembled silica coated magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Chang, Jeong Ho; Kang, Ki Ho; Choi, Jinsub; Jeong, Young Keun

    2008-10-01

    This work describes the development of high efficiency protein separation with functionalized organosilanes on the surface of silica coated magnetic nanoparticles. The magnetic nanoparticles were synthesized with average particle size of 9 nm and silica coated magnetic nanoparticles were obtained by controlling the coating thicknesses on magnetic nanoparticles. The silica coating thickness could be uniformly sized with a diameter of 10-40 nm by a sol-gel approach. The surface modification was performed with four kinds of functionalized organosilanes such as carboxyl, aldehyde, amine, and thiol groups. The protein separation work with organosilane assembled silica coated magnetic nanoparticles was achieved for model proteins such as bovine serum albumin (BSA) and lysozyme (LSZ) at different pH conditions. Among the various functionalities, the thiol group showed good separation efficiency due to the change of electrostatic interactions and protein conformational structure. The adsorption efficiency of BSA and LSZ was up to 74% and 90% corresponding pH 4.65 and pH 11.

  20. Novel nanometer-level uniform amorphous carbon coating for boron powders by direct pyrolysis of coronene without solvent.

    PubMed

    Ye, ShuJun; Song, MingHui; Kumakura, Hiroaki

    2015-01-30

    A 3 nm coronene coating and a 4 nm amorphous carbon coating with a uniform shell-core encapsulation structure for nanosized boron (B) powders are formed by a simple process in which coronene is directly mixed with boron particles without a solvent and heated at 520 °C for 1 h or at 630 °C for 3 h in a vacuum-sealed silica tube. Coronene has a melting point lower than its decomposition temperature, which enables liquid coronene to cover B particles by liquid diffusion and penetration without the need for a solvent. The diffusion and penetration of coronene can extend to the boundaries of particles and to inside the agglomerated nanoparticles to form a complete shell-core encapsulated structure. As the temperature is increased, thermal decomposition of coronene on the B particles results in the formation of a uniform amorphous carbon coating layer. This novel and simple nanometer-level uniform amorphous carbon coating method can possibly be applied to many other powders; thus, it has potential applications in many fields at low cost.

  1. Programmable nanometer-scale electrolytic metal deposition and depletion

    DOEpatents

    Lee, James Weifu [Oak Ridge, TN; Greenbaum, Elias [Oak Ridge, TN

    2002-09-10

    A method of nanometer-scale deposition of a metal onto a nanostructure includes the steps of: providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart; and depositing metal on at least one of the nanostructures by electric field-directed, programmable, pulsed electrolytic metal deposition. Moreover, a method of nanometer-scale depletion of a metal from a nanostructure includes the steps of providing a substrate having thereon at least two electrically conductive nanostructures spaced no more than about 50 .mu.m apart, at least one of the nanostructures having a metal disposed thereon; and depleting at least a portion of the metal from the nanostructure by electric field-directed, programmable, pulsed electrolytic metal depletion. A bypass circuit enables ultra-finely controlled deposition.

  2. Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qafoku, Odeta; Ilton, Eugene S.; Bowden, Mark E.

    Olivines are divalent orthosilicates with important geologic, biological, and industrial significance and are typically comprised of mixtures of Mg2+ and Fe2+ ranging from forsterite (Mg2SiO4) to fayalite (Fe2SiO4). Investigating the role of Fe(II) in olivine reactivity requires the ability to synthesize olivines that are nanometer-sized, have different percentages of Mg2+ and Fe2+, and have good bulk and surface purity. This article demonstrates a new method for synthesizing nanosized fayalite and Mg-Fe mixture olivines. First, carbonaceous precursors are generated from sucrose, PVA, colloidal silica, Mg2+, and Fe3+. Second, these precursors are calcined in air to burn carbon and create mixtures ofmore » Fe(III)-oxides, forsterite, and SiO2. Finally, calcination in reducing CO-CO2 gas buffer leads to Fe(II)-rich olivines. XRD, Mössbauer, and IR analyses verify good bulk purity and composition. XPS indicates that surface iron is in its reduced Fe(II) form, and surface Si is consistent with olivine. SEM shows particle sizes predominately between 50 and 450 nm, and BET surface areas are 2.8-4.2 m2/g. STEM HAADF analysis demonstrates even distributions of Mg and Fe among the available M1 and M2 sites of the olivine crystals. These nanosized Fe(II)-rich olivines are suitable for laboratory studies with in situ probes that require mineral samples with high reactivity at short timescales.« less

  3. Protein-directed assembly of arbitrary three-dimensional nanoporous silica architectures.

    PubMed

    Khripin, Constantine Y; Pristinski, Denis; Dunphy, Darren R; Brinker, C Jeffrey; Kaehr, Bryan

    2011-02-22

    Through precise control of nanoscale building blocks, such as proteins and polyamines, silica condensing microorganisms are able to create intricate mineral structures displaying hierarchical features from nano- to millimeter-length scales. The creation of artificial structures of similar characteristics is facilitated through biomimetic approaches, for instance, by first creating a bioscaffold comprised of silica condensing moieties which, in turn, govern silica deposition into three-dimensional (3D) structures. In this work, we demonstrate a protein-directed approach to template silica into true arbitrary 3D architectures by employing cross-linked protein hydrogels to controllably direct silica condensation. Protein hydrogels are fabricated using multiphoton lithography, which enables user-defined control over template features in three dimensions. Silica deposition, under acidic conditions, proceeds throughout protein hydrogel templates via flocculation of silica nanoparticles by protein molecules, as indicated by dynamic light scattering (DLS) and time-dependent measurements of elastic modulus. Following silica deposition, the protein template can be removed using mild thermal processing yielding high surface area (625 m(2)/g) porous silica replicas that do not undergo significant volume change compared to the starting template. We demonstrate the capabilities of this approach to create bioinspired silica microstructures displaying hierarchical features over broad length scales and the infiltration/functionalization capabilities of the nanoporous silica matrix by laser printing a 3D gold image within a 3D silica matrix. This work provides a foundation to potentially understand and mimic biogenic silica condensation under the constraints of user-defined biotemplates and further should enable a wide range of complex inorganic architectures to be explored using silica transformational chemistries, for instance silica to silicon, as demonstrated herein.

  4. Multifunctional two-photon active silica-coated Au@MnO Janus particles for selective dual functionalization and imaging.

    PubMed

    Schick, Isabel; Lorenz, Steffen; Gehrig, Dominik; Schilmann, Anna-Maria; Bauer, Heiko; Panthöfer, Martin; Fischer, Karl; Strand, Dennis; Laquai, Frédéric; Tremel, Wolfgang

    2014-02-12

    Monodisperse multifunctional and nontoxic Au@MnO Janus particles with different sizes and morphologies were prepared by a seed-mediated nucleation and growth technique with precise control over domain sizes, surface functionalization, and dye labeling. The metal oxide domain could be coated selectively with a thin silica layer, leaving the metal domain untouched. In particular, size and morphology of the individual (metal and metal oxide) domains could be controlled by adjustment of the synthetic parameters. The SiO2 coating of the oxide domain allows biomolecule conjugation (e.g., antibodies, proteins) in a single step for converting the photoluminescent and superparamagnetic Janus nanoparticles into multifunctional efficient vehicles for theranostics. The Au@MnO@SiO2 Janus particles were characterized using high-resolution transmission electron microscopy (HR-)TEM, powder X-ray diffraction (PXRD), optical (UV-vis) spectroscopy, confocal laser fluorescence scanning microscopy (CLSM), and dynamic light scattering (DLS). The functionalized nanoparticles were stable in buffer solution or serum, showing no indication of aggregation. Biocompatibility and potential biomedical applications of the Au@MnO@SiO2 Janus particles were assayed by a cell viability analysis by coincubating the Au@MnO@SiO2 Janus particles with Caki 1 and HeLa cells. Time-resolved fluorescence spectroscopy in combination with CLSM revealed the silica-coated Au@MnO@SiO2 Janus particles to be highly two-photon active; no indication for an electronic interaction between the dye molecules incorporated in the silica shell surrounding the MnO domains and the attached Au domains was found; fluorescence quenching was observed when dye molecules were bound directly to the Au domains.

  5. Facile synthesis of functionalized ionic surfactant templated mesoporous silica for incorporation of poorly water-soluble drug.

    PubMed

    Li, Jing; Xu, Lu; Yang, Baixue; Wang, Hongyu; Bao, Zhihong; Pan, Weisan; Li, Sanming

    2015-08-15

    The present paper reported amino group functionalized anionic surfactant templated mesoporous silica (Amino-AMS) for loading and release of poorly water-soluble drug indomethacin (IMC) and carboxyl group functionalized cationic surfactant templated mesoporous silica (Carboxyl-CMS) for loading and release of poorly water-soluble drug famotidine (FMT). Herein, Amino-AMS and Carboxyl-CMS were facilely synthesized using co-condensation method through two types of silane coupling agent. Amino-AMS was spherical nanoparticles, and Carboxyl-CMS was well-formed spherical nanosphere with a thin layer presented at the edge. Drug loading capacity was obviously enhanced when using Amino-AMS and Carboxyl-CMS as drug carriers due to the stronger hydrogen bonding force formed between surface modified carrier and drug. Amino-AMS and Carboxyl-CMS had the ability to transform crystalline state of loaded drug from crystalline phase to amorphous phase. Therefore, IMC loaded Amino-AMS presented obviously faster release than IMC because amorphous phase of IMC favored its dissolution. The application of asymmetric membrane capsule delayed FMT release significantly, and Carboxyl-CMS favored sustained release of FMT due to its long mesoporous channels and strong interaction formed between its carboxyl group and amino group of FMT. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Nanometer-Sized Diamond Particle as a Probe for Biolabeling

    PubMed Central

    Chao, Jui-I.; Perevedentseva, Elena; Chung, Pei-Hua; Liu, Kuang-Kai; Cheng, Chih-Yuan; Chang, Chia-Ching; Cheng, Chia-Liang

    2007-01-01

    A novel method is proposed using nanometer-sized diamond particles as detection probes for biolabeling. The advantages of nanodiamond's unique properties were demonstrated in its biocompatibility, nontoxicity, easily detected Raman signal, and intrinsic fluorescence from its natural defects without complicated pretreatments. Carboxylated nanodiamond's (cND's) penetration ability, noncytotoxicity, and visualization of cND-cell interactions are demonstrated on A549 human lung epithelial cells. Protein-targeted cell interaction visualization was demonstrated with cND-lysozyme complex interaction with bacteria Escherichia coli. It is shown that the developed biomolecule-cND complex preserves the original functions of the test protein. The easily detected natural fluorescent and Raman intrinsic signals, penetration ability, and low cytotoxicity of cNDs render them promising agents in multiple medical applications. PMID:17513352

  7. Supramolecular structures on silica surfaces and their adsorptive properties.

    PubMed

    Belyakov, Vladimir N; Belyakova, Lyudmila A; Varvarin, Anatoly M; Khora, Olexandra V; Vasilyuk, Sergei L; Kazdobin, Konstantin A; Maltseva, Tetyana V; Kotvitskyy, Alexey G; Danil de Namor, Angela F

    2005-05-01

    The study of adsorptive and chemical immobilization of beta-cyclodextrin on a surface of hydroxylated silicas with various porous structure is described. Using IR spectroscopy, thermal gravimetrical analysis with a programmed heating, and chemical analysis of the silica surface, it is shown that the process of adsorption-desorption of beta-cyclodextrin depends on the porous structure of the silica. The reaction of esterification was used for chemical grafting of beta-cyclodextrin on the surface of hydroxylated silicas. Hydrolytic stability of silicas chemically modified by beta-cyclodextrin apparently is explained by simultaneous formation of chemical and hydrogen bonds between surface silanol groups and hydroxyl groups of beta-cyclodextrin. The uptake of the cations Cu(II), Cd(II), and Pb(II) and the anions Cr(VI) and As(V) by silicas modified with beta-cyclodextrin is investigated as a function of equilibrium ion concentrations. The increase of ion uptake and selectivity of ion extraction in comparison with starting silicas is established. It is due to the formation of surface inclusion complexes of the "host-guest" type in which one molecule of beta-cyclodextrin interacts simultaneously with several ions.

  8. IR spectroscopy study of SBA-15 silicas functionalized with the ethylthiocarbamidepropyl groups and their interactions with Ag(I) and Hg(II) ions

    NASA Astrophysics Data System (ADS)

    Melnyk, Inna V.; Nazarchuk, Galyna I.; Václavíková, Miroslava; Zub, Yuriy L.

    2018-04-01

    Mesoporous structure of silica is determined by the type of template, but the introduction of functional groups during the synthesis has additional influence. The structure of SBA-15 may be violated by the introduction of long functions, such as ≡Si(CH2)3NHC(=S)NHC2H5. These ethylthiocarbamidepropyl groups can form complexes with metal ions in thiol or thione tautomeric forms. We determined that the 2D hexagonal p6 mm structure is preserved for SBA-15 with thiourea groups at maximal TEOS:trifunctional silane ratio (mol) = 10:2, which was confirmed by TEM and by the presence of an intense reflex in the small-angle region of diffractograms of the final product. It was shown that the obtained sorbents possess high kinetic characteristics. The experimental data fit pseudo-second-order kinetic equation, but the rate constants depend on the content of functional groups in the surface layer. Template Pluronic P-123 defines the porosity of functional mesoporous silica materials even at increasing content of trifunctional silane in the initial solution. Infrared spectroscopy analysis showed that thione form of thiourea ligand is prevalent on the surface of pores of mesoporous samples. However, during the sorption of silver(I) ions, there are both thione and thiol forms on the surface. Thione form is transformed into thiol with increasing concentration of mercury(II) ions in the sorption solution. Adsorption experiments showed that the SBA-15 silicas functionalized with ethylthiocarbamidepropyl groups had high selectivity for silver(I) ions and could concentrate Ag(I) ions from metal ions mixture at pH 2.

  9. Selective removal of 2,4-dichlorophenoxyacetic acid from water by molecularly-imprinted amino-functionalized silica gel sorbent.

    PubMed

    Han, Deman; Jia, Wenping; Liang, Huading

    2010-01-01

    A molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-dichlorophenoxyacetic acid (2,4-D) was prepared by a surface imprinting technique in combination with a sol-gel process. The 2,4-D-imprinted amino-functionalized silica sorbent was characterized by FT-IR, nitrogen adsorption and static adsorption experiments. The selectivity of the sorbent was investigated by a batch competitive binding experiment using an aqueous 2,4-D and 2,4-dichlorophenol (2,4-DCP) mixture or using an aqueous 2,4-D and 2,4-dichlorophenylacetic acid (DPAC) mixture. The largest selectivity coefficient for 2,4-D in the presence of 2,4-DCP was found to be over 18, the largest relative selectivity coefficient between 2,4-D and 2,4-DCP over 9. The static uptake capacity and selectivity coefficient of the 2,4-D-imprinted functionalized sorbent are higher than those of the non-imprinted sorbent. The imprinted functionalized silica gel sorbent offered a fast kinetics for the extraction/stripping of 2,4-D, 73% of binding capacity (200 mg/L 2,4-D onto 20 mg of imprinted sorbent) was obtained within 5 min and the adsorbed 2,4-D can be easily stripped by the mixture solution of ethanol and 6 mol/L HCl (V:V = 1:1). In a test of five extraction/stripping cycles, the adsorption capacity of the sorbent was all above 93% of that of the fresh sorbent. Experimental result showed the potential of molecularly-imprinted amino-functionalized sorbent for selective removal of 2,4-D.

  10. Uranyl adsorption kinetics within silica gel: dependence on flow velocity and concentration

    NASA Astrophysics Data System (ADS)

    Dodd, Brandon M.; Tepper, Gary

    2017-09-01

    Trace quantities of a uranyl dissolved in water were measured using a simple optical method. A dilute solution of uranium nitrate dissolved in water was forced through nanoporous silica gel at fixed and controlled water flow rates. The uranyl ions deposited and accumulated within the silica gel and the uranyl fluorescence within the silica gel was monitored as a function of time using a light emitting diode as the excitation source and a photomultiplier tube detector. It was shown that the response time of the fluorescence output signal at a particular volumetric flow rate or average liquid velocity through the silica gel can be used to quantify the concentration of uranium in water. The response time as a function of concentration decreased with increasing flow velocity.

  11. Evaluation of Dynamic Disulphide/Thiol Homeostasis in Silica Exposed Workers

    PubMed Central

    Gündüzöz, Meşide; Bal, Ceylan; Büyükşekerci, Murat; Neşelioğlu, Salim; Nadir Öziş, Türkan; İritaş, Servet; Kara, Halil; Erel, Özcan

    2017-01-01

    Background: Oxidative stress is implicated as one of the main molecular mechanism underlying silicosis. Aims: In this study, our aim was to asses the redox status in occupationally silica-exposed workers, by evaluating the dynamic thiol-disulphide homeostasis. Study Design: Case-control study. Methods: Thirty-six male workers occupationally exposed to silica particles and 30 healthy volunteers, working as office workers were included to the study. Posteroanterior chest radiographs and pulmonary function tests of both groups were evaluated. Also serum thiol disulphide levels were measured using the spectrophotometric method described by Erel and Neşelioğlu. Results: Among the 36 workers that underwent pulmonary function tests 6 (17%) had obstructive, 7 (19%) had restrictive, 6 (17%) had obstructive and restrictive signs whereas 17 (47%) had no signs. The mean PFTs results of silica-exposed workers were significantly lower than control subjects. The serum disulphide levels of silica-exposed workers were significantly higher than control subjects (23.84±5.89 μmol/L and 21.18±3.44 μmol/L, respectively p=0.02). Conclusion: The serum disulphide levels, a biomarker of oxidative stress, are found to be higher in silica-exposed workers. PMID:28418335

  12. Spatial distribution of organic functional groups supported on mesoporous silica nanoparticles: A study by conventional and DNP-enhanced 29Si solid-state NMR

    DOE PAGES

    Kobayashi, Takeshi; Singappuli-Arachchige, Dilini; Wang, Zhuoran; ...

    2016-12-23

    Solid-state NMR spectroscopy, both conventional and dynamic nuclear polarization (DNP)-enhanced, was employed to study the spatial distribution of organic functional groups attached to the surface of mesoporous silica nanoparticles via co-condensation and grafting. The most revealing information was provided by DNP-enhanced two-dimensional 29Si– 29Si correlation measurements, which unambiguously showed that post-synthesis grafting leads to a more homogeneous dispersion of propyl and mercaptopropyl functionalities than co-condensation. Furthermore, during the anhydrous grafting process, the organosilane precursors do not self-condense and are unlikely to bond to the silica surface in close proximity (less than 4 Å) due to the limited availability of suitablymore » arranged hydroxyl groups.« less

  13. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Lin; Sun Jihong, E-mail: jhsun@bjut.edu.cn; Li Yuzhen

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N{sub 2} adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation f{sub t}=kt{sup n} was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing andmore » therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties. - Graphical abstract: Loading (A) and release profiles (B) of aspirin in N-BMMs and N-MCM-41 indicated that BMMs have more drug loading capacity and faster release rate than that MCM-41. Highlights: > Bimodal mesoporous silicas (BMMs) and MCM-41 modified with amino group via post-treatment procedure. > Loading and release profiles of aspirin in modified BMMs and MCM-41. > Modified BMMs have more drug loading capacity and faster release rate than that modified MCM-41.« less

  14. Plackett-Burman experimental design for bacterial cellulose-silica composites synthesis.

    PubMed

    Guzun, Anicuta Stoica; Stroescu, Marta; Jinga, Sorin Ion; Voicu, Georgeta; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2014-09-01

    Bacterial cellulose-silica hybrid composites were prepared starting from wet bacterial cellulose (BC) membranes using Stöber reaction. The structure and surface morphology of hybrid composites were examined by FTIR and SEM. The SEM pictures revealed that the silica particles are attached to BC fibrils and are well dispersed in the BC matrix. The influence of silica particles upon BC crystallinity was studied using XRD analysis. Thermogravimetric (TG) analysis showed that the composites are stable up to 300°C. A Plackett-Burman design was applied in order to investigate the influence of process parameters upon silica particle sizes and silica content of BC-silica composites. The statistical model predicted that it is possible for silica particles size to vary the synthesis parameters in order to obtain silica particles deposed on BC membranes in the range from 34.5 to 500 nm, the significant parameters being ammonia concentration, reaction time and temperature. The silica content also varies depending on process parameters, the statistical model predicting that the most influential parameters are water-tetraethoxysilane (TEOS) ratio and reaction temperature. The antimicrobial behavior on Staphylococcus aureus of BC-silica composites functionalized with usnic acid (UA) was also studied, in order to create improved surfaces with antiadherence and anti-biofilm properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Mechanisms of crystalline silica-induced pulmonary toxicity revealed by global gene expression profiling

    PubMed Central

    Sellamuthu, Rajendran; Umbright, Christina; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2015-01-01

    A proper understanding of the mechanisms underlying crystalline silica-induced pulmonary toxicity has implications in the management and potential prevention of the adverse health effects associated with silica exposure including silicosis, cancer and several auto-immune diseases. Human lung type II epithelial cells and rat lungs exposed to crystalline silica were employed as experimental models to determine global gene expression changes in order to understand the molecular mechanisms underlying silica-induced pulmonary toxicity. The differential gene expression profile induced by silica correlated with its toxicity in the A549 cells. The biological processes perturbed by silica exposure in the A549 cells and rat lungs, as identified by the bioinformatics analysis of the differentially expressed genes, demonstrated significant similarity. Functional categorization of the differentially expressed genes identified cancer, cellular movement, cellular growth and proliferation, cell death, inflammatory response, cell cycle, cellular development, and genetic disorder as top ranking biological functions perturbed by silica exposure in A549 cells and rat lungs. Results of our study, in addition to confirming several previously identified molecular targets and mechanisms involved in silica toxicity, identified novel molecular targets and mechanisms potentially involved in silica-induced pulmonary toxicity. Further investigations, including those focused on the novel molecular targets and mechanisms identified in the current study may result in better management and, possibly, reduction and/or prevention of the potential adverse health effects associated with crystalline silica exposure. PMID:22087542

  16. A Two-Dimensional 'Zigzag' Silica Polymorph on a Metal Support.

    PubMed

    Kuhness, David; Yang, Hyun Jin; Klemm, Hagen W; Prieto, Mauricio; Peschel, Gina; Fuhrich, Alexander; Menzel, Dietrich; Schmidt, Thomas; Yu, Xin; Shaikhutdinov, Shamil; Lewandowski, Adrian; Heyde, Markus; Kelemen, Anna; Włodarczyk, Radosław; Usvyat, Denis; Schütz, Martin; Sauer, Joachim; Freund, Hans-Joachim

    2018-05-16

    We present a new polymorph of the two-dimensional (2D) silica film with a characteristic 'zigzag' line structure and a rectangular unit cell which forms on a Ru(0001) metal substrate. This new silica polymorph may allow for important insights into growth modes and transformations of 2D silica films as a model system for the study of glass transitions. Based on scanning tunneling microscopy, low energy electron diffraction, infrared reflection absorption spectroscopy, and X-ray photoelectron spectroscopy measurements on the one hand, and density functional theory calculations on the other, a structural model for the 'zigzag' polymorph is proposed. In comparison to established monolayer and bilayer silica, this 'zigzag' structure system has intermediate characteristics in terms of coupling to the substrate and stoichiometry. The silica 'zigzag' phase is transformed upon reoxidation at higher annealing temperature into a SiO 2 silica bilayer film which is chemically decoupled from the substrate.

  17. Preparation and Characterization of Sulfonic Acid Functionalized Silica and Its Application for the Esterification of Ethanol and Maleic Acid

    NASA Astrophysics Data System (ADS)

    Sirsam, Rajkumar; Usmani, Ghayas

    2016-04-01

    The surface of commercially available silica gel, 60-200 mesh size, was modified with sulfonic acid through surface activation, grafting of 3-Mercaptopropyltrimethoxysilane, oxidation and acidification of 3-Mercaptopropylsilica. Sulfonic Acid Functionalization of Silica (SAFS) was confirmed by Fourier Transform Infra-red (FTIR) spectroscopy and thermal gravimetric analysis. Acid-base titration was used to estimate the cation exchange capacity of the SAFS. Catalytic activity of SAFS was judged for the esterification of ethanol with maleic acid. An effect of different process parameters viz. molar ratio, catalyst loading, speed of agitation and temperature were studied and optimized by Box Behnken Design (BBD) of Response Surface Methodology (RSM). Quadratic model developed by BBD-RSM reasonably satisfied an experimental and predicted values with correlation coefficient value R2 = 0.9504.

  18. Role of Surface Chemistry in Grain Adhesion and Dissipation during Collisions of Silica Nanograins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quadery, Abrar H.; Tucker, William C.; Dove, Adrienne R.

    2017-08-01

    The accretion of dust grains to form larger objects, including planetesimals, is a central problem in planetary science. It is generally thought that weak van der Waals interactions play a role in accretion at small scales where gravitational attraction is negligible. However, it is likely that in many instances, chemical reactions also play an important role, and the particular chemical environment on the surface could determine the outcomes of dust grain collisions. Using atomic-scale simulations of collisional aggregation of nanometer-sized silica (SiO{sub 2}) grains, we demonstrate that surface hydroxylation can act to weaken adhesive forces and reduce the ability ofmore » mineral grains to dissipate kinetic energy during collisions. The results suggest that surface passivation of dangling bonds, which generally is quite complete in an Earth environment, should tend to render mineral grains less likely to adhere during collisions. It is shown that during collisions, interactions scale with interparticle distance in a manner consistent with the formation of strong chemical bonds. Finally, it is demonstrated that in the case of collisions of nanometer-scale grains with no angular momentum, adhesion can occur even for relative velocities of several kilometers per second. These results have significant implications for early planet formation processes, potentially expanding the range of collision velocities over which larger dust grains can form.« less

  19. Sol-Gel Synthesis of Ordered β-Cyclodextrin-Containing Silicas

    NASA Astrophysics Data System (ADS)

    Trofymchuk, Iryna Mykolaivna; Roik, Nadiia; Belyakova, Lyudmila

    2016-03-01

    New approaches for β-cyclodextrin-containing silicas synthesis were demonstrated. Materials with hexagonally ordered mesoporous structure were prepared by postsynthesis grafting and by co-condensation methods. β-Cyclodextrin activated by a N, N'-carbonyldiimidazole was employed for postsynthesis treatment of 3-aminopropyl-modified MCM-41 support as well as for sol-gel synthesis with β-cyclodextrin-containing organosilane and tetraethyl orthosilicate participation in the presence of cetyltrimethylammonium bromide. The successful incorporation of cyclic oligosaccharide moieties in silica surface layer was verified by means of FT-IR spectroscopy and chemical analysis. Obtained β-cyclodextrin-containing materials were characterized by X-ray diffraction, transmission electron microscopy, and low-temperature adsorption-desorption of nitrogen. In spite of commensurable loading of β-cyclodextrin groups attained by both proposed approaches (up to 0.028 μmol · m-2), it was found that co-condensation procedure provides uniform distribution of β-cyclodextrin functionalities in silica framework, whereas postsynthesis grafting results in modification of external surface of silica surface. Adsorption of benzene from aqueous solutions onto the surface of β-cyclodextrin-containing materials prepared by co-condensation method was studied as the function of time and equilibrium concentration. Langmuir and Freundlich models were used to evaluate adsorption processes and parameters. Adsorption experiments showed that β-cyclodextrin-containing silicas could be promising for the trace amount removal of aromatics from water.

  20. Biofunctionalization of carbon nanostructures through enzyme immobilization in colloidal silica

    NASA Astrophysics Data System (ADS)

    Goulet, Evan M.

    Multi-walled carbon nanotubes (MWNT) and carbon nanopipettes (CNP) provide interesting high aspect ratio scaffolds on which to base functionally gradient materials. In this dissertation, we present a general method for the production of an enzymatically active composite material based on MWNTs. Polyethyleneimine (PEI) was applied to purified MWNTs, generating a positive electrostatic potential on the MWNTs. This positive potential was used to apply negatively charged colloidal silica particle in the presence of a high concentration of enzyme. The silica coating continued to grow via localized condensation of silica particles driven by the buffered saline conditions, immobilizing the enzyme within the coating. The mesoporous nanostructure was characterized via transmission electron microscopy. Optical spectroscopy experiments on the material employed as an active suspension showed that the immobilized enzymes horseradish peroxidase (HRP) and tyrosinase (TV) retained their activity upon incorporation into the material. Using HRP as a model enzyme, it was determined that the MWNT-HRP-Silica material showed similar pH and temperature dependencies in activity to those of free HRP in solution. An examination of the Michaelis-Menten kinetics showed that the material had a slightly higher value of KM than did free HRP. The MWNT-HRP-Silica material was also employed as an active filter membrane, which allowed us to explore the reusable nature of the material. We were able to show the denaturation of the filter due to the loss of Ca2+ cations at low pH and then restore the activity by soaking the filter membrane in 1 mM CaCl2. The MWNT-HRP-Silica material was used to modify a carbon microelectrode and produce a functioning electrochemical sensor for H2O2 . Utilizing cyclic voltammetry, the sensor was shown to have a linear response in limiting current versus concentration of H2O2 of 4.26 pA/microM. We also determined a lower detection limit of 0.67 microM H2O2. CNPs were

  1. Cadmium(II) and lead(II) adsorption onto hetero-atom functional mesoporous silica and activated carbon

    NASA Astrophysics Data System (ADS)

    Machida, Motoi; Fotoohi, Babak; Amamo, Yoshimasa; Mercier, Louis

    2012-07-01

    Adsorption of cadmium(II) and lead(II) on amino-, mercapto-functionalized mesoporous silica (HMS) and carboxylic-functionalized activated carbon (AC) were examined. The resultant isotherms fitted the Langmuir model and amino-functionalized HMS exhibited the highest adsorption capacity for both cadmium(II) and lead(II). Adsorption affinities for cadmium(II) were always greater than those for lead(II) in all three adsorbent types, while the difference between the two values was the largest for mercapto-functionalized HMS indicating a selective adsorption of cadmium(II). Influence of equilibrium solution pH on adsorption of cadmium(II), lead(II) and their binary mixtures was also studied. Carboxylic-functionalized AC adsorbed cadmium(II) and lead(II) in a wide pH range than conditions for the mercapto-functionalized HMS. It was concluded that each functional group had its own characteristics and advantages for adsorption of heavy metal ions; amino-groups showed high adsorption capacity, while mercapto-groups had good selectivity toward cadmium(II) adsorption and a wide solution pH in adsorption by carboxylic-groups were established in this study.

  2. Fluorescent magnetic nanoparticles for cell labeling: flux synthesis of manganite particles and novel functionalization of silica shell.

    PubMed

    Kačenka, Michal; Kaman, Ondřej; Kikerlová, Soňa; Pavlů, Barbora; Jirák, Zdeněk; Jirák, Daniel; Herynek, Vít; Černý, Jan; Chaput, Frédéric; Laurent, Sophie; Lukeš, Ivan

    2015-06-01

    Novel synthetic approaches for the development of multimodal imaging agents with high chemical stability are demonstrated. The magnetic cores are based on La0.63Sr0.37MnO3 manganite prepared as individual grains using a flux method followed by additional thermal treatment in a protective silica shell allowing to enhance their magnetic properties. The cores are then isolated and covered de novo with a hybrid silica layer formed through the hydrolysis and polycondensation of tetraethoxysilane and a fluorescent silane synthesized from rhodamine, piperazine spacer, and 3-iodopropyltrimethoxysilane. The aminoalkyltrialkoxysilanes are strictly avoided and the resulting particles are hydrolytically stable and do not release dye. The high colloidal stability of the material and the long durability of the fluorescence are reinforced by an additional silica layer on the surface of the particles. Structural and magnetic studies of the products using XRD, TEM, and SQUID magnetometry confirm the importance of the thermal treatment and demonstrate that no mechanical treatment is required for the flux-synthesized manganite. Detailed cell viability tests show negligible or very low toxicity at concentrations at which excellent labeling is achieved. Predominant localization of nanoparticles in lysosomes is confirmed by immunofluorescence staining. Relaxometric and biological studies suggest that the functionalized nanoparticles are suitable for imaging applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Functionalized bimodal mesoporous silicas as carriers for controlled aspirin delivery

    NASA Astrophysics Data System (ADS)

    Gao, Lin; Sun, Jihong; Li, Yuzhen

    2011-08-01

    The bimodal mesoporous silica modified with 3-aminopropyltriethoxysilane was performed as the aspirin carrier. The samples' structure, drug loading and release profiles were characterized with X-ray diffraction, scanning electron microscopy, N 2 adsorption and desorption, Fourier transform infrared spectroscopy, TG analysis, elemental analysis and UV-spectrophotometer. For further exploring the effects of the bimodal mesopores on the drug delivery behavior, the unimodal mesoporous material MCM-41 was also modified as the aspirin carrier. Meantime, Korsmeyer-Peppas equation ft= ktn was employed to analyze the dissolution data in details. It is indicated that the bimodal mesopores are beneficial for unrestricted drug molecules diffusing and therefore lead to a higher loading and faster releasing than that of MCM-41. The results show that the aspirin delivery properties are influenced considerably by the mesoporous matrix, whereas the large pore of bimodal mesoporous silica is the key point for the improved controlled-release properties.

  4. Silica extraction from geothermal water

    DOEpatents

    Bourcier, William L; Bruton, Carol J

    2014-09-23

    A method of producing silica from geothermal fluid containing low concentration of the silica of less than 275 ppm includes the steps of treating the geothermal fluid containing the silica by reverse osmosis treatment thereby producing a concentrated fluid containing the silica, seasoning the concentrated fluid thereby producing a slurry having precipitated colloids containing the silica, and separating the silica from the slurry.

  5. Quaternary ammonium-functionalized MCM-48 mesoporous silica as a sorbent for the dispersive solid-phase extraction of endocrine disrupting compounds in water.

    PubMed

    Zhang, Shijuan; Lu, Fengli; Ma, Xiaoyun; Yue, Mingbo; Li, Yanxin; Liu, Jiammin; You, Jinmao

    2018-07-06

    MCM-48 mesoporous silica was functionalized with dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride, a quaternary ammonium salt with a long hydrophobic chain, to prepare a new sorbent for the dispersive solid-phase extraction (DSPE) of seven endocrine disrupting compounds (EDCs) including 4-hexylphenol, 4-octylphenol, 4-nonylphenol, bisphenol A, estrone, 17β-estradiol and estriol in water. A series of differently functionalized MCM-48 materials were also synthesized, and they served as reference materials to study the mechanism. The developed DSPE method was combined with HPLC with fluorescence detection to evaluate the adsorption performance. The results indicated that the quaternary ammonium-functionalized MCM-48 mesoporous silica can be used as ideal sorbent for EDCs in water with recoveries of higher than 95% due to the electrostatic interactions and hydrophobic effect. Hydrogen bonding and π-π interactions in other synthesized materials could lead to about 25-30% increase in recoveries, but the results for polyhydroxy compounds were still not satisfying. The quaternary ammonium-functionalized MCM-48 mesoporous silica was successfully applied to the DSPE of EDCs in real water samples. The optimum extraction conditions were sorbent amount, 15 mg; desorption time; 5 min; elution volume, 0.8 mL; sample pH 3.0; and salt addition, 5 g/L. The limits of detection were in the range of 1.2-2.6 ng/L, while the limits of quantitation were in the range of 4.3-8.3 ng/L. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. The nature of the Fe–graphene interface at the nanometer level

    DOE PAGES

    Cattelan, M.; Peng, G. W.; Cavaliere, E.; ...

    2014-12-22

    The emerging fields of graphene-based magnetic and spintronic devices require a deep understanding of the interface between graphene and ferromagnetic metals. This paper reports a detailed investigation at the nanometer level of the Fe–graphene interface carried out by angle-resolved photoemission, high-resolution photoemission from core levels, near edge X-ray absorption fine structure, scanning tunnelling microscopy and spin polarized density functional theory calculations. Quasi-free-standing graphene was grown on Pt(111), and the iron film was either deposited atop or intercalated beneath graphene. Here, calculations and experimental results show that iron strongly modifies the graphene band structure and lifts its π band spin degeneracy.

  7. Probing the interaction of U (VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE PAGES

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.; ...

    2016-05-30

    The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  8. Probing the interaction of U (VI) with phosphonate-functionalized mesoporous silica using solid-state NMR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uribe, Eva C.; Mason, Harris E.; Shusterman, Jennifer A.

    The fundamental interaction of U (VI) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U (VI) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength. Single-pulse 31P NMR on U (VI) contacted samples revealed that U (VI)only interacts with a fraction of the ligands present on the surface. At pH 4 the U (VI) extraction capacity of the material is limited to 27–37% of the theoretical capacity, based on ligand loading. We combined single pulse 31Pmore » NMR on U (VI)-contacted samples with batch studies to measure a ligand-to-metal ratio of approximately 2 : 1 at pH 3 and 4. Batch studies and cross-polarization NMR measurements reveal that U (VI) binds to deprotonated phosphonate and/or silanol sites. We use 31P– 31P DQ-DRENAR NMR studies to compare the average dipolar coupling between phosphorus spins for both U (VI)-complexed and non-complexed ligand environments. Furthermore, these measurements reveal that U (VI) extraction is not limited by inadequate surface distribution of ligands, but rather by low stability of the surface phosphonate complex.« less

  9. Silica-Coated Plasmonic Metal Nanoparticles in Action.

    PubMed

    Hanske, Christoph; Sanz-Ortiz, Marta N; Liz-Marzán, Luis M

    2018-05-07

    Hybrid colloids consisting of noble metal cores and metal oxide shells have been under intense investigation for over two decades and have driven progress in diverse research lines including sensing, medicine, catalysis, and photovoltaics. Consequently, plasmonic core-shell particles have come to play a vital role in a plethora of applications. Here, an overview is provided of recent developments in the design and utilization of the most successful class of such hybrid materials, silica-coated plasmonic metal nanoparticles. Besides summarizing common simple approaches to silica shell growth, special emphasis is put on advanced synthesis routes that either overcome typical limitations of classical methods, such as stability issues and undefined silica porosity, or grant access to particularly sophisticated nanostructures. Hereby, a description is given, how different types of silica can be used to provide noble metal particles with specific functionalities. Finally, applications of such nanocomposites in ultrasensitive analyte detection, theranostics, catalysts, and thin-film solar cells are reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    PubMed

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  11. Towards nanometer-spaced silicon contacts to proteins.

    PubMed

    Schukfeh, Muhammed I; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-18

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p(+) silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices' electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes' edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions' conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein's denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  12. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE PAGES

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao; ...

    2015-01-19

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  13. Nanoporous silica-based protocells at multiple scales for designs of life and nanomedicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jie; Jakobsson, Eric; Wang, Yingxiao

    In this study, various protocell models have been constructed de novo with the bottom-up approach. Here we describe a silica-based protocell composed of a nanoporous amorphous silica core encapsulated within a lipid bilayer built by self-assembly that provides for independent definition of cell interior and the surface membrane. In this review, we will first describe the essential features of this architecture and then summarize the current development of silica-based protocells at both micro- and nanoscale with diverse functionalities. As the structure of the silica is relatively static, silica-core protocells do not have the ability to change shape, but their interiormore » structure provides a highly crowded and, in some cases, authentic scaffold upon which biomolecular components and systems could be reconstituted. In basic research, the larger protocells based on precise silica replicas of cells could be developed into geometrically realistic bioreactor platforms to enable cellular functions like coupled biochemical reactions, while in translational research smaller protocells based on mesoporous silica nanoparticles are being developed for targeted nanomedicine. Ultimately we see two different motivations for protocell research and development: (1) to emulate life in order to understand it; and (2) to use biomimicry to engineer desired cellular interactions.« less

  14. Evaluation of bi-functionalized mesoporous silicas as reversed phase/cation-exchange mixed-mode sorbents for multi-residue solid phase extraction of veterinary drug residues in meat samples.

    PubMed

    Casado, Natalia; Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2017-04-01

    A SBA-15 type mesoporous silica was synthesized and bi-functionalized with octadecylsilane (C18) or octylsilane (C8), and sulfonic acid (SO 3 - ) groups in order to obtain materials with reversed-phase/strong cation-exchange mixed-mode retention mechanism. The resulting hybrid materials (SBA-15-C18-SO 3 - and SBA-15-C8-SO 3 - ) were comprehensively characterized. They showed high surface area, high pore volume and controlled porous size. Elemental analysis of the materials revealed differences in the amount of C18 and C8. SBA-15-C18-SO 3 - contained 0.19mmol/g of C18, while SBA-15-C8-SO 3 - presented 0.54mmol/g of C8. The SO 3 - groups anchored to the silica surface of the pore walls were 0.20 and 0.09mmol/g, respectively. The bi-functionalized materials were evaluated as SPE sorbents for the multi-residue extraction of 26 veterinary drug residues in meat samples using ultra-high-performance liquid chromatography coupled to mass spectrometry detector (UHPLC-MS/MS). Different sorbent amounts (100 and 200mg) and organic solvents were tested to optimize the extraction procedure. Both silicas showed big extraction potential and were successful in the extraction of the target analytes. The mixed-mode retention mechanism was confirmed by comparing both silicas with SBA-15 mesoporous silica mono-functionalized with C18 and C8. Best results were achieved with 200mg of SBA-15-C18-SO 3 - obtaining recoveries higher than 70% for the majority of analytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Substrate comprising a nanometer-scale projection array

    DOEpatents

    Cui, Yi; Zhu, Jia; Hsu, Ching-Mei; Connor, Stephen T; Yu, Zongfu; Fan, Shanhui; Burkhard, George

    2012-11-27

    A method for forming a substrate comprising nanometer-scale pillars or cones that project from the surface of the substrate is disclosed. The method enables control over physical characteristics of the projections including diameter, sidewall angle, and tip shape. The method further enables control over the arrangement of the projections including characteristics such as center-to-center spacing and separation distance.

  16. Direct observation and analysis of york-shell materials using low-voltage high-resolution scanning electron microscopy: Nanometal-particles encapsulated in metal-oxide, carbon, and polymer

    NASA Astrophysics Data System (ADS)

    Asahina, Shunsuke; Suga, Mitsuo; Takahashi, Hideyuki; Young Jeong, Hu; Galeano, Carolina; Schüth, Ferdi; Terasaki, Osamu

    2014-11-01

    Nanometal particles show characteristic features in chemical and physical properties depending on their sizes and shapes. For keeping and further enhancing their features, the particles should be protected from coalescence or degradation. One approach is to encapsulate the nanometal particles inside pores with chemically inert or functional materials, such as carbon, polymer, and metal oxides, which contain mesopores to allow permeation of only chemicals not the nanometal particles. Recently developed low-voltage high-resolution scanning electron microscopy was applied to the study of structural, chemical, and electron state of both nanometal particles and encapsulating materials in yolk-shell materials of Au@C, Ru/Pt@C, Au@TiO2, and Pt@Polymer. Progresses in the following categories were shown for the yolk-shell materials: (i) resolution of topographic image contrast by secondary electrons, of atomic-number contrast by back-scattered electrons, and of elemental mapping by X-ray energy dispersive spectroscopy; (ii) sample preparation for observing internal structures; and (iii) X-ray spectroscopy such as soft X-ray emission spectroscopy. Transmission electron microscopy was also used for characterization of Au@C.

  17. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walston, S.; Chung, C.; Fitsos, P.

    2007-04-24

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. It is important to the ILC design effort to demonstrate that these tolerances can be achieved ideally using beam-based stability measurements. It has been estimated that RF cavity beam position monitors (BPMs) could provide position measurement resolutions of less than one nanometer and could form the basis of the desired beam-based stability measurement. We have developed a high resolution RF cavity BPM system. A triplet of these BPMs has been installed in the extraction line of the KEK Acceleratormore » Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on variable-length struts which allow movement in position and angle. We have developed novel methods for extracting the position and tilt information from the BPM signals including a calibration algorithm which is immune to beam jitter. To date, we have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of +/- 20 microns. We report on the progress of these ongoing tests.« less

  18. Formation of Silica-Lysozyme Composites Through Co-Precipitation and Adsorption

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Daniela B.; Stawski, Tomasz M.; Tobler, Dominique J.; Wirth, Richard; Peacock, Caroline L.; Benning, Liane G.

    2018-04-01

    Interactions between silica and proteins are crucial for the formation of biosilica and the production of novel functional hybrid materials for a range of industrial applications. The proteins control both precipitation pathway and the properties of the resulting silica-organic composites. Here we present data on the formation of silica-lysozyme composites through two different synthesis approaches (co-precipitation vs. adsorption) and show that the chemical and structural properties of these composites, when analyzed using a combination of synchrotron-based scattering (total scattering and SAXS), spectroscopic, electron microscopy and potentiometric methods vary dramatically. We document that while lysozyme was not incorporated into nor did its presence alter the molecular structure of silica, it strongly enhanced the aggregation of silica particles due to electrostatic and potentially hydrophobic interactions, leading to the formation of composites with characteristics differing from pure silica. The differences increased with increasing lysozyme content for both synthesis approaches. Yet, the absolute changes differ substantially between the two sets of composites, as lysozyme did not just affect aggregation during co-precipitation but also particle growth and likely polymerization during co-precipitation. Our results improve the fundamental understanding of how organic macromolecules interact with dissolved and nanoparticulate silica and how these interactions control the formation pathway of silica-organic composites from sodium silicate solutions, a widely available and cheap starting material.

  19. Crystalline Silica

    Cancer.gov

    Learn about crystalline silica (quartz dust), which can raise your risk of lung cancer. Crystalline silica is present in certain construction materials such as concrete, masonry, and brick and also in commercial products such as some cleansers, cosmetics, pet litter, talcum powder, caulk, and paint.

  20. Nanometer scale atomic structure of zirconium based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Hwang, Jinwoo

    We have studied the nanometer scale structure of bulk metallic glass (BMG) using fluctuation electron microscopy (FEM). The nanometer scale medium range order (MRO) in BMG is of significant interest because of its possible relationship to the properties, but the experimental study of the MRO is difficult because conventional diffraction techniques are not sensitive to the MRO scale. FEM is a quantitative transmission electron microscopy technique which measures the nanoscale structural fluctuation associated with MRO in amorphous materials, and provides information about the size, distribution, and internal structure of MRO. In this work, we developed an improved method for FEM using energy-filtered STEM nanodiffraction with highly coherent probes with size up to 11nm in a state-of-the-art Cs- corrected STEM. We also developed an effective way to eliminate the effect of sample thickness variation to the FEM data by using Z-contrast images as references. To study the detailed structure of MRO, we developed a hybrid reverse Monte Carlo (H-RMC) simulation which combines an empirical atomic potential and the FEM data. H-RMC generated model structures that match the experimental data at short and medium range. In addition, the subtle rotational symmetries in the FEM nanodiffraction patterns were analyzed by angular correlation function to reveal more details of the internal structure of MRO. Our experiments and simulations show that Zr-based BMG contains pseudo-planar, crystal-like MRO as well as icosahedral clusters in its nanoscale structure. We found that some icosahedral clusters may be connected, and that structural relaxation by annealing increases the population of icosahedral clusters.

  1. Silica nanoparticles carrying boron-containing polymer brushes

    NASA Astrophysics Data System (ADS)

    Brozek, Eric M.; Mollard, Alexis H.; Zharov, Ilya

    2014-05-01

    A new class of surface-modified silica nanoparticles has been developed for potential applications in boron neutron capture therapy. Sub-50 nm silica particles were synthesized using a modified Stöber method and used in surface-initiated atom transfer radical polymerization of two biocompatible polymers, poly(2-(hydroxyethyl)methacrylate) and poly(2-(methacryloyloxy)ethyl succinate). The carboxylic acid and hydroxyl functionalities of the polymeric side chains were functionalized with carboranyl clusters in high yields. The resulting particles were characterized using DLS, TEM, solution 1H NMR, solid state 11B NMR and thermogravimetric analysis. The particles contain between 13 and 18 % of boron atoms by weight, which would provide a high amount of 10B nuclides for BNCT, while the polymer chains are suitable for further modification with cell targeting ligands.

  2. Energy Landscape of Water and Ethanol on Silica Surfaces

    DOE PAGES

    Wu, Di; Guo, Xiaofeng; Sun, Hui; ...

    2015-06-26

    Fundamental understanding of small molecule–silica surface interactions at their interfaces is essential for the scientific, technological, and medical communities. We report direct enthalpy of adsorption (Δh ads) measurements for ethanol and water vapor on porous silica glass (CPG-10), in both hydroxylated and dehydroxylated (hydrophobic) forms. Results suggest a spectrum of energetics as a function of coverage, stepwise for ethanol but continuous for water. The zero-coverage enthalpy of adsorption for hydroxylated silica shows the most exothermic enthalpies for both water (-72.7 ± 3.1 kJ/mol water) and ethanol (-78.0 ± 1.9 kJ/mol ethanol). The water adsorption enthalpy becomes less exothermic gradually untilmore » reaching its only plateau (-20.7 ± 2.2 kJ/mol water) reflecting water clustering on a largely hydrophobic surface, while the enthalpy of ethanol adsorption profile presents two well separated plateaus, corresponding to strong chemisorption of ethanol on adsorbate-free silica surface (-66.4 ± 4.8 kJ/mol ethanol), and weak physisorption of ethanol on ethanol covered silica (-4.0 ± 1.6 kJ/mol ethanol). On the other hand, dehydroxylation leads to missing water–silica interactions, whereas the number of ethanol binding sites is not impacted. The isotherms and partial molar properties of adsorption suggest that water may only bind strongly onto the silanols (which are a minor species on silica glass), whereas ethanol can interact strongly with both silanols and the hydrophobic areas of the silica surface.« less

  3. Reactive Diazonium-Modified Silica Fillers for High-Performance Polymers.

    PubMed

    Sandomierski, Mariusz; Strzemiecka, Beata; Chehimi, Mohamed M; Voelkel, Adam

    2016-11-08

    We describe a simple way of modification of three silica-based fillers with in situ generated 4-hydroxymethylbenzenediazonium salt ( + N 2 -C 6 H 4 -CH 2 OH). The rationale for using a hydroxyl-functionalized diazonium salt is that it provides surface-functionalized fillers that can react with phenolic resins. The modification of silica by diazonium salts was assessed using Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). FTIR spectroscopy permitted the tracking of benzene ring breathing and C-C. The absence of the characteristic N≡N stretching vibration in the 2200-2300 cm -1 range indicates the loss of the diazonium group. XPS results indicate a higher C/Si atomic ratio after the diazonium modification of fillers and the presence of π-π* C1s satellite peaks characteristic of the surface-tethered aromatic species. Adhesion of aryl layers to the silicas is excellent because they withstand harsh thermal and organic solvent treatments. Phenolic resins (used, for example, as binders in abrasive products) were filled with diazonium-modified silicas at 10-25 wt %. The reactivity of the fillers toward phenolic resins was evaluated by the determination of the flow distance. After annealing at 180 °C, the diazonium-modified silica/phenolic resin composites were mechanically tested using the three-point flexural method. The flexural strength was found to be up to 35% higher than that of the composites prepared without any diazonium salts. Diazonium-modified silica with surface-bound -CH 2 -OH groups is thus ideal reactive filler for phenolic resins. Such filler ensures interfacial chemical reactions with the matrix and imparts robust mechanical properties to the final composites. This specialty diazonium-modified silica will find potential application as fillers in the composites for the abrasive industry. More generally, aryl diazonium salts are a unique new series of compounds for tailoring the surface properties of fillers

  4. Behaviour of Epoxy Silica Nanocomposites Under Static and Creep Loading

    NASA Astrophysics Data System (ADS)

    Constantinescu, Dan Mihai; Picu, Radu Catalin; Sandu, Marin; Apostol, Dragos Alexandru; Sandu, Adriana; Baciu, Florin

    2017-12-01

    Specific manufacturing technologies were applied for the fabrication of epoxy-based nanocomposites with silica nanoparticles. For dispersing the fillers in the epoxy resin special equipment such as a shear mixer and a high energy sonicator with temperature control were used. Both functionalized and unfunctionalized silica nanoparticles were added in three epoxy resins. The considered filling fraction was in most cases 0.1, 0.3 and 0.5 wt%.. The obtained nanocomposites were subjected to monotonic uniaxial and creep loading at room temperature. The static mechanical properties were not significantly improved regardless the filler percentage and type of epoxy resin. Under creep loading, by increasing the stress level, the nanocomposite with 0.1 wt% silica creeps less than all other materials. Also the creep rate is reduced by adding silica nanofillers.

  5. Multilayered silica-biopolymer nanocapsules with a hydrophobic core and a hydrophilic tunable shell thickness

    NASA Astrophysics Data System (ADS)

    Vecchione, Raffaele; Luciani, Giuseppina; Calcagno, Vincenzo; Jakhmola, Anshuman; Silvestri, Brigida; Guarnieri, Daniela; Belli, Valentina; Costantini, Aniello; Netti, Paolo A.

    2016-04-01

    Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days. Moreover, the outer silica shell was coated with polyethyleneglycol (PEG) in order to confer antifouling properties to the final nanocapsule. The outer silica layer combined its properties (it is an optimal bio-interface for bio-conjugations and for the embedding of hydrophilic drugs in the porous structure) with the capability to stabilize the oil core for the confinement of high payloads of lipophilic tracers (e.g. CdSe quantum dots, Nile Red) and drugs. In addition, polymer layers - besides conferring stability to the emulsion while building the silica shell - can be independently exploited if suitably functionalized, as demonstrated by conjugating chitosan with fluorescein isothiocyanate. Such numerous features in a single nanocarrier system make it very intriguing as a multifunctional platform for smart diagnosis and therapy.Stable, biocompatible, multifunctional and multicompartment nanocarriers are much needed in the field of nanomedicine. Here, we report a simple, novel strategy to design an engineered nanocarrier system featuring an oil-core/hybrid polymer/silica-shell. Silica shells with a tunable thickness were grown in situ, directly around a highly mono-disperse and stable oil-in-water emulsion system, stabilized by a double bio-functional polyelectrolyte heparin/chitosan layer. Such silica showed a complete degradation in a physiological medium (SBF) in a time frame of three days

  6. Silica nanoparticles with a substrate switchable luminescence

    NASA Astrophysics Data System (ADS)

    Bochkova, O. D.; Mustafina, A. R.; Fedorenko, S. V.; Konovalov, A. I.

    2011-04-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  7. Physical characteristics of chitosan-silica composite of rice husk ash

    NASA Astrophysics Data System (ADS)

    Sumarni, Woro; Sri Iswari, Retno; Marwoto, Putut; Rahayu, Endah F.

    2016-02-01

    Some previous studies showed that the characteristics of chitosan membranes have a very rigid and non-porous structure so that its utilization is not maximized, particularly in the filtration process. Hence, it needs modification to improve the quality of the chitosan membranes. Adding the silica into the chitosan membranes is one of the offered solutions to overcome the problems of physical and mechanical properties of chitosan. This study aims to investigate the effect of variations in the silica composition to the physical characteristics of the chitosan-silica membranes of rice husk ash that were synthesized. The chitosan used is derived from the chitin of Vannamei shrimps’ shell with 82% degree of de-acetylation, while the silica was synthesized from rice husk ash with rendering of silica (SiO2) by 5% and the results of XRD analysis showed an amorphous phase. Membrane synthesis was performed using the phase inversion method with chitosan-silica mass ratios of rice husk ash, which were 1:0.0; 1:0.5; 1:1.0; 1:1.5 and 1:2.0. The results showed that the addition of silica increases the swelling index and the membrane permeability. The results of the analysis, FTIR spectra, obtained a new functional group after the addition of silica, they are Si-OH, Si-O-Si, and CO- NH2. The morphology test using CCD Microscope MS-804 results in the very tight chitosan membranes without the silica surface, it has no pores, smooth and homogeneous, while the chitosan-silica composite membrane of rice husk ash obviously has cracks and small cavities that seemed to spread out.

  8. Immobilization of mesoporous silica particles on stainless steel plates

    NASA Astrophysics Data System (ADS)

    Pasqua, Luigi; Morra, Marco

    2017-03-01

    A preliminary study aimed to the nano-engineering of stainless steel surface is presented. Aminopropyl-functionalized mesoporous silica is covalently and electrostatically anchored on the surface of stainless steel plates. The anchoring is carried out through the use of a nanometric spacer, and two different spacers are proposed (both below 2 nm in size). The first sample is obtained by anchoring to the stainless steel amino functionalized, a glutaryl dichloride spacer. This specie forms an amide linkage with the amino group while the unreacted acyl groups undergo hydrolysis giving a free carboxylic group. The so-obtained functionalized stainless steel plate is used as substrate for anchoring derivatized mesoporous silica particles. The second sample is prepared using 2-bromo-methyl propionic acid as spacer (BMPA). Successively, the carboxylic group of propionic acid is condensed to the aminopropyl derivatization on the external surface of the mesoporous silica particle through covalent bond. In both cases, a continuous deposition (coating thickness is around 10 μm) is obtained, in fact, XPS data do not reveal the metal elements constituting the plate. The nano-engineering of metal surfaces can represent an intriguing opportunity for producing long-term drug release or biomimetic surface.

  9. Photosensitizing effects of nanometer TiO2 on chlorothalonil photodegradation in aqueous solution and on the surface of pepper.

    PubMed

    Tan, Yong Qiang; Xiong, Hai Xia; Shi, Tao Zhong; Hua, Ri Mao; Wu, Xiang Wei; Cao, Hai Qun; Li, Xue De; Tang, Jun

    2013-05-29

    The present study examined the effects of anatase nanometer TiO2 on photochemical degradation of chlorothalonil in aqueous solution and on the plant surface. Results showed that nanometer TiO2 exhibited a strong photosensitizing effect on the degradation of chlorothalonil both in aqueous solution and on the surface of green pepper. The photosensitization rate was the highest in the sunlight compared to illumination under high-pressure mercury and UV lamps. Use of distinct hydroxyl radical scavengers indicated that nanometer TiO2 acted by producing hydroxyl radicals with strong oxidizing capacity. Notably, nanometer TiO2 facilitated complete photodegradation of chlorothalonil with no detectable accumulation of the intermediate chlorothalonil-4-hydroxy. Nanometer TiO2 was also active on the surface of green pepper under natural sunlight both inside and outside of plastic greenhouse. These results together suggest that nanometer TiO2 can be used as a photosensitizer to accelerate degradation of the pesticides under greenhouse conditions.

  10. Silica nanogelling of environment-responsive PEGylated polyplexes for enhanced stability and intracellular delivery of siRNA.

    PubMed

    Gouda, Noha; Miyata, Kanjiro; Christie, R James; Suma, Tomoya; Kishimura, Akihiro; Fukushima, Shigeto; Nomoto, Takahiro; Liu, Xueying; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    In this study, poly(ethylene glycol) (PEG)-block-polycation/siRNA complexes (PEGylated polyplexes) were wrapped with a hydrated silica, termed "silica nanogelling", in order to enhance their stability and functionality. Silica nanogelling was achieved by polycondensation of soluble silicates onto the surface of PEGylated polyplexes comprising a disulfide cross-linked core. Formation of silica nanogel layer on the PEGylated cross-linked polyplexes was confirmed by particle size increase, surface charge reduction, and elemental analysis of transmission electron micrographs. Silica nanogelling substantially improved polyplex stability against counter polyanion-induced dissociation under non-reductive condition, without compromising the reductive environment-responsive siRNA release triggered by disulfide cleavage. Silica nanogelling significantly enhanced the sequence-specific gene silencing activity of the polyplexes in HeLa cells without associated cytotoxicity, probably due lower endosomal entrapment (or lysosomal degradation) of delivered siRNA. The lower endosomal entrapment of the silica nanogel system could be explained by an accelerated endosomal escape triggered by deprotonated silanol groups in the silica (the proton sponge hypothesis) and/or a modulated intracellular trafficking, possibly via macropinocytosis, as evidenced by the cellular uptake inhibition assay. Henceforth, silica nanogelling of PEGylated siRNA polyplexes is a promising strategy for preparation of stable and functional siRNA delivery vehicles. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Towards nanometer-spaced silicon contacts to proteins

    NASA Astrophysics Data System (ADS)

    Schukfeh, Muhammed I.; Sepunaru, Lior; Behr, Pascal; Li, Wenjie; Pecht, Israel; Sheves, Mordechai; Cahen, David; Tornow, Marc

    2016-03-01

    A vertical nanogap device (VND) structure comprising all-silicon contacts as electrodes for the investigation of electronic transport processes in bioelectronic systems is reported. Devices were fabricated from silicon-on-insulator substrates whose buried oxide (SiO2) layer of a few nanometers in thickness is embedded within two highly doped single crystalline silicon layers. Individual VNDs were fabricated by standard photolithography and a combination of anisotropic and selective wet etching techniques, resulting in p+ silicon contacts, vertically separated by 4 or 8 nm, depending on the chosen buried oxide thickness. The buried oxide was selectively recess-etched with buffered hydrofluoric acid, exposing a nanogap. For verification of the devices’ electrical functionality, gold nanoparticles were successfully trapped onto the nanogap electrodes’ edges using AC dielectrophoresis. Subsequently, the suitability of the VND structures for transport measurements on proteins was investigated by functionalizing the devices with cytochrome c protein from solution, thereby providing non-destructive, permanent semiconducting contacts to the proteins. Current-voltage measurements performed after protein deposition exhibited an increase in the junctions’ conductance of up to several orders of magnitude relative to that measured prior to cytochrome c immobilization. This increase in conductance was lost upon heating the functionalized device to above the protein’s denaturation temperature (80 °C). Thus, the VND junctions allow conductance measurements which reflect the averaged electronic transport through a large number of protein molecules, contacted in parallel with permanent contacts and, for the first time, in a symmetrical Si-protein-Si configuration.

  12. Influence of silica matrix composition and functional component additives on the bioactivity and viability of encapsulated living cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana

    The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less

  13. Influence of silica matrix composition and functional component additives on the bioactivity and viability of encapsulated living cells

    DOE PAGES

    Savage, Travis J.; Dunphy, Darren R.; Harbaugh, Svetlana; ...

    2015-11-06

    The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living E. coli cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in E. coli bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. E. coli cellsmore » encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. Furthermore, this unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states.« less

  14. Preparation of silane-functionalized silica films via two-step dip coating sol-gel and evaluation of their superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Ramezani, Maedeh; Vaezi, Mohammad Reza; Kazemzadeh, Asghar

    2014-10-01

    In this paper, we study the two-step dip coating via a sol-gel process to prepare superhydrophobic silica films on the glass substrate. The water repellency of the silica films was controlled by surface silylation method using isooctyltrimethoxysilane (iso-OTMS) as a surface modifying agent. Silica alcosol was synthesized by keeping the molar ratio of ethyltriethoxysilane (ETES) precursor, ethanol (EtOH) solvent, water (H2O) was kept constant at 1:36:6.6 respectively, with 6 M NH4OH throughout the experiment and the percentages of hydrophobic agent in hexane bath was varied from 0 to 15 vol.%. The static water contact angle values of the silica films increased from 108° to 160° with an increase in the vol.% of iso-OTMS. At 15 vol%. of iso-OTMS, the silica film shows static water contact angle as high as 160°. The superhydrophobic silica films are thermally stable up to 440 °C and above this temperature, the silica films lose superhydrophobicity. By controlling the primer particle size of SiO2 about 26 nm, leading to decrease the final size of silica nanoparticles after modification of nanoparticles by isooctyltrimethoxysilane about 42 nm. The films are transparent and have uniform size on the surface. The silica films have been characterized by atomic force microscopy (AFM), fourier transform infrared spectroscopy (FT-IR), transparency, contact angle measurement (CA), Zeta-potential, Thermal stability by TG-DTA analysis.

  15. Serpentinization processes: Influence of silica

    NASA Astrophysics Data System (ADS)

    Huang, R.; Sun, W.; Ding, X.; Song, M.; Zhan, W.

    2016-12-01

    Serpentinization systems are highly enriched in molecular hydrogen (H2) and hydrocarbons (e.g. methane, ethane and propane). The production of hydrocarbons results from reactions between H2 and oxidized carbon (carbon dioxide and carbon monoxide), which possibly contribute to climate changes during early history of the Earth. However, the influence of silica on the production of H2 and hydrocarbons was poorly constrained. We performed experiments at 311-500 °C and 3.0 kbar using mechanical mixtures of silica and olivine in ratios ranging from 0 to 40%. Molecular hydrogen (H2), methane, ethane and propane were formed, which were analyzed by gas chromatography. It was found that silica largely decreased H2 production. Without any silica, olivine serpentinization produced 94.5 mmol/kg H2 after 20 days of reaction time. By contrast, with the presence of 20% silica, H2 concentrations decreased largely, 8.5 mmol/kg. However, the influence of silica on the production of hydrocarbons is negligible. Moreover, with the addition of 20%-40% silica, the major hydrous minerals are talc, which was quantified according to an established standard curve calibrated by infrared spectroscopy analyses. It shows that silica greatly enhances olivine hydration, especially at 500 °C. Without any addition of silica, reaction extents were <5% at 17 days during olivine serpentinization at 500 °C and 3.0 kbar. By contrast, with the presence of 50% silica, olivine was completely transformed to talc within 9 days. This study indicates that silica impedes the oxidation of ferrous iron into ferric iron, and that rates of olivine hydration in natural geological settings are much faster with silica supply.

  16. Critical current densities of powder-in-tube MgB2 tapes fabricated with nanometer-size Mg powder

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Hirakawa, M.; Kumakura, H.; Matsumoto, A.; Kitaguchi, H.

    2004-03-01

    We fabricated powder-in-tube MgB2/Fe tapes using a powder mixture of nanometer-size Mg and commercial amorphous B and investigated the transport properties. High-purity nanometer-size Mg powder was fabricated by applying the thermal plasma method. 5-10 mol % SiC powder doping was tried to enhance the Jc properties. We found that the use of nanometer-size Mg powder was effective to increase the Jc values. The transport Jc values of the nondoped and 10 mol % SiC-doped tapes prepared with nanometer-size Mg powder reached 90 and 250 A/mm2 at 4.2 K and 10 T, respectively. These values were about five times higher than those of the tapes prepared with commercial Mg powder.

  17. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites

    NASA Astrophysics Data System (ADS)

    Xu, Tiwen; Jia, Zhixin; Luo, Yuanfang; Jia, Demin; Peng, Zheng

    2015-02-01

    The epoxidized natural rubber (ENR) as an interfacial modifier was used to improve the mechanical and dynamical mechanical properties of NR/silica composites. In order to reveal the interaction mechanism between ENR and silica, the ENR/Silica model compound was prepared by using an open mill and the interfacial interaction of ENR with silica was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and stress-strain testing. The results indicated that the ring-opening reaction occurs between the epoxy groups of ENR chains and Si-OH groups on the silica surfaces and the covalent bonds are formed between two phases, which can improve the dispersion of silica in the rubber matrix and enhance the interfacial combination between rubber and silica. The ring-opening reaction occurs not only in vulcanization process but also in mixing process, meanwhile, the latter seems to be more important due to the simultaneous effects of mechanical force and temperature.

  18. Examining the role of shrub expansion and fire in Arctic plant silica cycling

    NASA Astrophysics Data System (ADS)

    Carey, J.; Fetcher, N.; Parker, T.; Rocha, A. V.; Tang, J.

    2017-12-01

    All terrestrial plants accumulate silica (SiO2) to some degree, although the amount varies by species type, functional group, and environmental conditions. Silica improves overall plant fitness, providing protection from a variety of biotic and abiotic stressors. Plant silica uptake serves to retain silica in terrestrial landscapes, influencing silica export rates from terrestrial to marine systems. These export rates are important because silica is often the limiting nutrient for primary production by phytoplankton in coastal waters. Understanding how terrestrial plant processes influence silica export rates to oceanic systems is of interest on the global scale, but nowhere is this issue more important than in the Arctic, where marine diatoms rely on silica for production in large numbers and terrestrial runoff largely influences marine biogeochemistry. Moreover, the rapid rate of change occurring in the Arctic makes understanding plant silica dynamics timely, although knowledge of plant silica cycling in the region is in its infancy. This work specifically examines how shrub expansion, permafrost thaw, and fire regimes influence plant silica behavior in the Alaskan Arctic. We quantified silica accumulation in above and belowground portions of three main tundra types found in the Arctic (wet sedge, moist acidic, moist non-acidic tundra) and scaled these values to estimate how shrub expansion alters plant silica accumulation rates. Results indicate that shrub expansion via warming will increase silica storage in Arctic land plants due to the higher biomass associated with shrub tundra, whereas conversion of tussock to wet sedge tundra via permafrost thaw would produce the opposite effect in the terrestrial plant BSi pool. We also examined silica behavior in plants exposed to fire, finding that post-fire growth results in elevated plant silica uptake. Such changes in the size of the terrestrial vegetation silica reservoir could have direct consequences for the rates

  19. High-density regular arrays of nanometer-scale rods formed on silicon surfaces via femtosecond laser irradiation in water.

    PubMed

    Shen, Mengyan; Carey, James E; Crouch, Catherine H; Kandyla, Maria; Stone, Howard A; Mazur, Eric

    2008-07-01

    We report on the formation of high-density regular arrays of nanometer-scale rods using femtosecond laser irradiation of a silicon surface immersed in water. The resulting surface exhibits both micrometer-scale and nanometer-scale structures. The micrometer-scale structure consists of spikes of 5-10 mum width, which are entirely covered by nanometer-scale rods that are roughly 50 nm wide and normal to the surface of the micrometer-scale spikes. The formation of the nanometer-scale rods involves several processes: refraction of laser light in highly excited silicon, interference of scattered and refracted light, rapid cooling in water, roughness-enhanced optical absorptance, and capillary instabilities.

  20. Recent Progress in Monolithic Silica Columns for High-Speed and High-Selectivity Separations.

    PubMed

    Ikegami, Tohru; Tanaka, Nobuo

    2016-06-12

    Monolithic silica columns have greater (through-pore size)/(skeleton size) ratios than particulate columns and fixed support structures in a column for chemical modification, resulting in high-efficiency columns and stationary phases. This review looks at how the size range of monolithic silica columns has been expanded, how high-efficiency monolithic silica columns have been realized, and how various methods of silica surface functionalization, leading to selective stationary phases, have been developed on monolithic silica supports, and provides information on the current status of these columns. Also discussed are the practical aspects of monolithic silica columns, including how their versatility can be improved by the preparation of small-sized structural features (sub-micron) and columns (1 mm ID or smaller) and by optimizing reaction conditions for in situ chemical modification with various restrictions, with an emphasis on recent research results for both topics.

  1. Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yao; Ma, Kai; Kao, Teresa

    Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less

  2. Formation pathways of mesoporous silica nanoparticles with dodecagonal tiling

    DOE PAGES

    Sun, Yao; Ma, Kai; Kao, Teresa; ...

    2017-08-15

    Considerable progress in the fabrication of quasicrystals demonstrates that they can be realized in a broad range of materials. However, the development of chemistries enabling direct experimental observation of early quasicrystal growth pathways remains challenging. Here, we report the synthesis of four surfactant-directed mesoporous silica nanoparticle structures, including dodecagonal quasicrystalline nanoparticles, as a function of micelle pore expander concentration or stirring rate. We demonstrate that the early formation stages of dodecagonal quasicrystalline mesoporous silica nanoparticles can be preserved, where precise control of mesoporous silica nanoparticle size down to <30 nm facilitates comparison between mesoporous silica nanoparticles and simulated single-particle growthmore » trajectories beginning with a single tiling unit. Our results reveal details of the building block size distributions during early growth and how they promote quasicrystal formation. This work identifies simple synthetic parameters, such as stirring rate, that may be exploited to design other quasicrystal-forming self-assembly chemistries and processes.« less

  3. Surface-Enhanced Raman Scattering Using Silica Whispering-Gallery Mode Resonators

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The motivation of this work was to have robust spectroscopic sensors for sensitive detection and chemical analysis of organic and molecular compounds. The solution is to use silica sphere optical resonators to provide surface-enhanced spectroscopic signal. Whispering-gallery mode (WGM) resonators made from silica microspheres were used for surface-enhanced Raman scattering (SERS) without coupling to a plasmonic mechanism. Large Raman signal enhancement is observed by exclusively using 5.08-micron silica spheres with 785-nm laser excitation. The advantage of this non-plasmonic approach is that the active substrate is chemically inert silica, thermally stable, and relatively simple to fabricate. The Raman signal enhancement is broadly applicable to a wide range of molecular functional groups including aliphatic hydrocarbons, siloxanes, and esters. Applications include trace organic analysis, particularly for in situ planetary instruments that require robust sensors with consistent response.

  4. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.

    PubMed

    Naderizadeh, Sara; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-01

    Nanoparticle films are one of the most suitable platforms for obtaining sub-micrometer and nanometer dual-scale surface texture required for liquid repellency. The assembly of superhydrophobic nanoparticles into conformal and strongly adherent films having abrasion-induced wear resistance still poses a significant challenge. Various techniques have been developed over the years to render nanoparticle films with good liquid repellent properties and transparency. However, forming abrasion resistant superhydrophobic nanoparticle films on hard surfaces is challenging. One possibility is to partially embed or weld nanoparticles in thin thermoplastic primers applied over metals. Hexamethyldisilazane-functionalized fumed silica nanoparticle films spray deposited on aluminum surfaces were rendered abrasion resistant by thermally welding them into thermoplastic polyurethane (TPU) primer applied a priori over aluminum. Different solvents, nanoparticle concentrations and annealing temperatures were studied to optimize nanoparticle film morphology and hydrophobicity. Thermal annealing at 150 °C enhanced stability and wear resistance of nanoparticle films. A thin thermal interface layer of graphene nanoplatelets (GnPs) between the primer and the nanoparticle film significantly improved superhydrophobic wear resistance after annealing. As such, superhydrophobic nanocomposite films with the GnPs thermal interface layer displayed superior abrasion-induced wear resistance under 20 kPa compared to films having no GnPs-based thermal interface. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Polymer adsorption on silica and wettability of graphene oxide surfaces, experiments and simulations

    NASA Astrophysics Data System (ADS)

    Mortazavian, Hamid

    Among the various classifications of polymer composites, studying polymers adsorbed to a surface such as silica is important due to their numerous applications. Adsorbed polymers usually show different properties than their bulk counterparts due to their interactions with the surface. In this study, we observed tightly- and loosely-bound polymer and mobile components in poly(vinyl acetate) (PVAc) on silica both with temperature-modulated differential scanning calorimetry (TMDSC) experiments and computer simulations. The more-mobile component which correlated to the region of low density at the air interface is reported for the first time using TMDSC thermograms. Pore size distribution and pore volume development of adsorbed PMMA samples showed different behavior below and above the tightly-bound amount of the polymer. The amount of tightly-bound polymer was obtained by a linear regression analysis of the ratio of the area under the two glass transitions. The values obtained vary from 0.52 to 0.86 mg PVAc/m2 silica depending upon the molecular mass for the amounts of PVAc and the specific surface area of fumed silica. Direct comparisons of the thermal properties and intermolecular interactions were performed between PVAc and poly(methyl methacrylate) (PMMA) with similar molecular masses and adsorbed amounts on silica. A larger amount of tightly-bound polymer and a greater change in glass transition were observed for adsorbed PMMA compared to adsorbed PVAc. These observations suggested that the interactions between PMMA and silica were stronger than those between PVAc and silica. Molecular modeling of these surface polymers showed that PMMA associates more strongly with silica than does PVAc through additional hydrogen-bonding interactions. Graphene oxide (GO) material surface characteristics make it easy to functionalize, making it a water repellant surface. To test the effect of chemical makeup and size of attached groups on the surface wettability of GO, we

  6. Computational Nanotribology of Nanometer Confined Liquid Films

    DTIC Science & Technology

    2012-02-29

    Nanotribology of Nanometer Confined Liquid Films 5b. GRANT NUMBER FA9550-08-1-0214 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT...NUMBER Yongsheng Leng & Peter T. Cummings 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES...NAME( S ) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM( S ) Joycelyn Harrison AFOSR/RSA 875 North Randolph Street 11. SPONSOR/MONITOR’S REPORT

  7. Support effects and reaction mechanism of acetylene trimerization over silica-supported Cu4 clusters: A DFT study

    NASA Astrophysics Data System (ADS)

    Maleki, Farahnaz; Schlexer, Philomena; Pacchioni, Gianfranco

    2018-02-01

    Oxide-supported Cu nanoparticles and clusters catalyze a variety of important reactions, such as CO/CO2 hydrogenation to methanol. Recent studies demonstrate that also sub-nanometer clusters consisting of only a few atoms can actively catalyze chemical reactions. In this study, we investigate the interaction between Cu4 clusters and silica-surfaces, considering the de-hydroxylated and the fully hydroxylated α-quartz surfaces. We also considered various dopants such as Ti- and Nb-ions substitutional to Si, respectively, in order to see if an electronic change of the support has an effect on the reaction of the supported cluster. We find that hydroxyl groups can enhance the adsorption energy of the cluster, whereas the dopants have only little effects on the adsorption mode of the Cu cluster. On the fully hydroxylated surface, the cluster may react with the hydroxyl groups via reverse hydrogen spillover. Finally, we explore the reactivity of the silica-supported Cu4 cluster in terms of acetylene trimerization, for which extended Cu surfaces have shown catalytic activity. We find that this reaction should occur with activation barriers below 0.8 eV; Nb-doping of the support does not seem to produce any direct effect on the reactivity of the Cu tetramer.

  8. 3D nanometer images of biological fibers by directed motion of gold nanoparticles.

    PubMed

    Estrada, Laura C; Gratton, Enrico

    2011-11-09

    Using near-infrared femtosecond pulses, we move single gold nanoparticles (AuNPs) along biological fibers, such as collagen and actin filaments. While the AuNP is sliding on the fiber, its trajectory is measured in three dimensions (3D) with nanometer resolution providing a high-resolution image of the fiber. Here, we systematically moved a single AuNP along nanometer-size collagen fibers and actin filament inside chinese hamster ovary K1 living cells, mapping their 3D topography with high fidelity.

  9. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials.

    PubMed

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-04-11

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the "anionic templating" strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches.

  10. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement

    PubMed Central

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications. PMID:24920906

  11. Effect of additive particles on mechanical, thermal, and cell functioning properties of poly(methyl methacrylate) cement.

    PubMed

    Khandaker, Morshed; Vaughan, Melville B; Morris, Tracy L; White, Jeremiah J; Meng, Zhaotong

    2014-01-01

    The most common bone cement material used clinically today for orthopedic surgery is poly(methyl methacrylate) (PMMA). Conventional PMMA bone cement has several mechanical, thermal, and biological disadvantages. To overcome these problems, researchers have investigated combinations of PMMA bone cement and several bioactive particles (micrometers to nanometers in size), such as magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica. A study comparing the effect of these individual additives on the mechanical, thermal, and cell functional properties of PMMA would be important to enable selection of suitable additives and design improved PMMA cement for orthopedic applications. Therefore, the goal of this study was to determine the effect of inclusion of magnesium oxide, hydroxyapatite, chitosan, barium sulfate, and silica additives in PMMA on the mechanical, thermal, and cell functional performance of PMMA. American Society for Testing and Materials standard three-point bend flexural and fracture tests were conducted to determine the flexural strength, flexural modulus, and fracture toughness of the different PMMA samples. A custom-made temperature measurement system was used to determine maximum curing temperature and the time needed for each PMMA sample to reach its maximum curing temperature. Osteoblast adhesion and proliferation experiments were performed to determine cell viability using the different PMMA cements. We found that flexural strength and fracture toughness were significantly greater for PMMA specimens that incorporated silica than for the other specimens. All additives prolonged the time taken to reach maximum curing temperature and significantly improved cell adhesion of the PMMA samples. The results of this study could be useful for improving the union of implant-PMMA or bone-PMMA interfaces by incorporating nanoparticles into PMMA cement for orthopedic and orthodontic applications.

  12. Development of mesoporous structures of composite silica particles with various organic functional groups in the presence and absence of ammonia catalyst

    NASA Astrophysics Data System (ADS)

    Park, Tae Jae; Jung, Gyu Il; Kim, Euk Hyun; Koo, Sang Man

    2017-06-01

    Development of mesoporous structures of composite silica particles with various organic functional groups was investigated by using a two-step process, consisting of one-pot sol-gel process in the presence and absence of ammonium hydroxide and a selective dissolution process with an ethanol-water mixture. Five different organosilanes, including methyltrimethoxysilane (MTMS), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltrimethoxysilane (VTMS), and 3-aminopropyltrimethoxysilane (APTMS) were employed. The mesoporous (organically modified silica) ORMOSIL particles were obtained even in the absence of ammonium hydroxide when the reaction mixture contained APTMS. The morphology of the particles, however, were different from those prepared with ammonia catalyst and the same organosilane mixtures, probably because the overall hydrolysis/condensation rates became slower. Co-existence of APTMS and VTMS was essential to prepare mesoporous particles from ternary organosilane mixtures. The work presented here demonstrates that organosilica particles with desired functionality and desired mesoporous structures can be obtained by selecting proper types of organosilane monomers and performing a facile and mild process either with or without ammonium hydroxide.

  13. Laser welding of fused silica glass with sapphire using a non- stoichiometric, fresnoitic Ba2TiSi2O8·3 SiO2 thin film as an absorber

    NASA Astrophysics Data System (ADS)

    de Pablos-Martín, A.; Lorenz, M.; Grundmann, M.; Höche, Th.

    2017-07-01

    Laser welding of dissimilar materials is challenging, due to their difference in coefficients of thermal expansion (CTE). In this work, fused silica-to-sapphire joints were achieved by employment of a ns laser focused in the intermediate Si-enriched fresnoitic glass thin film sealant. The microstructure of the bonded interphase was analyzed down to the nanometer scale and related to the laser parameters used. The crystallization of fresnoite in the glass sealant upon laser process leads to an intense blue emission intensity under UV excitation. This crystallization is favored in the interphase with the silica glass substrate, rather than in the border with the sapphire. The formation of SiO2 particles was confirmed, as well. The bond quality was evaluated by scanning acoustic microscopy (SAM). The substrates remain bonded even after heat treatment at 100 °C for 30 min, despite the large CTE difference between both substrates.

  14. Differentiating and characterizing geminal silanols in silicas by (29)Si NMR spectroscopy.

    PubMed

    Murray, David K

    2010-12-01

    Single and geminal hydroxyl species in silicas have been characterized using solid-state (29)Si NMR spectroscopy. Differentiating hydroxyl types is important in understanding their roles in chemical toxicity mechanisms for inhaled crystalline silicas responsible for silicosis. (1)H-(29)Si cross polarization NMR spectroscopy has been employed to obtain (29)Si NMR chemical shift data and signal accrual and relaxation characteristics. Spectral deconvolution is used to examine relative single and geminal hydroxyl resonance areas for a series of representative silicas and silica gels. Silicon-containing materials examined include 1878a quartz, and 1879a cristobalite from the National Institute for Science and Technology, kaolin, and several widely used respirable silicas and silica gels. Geminal hydroxyls were observed in every case, with relative resonance areas accounting for 21-65% of total hydroxyl signals. Factors affecting relative areas measured as a function of contact time, relaxation, and surface area are discussed. Subsequent (29)Si and (31)P NMR studies of a silica coated with various sodium hydrogen phosphates show preferential single silanol-phosphate interaction for basic phosphates, and oligomerization products for acidic phosphates. Geminal hydroxyl resonance areas displayed significant error (4-17%) for low surface area silicas, limiting this method to studies exhibiting major changes in chemical or spectroscopic properties. Published by Elsevier Inc.

  15. Physicochemical properties and biodegradability of organically functionalized colloidal silica particles in aqueous environment.

    PubMed

    Schneider, Mandy; Meder, Fabian; Haiß, Annette; Treccani, Laura; Rezwan, Kurosch; Kümmerer, Klaus

    2014-03-01

    Engineered sub-micron particles are being used in many technical applications, leading to an increasing introduction into the aquatic environment. Only a few studies have dealt with the biodegradability of non-functionalized organic particles. In fact the knowledge of organically surface functionalized colloids is nearly non-existent. We have investigated the biodegradability of organically surface functionalized silica (SiO2) particles bearing technically relevant groups such as amino-, carboxyl-, benzyl-, sulfonate-, chloro-, and phosphatoethyl-derivatized alkyls. Essential physicochemical properties including zeta potential, isoelectric point, morphology, surface area, porosity, surface density, and elemental composition of the particles were investigated, followed by biodegradability testing using the Closed Bottle Test (OECD 301D). None of the particles met the biodegradability threshold value of 60%. Only a slight biodegradation was revealed for SiO2-Benzyl (13.7±6.7%) and for SiO2-3-Chlorpropane (10.8±1.5%). For the other particles biodegradability was below the normal background fluctuation of 5%. The results were different of those obtained from structurally similar chemicals not being functionalized on the particle surface and from general rules of structure-biodegradation prediction of organic molecules. Therefore, our results suggest that the attachment of the organic groups heavily reduces their biodegradability, increases their residence time and possibility for adverse effects to environmental species. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Treatment of cooling tower blowdown water containing silica, calcium and magnesium by electrocoagulation.

    PubMed

    Liao, Z; Gu, Z; Schulz, M C; Davis, J R; Baygents, J C; Farrell, J

    2009-01-01

    This research investigated the effectiveness of electrocoagulation using iron and aluminium electrodes for treating cooling tower blowdown (CTB) waters containing dissolved silica (Si(OH)(4)), Ca(2 + ) and Mg(2 + ). The removal of each target species was measured as a function of the coagulant dose in simulated CTB waters with initial pH values of 5, 7, and 9. Experiments were also performed to investigate the effect of antiscaling compounds and coagulation aids on hardness ion removal. Both iron and aluminum electrodes were effective at removing dissolved silica. For coagulant doses < or =3 mM, silica removal was a linear function of the coagulant dose, with 0.4 to 0.5 moles of silica removed per mole of iron or aluminium. Iron electrodes were only 30% as effective at removing Ca(2 + ) and Mg(2 + ) as compared to silica. There was no measurable removal of hardness ions by aluminium electrodes in the absence of organic additives. Phosphonate based antiscaling compounds were uniformly effective at increasing the removal of Ca(2 + ) and Mg(2 + ) by both iron and aluminium electrodes. Cationic and amphoteric polymers used as coagulation aids were also effective at increasing hardness ion removal.

  17. Synthesis and characterization of titanium oxide supported silica materials

    NASA Astrophysics Data System (ADS)

    Schrijnemakers, Koen

    2002-01-01

    Titania-silica materials are interesting materials for use in catalysis, both as a catalyst support as well as a catalyst itself. Titania-silica materials combine the excellent support and photocatalytic properties of titania with the high thermal and mechanical stability of silica. Moreover, the interaction of titania with silica leads to new active sites, such as acid and redox sites, that are not found on the single oxides. In this Ph.D. two recently developed deposition methods were studied and evaluated for their use to create titanium oxide supported silica materials, the Chemical Surface Coating (CSC) and the Molecular Designed Dispersion (MDD). These methods were applied to two structurally different silica supports, an amorphous silica gel and the highly ordered MCM-48. Both methods are based on the specific interaction between a titanium source and the functional groups on the silica surface. With the CSC method high amounts of titanium can be obtained. However, clustering of the titania phase is observed in most cases. The MDD method allows much lower titanium amounts to be deposited without the formation of crystallites. Only at the highest Ti loading very small crystallites are formed after calcination. MCM-48 and silica gel are both pure SiO2 materials and therefore chemically similar to each other. However, they possess a different morphology and are synthesized in a different way. As such, some authors have reported that the MCM-48 surface would be more reactive than the surface of silica gel. In our experiments however no differences could be observed that confirmed this hypothesis. In the CSC method, the same reactions were observed and similar amounts of Ti and Cl were deposited. In the case of the MDD method, no difference in the reaction mechanism was observed. However, due to the lower thermal and hydrothermal stability of the MCM-48 structure compared to silica gel, partial incorporation of Ti atoms in the pore walls of MCM-48 took place

  18. Sol–gel synthesis of MCM-41 silicas and selective vapor-phase modification of their surface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roik, N.V., E-mail: roik_nadya@ukr.net; Belyakova, L.A.

    2013-11-15

    Silica particles with uniform hexagonal mesopore architecture were synthesized by template directed sol–gel condensation of tetraethoxysilane or mixture of tetraethoxysilane and (3-chloropropyl)triethoxysilane in a water–ethanol–ammonia solution. Selective functionalization of exterior surface of parent materials was carried out by postsynthetic treatment of template-filled MCM-41 and Cl-MCM-41 with vapors of (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vacuum. The chemical composition of obtained mesoporous silicas was estimated by IR spectroscopy and chemical analysis of surface products of reactions. Characteristics of porous structure of resulting materials were determined from the data of X-ray, low-temperature nitrogen ad-desorption and transmission electron microscopy measurements. Obtained results confirm invariability ofmore » highly ordered mesoporous structure of MCM-41 and Cl-MCM-41 after their selective postsynthetic modification in vapor phase. It was proved that proposed method of vapor-phase functionalization of template-filled starting materials is not accompanied by dissolution of the template and chemical modification of pores surface. This provides preferential localization of grafted functional groups onto the exterior surface of mesoporous silicas. - Graphical abstract: Sol–gel synthesis and postsynthetic chemical modification of template-filled MCM-41 and Cl-MCM-41 with (3-chloropropyl)triethoxysilane and 1,2-ethylenediamine in vapor phase. Display Omitted - Highlights: • Synthesis of MCM-41 silica by template directed sol–gel condensation. • Selective vapor-phase functionalization of template-filled silica particles. • Preferential localization of grafted groups onto the exterior surface of mesoporous silicas.« less

  19. Pluronic-Functionalized Silica-Lipid Hybrid Microparticles: Improving the Oral Delivery of Poorly Water-Soluble Weak Bases.

    PubMed

    Rao, Shasha; Richter, Katharina; Nguyen, Tri-Hung; Boyd, Ben J; Porter, Christopher J H; Tan, Angel; Prestidge, Clive A

    2015-12-07

    A Pluronic-functionalized silica-lipid hybrid (Plu-SLH) microparticle system for the oral delivery of poorly water-soluble, weak base drugs is reported for the first time. A highly effective Plu-SLH microparticle system was composed of Labrasol as the lipid phase, Pluronic F127 as the polymeric precipitation inhibitor (PPI), and silica nanoparticles as the solid carrier. For the model drug cinnarizine (CIN), the Plu-SLH delivery system was shown to offer significant biopharmaceutical advantages in comparison with unformulated drug and drug in the silica-lipid hybrid (SLH) system. In vitro two-phase dissolution studies illustrated significantly reduced pH provoked CIN precipitation and an 8- to 14-fold improvement in the extent of dissolution in intestinal conditions. In addition, under simulated intestinal digesting conditions, the Plu-SLH provided approximately three times more drug solubilization than the SLH. Oral administration in rats resulted in superior bioavailability for Plu-SLH microparticles, i.e., 1.6- and 2.1-fold greater than the SLH and the unformulated CIN, respectively. A physical mixture of Pluronic and SLH (Plu&SLH), having the same composition as Plu-SLH, was also evaluated, but showed no significant increase in CIN absorption when compared to unmodified CIN or SLH. This work represents the first study where different methods of incorporating PPI to formulate solid-state lipid-based formulations were compared for the impact on the biopharmaceutical performance. The data suggest that the novel physicochemical properties and structure of the fabricated Plu-SLH microparticle delivery system play an important role in facilitating the synergistic advantage of Labrasol and Pluronic F127 in preventing drug precipitation, and the Plu-SLH provides efficient oral delivery of poorly water-soluble weak bases.

  20. Enzymatic Conversion of CO2 to Bicarbonate in Functionalized Mesoporous Silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yuehua; Chen, Baowei; Qi, Wen N.

    2012-05-01

    We report here that carbonic anhydrase (CA), the fastest enzyme that can covert carbon dioxide to bicarbonate, can be spontaneously entrapped in functionalized mesoporous silica (FMS) with super-high loading density (up to 0.5 mg of protein/mg of FMS) due to the dominant electrostatic interaction. The binding of CA to HOOC-FMS can result in the protein’s conformational change comparing to the enzyme free in solution, but can be overcome with increased protein loading density. The higher the protein loading density, the less conformational change, hence the higher enzymatic activity and the higher enzyme immobilization efficiency. The electrostatically bound CA can bemore » released by changing pH. The released enzyme still displayed the native conformational structure and the same high enzymatic activity as that prior to the enzyme entrapment. This work opens up a new approach converting carbon dioxide to biocarbonate in a biomimetic nanoconfiguration that can be integrated with the other part of biosynthesis process for the assimilation of carbon dioxide.« less

  1. Fluorescent proteins as efficient tools for evaluating the surface PEGylation of silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ma, Minyan; Zhang, Xiao-ai; Zhang, Ze-yu; Saleh, Sayed M.; Wang, Xu-dong

    2017-06-01

    Surface PEGylation is essential for preventing non-specific binding of biomolecules when silica nanoparticles are utilized for in vivo applications. Methods for installing poly(ethylene glycol) on a silica surface have been widely explored but varies from study to study. Because there is a lack of a satisfactory method for evaluating the properties of silica surface after PEGylation, the prepared nanoparticles are not fully characterized before use. In some cases, even non-PEGylated silica nanoparticles were produced, which is unfortunately not recognized by the end-user. In this work, a fluorescent protein was employed, which acts as a sensitive material for evaluating the surface protein adsorption properties of silica nanoparticles. Eleven different methods were systematically investigated for their reaction efficiency towards surface PEGylation. Results showed that both reaction conditions (including pH, catalyst) and surface functional groups of parent silica nanoparticles play critical roles in producing fully PEGylated silica nanoparticles. Great care needs to be taken in choosing the proper coupling chemistry for surface PEGylation. The data and method shown here will guarantee high-quality PEGylated silica nanoparticles to be produced and guide their applications in biology, chemistry, industry and medicine.

  2. Preconcentration of β-blockers using functionalized ordered mesoporous silica as sorbent for SPE and their determination in waters by chiral CE.

    PubMed

    Silva, Mariana; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Marina, María Luisa; Sierra, Isabel

    2017-08-01

    A method for simultaneous separation and determination of four enantiomeric pairs of β-blockers in waters by chiral CE has been developed. Off-line SPE was employed using functionalized ordered mesoporous silica as sorbent. Separation by CE was achieved using a BGE composed by methylated-β-CD (1.25% w/v) dissolved in a 50 mM phosphate buffer (pH 2.5) and 30°C, with good chiral resolution for all enantiomers. Mesoporous silica functionalized with octadecyl groups (denoted SBA15-C18) was prepared by a postsynthesis method and applied for the preconcentration of atenolol, propranolol, metoprolol, and pindolol enantiomers in waters by off-line SPE. Under optimized conditions, a preconcentration factor of 300 was achieved, employing 100 mg of SBA15-C18 as sorbent, with recoveries between 96 and 105% in tap water and good repeatability (% RSD = 7-11%, n = 6). Commercial C18 amorphous silica (ExtraBond R C 18 ) was also tested as sorbent for SPE, but results revealed better extraction capacity with higher recoveries for the SBA15-C18 material. The analytical characteristics of the off-line SPE-chiral CE method were evaluated, showing good precision, linearity, and accuracy with method quantification limits between 5.3 and 13.7 μg/L for all enantiomers. The SBA15-C18 material allowed the extraction of four enantiomeric pairs of β-blockers spiked in tap water, river water, and ground water with recoveries between 58 and 105%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid Water Permeation Through Carbon Nanomembranes with Sub-Nanometer Channels.

    PubMed

    Yang, Yang; Dementyev, Petr; Biere, Niklas; Emmrich, Daniel; Stohmann, Patrick; Korzetz, Riko; Zhang, Xianghui; Beyer, André; Koch, Sascha; Anselmetti, Dario; Gölzhäuser, Armin

    2018-05-22

    The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10 -4 mol·m -2 ·s -1 ·Pa -1 , as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s -1 ·Pa -1 . This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.

  4. Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Jiang, Yuwei; Xiao, Huisi; Jiang, Bofan; Zhang, Hao; Peng, Mingying; Dong, Guoping; Yu, Xiang; Yang, Jian

    2018-04-01

    Sol-gel derived noble-metal-silica nanocomposites are very useful in many applications. Due to relatively low price, higher conductivity, and higher chemical stability of silver (Ag) compared with copper (Cu), Ag-silica has gained much more research interest. However, it remains a significant challenge to realize high loading of Ag content in sol-gel Ag-silica composite with high structural controllability and nanoparticles' dispersity. Different from previous works by using multifunctional silicon alkoxide to anchor metal ions, here we report the synthesis of Ag-silica nanocomposite with high loading of Ag nanoparticles by employing acetonitrile bi-functionally as solvent and metal ions stabilizer. The electrical conductivity of the Ag-silica nanocomposite reached higher than 6800 S/cm. In addition, the Ag-silica nanocomposite could simultaneously possess high electrical conductivity and positive conductivity-temperature coefficient by properly controlling the loading content of Ag. Such behavior is potentially advantageous for high-temperature devices (like phosphoric acid fuel cells) and inhibiting the thermal-induced increase of devices' internal resistance. The strategy proposed here is also compatible with block-copolymer directed self-assembly of mesoporous material, spin-coating of film and electrospinning of nanofiber, making it more charming in various practical applications.

  5. Iron Oxide Silica Derived from Sol-Gel Synthesis

    PubMed Central

    Darmawan, Adi; Smart, Simon; Julbe, Anne; Diniz da Costa, João Carlos

    2011-01-01

    In this work we investigate the effect of iron oxide embedded in silica matrices as a function of Fe/Si molar ratio and sol pH. To achieve homogeneous dispersion of iron oxide particles, iron nitrate nonahydrate was dissolved in hydrogen peroxide and was mixed with tetraethyl orthosilicate and ethanol in a sol-gel synthesis method. Increasing the calcination temperature led to a reduction in surface area, although the average pore radius remained almost constant at about 10 Å, independent of the Fe/Si molar ratio or sol pH. Hence, the densification of the matrix was accompanied by similar reduction in pore volume. However, calcination at 700 °C resulted in samples with similar surface area though the iron oxide content increased from 5% to 50% Fe/Si molar ratio. As metal oxide particles have lower surface area than polymeric silica structures, these results strongly suggest that the iron oxides opposed the silica structure collapse. The effect of sol pH was found to be less significant than the Fe/Si molar ratio in the formation of molecular sieve structures derived from iron oxide silica. PMID:28879999

  6. Observing Optical Plasmons on a Single Nanometer Scale

    PubMed Central

    Cohen, Moshik; Shavit, Reuven; Zalevsky, Zeev

    2014-01-01

    The exceptional capability of plasmonic structures to confine light into deep subwavelength volumes has fashioned rapid expansion of interest from both fundamental and applicative perspectives. Surface plasmon nanophotonics enables to investigate light - matter interaction in deep nanoscale and harness electromagnetic and quantum properties of materials, thus opening pathways for tremendous potential applications. However, imaging optical plasmonic waves on a single nanometer scale is yet a substantial challenge mainly due to size and energy considerations. Here, for the first time, we use Kelvin Probe Force Microscopy (KPFM) under optical illumination to image and characterize plasmonic modes. We experimentally demonstrate unprecedented spatial resolution and measurement sensitivity both on the order of a single nanometer. By comparing experimentally obtained images with theoretical calculation results, we show that KPFM maps may provide valuable information on the phase of the optical near field. Additionally, we propose a theoretical model for the relation between surface plasmons and the material workfunction measured by KPFM. Our findings provide the path for using KPFM for high resolution measurements of optical plasmons, prompting the scientific frontier towards quantum plasmonic imaging on submolecular scales. PMID:24556874

  7. Understanding batteries on the micro- and nanometer scale

    ScienceCinema

    None

    2018-01-16

    In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.

  8. Grafting of [(64)Cu]-TPPF20 porphyrin complex on Functionalized nano-porous MCM-41 silica as a potential cancer imaging agent.

    PubMed

    Fazaeli, Yousef; Feizi, Shahzad; Jalilian, Amir R; Hejrani, Ali

    2016-06-01

    Mesoporous silica, MCM-41, functionalized with 3-aminopropyltriethoxysilane (APTES) was investigated as a potential drug delivery system, using [(64)Cu]-5, 10, 15, 20-tetrakis penta fluorophenyl porphyrin complex. [(64)Cu]-TPPF20 complex was grafted on functionalized MCM-41. The product was characterized by paper chromatography, FTIR spectroscopy, low angle X-ray diffraction, CHN and TGA/DTA analyses and atomic force microscopy. The biological evaluations of the grafted complex, [(64)Cu]-TPPF20@NH2-MCM-41, were done in Fibrosarcoma tumor-bearing Sprague-Dawley rats using scarification studies and Sopha DST-XL Dual-Head SPECT system. The actual loading amount of aminopropyl groups was found about 1.6mmol per gram of final silica. The specific activity of the final compound was found to be 3Ci/g. Amine functionalized MCM-41 was found to be a good platform for theranostic radiopharmaceuticals such as copper-64 complexes. Considering the accumulation of the tracer in tumor cells, fast wash-out from normal tissues, the short half-life copper-64 and less imposed radiation doses to patients, [(64)Cu]-TPPF20@NH2-MCM-41 can potentially be a suitable candidate for tumor imaging applications and future PET studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Ultrafast laser-induced birefringence in various porosity silica glasses: from fused silica to aerogel.

    PubMed

    Cerkauskaite, Ausra; Drevinskas, Rokas; Rybaltovskii, Alexey O; Kazansky, Peter G

    2017-04-03

    We compare a femtosecond laser induced modification in silica matrices with three different degrees of porosity. In single pulse regime, the decrease of substrate density from fused silica to high-silica porous glass and to silica aerogel glass results in tenfold increase of laser affected region with the formation of a symmetric cavity surrounded by the compressed silica shell with pearl like structures. In multi-pulse regime, if the cavity produced by the first pulse is relatively large, the subsequent pulses do not cause further modifications. If not, the transition from void to the anisotropic structure with the optical axis oriented parallel to the incident polarization is observed. The maximum retardance value achieved in porous glass is twofold higher than in fused silica, and tenfold greater than in aerogel. The polarization sensitive structuring in porous glass by two pulses of ultrafast laser irradiation is demonstrated, as well as no observable stress is generated at any conditions.

  10. Chemical-state-selective mapping at nanometer scale using synchrotron radiation and photoelectron emission microscopy.

    PubMed

    Hirao, Norie; Baba, Yuji; Sekiguchi, Tetsuhiro; Shimoyama, Iwao; Honda, Mitsunori

    2010-01-01

    For surface analyses of semiconductor devices and various functional materials, it has become indispensable to analyze valence states at nanometer scale due to the rapid developments of nanotechnology. Since a method for microscopic mapping dependent on the chemical bond states has not been established so far, we have developed a photoelectron emission microscopy (PEEM) system combined with synchrotron soft X-ray excitation. The samples investigated were Si/SiO(x) micro-patterns prepared by O(2)(+) ion implantation in Si(001) wafer using a mask. PEEM images excited by various photon energies around the Si K-edge were observed. The lateral spatial resolution of the system was about 41 nm. The brightness of each spot in PEEM images changed depending on the photon energy, due to the X-ray absorption intensity of the respective chemical state. Since the surface of this sample was topographically flat, it has been demonstrated that the present method can be applied to observations of the microscopic pattern, depending not on the morphology, but only on the valence states of silicon. We have also in-situ measured the changes of the PEEM images upon annealing, and elucidated the mechanism of the lateral diffusion of oxygen and valence states of silicon at the nanometer scale.

  11. In situ trapping of As, Sb and Se hydrides on nanometer-sized ceria-coated iron oxide-silica and slurry suspension introduction to ICP-OES.

    PubMed

    Dados, A; Kartsiouli, E; Chatzimitakos, Th; Papastephanou, C; Stalikas, C D

    2014-12-01

    A procedure is developed for the analysis of sub-μg L(-1) levels of arsenic, antimony and selenium after preconcentration of their hydrides. The study highlights the capability of an aqueous suspension of a nanometer-sized magnetic ceria, in the presence of iodide, to function as a sorbent for the in situ trapping and preconcentration of the hydrides of certain metalloids. After extraction, the material is magnetically separated from the trapping solution and analyzed. A slurry suspension sampling approach with inductively coupled plasma-optical emission spectrometry (ICP-OES) is employed for measurements, as the quantitative elution of the adsorbed metalloids is not feasible. The whole analytical procedure consists of five steps: (i) pre-reduction of As, Sb and Se, (ii) generation of the hydrides AsH3, SbH3 and SeH2, (iii) in situ collection in the trapping suspension of magnetic ceria, (iv) isolation of the particles by applying a magnetic field, and (v) measurement of As, Sb and Se concentrations using ICP-OES. Under the established experimental conditions, the efficiency of trapping accounted for 94 ± 2%, 89 ± 2% and 98 ± 3% for As, Sb and Se, respectively, signifying the effective implementation of the overall procedure. The applicability of the procedure has been demonstrated by analyzing tap and lake water and a reference material (soft drinking water). The obtained analytical figures of merit were satisfactory for the analysis of the above metalloids in natural waters by ICP-OES. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Performance of a Nanometer Resolution BPM System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vogel, V; Hayano, H; Honda, Y

    2005-10-14

    International Linear Collider (ILC) interaction region beam sizes and component position stability requirements will be as small as a few nanometers. it is important to the ongoing ILC design effort to demonstrate that these tolerances can be achieved--ideally using beam-based stability measurements. It has been estimated that an RF cavity BPM with modern waveform processing could provide a position measurement resolution of less than one nanometer. Such a system could form the basis of the desired beam-based stability measurement, as well as be used for other specialized purposes. They have developed a high resolution RF cavity BPM and associated electronics.more » A triplet comprised of these BPMs has been installed in the extraction line of the KEK Accelerator Test Facility (ATF) for testing with its ultra-low emittance beam. The three BPMs are rigidly mounted inside an alignment frame on six variable-length struts which can be used to move the BPMs in position and angle. they have developed novel methods for extracting the position and tilt information from the BPM signals including a robust calibration algorithm which is immune to beam jitter. To date, they have been able to demonstrate a resolution of approximately 20 nm over a dynamic range of {+-} 20 {micro}m. They report on the progress of these ongoing tests.« less

  13. Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids.

    PubMed

    Arakaki, Atsushi; Shimizu, Katsuhiko; Oda, Mayumi; Sakamoto, Takeshi; Nishimura, Tatsuya; Kato, Takashi

    2015-01-28

    Organisms produce various organic/inorganic hybrid materials, which are called biominerals. They form through the self-organization of organic molecules and inorganic elements under ambient conditions. Biominerals often have highly organized and hierarchical structures from nanometer to macroscopic length scales, resulting in their remarkable physical and chemical properties that cannot be obtained by simple accumulation of their organic and inorganic constituents. These observations motivate us to create novel functional materials exhibiting properties superior to conventional materials--both synthetic and natural. Herein, we introduce recent progress in understanding biomineralization processes at the molecular level and the development of organic/inorganic hybrid materials by these processes. We specifically outline fundamental molecular studies on silica, iron oxide, and calcium carbonate biomineralization and describe material synthesis based on these mechanisms. These approaches allow us to design a variety of advanced hybrid materials with desired morphologies, sizes, compositions, and structures through environmentally friendly synthetic routes using functions of organic molecules.

  14. Formation of carbon nanoclusters by implantation of keV carbon ions in fused silica followed by thermal annealing

    NASA Astrophysics Data System (ADS)

    Olivero, P.; Peng, J. L.; Liu, A.; Reichart, P.; McCallum, J. C.; Sze, J. Y.; Lau, S. P.; Tay, B. K.; Kalish, R.; Dhar, S.; Feldman, Leonard; Jamieson, David N.; Prawer, Steven

    2005-02-01

    In the last decade, the synthesis and characterization of nanometer sized carbon clusters have attracted growing interest within the scientific community. This is due to both scientific interest in the process of diamond nucleation and growth, and to the promising technological applications in nanoelectronics and quantum communications and computing. Our research group has demonstrated that MeV carbon ion implantation in fused silica followed by thermal annealing in the presence of hydrogen leads to the formation of nanocrystalline diamond, with cluster size ranging from 5 to 40 nm. In the present paper, we report the synthesis of carbon nanoclusters by the implantation into fused silica of keV carbon ions using the Plasma Immersion Ion Implantation (PIII) technique, followed by thermal annealing in forming gas (4% 2H in Ar). The present study is aimed at evaluating this implantation technique that has the advantage of allowing high fluence-rates on large substrates. The carbon nanostructures have been characterized with optical absorption and Raman spectroscopies, cross sectional Transmission Electron Microscopy (TEM), and Parallel Electron Energy Loss Spectroscopy (PEELS). Nuclear Reaction Analysis (NRA) has been employed to evaluate the deuterium incorporation during the annealing process, as a key mechanism to stabilize the formation of the clusters.

  15. Synthesis and Characterization of Hydrophobic Silica Thin Layer Derived from Methyltrimethoxysilane (MTMS)

    NASA Astrophysics Data System (ADS)

    Darmawan, Adi; Utari, Riyadini; Eka Saputra, Riza; Suhartana; Astuti, Yayuk

    2018-01-01

    This study investigated the synthesis and characterization of MTMS hydrophobic silica prepared by sol-gel method. In principle, silica xerogels and silica thin layer were obtained by reacting MTMS in ethanol solvent in some pH variations. The MTMS solution was used to modify the surface of the ceramic plate by dipcoating method to further be calcined at two different temperatures of 350°C and 500°C. The silica xerogels were analysed by FTIR, TGA-DSC and GSA to determine functional group characteristics, thermal properties and pore morphology respectively. Meanwhile, the silica thin layers were analysed their hydrophobic properties using water contact angle measurement and surface roughness determination using SEM. The results showed that the higher the pH used in the MTMS solution, the higher the resulting contact angle. The highest contact angle was obtained at pH 8.12 which reached 94.7° and 79.5° for silica thin layer calcined at 350°C and 500°C, respectively. The TGA results indicated that the methyl group survived up to 400°C and disappeared at 500°C which had implications on silica thin layer hydrophobic nature. GSA result exhibited that the silica xerogel had a close structure with a very low pore volume. While the SEM-EDX results displayed that the silica thin layer prepared at acidic pH had smoother surface morphology and became rough when prepared at an alkaline pH.

  16. Synthesis and Characterization of Hyaluronic Acid Modified Colloidal Mesoporous Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbiao; Wang, Yu; Li, Zhen; Wang, Wanxia; Sun, Honghao; Liu, Mingxing

    2017-12-01

    The colloidal mesoporous silica nanoparticles functionalized with hyaluronic acid (CMS-HA) were successfully synthesized by grafting hyaluronic acid onto the external surface of the amino-functionalized mesoporous silica nanoparticles (CMS-NH2). Moreover, the paticle properties of CMS-HA were characterized by fourier transform infrared spectroscopy (FT-IR), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The nanomaterials were negatively charged and had a relatively uniform spherical morphology with about 100 nm in diameter, which could make it more compatible with blood. So the results suggested that the CMS-HA might be a critical nanomaterial for applying in target drug delivery system.

  17. Fluorescent silica nanoparticles containing covalently bound dyes for reporter, marker, and sensor applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Henary, Maged; Chapman, Gala; Emer, Kyle; Crow, Sidney

    2016-03-01

    Silica nanoparticles have proven to be useful in many bioanalytical and medical applications and have been used in numerous applications during the last decade. Combining the properties of silica nanoparticles and fluorescent dyes that may be used as chemical probes or labels can be relatively easy by simply soaking porous silica nanoparticles in a solution of the dye of interest. Under proper conditions the entrapped dye can stay inside the silica nanoparticle for several hours resulting in a useful probe. In spite of the relative durability of these probes, leaching can still occur. A much better approach is to synthesize silica nanoparticles that have the fluorescent dye covalently attached to the backbone structure of the silica nanoparticle. This can be achieved by using appropriately modified tetraethyl orthosilicate (TEOS) analogues during the silica nanoparticle synthesis. The molar ratio of TEOS and modified TEOS will determine the fluorescent dye load in the silica nanoparticle. Dependent on the chemical stability of the reporting dye either reverse micellar (RM) or Stöber method can be used for silica nanoparticle synthesis. If dye stability allows RM procedure is preferred as it results in a much easier control of the silica nanoparticle reaction itself. Also controlling the size and uniformity of the silica nanoparticles are much easier using RM method. Dependent on the functional groups present in the reporting dye used in preparation of the modified TEOS, the silica nanoparticles can be utilized in many applications such as pH sensor, metal ion sensors, labels, etc. In addition surface activated silica nanoparticles with reactive moieties are also excellent reporters or they can be used as bright fluorescent labels. Many different fluorescent dyes can be used to synthesize silica nanoparticles including visible and NIR dyes. Several bioanalytical applications are discussed including studying amoeba phagocytosis.

  18. Precursor Mediated Synthesis of Nanostructured Silicas: From Precursor-Surfactant Ion Pairs to Structured Materials

    PubMed Central

    Hesemann, Peter; Nguyen, Thy Phung; Hankari, Samir El

    2014-01-01

    The synthesis of nanostructured anionic-surfactant-templated mesoporous silica (AMS) recently appeared as a new strategy for the formation of nanostructured silica based materials. This method is based on the use of anionic surfactants together with a co-structure-directing agent (CSDA), mostly a silylated ammonium precursor. The presence of this CSDA is necessary in order to create ionic interactions between template and silica forming phases and to ensure sufficient affinity between the two phases. This synthetic strategy was for the first time applied in view of the synthesis of surface functionalized silica bearing ammonium groups and was then extended on the formation of materials functionalized with anionic carboxylate and bifunctional amine-carboxylate groups. In the field of silica hybrid materials, the “anionic templating” strategy has recently been applied for the synthesis of silica hybrid materials from cationic precursors. Starting from di- or oligosilylated imidazolium and ammonium precursors, only template directed hydrolysis-polycondensation reactions involving complementary anionic surfactants allowed accessing structured ionosilica hybrid materials. The mechanistic particularity of this approach resides in the formation of precursor-surfactant ion pairs in the hydrolysis-polycondensation mixture. This review gives a systematic overview over the various types of materials accessed from this cooperative ionic templating approach and highlights the high potential of this original strategy for the formation of nanostructured silica based materials which appears as a complementary strategy to conventional soft templating approaches. PMID:28788602

  19. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles.

    PubMed

    Vatansever, Fatma; Hamblin, Michael R

    2017-02-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly( n -hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was "seeded" with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n -hexyl isocyanate monomer insertion, to "build up" the surface-grown polymer layers from the "bottom-up". A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses.

  20. Surface-Initiated Polymerization with Poly(n-hexylisocyanate) to Covalently Functionalize Silica Nanoparticles

    PubMed Central

    Vatansever, Fatma; Hamblin, Michael R.

    2017-01-01

    New methods are needed for covalent functionalization of nanoparticles-surface with organic polymer coronas to generate polymeric nanocomposite in a controlled manner. Here we report the use of a surface-initiated polymerization approach, mediated by titanium (IV) catalysis, to grow poly(n-hexylisocyanate) chains from silica surface. Two pathways were used to generate the interfacing in these nano-hybrids. In the first one, the nanoparticles was “seeded” with SiCl4, followed by reaction with 1,6-hexanediol to form hydroxyl groups attached directly to the surface via O-Si-O bonding. In the second pathway, the nanoparticles were initially exposed to a 9:1 mixture of trimethyl silyl chloride and chlorodimethyl octenyl silane which was then followed by hydroboration of the double bonds, to afford hydroxyl groups with a spatially controlled density and surface-attachment via O-Si-C bonding. These functionalized surfaces were then activated with the titanium tetrachloride catalyst. In our approach, thus surface tethered catalyst provided the sites for n-hexyl isocyanate monomer insertion, to “build up” the surface-grown polymer layers from the “bottom-up”. A final end-capping, to seal off the chain ends, was done via acetyl chloride. Compounds were characterized by FT-IR, 1H-NMR, GC-MS, GPC, and thermogravimetric analyses. PMID:28989336

  1. Goodpasture's Syndrome and Silica: A Case Report and Literature Review

    PubMed Central

    Dahlgren, James; Wardenburg, Marla; Peckham, Trevor

    2010-01-01

    We report a case of Goodpasture's syndrome following chronic low level and an acute, high level of exposure to crystalline silica. A 38-year-old male tilesetter was admitted to the emergency room with dyspnea and respiratory failure. He reported that his symptoms had developed over the previous week after inhaling a large amount of dust while dry-sanding and sweeping a silica-based product used to fill cracks in a cement floor. Over the following days, his pulmonary function declined and he developed acute renal failure. Tests of antiglomerular basement membrane antibody were positive and renal biopsy revealed global glomerulonephritis. He was diagnosed with Goodpasture's syndrome and treated with steroids, plasmapheresis, and hemodialysis. This man had a history of childhood asthma and a remote, one pack-year history of cigarette use. He used the flooring product for seven years prior to the inciting event, however, previous jobs had utilized significantly smaller amounts. Goodpasture's syndrome and other autoimmune diseases have been reported in association with silica exposure. The acute onset following high level silica exposure in this previously healthy man, suggest that clinicians should investigate silica exposure as a causal factor in cases of Goodpasture's syndrome. PMID:20886021

  2. Hematite/silica nanoparticle bilayers on mica: AFM and electrokinetic characterization.

    PubMed

    Morga, Maria; Adamczyk, Zbigniew; Kosior, Dominik; Oćwieja, Magdalena

    2018-06-06

    Quantitative studies on self-assembled hematite/silica nanoparticle (NP) bilayers on mica were performed by applying scanning electron microscopy (SEM), atomic force microscopy (AFM), and streaming potential measurements. The coverage of the supporting hematite layers was adjusted by changing the bulk concentration of the suspension and the deposition time. The coverage was determined by direct enumeration of deposited particles from AFM images and SEM micrographs. Afterward, silica nanoparticle monolayers were assembled under diffusion-controlled transport. A unique functional relationship was derived connecting the silica coverage with the hematite precursor layer coverage. The formation of the hematite monolayer and the hematite/silica bilayer was also monitored in situ by streaming potential measurements. It was confirmed that the zeta potential of the bilayers was independent of the supporting layer coverage, exceeding 0.15. These measurements were theoretically interpreted in terms of the general electrokinetic model that allowed for deriving a formula for calculating nanoparticle coverage in the bilayers. Additionally, from desorption experiments, the interactions among hematite/silica particles in the bilayers were determined using DLVO theory. These results facilitate the development of a robust method of preparing nanoparticle bilayers with controlled properties, with potential applications in catalytic processes.

  3. Macroporous Silica with Thick Framework for Steam-Stable and High-Performance Poly(ethyleneimine)/Silica CO2 Adsorbent.

    PubMed

    Min, Kyungmin; Choi, Woosung; Choi, Minkee

    2017-06-09

    Poly(ethyleneimine) (PEI)/silica has been widely studied as a solid adsorbent for post-combustion CO 2 capture. In this work, a highly macroporous silica (MacS), synthesized by secondary sintering of fumed silica, is compared with various mesoporous silicas with different pore structures as a support for PEI. The silicas with large pore diameter and volume enabled high CO 2 adsorption kinetics and capacity, because pore occlusion by the supported PEI was minimized. The steam stability of the silica structures increased with the silica wall thickness owing to suppressed framework ripening. The silicas with low steam stability showed rapid leaching of PEI, which indicated that the PEI squeezed out of the collapsed silica pores leached more readily. Consequently, MacS that had an extra-large pore volume (1.80 cm 3  g -1 ) and pore diameter (56.0 nm), and a thick wall (>10 nm), showed the most promising CO 2 adsorption kinetics and capacity as well as steam stability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fractography of glass at the nanometer scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guilloteau, E.; Arribart, H.; Creuzet, F.

    1996-12-01

    The authors present a nanometer scale description of the fracture surface of soda-lime glass. This is achieved by the use of Atomic Force Microscopy. The mirror zone is shown to be built with elementary entities, the density of which increases continuously while the mist and hackle zones are approached. Moreover, the overall picture leads to some kind of self-similarity, in the sense that small regions of the hackle zone exhibit the full set of mirror, mist and hackle areas.

  5. Low-Cost Sensors Deliver Nanometer-Accurate Measurements

    NASA Technical Reports Server (NTRS)

    2015-01-01

    As part of a unique partnership program, Kennedy Space Center collaborated with a nearby business school to allow MBA students to examine and analyze the market potential for a selection of NASA-patented technologies. Following the semester, a group of students decided to form Winter Park, Florida-based Juntura Group Inc. to license and sell a technology they had worked with: a sensor capable of detecting position changes as small as 10 nanometers-approximately the thickness of a cell wall.

  6. Sol-gel silica-based nanocomposites containing a high PEG amount: Chemical characterization and study of biological properties

    NASA Astrophysics Data System (ADS)

    Catauro, Michelina; Bollino, Flavia; Gloria, Antonio

    2016-05-01

    The objective of the present study was to synthesize and to characterize Silica/polyethylene glycol (SiO2/PEG) organic-inorganic hybrid materials containing a high polymer amount (60 and 70 wt%) for biomedical applications. Scanning electron microscopy (SEM) showed that the samples are homogeneous on the nanometer scale, confirming that they are nanocomposites. Fourier transform infrared spectroscopy (FT-IR) proved that the materials are class I hybrids because the two phases (SiO2 and PEG) interact by hydrogen bonds. To evaluate the possibility of using them in the biomedical field, the bioactivity and biocompatibility of the synthesized hybrids have been ascertained. The formation of a hydroxyapatite layer was observed on the hybrid surface by SEM/EDX and FTIR after soaking in simulated body fluid (SBF). Moreover, their biocompatibility was assessed by performing WST-8 cytotoxicity assay in vitro.

  7. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    PubMed

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Highly crystallized nanometer-sized zeolite a with large Cs adsorption capability for the decontamination of water.

    PubMed

    Torad, Nagy L; Naito, Masanobu; Tatami, Junichi; Endo, Akira; Leo, Sin-Yen; Ishihara, Shinsuke; Wu, Kevin C-W; Wakihara, Toru; Yamauchi, Yusuke

    2014-03-01

    Nanometer-sized zeolite A with a large cesium (Cs) uptake capability is prepared through a simple post-milling recrystallization method. This method is suitable for producing nanometer-sized zeolite in large scale, as additional organic compounds are not needed to control zeolite nucleation and crystal growth. Herein, we perform a quartz crystal microbalance (QCM) study to evaluate the uptake ability of Cs ions by zeolite, to the best of our knowledge, for the first time. In comparison to micrometer-sized zeolite A, nanometer-sized zeolite A can rapidly accommodate a larger amount of Cs ions into the zeolite crystal structure, owing to its high external surface area. Nanometer-sized zeolite is a promising candidate for the removal of radioactive Cs ions from polluted water. Our QCM study on Cs adsorption uptake behavior provides the information of adsorption kinetics (e.g., adsorption amounts and rates). This technique is applicable to other zeolites, which will be highly valuable for further consideration of radioactive Cs removal in the future. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Imaging Action Potential in Single Mammalian Neurons by Tracking the Accompanying Sub-Nanometer Mechanical Motion.

    PubMed

    Yang, Yunze; Liu, Xian-Wei; Wang, Hui; Yu, Hui; Guan, Yan; Wang, Shaopeng; Tao, Nongjian

    2018-03-28

    Action potentials in neurons have been studied traditionally by intracellular electrophysiological recordings and more recently by the fluorescence detection methods. Here we describe a label-free optical imaging method that can measure mechanical motion in single cells with a sub-nanometer detection limit. Using the method, we have observed sub-nanometer mechanical motion accompanying the action potential in single mammalian neurons by averaging the repeated action potential spikes. The shape and width of the transient displacement are similar to those of the electrically recorded action potential, but the amplitude varies from neuron to neuron, and from one region of a neuron to another, ranging from 0.2-0.4 nm. The work indicates that action potentials may be studied noninvasively in single mammalian neurons by label-free imaging of the accompanying sub-nanometer mechanical motion.

  10. An Overview of Orbital Detections of Hydrated Silica and Silica-Rich Rocks on Mars

    NASA Astrophysics Data System (ADS)

    Sun, V. Z.; Milliken, R.

    2016-12-01

    Early predictions of high-silica phases on Mars have been confirmed by numerous orbital observations throughout the past 15 years and supported by recent rover and meteorite investigations. Orbital spectroscopy at visible-near-IR (CRISM/OMEGA) and thermal IR (TES/THEMIS) wavelengths has established the presence of aqueously formed hydrated silica across the planet as well as regional silica-rich rocks of igneous origin. TES data provided the first indications of widespread silica enrichment in the northern lowlands, which were debated to represent either andesite or altered basalt on the basis of spectral and geologic arguments. Since then, more localized occurrences of primary silicic lithologies have suggested that igneous processes on Mars may have been more diverse and complex than previously recognized. CRISM and OMEGA data also reveal numerous occurrences of hydrated silica on the Martian surface, likely reflecting primary chemical precipitates or secondary processes such as aqueous alteration or diagenesis. These detections have been associated with fluvial landforms, volcanic settings, uplifted central peak rocks, and mobile sediments, suggesting a variety of formation mechanisms. These silica phases and their colocation with other alteration products such as clays and sulfates reveal aqueous environments that may have been acidic, alkaline, or alternatingly both through space and time. Although there is an apparent prevalence of geochemically immature silica (e.g., glass or opal-A) indicating limited aqueous alteration, several instances of more mature silica (e.g., opal-CT or quartz) point to locales that may have experienced periods of prolonged water-rock interaction. This presentation will give an overview of the distribution and variety of these high-silica phases as seen from orbital datasets and discuss their implications for the magmatic and aqueous history of Mars.

  11. Soft-Templating Synthesis of Mesoporous Silica-Based Materials for Environmental Applications

    NASA Astrophysics Data System (ADS)

    Gunathilake, Chamila Asanka

    Dissertation research is mainly focus on: 1) the development of mesoporous silica materials with organic pendant and bridging groups (isocyanurate, amidoxime, benzene) and incorporated metal (aluminum, zirconium, calcium, and magnesium) species for high temperature carbon dioxide (CO2) sorption, 2) phosphorous-hydroxy functionalized mesoporous silica materials for water treatment, and 3) amidoxime-modified ordered mesoporous silica materials for uranium sorption under seawater conditions. The goal is to design composite materials for environmental applications with desired porosity, surface area, and functionality by selecting proper metal oxide precursors, organosilanes, tetraethylorthosilicate, (TEOS), and block copolymer templates and by adjusting synthesis conditions. The first part of dissertation presents experimental studies on the merge of aluminum, zirconium, calcium, and magnesium oxides with mesoporous silica materials containing organic pendant (amidoxime) and bridging groups (isocyanurate, benzene) to obtain composite sorbents for CO2 sorption at ambient (0-25 °C) and elevated (60-120 °C) temperatures. These studies indicate that the aforementioned composite sorbents are fairly good for CO2 capture at 25 °C via physisorption mechanism and show a remarkably high affinity toward CO2 chemisorption at 60-120 °C. The second part of dissertation is devoted to silica-based materials with organic functionalities for removal of heavy metal ions such as lead from contaminated water and for recovery of metal ions such as uranium from seawater. First, ordered mesoporous organosilica (OMO) materials with diethylphosphatoethyl and hydroxyphosphatoethyl surface groups were examined for Pb2+ adsorption and showed unprecedented adsorption capacities up to 272 mg/g and 202 mg/g, respectively However, the amidoxime-modified OMO materials were explored for uranium extraction under seawater conditions and showed remarkable capacities reaching 57 mg of uranium per gram

  12. Control over Silica Particle Growth and Particle–Biomolecule Interactions Facilitates Silica Encapsulation of Mammalian Cells with Thickness Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.

    Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less

  13. Control over Silica Particle Growth and Particle–Biomolecule Interactions Facilitates Silica Encapsulation of Mammalian Cells with Thickness Control

    DOE PAGES

    Johnston, Robert K.; Harper, Jason C.; Tartis, Michaelann S.

    2017-07-13

    Over the past 20 years, many strategies utilizing sol–gel chemistry to integrate biological cells into silica-based materials have been reported. One such strategy, Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition, shows promise as an efficient encapsulation technique due to the ability to vary the silica encapsulation morphology obtained by this process through variation of SG-CViL reaction conditions. In this report, we develop SG-CViL as a tunable, multi-purpose silica encapsulation strategy by investigating the mechanisms governing both silica particle generation and subsequent interaction with phospholipid assemblies (liposomes and living cells). Using Dynamic Light Scattering (DLS) measurements, linear and exponential silica particlemore » growth dynamics were observed which were dependent on deposition buffer ion constituents and ion concentration. Silica particle growth followed a cluster–cluster growth mechanism at acidic pH, and a monomer-cluster growth mechanism at neutral to basic pH. Increasing silica sol aging temperature resulted in higher rates of particle growth and larger particles. DLS measurements employing PEG-coated liposomes and cationic liposomes, serving as model phospholipid assemblies, revealed that electrostatic interactions promote more stable liposome–silica interactions than hydrogen bonding and facilitate silica coating on suspension cells. However, continued silica reactivity leads to aggregation of silica-coated suspension cells, revealing the need for cell isolation to tune deposited silica thickness. As a result, utilizing these mechanistic study insights, silica was deposited onto adherent HeLa cells under biocompatible conditions with micrometer-scale control over silica thickness, minimal cell manipulation steps, and retained cell viability over several days.« less

  14. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having...

  15. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN....1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered microcellular silica foam having...

  16. Elastic Moduli of Permanently Densified Silica Glasses

    PubMed Central

    Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.

    2014-01-01

    Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218

  17. Behavior of macroporous vinyl silica and silica monolithic columns in high pressure gas chromatography.

    PubMed

    Maniquet, Adrien; Bruyer, Nicolas; Raffin, Guy; Baco-Antionali, Franck; Demesmay, Claire; Dugas, Vincent; Randon, Jérôme

    2017-06-30

    80% vinyltrimethoxysilane-based hybrid silica monoliths (80-VTMS), which have been initially developed for separation in reversed-phase liquid chromatography, have been investigated in high pressure gas chromatography separations (carrier gas pressure up to 60bar) and compared to silica monolithic columns. The behavior of both silica and 80-VTMS monolithic columns was investigated using helium, nitrogen and carbon dioxide as carrier gas. The efficiency of 80-VTMS monolithic columns was shown to vary differently than silica monolithic columns according to the temperature and the carrier gas used. Carrier gas nature was a significant parameter on the retention for both silica and vinyl columns in relation to its adsorption onto the stationary phase in such high pressure conditions. The comparison of retention and selectivity between 80-VTMS monoliths and silica was performed under helium using the logarithm of the retention factor according to the number of carbon atoms combined to Kovats indexes. The very good performances of these columns were demonstrated, allowing the separation of 8 compounds in less than 1min. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Reverse-transformation austenite structure control with micro/nanometer size

    NASA Astrophysics Data System (ADS)

    Wu, Hui-bin; Niu, Gang; Wu, Feng-juan; Tang, Di

    2017-05-01

    To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870°C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850°C, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter > 0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.

  19. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging

    NASA Astrophysics Data System (ADS)

    Kennard, Raymond; DeSisto, William J.; Giririjan, Thanu Praba; Mason, Michael D.

    2008-04-01

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1

  20. Intrinsic property measurement of surfactant-templated mesoporous silica films using time-resolved single-molecule imaging.

    PubMed

    Kennard, Raymond; DeSisto, William J; Giririjan, Thanu Praba; Mason, Michael D

    2008-04-07

    Mesoporous silica membranes fabricated by the surfactant-templated sol-gel process have received attention because of the potential to prepare membranes with a narrow pore size distribution and ordering of the interconnected pores. Potential applications include ultrafiltration, biological separations and drug delivery, and separators in lithium-ion batteries. Despite advancements in synthesis and characterization of these membranes, a quantitative description of the membrane microstructure remains a challenge. Currently the membrane microstructure is characterized by the combination of results from several techniques, i.e., gas permeance testing, x-ray diffraction scanning electron microscopy, transmission electron microscopy, and permporometry. The results from these ensemble methods are then compiled and the data fitted to a particular flow model. Although these methods are very effective in determining membrane performance, general pore size distribution, and defect concentration, they are unable to monitor molecular paths through the membrane and quantitatively measure molecular interactions between the molecular specie and pore network. Single-molecule imaging techniques enable optical measurements that probe materials on nanometer length scales through observation of individual molecules without the influence of averaging. Using single-molecule imaging spectroscopy, we can quantitatively characterize the interaction between the probe molecule and the interior of the pore within mesoporous silica membranes. This approach is radically different from typical membrane characterization methods in that it has the potential to spatially sample the underlying pore structure distribution, the surface energy, and the transport properties. Our hope is that this new fundamental knowledge can be quantitatively linked to both the preparation and the performance of membranes, leading to the advancement of membrane science and technology. Fluorescent molecules, 1

  1. Preparation of a silica stationary phase co-functionalized with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography.

    PubMed

    Li, Hengye; Zhang, Xuemeng; Zhang, Lin; Wang, Xiaojin; Kong, Fenying; Fan, Dahe; Li, Lei; Wang, Wei

    2017-04-15

    A silica stationary phase was designed and synthesized through the co-functionalization of silica with Wulff-type phenylboronate and C12 for mixed-mode liquid chromatography applications. The as-synthesized stationary phase was characterized by elemental analysis and Fourier Transform-InfraRed Spectroscopy (FT-IR). Retention mechanisms, including boronate affinity (BA), reversed-phase (RP) and anion-exchange (AE), were involved. Retention mechanism switching was easily realized by adjustment of the mobile phase constitution. Cis-diol compounds could be selectively captured under neutral conditions in BA mode and off-line separated in RP mode. Neutral, basic, acidic and amphiprotic compounds were chromatographed on the column in RP chromatography, while inorganic anions were chromatographed in AE chromatography to characterize the mixed-mode nature of the prepared stationary phase. In addition, the RP performance was compared with an octadecyl silica column in terms of column efficiency (N/m), asymmetry factor (A f ), retention factor (k) and resolution (Rs). The prepared stationary phase offered multiple interactions with analytes in addition to hydrophobic interactions under RP elution conditions. Based on the mixed-mode properties, off-line 2D-LC, for selective capture and separation of urinary nucleosides, was successfully realized on a single column, demonstrating its powerful application potential for complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Quantum decrease of capacitance in a nanometer-sized tunnel junction

    NASA Astrophysics Data System (ADS)

    Untiedt, C.; Saenz, G.; Olivera, B.; Corso, M.; Sabater, C.; Pascual, J. I.

    2013-03-01

    We have studied the capacitance of the tunnel junction defined by the tip and sample of a Scanning Tunnelling Microscope through the measurement of the electrostatic forces and impedance of the junction. A decrease of the capacitance when a tunnel current is present has shown to be a more general phenomenon as previously reported in other systems. On another hand, an unexpected reduction of the capacitance is also observed when increasing the applied voltage above the work function energy of the electrodes to the Field Emission (FE) regime, and the decrease of capacitance due to a single FE-Resonance has been characterized. All these effects should be considered when doing measurements of the electronic characteristics of nanometer-sized electronic devices and have been neglected up to date. Spanish government (FIS2010-21883-C02-01, CONSOLIDER CSD2007-0010), Comunidad Valenciana (ACOMP/2012/127 and PROMETEO/2012/011)

  3. Optical and transport properties of dense liquid silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Tingting; Millot, Marius; Kraus, Richard G.

    2015-06-15

    Using density-functional-theory based molecular dynamics and the Kubo-Greenwood linear response theory, we evaluated the high-pressure equation of state and the optical and transport properties of quartz and fused silica shock-compressed to 2000 GPa. The computed Hugoniots and corresponding optical reflectivity values are in very good agreement with published data for quartz, and new data that we obtained on fused silica using magnetically launched flyer plate experiments. The rise of optical reflectivity upon shock compression appears to be primarily a temperature-driven mechanism, which is relatively insensitive to small density variation. We observed that the electrical conductivity does not display Drude-like frequencymore » dependence, especially at lower temperatures. In addition, the Wiedemann-Franz relation between electrical and thermal conductivities was found to be invalid. It suggests that even at three-fold compression, warm dense liquid silica on the Hugoniot curve is still far away from the degenerate limit.« less

  4. Cyclodextrin and Polyethylenimine Functionalized Mesoporous Silica Nanoparticles for Delivery of siRNA Cancer Therapeutics

    PubMed Central

    Shen, Jianliang; Kim, Han-Cheon; Su, Hua; Wang, Feng; Wolfram, Joy; Kirui, Dickson; Mai, Junhua; Mu, Chaofeng; Ji, Liang-Nian; Mao, Zong-Wan; Shen, Haifa

    2014-01-01

    Effective delivery holds the key to successful in vivo application of therapeutic small interfering RNA (siRNA). In this work, we have developed a universal siRNA carrier consisting of a mesoporous silica nanoparticle (MSNP) functionalized with cyclodextrin-grafted polyethylenimine (CP). CP provides positive charge for loading of siRNA through electrostatic interaction and enables effective endosomal escape of siRNA. Using intravital microscopy we were able to monitor tumor enrichment of CP-MSNP/siRNA particles in live mice bearing orthotopic MDA-MB-231 xenograft tumors. CP-MSNP delivery of siRNA targeting the M2 isoform of the glycolytic enzyme pyruvate kinase (PKM2) resulted in effective knockdown of gene expression in vitro and in vivo. Suppression of PKM2 led to inhibition of tumor cell growth, invasion, and migration. PMID:24672582

  5. Two-dimensional silica opens new perspectives

    NASA Astrophysics Data System (ADS)

    Büchner, Christin; Heyde, Markus

    2017-12-01

    In recent years, silica films have emerged as a novel class of two-dimensional (2D) materials. Several groups succeeded in epitaxial growth of ultrathin SiO2 layers using different growth methods and various substrates. The structures consist of tetrahedral [SiO4] building blocks in two mirror symmetrical planes, connected via oxygen bridges. This arrangement is called a silica bilayer as it is the thinnest 2D arrangement with the stoichiometry SiO2 known today. With all bonds saturated within the nano-sheet, the interaction with the substrate is based on van der Waals forces. Complex ring networks are observed, including hexagonal honeycomb lattices, point defects and domain boundaries, as well as amorphous domains. The network structures are highly tuneable through variation of the substrate, deposition parameters, cooling procedure, introducing dopants or intercalating small species. The amorphous networks and structural defects were resolved with atomic resolution microscopy and modeled with density functional theory and molecular dynamics. Such data contribute to our understanding of the formation and characteristic motifs of glassy systems. Growth studies and doping with other chemical elements reveal ways to tune ring sizes and defects as well as chemical reactivities. The pristine films have been utilized as molecular sieves and for confining molecules in nanocatalysis. Post growth hydroxylation can be used to tweak the reactivity as well. The electronic properties of silica bilayers are favourable for using silica as insulators in 2D material stacks. Due to the fully saturated atomic structure, the bilayer interacts weakly with the substrate and can be described as quasi-freestanding. Recently, a mm-scale film transfer under structure retention has been demonstrated. The chemical and mechanical stability of silica bilayers is very promising for technological applications in 2D heterostacks. Due to the impact of this bilayer system for glass science

  6. Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof

    NASA Astrophysics Data System (ADS)

    Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas

    2016-03-01

    Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting

  7. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging.

    PubMed

    Nagesetti, Abhignyan; McGoron, Anthony J

    2016-11-01

    We report a novel system of organically modified silica nanoparticles (Ormosil) capable of near infrared fluorescence and chemotherapy with adjuvant hyperthermia for image guided cancer therapy. Ormosil nanoparticles were loaded with a chemotherapeutic, Doxorubicin (DOX) and cyanine dye, IR820. Ormosil particles had a mean diameter of 51.2±2.4 nanometers and surface charge of -40.5±0.8mV. DOX was loaded onto Ormosil particles via physical adsorption (FDSIR820) or covalent linkage (CDSIR820) to the silanol groups on the Ormosil surface. Both formulations retained DOX and IR820 over a period of 2 days in aqueous buffer, though CDSIR820 retained more DOX (93.2%) compared to FDSIR820 (77.0%) nanoparticles. Exposure to near infrared laser triggered DOX release from CDSIR820. Uptake of nanoparticles was determined by deconvolution microscopy in ovarian carcinoma cells (Skov-3). CDSIR820 localized in the cell lysosomes whereas cells incubated with FDSIR820 showed DOX fluorescence from the nucleus indicating leakage of DOX from the nanoparticle matrix. FDSIR820 nanoparticles showed severe toxicity in Skov-3 cells whereas CDSIR820 particles had the same cytotoxicity profile as bare (No DOX and IR820) Ormosil particles. Furthermore, exposure of CDSIR820 nanoparticles to Near Infrared laser at 808 nanometers resulted in generation of heat (to 43°C from 37°C) and resulted in enhanced cell killing compared to Free DOX treatment. Bio-distribution studies showed that CDSIR820 nanoparticles were primarily present in the organs of Reticuloendothelial (RES) system. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. High Temperature Mechanical Behavior of Polycrystalline Alumina from Mixed Nanometer and Micrometer Powders

    NASA Technical Reports Server (NTRS)

    Goldsby, Jon C.

    2001-01-01

    Sintered aluminum oxide materials were formed using commercial methods from mechanically mixed powders of nano-and micrometer alumina. The powders were consolidated at 1500 and 1600 C with 3.2 and 7.2 ksi applied stress in argon. The conventional micrometer sized powders failed to consolidate. While 100 percent nanometer-sized alumina and its mixture with the micrometer powders achieved less than 99 percent density. Preliminary high temperature creep behavior indicates no super-plastic strains. However high strains (less than 0.65 percent) were generated in the nanometer powder, due to cracks and linked voids initiated by cavitation.

  9. Changes in lung function of granite crushers exposed to moderately high silica concentrations: a 12 year follow up.

    PubMed Central

    Malmberg, P; Hedenström, H; Sundblad, B M

    1993-01-01

    45 granite crushers and 45 age and smoking matched referents underwent pulmonary function tests in 1976 and 1988. On average, the granite crushers at follow up had worked for 22 years, were 52 (range 36-78) years old, and had inhaled a cumulated amount of 7 mg of silica in the respirable dust fraction. Between 1976 and 1988 the average concentration of respirable quartz in air was 0.16 mg/m3 (threshold limit value (TLV) = 0.10 mg/m3). In 1988 the granite crushers had somewhat lower forced expiratory flows (forced expiratory volume in one second/vital capacity (FEV1/VC) -4.5% and forced midexpiratory flow FEF50 -15%) compared with the referents and a more uneven ventilation distribution (17% higher slope of phase III in the nitrogen single breath curve). Five smoking granite crushers, but none of the referents, had an FEV1 < 80% of the predicted. During the 12 year interval the granite crushers had--compared with the matched referents--a greater decrease in FEV1 (-4.6%), FEV1/VC (-5.4%), maximal expiratory flow, (-8%) and FEF50 (-14%), and a larger increase in phase III and static compliance (p < 0.02 in all variables). The functional changes suggest the presence of airways obstruction and increased compliance of the lungs. Exposure to silica at concentrations of about twice the present TLV was thus associated with airways obstruction and loss of elastic recoil rather than fibrosis and a restrictive function loss as seen in silicosis. The changes were on average small, but in some tobacco smokers more pronounced changes were found. PMID:8398859

  10. Quantum dot-doped silica nanoparticles as probes for targeting of T-lymphocytes.

    PubMed

    Bottini, Massimo; D'Annibale, Federica; Magrini, Andrea; Cerignoli, Fabio; Arimura, Yutaka; Dawson, Marcia I; Bergamaschi, Enrico; Rosato, Nicola; Bergamaschi, Antonio; Mustelin, Tomas

    2007-01-01

    To enhance diagnostic or therapeutic efficacy, novel nanomaterials must be engineered to function in biologically relevant environments, be visible by conventional fluorescent microscopy, and have multivalent loading capacity for easy detection or effective drug delivery. Here we report the fabrication of silica nanoparticles doped with quantum dots and superficially functionalized with amino and phosphonate groups. The amino groups were acylated with a water-soluble biotin-labeling reagent. The biotinylated nanoparticles were subsequently decorated with neutravidin by exploiting the strong affinity between neutravidin and biotin. The resultant neutravidin-decorated fluorescent silica nanoparticles stably dispersed under physiological conditions, were visible by conventional optical and confocal fluorescent microscopy, and could be further functionalized with macromolecules, nucleic acids, and polymers. We also coated the surface of the nanoparticles with biotinylated mouse anti-human CD3 (alphaCD3). The resultant fluorescent nanoassembly was taken up by Jurkat T cells through receptor-mediated endocytosis and was partially released to lysosomes. Thus, quantum dot-doped silica nanoparticles decorated with neutravidin represent a potentially excellent scaffold for constructing specific intracellular nanoprobes and transporters.

  11. Epoxy Grout With Silica Thickener

    NASA Technical Reports Server (NTRS)

    Mcclung, C. E.

    1984-01-01

    Grout cures quickly, even in presence of hydraulic oil. Grout is mixture of aggregate particles, finely-divided silica, epoxy resin, and triethylenetetramine curing agent, with mixture containing about 85 percent silica and aggregate particle sand 15 percent resin and curing agent. Silica is thickening agent and keeps grout from sagging.

  12. Plasma polymer-functionalized silica particles for heavy metals removal.

    PubMed

    Akhavan, Behnam; Jarvis, Karyn; Majewski, Peter

    2015-02-25

    Highly negatively charged particles were fabricated via an innovative plasma-assisted approach for the removal of heavy metal ions. Thiophene plasma polymerization was used to deposit sulfur-rich films onto silica particles followed by the introduction of oxidized sulfur functionalities, such as sulfonate and sulfonic acid, via water-plasma treatments. Surface chemistry analyses were conducted by X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy. Electrokinetic measurements quantified the zeta potentials and isoelectric points (IEPs) of modified particles and indicated significant decreases of zeta potentials and IEPs upon plasma modification of particles. Plasma polymerized thiophene-coated particles treated with water plasma for 10 min exhibited an IEP of less than 3.5. The effectiveness of developed surfaces in the adsorption of heavy metal ions was demonstrated through copper (Cu) and zinc (Zn) removal experiments. The removal of metal ions was examined through changing initial pH of solution, removal time, and mass of particles. Increasing the water plasma treatment time to 20 min significantly increased the metal removal efficiency (MRE) of modified particles, whereas further increasing the plasma treatment time reduced the MRE due to the influence of an ablation mechanism. The developed particulate surfaces were capable of removing more than 96.7% of both Cu and Zn ions in 1 h. The combination of plasma polymerization and oxidative plasma treatment is an effective method for the fabrication of new adsorbents for the removal of heavy metals.

  13. Oxidation and Volatilization of Silica-Formers in Water Vapor

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    At high temperatures SiC and Si3N4 react with water vapor to form a silica scale. Silica scales also react with water vapor to form a volatile Si(OH)4 species. These simultaneous reactions, one forming silica and the other removing silica, are described by paralinear kinetics. A steady state, in which these reactions occur at the same rate, is eventually achieved, After steady state is achieved, the oxide found on the surface is a constant thickness and recession of the underlying material occurs at a linear rate. The steady state oxide thickness, the time to achieve steady state, and the steady state recession rate can all be described in terms of the rate constants for the oxidation and volatilization reactions. In addition, the oxide thickness, the time to achieve steady state, and the recession rate can also be determined from parameters that describe a water vapor-containing environment. Accordingly, maps have been developed to show these steady state conditions as a function of reaction rate constants, pressure, and gas velocity. These maps can be used to predict the behavior of silica formers in water-vapor containing environments such as combustion environments. Finally, these maps are used to explore the limits of the paralinear oxidation model for SiC and Si3N4

  14. The phagocytosis and toxicity of amorphous silica.

    PubMed

    Costantini, Lindsey M; Gilberti, Renée M; Knecht, David A

    2011-02-02

    Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37 °C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both cases. However, the result suggests a mechanistic difference

  15. Investigating the properties and interaction mechanism of nano-silica in polyvinyl alcohol/polyacrylamide blends at an atomic level.

    PubMed

    Wei, Qinghua; Wang, Yanen; Wang, Shuzhi; Zhang, Yingfeng; Chen, Xiongbiao

    2017-11-01

    The nano-silica can be incorporated into polymers for improved mechanical properties. Notably, the interaction between nano-silica and polymer is of a microscopic phenomenon and thus, hard to observe and study by using experimental methods. Based on molecular dynamics, this paper presents a study on the properties and the interaction mechanism of nano-silica in the polyvinyl alcohol (PVA)/polyacrylamide (PAM) blends at an atomic level. Specifically, six blends of PVA/PAM with varying concentrations of nano-silica (0-13wt%) and two interfacial interaction models of polymers on the silica surface were designed and analyzed at an atomic level in terms of concentration profile, mechanical properties, fractional free volume (FFV), dynamic properties of polymers and X-ray diffraction patterns. The concentration profile results and micromorphologies of equilibrium models suggest PAM molecular chains are easier to be adsorbed on the silica surface than PVA molecular chains in blends. The incorporation of nano-silica into the PVA/PAM blends can increase the blend mechanical properties, densities, and semicrystalline character. Meanwhile, the FFV and the mobility of polymer chain decrease with the silica concentration, which agrees with the results of mechanical properties, densities, and semicrystalline character. Our results also illustrate that an analysis of binding energies and pair correlation functions (PCF) allows for the discovery of the interaction mechanism of nano-silica in PVA/PAM blends; and that hydrogen bond interactions between polar functional groups of polymer molecular chains and the hydroxyl groups of the silica surface are involved in adsorption of the polymers on the silica surface, thus affecting the interaction mechanism of nano-silica in PVA/PAM blend systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Metal-silica sol-gel materials

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E. (Inventor)

    2002-01-01

    The present invention relates to a single phase metal-silica sol-gel glass formed by the co-condensation of a transition metal with silicon atoms where the metal atoms are uniformly distributed within the sol-gel glass as individual metal centers. Any transition metal may be used in the sol-gel glasses. The present invention also relates to sensor materials where the sensor material is formed using the single phase metal-silica sol-gel glasses. The sensor materials may be in the form of a thin film or may be attached to an optical fiber. The present invention also relates to a method of sensing chemicals using the chemical sensors by monitoring the chromatic change of the metal-silica sol-gel glass when the chemical binds to the sensor. The present invention also relates to oxidation catalysts where a metal-silica sol-gel glass catalyzes the reaction. The present invention also relates to a method of performing oxidation reactions using the metal-silica sol-gel glasses. The present invention also relates to organopolymer metal-silica sol-gel composites where the pores of the metal-silica sol-gel glasses are filled with an organic polymer polymerized by the sol-gel glass.

  17. Americium(III) capture using phosphonic acid-functionalized silicas with different mesoporous morphologies: adsorption behavior study and mechanism investigation by EXAFS/XPS.

    PubMed

    Zhang, Wen; He, Xihong; Ye, Gang; Yi, Rong; Chen, Jing

    2014-06-17

    Efficient capture of highly toxic radionuclides with long half-lives such as Americium-241 is crucial to prevent radionuclides from diffusing into the biosphere. To reach this purpose, three different types of mesoporous silicas functionalized with phosphonic acid ligands (SBA-POH, MCM-POH, and BPMO-POH) were synthesized via a facile procedure. The structure, surface chemistry, and micromorphology of the materials were fully characterized by (31)P/(13)C/(29)Si MAS NMR, XPS, and XRD analysis. Efficient adsorption of Am(III) was realized with a fast rate to reach equilibrium (within 10 min). Influences including structural parameters and functionalization degree on the adsorption behavior were investigated. Slope analysis of the equilibrium data suggested that the coordination with Am(III) involved the exchange of three protons. Moreover, extended X-ray absorption fine structure (EXAFS) analysis, in combination with XPS survey, was employed for an in-depth probe into the binding mechanism by using Eu(III) as a simulant due to its similar coordination behavior and benign property. The results showed three phosphonic acid ligands were coordinated to Eu(III) in bidentate fashion, and Eu(P(O)O)3(H2O) species were formed with the Eu-O coordination number of 7. These phosphonic acid-functionalized mesoporous silicas should be promising for the treatment of Am-containing radioactive liquid waste.

  18. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan , Pellin, Michael J.; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-04-03

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  19. Subnanometer and nanometer catalysts, method for preparing size-selected catalysts

    DOEpatents

    Vajda, Stefan [Lisle, IL; Pellin, Michael J [Naperville, IL; Elam, Jeffrey W [Elmhurst, IL; Marshall, Christopher L [Naperville, IL; Winans, Randall A [Downers Grove, IL; Meiwes-Broer, Karl-Heinz [Roggentin, GR

    2012-03-27

    Highly uniform cluster based nanocatalysts supported on technologically relevant supports were synthesized for reactions of top industrial relevance. The Pt-cluster based catalysts outperformed the very best reported ODHP catalyst in both activity (by up to two orders of magnitude higher turn-over frequencies) and in selectivity. The results clearly demonstrate that highly dispersed ultra-small Pt clusters precisely localized on high-surface area supports can lead to affordable new catalysts for highly efficient and economic propene production, including considerably simplified separation of the final product. The combined GISAXS-mass spectrometry provides an excellent tool to monitor the evolution of size and shape of nanocatalyst at action under realistic conditions. Also provided are sub-nanometer gold and sub-nanometer to few nm size-selected silver catalysts which possess size dependent tunable catalytic properties in the epoxidation of alkenes. Invented size-selected cluster deposition provides a unique tool to tune material properties by atom-by-atom fashion, which can be stabilized by protective overcoats.

  20. Imaging samples in silica aerogel using an experimental point spread function.

    PubMed

    White, Amanda J; Ebel, Denton S

    2015-02-01

    Light microscopy is a powerful tool that allows for many types of samples to be examined in a rapid, easy, and nondestructive manner. Subsequent image analysis, however, is compromised by distortion of signal by instrument optics. Deconvolution of images prior to analysis allows for the recovery of lost information by procedures that utilize either a theoretically or experimentally calculated point spread function (PSF). Using a laser scanning confocal microscope (LSCM), we have imaged whole impact tracks of comet particles captured in silica aerogel, a low density, porous SiO2 solid, by the NASA Stardust mission. In order to understand the dynamical interactions between the particles and the aerogel, precise grain location and track volume measurement are required. We report a method for measuring an experimental PSF suitable for three-dimensional deconvolution of imaged particles in aerogel. Using fluorescent beads manufactured into Stardust flight-grade aerogel, we have applied a deconvolution technique standard in the biological sciences to confocal images of whole Stardust tracks. The incorporation of an experimentally measured PSF allows for better quantitative measurements of the size and location of single grains in aerogel and more accurate measurements of track morphology.

  1. Comparative Investigation on Thermal Insulation of Polyurethane Composites Filled with Silica Aerogel and Hollow Silica Microsphere.

    PubMed

    Liu, Chunyuan; Kim, Jin Seuk; Kwon, Younghwan

    2016-02-01

    This paper presents a comparative study on thermal conductivity of PU composites containing open-cell nano-porous silica aerogel and closed-cell hollow silica microsphere, respectively. The thermal conductivity of PU composites is measured at 30 degrees C with transient hot bridge method. The insertion of polymer in pores of silica aerogel creates mixed interfaces, increasing the thermal conductivity of resulting composites. The measured thermal conductivity of PU composites filled with hollow silica microspheres is estimated using theoretical models, and is in good agreement with Felske model. It appears that the thermal conductivity of composites decreases with increasing the volume fraction (phi) when hollow silica microsphere (eta = 0.916) is used.

  2. Quantum Monte Carlo Computations of Phase Stability, Equations of State, and Elasticity of High-Pressure Silica

    NASA Astrophysics Data System (ADS)

    Driver, K. P.; Cohen, R. E.; Wu, Z.; Militzer, B.; Ríos, P. L.; Towler, M. D.; Needs, R. J.; Wilkins, J. W.

    2011-12-01

    Silica (SiO2) is an abundant component of the Earth whose crystalline polymorphs play key roles in its structure and dynamics. First principle density functional theory (DFT) methods have often been used to accurately predict properties of silicates, but fundamental failures occur. Such failures occur even in silica, the simplest silicate, and understanding pure silica is a prerequisite to understanding the rocky part of the Earth. Here, we study silica with quantum Monte Carlo (QMC), which until now was not computationally possible for such complex materials, and find that QMC overcomes the failures of DFT. QMC is a benchmark method that does not rely on density functionals but rather explicitly treats the electrons and their interactions via a stochastic solution of Schrödinger's equation. Using ground-state QMC plus phonons within the quasiharmonic approximation of density functional perturbation theory, we obtain the thermal pressure and equations of state of silica phases up to Earth's core-mantle boundary. Our results provide the best constrained equations of state and phase boundaries available for silica. QMC indicates a transition to the dense α-PbO2 structure above the core-insulating D" layer, but the absence of a seismic signature suggests the transition does not contribute significantly to global seismic discontinuities in the lower mantle. However, the transition could still provide seismic signals from deeply subducted oceanic crust. We also find an accurate shear elastic constant for stishovite and its geophysically important softening with pressure.

  3. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    PubMed

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  4. On the validity of the Poisson assumption in sampling nanometer-sized aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damit, Brian E; Wu, Dr. Chang-Yu; Cheng, Mengdawn

    2014-01-01

    A Poisson process is traditionally believed to apply to the sampling of aerosols. For a constant aerosol concentration, it is assumed that a Poisson process describes the fluctuation in the measured concentration because aerosols are stochastically distributed in space. Recent studies, however, have shown that sampling of micrometer-sized aerosols has non-Poissonian behavior with positive correlations. The validity of the Poisson assumption for nanometer-sized aerosols has not been examined and thus was tested in this study. Its validity was tested for four particle sizes - 10 nm, 25 nm, 50 nm and 100 nm - by sampling from indoor air withmore » a DMA- CPC setup to obtain a time series of particle counts. Five metrics were calculated from the data: pair-correlation function (PCF), time-averaged PCF, coefficient of variation, probability of measuring a concentration at least 25% greater than average, and posterior distributions from Bayesian inference. To identify departures from Poissonian behavior, these metrics were also calculated for 1,000 computer-generated Poisson time series with the same mean as the experimental data. For nearly all comparisons, the experimental data fell within the range of 80% of the Poisson-simulation values. Essentially, the metrics for the experimental data were indistinguishable from a simulated Poisson process. The greater influence of Brownian motion for nanometer-sized aerosols may explain the Poissonian behavior observed for smaller aerosols. Although the Poisson assumption was found to be valid in this study, it must be carefully applied as the results here do not definitively prove applicability in all sampling situations.« less

  5. What Is Crystalline Silica?

    MedlinePlus

    ... silica, and requires a repirator protection program until engineering controls are implemented. Additionally, OSHA has a National ... silica materials with safer substitutes, whenever possible. ■ Provide engineering or administrative controls, where feasible, such as local ...

  6. Understanding the effect of size and shape of gold nanomaterials on nanometal surface energy transfer.

    PubMed

    Rakshit, Soumyadipta; Moulik, Satya Priya; Bhattacharya, Subhash Chandra

    2017-04-01

    Gold Nanomaterials (GNMs) interact with fluorophores via electromagnetic coupling under excitation. In this particular work we carried out (to the best of our knowledge for the first time) a comprehensive study of systematic quenching of a blue emitter 2-Anthracene Sulfonate (2-AS) in the presence of gold nanoparticles of different size and shape. We synthesized gold nanomaterials of four different dimensions [nanoparticle (0D), nanorod (1D), nanotriangle (2D) and nanobipyramids (3D)] and realized the underlying effect on the emitting dipole in terms of steady and time resolved fluorescence. Nanometal Surface Energy Transfer (NSET) has already been proved to be the best long range spectroscopic ruler so far. Many attempts have been made to understand the interaction between a fluorescent molecule and gold nanomaterials. But not a single model can interpret alone the interaction phenomena. We have opted three different models to compare the experimental and theoretical data. Due to the presence of size dependent absorptivity and dielectric function, modified CPS-Kuhn model was proved to be the worthiest to comprehend variance of behavior of an emitting dipole in close proximity to nanometal surface by coupling with the image dipole of gold nanomaterials. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tailored Mesoporous Silicas: From Confinement Effects to Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchanan III, A C; Kidder, Michelle

    2010-01-01

    Ordered mesoporous silicas continue to find widespread use as supports for diverse applications such as catalysis, separations, and sensors. They provide a versatile platform for these studies because of their high surface area and the ability to control pore size, topology, and surface properties over wide ranges. Furthermore, there is a diverse array of synthetic methodologies for tailoring the pore surface with organic, organometallic, and inorganic functional groups. In this paper, we will discuss two examples of tailored mesoporous silicas and the resultant impact on chemical reactivity. First, we explore the impact of pore confinement on the thermochemical reactivity ofmore » phenethyl phenyl ether (PhCH2CH2OPh, PPE), which is a model of the dominant {beta}-aryl ether linkage present in lignin derived from woody biomass. The influence of PPE surface immobilization, grafting density, silica pore diameter, and presence of a second surface-grafted inert 'spacer' molecule on the product selectivity has been examined. We will show that the product selectivity can be substantially altered compared with the inherent gas-phase selectivity. Second, we have recently initiated an investigation of mesoporous silica supported, heterobimetallic oxide materials for photocatalytic conversion of carbon dioxide. Through surface organometallic chemistry, isolated M-O-M species can be generated on mesoporous silicas that, upon irradiation, form metal to metal charge transfer bands capable of converting CO{sub 2} into CO. Initial results from studies of Ti(IV)-O-Sn(II) on SBA-15 will be presented.« less

  8. Sulfonated mesoporous silica-carbon composites and their use as solid acid catalysts

    NASA Astrophysics Data System (ADS)

    Valle-Vigón, Patricia; Sevilla, Marta; Fuertes, Antonio B.

    2012-11-01

    The synthesis of highly functionalized porous silica-carbon composites made up of sulfonic groups attached to a carbon layer coating the pores of three types of mesostructured silica (i.e. SBA-15, KIT-6 and mesocellular silica) is presented. The synthesis procedure involves the following steps: (a) removal of the surfactant, (b) impregnation of the silica pores with a carbon precursor, (c) carbonization and (d) sulfonation. The resulting silica-carbon composites contain ˜30 wt % of carbonaceous matter with a high density of acidic groups attached to the deposited carbon (i.e.sbnd SO3H, sbnd COOH and sbnd OH). The structural characteristics of the parent silica are retained in the composite materials, which exhibit a high surface area, a large pore volume and a well-ordered porosity made up uniform mesopores. The high density of the sulfonic groups in combination with the mesoporous structure of the composites ensures that a large number of active sites are easily accessible to reactants. These sulfonated silica-carbon composites behave as eco-friendly, active, selective, water tolerant and recyclable solid acids. In this study we demonstrate the usefulness of these composites as solid acid catalysts for the esterification of maleic anhydride, succinic acid and oleic acid with ethanol. These composites exhibit a superior intrinsic catalytic activity to other commercial solid acids such as Amberlyst-15.

  9. Multifunctional mesoporous silica catalyst

    DOEpatents

    Lin, Victor Shang-Yi; Tsai, Chih-Hsiang; Chen, Hung-Ting; Pruski, Marek; Kobayashi, Takeshi

    2015-03-31

    The present invention provides bifunctional silica mesoporous materials, including mesoporous silica nanoparticles ("MSN"), having pores modified with diarylammonium triflate and perfluoroaryl moieties, that are useful for the acid-catalyzed esterification of organic acids with organic alcohols.

  10. Study of the pluronic-silica interaction in synthesis of mesoporous silica under mild acidic conditions.

    PubMed

    Sundblom, Andreas; Palmqvist, Anders E C; Holmberg, Krister

    2010-02-02

    The interaction between silica and poly(ethylene oxide) (PEO) in water may appear trivial and it is generally stated that hydrogen bonding is responsible for the attraction. However, a literature search shows that there is not a consensus with respect to the mechanism behind the attractive interaction. Several papers claim that only hydrogen bonding is not sufficient to explain the binding. The silica-PEO interaction is interesting from an academic perspective and it is also exploited in the preparation of mesoporous silica, a material of considerable current interest. This study concerns the very early stage of synthesis of mesoporous silica under mild acidic conditions, pH 2-5, and the aim is to shed light on the interaction between silica and the PEO-containing structure directing agent. The synthesis comprises two steps. An organic silica source, tetraethylorthosilicate (TEOS), is first hydrolyzed and Pluronic P123, a poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymer, is subsequently added at different time periods following the hydrolysis of TEOS. It is shown that the interaction between the silica and the Pluronic is dependent both on the temperature and on the time between onset of TEOS hydrolysis and addition of the copolymer. The results show that the interaction is mainly driven by entropy. The effect of the synthesis temperature and of the time between hydrolysis and addition of the copolymer on the final material is also studied. The material with the highest degree of mesoorder was obtained when the reaction was performed at 20 degrees C and the copolymer was added 40 h after the start of TEOS hydrolysis. It is claimed that the reason for the good ordering of the silica is that whereas particle formation under these conditions is fast, the rate of silica condensation is relatively low.

  11. Novel Silica Nanostructured Platforms with Engineered Surface Functionality and Spherical Morphology for Low-Cost High-Efficiency Carbon Capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Cheng-Yu; Radu, Daniela R.; Pizzi, Nicholas

    Carbon capture is an integral part of the CO 2 mitigation efforts, and encompasses, among other measures, the demonstration of effective and inexpensive CO 2 capture technologies. The project demonstrated a novel platform—the amine-functionalized stellate mesoporous silica nanosphere (MSN)—for effective CO 2 absorption. The reported CO 2 absorption data are superior to the performance of other reported silica matrices utilized for carbon capture, featuring an amount of over 4 milimoles CO 2/g sorbent at low temperatures (in the range of 30-45 ºC), selected for simulating the temperature of actual flue gas. The reported platform is highly resilient, showing recyclability andmore » 85 % mass conservation of sorbent upon nine tested cycles. Importantly, the stellate MSNs show high CO 2 selectivity at room temperature, indicating that the presence of nitrogen in flue gas will not impair the CO 2 absorption performance. The results could lead to a simple and inexpensive new technology for CO 2 mitigation which could be implemented as measure of CO 2 mitigation in current fossil-fuel burning plants in the form of solid sorbent.« less

  12. Silica coatings on clarithromycin.

    PubMed

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  13. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-11-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.

  14. The Effect of Various Acids to the Gelation Process to the Silica Gel Characteristic Using Organic Silica

    NASA Astrophysics Data System (ADS)

    Rahman, NA; Widiyastuti, W.; Sigit, D.; Ajiza, M.; Sujana, W.

    2018-01-01

    Bagasse ash is solid waste of cane sugar industry which contain of silica more than 51%. Some previous study of silica gel from bagasse ash have been conducted often and been applied. This study concerns about the effect of various acid used in the process of gelation to the characteristic of silica gel produced. Then, this silica gel will be used as adsorbent. As that, the silica gel must fulfill the requirements of adsorbent, as have good pores characteristics, fit in mesoporous size so that adsorbent diffusion process is not disturbed. A fitted pores size of silica gel can be prepared by managing acid concentration used. The effect of acid, organic acid (tartaric acid) and inorganic acid (hydrochloric acid), is investigated in detail. The acid is added into sodium silicate solution in that the gel is formed, the pores structures can be investigated with BET, the crystal form is analyzed with XRD and the pore structure is analyzed visually with SEM. By managing the acid concentration added, it gets the effect of acid to the pore structure of silica gel. The bigger concentration is, the bigger the pore’s size of silica gel produced.

  15. The Phagocytosis and Toxicity of Amorphous Silica

    PubMed Central

    Costantini, Lindsey M.; Gilberti, Renée M.; Knecht, David A.

    2011-01-01

    Background Inhalation of crystalline silica is known to cause an inflammatory reaction and chronic exposure leads to lung fibrosis and can progress into the disease, silicosis. Cultured macrophages bind crystalline silica particles, phagocytose them, and rapidly undergo apoptotic and necrotic death. The mechanism by which particles are bound and internalized and the reason particles are toxic is unclear. Amorphous silica has been considered to be a less toxic form, but this view is controversial. We compared the uptake and toxicity of amorphous silica to crystalline silica. Methodology/Principal Findings Amorphous silica particles are phagocytosed by macrophage cells and a single internalized particle is capable of killing a cell. Fluorescent dextran is released from endo-lysosomes within two hours after silica treatment and Caspase-3 activation occurs within 4 hours. Interestingly, toxicity is specific to macrophage cell lines. Other cell types are resistant to silica particle toxicity even though they internalize the particles. The large and uniform size of the spherical, amorphous silica particles allowed us to monitor them during the uptake process. In mCherry-actin transfected macrophages, actin rings began to form 1-3 minutes after silica binding and the actin coat disassembled rapidly following particle internalization. Pre-loading cells with fluorescent dextran allowed us to visualize the fusion of phagosomes with endosomes during internalization. These markers provided two new ways to visualize and quantify particle internalization. At 37°C the rate of amorphous silica internalization was very rapid regardless of particle coating. However, at room temperature, opsonized silica is internalized much faster than non-opsonized silica. Conclusions/Significance Our results indicate that amorphous and crystalline silica are both phagocytosed and both toxic to mouse alveolar macrophage (MH-S) cells. The pathway leading to apoptosis appears to be similar in both

  16. Self-assembly of supramolecular triarylamine nanowires in mesoporous silica and biocompatible electrodes thereof.

    PubMed

    Licsandru, Erol-Dan; Schneider, Susanne; Tingry, Sophie; Ellis, Thomas; Moulin, Emilie; Maaloum, Mounir; Lehn, Jean-Marie; Barboiu, Mihail; Giuseppone, Nicolas

    2016-03-14

    Biocompatible silica-based mesoporous materials, which present high surface areas combined with uniform distribution of nanopores, can be organized in functional nanopatterns for a number of applications. However, silica is by essence an electrically insulating material which precludes applications for electro-chemical devices. The formation of hybrid electroactive silica nanostructures is thus expected to be of great interest for the design of biocompatible conducting materials such as bioelectrodes. Here we show that we can grow supramolecular stacks of triarylamine molecules in the confined space of oriented mesopores of a silica nanolayer covering a gold electrode. This addressable bottom-up construction is triggered from solution simply by light irradiation. The resulting self-assembled nanowires act as highly conducting electronic pathways crossing the silica layer. They allow very efficient charge transfer from the redox species in solution to the gold surface. We demonstrate the potential of these hybrid constitutional materials by implementing them as biocathodes and by measuring laccase activity that reduces dioxygen to produce water.

  17. Synthesis of High-Load, Hybrid Silica-Immobilized Heterocyclic Benzyl Phosphate (Si–OHBP) and Triazolyl Phosphate (Si–OHTP) Alkylating Reagents

    PubMed Central

    2016-01-01

    The development of new ROMP-derived silica-immobilized heterocyclic phosphate reagents and their application in purification-free protocols is reported. Grafting of norbornenyl norbornenyl-functionalized (Nb-tagged) silica particles with functionalized Nb-tagged heterocyclic phosphate monomers efficiently yield high-load, hybrid silica-immobilized oligomeric heterobenzyl phosphates (Si–OHBP) and heterotriazolyl phosphates (Si–OHTP) as efficient alkylation agents. Applications of these reagents for the diversification of N-, O-, and S-nucleophilic species, for efficient heterobenzylation and hetero(triazolyl)methylation have been validated. PMID:27300761

  18. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier.

    PubMed

    Lv, Yongjiu; Li, Jingjing; Chen, Huali; Bai, Yan; Zhang, Liangke

    2017-01-01

    In this study, a glycyrrhetinic acid-functionalized mesoporous silica nanoparticle (MSN-GA) was prepared for active tumor targeting. MSN-GA exhibited satisfactory loading capacity for insoluble drugs, uniform size distribution, and specific tumor cell targeting. Glycyrrhetinic acid, a hepatocellular carcinoma-targeting group, was covalently decorated on the surface of MSN via an amido bond. The successful synthesis of MSN-GA was validated by the results of Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and zeta potential measurement. TEM images revealed the spherical morphology and uniform size distribution of the naked MSN and MSN-GA. Curcumin (CUR), an insoluble model drug, was loaded into MSN-GA (denoted as MSN-GA-CUR) with a high-loading capacity (8.78%±1.24%). The results of the in vitro cellular experiment demonstrated that MSN-GA-CUR significantly enhanced cytotoxicity and cellular uptake toward hepatocellular carcinoma (HepG2) cells via a specific GA receptor-mediated endocytosis mechanism. The results of this study provide a promising nanoplatform for the targeting of hepatocellular carcinoma.

  19. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier

    PubMed Central

    Lv, Yongjiu; Li, Jingjing; Chen, Huali; Bai, Yan; Zhang, Liangke

    2017-01-01

    In this study, a glycyrrhetinic acid-functionalized mesoporous silica nanoparticle (MSN-GA) was prepared for active tumor targeting. MSN-GA exhibited satisfactory loading capacity for insoluble drugs, uniform size distribution, and specific tumor cell targeting. Glycyrrhetinic acid, a hepatocellular carcinoma-targeting group, was covalently decorated on the surface of MSN via an amido bond. The successful synthesis of MSN-GA was validated by the results of Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and zeta potential measurement. TEM images revealed the spherical morphology and uniform size distribution of the naked MSN and MSN-GA. Curcumin (CUR), an insoluble model drug, was loaded into MSN-GA (denoted as MSN-GA-CUR) with a high-loading capacity (8.78%±1.24%). The results of the in vitro cellular experiment demonstrated that MSN-GA-CUR significantly enhanced cytotoxicity and cellular uptake toward hepatocellular carcinoma (HepG2) cells via a specific GA receptor-mediated endocytosis mechanism. The results of this study provide a promising nanoplatform for the targeting of hepatocellular carcinoma. PMID:28652738

  20. Adsorption of Pb2+ on Thiol-functionalized Mesoporous Silica, SH-MCM-48

    NASA Astrophysics Data System (ADS)

    Taba, P.; Mustafa, R. D. P.; Ramang, L. M.; Kasim, A. H.

    2018-03-01

    Modification of mesoporous silica, MCM-48, by using 3- mercaptopropyltrimethoxysilane has been successfully conducted. MCM-48 and SH-MCM-48 were characterized using XRD and FTIR. SH-MCM-48 was used as an adsorbent of Pb2+ ions from solution. A number of Pb2+ ions adsorbed were studied as the function of time, pH, and concentration. The concentration of the ions after adsorption was determined by an Atomic Absorption Spectrophotometer. The removal of the adsorbed ions from the SH-MCM-48 was also studied using several desorbing agents. The result showed that the optimum time was 20 minutes and optimum pH was 4. The adsorption of Pb(II) ion followed the pseudo-second-order with the rate constant of 0,2632 g•mg-1•min-1. Adsorption of Pb(II) ion fitted the Langmuir isotherm with the adsorption capacity of 0,1088 mmol/g. The best desorbing agent to remove the adsorbed ion from SH-MCM-48 was 0.3 M HCl solution with the desorption percentage of 58.6%.

  1. Positively charged mini-protein Zbasic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports.

    PubMed

    Bolivar, Juan M; Nidetzky, Bernd

    2012-07-03

    Silica is a highly attractive support material for protein immobilization in a wide range of biotechnological and biomedical-analytical applications. Without suitable derivatization, however, the silica surface is not generally usable for attachment of proteins. We show here that Z(basic2) (a three α-helix bundle mini-protein of 7 kDa size that exposes clustered positive charges from multiple arginine residues on one side) functions as highly efficient silica binding module (SBM), allowing chimeras of target protein with SBM to become very tightly attached to underivatized glass at physiological pH conditions. We used two enzymes, d-amino acid oxidase and sucrose phosphorylase, to demonstrate direct immobilization of Z(basic2) protein from complex biological samples with extremely high selectivity. Immobilized enzymes displayed full biological activity, suggesting that their binding to the glass surface had occurred in a preferred orientation via the SBM. We also show that charge complementarity was the main principle of affinity between SBM and glass surface, and Z(basic2) proteins were bound in a very strong, yet fully reversible manner, presumably through multipoint noncovalent interactions. Z(basic2) proteins were immobilized on porous glass in a loading of 30 mg protein/g support or higher, showing that attachment via the SBM combines excellent binding selectivity with a technically useful binding capacity. Therefore, Z(basic2) and silica constitute a fully orthogonal pair of binding module and insoluble support for oriented protein immobilization, and this opens up new opportunities for the application of silica-based materials in the development of supported heterogeneous biocatalysts.

  2. Preparation of Metalloporphyrin-Bound Superparamagnetic Silica Particles via "Click" Reaction.

    PubMed

    Hollingsworth, Javoris V; Bhupathiraju, N V S Dinesh K; Sun, Jirun; Lochner, Eric; Vicente, M Graça H; Russo, Paul S

    2016-01-13

    A facile approach using click chemistry is demonstrated for immobilization of metalloporphyrins onto the surface of silica-coated iron oxide particles. Oleic-acid stabilized iron oxide nanocrystals were prepared by thermal decomposition of iron(III) acetylacetonate. Their crystallinity, morphology, and superparamagnetism were determined using X-ray diffraction, transmission electron microscopy, and a superconducting quantum interference device. Monodisperse core-shell particles were produced in the silica-coating of iron oxide via microemulsion synthesis. Surface modification of these particles was performed in two steps, which included the reaction of silica-coated iron oxide particles with 3-bromopropyltrichlorosilane, followed by azido-functionalization with sodium azide. Monoalkylated porphyrins were prepared using the Williamson ether synthesis of commercially available tetra(4-hydroxyphenyl) porphyrin with propargyl bromide in the presence of a base. (1)H NMR and matrix-assisted laser desorption ionization confirmed the identity of the compounds. The prepared monoalkyne porphyrins were zinc-metalated prior to their introduction to azide-functionalized, silica-coated iron oxide particles in the click reaction. X-ray photoelectron spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy were used to characterize the surface chemistry after each step in the reaction. In addition, particle size was determined using dynamic light scattering and microscopy. The presented methodology is versatile and can be extended to other photoreactive systems, such as phthalocyanines and boron-dipyrromethane, which may lead to new materials for optical, photonic, and biological applications.

  3. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact.

    PubMed

    Yang, Tian; Wang, Jinyuan; Pang, Yamei; Dang, Xiaomin; Ren, Hui; Liu, Ya; Chen, Mingwei; Shang, Dong

    2016-11-01

    Pulmonary silicosis is characterized by lung fibrosis, which leads to impairment of pulmonary function; the specific mechanism remains to be fully elucidated Emodin shows antifibrotic effects in several organs with fibrosis, however, it has not been investigated in pulmonary silicosis. In the present study, the possible mechanism of lung fibrosis and the antifibrotic effect of emodin in silica inhalation‑induced lung fibrosis were investigated. Pulmonary silica particle inhalation was used to induce lung fibrosis in mice. Emodin and or the sirtuin 1 (Sirt1) inhibitor, nicotinamide, were used to treat the modeled animals. Pulmonary function was assessed using an occlusion method. The deposition of collagen I and α‑smooth muscle actin (SMA) in the lung tissue were detected using fluorescence staining; transforming growth factor‑β1 (TGF‑β1) in the bronchoalveolar lavage fluid (BALF) was examined using an enzyme‑linked immunosorbent assay; TGF-β1/Sirt1/small mothers against decapentaplegic (Smad) signaling activation in lung tissue was also examined. The molecular contacts between emodin were evaluated using liquid chromatography‑mass spectrometry analysis. The deposition of collagen I and α‑SMA in lung tissues were found to be elevated following silica exposure, however, this was relieved by emodin treatment. The pulmonary function of the animals was impaired by silica inhalation, and this was improved by emodin administration. However, the therapeutic effects of emodin on lung fibrosis were impaired by nicotinamide administration. The levels of TGF‑β1 in the BALF and lung tissue were elevated by silica inhalation, however, they were not affected by either emodin or nicotinamide treatment. Additionally, emodin was found to increase the expression level of Sirt1, which decreased the level of deacetylated Smad3 to attenuate collagen deposition. Furthermore, the data suggested that there was direct binding between emodin and Sirt1. Sirt1

  4. Emodin suppresses silica-induced lung fibrosis by promoting Sirt1 signaling via direct contact

    PubMed Central

    Yang, Tian; Wang, Jinyuan; Pang, Yamei; Dang, Xiaomin; Ren, Hui; Liu, Ya; Chen, Mingwei; Shang, Dong

    2016-01-01

    Pulmonary silicosis is characterized by lung fibrosis, which leads to impairment of pulmonary function; the specific mechanism remains to be fully elucidated Emodin shows antifibrotic effects in several organs with fibrosis, however, it has not been investigated in pulmonary silicosis. In the present study, the possible mechanism of lung fibrosis and the antifibrotic effect of emodin in silica inhalation-induced lung fibrosis were investigated. Pulmonary silica particle inhalation was used to induce lung fibrosis in mice. Emodin and or the sirtuin 1 (Sirt1) inhibitor, nicotinamide, were used to treat the modeled animals. Pulmonary function was assessed using an occlusion method. The deposition of collagen I and α-smooth muscle actin (SMA) in the lung tissue were detected using fluorescence staining; transforming growth factor-β1 (TGF-β1) in the bronchoalveolar lavage fluid (BALF) was examined using an enzyme-linked immunosorbent assay; TGF-β1/Sirt1/small mothers against decapentaplegic (Smad) signaling activation in lung tissue was also examined. The molecular contacts between emodin were evaluated using liquid chromatography-mass spectrometry analysis. The deposition of collagen I and α-SMA in lung tissues were found to be elevated following silica exposure, however, this was relieved by emodin treatment. The pulmonary function of the animals was impaired by silica inhalation, and this was improved by emodin administration. However, the therapeutic effects of emodin on lung fibrosis were impaired by nicotinamide administration. The levels of TGF-β1 in the BALF and lung tissue were elevated by silica inhalation, however, they were not affected by either emodin or nicotinamide treatment. Additionally, emodin was found to increase the expression level of Sirt1, which decreased the level of deacetylated Smad3 to attenuate collagen deposition. Furthermore, the data suggested that there was direct binding between emodin and Sirt1. Sirt1-regulated TGF-β1/Smad

  5. Coupling Reagent for UV/vis Absorbing Azobenzene-Based Quantitative Analysis of the Extent of Functional Group Immobilization on Silica.

    PubMed

    Choi, Ra-Young; Lee, Chang-Hee; Jun, Chul-Ho

    2018-05-18

    A methallylsilane coupling reagent, containing both a N-hydroxysuccinimidyl(NHS)-ester group and a UV/vis absorbing azobenzene linker undergoes acid-catalyzed immobilization on silica. Analysis of the UV/vis absorption band associated with the azobenzene group in the adduct enables facile quantitative determination of the extent of loading of the NHS groups. Reaction of NHS-groups on the silica surface with amine groups of GOx and rhodamine can be employed to generate enzyme or dye-immobilized silica for quantitative analysis.

  6. In-situ fabrication of halloysite nanotubes/silica nano hybrid and its application in unsaturated polyester resin

    NASA Astrophysics Data System (ADS)

    Lin, Jing; Zhong, Bangchao; Jia, Zhixin; Hu, Dechao; Ding, Yong; Luo, Yuanfang; Jia, Demin

    2017-06-01

    Silica nanoparticles was in-situ grown on the surface of halloysite nanotubes (HNTs) by a facile one-step approach to prepare a unique nano-structured hybrid (HNTs-g-Silica). The structure, morphology and composition of HNTs-g-Silica were investigated. It was confirmed that silica nanoparticles with the diameter of 10-20 nm were chemically grafted through Sisbnd O bonds and uniformly dispersed onto the surface of HNTs, leading to the formation of nano-protrusions on the nanotube surface. Due to the significantly improved interface strength between HNTs-g-Silica and polymer matrix, HNTs-g-Silica effectively toughened unsaturated polyester resin (UPE) and endowed UPE with superior thermal stability compared to HNTs. Based on the unique hybrid architecture and the improved properties of UPE nanocomposites, it is envisioned that HNTs-g-Silica may be a promising filler for more high performance and functional polymers composites and the fabrication method may have implications in the synthesis of nano hybrid materials.

  7. Nickel Ferrite Nanoparticles Anchored onto Silica Nanofibers for Designing Magnetic and Flexible Nanofibrous Membranes.

    PubMed

    Hong, Feifei; Yan, Chengcheng; Si, Yang; He, Jianxin; Yu, Jianyong; Ding, Bin

    2015-09-16

    Many applications proposed for magnetic silica nanofibers require their assembly into a cellular membrane structure. The feature to keep structure stable upon large deformation is crucial for a macroscopic porous material which functions reliably. However, it remains a key issue to realize robust flexibility in two-dimensional (2D) magnetic silica nanofibrous networks. Here, we report that the combination of electrospun silica nanofibers with zein dip-coating can lead to the formation of flexible, magnetic, and hierarchical porous silica nanofibrous membranes (SNM). The 290 nm diameter silica nanofibers act as templates for the uniform anchoring of nickel ferrite nanoparticles (size of 50 nm). Benefiting from the homogeneous and stable nanofiber-nanoparticle composite structure, the resulting magnetic SNM can maintain their structure integrity under repeated bending as high as 180° and can facilely recover. The unique hierarchical structure also provides this new class of silica membrane with integrated properties of ultralow density, high porosity, large surface area, good magnetic responsiveness, robust dye adsorption capacity, and effective emulsion separation performance. Significantly, the synthesis of such fascinating membranes may provide new insight for further application of silica in a self-supporting, structurally adaptive, and 2D membrane form.

  8. Assistant template and co-template agents in modeling mesoporous silicas and post-synthesizing organofunctionalizations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliveira, Vaeudo V.; Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br

    2012-12-15

    Mesoporous SBA-16 silicas were synthesized through a direct methodology using the template (F127) combined with co-templates (ethanol and n-butanol), with tetraethylorthosilicate as the silica source. These ordered mesoporous silica were characterized by elemental analyses, infrared spectroscopy, solid-state nuclear magnetic resonance for {sup 13}C (CP/MAS) and {sup 29}Si (HP/DEC) nuclei, nitrogen sorption/desorption processes, small angle X-ray analyses (SAXS) and transmission electron microscopy (TEM). SAXS and TEM results confirmed the space group Im3m and cubic 3D symmetry, typical for highly ordered SBA-16. The sorption/desorption data for SBA-16 and when functionalized gave type IV isotherms, with hysteresis loop H2. Surface areas of 836;more » 657 and 618 m{sup 2} g{sup -1} and average pore diameters of 7.99; 8.10 and 9.85 nm, for SBA-16A, SBA-16B and SBA-16C were obtained, respectively. When functionalized the silicas presented a reduction in surface area, pore volume and pore diameter due to the pendant chains that interfere with nitrogen sorption in these measurements. The co-template ethanol favors the ordered mesopores with highest wall thicknesses. - Graphical Abstract: The mesoporous SBA-16 can be synthesized from binary (F127/TEOS) or ternary (F127/alcohol/TEOs) systems to give well-ordered mesoporous silicas. The co-templates ethanol or butanol gave the final material with highest wall thickness, mainly with ethanol. After these syntheses the pores were successfully organofunctionalized to give a good incorporation of the silylating agents. The final silicas presented of well-arranged solid characteristics as expressing by three distinct peaks, as indexed by the corresponding planes. Highlights: Black-Right-Pointing-Pointer Syntheses of mesoporous silicas by using ternary (F127/agent/TEOS) and binary (F127/TEOS) systems. Black-Right-Pointing-Pointer Use of co-templates to synthesize mesoporous silicas with larger wall thicknesses. Black

  9. Thermally stable silica-coated hydrophobic gold nanoparticles.

    PubMed

    Kanehara, Masayuki; Watanabe, Yuka; Teranishi, Toshiharu

    2009-01-01

    We have successfully developed a method for silica coating on hydrophobic dodecanethiol-protected Au nanoparticles with coating thickness ranging from 10 to 40 nm. The formation of silica-coated Au nanoparticles could be accomplished via the preparation of hydrophilic Au nanoparticle micelles by cationic surfactant encapsulation in aqueous phase, followed by hydrolysis of tetraethylorthosilicate on the hydrophilic surface of gold nanoparticle micelles. Silica-coated Au nanoparticles exhibited quite high thermal stability, that is, no agglomeration of the Au cores could be observed after annealing at 600 degrees C for 30 min. Silica-coated Au nanoparticles could serve as a template to derive hollow nanoparticles. An addition of NaCN solution to silica-coated Au nanoparticles led the formation of hollow silica nanoparticles, which were redispersible in deionized water. The formation of the hollow silica nanoparticles results from the mesoporous structures of the silica shell and such a mesoporous structure is applicable to both catalyst support and drug delivery.

  10. Silica nanoparticle stability in biological media revisited.

    PubMed

    Yang, Seon-Ah; Choi, Sungmoon; Jeon, Seon Mi; Yu, Junhua

    2018-01-09

    The stability of silica nanostructure in the core-silica shell nanomaterials is critical to understanding the activity of these nanomaterials since the exposure of core materials due to the poor stability of silica may cause misinterpretation of experiments, but unfortunately reports on the stability of silica have been inconsistent. Here, we show that luminescent silver nanodots (AgNDs) can be used to monitor the stability of silica nanostructures. Though relatively stable in water and phosphate buffered saline, silica nanoparticles are eroded by biological media, leading to the exposure of AgNDs from AgND@SiO 2 nanoparticles and the quenching of nanodot luminescence. Our results reveal that a synergistic effect of organic compounds, particularly the amino groups, accelerates the erosion. Our work indicates that silica nanostructures are vulnerable to cellular medium and it may be possible to tune the release of drug molecules from silica-based drug delivery vehicles through controlled erosion.

  11. Effect of Siloxane Ring Strain and Cation Charge Density on the Formation of Coordinately Unsaturated Metal Sites on Silica: Insights from Density Functional Theory (DFT) Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Ujjal; Zhang, Guanghui; Hu, Bo

    2015-10-28

    Amorphous silica (SiO 2) is commonly used as a support in heterogeneous catalysis. However, due to the structural disorder and temperature induced change of surface morphology, the structures of silica supported metal catalysts are difficult to determine. Most studies are primarily focused on understanding the interactions of different types of surface hydroxyl groups with metal ions. In comparison, the effect of siloxane ring size on the structure of silica supported metal catalysts and how it affects catalytic activity is poorly understood. Here, we have used density functional theory calculations to understand the effect of siloxane ring strain on structure andmore » activity of different monomeric Lewis acid metal sites on silica. In particular, we have found that large siloxane rings favor strong dative bonding interaction between metal ion and surface hydroxyls, leading to the formation of high-coordinate metal sites. In comparison, metal-silanol interaction is weak in small siloxane rings, resulting in low-coordinate metal sites. The physical origin of this size dependence is associated with siloxane ring strain, and, a correlation between metal-silanol interaction energy and ring strain energy has been observed. In addition to ring strain, the strength of the metal-silanol interaction also depends on the positive charge density of the cations. In fact, a correlation also exists between metal-silanol interaction energy and charge density of several first-row transition and post-transition metals. The theoretical results are compared with the EXAFS data of monomeric Zn(II) and Ga(III) ions grafted on silica. In conclusion, the molecular level insights of how metal ion coordination on silica depends on siloxane ring strain and cation charge density will be useful in the synthesis of new catalysts.« less

  12. Synthesis of highly stable cyanine-dye-doped silica nanoparticle for biological applications

    NASA Astrophysics Data System (ADS)

    Lian, Ying; Ding, Long-Jiang; Zhang, Wei; Zhang, Xiao-ai; Zhang, Ying-Lu; Lin, Zhen-zhen; Wang, Xu-dong

    2018-07-01

    Cyanine dyes are widely used in biological labeling and imaging because of their narrow near infrared emission, good brightness and high flexibility in functionalization, which not only enables multiplex analysis and multi-color imaging, but also greatly reduces autofluorescence from biological matter and increases signal-to-noise ratio. Unfortunately, their poor chemical- and photo-stability strongly limits their applications. The incorporation of cyanine dyes in silica nanoparticles provides a solution to the problem. On one hand, the incorporation of cyanine dyes in silica matrix can enhance their chemical- and photo-stability and increase brightness of the nanomaterials. On the other hand, silica matrix provides an optimized condition to host the dye, which helps to maintain their fluorescent properties during application. In addition, the well-established silane technique provides numerous functionalities for diverse applications. However, commercially available cyanine dyes are not very stable at high alkaline conditions, which will gradually lose their fluorescence over time. Our results showed that cyanine dyes are very vulnerable in the reverse micelle system, in which they will lose their fluorescence in less than half an hour. The existence of surfactant could greatly promote degradation of cyanine dyes. Fluorescent silica nanoparticles cannot be obtained at the high alkaline condition with the existence of surfactant. In contrast, the cyanine dyes are relatively stable in Stöber media. Owing to the fast formation of silica particles in Stöber media, the exposure time of cyanine dye in alkaline solution was greatly reduced, and highly fluorescent particles with good morphology and size distribution could be obtained via Stöber approach. However, the increasing water content in the Stöber could reduce the stability of cyanine dyes, which should be avoided. This research here provides a clear guidance on how to successfully synthesize cyanine dye

  13. Multistage Polymeric Lens Structures Integrated into Silica Waveguides

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2006-08-01

    A waveguide lens, composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and a low-loss structure has been designed. A waveguide lens in a silica slab waveguide has been fabricated using reactive ion etching (RIE) and formed by filling with polymer. Both an imagding optical system and a Fourier-transform optical system can be configured in a PLC using a waveguide lens. It renders the PLC functional and its design flexible. To obtain a shorter focal length with a low insertion loss, it is more effective to use a multistage lens structure. An imaging optical system and a Fourier-transform optical system with a focal length of less than 1000 μm were fabricated in silica waveguides using a multistage lens structure. The lens imaging waveguides incorporate a 16-24-stage lens, with insertion losses of 4-7 dB. A 4 × 4 optical coupler, using a Fourier-transform optical system, utilizes a 6-stage lens with losses of 2-4 dB.

  14. Removal of dissolved and colloidal silica

    DOEpatents

    Midkiff, William S.

    2002-01-01

    Small amorphous silica particles are used to provide a relatively large surface area upon which silica will preferentially adsorb, thereby preventing or substantially reducing scaling caused by deposition of silica on evaporative cooling tower components, especially heat exchange surfaces. The silica spheres are contacted by the cooling tower water in a sidestream reactor, then separated using gravity separation, microfiltration, vacuum filtration, or other suitable separation technology. Cooling tower modifications for implementing the invention process have been designed.

  15. Insight into the adsorption of tetracycline onto amino and amino-Fe3+ gunctionalized mesoporous silica: Effect of functionalized groups.

    PubMed

    Zhang, Ziyang; Li, Haiyan; Liu, Huijuan

    2018-03-01

    In order to study the influences of functionalized groups onto the adsorption of tetracycline, we prepared a series of amino and amino-Fe 3+ complex mesoporous silica adsorbents with diverse content of amino and Fe 3+ groups (named N,N-SBA15 and Fe-N,N-SBA15). The resulting mesoporous silica adsorbents were fully characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and N 2 adsorption/desorption isotherms. Furthermore, the effects of functionalized groups on the removal of TC were investigated. The results showed that the periodic ordered structure of SBA-15 was maintained after modification of amino/Fe 3+ groups. The functionalized amino groups decreased the adsorption capacity while the coordinated Fe 3+ increased the adsorption capacity. The adsorption kinetics of TC fitted pseudo-second-order model well and the equilibrium was achieved quickly. The adsorption isotherms fitted the Langmuir model well and with the Fe 3+ content increased from 3.93% to 8.26%, the Q max of the adsorbents increased from 102 to 188mmol/kg. The solution pH affected the adsorption of TC onto amino complex adsorbents slightly while influenced the adsorption onto Fe-amine complex adsorbents greatly. The adsorption of TC on SBA15 and N,N-SBA15 may be related to the formation of outer-sphere surface complexes, while the adsorption of TC onto Fe-N,N-SBA15 was mainly attributed to the inner-sphere surface complexes. This study could offer potential materials that have excellent adsorption behavior for environmental remediation and suggested useful information for the preparing other adsorbents in environmental applications. Copyright © 2017. Published by Elsevier B.V.

  16. Silica removal in industrial effluents with high silica content and low hardness.

    PubMed

    Latour, Isabel; Miranda, Ruben; Blanco, Angeles

    2014-01-01

    High silica content of de-inked paper mill effluents is limiting their regeneration and reuse after membrane treatments such as reverse osmosis (RO). Silica removal during softening processes is a common treatment; however, the effluent from the paper mill studied has a low hardness content, which makes the addition of magnesium compounds necessary to increase silica removal. Two soluble magnesium compounds (MgCl₂∙6H₂O and MgSO₄∙7H₂O) were tested at five dosages (250-1,500 mg/L) and different initial pH values. High removal rates (80-90%) were obtained with both products at the highest pH tested (11.5). With these removal efficiencies, it is possible to work at high RO recoveries (75-85%) without silica scaling. Although pH regulation significantly increased the conductivity of the waters (at pH 11.5 from 2.1 to 3.7-4.0 mS/cm), this could be partially solved by using Ca(OH)₂ instead of NaOH as pH regulator (final conductivity around 3.0 mS/cm). Maximum chemical oxygen demand (COD) removal obtained with caustic soda was lower than with lime (15 vs. 30%). Additionally, the combined use of a polyaluminum coagulant during the softening process was studied; the coagulant, however, did not significantly improve silica removal, obtaining a maximum increase of only 10%.

  17. Mesostructured Hydrophobic-Oleophobic Silica Films for Sustained Functionality in Tribological Environments

    NASA Astrophysics Data System (ADS)

    Kessman, Aaron J.

    The primary goal of this research was to synthesize water- and oil-repellent coatings that offer sustained functionality and durability. Engineered low surface energy materials generally suffer from a lack of mechanical robustness, which makes them susceptible to damage by abrasive wear. Fluorinated silanes are often combined with alkoxide precursors via sol-gel co-condensation to create coatings with high hardness and good substrate adhesion. However, a common problem with these materials is that the organic moieties that provide low surface energy also become surface segregated and highly concentrated at the solid-air interface. With such a structure, mechanical removal of the top surface by abrasion, for example, reveals subsurface areas that are then much less concentrated in terms of functional chemistry. The material developed in this study was designed to overcome this problem by means of a tailored and templated mesostructure that effectively encapsulated the low surface energy functional moieties, and thus achieves sustained functionality during abrasive wear. This material, applied as a thin coating to a variety of substrates, has the potential to reduce waste and pollution and the environmental degradation of materials and structures. Improving the performance of such materials can benefit a wide variety of applications. These include optoelectronic devices including photovoltaic panels; automobile and aircraft; architectural structures; the chemical, food, and medical industries for hygienic and anti-fouling requirements; textiles; and household applications. This approach has further implications in areas such as boundary lubrication and drug delivery systems. Hydrophobic-oleophobic mesoporous fluorinated silica films were synthesized via sol-gel co-condensation and coated on glass substrates. Fluorosilane and surfactant template concentrations were varied to elucidate the effect of organic functionality and porosity on performance. Structural

  18. Cryogenic colocalization microscopy for nanometer-distance measurements.

    PubMed

    Weisenburger, Siegfried; Jing, Bo; Hänni, Dominik; Reymond, Luc; Schuler, Benjamin; Renn, Alois; Sandoghdar, Vahid

    2014-03-17

    The main limiting factor in spatial resolution of localization microscopy is the number of detected photons. Recently we showed that cryogenic measurements improve the photostability of fluorophores, giving access to Angstrom precision in localization of single molecules. Here, we extend this method to colocalize two fluorophores attached to well-defined positions of a double-stranded DNA. By measuring the separations of the fluorophore pairs prepared at different design positions, we verify the feasibility of cryogenic distance measurement with sub-nanometer accuracy. We discuss the important challenges of our method as well as its potential for further improvement and various applications.

  19. Post‐mortem oxygen isotope exchange within cultured diatom silica

    PubMed Central

    Sloane, Hilary J.; Rickaby, Rosalind E.M.; Cox, Eileen J.; Leng, Melanie J.

    2017-01-01

    Rationale Potential post‐mortem alteration to the oxygen isotope composition of biogenic silica is critical to the validity of palaeoclimate reconstructions based on oxygen isotope ratios (δ18O values) from sedimentary silica. We calculate the degree of oxygen isotope alteration within freshly cultured diatom biogenic silica in response to heating and storing in the laboratory. Methods The experiments used freshly cultured diatom silica. Silica samples were either stored in water or dried at temperatures between 20 °C and 80 °C. The mass of affected oxygen and the associated silica‐water isotope fractionation during alteration were calculated by conducting parallel experiments using endmember waters with δ18O values of −6.3 to −5.9 ‰ and −36.3 to −35.0 ‰. Dehydroxylation and subsequent oxygen liberation were achieved by stepwise fluorination with BrF5. The 18O/16O ratios were measured using a ThermoFinnigan MAT 253 isotope ratio mass spectrometer. Results Significant alterations in silica δ18O values were observed, most notably an increase in the δ18O values following drying at 40–80 °C. Storage in water for 7 days between 20 and 80 °C also led to significant alteration in δ18O values. Mass balance calculations suggest that the amount of affected oxygen is positively correlated with temperature. The estimated oxygen isotope fractionation during alteration is an inverse function of temperature, consistent with the extrapolation of models for high‐temperature silica‐water oxygen isotope fractionation. Conclusions Routinely used preparatory methods may impart significant alterations to the δ18O values of biogenic silica, particularly when dealing with modern cultured or field‐collected material. The significance of such processes within natural aquatic environments is uncertain; however, there is potential that similar processes also affect sedimentary diatoms, with implications for the interpretation of biogenic silica‐hosted δ18O

  20. Process for Preparing Epoxy-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann B (Inventor)

    2016-01-01

    One-pot reaction process for preparing epoxy-reinforced monolithic silica aerogels comprising the reaction of at least one silicon compound selected from the group consisting of alkoxysilanes, orthosilicates and combination thereof in any ratio with effective amounts of an epoxy monomer and an aminoalkoxy silane to obtain an epoxy monomer-silica sol in solution, subsequently preparing an epoxy-monomer silica gel from said silica sol solution followed by initiating polymerization of the epoxy monomer to obtain the epoxy-reinforced monolithic silica aerogel.

  1. Tracing temperature in a nanometer size region in a picosecond time period.

    PubMed

    Nakajima, Kaoru; Kitayama, Takumi; Hayashi, Hiroaki; Matsuda, Makoto; Sataka, Masao; Tsujimoto, Masahiko; Toulemonde, Marcel; Bouffard, Serge; Kimura, Kenji

    2015-08-21

    Irradiation of materials with either swift heavy ions or slow highly charged ions leads to ultrafast heating on a timescale of several picosecond in a region of several nanometer. This ultrafast local heating result in formation of nanostructures, which provide a number of potential applications in nanotechnologies. These nanostructures are believed to be formed when the local temperature rises beyond the melting or boiling point of the material. Conventional techniques, however, are not applicable to measure temperature in such a localized region in a short time period. Here, we propose a novel method for tracing temperature in a nanometer region in a picosecond time period by utilizing desorption of gold nanoparticles around the ion impact position. The feasibility is examined by comparing with the temperature evolution predicted by a theoretical model.

  2. One-Pot Fabrication of Antireflective/Antibacterial Dual-Function Ag NP-Containing Mesoporous Silica Thin Films.

    PubMed

    Wang, Kaikai; He, Junhui

    2018-04-04

    Thin films that integrate antireflective and antibacterial dual functions are not only scientifically interesting but also highly desired in many practical applications. Unfortunately, very few studies have been devoted to the preparation of thin films with both antireflective and antibacterial properties. In this study, mesoporous silica (MSiO 2 ) thin films with uniformly dispersed Ag nanoparticles (Ag NPs) were prepared through a one-pot process, which simultaneously shows high transmittance, excellent antibacterial activity, and mechanical robustness. The optimal thin-film-coated glass substrate demonstrates a maximum transmittance of 98.8% and an average transmittance of 97.1%, respectively, in the spectral range of 400-800 nm. The growth and multiplication of typical bacteria, Escherichia coli ( E. coli), were effectively inhibited on the coated glass. Pencil hardness test, tape adhesion test, and sponge washing test showed favorable mechanical robustness with 5H pencil hardness, 5A grade adhesion, and functional durability of the coating, which promises great potential for applications in various touch screens, windows for hygiene environments, and optical apparatuses for medical uses such as endoscope, and so on.

  3. Secondary structure and dynamics study of the intrinsically disordered silica-mineralizing peptide P 5 S 3 during silicic acid condensation and silica decondensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zerfaß, Christian; Buchko, Garry W.; Shaw, Wendy J.

    The silica forming repeat R5 of sil1 from Cylindrotheca fusiformis was the blueprint for the design of P5S3, a 50-residue peptide which can be produced in large amounts by recombinant bacterial expression. It contains five protein kinase A target sites and is highly cationic due to 10 lysine and 10 arginine residues. In the presence of supersaturated ortho silicic acid P5S3 strongly enhances silica-formation whereas it retards the dissolution of amorphous silica (SiO2) at globally undersaturated concentrations. The secondary structure of P5S3 during these different functions was studied by circular dichroism (CD), complemented by nuclear magnetic resonance (NMR) studies ofmore » the peptide in the absence of silicate. The NMR studies of dual-labeled (13C, 15N) P5S3 revealed a disordered structure at pH 2.8 and 4.5. Within the pH range of 4.5 to 9.5, the CD data verified the disordered secondary structure but also suggested the presence of some polyproline II character in the absence of silicic acid. Upon silicic acid polymerization and during dissolution of preformed silica, the CD spectrum of P5S3 indicated partial transition into an α-helical conformation which was transient during silica-dissolution. Consequently, the secondary structural changes observed for P5S3 correlate with the presence of oli-gomeric/polymeric silicic acid, presumably due to P5S3-silicic acid interactions. These interactions appear, at least in part, ionic in nature since dodecylsulfate micelles, which are negatively charged, cause similar conformational shifts to P5S3 in the absence of silica while ß-D-dodecyl maltoside micelles, which are neutral, do not. Thus, P5S3 influences both the condensation of silicic acid into silica and its decondensation back to silicic acid. Moreover, the dynamics of these pro-cesses may be indirectly monitored by following structural changes to P5S3 with CD spectroscopy.« less

  4. Design, production, and characterization of artificial protein- and silica-based biomaterials

    NASA Astrophysics Data System (ADS)

    Marner, Wesley Darrell, II

    feature sizes on the order of nanometers. C. fusiformis mediates the deposition of these silica features using a family of peptides called silaffins. Silaffin peptides are generally short peptides (˜15 amino acids) rich in lysine residues, and these peptides often have post-translational modifications that include polyamine chains and phosphate groups. In vitro, the silaffin R5 has been shown to direct the deposition of silica to form spheres of uniform size. The silification and self-assembly characteristics of a silaffin-protein polymer chimera were investigated using a chemically synthesized fusion protein of the R5 silaffin and (EAK)1. The fusion protein is capable of self-assembly into fibrous hydrogels and still exhibits autosilification activity. While the silica spheres formed from R5 alone have a relatively uniform diameter (466+/-64nm), the size distribution of silica spheres formed by the chimera is bimodal (83+/-20nm and 463+/-78nm), indicating that the addition of the EAK domain is modulating the silification ability of the R5 peptide. It is also possible to modify the morphology of the matrix by changing the process conditions under which the silification occurs. Given the ability of protein polymers to self-assemble into a variety of matrix morphologies, the combination of silaffin peptides with self-assembling protein elements may provide an even greater range of available silica structures that are useful in an array of applications. Another use of the silaffin technology is in the generation of immobilized enzyme matrices. Immobilized enzyme systems often demonstrate greater stability and improved productivity over their soluble enzyme counterparts, and there is great interest in creating new routes to encapsulation of various enzymes. In these studies, the R5 silaffin was expressed as a translational fusion protein with four biomolecules (green fluorescent protein, phosphodiesterase, organophosphate hydrolase, and the cytochrome P450BM3). In each case

  5. Molecular insights into the progression of crystalline silica-induced pulmonary toxicity in rats.

    PubMed

    Sellamuthu, Rajendran; Umbright, Christina; Roberts, Jenny R; Cumpston, Amy; McKinney, Walter; Chen, Bean T; Frazer, David; Li, Shengqiao; Kashon, Michael; Joseph, Pius

    2013-04-01

    Identification of molecular target(s) and mechanism(s) of silica-induced pulmonary toxicity is important for the intervention and/or prevention of diseases associated with exposure to silica. Rats were exposed to crystalline silica by inhalation (15 mg m(-3), 6 h per day, 5 days) and global gene expression profile was determined in the lungs by microarray analysis at 1, 2, 4, 8 and 16 weeks following termination of silica exposure. The number of significantly differentially expressed genes (>1.5-fold change and <0.01 false discovery rate P-value) detected in the lungs during the post-exposure time intervals analyzed exhibited a steady increase in parallel with the progression of silica-induced pulmonary toxicity noticed in the rats. Quantitative real-time PCR analysis of a representative set of 10 genes confirmed the microarray findings. The number of biological functions, canonical pathways and molecular networks significantly affected by silica exposure, as identified by the bioinformatics analysis of the significantly differentially expressed genes detected during the post-exposure time intervals, also exhibited a steady increase similar to the silica-induced pulmonary toxicity. Genes involved in oxidative stress, inflammation, respiratory diseases, cancer, and tissue remodeling and fibrosis were significantly differentially expressed in the rat lungs; however, unresolved inflammation was the single most significant biological response to pulmonary exposure to silica. Excessive mucus production, as implicated by significant overexpression of the pendrin coding gene, SLC26A4, was identified as a potential novel mechanism for silica-induced pulmonary toxicity. Collectively, the findings of our study provided insights into the molecular mechanisms underlying the progression of crystalline silica-induced pulmonary toxicity in the rat. Published 2012. This article is a US Government work and is in the public domain in the USA. Published 2012. This article is a US

  6. Tunable thick porous silica coating fabricated by multilayer-by-multilayer bonding of silica nanoparticles for open-tubular capillary chromatographic separation.

    PubMed

    Qu, Qishu; Liu, Yuanyuan; Shi, Wenjun; Yan, Chao; Tang, Xiaoqing

    2015-06-19

    A simple coating procedure employing a multilayer-by-multilayer process to modify the inner surface of bare fused-silica capillaries with silica nanoparticles was established. The silica nanoparticles were adsorbed onto the capillary wall via a strong electrostatic interaction between amino functional groups and silica particles. The thickness of the coating could be tuned from 130 to 600 nm by increasing the coating cycles from one to three. Both the retention factor and the resolution were greatly increased with increasing coating cycles. The loading capacity determined by naphthalene in the column with three coating cycles is 152.1 pmol. The effects of buffer concentration and pH value on the stability of the coating were evaluated. The retention reproducibility of the separation of toluene was 0.8, 1.2, 2.3, and 4.5%, respectively, for run-to-run, day-to-day, column-to-column, and batch-to-batch, respectively. The chromatographic performance of these columns was evaluated by both capillary liquid chromatography and open-tubular capillary electrochromatography (OT-CEC). Separation of aromatic hydrocarbons in the column with three coating cycles provided high theoretical plate numbers (up to 269,280 plates m(-1) for toluene) and short separation time (<15 min) by using OT-CEC mode. The method was also used to separate egg white proteins. Both acidic and basic proteins as well as four glycoisoforms were separated in a single run. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Controlled release of ibuprofen by meso–macroporous silica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santamaría, E., E-mail: esthersantamaria@ub.edu; Maestro, A.; Porras, M.

    2014-02-15

    Structured meso–macroporous silica was successfully synthesized from an O/W emulsion using decane as a dispersed phase. Sodium silicate solution, which acts as a silica source and a poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide) (EO{sub 19}PO{sub 39}EO{sub 19}) denoted as P84 was used in order to stabilize the emulsion and as a mesopore template. The materials obtained were characterized through transmission electron microscopy (TEM), scanning electron microscopy (SEM), small-angle X-ray diffraction scattering (SAXS) and nitrogen adsorption–desorption isotherms. Ibuprofen (IBU) was selected as the model drug and loaded into ordered meso–macroporous materials. The effect of the materials’ properties on IBU drug loading and releasemore » was studied. The results showed that the loading of IBU increases as the macropore presence in the material is increased. The IBU adsorption process followed the Langmuir adsorption isotherm. A two-step release process, consisting of an initial fast release and then a slower release was observed. Macropores enhanced the adsorption capacity of the material; this was probably due to the fact that they allowed the drug to access internal pores. When only mesopores were present, ibuprofen was probably adsorbed on the mesopores close to the surface. Moreover, the more macropore present in the material, the slower the release behaviour observed, as the ibuprofen adsorbed in the internal pores had to diffuse along the macropore channels up to the surface of the material. The material obtained from a highly concentrated emulsion was functionalized with amino groups using two methods, the post-grafting mechanism and the co-condensation mechanism. Both routes improve IBU adsorption in the material and show good behaviour as a controlled drug delivery system. - Graphical abstract: Ibuprofen release profiles for the materials obtained from samples P84{sub m}eso (black diamonds), P84{sub 2}0% (white squares), P84

  8. Carbothermal transformation of a graphitic carbon nanofiber/silica aerogel composite to a SiC/silica nanocomposite.

    PubMed

    Lu, Weijie; Steigerwalt, Eve S; Moore, Joshua T; Sullivan, Lisa M; Collins, W Eugene; Lukehart, C M

    2004-09-01

    Carbon nanofiber/silica aerogel composites are prepared by sol-gel processing of surface-enhanced herringbone graphitic carbon nanofibers (GCNF) and Si(OMe)4, followed by supercritical CO2 drying. Heating the resulting GCNF/silica aerogel composites to 1650 degrees C under a partial pressure of Ar gas initiates carbothermal reaction between the silica aerogel matrix and the carbon nanofiber component to form SiC/silica nanocomposites. The SiC phase is present as nearly spherical nanoparticles, having an average diameter of ca. 8 nm. Formation of SiC is confirmed by powder XRD and by Raman spectroscopy.

  9. Preparation of high-strength nanometer scale twinned coating and foil

    DOEpatents

    Zhang, Xinghang [Los Alamos, NM; Misra, Amit [Los Alamos, NM; Nastasi, Michael A [Santa Fe, NM; Hoagland, Richard G [Santa Fe, NM

    2006-07-18

    Very high strength single phase stainless steel coating has been prepared by magnetron sputtering onto a substrate. The coating has a unique microstructure of nanometer spaced twins that are parallel to each other and to the substrate surface. For cases where the coating and substrate do not bind strongly, the coating can be peeled off to provide foil.

  10. Nanometer polymer surface features: the influence on surface energy, protein adsorption and endothelial cell adhesion

    NASA Astrophysics Data System (ADS)

    Carpenter, Joseph; Khang, Dongwoo; Webster, Thomas J.

    2008-12-01

    Current small diameter (<5 mm) synthetic vascular graft materials exhibit poor long-term patency due to thrombosis and intimal hyperplasia. Tissue engineered solutions have yielded functional vascular tissue, but some require an eight-week in vitro culture period prior to implantation—too long for immediate clinical bedside applications. Previous in vitro studies have shown that nanostructured poly(lactic-co-glycolic acid) (PLGA) surfaces elevated endothelial cell adhesion, proliferation, and extracellular matrix synthesis when compared to nanosmooth surfaces. Nonetheless, these studies failed to address the importance of lateral and vertical surface feature dimensionality coupled with surface free energy; nor did such studies elicit an optimum specific surface feature size for promoting endothelial cell adhesion. In this study, a series of highly ordered nanometer to submicron structured PLGA surfaces of identical chemistry were created using a technique employing polystyrene nanobeads and poly(dimethylsiloxane) (PDMS) molds. Results demonstrated increased endothelial cell adhesion on PLGA surfaces with vertical surface features of size less than 18.87 nm but greater than 0 nm due to increased surface energy and subsequently protein (fibronectin and collagen type IV) adsorption. Furthermore, this study provided evidence that the vertical dimension of nanometer surface features, rather than the lateral dimension, is largely responsible for these increases. In this manner, this study provides key design parameters that may promote vascular graft efficacy.

  11. Selectivity for CO2 over CH4 on a functionalized periodic mesoporous phenylene-silica explained by transition state theory

    NASA Astrophysics Data System (ADS)

    Kunkel, Christian; Viñes, Francesc; Lourenço, Mirtha A. O.; Ferreira, Paula; Gomes, José R. B.; Illas, Francesc

    2017-03-01

    Efficient separation of CO2/CH4 is critical in biogas upgrading, requiring highly selective adsorbents. Based on the adsorption energies of -0.30 and -0.14 eV, previously calculated by dispersion corrected density functional theory for adsorption/desorption of CO2 and CH4 on the functionalized periodic mesoporous phenylene-silica material APTMS@Ph-PMO, respectively, transition state theory rates were derived and used to simulate the adsorption/desorption rates of these two gases on APTMS@Ph-PMO. The latter yielded an estimation of initial CO2/CH4 selectivity at various temperatures. At T = 298 K, selectivity of 32.2 agrees to an experimental value of 26.1, which validates the method used for evaluating CO2/CH4 adsorption selectivities.

  12. Adsorption of silica colloids onto like-charged silica surfaces of different roughness

    DOE PAGES

    Dylla-Spears, R.; Wong, L.; Shen, N.; ...

    2017-01-17

    Particle adsorption was explored in a model optical polishing system, consisting of silica colloids and like-charged silica surfaces. The adsorption was monitored in situ under various suspension conditions, in the absence of surfactants or organic modifiers, using a quartz crystal microbalance with dissipation monitoring (QCM-D). Changes in surface coverage with particle concentration, particle size, pH, ionic strength and ionic composition were quantified by QCM-D and further characterized ex situ by atomic force microscopy (AFM). A Monte Carlo model was used to describe the kinetics of particle deposition and provide insights on scaling with particle concentration. Transitions from near-zero adsorption tomore » measurable adsorption were compared with equilibrium predictions made using the Deraguin-Verwey-Landau-Overbeek (DLVO) theory. In addition, the impact of silica surface roughness on the propensity for particle adsorption was studied on various spatial scale lengths by intentionally roughening the QCM sensor surface using polishing methods. It was found that a change in silica surface roughness at the AFM scale from 1.3 nm root-mean-square (rms) to 2.7 nm rms resulted in an increase in silica particle adsorption of 3-fold for 50-nm diameter particles and 1.3-fold for 100-nm diameter particles—far exceeding adsorption observed by altering suspension conditions alone, potentially because roughness at the proper scale reduces the total separation distance between particle and surface.« less

  13. Presence of nano-sized silica during in vitro digestion of foods containing silica as a food additive.

    PubMed

    Peters, Ruud; Kramer, Evelien; Oomen, Agnes G; Rivera, Zahira E Herrera; Oegema, Gerlof; Tromp, Peter C; Fokkink, Remco; Rietveld, Anton; Marvin, Hans J P; Weigel, Stefan; Peijnenburg, Ad A C M; Bouwmeester, Hans

    2012-03-27

    The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica. © 2012 American Chemical Society

  14. Secondary emission conductivity of high purity silica fabric

    NASA Technical Reports Server (NTRS)

    Belanger, V. J.; Eagles, A. E.

    1977-01-01

    High purity silica fabrics were proposed for use as a material to control the effects of electrostatic charging of satellites at synchronous altitudes. These materials exhibited very quiet behavior when placed in simulated charging environments as opposed to other dielectrics used for passive thermal control which exhibit varying degrees of electrical arcing. Secondary emission conductivity is proposed as a mechanism for this superior behavior. Design of experiments to measure this phenomena and data taken on silica fabrics are discussed as they relate to electrostatic discharge (ESD) control on geosynchronous orbit spacecraft. Studies include the apparent change in resistivity of the material as a function of the electron beam energy, flux intensity, and the effect of varying electric fields impressed across the material under test.

  15. Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition – A facile method for encapsulation of diverse cell types in silica matrices

    DOE PAGES

    Johnston, Robert; Rogelj, Snezna; Harper, Jason C.; ...

    2014-12-12

    In nature, cells perform a variety of complex functions such as sensing, catalysis, and energy conversion which hold great potential for biotechnological device construction. However, cellular sensitivity to ex vivo environments necessitates development of bio–nano interfaces which allow integration of cells into devices and maintain their desired functionality. In order to develop such an interface, the use of a novel Sol-Generating Chemical Vapor into Liquid (SG-CViL) deposition process for whole cell encapsulation in silica was explored. In SG-CViL, the high vapor pressure of tetramethyl orthosilicate (TMOS) is utilized to deliver silica into an aqueous medium, creating a silica sol. Cellsmore » are then mixed with the resulting silica sol, facilitating encapsulation of cells in silica while minimizing cell contact with the cytotoxic products of silica generating reactions (i.e. methanol), and reduce exposure of cells to compressive stresses induced from silica condensation reactions. Using SG-CVIL, Saccharomyces cerevisiae (S. cerevisiae) engineered with an inducible beta galactosidase system were encapsulated in silica solids and remained both viable and responsive 29 days post encapsulation. By tuning SG-CViL parameters, thin layer silica deposition on mammalian HeLa and U87 human cancer cells was also achieved. Thus, the ability to encapsulate various cell types in either a multi cell (S. cerevisiae) or a thin layer (HeLa and U87 cells) fashion shows the promise of SG-CViL as an encapsulation strategy for generating cell–silica constructs with diverse functions for incorporation into devices for sensing, bioelectronics, biocatalysis, and biofuel applications.« less

  16. Preparation and Characterization of Silica Aerogel Microspheres

    PubMed Central

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-01-01

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4–20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112–0.287 g/cm3 and 207.5–660.6 m2/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery. PMID:28772795

  17. Water Vapor Effects on Silica-Forming Ceramics

    NASA Technical Reports Server (NTRS)

    Opila, E. J.; Greenbauer-Seng, L. (Technical Monitor)

    2000-01-01

    Silica-forming ceramics such as SiC and Si3N4 are proposed for applications in combustion environments. These environments contain water vapor as a product of combustion. Oxidation of silica-formers is more rapid in water vapor than in oxygen. Parabolic oxidation rates increase with the water vapor partial pressure with a power law exponent value close to one. Molecular water vapor is therefore the mobile species in silica. Rapid oxidation rates and large amounts of gases generated during the oxidation reaction in high water vapor pressures may result in bubble formation in the silica and nonprotective scale formation. It is also shown that silica reacts with water vapor to form Si(OH)4(g). Silica volatility has been modeled using a laminar flow boundary layer controlled reaction equation. Silica volatility depends on the partial pressure of water vapor, the total pressure, and the gas velocity. Simultaneous oxidation and volatilization reactions have been modeled with paralinear kinetics.

  18. Preparation and Characterization of Silica Aerogel Microspheres.

    PubMed

    Chen, Qifeng; Wang, Hui; Sun, Luyi

    2017-04-20

    Silica aerogel microspheres based on alkali silica sol were synthesized using the emulsion method. The experimental results revealed that the silica aerogel microspheres (4-20 µm in diameter) were mesoporous solids with an average pore diameter ranging from 6 to 35 nm. The tapping densities and specific surface areas of the aerogel microspheres are in the range of 0.112-0.287 g/cm³ and 207.5-660.6 m²/g, respectively. The diameter of the silica aerogel microspheres could be tailored by varying the processing conditions including agitation rate, water/oil ratio, mass ratio of Span 80: Tween 80, and emulsifier concentration. The effects of these parameters on the morphology and textural properties of the synthesized silica aerogel microspheres were systematically investigated. Such silica aerogel microspheres can be used to prepare large-scale silica aerogels at an ambient pressure for applications in separation and high efficiency catalysis, which requires features of high porosity and easy fill and recovery.

  19. Chitosan-silica hybrid porous membranes.

    PubMed

    Pandis, Christos; Madeira, Sara; Matos, Joana; Kyritsis, Apostolos; Mano, João F; Ribelles, José Luis Gómez

    2014-09-01

    Chitosan-silica porous hybrids were prepared by a novel strategy in order to improve the mechanical properties of chitosan (CHT) in the hydrogel state. The inorganic silica phase was introduced by sol-gel reactions in acidic medium inside the pores of already prepared porous scaffolds. In order to make the scaffolds insoluble in acidic media chitosan was cross-linked by genipin (GEN) with an optimum GEN concentration of 3.2 wt.%. Sol-gel reactions took place with Tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) acting as silica precursors. GPTMS served also as a coupling agent between the free amino groups of chitosan and the silica network. The morphology study of the composite revealed that the silica phase appears as a layer covering the chitosan membrane pore walls. The mechanical properties of the hybrids were characterized by means of compressive stress-strain measurements. By immersion in water the hybrids exhibit an increase in elastic modulus up to two orders of magnitude. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Silica surface characterization as a function of formation and surface treatment using traditional methods and proteins as surface probes

    NASA Astrophysics Data System (ADS)

    Korwin-Edson, Michelle Lynn

    Previous works have shown that cells proliferate differently depending on the chemistry of the glass on which they are growing. Since proteins form the bonds between cells and glass, the hypothesis of this study is that proteins can distinguish between surface chemical variations of glass. This theory was examined through the use of various silica forms, a few select proteins, four surface treatment procedures, and a variety of characterization techniques. The silica forms include amorphous slides, cane, fiber, microspheres, fumed silica and quartz crystal terminals. The proteins selected were human serum albumin, mouse Immunoglobulin G, streptavidin, antimouse IgG, and biotin. The surface treatments utilized to bring about chemical variation on the silica surface were HF acid etching, ethanol cleaning, water plasma treatments, and 1000°C heat treatments. The characterization techniques encompassed both traditional material techniques and biological methods. The techniques studied were atomic force microscopy (AFM), chemical force microscopy (CFM), glancing incidence X-ray analysis (GIXA), fluorescence spectrometry, polyacrylamide gel electrophoresis (SDS-PAGE), and bicinchoninic acid (BCA) assay. It was the main goal of this project to determine the feasibility of these techniques in utilizing proteins as glass surface probes. Proteins were adsorbed to all of the various forms and the binding ability was studied by either stripping off the protein and quantifying them, or by deductive reasoning through the use of "depleted" protein solutions. Fluorimetry and BCA assay both utilized the depleted solutions, but the high error associated with this protocol was prohibitive. SDS-PAGE with streptavidin was very difficult due to staining problems, however the IgG proteins were able to be quantified with some success. GIXA showed that the protein layer thickness is monolayer in nature, which agrees well with the AFM fluid tapping data on protein height, but in addition

  1. Silica nanoparticle-based dual imaging colloidal hybrids: cancer cell imaging and biodistribution

    PubMed Central

    Lee, Haisung; Sung, Dongkyung; Kim, Jinhoon; Kim, Byung-Tae; Wang, Tuntun; An, Seong Soo A; Seo, Soo-Won; Yi, Dong Kee

    2015-01-01

    In this study, fluorescent dye-conjugated magnetic resonance (MR) imaging agents were investigated in T mode. Gadolinium-conjugated silica nanoparticles were successfully synthesized for both MR imaging and fluorescence diagnostics. Polyamine and polycarboxyl functional groups were modified chemically on the surface of the silica nanoparticles for efficient conjugation of gadolinium ions. The derived gadolinium-conjugated silica nanoparticles were investigated by zeta potential analysis, transmission electron microscopy, inductively coupled plasma mass spectrometry, and energy dispersive x-ray spectroscopy. MR equipment was used to investigate their use as contrast-enhancing agents in T1 mode under a 9.4 T magnetic field. In addition, we tracked the distribution of the gadolinium-conjugated nanoparticles in both lung cancer cells and organs in mice. PMID:26357472

  2. Synthesis of PANi-SiO2 Nanocomposite with In-Situ Polymerization Method: Nanoparticle Silica (NPS) Amorphous and Crystalline Phase

    NASA Astrophysics Data System (ADS)

    Munasir; Luvita, N. R. D.; Kusumawati, D. H.; Putri, N. P.; Triwikantoro; Supardi, Z. A. I.

    2018-03-01

    Silica which is synthesized from natural materials such as Bancar Tuban’s sand composited with Polyaniline (PANi), where the silica used are silica has an amorphous phase and cristobalite phase. In this research, the composite method used is in- situ polymerization, which is silica entered during the fabrication of PANi, then automatically silica will be substitute into the chain bonding of PANi. The aim of this research is to find out the results of a composite process using in-situ methods as well as differences in the morphology of PANi/a- SiO2 and PANi/c-SiO2. For the characterization of samples tested in the form of FTIR to determine the functional groups of the composite and SEM to determine the morphology of the sample. From the test results of FTIR are known composite possibility has occurred because there are several functional groups belonging to silica also functional groups belonging polyaniline, functional group that’s happened in wave numbers were almost identical between PANi/a-SiO2 and PANi/c-SiO2, but there are little differences were seen in the form of a graph generated from the peak and intensity that occurred charts for PANi/c-SiO2 has peak more pointed or sharp compared to PANi/a-SiO2 because that bond of crystal is strong, stiff and has a larger particle size than the amorphous composite. Then from the data of SEM seen clearly their morphological differences between PANi/a-SiO2 and PANi/c-SiO2 where polyaniline is composited with amorphous silica will have a fault that is not uniform or irregular different from PANi/c -SiO2 has a regular fault and this is corresponding with the nature of the typical structure of amorphous and crystalline.

  3. Water-soluble ferrocene complexes (WFCs) functionalized silica nanospheres for WFC delivery in HepG2 tumor therapy.

    PubMed

    Yan, Saisai; Hu, Fan; Hong, Xia; Shuai, Qi

    2018-09-01

    Silica-encapsulated nanospheres of water-soluble ferrocene complexes WFCs@SiO 2 and WFCs@SiO 2 @glutaraldehyde (GA) were first synthesized by a facile inverse-microemulsion method. The surface functional groups, particle size, and morphologies of nanospheres were characterized by IR spectra, UV-vis absorption spectra, dynamic light scattering (DLS) and SEM images. Single-crystal X-ray diffraction was used to confirm the molecular structure of free ferrocenyl-pyrazol ligand (L) and three WFCs, namely, [Ni(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 4 ] (5a), [Mg(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 4 ]·3H 2 O (5b), and [Ba(C 22 H 14 F 6 FeN 4 O 4 )(H 2 O) 3 ] (5c). The electrochemical properties of 5a-5c were explored by cyclic voltammetry. The WFCs-loading capacities of 5a-5c in WFCs@SiO 2 were found to be 38.4, 38.2, and 38.1 μg/mg, respectively. Cell studies under two drug delivery modes (free diffusion and endocytosis) were carried out by MTT cell-survival assays and morphological observation of HepG2 cells. It's interesting that the cytotoxicity of WFCs against HepG2 was increased by applying silica nanocarriers. Compared to WFCs@SiO 2 , the modification of GA on the spherical surface provided not only the better water-dispersity but also additional functional groups for further modification of other pharmacophores. The novel nanocarrier system for WFC delivery present a novel concept-of-proof method to protect varieties of affordable metal-based anticancer agents in physiological conditions and provided experimental basis for future studies focusing on drug delivery of other WFCs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Progress on glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Weber, Peter; Westerhoff, Thomas

    2016-03-01

    The Semiconductor Industry is making continuous progress in shrinking feature size developing technologies and process to achieve < 10 nm feature size. The required Overlay specification for successful production is in the range one nanometer or even smaller. Consequently, materials designed into metrology systems of exposure or inspection tools need to fulfill ever tighter specification on the coefficient of thermal expansion (CTE). The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion, the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR®. This paper is focusing on the "Advanced Dilatometer" for determination of the CTE developed at SCHOTT in the recent years and introduced into production in Q1 2015. The achievement for improving the absolute CTE measurement accuracy and the reproducibility are described in detail. Those achievements are compared to the CTE measurement accuracy reported by the Physikalische Technische Bundesanstalt (PTB), the National Metrology Institute of Germany. The CTE homogeneity is of highest importance to achieve nanometer precision on larger scales. Additionally, the paper presents data on the short scale CTE homogeneity and its improvement in the last two years. The data presented in this paper will explain the capability of ZERODUR® to enable the extreme precision required for future generation of lithography equipment and processes.

  5. Grinding model and material removal mechanism of medical nanometer zirconia ceramics.

    PubMed

    Zhang, Dongkun; Li, Changhe; Jia, Dongzhou; Wang, Sheng; Li, Runze; Qi, Xiaoxiao

    2014-01-01

    Many patents have been devoted to developing medical nanometer zirconia ceramic grinding techniques that can significantly improve both workpiece surface integrity and grinding quality. Among these patents is a process for preparing ceramic dental implants with a surface for improving osseo-integration by sand abrasive finishing under a jet pressure of 1.5 bar to 8.0 bar and with a grain size of 30 µm to 250 µm. Compared with other materials, nano-zirconia ceramics exhibit unmatched biomedical performance and excellent mechanical properties as medical bone tissue and dentures. The removal mechanism of nano-zirconia materials includes brittle fracture and plastic removal. Brittle fracture involves crack formation, extension, peeling, and chipping to completely remove debris. Plastic removal is similar to chip formation in metal grinding, including rubbing, ploughing, and the formation of grinding debris. The materials are removed in shearing and chipping. During brittle fracture, the grinding-led transverse and radial extension of cracks further generate local peeling of blocks of the material. In material peeling and removal, the mechanical strength and surface quality of the workpiece are also greatly reduced because of crack extension. When grinding occurs in the plastic region, plastic removal is performed, and surface grinding does not generate grinding fissures and surface fracture, producing clinically satisfactory grinding quality. With certain grinding conditions, medical nanometer zirconia ceramics can be removed through plastic flow in ductile regime. In this study, we analyzed the critical conditions for the transfer of brittle and plastic removal in nano-zirconia ceramic grinding as well as the high-quality surface grinding of medical nanometer zirconia ceramics by ELID grinding.

  6. 21 CFR 182.1711 - Silica aerogel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Silica aerogel. 182.1711 Section 182.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1711 Silica aerogel. (a) Product. Silica aerogel as a finely powdered...

  7. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...

  8. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...

  9. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...

  10. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...

  11. 21 CFR 582.1711 - Silica aerogel.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Silica aerogel. 582.1711 Section 582.1711 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS SUBSTANCES GENERALLY RECOGNIZED AS SAFE General Purpose Food Additives § 582.1711 Silica aerogel. (a) Product. Silica...

  12. Agmatine attenuates silica-induced pulmonary fibrosis.

    PubMed

    El-Agamy, D S; Sharawy, M H; Ammar, E M

    2014-06-01

    There is a large body of evidence that nitric oxide (NO) formation is implicated in mediating silica-induced pulmonary fibrosis. As a reactive free radical, NO may not only contribute to lung parenchymal tissue injury but also has the ability to combine with superoxide and form a highly reactive toxic species peroxynitrite that can induce extensive cellular toxicity in the lung tissues. This study aimed to explore the effect of agmatine, a known NO synthase inhibitor, on silica-induced pulmonary fibrosis in rats. Male Sprague Dawley rats were treated with agmatine for 60 days following a single intranasal instillation of silica suspension (50 mg in 0.1 ml saline/rat). The results revealed that agmatine attenuated silica-induced lung inflammation as it decreased the lung wet/dry weight ratio, protein concentration, and the accumulation of the inflammatory cells in the bronchoalveolar lavage fluid. Agmatine showed antifibrotic activity as it decreased total hydroxyproline content of the lung and reduced silica-mediated lung inflammation and fibrosis in lung histopathological specimen. In addition, agmatine significantly increased superoxide dismutase (p < 0.001) and reduced glutathione (p < 0.05) activities with significant decrease in the lung malondialdehyde (p < 0.001) content as compared to the silica group. Agmatine also reduced silica-induced overproduction of pulmonary nitrite/nitrate as well as tumor necrosis factor α. Collectively, these results demonstrate the protective effects of agmatine against the silica-induced lung fibrosis that may be attributed to its ability to counteract the NO production, lipid peroxidation, and regulate cytokine effects. © The Author(s) 2014.

  13. Crystalline Silica Primer

    USGS Publications Warehouse

    ,

    1992-01-01

    substance and will present a nontechnical overview of the techniques used to measure crystalline silica. Because this primer is meant to be a starting point for anyone interested in learning more about crystalline silica, a list of selected readings and other resources is included. The detailed glossary, which defines many terms that are beyond the scope of this publication, is designed to help the reader move from this presentation to a more technical one, the inevitable next step.

  14. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izvekov, Sergei, E-mail: sergiy.izvyekov.civ@mail.mil; Rice, Betsy M.

    2015-12-28

    A core-softening of the effective interaction between oxygen atoms in water and silica systems and its role in developing anomalous thermodynamic, transport, and structural properties have been extensively debated. For silica, the progress with addressing these issues has been hampered by a lack of effective interaction models with explicit core-softening. In this work, we present an extension of a two-body soft-core interatomic force field for silica recently reported by us [S. Izvekov and B. M. Rice, J. Chem. Phys. 136(13), 134508 (2012)] to include three-body forces. Similar to two-body interaction terms, the three-body terms are derived using parameter-free force-matching ofmore » the interactions from ab initio MD simulations of liquid silica. The derived shape of the O–Si–O three-body potential term affirms the existence of repulsion softening between oxygen atoms at short separations. The new model shows a good performance in simulating liquid, amorphous, and crystalline silica. By comparing the soft-core model and a similar model with the soft-core suppressed, we demonstrate that the topology reorganization within the local tetrahedral network and the O–O core-softening are two competitive mechanisms responsible for anomalous thermodynamic and kinetic behaviors observed in liquid and amorphous silica. The studied anomalies include the temperature of density maximum locus and anomalous diffusivity in liquid silica, and irreversible densification of amorphous silica. We show that the O–O core-softened interaction enhances the observed anomalies primarily through two mechanisms: facilitating the defect driven structural rearrangements of the silica tetrahedral network and modifying the tetrahedral ordering induced interactions toward multiple characteristic scales, the feature which underlies the thermodynamic anomalies.« less

  15. Gas-Phase Synthesis of Gold- and Silica-Coated Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boies, Adam Meyer

    2011-12-01

    Composite nanoparticles consisting of separate core-shell materials are of interest for a variety of biomedical and industrial applications. By combining different materials at the nanoscale, particles can exhibit enhanced or multi-functional behavior such as plasmon resonance combined with superparamagnetism. Gas-phase nanoparticle synthesis processes are promising because they can continuously produce particles with high mass-yield rates. In this dissertation, new methods are investigated for producing gas-phase coatings of nanoparticles in an "assembly-line" fashion. Separate processes are developed to create coatings from silica and gold that can be used with a variety of core-particle chemistries. A photoinduced chemical vapor deposition (photo-CVD) method is used to produce silica coatings from tetraethyl orthosilicate (TEOS) on the surface of nanoparticles (diameter ˜5--70 nm). Tandem differential mobility analysis (TDMA) of the process demonstrates that particle coatings can be produced with controllable thicknesses (˜1--10 nm) by varying system parameters such as precursor flow rate. Electron microscopy and infrared spectroscopy confirm that the photo-CVD films uniformly coat the particles and that the coatings are silica. In order to describe the coating process a chemical mechanism is proposed that includes gas-phase, surface and photochemical reactions. A chemical kinetics model of the mechanism indicates that photo-CVD coating proceeds primarily through the photodecomposition of TEOS which removes ethyl groups, thus creating activated TEOS species. The activated TEOS then adsorbs onto the surface of the particle where a series of subsequent reactions remove the remaining ethyl groups to produce a silica film with an open site for further attachment. The model results show good agreement with the experimentally measured coating trends, where increased TEOS flow increases coating thickness and increased nitrogen flow decreases coating thickness. Gold

  16. Transparent organic/inorganic hybrid sol-gel materials based on perfluorinated polymers and silica

    NASA Astrophysics Data System (ADS)

    Wojcik, Anna B.; Klein, Lisa C.

    1996-01-01

    Two types of hybrid gels based on silica and perfluorinated polymers have been prepared. The first type involves a perfluorinated polymer containing acrylate groups. Perfluoropolyether diol diacrylate (PFDA) was functionalized by reacting it with (3-mercapto-propyl) trimethoxysilane by a Michael addition. The resulting silyl derivative (PFDAS) was able to copolymerize with a silica precursor, tetraethylorthosilicate (TEOS), resulting in perfluorinated polymer/silica hybrid gels. For the second type, perfluoroalkylsilane (FAS), vinyltriethoxysilane (VTES), and TEOS were polymerized in one step. In both cases, the gels were transparent, crack-free and water repellent. Since the inorganic and organic components are covalently bonded to each other, these materials can be classified as organic/inorganic copolymers.

  17. Development and Testing of Diglycolamide Functionalized Mesoporous Silica for Sorption of Trivalent Actinides and Lanthanides

    DOE PAGES

    Shusterman, Jennifer A.; Mason, Harris E.; Bowers, Jon; ...

    2015-09-03

    Sequestration of trivalent actinides and lanthanides present in used nuclear fuel and legacy wastes is necessary for appropriate long-term stewardship of these metals, particularly to prevent their release into the environment. Organically modified mesoporous silica is an efficient material for recovery and potential subsequent separation of actinides and lanthanides because of its high surface area, tunable ligand selection, and chemically robust substrate. Here, we have synthesized the first novel hybrid material composed of SBA-15 type mesoporous silica functionalized with diglycolamide ligands (DGA-SBA). Because of the high surface area substrate, the DGA-SBA was found to have the highest Eu capacity reportedmore » so far in the literature of all DGA solid-phase extractants. The sorption behavior of europium and americium on DGA-SBA in nitric and hydrochloric acid media was tested in batch contact experiments. DGA-SBA was found to have high sorption of Am and Eu in pH 1, 1 M, and 3 M nitric and hydrochloric acid concentrations, which makes it promising for sequestration of these metals from used nuclear fuel or legacy waste. The kinetics of Eu sorption were found to be two times slower than that for Am in 1 M HNO 3. Additionally, the short-term susceptibility of DGA-SBA to degradation in the presence of acid was probed using 29Si and 13C solid-state NMR spectroscopy. Finally, the material was found to be relatively stable under these conditions, with the ligand remaining intact after 24 h of contact with 1 M HNO 3, an important consideration in use of the DGA-SBA as an extractant from acidic media.« less

  18. Development and Testing of Diglycolamide Functionalized Mesoporous Silica for Sorption of Trivalent Actinides and Lanthanides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusterman, Jennifer A.; Mason, Harris E.; Bowers, Jon

    Sequestration of trivalent actinides and lanthanides present in used nuclear fuel and legacy wastes is necessary for appropriate long-term stewardship of these metals, particularly to prevent their release into the environment. Organically modified mesoporous silica is an efficient material for recovery and potential subsequent separation of actinides and lanthanides because of its high surface area, tunable ligand selection, and chemically robust substrate. Here, we have synthesized the first novel hybrid material composed of SBA-15 type mesoporous silica functionalized with diglycolamide ligands (DGA-SBA). Because of the high surface area substrate, the DGA-SBA was found to have the highest Eu capacity reportedmore » so far in the literature of all DGA solid-phase extractants. The sorption behavior of europium and americium on DGA-SBA in nitric and hydrochloric acid media was tested in batch contact experiments. DGA-SBA was found to have high sorption of Am and Eu in pH 1, 1 M, and 3 M nitric and hydrochloric acid concentrations, which makes it promising for sequestration of these metals from used nuclear fuel or legacy waste. The kinetics of Eu sorption were found to be two times slower than that for Am in 1 M HNO 3. Additionally, the short-term susceptibility of DGA-SBA to degradation in the presence of acid was probed using 29Si and 13C solid-state NMR spectroscopy. Finally, the material was found to be relatively stable under these conditions, with the ligand remaining intact after 24 h of contact with 1 M HNO 3, an important consideration in use of the DGA-SBA as an extractant from acidic media.« less

  19. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    NASA Astrophysics Data System (ADS)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  20. Production of silver-silica core-shell nanocomposites using ultra-short pulsed laser ablation in nanoporous aqueous silica colloidal solutions

    NASA Astrophysics Data System (ADS)

    Santagata, A.; Guarnaccio, A.; Pietrangeli, D.; Szegedi, Á.; Valyon, J.; De Stefanis, A.; De Bonis, A.; Teghil, R.; Sansone, M.; Mollica, D.; Parisi, G. P.

    2015-05-01

    Ultra-short pulsed laser ablation of materials in liquid has been demonstrated to be a versatile technique for nanoparticles production. In a previous paper, it has been described, for the first time, how by laser ablation in a liquid system, silver nanoparticles can be loaded onto SBA-15 and MCM-41 supports which show promising catalytic properties for the oxidation of Volatile Organic Compounds (VOCs). The aim of the present research is to demonstrate the formation of stable silver-silica core-shell nanoparticles by direct laser ablation (Ti:Sa; 800 nm pulse duration: 120 fs repetition rate: 1 kHz, pulse energy: 3.6 mJ, fluence: 9 J cm  -  2) of a Ag target submerged in a static colloidal solution of MCM-41 or SBA-15 silica nanoporous materials. In previous studies, it was discovered that a side and negligible product of the laser ablation process of silver performed in water-silica systems, could be related to the formation of silver-silica core-shell nanoparticles. In order to emphasize this side process some modifications to the laser ablation experimental set-up were performed. Among these, the most important one, in order to favor the production of the core-shell systems, was to keep the liquid silica suspension firm. The laser generated nanomaterials were then analyzed using TEM morphologic characterization. By UV-vis absorption spectra the observed features have been related to components of the colloidal solution as well as to the number of the incident laser pulses. In this manner characterizations on both the process and the resulting suspension have been performed. Significant amount of small sized silver-silica core-shell nanoparticles have been detected in the studied systems. The size distribution, polydispersivity, UV-vis plasmonic bands and stability of the produced silver-silica core-shell nanocomposites have been related to the extent of damage induced in the nanoporous silica structure during the ablation procedure adopted

  1. Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers

    NASA Astrophysics Data System (ADS)

    Xiang, Quan; Li, Zhiqin; Zheng, Mengjie; Liu, Qing; Chen, Yiqin; Yang, Lan; Jiang, Tian; Duan, Huigao

    2018-03-01

    Elevated metallic nanostructures with nanogaps (<10 nm) possess advantages for surface enhanced Raman scattering (SERS) via the synergic effects of nanogaps and efficient decoupling from the substrate through an elevated three-dimensional (3D) design. In this work, we demonstrate a pattern-transfer-free process to reliably define elevated nanometer-separated mushroom-shaped dimers directly from 3D resist patterns based on the gap-narrowing effect during the metallic film deposition. By controlling the initial size of nanogaps in resist structures and the following deposited film thickness, metallic nanogaps could be tuned at the sub-10 nm scale with single-digit nanometer precision. Both experimental and simulated results revealed that gold dimer on mushroom-shaped pillars have the capability to achieve higher SERS enhancement factor comparing to those plasmonic dimers on cylindrical pillars or on a common SiO2/Si substrate, implying that the nanometer-gapped elevated dimer is an ideal platform to achieve the highest possible field enhancement for various plasmonic applications.

  2. Silica Precipitation and Scaling in Dynamic Geothermal Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlmann, E.G.; Shor, A.J.; Berlinski, P.

    1976-01-01

    The authors are modifying an existing 100 gpm titanium loop to provide a facility for studying the formation of silica precipitates, their properties and fates, principally as a function of brine composition, temperature, and flow conditions. This loop demonstrated excellent serviceability over a period of years in saline water corrosion studies (to 275 C and 2 M NaCl), with and without pollutant additives such as H{sub 2}S, NH{sub 3}, and SO{sub 2}, and should be equally useful in this application. Simulated silica saturated geothermal waters are prepared by circulating part of the loop flow ({approx} 1 gpm) through a bypassmore » column filled with amorphous silica powder. Exploratory studies in a Once-Through Development System indicated that porous Vycor (Cornin-Glass Code No.7930, 97% SiO{sub 2}, 3% B{sub 2}O{sub 3}) was a suitable material for loading the column. A recent run at {approx} 220 C confirmed this: the system approached equilibrium in agreement with calculation and with the anticipated 15 psi pressure drop through an 18 in. deep bed of 140-200 mesh Vycor powder.« less

  3. Biophysics: Breaking the Nanometer Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Block, Steven

    2006-03-20

    A new field of scientific exploration – single molecule biophysics – is currently reshaping and redefining our understanding of the mechanochemistry of life. The development of laser-based optical traps, or ‘optical tweezers,’ has allowed for physiological assessments of such precision that bio-molecules can now be measured and studied one at a time. In this colloquium, Professor Block will present findings based on his group’s construction of optical trapping instrumentation that has broken the nanometer barrier, allowing researchers to study single-molecule displacements on the Angstrom level. Focusing on RNA polymerase, the motor enzyme responsible for transcribing the genetic code contained inmore » DNA, Block’s group has been able to measure, in real time, the motion of a single molecule of RNA polymerase as it moves from base to base along the DNA template. A remarkable opportunity to gain insight into one of the most fundamental biological processes of life, this colloquium can not be missed!« less

  4. Fabrication of diverse pH-sensitive functional mesoporous silica for selective removal or depletion of highly abundant proteins from biological samples.

    PubMed

    Wang, Jiaojiao; Lan, Jingfeng; Li, Huihui; Liu, Xiaoyan; Zhang, Haixia

    2017-01-01

    In proteomic studies, poor detection of low abundant proteins is a major problem due to the presence of highly abundant proteins. Therefore, the specific removal or depletion of highly abundant proteins prior to analysis is necessary. In response to this problem, a series of pH-sensitive functional mesoporous silica materials composed of 2-(diethylamino)ethyl methacrylate and methacrylic acid units were designed and synthesized via atom transfer radical polymerization. These functional mesoporous silica materials were characterized and their ability for adsorption and separation of proteins was evaluated. Possessing a pH-sensitive feature, the synthesized functional materials showed selective adsorption of some proteins in aqueous or buffer solutions at certain pH values. The specific removal of a particular protein from a mixed protein solution was subsequently studied. The analytical results confirmed that all the target proteins (bovine serum albumin, ovalbumin, and lysozyme) can be removed by the proposed materials from a five-protein mixture in a single operation. Finally, the practical application of this approach was also evaluated by the selective removal of certain proteins from real biological samples. The results revealed that the maximum removal efficiencies of ovalbumin and lysozyme from egg white sample were obtained as 99% and 92%, respectively, while the maximum removal efficiency of human serum albumin from human serum sample was about 80% by the proposed method. It suggested that this treatment process reduced the complexity of real biological samples and facilitated the identification of hidden proteins in chromatograms. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Influence of F- on stark splitting of Yb3+ and the thermal expansion of silica glass

    NASA Astrophysics Data System (ADS)

    Cao, Yabin; Chen, Si; Shao, Chongyun; Yu, Chunlei

    2018-06-01

    A local phosphate/fluoride environment of Yb3+ was created in silica glass using a multi-step method. The influence of F- on the Stark splitting of Yb3+ in Al3+/P5+/F- co-doped silica glass was studied at room-temperature, in addition to its effect on the thermal expansion performance of the glass matrix. The results indicate that Yb3+ ions in Al3+/P5+/F- co-doped silica glass have a larger Stark splitting energy of 2F7/2 compared to Al3+/P5+ co-doped silica glass. Moreover, a larger integrated absorption cross-section (34.58 pm2 × nm), stimulated emission cross-section (0.63 pm2), and better thermal expansion performance (1.3062 × 10-6 K- at 100 °C) are achieved in Al3+/P5+/F- co-doped silica glass. Finally, different function mechanisms of F- in silica and phosphate glasses were analyzed and the F-Si bond was used to explain the results in silica glass. The combination of low refractive index, large Stark splitting energy of 2F7/2, and small thermal expansion makes Al3+/P5+/F- co-doped silica glass a preferred material for large mode area fibers for high-power laser applications.

  6. Real-Time Imaging of Plant Cell Wall Structure at Nanometer Scale, with Respect to Cellulase Accessibility and Degradation Kinetics (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, S. Y.

    Presentation on real-time imaging of plant cell wall structure at nanometer scale. Objectives are to develop tools to measure biomass at the nanometer scale; elucidate the molecular bases of biomass deconstruction; and identify factors that affect the conversion efficiency of biomass-to-biofuels.

  7. Engineering polyelectrolyte multilayer structure at the nanometer length scale by tuning polymer solution conformation.

    NASA Astrophysics Data System (ADS)

    Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt

    2008-03-01

    Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.

  8. Surface effects on ionic Coulomb blockade in nanometer-size pores

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V.; Di Ventra, Massimiliano

    2018-01-01

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying ‘crystal-like’ structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  9. Surface effects on ionic Coulomb blockade in nanometer-size pores.

    PubMed

    Tanaka, Hiroya; Iizuka, Hideo; Pershin, Yuriy V; Ventra, Massimiliano Di

    2018-01-12

    Ionic Coulomb blockade in nanopores is a phenomenon that shares some similarities but also differences with its electronic counterpart. Here, we investigate this phenomenon extensively using all-atom molecular dynamics of ionic transport through nanopores of about one nanometer in diameter and up to several nanometers in length. Our goal is to better understand the role of atomic roughness and structure of the pore walls in the ionic Coulomb blockade. Our numerical results reveal the following general trends. First, the nanopore selectivity changes with its diameter, and the nanopore position in the membrane influences the current strength. Second, the ionic transport through the nanopore takes place in a hopping-like fashion over a set of discretized states caused by local electric fields due to membrane atoms. In some cases, this creates a slow-varying 'crystal-like' structure of ions inside the nanopore. Third, while at a given voltage, the resistance of the nanopore depends on its length, the slope of this dependence appears to be independent of the molarity of ions. An effective kinetic model that captures the ionic Coulomb blockade behavior observed in MD simulations is formulated.

  10. Toughening Mechanisms in Silica-Filled Epoxy Nanocomposites

    NASA Astrophysics Data System (ADS)

    Patel, Binay S.

    Epoxies are widely used as underfill resins throughout the microelectronics industry to mechanically couple and protect various components of flip-chip assemblies. Generally rigid materials largely surround underfill resins. Improving the mechanical and thermal properties of epoxy resins to better match those of their rigid counterparts can help extend the service lifetime of flip-chip assemblies. Recently, researchers have demonstrated that silica nanoparticles are effective toughening agents for lightly-crosslinked epoxies. Improvements in the fracture toughness of silica-filled epoxy nanocomposites have primarily been attributed to two toughening mechanisms: particle debonding with subsequent void growth and matrix shear banding. Various attempts have been made to model the contribution of these toughening mechanisms to the overall fracture energy observed in silica-filled epoxy nanocomposites. However, disparities still exist between experimental and modeled fracture energy results. In this dissertation, the thermal, rheological and mechanical behavior of eight different types of silica-filled epoxy nanocomposites was investigated. Each nanocomposite consisted of up to 10 vol% of silica nanoparticles with particle sizes ranging from 20 nm to 200 nm, with a variety of surface treatments and particle structures. Fractographical analysis was conducted with new experimental approaches in order to accurately identify morphological evidence for each proposed toughening mechanism. Overall, three major insights into the fracture behavior of real world silica-filled epoxy nanocomposites were established. First, microcracking was observed as an essential toughening mechanism in silica-filled epoxy nanocomposites. Microcracking was observed on the surface and subsurface of fractured samples in each type of silica-filled epoxy nanocomposite. The additional toughening contribution of microcracking to overall fracture energy yielded excellent agreement between experimental

  11. Multimodality Imaging with Silica-Based Targeted Nanoparticle Platforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jason S. Lewis

    2012-04-09

    Objectives: To synthesize and characterize a C-Dot silica-based nanoparticle containing 'clickable' groups for the subsequent attachment of targeting moieties (e.g., peptides) and multiple contrast agents (e.g., radionuclides with high specific activity) [1,2]. These new constructs will be tested in suitable tumor models in vitro and in vivo to ensure maintenance of target-specificity and high specific activity. Methods: Cy5 dye molecules are cross-linked to a silica precursor which is reacted to form a dye-rich core particle. This core is then encapsulated in a layer of pure silica to create the core-shell C-Dot (Figure 1) [2]. A 'click' chemistry approach has beenmore » used to functionalize the silica shell with radionuclides conferring high contrast and specific activity (e.g. 64Cu and 89Zr) and peptides for tumor targeting (e.g. cRGD and octreotate) [3]. Based on the selective Diels-Alder reaction between tetrazine and norbornene, the reaction is bioorthogonal, highyielding, rapid, and water-compatible. This radiolabeling approach has already been employed successfully with both short peptides (e.g. octreotate) and antibodies (e.g. trastuzumab) as model systems for the ultimate labeling of the nanoparticles [1]. Results: PEGylated C-Dots with a Cy5 core and labeled with tetrazine have been synthesized (d = 55 nm, zeta potential = -3 mV) reliably and reproducibly and have been shown to be stable under physiological conditions for up to 1 month. Characterization of the nanoparticles revealed that the immobilized Cy5 dye within the C-Dots exhibited fluorescence intensities over twice that of the fluorophore alone. The nanoparticles were successfully radiolabeled with Cu-64. Efforts toward the conjugation of targeting peptides (e.g. cRGD) are underway. In vitro stability, specificity, and uptake studies as well as in vivo imaging and biodistribution investigations will be presented. Conclusions: C-Dot silica-based nanoparticles offer a robust, versatile, and

  12. Silica Precipitation and Lithium Sorption

    DOE Data Explorer

    Jay Renew

    2015-09-20

    This file contains silica precipitation and lithium sorption data from the project. The silica removal data is corrected from the previous submission. The previous submission did not take into account the limit of detection of the ICP-MS procedure.

  13. Gold Functionalized Mesoporous Silica Nanoparticle Mediated Protein and DNA Codelivery to Plant Cells Via the Biolistic Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin-Ortigosa, Susana; Valenstein, Justin S.; Lin, Victor S.-Y.

    2012-09-11

    The synthesis and characterization of a gold nanoparticle functionalized mesoporous silica nanoparticle (Au-MSN) platform for codelivery of proteins and plasmid DNA to plant tissues using a biolistic particle delivery system is reported. The in vitro uptake and release profiles of fluorescently labeled bovine serum albumin (BSA) and enhanced green fluorescent protein (eGFP) are investigated. As a proof-of-concept demonstration, Au-MSN with large average pore diameters (10 nm) are shown to deliver and subsequently release proteins and plasmid DNA to the same cell after passing through the plant cell wall upon bombardment. Release of fluorescent eGFP indicates the delivery of active, non-denaturedmore » proteins to plant cells. This advance represents the first example of biolistic-mediated codelivery of proteins and plasmid DNA to plant cells via gold-functionalized MSN and provides a powerful tool for both fundamental and applied research of plant sciences.« less

  14. Polar silica-based stationary phases. Part II- Neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography.

    PubMed

    Rathnasekara, Renuka; El Rassi, Ziad

    2017-07-28

    Two neutral polyhydroxylated silica bonded stationary phases, namely maltose-silica (MALT-silica) and sorbitol-silica (SOR-silica), have been introduced and chromatographically characterized in hydrophilic interaction liquid chromatography (HILIC) for a wide range of polar compounds. The bonding of the maltose and sorbitol to the silica surface was brought about by first converting bare silica to an epoxy-activated silica surface via reaction with γ-glycidoxypropyltrimethoxysilane (GPTMS) followed by attaching maltose and sorbitol to the epoxy surface in the presence of the Lewis acid catalyst BF 3 .ethereate. Both silica based columns offered the expected retention characteristics usually encountered for neutral polar surface. The retention mechanism is majorly based on solute' differential partitioning between an organic rich hydro-organic mobile phase (e.g., ACN rich mobile phase) and an adsorbed water layer on the surface of the stationary phase although additional hydrogen bonding was also responsible in some cases for solute retention. The MALT-silica column proved to be more hydrophilic and offered higher retention, separation efficiency and resolution than the SOR-silica column among the tested polar solutes such as derivatized mono- and oligosaccharides, weak phenolic acids, cyclic nucleotide monophosphate and nucleotide-5'-monophosphates, and weak bases, e.g., nucleobases and nucleosides. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Development and application of multi-functionalized mesoporous silica nanomaterials in intracellular drug delivery and heterogeneous catalysis

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hsiang

    This dissertation presents research on the development of mesoporous silica nanomaterials and their applications on the fields of drug delivery system and heterogeneous catalysis. Mesoporous silica nanoparticles (MSNs) featuring several particular physicochemical properties are of great interest in material science and applied chemistry. With high biocompatibility and large pore size, MSNs have been regarded as a highly promising platform for intracellular controlled release of drugs and biomolecules. On the other hand, the robust silica framework and easy surface functionalization make MSNs decent solid supports for various types of heterogeneous catalysis. A newly developed surfactant-assistant drug delivery system is investigated. A series of biocompatible phosphate monoester surfactant (PMES) containing PMES-MSN were synthesized and well characterized. The formation mechanism of these special radially-aligned mesostructure was systematic studied by TEM technique and carbon nanocasting. We found that the particle size and shape as well as the structural integrity can be tuned by the ratio of aminopropyltrimethoxysilane (APTMS) and PMES. For biological application, the controlled release of the hydrophobic drug, resveratrol, was tested both in solution and in vitro. It showed that the surfactant-containing PMES-MSNs has a loading capacity around 4 times higher than its surfactant-free counterpart. In addition, a sustained release pattern was observed in the PMES-MSNs release system, indicating the feature of surfactant-assistance. The in vitro study in HeLa cells demonstrated that PMES-MSNs can be efficiently endocytosed. We also observed an endosomal escape of PMES-MSNs within the HeLa cells probably due to proton sponge effect and the assistance of PMES. A series of bifunctionalized MSN catalysts with diarylammonium triflate groups (DAT) as active acid sites and pentafluorophenyl groups (PFP) as secondary functional groups for the catalysis of esterification

  16. Luminescent Silica Nanoparticles for cancer diagnosis

    PubMed Central

    Montalti, Marco; Petrizza, Luca; Rampazzo, Enrico; Zaccheroni, Nelsi; Marchiò, Serena

    2015-01-01

    Fluorescence imaging techniques are becoming essential in preclinical investigations, and the research of suitable tools for in vivo measurements is gaining more and more importance and attention. Nanotechnology entered the field to try to find solutions for many limitation at the state of the art, and luminescent nanoparticles (NPs) are one of the most promising materials proposed for future diagnostic implementation. NPs constitute also a versatile platform that can allow facile multi-functionalization to perform multimodal imaging or theranostic (simultaneous diagnosis and therapy). In this contribution we have focussed our attention only on dye doped silica or silica-based NPs conjugated with targeting moieties to enable specific cancer cells imaging and differentiation, even if also a few non targeted systems have been cited and discussed for completeness. We have summarized common synthetic approaches to these materials and then surveyed the most recent imaging applications of silica-based nanoparticles in cancer. The field of theranostic is so important and stimulating that, even if it is not the central topic of this paper, we have included some significant examples. We have then concluded with short hints on systems already in clinical trials and examples of specific applications in children tumours. This review tries to describe and discuss, through focussed examples, the great potentialities of these materials in the medical field, with the aim to encourage further research to implement applications that are still rare. PMID:23458621

  17. Lifshitz interaction can promote ice growth at water-silica interfaces

    NASA Astrophysics Data System (ADS)

    Boström, Mathias; Malyi, Oleksandr I.; Parashar, Prachi; Shajesh, K. V.; Thiyam, Priyadarshini; Milton, Kimball A.; Persson, Clas; Parsons, Drew F.; Brevik, Iver

    2017-04-01

    At air-water interfaces, the Lifshitz interaction by itself does not promote ice growth. On the contrary, we find that the Lifshitz force promotes the growth of an ice film, up to 1-8 nm thickness, near silica-water interfaces at the triple point of water. This is achieved in a system where the combined effect of the retardation and the zero frequency mode influences the short-range interactions at low temperatures, contrary to common understanding. Cancellation between the positive and negative contributions in the Lifshitz spectral function is reversed in silica with high porosity. Our results provide a model for how water freezes on glass and other surfaces.

  18. Biochemical evolution. I. Polymerization On internal, organophilic silica surfaces of dealuminated zeolites and feldspars.

    PubMed

    Smith, J V

    1998-03-31

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars.

  19. Biochemical evolution. I. Polymerization on internal, organophilic silica surfaces of dealuminated zeolites and feldspars

    PubMed Central

    Smith, Joseph V.

    1998-01-01

    Catalysis at mineral surfaces might generate replicating biopolymers from simple chemicals supplied by meteorites, volcanic gases, and photochemical gas reactions. Many ideas are implausible in detail because the proposed mineral surfaces strongly prefer water and other ionic species to organic ones. The molecular sieve silicalite (Union Carbide; = Al-free Mobil ZSM-5 zeolite) has a three-dimensional, 10-ring channel system whose electrically neutral Si-O surface strongly adsorbs organic species over water. Three -O-Si tetrahedral bonds lie in the surface, and the fourth Si-O points inwards. In contrast, the outward Si-OH of simple quartz and feldspar crystals generates their ionic organophobicity. The ZSM-5-type zeolite mutinaite occurs in Antarctica with boggsite and tschernichite (Al-analog of Mobil Beta). Archean mutinaite might have become de-aluminated toward silicalite during hot/cold/wet/dry cycles. Catalytic activity of silicalite increases linearly with Al-OH substitution for Si, and Al atoms tend to avoid each other. Adjacent organophilic and catalytic Al-OH regions in nanometer channels might have scavenged organic species for catalytic assembly into specific polymers protected from prompt photochemical destruction. Polymer migration along weathered silicic surfaces of micrometer-wide channels of feldspars might have led to assembly of replicating catalytic biomolecules and perhaps primitive cellular organisms. Silica-rich volcanic glasses should have been abundant on the early Earth, ready for crystallization into zeolites and feldspars, as in present continental basins. Abundant chert from weakly metamorphosed Archaean rocks might retain microscopic clues to the proposed mineral adsorbent/catalysts. Other framework silicas are possible, including ones with laevo/dextro one-dimensional channels. Organic molecules, transition-metal ions, and P occur inside modern feldspars. PMID:9520372

  20. All-optical lithography process for contacting nanometer precision donor devices

    NASA Astrophysics Data System (ADS)

    Ward, D. R.; Marshall, M. T.; Campbell, D. M.; Lu, T. M.; Koepke, J. C.; Scrymgeour, D. A.; Bussmann, E.; Misra, S.

    2017-11-01

    We describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  1. Multiscale Model for the Templated Synthesis of Mesoporous Silica: The Essential Role of Silica Oligomers

    DOE PAGES

    Perez-Sanchez, German; Chien, Szu -Chia; Gomes, Jose R. B.; ...

    2016-04-04

    A detailed theoretical understanding of the synthesis mechanism of periodic mesoporous silica has not yet been achieved. We present results of a multiscale simulation strategy that, for the first time, describes the molecular-level processes behind the formation of silica/surfactant mesophases in the synthesis of templated MCM-41 materials. The parameters of a new coarse-grained explicit-solvent model for the synthesis solution are calibrated with reference to a detailed atomistic model, which itself is based on quantum mechanical calculations. This approach allows us to reach the necessary time and length scales to explicitly simulate the spontaneous formation of mesophase structures while maintaining amore » level of realism that allows for direct comparison with experimental systems. Our model shows that silica oligomers are a necessary component in the formation of hexagonal liquid crystals from low-concentration surfactant solutions. Because they are multiply charged, silica oligomers are able to bridge adjacent micelles, thus allowing them to overcome their mutual repulsion and form aggregates. This leads the system to phase separate into a dilute solution and a silica/surfactant-rich mesophase, which leads to MCM-41 formation. Before extensive silica condensation takes place, the mesophase structure can be controlled by manipulation of the synthesis conditions. Our modeling results are in close agreement with experimental observations and strongly support a cooperative mechanism for synthesis of this class of materials. Furthermore, this work paves the way for tailored design of nanoporous materials using computational models.« less

  2. In Situ Growth of Mesoporous Silica with Drugs on Titanium Surface and Its Biomedical Applications.

    PubMed

    Wan, Mimi; Zhang, Jin; Wang, Qi; Zhan, Shuyue; Chen, Xudong; Mao, Chun; Liu, Yuhong; Shen, Jian

    2017-06-07

    Mesoporous silica has been developed for the modification of titanium surfaces that are used as implant materials. Yet, the traditional modification methods failed to effectively construct mesoporous silica on the titanium surface evenly and firmly, in which the interaction between mesoporous silica and titanium was mainly physical. Here, in situ growth of mesoporous silica on a titanium surface was performed using a simple evaporation-induced self-assembly strategy. Meantime, in situ introduction of drugs (heparin and vancomycin) to mesoporous silica was also adopted to improve the drug-loading amount. Both the above-mentioned processes were completed at the same time. Transmission electron microscopy, N 2 adsorption-desorption isotherms, Fourier transform infrared spectroscopy, scanning electron microscopy, and water contact angle measurements were used to characterize the structure of the mesoporous silica film. Results indicated that the mesoporous silica film that in situ grew on the titanium surface was smooth, thin, transparent, and stable. Cytotoxicity, proliferation performance of osteoblast cells, and in vitro and in vivo studies of the antibacterial activity of the coating were tested. This is the first study to modify the titanium surface by the in situ growth of a mesoporous silica coating with two kinds of drugs. The stability of the mesoporous silica coating can be attributed to the chemical bonding between dopamine and silicon hydroxyl of the mesoporous silica coating, and the smooth surface of mesoporous silica is a result of the method of in situ growth. The large amount of drug-loading also could be ascribed to the in situ introduction of drugs during the synthetic process. The strategy proposed in this work will bring more possibilities for the preparation of advanced functional materials based on the combination of mesoporous structure and metallic materials.

  3. Silica in alkaline brines

    USGS Publications Warehouse

    Jones, B.F.; Rettig, S.L.; Eugster, H.P.

    1967-01-01

    Analysis of sodium carbonate-bicarbonate brines from closed basins in volcanic terranes of Oregon and Kenya reveals silica contents of up to 2700 parts per million at pH's higher than 10. These high concentrations of SiO 2 can be attributed to reaction of waters with silicates, and subsequent evaporative concentration accompanied by a rise in pH. Supersaturation with respect to amorphous silica may occur and persist for brines that are out of contact with silicate muds and undersaturated with respect to trona; correlation of SiO2 with concentration of Na and total CO2 support this interpretation. Addition of moredilute waters to alkaline brines may lower the pH and cause inorganic precipitation of substantial amounts of silica.

  4. Pyridinium-functionalized magnetic mesoporous silica nanoparticles as a reusable adsorbent for phosphate removal from aqueous solution.

    PubMed

    Ma, Fang; Du, Hongtao; Li, Ronghua; Zhang, Zengqiang

    In this work, pyridinium-functionalized silica nanoparticles adsorbent (PC/SiO2/Fe3O4) was synthesized for phosphate removal from aqueous solutions. The removal efficiency of phosphate on the PC/SiO2/Fe3O4 was carried out and investigated under various conditions such as pH, contact temperature and initial concentration. The results showed that the adsorption equilibrium could be reached within 10 min, which fitted a Langmuir isotherm model, with maximum adsorption capacity of 94.16 mg/g, and the kinetic data were fitted well by pseudo-second-order and intra-particle diffusion models. Phosphate loaded on the adsorbents could be easily desorbed with 0.2 mol/L of NaOH, and the adsorbents showed good reusability. The adsorption capacity was still around 50 mg/g after 10 times of reuse. All the results demonstrated that this pyridinium-functionalized mesoporous material could be used for the phosphate removal from aqueous solution and it was easy to collect due to its magnetic properties.

  5. Conversion of geothermal waste to commercial products including silica

    DOEpatents

    Premuzic, Eugene T.; Lin, Mow S.

    2003-01-01

    A process for the treatment of geothermal residue includes contacting the pigmented amorphous silica-containing component with a depigmenting reagent one or more times to depigment the silica and produce a mixture containing depigmented amorphous silica and depigmenting reagent containing pigment material; separating the depigmented amorphous silica and from the depigmenting reagent to yield depigmented amorphous silica. Before or after the depigmenting contacting, the geothermal residue or depigmented silica can be treated with a metal solubilizing agent to produce another mixture containing pigmented or unpigmented amorphous silica-containing component and a solubilized metal-containing component; separating these components from each other to produce an amorphous silica product substantially devoid of metals and at least partially devoid of pigment. The amorphous silica product can be neutralized and thereafter dried at a temperature from about 25.degree. C. to 300.degree. C. The morphology of the silica product can be varied through the process conditions including sequence contacting steps, pH of depigmenting reagent, neutralization and drying conditions to tailor the amorphous silica for commercial use in products including filler for paint, paper, rubber and polymers, and chromatographic material.

  6. Structural Variety and Adsorptive Properties of Mesoporous Silicas with Immobilized Oligosaccharide Groups

    NASA Astrophysics Data System (ADS)

    Trofymchuk, Iryna; Roik, Nadiia; Belyakova, Lyudmila

    2017-04-01

    In this research, we report on the synthesis of mesoporous silicas with various quantities of immobilized oligosaccharide groups and different pore ordering degree. The hydrothermal co-condensation of tetraethyl orthosilicate and β-cyclodextrin-containing organosilane in the presence of cetyltrimethylammonium bromide template was employed. The purpose of this investigation was to show the opportunity of increasing β-cyclodextrin content in silica matrix by changing the molar ratio of initial reagents during organosilane synthesis and to determine whether the enhancing of immobilized groups on the surface influences on model aromatic compound adsorption from water. It was prepared several β-cyclodextrin-organosilanes by modification of (3-aminopropyl)triethoxysilane with oligosaccharide (the molar composition of reaction mixtures were 1:1, 3:1, and 5:1) with using N, N'-carbonyldiimidazole as linking agent. Three types of MCM-41 materials were obtained with 0.018, 0.072, and 0.095 mmol g-1 β-cyclodextrin-group loading according to chemical analysis of silicas. The IR spectroscopy and potentiometric titration were also performed to confirm the presence of functional groups in the silica matrix. Nitrogen sorptometry experiments exhibited the decrease of high surface area (from 812 to 457 m2 g-1) and the average pore diameter (from 1.06 to 0.60 cm3 g-1) of synthesized silicas with increasing of immobilized oligosaccharide groups. The influence of β-cyclodextrin-organosilane presence on the forming of hexagonally arranged porous structure of silicas was evaluated by X-ray diffraction and TEM analyses. As the loading of oligosaccharide groups increases in obtained silicas, the (100) reflex in diffraction patterns is even less intense and broader, denoting the decrease of long-range pore ordering. Adsorption experiments were carried out to study the effect of β-cyclodextrin groups' attendance in silica matrix on benzene uptakes from aqueous solutions. Experimental

  7. Effect of hydration on the stability of fullerene-like silica molecules

    NASA Astrophysics Data System (ADS)

    Filonenko, O. V.; Lobanov, V. V.

    2011-05-01

    The hydration of fullerene-like silica molecules was studied by the density functional method (exchange-correlation functional B3LYP, basis set 6-31G**). It was demonstrated that completely coordinated structures transform to more stable hydroxylated ones during hydrolysis. These in turn react with H2O molecules with the formation of hydrogen bonds.

  8. Nanometer resolution optical coherence tomography using broad bandwidth XUV and soft x-ray radiation

    DOE PAGES

    Fuchs, Silvio; Rödel, Christian; Blinne, Alexander; ...

    2016-02-10

    Optical coherence tomography (OCT) is a non-invasive technique for cross-sectional imaging. It is particularly advantageous for applications where conventional microscopy is not able to image deeper layers of samples in a reasonable time, e.g. in fast moving, deeper lying structures. However, at infrared and optical wavelengths, which are commonly used, the axial resolution of OCT is limited to about 1 μm, even if the bandwidth of the light covers a wide spectral range. Here, we present extreme ultraviolet coherence tomography (XCT) and thus introduce a new technique for non-invasive cross-sectional imaging of nanometer structures. XCT exploits the nanometerscale coherence lengthsmore » corresponding to the spectral transmission windows of, e.g., silicon samples. The axial resolution of coherence tomography is thus improved from micrometers to a few nanometers. Tomographic imaging with an axial resolution better than 18 nm is demonstrated for layer-type nanostructures buried in a silicon substrate. Using wavelengths in the water transmission window, nanometer-scale layers of platinum are retrieved with a resolution better than 8 nm. As a result, XCT as a nondestructive method for sub-surface tomographic imaging holds promise for several applications in semiconductor metrology and imaging in the water window.« less

  9. A process to fabricate fused silica nanofluidic devices with embedded electrodes using an optimized room temperature bonding technique

    NASA Astrophysics Data System (ADS)

    Boden, Seth; Karam, P.; Schmidt, A.; Pennathur, S.

    2017-05-01

    Fused silica is an ideal material for nanofluidic systems due to its extreme purity, chemical inertness, optical transparency, and native hydrophilicity. However, devices requiring embedded electrodes (e.g., for bioanalytical applications) are difficult to realize given the typical high temperature fusion bonding requirements (˜1000 °C). In this work, we optimize a two-step plasma activation process which involves an oxygen plasma treatment followed by a nitrogen plasma treatment to increase the fusion bonding strength of fused silica at room temperature. We conduct a parametric study of this treatment to investigate its effect on bonding strength, surface roughness, and microstructure morphology. We find that by including a nitrogen plasma treatment to the standard oxygen plasma activation process, the room temperature bonding strength increases by 70% (0.342 J/m2 to 0.578 J/m2). Employing this optimized process, we fabricate and characterize a nanofluidic device with an integrated and dielectrically separated electrode. Our results prove that the channels do not leak with over 1 MPa of applied pressure after a 24 h storage time, and the electrode exhibits capacitive behavior with a finite parallel resistance in the upper MΩ range for up to a 6.3Vdc bias. These data thus allow us to overcome the barrier that has barred nanofluidic progress for the last decade, namely, the development of nanometer scale well-defined channels with embedded metallic materials for far-reaching applications such as the exquisite manipulation of biomolecules.

  10. Preparation and characterization of glycidyl methacrylate organo bridges grafted mesoporous silica SBA-15 as ibuprofen and mesalamine carrier for controlled release.

    PubMed

    Rehman, Fozia; Rahim, Abdur; Airoldi, Claudio; Volpe, Pedro L O

    2016-02-01

    Mesoporous silica SBA-15 was synthesized and functionalized with bridged polysilsesquioxane monomers obtained by the reaction of 3-aminopropyltriethoxy silane with glycidyl methacrylate in 2:1 ratio. The synthesized mesoporous silica materials were characterized by elemental analysis, infrared spectroscopy, nuclear magnetic resonance spectroscopy, nitrogen adsorption, X-ray diffraction, thermogravimetry and scanning electron microscopy. The nuclear magnetic resonance in the solid state is in agreement with the sequence of carbon distributed in the attached organic chains, as expected for organically functionalized mesoporous silica. After functionalization with organic bridges the BET surface area was reduced from 1311.80 to 494.2m(2)g(-1) and pore volume was reduced from 1.98 to 0.89cm(3)g(-1), when compared to original precursor silica. Modification of the silica surface with organic bridges resulted in high loading capacity and controlled release of ibuprofen and mesalamine in biological fluids. The Korsmeyer-Peppas model better fits the release data indicating Fickian diffusion and zero order kinetics for synthesized mesoporous silica. The drug release rate from the modified silica was slow in simulated gastric fluid, (pH1.2) where less than 10% of mesalamine and ibuprofen were released in initial 8h, while comparatively high release rates were observed in simulated intestinal (pH6.8) and simulated body fluids (pH7.2). The preferential release of mesalamine at intestinal pH suggests that the modified silica could be a simple, efficient, inexpensive and convenient carrier for colon targeted drugs, such a mesalamine and also as a controlled drug release system. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. How do silanes affect the lubricating properties of cationic double chain surfactant on silica surfaces?

    PubMed

    Beauvais, Muriel; Serreau, Laurence; Heitz, Caroline; Barthel, Etienne

    2009-03-01

    The effect of an aminosilane on the lubricant properties of a C(18) double-chained cationic surfactant has been investigated in the context of glass fiber forming process. The surfactant adsorption was studied on silica by Fourier transform infrared (FT-IR) spectroscopy in the attenuated total reflexion (ATR) mode as a function of the aminosilane concentration in an organic water based formulation (sizing) used to coat the glass fibers during the process. A reciprocating ball-on-plate tribometer was used to compare friction properties of silica in contact with the aminosilane-surfactant mixture and in presence of each component of the sizing. Surface forces were measured between silica and an atomic force microscope (AFM) silicon nitride tip in the sizing and in the pure cationic surfactant solution. The aminosilane on its own has no lubricant property and reduces or even suppresses the cationic surfactant adsorption on silica. However, the silica-silica contact is lubricated even if the infrared spectroscopy does not detect any surfactant adsorption. The repeated contacts and shear due to the friction experiment itself induce accumulation, organization and compactness of surfactant bilayers.

  12. Rapid pathogen detection with bacterial-assembled magnetic mesoporous silica.

    PubMed

    Lee, Soo Youn; Lee, Jiho; Lee, Hye Sun; Chang, Jeong Ho

    2014-03-15

    We report rapid and accurate pathogen detection by coupling with high efficiency magnetic separation of pathogen by Ni(2+)-heterogeneous magnetic mesoporous silica (Ni-HMMS) and real time-polymerase chain reaction (RT-PCR) technique. Ni-HMMS was developed with a significant incorporation of Fe particles within the silica mesopores by programmed thermal hydrogen reaction and functionalized with Ni(2+) ion on the surface by the wet impregnation process. High abundant Ni(2+) ions on the Ni-HMMS surface were able to assemble with cell wall component protein NikA (nickel-binding membrane protein), which contains several pathogenic bacteria including Escherichia coli O157:H7. NikA protein expression experiment showed the outstanding separation rate of the nikA gene-overexpressed E. coli (pSY-Nik) when comparing with wild-type E. coli (44.5 ± 13%) or not over-expressed E. coli (pSY-Nik) (53.2 ± 2.7%). Moreover, Ni-HMMS showed lower obstacle effect by large reaction volume (10 mL) than spherical core/shell-type silica magnetic nanoparticles functionalized with Ni(2+) (ca. 40 nm-diameters). Finally, the Ni-HMMS was successfully assessed to separate pathogenic E. coli O157:H7 and applied to direct and rapid RT-PCR to quantitative detection at ultralow concentration (1 Log10 cfu mL(-1)) in the real samples (milk and Staphylococcus aureus culture broth) without bacterial amplification and DNA extraction step. © 2013 Elsevier B.V. All rights reserved.

  13. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-concentration Size Distributions

    NASA Astrophysics Data System (ADS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2000-03-01

    We have developed a fast-response nanometer aerosol size analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 s. The analyzer includes a bipolar charger (Po210), an extended-length nanometer differential mobility analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 s per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the tandem differential mobility analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T-38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented below.

  14. A Nanometer Aerosol Size Analyzer (nASA) for Rapid Measurement of High-Concentration Size Distributions

    NASA Technical Reports Server (NTRS)

    Han, Hee-Siew; Chen, Da-Ren; Pui, David Y. H.; Anderson, Bruce E.

    2001-01-01

    We have developed a fast-response Nanometer Aerosol Size Analyzer (nASA) that is capable of scanning 30 size channels between 3 and 100 nm in a total time of 3 seconds. The analyzer includes a bipolar charger (P0210), an extended-length Nanometer Differential Mobility Analyzer (Nano-DMA), and an electrometer (TSI 3068). This combination of components provides particle size spectra at a scan rate of 0.1 second per channel free of uncertainties caused by response-time-induced smearing. The nASA thus offers a fast response for aerosol size distribution measurements in high-concentration conditions and also eliminates the need for applying a de-smearing algorithm to resulting data. In addition, because of its thermodynamically stable means of particle detection, the nASA is useful for applications requiring measurements over a broad range of sample pressures and temperatures. Indeed, experimental transfer functions determined for the extended-length Nano-DMA using the Tandem Differential Mobility Analyzer (TDMA) technique indicate the nASA provides good size resolution at pressures as low as 200 Torr. Also, as was demonstrated in tests to characterize the soot emissions from the J85-GE engine of a T38 aircraft, the broad dynamic concentration range of the nASA makes it particularly suitable for studies of combustion or particle formation processes. Further details of the nASA performance as well as results from calibrations, laboratory tests and field applications are presented.

  15. An ultrasensitive hollow-silica-based biosensor for pathogenic Escherichia coli DNA detection.

    PubMed

    Ariffin, Eda Yuhana; Lee, Yook Heng; Futra, Dedi; Tan, Ling Ling; Karim, Nurul Huda Abd; Ibrahim, Nik Nuraznida Nik; Ahmad, Asmat

    2018-03-01

    A novel electrochemical DNA biosensor for ultrasensitive and selective quantitation of Escherichia coli DNA based on aminated hollow silica spheres (HSiSs) has been successfully developed. The HSiSs were synthesized with facile sonication and heating techniques. The HSiSs have an inner and an outer surface for DNA immobilization sites after they have been functionalized with 3-aminopropyltriethoxysilane. From field emission scanning electron microscopy images, the presence of pores was confirmed in the functionalized HSiSs. Furthermore, Brunauer-Emmett-Teller (BET) analysis indicated that the HSiSs have four times more surface area than silica spheres that have no pores. These aminated HSiSs were deposited onto a screen-printed carbon paste electrode containing a layer of gold nanoparticles (AuNPs) to form a AuNP/HSiS hybrid sensor membrane matrix. Aminated DNA probes were grafted onto the AuNP/HSiS-modified screen-printed electrode via imine covalent bonds with use of glutaraldehyde cross-linker. The DNA hybridization reaction was studied by differential pulse voltammetry using an anthraquinone redox intercalator as the electroactive DNA hybridization label. The DNA biosensor demonstrated a linear response over a wide target sequence concentration range of 1.0×10 -12 -1.0×10 -2 μM, with a low detection limit of 8.17×10 -14 μM (R 2 = 0.99). The improved performance of the DNA biosensor appeared to be due to the hollow structure and rough surface morphology of the hollow silica particles, which greatly increased the total binding surface area for high DNA loading capacity. The HSiSs also facilitated molecule diffusion through the silica hollow structure, and substantially improved the overall DNA hybridization assay. Graphical abstract Step-by-step DNA biosensor fabrication based on aminated hollow silica spheres.

  16. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu

    Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, which might be similar to the biomineralization processes that occurred at the dawn of life. We report here the complete genome sequence of A. flavithermus strain WK1, isolated from themore » waste water drain at the Wairakei geothermal power station in New Zealand. It consists of a single chromosome of 2,846,746 base pairs and is predicted to encode 2,863 proteins. In silico genome analysis identified several enzymes that could be involved in silica adaptation and biofilm formation, and their predicted functions were experimentally validated in vitro. Proteomic analysis confirmed the regulation of biofilm-related proteins and crucial enzymes for the synthesis of long-chain polyamines as constituents of silica nanospheres. Microbial fossils preserved in silica and silica sinters are excellent objects for studying ancient life, a new paleobiological frontier. An integrated analysis of the A. flavithermus genome and proteome provides the first glimpse of metabolic adaptation during silicification and sinter formation. Comparative genome analysis suggests an extensive gene loss in the Anoxybacillus/Geobacillus branch after its divergence from other bacilli.« less

  17. Grazers: biocatalysts of terrestrial silica cycling

    PubMed Central

    Vandevenne, Floor Ina; Barão, Ana Lúcia; Schoelynck, Jonas; Smis, Adriaan; Ryken, Nick; Van Damme, Stefan; Meire, Patrick; Struyf, Eric

    2013-01-01

    Silica is well known for its role as inducible defence mechanism countering herbivore attack, mainly through precipitation of opaline, biogenic silica (BSi) bodies (phytoliths) in plant epidermal tissues. Even though grazing strongly interacts with other element cycles, its impact on terrestrial silica cycling has never been thoroughly considered. Here, BSi content of ingested grass, hay and faeces of large herbivores was quantified by performing multiple chemical extraction procedures for BSi, allowing the assessment of chemical reactivity. Dissolution experiments with grass and faeces were carried out to measure direct availability of BSi for dissolution. Average BSi and readily soluble silica numbers were higher in faeces as compared with grass or hay, and differences between herbivores could be related to distinct digestive strategies. Reactivity and dissolvability of BSi increases after digestion, mainly due to degradation of organic matrices, resulting in higher silica turnover rates and mobilization potential from terrestrial to aquatic ecosystems in non-grazed versus grazed pasture systems (2 versus 20 kg Si ha−1 y−1). Our results suggest a crucial yet currently unexplored role of herbivores in determining silica export from land to ocean, where its availability is linked to eutrophication events and carbon sequestration through C–Si diatom interactions. PMID:24107532

  18. Ultrasound assisted deposition of silica coatings on titanium

    NASA Astrophysics Data System (ADS)

    Kaş, Recep; Ertaş, Fatma Sinem; Birer, Özgür

    2012-10-01

    We present a novel ultrasound assisted method for silica coating of titanium surfaces. The coatings are formed by “smashing” silica nanoparticles onto activated titanium surface in solution using intense ultrasonic field. Homogeneous silica coatings are formed by deposition of dense multiple layers of silica nanoparticles. Since the nanoparticles also grow during the reaction, the layers of the coatings have smaller particles on the substrate and larger particles towards the surface. The thickness of the coatings can be controlled with several experimental parameters. Silica layers with thickness over 200 nm are readily obtained.

  19. Porous Silica Sol-Gel Glasses Containing Reactive V2O5 Groups

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.

    1995-01-01

    Porous silica sol-gel glasses into which reactive vanadium oxide functional groups incorporated exhibit number of unique characteristics. Because they bind molecules of some species both reversibly and selectively, useful as chemical sensors or indicators or as scrubbers to remove toxic or hazardous contaminants. Materials also oxidize methane gas photochemically: suggests they're useful as catalysts for conversion of methane to alcohol and for oxidation of hydrocarbons in general. By incorporating various amounts of other metals into silica sol-gel glasses, possible to synthesize new materials with broad range of new characteristics.

  20. Targeted Mesoporous Silica Nanocarriers in Oncology.

    PubMed

    Baeza, Alejandro; Vallet-Regi, Maria

    2018-02-08

    Cancer is one of the major leading causes of death worldwide and its prevalence will be higher in the coming years due to the progressive aging of the population. The development of nanocarriers in oncology has provided a new hope in the fight against this terrible disease. Among the different types of nanoparticles which have been reported in the scientific literature, mesoporous silica nanoparticles (MSNs) are very promising materials due to their inherent properties such as high loading capacity of many different drugs, excellent biocompatibility and easy functionalization. This review presents the current state of the art related to the development of mesoporous silica nanocarriers for antitumoral therapy paying special attention on targeted MSN able to selectively destroy tumoral cells, reducing the side damage in healthy ones, and the basic principles of targeting tumoral tissues and cells. MSNs constitute a promising nanomaterial for drug delivery applications in antitumoral therapy as a consequence of its unique properties such as excellent biocompatibility, high loading capacity, robustness, easy production and existence of multiple strategies for their functionalization with a myriad of bio-organic moieties. In the coming years, the clever application of this material would provide novel alternatives for the treatment of this complex disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Layer-by-Layer Templated Assembly of Silica at the Nanoscale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinestrosa, Juan Pablo; Sutton, Jonathan E.; Allison, David P.

    2013-01-29

    Bioinspired bottom-up assembly and layer-by-layer (LbL) construction of inorganic materials from lithographically defined organic templates enables the fabrication of nanostructured systems under mild temperature and pH conditions. Such processes open the door to low-impact manufacturing and facile recycling of hybrid materials for energy, biology, and information technologies. Here, templated LbL assembly of silica was achieved using a combination of electron beam lithography, chemical lift-off, and aqueous solution chemistry. Nanopatterns of lines, honeycomb-lattices, and dot arrays were defined in polymer resist using electron beam lithography. Following development, exposed areas of silicon were functionalized with a vapor deposited amine-silane monolayer. Silicic acidmore » solutions of varying pH and salt content were reacted with the patterned organic amine-functional templates. Vapor treatment and solution reaction could be repeated, allowing LbL deposition. Conditions for the silicic acid deposition had a strong effect on thickness of each layer, and the morphology of the amorphous silica formed. Defects in the arrays of silica nanostructures were minor and do not affect the overall organization of the layers. In conclusion, the bioinspired method described here facilitates the bottom-up assembly of inorganic nanostructures defined in three dimensions and provides a path, via LbL processing, for the construction of layered hybrid materials under mild conditions.« less

  2. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates

    PubMed Central

    Xu, Lizhong

    2018-01-01

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively. PMID:29373546

  3. A Micro-Resonant Gas Sensor with Nanometer Clearance between the Pole Plates.

    PubMed

    Fu, Xiaorui; Xu, Lizhong

    2018-01-26

    In micro-resonant gas sensors, the capacitive detection is widely used because of its simple structure. However, its shortcoming is a weak signal output caused by a small capacitance change. Here, we reduced the initial clearance between the pole plates to the nanometer level, and increased the capacitance between the pole plates and its change during resonator vibration. We propose a fabricating process of the micro-resonant gas sensor by which the initial clearance between the pole plates is reduced to the nanometer level and a micro-resonant gas sensor with 200 nm initial clearance is fabricated. With this sensor, the resonant frequency shifts were measured when they were exposed to several different vapors, and high detection accuracies were obtained. The detection accuracy with respect to ethanol vapor was 0.4 ppm per Hz shift, and the detection accuracy with respect to hydrogen and ammonias vapors was 3 ppm and 0.5 ppm per Hz shift, respectively.

  4. All-optical lithography process for contacting nanometer precision donor devices

    DOE PAGES

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie; ...

    2017-11-06

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  5. All-optical lithography process for contacting nanometer precision donor devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, Daniel Robert; Marshall, Michael Thomas; Campbell, DeAnna Marie

    In this article, we describe an all-optical lithography process that can make electrical contact to nanometer-precision donor devices fabricated in silicon using scanning tunneling microscopy (STM). This is accomplished by implementing a cleaning procedure in the STM that allows the integration of metal alignment marks and ion-implanted contacts at the wafer level. Low-temperature transport measurements of a patterned device establish the viability of the process.

  6. [Amorphous silica. Types, health effects of exposure, NDS].

    PubMed

    Woźniak, H; Wiecek, E

    1995-01-01

    Maximum allowable concentration (MAC) values for amorphous silica dust have not been identified in the Polish legal regulations up-to-date. In this work the authors review values of allowable (recommended) amorphous silica dust concentrations in other countries. Data on other types of amorphous silica (natural and synthetic) used in industry as well as data on health effects of exposure to these types of dust are presented. The work encompasses 42 entries in the references and one Table which includes the following proposed MAC values: Non-calcinate diatomaceous earth (diatomite) and synthetic silica: Total dust--10 mg/m3 Respirable dust--2 mg/m3 Calcinate diatomaceous earth (diatomite) and fused silica (vitreous silica): Total dust--2 mg/m3 Respirable dust--1 mg/m3.

  7. Rational design and synthesis of efficient Carbon and/or Silica functional nanomaterials for electrocatalysis and nanomedicine

    NASA Astrophysics Data System (ADS)

    Da Silva, Rafael

    In nanomaterials there is a strong correlation between structure and properties. Thus, the design and synthesis of nanomaterials with well-defined structures and morphology is essential in order to produce materials with not only unique but also tailorable properties. The unique properties of nanomaterials in turn can be taken advantage of to create materials and nanoscale devices that can help address important societal issues, such as meeting renewable energy sources and efficient therapeutic and diagnostic methods to cure a range of diseases. In this thesis, the different synthetic approaches I have developed to produce functional nanomaterials composed of earth-abundant elements (mainly carbon and silica) at low cost in a very sustainable manner are discussed. In Chapter 1, the fundamental properties of nanomaterials and their properties and potential applications in many areas are introduced. In chapter 2, a novel synthetic method that allows polymerization of polyaniline (PANI), a conducting polymer, inside cylindrical channel pores of nanoporous silica (SBA-15) is discussed. In addition, the properties of the III resulting conducting polymer in the confined nanochannel spaces of SBA-15, and more importantly, experimental demonstration of the use of the resulting hybrid material (PANI/SBA-15 material) as electocatalyst for electrooxidation reactions with good overpotential, close to zero, are detailed. In chapter 3, the synthetic approach discussed in Chapter 2 is further extended to afford nitrogen- and oxygen-doped mesoporous carbons. This is possible by pyrolysis of the PANI/SBA-15 composite materials under inert atmosphere, followed by etching away their silica framework. The high catalytic activity of resulting carbon-based materials towards oxygen reduction reaction despite they do not possess any metal dopants is also included. The potential uses of nanomaterials in areas such as nanomedicine need deep understanding of the biocompatibility/ toxicity of

  8. Synthesis and adsorption of silica gel modified 3-aminopropyltriethoxysilane (APTS) from corn cobs against Cu(II) in water

    NASA Astrophysics Data System (ADS)

    Purwanto, Agung; Yusmaniar, Ferdiani, Fatmawati; Damayanti, Rachma

    2017-03-01

    Silica gel modified APTS was synthesized from silica gel which was obtained from corn cobs via sol-gel process. Silica gel was synthesized from corn cobs and then chemically modified with silane coupling agent which has an amine group (NH2). This process resulting modified silica gel 3-aminopropyltriethoxysilane (APTS). Characterization of silica gel modified APTS by SEM-EDX showed that the size of the particles of silica gel modified APTS was 20µm with mass percentage of individual elements were nitrogen (N) 15.56%, silicon (Si) 50.69% and oxygen (O) 33.75%. In addition, silica gel modified APTS also showed absorption bands of functional groups silanol (Si-OH), siloxane (Si-O-Si), and an aliphatic chain (-CH2-), as well as amine (NH2) from FTIR spectra. Based on the characterization of XRD, silica gel 2θ of 21.094° and 21.32° respectively. It indicated that both material were amorphous. Determination of optimum pH and contact time on adsorption of silica gel 3-aminopropyltriethoxysilane (APTS) against Cu(II). The optimum pH and contact time was measured by using AAS. Optimum pH of adsorption silica gel modified APTS against metal Cu(II) could be obtained at pH 6 while optimum contact time was at 30 minutes, with the process of adsorption metal Cu(II) occured based on the model Freundlich isotherm.

  9. IR-spectroscopical investigations on the glass structure of porous and sintered compacts of colloidal silica gels

    NASA Astrophysics Data System (ADS)

    Clasen, Rolf; Hornfeck, M.; Theiss, Wolfgang

    1991-08-01

    The forming and sintering of fumed silica powders is an interesting route for the preparation of large, very pure or doped silica glasses with a precise geometry. The processing from the shaping of a porous compact to the sintering of transparent silica glass can be successfully investigated with optical spectroscopy. As only the dielectric function DF (a dielectric function is the square root of the complex refractive index) characterizes the material, the vibrational bands were calculated from reflectance measurements. In compacts of fine particles, the topology cannot be neglected. Therefore, the models describing topological effects are briefly reviewed. With these model calculations it could be proven that new bands in the compacts and the significant shifts in the reflectance spectra during sintering are mainly caused by topological effects and that changes in the glass structure play only a secondary role.

  10. Preparation and Characterization of Hydroxyapatite-Silica Composite Nanopowders

    NASA Astrophysics Data System (ADS)

    Latifi, S. M.; Fathi, M. H.; Golozar, M. A.

    One of the most important objectives in the field of biomaterials science and engineering is development of new materials as bone substitutes. Silica (SiO2) has an important role in the biomineralization and biological responses. The aim of this research was to prepare and characterize hydroxyapatite-silica (HA-SiO2) composite nanopowder with different content of silica. Hydroxyapatite-silica composite nanopowders with 20 and 40 wt% silica were prepared using a sol-gel method at 600°C with phosphoric pentoxide and calcium nitrate tetrahydrate as a source of hydroxyapatite; also, tetraethylorthosilicate and methyltriethoxisilane as a source of silica. Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) techniques were used for characterization and evaluation of the products. The results indicated the presence of nanocrystalline hydroxyapatite phase beside amorphous silica phase in prepared composite nanopowders. Moreover, by increasing the content of silica in composite nanopowders, the crystallinity will be decreased,and the ability of the product as a bone substitute material might be controlled by changing the content of the ingredients and subsequently its structure.

  11. Health hazards due to the inhalation of amorphous silica.

    PubMed

    Merget, R; Bauer, T; Küpper, H U; Philippou, S; Bauer, H D; Breitstadt, R; Bruening, T

    2002-01-01

    Occupational exposure to crystalline silica dust is associated with an increased risk for pulmonary diseases such as silicosis, tuberculosis, chronic bronchitis, chronic obstructive pulmonary disease (COPD) and lung cancer. This review summarizes the current knowledge about the health effects of amorphous (non-crystalline) forms of silica. The major problem in the assessment of health effects of amorphous silica is its contamination with crystalline silica. This applies particularly to well-documented pneumoconiosis among diatomaceous earth workers. Intentionally manufactured synthetic amorphous silicas are without contamination of crystalline silica. These synthetic forms may be classified as (1) wet process silica, (2) pyrogenic ("thermal" or "fumed") silica, and (3) chemically or physically modified silica. According to the different physicochemical properties, the major classes of synthetic amorphous silica are used in a variety of products, e.g. as fillers in the rubber industry, in tyre compounds, as free-flow and anti-caking agents in powder materials, and as liquid carriers, particularly in the manufacture of animal feed and agrochemicals; other uses are found in toothpaste additives, paints, silicon rubber, insulation material, liquid systems in coatings, adhesives, printing inks, plastisol car undercoats, and cosmetics. Animal inhalation studies with intentionally manufactured synthetic amorphous silica showed at least partially reversible inflammation, granuloma formation and emphysema, but no progressive fibrosis of the lungs. Epidemiological studies do not support the hypothesis that amorphous silicas have any relevant potential to induce fibrosis in workers with high occupational exposure to these substances, although one study disclosed four cases with silicosis among subjects exposed to apparently non-contaminated amorphous silica. Since the data have been limited, a risk of chronic bronchitis, COPD or emphysema cannot be excluded. There is no study

  12. Characterization of silica particles modified with γ-methacryloxypropyltrimethoxysilane

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Wang, Wang; Shen, Haiying; Wang, Jiamin; Cao, Jinzhen

    2017-03-01

    The surface of hydrophilic silica particles was modified with different concentrations (2, 4, 6, 8 and 10%) of γ-methacryloxypropyltrimethoxysilane (MPTS). The hydrophobicity and hygroscopicity of unmodified and modified silica were investigated through water contact angle (WCA) tests and dynamic vapor sorption (DVS) method, respectively. The results showed that the surface properties of silica were closely related with the MPTS concentration. Within the range of MPTS concentration applied, 8% MPTS modified silica showed the least aggregation. With the increasing MPTS concentration, the WCAs on modified silica film increased correspondingly, and finally exceeded 90° at 6% and 8% concentrations. The equilibrium moisture contents (EMCs) of modified silica also decreased with the increasing MPTS concentration. The improvement on hydrophobicity can be correlated with the reduction of residual hydroxyl groups (-OH) on modified silica. The self-condensation of MPTS began to occur at concentrations higher than 4%, especially at 8%. Owing to this effect, the modified silica with 8% MPTS showed a slightly higher EMC than 6% MPTS within low relative humidity (RH) range up to 40%. At a higher RH ranging from 40 to 90%, 8% group showed the lowest EMCs because of its highest hydrophobicity and low specific surface area. A mechanism concerning the MPTS modification of silica was also proposed in this study based on the research results.

  13. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    NASA Astrophysics Data System (ADS)

    Carpenter, Alexis Wells

    Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of macromolecular scaffolds is a major advantage over LMW NO donors as it allows for the incorporation of multiple functionalities onto a single scaffold. To demonstrate this advantage, dual functional particles were synthesized by covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing silica particles. The QA functionality proved more effective against Staphylococcus aureus than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy. Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. aureus compared to monofunctional particles.

  14. Silica-Rich Soil Found by Spirit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Spirit has found a patch of bright-toned soil so rich in silica that scientists propose water must have been involved in concentrating it.

    The silica-rich patch, informally named 'Gertrude Weise' after a player in the All-American Girls Professional Baseball League, was exposed when Spirit drove over it during the 1,150th Martian day, or sol, of Spirit's Mars surface mission (March 29, 2007). One of Spirit's six wheels no longer rotates, so it leaves a deep track as it drags through soil. Most patches of disturbed, bright soil that Spirit had investigated previously are rich in sulfur, but this one has very little sulfur and is about 90 percent silica.

    This image is a approximately true-color composite of three images taken through different filters by Spirit's panoramic camera on Sol 1,187 (May 6). The track of disturbed soil is roughly 20 centimeters (8 inches) wide.

    Spirit's miniature thermal emission spectrometer, which can assess a target's mineral composition from a distance, examined the Gertrude Weise patch on Sol 1,172 (April 20). The indications it found for silica in the overturned soil prompted a decision to drive Spirit close enough to touch the soil with the alpha particle X-ray spectrometer, a chemical analyzer at the end of Spirit's robotic arm. The alpha particle X-ray spectrometer collected data about this target on sols 1,189 and 1,190 (May 8 and May 9) and produced the finding of approximately 90 percent silica.

    Silica is silicon dioxide. On Earth, it commonly occurs as the crystalline mineral quartz and is the main ingredient in window glass. The Martian silica at Gertrude Weise is non-crystalline, with no detectable quartz.

    In most cases, water is required to produce such a concentrated deposit of silica, according to members of the rover science team. One possible origin for the silica could have been interaction of soil with acidic steam produced by volcanic activity. Another could

  15. Silica-Rich Soil in Gusev Crater

    NASA Technical Reports Server (NTRS)

    2007-01-01

    NASA's Mars Exploration Rover Spirit has found a patch of bright-toned soil so rich in silica that scientists propose water must have been involved in concentrating it.

    The silica-rich patch, informally named 'Gertrude Weise' after a player in the All-American Girls Professional Baseball League, was exposed when Spirit drove over it during the 1,150th Martian day, or sol, of Spirit's Mars surface mission (March 29, 2007). One of Spirit's six wheels no longer rotates, so it leaves a deep track as it drags through soil. Most patches of disturbed, bright soil that Spirit had investigated previously are rich in sulfur, but this one has very little sulfur and is about 90 percent silica.

    Spirit's panoramic camera imaged the bright patch through various filters on Sol 1,158 (April 6). This approximately true-color image combines images taken through three different filters. The track of disturbed soil is roughly 20 centimeters (8 inches) wide.

    Spirit's miniature thermal emission spectrometer, which can assess a target's mineral composition from a distance, examined the Gertrude Weise patch on Sol 1,172 (April 20). The indications it found for silica in the overturned soil prompted a decision to drive Spirit close enough to touch the soil with the alpha particle X-ray spectrometer, a chemical analyzer at the end of Spirit's robotic arm. The alpha particle X-ray spectrometer collected data about this target on sols 1,189 and 1,190 (May 8 and May 9) and produced the finding of approximately 90 percent silica.

    Silica is silicon dioxide. On Earth, it commonly occurs as the crystalline mineral quartz and is the main ingredient in window glass. The Martian silica at Gertrude Weise is non-crystalline, with no detectable quartz.

    In most cases, water is required to produce such a concentrated deposit of silica, according to members of the rover science team. One possible origin for the silica could have been interaction of soil with acidic steam

  16. Self-cleaning cotton functionalized with TiO2/SiO2: focus on the role of silica.

    PubMed

    Pakdel, Esfandiar; Daoud, Walid A

    2013-07-01

    This manuscript aims to investigate the functionalization of cotton fabrics with TiO2/SiO2. In this study, the sol-gel method was employed to prepare titania and silica sols and the functionalization was carried out using the dip-pad-dry-cure process. Titanium tetra isopropoxide (TTIP) and tetra ethyl orthosilicate (TEOS) were utilized as precursors of TiO2 and SiO2, respectively. TiO2/SiO2 composite sols were prepared in three different Ti:Si molar ratios of 1:0.43, 1:1, and 1:2.33. The self-cleaning property of cotton samples functionalized with TiO2/SiO2 was assessed based on the coffee stain removal capability and the decomposition rate of methylene blue under UV irradiation. FTIR study of the TiO2/SiO2 photocatalyst confirmed the existence of Si-O-Si and Ti-O-Si bonds. Scanning electron microscopy was employed to investigate the morphology of the functionalized cotton samples. The samples coated with TiO2/SiO2 showed greater ability of coffee stain removal and methylene blue degradation compared with samples functionalized with TiO2 demonstrating improved self-cleaning properties. The role of SiO2 in improving these properties is also discussed. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Grassy Silica Nanoribbons and Strong Blue Luminescence

    NASA Astrophysics Data System (ADS)

    Wang, Shengping; Xie, Shuang; Huang, Guowei; Guo, Hongxuan; Cho, Yujin; Chen, Jun; Fujita, Daisuke; Xu, Mingsheng

    2016-09-01

    Silicon dioxide (SiO2) is one of the key materials in many modern technological applications such as in metal oxide semiconductor transistors, photovoltaic solar cells, pollution removal, and biomedicine. We report the accidental discovery of free-standing grassy silica nanoribbons directly grown on SiO2/Si platform which is commonly used for field-effect transistors fabrication without other precursor. We investigate the formation mechanism of this novel silica nanostructure that has not been previously documented. The silica nanoribbons are flexible and can be manipulated by electron-beam. The silica nanoribbons exhibit strong blue emission at about 467 nm, together with UV and red emissions as investigated by cathodoluminescence technique. The origins of the luminescence are attributed to various defects in the silica nanoribbons; and the intensity change of the blue emission and green emission at about 550 nm is discussed in the frame of the defect density. Our study may lead to rational design of the new silica-based materials for a wide range of applications.

  18. Pore-Confined Carriers and Biomolecules in Mesoporous Silica for Biomimetic Separation and Targeting

    NASA Astrophysics Data System (ADS)

    Zhou, Shanshan

    Selectively permeable biological membranes composed of lipophilic barriers inspire the design of biomimetic carrier-mediated membranes for aqueous solute separation. This work imparts selective permeability to lipid-filled pores of silica thin film composite membranes using carrier molecules that reside in the lipophilic self-assemblies. The lipids confined inside the pores of silica are proven to be a more effective barrier than bilayers formed on the porous surface through vesicle fusion, which is critical for quantifying the function of an immobilized carrier. The ability of a lipophilic carrier embedded in the lipid bilayer to reversibly bind the target solute and transport it through the membrane is demonstrated. Through the functionalization of the silica surface with enzymes, enzymatic catalysis and biomimetic separations can be combined on this nanostructured composite platform. The successful development of biomimetic nanocomposite membrane can provide for efficient dilute aqueous solute upgrading or separations using engineered carrier/catalyst/support systems. While the carrier-mediated biomimetic membranes hold great potential, fully understanding of the transport processes in composite synthetic membranes is essential for improve the membrane performance. Electrochemical impedance spectroscopy (EIS) technique is demonstrated to be a useful tool for characterizing the thin film pore accessibility. Furthermore, the effect of lipid bilayer preparation methods on the silica thin film (in the form of pore enveloping, pore filling) on ion transport is explored, as a lipid bilayer with high electrically insulation is essential for detecting activity of proteins or biomimetic carriers in the bilayer. This study provides insights for making better barriers on mesoporous support for carrier-mediated membrane separation process. Porous silica nanoparticles (pSNPs) with pore sizes appropriate for biomolecule loading are potential for encapsulating dsRNA within the

  19. Organosilylated complex [Eu(TTA)3(Bpy-Si)]: a bifunctional moiety for the engeneering of luminescent silica-based nanoparticles for bioimaging.

    PubMed

    Duarte, Adriana P; Mauline, Léïla; Gressier, Marie; Dexpert-Ghys, Jeannette; Roques, Christine; Caiut, José Maurício A; Deffune, Elenice; Maia, Danielle C G; Carlos, Iracilda Z; Ferreira, Antonio A P; Ribeiro, Sidney J L; Menu, Marie-Joëlle

    2013-05-14

    A new highly luminescent europium complex with the formula [Eu(TTA)3(Bpy-Si)], where TTA stands for the thenoyltrifluoroacetone, (C4H3S)COCH2COCF3, chelating ligand and Bpy-Si, Bpy-CH2NH(CH2)3Si(OEt)3, is an organosilyldipyridine ligand displaying a triethoxysilyl group as a grafting function has been synthesized and fully characterized. This bifunctional complex has been grafted onto the surface of dense silica nanoparticles (NPs) and on mesoporous silica microparticles as well. The covalent bonding of [Eu(TTA)3(Bpy-Si)] inside uniform Stöber silica nanoparticles was also achieved. The general methodology proposed could be applied to any silica matrix, allowed high grafting ratios that overcome chelate release and the tendency to agglomerate. Luminescent silica-based nanoparticles SiO2-[Eu(TTA)3(Bpy-Si)], with a diameter of 28 ± 2 nm, were successfully tested as a luminescent labels for the imaging of Pseudomonas aeruginosa biofilms. They were also functionalized by a specific monoclonal antibody and subsequently employed for the selective imaging of Escherichia coli bacteria.

  20. Winter climate change and fine root biogenic silica in sugar maple trees (Acer saccharum): Implications for silica in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Maguire, Timothy J.; Templer, Pamela H.; Battles, John J.; Fulweiler, Robinson W.

    2017-03-01

    Winter temperatures are projected to increase over the next century, leading to reductions in winter snowpack and increased frequency of soil freezing in many northern forest ecosystems. Here we examine biogenic silica (BSi) concentrations in sugar maple (Acer saccharum) fine roots collected from a snow manipulation experiment at Hubbard Brook Experimental Forest (New Hampshire, USA). Increased soil freezing significantly lowered the BSi content of sugar maple fine roots potentially decreasing their capacity to take up water and dissolved nutrients. The reduced silica uptake (8 ± 1 kmol silica km-2) by sugar maple fine roots is comparable to silica export from temperate forest watersheds. We estimate that fine roots account for 29% of sugar maple BSi, despite accounting for only 4% of their biomass. These results suggest that increased frequency of soil freezing will reduce silica uptake by temperate tree roots, thereby changing silica availability in downstream receiving waters.

  1. Immobilization of Magnetic Nanoparticles onto Amine-Modified Nano-Silica Gel for Copper Ions Remediation

    PubMed Central

    Elkady, Marwa; Hassan, Hassan Shokry; Hashim, Aly

    2016-01-01

    A novel nano-hybrid was synthesized through immobilization of amine-functionalized silica gel nanoparticles with nanomagnetite via a co-precipitation technique. The parameters, such as reagent concentrations, reaction temperature and time, were optimized to accomplish the nano-silica gel chelating matrix. The most proper amine-modified silica gel nanoparticles were immobilized with magnetic nanoparticles. The synthesized magnetic amine nano-silica gel (MANSG) was established and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier transform infrared (FTIR), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and vibrating sample magnetometry (VSM). The feasibility of MANSG for copper ions’ remediation from wastewater was examined. MANSG achieves a 98% copper decontamination from polluted water within 90 min. Equilibrium sorption of copper ions onto MANSG nanoparticles obeyed the Langmuir equation compared to the Freundlich, Temkin, Elovich and Dubinin-Radushkevich (D-R) equilibrium isotherm models. The pseudo-second-order rate kinetics is appropriate to describe the copper sorption process onto the fabricated MANSG. PMID:28773583

  2. Production and Application of Olivine Nano-Silica in Concrete

    NASA Astrophysics Data System (ADS)

    Mardiana, Oesman; Haryadi

    2017-05-01

    The aim of this research was to produce nano silica by synthesis of nano silica through extraction and dissolution of ground olivine rock, and applied the nano silica in the design concrete mix. The producing process of amorphous silica used sulfuric acid as the dissolution reagent. The separation of ground olivine rock occurred when the rock was heated in a batch reactor containing sulfuric acid. The results showed that the optimum mole ratio of olivine- acid was 1: 8 wherein the weight ratio of the highest nano silica generated. The heating temperature and acid concentration influenced the mass of silica produced, that was at temperature of 90 °C and 3 M acid giving the highest yield of 44.90%. Characterization using Fourier Transform Infrared (FTIR ) concluded that amorphous silica at a wavenumber of 1089 cm-1 indicated the presence of siloxane, Si-O-Si, stretching bond. Characterization using Scanning Electron Microscope - Energy Dispersive Spectroscopy (SEM-EDS) showed the surface and the size of the silica particles. The average size of silica particles was between 1-10 μm due to the rapid aggregation of the growing particles of nano silica into microparticles, caused of the pH control was not fully achieved.

  3. Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo.

    PubMed

    Lin, Daoshu; Cheng, Qiang; Jiang, Qian; Huang, Yuanyu; Yang, Zheng; Han, Shangcong; Zhao, Yuning; Guo, Shutao; Liang, Zicai; Dong, Anjie

    2013-05-21

    A low cytotoxicity and high efficiency delivery system with the advantages of low cost and facile fabrication is needed for the application of small interfering RNA (siRNA) delivery both in vitro and in vivo. For these prerequisites, cationic polymer-mesoporous silica nanoparticles (ssCP-MSNs) were prepared by surface functionalized mesoporous silica nanoparticles with disulfide bond cross-linked poly(2-dimethylaminoethyl methacrylate) (PDMAEMA). In vitro and in vivo evaluations were performed. The synthesized ssCP-MSNs are 100-150 nm in diameter with a pore size of 10 nm and a positively charged surface with a high zeta potential of 27 mV. Consequently, the ssCP-MSNs showed an excellent binding capacity for siRNA, and an enhancement in the cell uptake and cytosolic availability of siRNA. Furthermore, the intracellular reducing cleavage of the disulfide bonds cross-linking the PDMAEMA segments led to intracellular cleavage of PDMAEMA from ssCP-MSNs, which facilitated the intracellular triggered release of siRNA. Therefore, promoted RNA interference was observed in HeLa-Luc cells, which was equal to that of Lipofectamine 2000. Significantly, compared to Lipofectamine 2000, the ssCP-MSNs were more biocompatible, with low cytotoxicity (even non-cytotoxicity) and promotion of cell proliferation to HeLa-Luc cells. The in vivo systemic distribution studies certified that ssCP-MSNs/siRNA could prolong the duration of siRNA in vivo, and that they accumulated in the adrenal gland, liver, lung, spleen, kidney, heart and thymus after intravenous injection. Encouragingly, with the ability to deliver siRNA to a tumor, ssCP-MSNs/siRNA showed a tumor suppression effect in the HeLa-Luc xenograft murine model after intravenous injection. Therefore, the ssCP-MSNs cationic polymer-mesoporous silica nanoparticles with low cytotoxicity are promising for siRNA delivery.

  4. Effects of sandblasting and silica-coating procedures on pure titanium.

    PubMed

    Kern, M; Thompson, V P

    1994-10-01

    Silica coating titanium improves chemomechanical bonding. Sandblasting is recommended as a pretreatment to thermal silica coating (Silicoater MD) or as part of a tribochemical silica coating process (Rocatec). This study evaluated the effects of sandblasting and coating techniques on volume loss, surface morphology and composition changes in pure titanium. Volume loss of titanium was similar to values reported for base alloys and does not seem to be critical for the clinical fit of restorations. Embedded alumina particles were found in the titanium after sandblasting and the alumina content increased to a range of 27.5-39.3 wt% as measured by EDS. Following tribochemical silica coating, a layer of small silica particles remained on the surface, increasing the silica content to a range of 17.9-19.5 wt%. Ultrasonic cleaning removed loose alumina or silica particles from the surface, resulting in only slight decreases in alumina or silica contents, suggesting firm attachment of most of the alumina and silica to the titanium surface. Silica content following thermal silica coating treatment increased only slightly from the sandblasted specimen to 1.4 wt%. The silica layer employed by these silica coating methods differs widely in both morphology and thickness. These results provide a basis for explanation of adhesive failure modes in bond strength tests and for developing methods to optimize resin bonding. Clinically, ultrasonic cleaning of sandblasted and tribochemically silica coated titanium should improve resin bonding as loose surface particles are removed without relevant changes in composition.

  5. Biomimetic particles for isolation and reconstitution of receptor function.

    PubMed

    Moura, Sérgio P; Carmona-Ribeiro, Ana M

    2006-01-01

    Biomimetic particles supporting lipid bilayers are becoming increasingly important to isolate and reconstitute protein function. Cholera toxin (CT) from Vibrio cholerae, an 87-kDa AB5 hexameric protein, and its receptor, the monosialoganglioside GM1, a cell membrane glycolipid, self-assembled on phosphatidylcholine (PC) bilayer-covered silica particles at 1 CT/5 GM1 molar ratio in perfect agreement with literature. This receptor-ligand recognition represented a proof-of-concept that receptors in general can be isolated and their function reconstituted using biomimetic particles, i.e., bilayer-covered silica. After incubation of colloidal silica with small unilamellar PC vesicles in saline solution, pH 7.4, PC adsorption isotherms on silica from inorganic phosphorus analysis showed a high PC affinity for silica with maximal PC adsorption at bilayer deposition. At 0.3 mM PC, fluorescence of pyrene-labeled GM(1) showed that GM(1) incorporation in biomimetic particles increased as a function of particles concentration. At 1 mg/mL silica, receptor incorporation increased to a maximum of 40% at 0.2-0.3 mM PC and then decreased as a function of PC concentration. At 5 microM GM(1), 0.3 mM PC, and 1 mg/mL silica, CT binding increased as a function of CT concentration with a plateau at 2 mg bound CT/m2 silica, which corresponded to the 5 GM(1)/1 CT molar proportion and showed successful reconstitution of receptor-ligand interaction.

  6. Lignosulfonate-stabilized selenium nanoparticles and their deposition on spherical silica.

    PubMed

    Modrzejewska-Sikorska, Anna; Konował, Emilia; Klapiszewski, Łukasz; Nowaczyk, Grzegorz; Jurga, Stefan; Jesionowski, Teofil; Milczarek, Grzegorz

    2017-10-01

    We report a novel room-temperature synthesis of selenium nanoparticles, which for the first time uses lignosulfonate as a stabilizer. Various lignosulfonates obtained both from hardwood and softwood were tested. Selenium oxide was used as the precursor of zero-valent selenium. Three different reducers were tested - sodium borohydride, hydrazine and ascorbic acid - and the latter proved most effective in terms of the particle size and stability of the final colloid. The lignosulfonate-stabilized selenium nanoparticles had a negative zeta potential, dependent on pH, which for some lignosulfonates reached -50mV, indicating the excellent stability of the colloid. When spherical silica particles were introduced to the synthesis mixture, selenium nanoparticles were deposited on their surface. Additionally, star-like structures consisting of sharp selenium needles with silica cores were observed. After drying, the selenium-functionalized silica had a grey metallic hue. The method reported here is simple and cost-effective, and can be used for the preparation of large quantities of selenium colloids or the surface modification of other materials with selenium. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Pumping Iron and Silica Bodybuilding

    NASA Astrophysics Data System (ADS)

    Mcnair, H.; Brzezinski, M. A.; Krause, J. W.; Parker, C.; Brown, M.; Coale, T.; Bruland, K. W.

    2016-02-01

    The availability of dissolved iron influences the stoichiometry of nutrient uptake by diatoms. Under nutrient replete conditions diatoms consume silicic acid and nitrate in a 1:1 ratio, this ratio increases under iron stress. Using the tracers 32Si and PDMPO, the total community and group-specific silica production rates were measured along a gradient of dissolved iron in an upwelling plume off the California coast. At each station, a control (ambient silicic acid) and +20 µM silicic acid treatment were conducted with each tracer to determine whether silicic acid limitation controlled the rate of silica production. Dissolved iron was 1.3 nmol kg-1 nearshore and decreased to 0.15 nmol kg-1 offshore. Silicic acid decreased more rapidly than nitrate, it was nearly 9 µM higher in the nearshore and 7 µM lower than nitrate in the middle of the transect where the iron concentration had decreased. The rate of diatom silica production decreased in tandem with silicic acid concentration, and silica production limitation by low silicic acid was most pronounced when iron concentrations were >0.4 nmol kg-1. The composition of the diatom assemblage shifted from Chaetoceros spp. dominated nearshore to a more sparse pennate-dominated assemblage offshore. Changes in taxa-specific silica production rates will be reported based on examination of PDMPO labeled cells using confocal microscopy.

  8. Self-assembly of mesoscopically ordered chromatic polydiacetylene/silica nanocomposites

    NASA Technical Reports Server (NTRS)

    Lu, Y.; Yang, Y.; Sellinger, A.; Lu, M.; Huang, J.; Fan, H.; Haddad, R.; Lopez, G.; Burns, A. R.; Sasaki, D. Y.; hide

    2001-01-01

    Nature abounds with intricate composite architectures composed of hard and soft materials synergistically intertwined to provide both useful functionality and mechanical integrity. Recent synthetic efforts to mimic such natural designs have focused on nanocomposites, prepared mainly by slow procedures like monomer or polymer infiltration of inorganic nanostructures or sequential deposition. Here we report the self-assembly of conjugated polymer/silica nanocomposite films with hexagonal, cubic or lamellar mesoscopic order using polymerizable amphiphilic diacetylene molecules as both structure-directing agents and monomers. The self-assembly procedure is rapid and incorporates the organic monomers uniformly within a highly ordered, inorganic environment. Polymerization results in polydiacetylene/silica nanocomposites that are optically transparent and mechanically robust. Compared to ordered diacetylene-containing films prepared as Langmuir monolayers or by Langmuir-Blodgett deposition, the nanostructured inorganic host alters the diacetylene polymerization behaviour, and the resulting nanocomposite exhibits unusual chromatic changes in response to thermal, mechanical and chemical stimuli. The inorganic framework serves to protect, stabilize, and orient the polymer, and to mediate its function. The nanocomposite architecture also provides sufficient mechanical integrity to enable integration into devices and microsystems.

  9. Recent development, applications, and perspectives of mesoporous silica particles in medicine and biotechnology.

    PubMed

    Pasqua, Luigi; Cundari, Sante; Ceresa, Cecilia; Cavaletti, Guido

    2009-01-01

    Mesoporous silica particles (MSP) are a new development in nanotechnology. Covalent modification of the surface of the silica is possible both on the internal pore and on the external particle surface. It allows the design of functional nanostructured materials with properties of organic, biological and inorganic components. Research and development are ongoing on the MSP, which have applications in catalysis, drug delivery and imaging. The most recent and interesting advancements in size, morphology control and surface functionalization of MSP have enhanced the biocompatibility of these materials with high surface areas and pore volumes. In the last 5 years several reports have demonstrated that MSP can be efficiently internalized using in vitro and animal models. The functionalization of MSP with organic moieties or other nanostructures brings controlled release and molecular recognition capabilities to these mesoporous materials for drug/gene delivery and sensing applications, respectively. Herein, we review recent research progress on the design of functional MSP materials with various mechanisms of targeting and controlled release.

  10. Reinforced silver-embedded silica matrix from the cheap silica source for the controlled release of silver ions

    NASA Astrophysics Data System (ADS)

    Hilonga, A.; Kim, J. K.; Sarawade, P. B.; Kim, H. T.

    2009-07-01

    In this study, a reinforced silver-embedded silica matrix was designed by utilizing the interaction between the [AlO 4] - tetrahedral and the Ag + in sol-gel process using sodium silicate as a silica precursor. The Ag + mole ratio in each sample was significantly varied to examine the influence of silver concentration on the properties of the final product. Aluminium ions were added to reinforce and improve the chemical durability of silver-embedded silica. A templated sample at Al/Ag = 1 atomic ratio was also synthesized to attempt a possibility of controlling porosity of the final product. Also, a sample neither embedded with silver nor templated was synthesized and characterized to serve as reference. The material at Al/Ag = 1 was found to have a desirable properties, compared to its counterparts, before and even after calcination up to 1000 °C. The results demonstrate that materials with desirable properties can be obtained by this unprecedented method while utilizing sodium silicate, which is relatively cheap, as a silica precursor. This may significantly boost the industrial production of the silver-embedded silicas for various applications.

  11. Asymmetric orientation of toluene molecules at oil-silica interfaces

    NASA Astrophysics Data System (ADS)

    Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi

    2012-08-01

    The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)], 10.1021/jp9043122. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH3 groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

  12. Asymmetric orientation of toluene molecules at oil-silica interfaces.

    PubMed

    Ledyastuti, Mia; Liang, Yunfeng; Kunieda, Makoto; Matsuoka, Toshifumi

    2012-08-14

    The interfacial structure of heptane and toluene at oil-silica interfaces has previously been studied by sum frequency generation [Z. Yang et al., J. Phys. Chem. C. 113, 20355 (2009)]. It was found that the toluene molecule is almost perpendicular to the silica surface with a tilt angle of about 25°. Here, we have investigated the structural properties of toluene and heptane at oil-silica interfaces using molecular dynamics simulations for two different surfaces: the oxygen-bridging (hydrophobic) and hydroxyl-terminated (hydrophilic) surfaces of quartz (silica). Based on the density profile, it was found that both heptane and toluene oscillate on silica surfaces, with heptane showing more oscillation peaks. Furthermore, the toluene molecules of the first layer were found to have an asymmetric distribution of orientations, with more CH(3) groups pointed away from the silica surface than towards the silica surface. These findings are generally consistent with previous experiments, and reveal enhanced molecular structures of liquids at oil-silica interfaces.

  13. Micrometer- and nanometer-sized platinum group nuggets in micrometeorites from deep-sea sediments of the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Rudraswami, N. G.; Parashar, K.; Shyam Prasad, M.

    2011-03-01

    We examined 378 micrometeorites collected from deep-sea sediments of the Indian Ocean of which 175, 180, and 23 are I-type, S-type, and G-type, respectively. Of the 175 I-type spherules, 13 contained platinum group element nuggets (PGNs). The nuggets occur in two distinct sizes and have distinctly different elemental compositions: micrometer (μm)-sized nuggets that are >3 μm contain dominantly Ir, Os, and Ru (iridium-platinum group element or IPGE) and sub-μm (or nanometer)-sized (<1 μm) nuggets, which contain dominantly Pt, Rh, and Pd (palladium—PGE or PPGE). The μm-sized nuggets are found only one per spherule in the cross section observed and are usually found at the edge of the spherule. By contrast, there are hundreds of nanometer-sized nuggets distributed dominantly in the magnetite phases of the spherules, and rarely in the wüstite phases. Both the nugget types are found as separate entities in the same spherule and apparently, nugget formation is a common phenomenon among I-type micrometeorites. However, the μm-sized nuggets are seen in fewer specimens (˜2.5% of the observed I-type spherules). In all, we analyzed four nuggets of μm size and 213 nanometer-sized nuggets from 13 I-type spherules for platinum group elements. Chemically, the μm-sized PGNs contain chondritic ratios of Os/Ir, but are depleted in the more volatile PGE (Pt, Rh, and Pd) relative to chondritic ratios. On the other hand, the nanometer-sized nuggets contain dominantly Pt and Rh. Importantly, the refractory PGEs are conspicuous by their absence in these nanometer nuggets. Palladium, the most volatile PGE is highly depleted (<1.1%) with respect to chondritic ratios in the μm-sized PGNs, and is observed in only 17 of 213 nanometer nuggets with concentrations that are just above the detection limit (≥0.2%). Distinct fractionation of the PGE into IPGE (Ir, Os, Ru) and PPGE seems to take place during the short span of atmospheric entry. These observations suggest several

  14. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  15. Green synthesis of silica nanoparticles using sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Mohd, Nur Kamilah; Wee, Nik Nur Atiqah Nik; Azmi, Alyza A.

    2017-09-01

    Silica nanoparticles have been great attention as it being evaluated for used in abundant fields and applications. Due to this significance, this research was conducted to synthesis silica nanoparticles using local agricultural waste, sugarcane bagasse. We executed extraction and precipitation process as it involved low cost, less toxic and low energy process compared to other methods. The Infrared (IR) spectra showed the vibration peak of Si-O-Si, which clearly be the evidence for the silica characteristics in the sample. In this research, amorphous silica nanoparticles with spherical morphology with an average size of 30 nm, and specific surface area of 111 m2/g-1 have been successfully synthesized. The XRD patterns showed the amorphous nature of silica nanoparticles. As a comparison, the produced silica nanoparticles from sugarcane bagasse are compared with the respective nanoparticles synthesized using Stöber method.

  16. Removal of sudan dyes from water with C18-functional ultrafine magnetic silica nanoparticles.

    PubMed

    Jiang, Chunzhu; Sun, Ying; Yu, Xi; Zhang, Lei; Sun, Xiumin; Gao, Yan; Zhang, Hanqi; Song, Daqian

    2012-01-30

    In this study, the new C(18)-functionalized ultrafine magnetic silica nanoparticles (C(18)-UMS NPs) were successfully synthesized and applied for extraction of sudan dyes in water samples based on the magnetic solid-phase extraction (MSPE). The extraction and concentration were carried out in one step by blending C(18)-UMS NPs and water samples. The sudan dyes adsorbed C(18)-UMS NPs were isolated from the matrix easily with an external magnetic field. After desorption the quantitation of sudan dyes was done by ultra fast liquid chromatography (UFLC). Satisfactory extraction recovery can be obtained with only 50 mg C(18)-UMS NPs. The effects of experimental parameters, including the amount of the nanoparticles, extraction time, pH value, desorption solvent, volume of desorption solvent and desorption time were investigated. The limits of detection for sudan I, II, III and IV were 0.066, 0.070, 0.12 and 0.12 ng mL(-1), respectively. Recoveries obtained by analyzing the six spiked water samples were between 68% and 103%. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Silica and lung cancer: a controversial issue.

    PubMed

    Pairon, J C; Brochard, P; Jaurand, M C; Bignon, J

    1991-06-01

    The role of crystalline silica in lung cancer has long been the subject of controversy. In this article, we review the main experimental and epidemiological studies dealing with this problem. Some evidence for a genotoxic potential of crystalline silica has been obtained in the rare in vitro studies published to date. In vivo studies have shown that crystalline silica is carcinogenic in the rat; the tumour types appear to vary according to the route of administration. In addition, an association between carcinogenic and fibrogenic potency has been observed in various animal species exposed to crystalline silica. An excess of lung cancer related to occupational exposure to crystalline silica is reported in many epidemiological studies, regardless of the presence of silicosis. However, most of these studies are difficult to interpret because they do not correctly take into account associated carcinogens such as tobacco smoke and other occupational carcinogens. An excess of lung cancer is generally reported in studies based on silicosis registers. Overall, experimental and human studies suggest an association between exposure to crystalline silica and an excess of pulmonary malignancies. Although the data available are not sufficient to establish a clear-cut causal relationship in humans, an association between the onset of pneumoconiosis and pulmonary malignancies is probable. In contrast, experimental observations have given rise to a pathophysiological mechanism that might account for a putative carcinogenic potency of crystalline silica.

  18. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    PubMed

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  19. Multistage polymeric lens structure in silica-waveguides for photonic functional circuits

    NASA Astrophysics Data System (ADS)

    Tate, Atsushi; Suzuki, Takanori; Tsuda, Hiroyuki

    2005-04-01

    A waveguide lens composed of multistage polymer-filled thin grooves in a silica planar lightwave circuit (PLC) is proposed and the low-loss structure is designed. Both an imaging optical system and a Fourier-Transform optical system can be configured in a PLC by use of a waveguide lens. It makes a PLC functional and its design flexible. Moreover, a focal length of a lens is tunable with large thermo-optic effect of the polymer. A concatenated lens is formed to attain a desirable focal length with low-loss. The thickness of each lens and the spacing are about 10-50 microns. The simulation showed that the radiation loss of the light propagate through 20-stage grooves filled with a polymer was only 0.868 dB when the refractive index of the polymer was 1.57, the groove width was 30 microns, and the spacing between adjacent grooves was 15 microns. For example, the single lens structure that the center thickness is 30 microns, the diameter is 300 microns, and the refractive index of the polymer was 1.57, have a focal length of 4600 microns. The focal length of 450 microns can be obtained with 20-stage concatenated lens structure. The larger numerical aperture can be realized with a polymer of higher refractive index. We have applied the concatenated lens structure to various photonic circuits including optical couplers, a variable optical attenuator.

  20. Intracellularly Biodegradable Polyelectrolyte/Silica Composite Microcapsules as Carriers for Small Molecules.

    PubMed

    Gao, Hui; Goriacheva, Olga A; Tarakina, Nadezda V; Sukhorukov, Gleb B

    2016-04-20

    Microcapsules that can be efficiently loaded with small molecules and effectively released at the target area through the degradation of the capsule shells hold great potential for treating diseases. Traditional biodegradable polyelectrolyte (PE) capsules can be degraded by cells and eliminated from the body but fail to encapsulate drugs with small molecular weight. Here, we report a poly-l-arginine hydrochloride (PARG)/dextran sulfate sodium salt (DEXS)/silica (SiO2) composite capsule that can be destructed in cells and of which the in situ formed inorganic SiO2 enables loading of small model molecules, Rhodamine B (Rh-B). The composite capsules were fabricated based on the layer-by-layer (LbL) technique and the hydrolysis of tetraethoxysilane (TEOS). Capsules composed of nondegradable PEs and SiO2, polyllamine hydrochloride (PAH)/poly(sodium 4-styrenesulfonate) (PSS)/silica (the control sample), were prepared and briefly compared with the degradable composite capsules. An intracellular degradation study of both types of composite capsules revealed that PARG/DEXS/silica capsules were degraded into fragments and lead to the release of model molecules in a relatively short time (2 h), while the structure of PAH/PSS/silica capsules remained intact even after 3 days incubation with B50 cells. Such results indicated that the polymer components played a significant role in the degradability of the SiO2. Specifically, PAH/PSS scaffolds blocked the degradation of SiO2. For PARG/DEXS/silica capsules, we proposed the effects of both hydrolytic degradation of amorphous silica and enzymatic degradation of PARG/DEXS polymers as a cell degradation mechanism. All the results demonstrated a new type of functional composite microcapsule with low permeability, good biocompatibility, and biodegradability for potential medical applications.