Sample records for nanoparticle island substrates

  1. Direct Observation of Asphaltene Nanoparticles on Model Mineral Substrates.

    PubMed

    Raj, Gijo; Lesimple, Alain; Whelan, Jamie; Naumov, Panče

    2017-06-27

    The propensity for adherence to solid surfaces of asphaltenes, a complex solubility class of heteropolycyclic aromatic compounds from the heavy fraction of crude oil, has long been the root cause of scale deposition and remains an intractable problem in the petroleum industry. Although the adhesion is essential to understanding the process of asphaltene deposition, the relationship between the conformation of asphaltene molecules on mineral substrates and its impact on adhesion and mechanical properties of the deposits is not completely understood. To rationalize the primary processes in the process of organic scale deposition, here we use atomic force microscopy (AFM) to visualize the morphology of petroleum asphaltenes deposited on model mineral substrates. High imaging contrast was achieved by the differential adhesion of the tip between asphaltenes and the mineral substrate. While asphaltenes form smooth continuous films on all substrates at higher concentrations, they deposit as individual nanoparticles at lower concentrations. The size, shape, and spatial distribution of the nanoaggregates are strongly affected by the nature of the substrate; while uniformly distributed spherical particles are formed on highly polar and hydrophilic substrates (mica), irregular islands and thicker patches are observed with substrates of lower polarity (silica and calcite). Asphaltene nanoparticles flatten when adsorbed on highly oriented pyrolytic graphite due to π-π interactions with the polycyclic core. Force-distance profiles provide direct evidence of the conformational changes of asphaltene molecules on hydrophilic/hydrophobic substrates that result in dramatic changes in adhesion and mechanical properties of asphaltene deposits. Such an understanding of the nature of adhesion and mechanical properties tuned by surface properties, on the level of asphaltene nanoaggregates, would contribute to the design of efficient asphaltene inhibitors for preventing asphaltene

  2. Precise micropatterning of silver nanoparticles on plastic substrates

    NASA Astrophysics Data System (ADS)

    Ammosova, Lena; Jiang, Yu; Suvanto, Mika; Pakkanen, Tapani A.

    2017-04-01

    Conventional fabrication methods to obtain metal patterns on polymer substrates are restricted by high operating temperature and complex preparation steps. The present study demonstrates a simple yet versatile method for preparation of silver nanoparticle micropatterns on polymer substrates with various surface geometry. With the microworking robot technique, we were able not only to directly structure the surface, but also precisely deposit silver nanoparticle ink on the desired surface location with the minimum usage of ink material. The prepared silver nanoparticle ink, containing silver cations and polyethylene glycol (PEG) as a reducing agent, yields silver nanoparticle micropatterns on plastic substrates at low sintering temperature without any contamination. The influence of the ink behaviour was studied, such as substrate wettability, ink volume, and sintering temperature. The ultraviolet visible (UV-vis), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) measurements revealed the formation of micropatterns with uniformly distributed silver nanoparticles. The prepared patterns are expected to have a broad range of applications in optics, medicine, and sensor devices owing to the unique properties of silver. Furthermore, the deposition of a chemical compound, which is different from the substrate material, not only adds a fourth dimension to the prestructured three-dimensional (3D) surfaces, but also opens new application areas to the conventional surface structures.

  3. Near-field polarization distribution of Si nanoparticles near substrate

    NASA Astrophysics Data System (ADS)

    Reshetov, S. A.; Vladimirova, Yu. V.; Gevorkian, L. P.; Zadkov, V. N.

    2017-01-01

    Structure of the near-field intensity and polarization distributions, the latter is described with the generalized 3D Stokes parameters, of a spherical Si subwavelength nanoparticle in a non-magnetic and non-absorbing media near a dielectric substrate has been studied in detail with the help of the Mie theory and an extension of the Weyl's method for the calculation of the reflection of dipole radiation by a flat surface. It is shown that for the nanoparticle near the substrate the interference effects due to the scattering by the nanoparticle and interaction with the substrate play an essential role. We also demonstrate how these effects depend on the dielectric properties of the nanoparticle, its size, distance to the substrate as well as on the polarization, wavelength and incident angle of the external light field.

  4. Surface plasmon resonances of protein-conjugated gold nanoparticles on graphitic substrates

    NASA Astrophysics Data System (ADS)

    Phan, Anh D.; Hoang, Trinh X.; Nghiem, Thi H. L.; Woods, Lilia M.

    2013-10-01

    We present theoretical calculations for the absorption properties of protein-coated gold nanoparticles on graphene and graphite substrates. As the substrate is far away from nanoparticles, numerical results show that the number of protein bovine serum molecules aggregating on gold surfaces can be quantitatively determined for gold nanoparticles with arbitrary size by means of the Mie theory and the absorption spectra. The presence of a graphene substrate near the protein-conjugated gold nanoparticles results in a red shift of the surface plasmon resonances of the nanoparticles. This effect can be modulated upon changing the graphene chemical potential. Our findings show that the graphene and graphite affect the absorption spectra in a similar way.

  5. Cuboidal-to-pyramidal shape transition of a strained island on a substrate

    NASA Astrophysics Data System (ADS)

    Abbes, Fatima Z.; Durinck, Julien; Talea, Mohamed; Grilhé, Jean; Colin, Jérôme

    2017-10-01

    The stability of a strained cuboidal island deposited on a substrate has been numerically investigated by means of finite element simulations in the case where the structure is submitted to misfit strain resulting from the lattice mismatch between the island and the substrate. In the hypothesis where the surface energy is isotropic, it is found that, depending on the island volume, the formation of a truncated or inverted truncated pyramid can be favored by the misfit strain with respect to the cuboidal shape. A shape diagram is finally provided as a function of the misfit strain and island volume.

  6. Synthesis and characterization of magnetically hard Fe-Pt alloy nanoparticles and nano-islands

    NASA Astrophysics Data System (ADS)

    Hu, Xiaocao

    .7 kOe to 10.7 kOe. Compared with reported high annealing temperatures above 600°C, this fabrication process led to a significantly decreased temperature to achieve the L10 phase FePt by 200°C. A qualitative model was set up to explain the surprising low L10 phase achievement temperature and the influence of annealing temperature on the microstructure and magnetic properties was investigated. Although FePt nanoparticles with high coercivity and small size were successfully obtained by the first fabrication method, agglomeration happened during the washing procedure due to the large inter-particle magnetostatic force caused by their high magnetization. To avoid this agglomeration, exfoliated graphene was introduced in the second preparation method to keep the nanoparticles separated. Different from the traditional solvent-phase reaction to disperse FePt nanoparticles onto the exfoliated graphene, a novel solid-phase reaction was used in this dissertation involving the layered precursor [Fe(H2 O)6]PtCl6 molecule. The [Fe(H2O) 6]PtCl6 water solution was mixed with exfoliated graphene oxide (GO) and then the top solution was removed. Fe2+ and Pt2+ ions were absorbed onto the surface of GO. The remaining product was annealed under a reducing atmosphere of forming gas at different temperatures (500°C to 950°C). During the reduction process, GO was reduced to "graphene" and FePt nanoparticles were formed on the surface of exfoliated graphene. The separation effect by the exfoliated graphene increased the phase transformation temperature to 600°C compared to the first method. However, even at an annealing temperature as high as 750°C, we could still obtained separated, small size FePt nanoparticles with coercivity of 8.3 kOe. The third preparation method used in this dissertation is the traditional magnetron sputtering with very short deposition time (10 s to 25 s) on heated MgO (001) substrate to form separate nano-islands instead of continuous thin films. The ordering

  7. Wrinkling of graphene membranes supported by silica nanoparticles on substrates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Cullen, William; Fuhrer, Michael; Einstein, Theodore; Department of Physics, University of Maryland Team

    2011-03-01

    The challenging endeavor of modulating the morphology of graphene via a patterned substrate to produce a controlled deformation has great potential importance for strain engineering the electronic properties of graphene. An essential step in this direction is to understand the response of graphene to substrate features of known geometry. Here we employ silica nanoparticles with a diameter of 10-100 nm to uniformly decorate Si O2 and mica substrates before depositing graphene, to promote nanoscale modulation of graphene geometry. The morphology of graphene on this modified substrate is then characterized by atomic force spectroscopy. We find that graphene on the substrate is locally raised by the supporting nanoparticles, and wrinkling propagates radially from the protrusions to form a ridge network which links the protrusions. We discuss the dependence of the wrinkled morphology on nanoparticle diameter and graphene thickness in terms of graphene elasticity and adhesion energy. Supported by NSF-MRSEC, Grant DMR 05-20471

  8. Developing upconversion nanoparticle-based smart substrates for remote temperature sensing

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Marble, Kassie; Alkahtani, Masfer; Hemmer, Philip; Yakovlev, Vladislav V.

    2018-02-01

    Recent developments in understanding of nanomaterial behaviors and synthesis have led to their application across a wide range of commercial and scientific applications. Recent investigations span from applications in nanomedicine and the development of novel drug delivery systems to nanoelectronics and biosensors. In this study, we propose the application of a newly engineered temperature sensitive water-based bio-compatible core/shell up-conversion nanoparticle (UCNP) in the development of a smart substrate for remote temperature sensing. We developed this smart substrate by dispersing functionalized nanoparticles into a polymer solution and then spin-coating the solution onto one side of a microscope slide to form a thin film substrate layer of evenly dispersed nanoparticles. By using spin-coating to deposit the particle solution we both create a uniform surface for the substrate while simultaneously avoid undesired particle agglomeration. Through this investigation, we have determined the sensitivity and capabilities of this smart substrate and conclude that further development can lead to a greater range of applications for this type smart substrate and use in remote temperature sensing in conjunction with other microscopy and spectroscopy investigations.

  9. Substrates coated with silver nanoparticles as a neuronal regenerative material

    PubMed Central

    Alon, Noa; Miroshnikov, Yana; Perkas, Nina; Nissan, Ifat; Gedanken, Aharon; Shefi, Orit

    2014-01-01

    Much effort has been devoted to the design of effective biomaterials for nerve regeneration. Here, we report the novel use of silver nanoparticles (AgNPs) as regenerative agents to promote neuronal growth. We grew neuroblastoma cells on surfaces coated with AgNPs and studied the effect on the development of the neurites during the initiation and the elongation growth phases. We find that the AgNPs function as favorable anchoring sites, and the growth on the AgNP-coated substrates leads to a significantly enhanced neurite outgrowth. Cells grown on substrates coated with AgNPs have initiated three times more neurites than cells grown on uncoated substrates, and two times more than cells grown on substrates sputtered with a plain homogenous layer of silver. The growth of neurites on AgNPs in the elongation phase was enhanced as well. A comparison with substrates coated with gold nanoparticles (AuNPs) and zinc oxide nanoparticles (ZnONPs) demonstrated a clear silver material-driven promoting effect, in addition to the nanotopography. The growth on substrates coated with AgNPs has led to a significantly higher number of initiating neurites when compared to substrates coated with AuNPs or ZnONPs. All nanoparticle-coated substrates affected and promoted the elongation of neurites, with a significant positive maximal effect for the AgNPs. Our results, combined with the well-known antibacterial effect of AgNPs, suggest the use of AgNPs as an attractive nanomaterial – with dual activity – for neuronal repair studies. PMID:24872701

  10. Substrate decomposition in galvanic displacement reaction: Contrast between gold and silver nanoparticle formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Tapas; Satpati, Biswarup, E-mail: biswarup.satpati@saha.ac.in; Kabiraj, D.

    We have investigated substrate decomposition during formation of silver and gold nanoparticles in galvanic displacement reaction on germanium surfaces. Silver and gold nanoparticles were synthesized by electroless deposition on sputter coated germanium thin film (∼ 200 nm) grown initially on silicon substrate. The nanoparticles formation and the substrate corrosion were studied using scanning transmission electron microscopy (STEM) and the energy dispersive X-ray (EDX) spectroscopy.

  11. Alkylamine capped metal nanoparticle "inks" for printable SERS substrates, electronics and broadband photodetectors.

    PubMed

    Polavarapu, Lakshminarayana; Manga, Kiran Kumar; Yu, Kuai; Ang, Priscilla Kailian; Cao, Hanh Duyen; Balapanuru, Janardhan; Loh, Kian Ping; Xu, Qing-Hua

    2011-05-01

    We report a facile and general method for the preparation of alkylamine capped metal (Au and Ag) nanoparticle "ink" with high solubility. Using these metal nanoparticle "inks", we have demonstrated their applications for large scale fabrication of highly efficient surface enhanced Raman scattering (SERS) substrates by a facile solution processing method. These SERS substrates can detect analytes down to a few nM. The flexible plastic SERS substrates have also been demonstrated. The annealing temperature dependent conductivity of the nanoparticle films indicated a transition temperature above which high conductivity was achieved. The transition temperature could be tailored to the plastic compatible temperatures by using proper alkylamine as the capping agent. The ultrafast electron relaxation studies of the nanoparticle films demonstrated that faster electron relaxation was observed at higher annealing temperatures due to stronger electronic coupling between the nanoparticles. The applications of these highly concentrated alkylamine capped metal nanoparticle inks for the printable electronics were demonstrated by printing the oleylamine capped gold nanoparticles ink as source and drain for the graphene field effect transistor. Furthermore, the broadband photoresponse properties of the Au and Ag nanoparticle films have been demonstrated by using visible and near-infrared lasers. These investigations demonstrate that these nanoparticle "inks" are promising for applications in printable SERS substrates, electronics, and broadband photoresponse devices. © The Royal Society of Chemistry 2011

  12. Substrate Dependence in the Growth of Three-Dimensional Gold Nanoparticle Superlattices

    DTIC Science & Technology

    2001-11-01

    the Hamaker constants between gold nanoparticle assemblies and substrates through the suspension. Van der Waals interactions estimated from this...finally dialyzed to remove inorganic (Na, Cl, and B) and organic impurities. The surfactant affects the dispersion of Au nanoparticles in aqueous...be taken into account for complete understanding of the observed substrate dependency. To consider volume interactions, we calculate the Hamaker

  13. Magic C60 islands forming due to moiré interference between islands and substrate

    NASA Astrophysics Data System (ADS)

    Olyanich, D. A.; Mararov, V. V.; Utas, T. V.; Utas, O. A.; Gruznev, D. V.; Zotov, A. V.; Saranin, A. A.

    2015-05-01

    Recently proposed mechanism for self-organized formation of magic islands [Nat.Comm. 4(2013)1679] has received a new experimental confirmation. According to this mechanism, self-assembly is mediated by the moiré interference between an island and underlying substrate lattice. It was first detected at C60 island growth on In-adsorbed Si(111)√{ 3} ×√{ 3}-Au surface. Changing In adsorbate for Tl results in lowering the corrugations of the surface potential relief due to a greater surface metallization. This allows formation of the C60 arrays with novel moiré pattern. As a result, a new set of magic C60 islands is formed on Tl-adsorbed Au/Si(111) surface differing from that observed on In-adsorbed surface. For example, the 19-C60 magic island which has a non-compact boomerang shape on In-adsorbed Au/Si(111) surfaces adopts a shape of a regular hexagon on Tl-adsorbed surface.

  14. Photo-ionization and modification of nanoparticles on transparent substrates by ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly; Komolov, Vladimir; Li, Hao; Yu, Qingsong; Przhibel'skii, Sergey; Smirnov, Dmitry

    2011-02-01

    The objective of this combined experimental and theoretical research is to study the dynamics and mechanisms of nanoparticle interaction with ultrashort laser pulses and related modifications of substrate surface. For the experimental effort, metal (gold), dielectric (SiO2) and dielectric with metal coating (about 30 nm thick) spherical nanoparticles deposited on glass substrate are utilized. Size of the particles varies from 20 to 200 nm. Density of the particles varies from low (mean inter-particle distance 100 nm) to high (mean inter-particle distance less than 1 nm). The nanoparticle assemblies and the corresponding empty substrate surfaces are irradiated with single 130-fs laser pulses at wavelength 775 nm and different levels of laser fluence. Large diameter of laser spot (0.5-2 mm) provides gradient variations of laser intensity over the spot and allows observing different laser-nanoparticle interactions. The interactions vary from total removal of the nanoparticles in the center of laser spot to gentle modification of their size and shape and totally non-destructive interaction. The removed particles frequently form specific sub-micrometer-size pits on the substrate surface at their locations. The experimental effort is supported by simulations of the nanoparticle interactions with high-intensity ultrashort laser pulse. The simulation employs specific modification of the molecular dynamics approach applied to model the processes of non-thermal particle ablation following laser-induced electron emission. This technique delivers various characteristics of the ablation plume from a single nanoparticle including energy and speed distribution of emitted ions, variations of particle size and overall dynamics of its ablation. The considered geometry includes single isolated particle as well a single particle on a flat substrate that corresponds to the experimental conditions. The simulations confirm existence of the different regimes of laser-nanoparticle

  15. Bidisperse silica nanoparticles close-packed monolayer on silicon substrate by three step spin method

    NASA Astrophysics Data System (ADS)

    Khanna, Sakshum; Marathey, Priyanka; Utsav, Chaliawala, Harsh; Mukhopadhyay, Indrajit

    2018-05-01

    We present the studies on the structural properties of monolayer Bidisperse silica (SiO2) nanoparticles (BDS) on Silicon (Si-100) substrate using spin coating technique. The Bidisperse silica nanoparticle was synthesised by the modified sol-gel process. Nanoparticles on the substrate are generally assembled in non-close/close-packed monolayer (CPM) form. The CPM form is obtained by depositing the colloidal suspension onto the silicon substrate using complex techniques. Here we report an effective method for forming a monolayer of bidisperse silica nanoparticle by three step spin coating technique. The samples were prepared by mixing the monodisperse solutions of different particles size 40 and 100 nm diameters. The bidisperse silica nanoparticles were self-assembled on the silicon substrate forming a close-packed monolayer film. The scanning electron microscope images of bidisperse films provided in-depth film structure of the film. The maximum surface coverage obtained was around 70-80%.

  16. Analysis of current-driven oscillatory dynamics of single-layer homoepitaxial islands on crystalline conducting substrates

    NASA Astrophysics Data System (ADS)

    Dasgupta, Dwaipayan; Kumar, Ashish; Maroudas, Dimitrios

    2018-03-01

    We report results of a systematic study on the complex oscillatory current-driven dynamics of single-layer homoepitaxial islands on crystalline substrate surfaces and the dependence of this driven dynamical behavior on important physical parameters, including island size, substrate surface orientation, and direction of externally applied electric field. The analysis is based on a nonlinear model of driven island edge morphological evolution that accounts for curvature-driven edge diffusion, edge electromigration, and edge diffusional anisotropy. Using a linear theory of island edge morphological stability, we calculate a critical island size at which the island's equilibrium edge shape becomes unstable, which sets a lower bound for the onset of time-periodic oscillatory dynamical response. Using direct dynamical simulations, we study the edge morphological dynamics of current-driven single-layer islands at larger-than-critical size, and determine the actual island size at which the migrating islands undergo a transition from steady to time-periodic asymptotic states through a subcritical Hopf bifurcation. At the highest symmetry of diffusional anisotropy examined, on {111} surfaces of face-centered cubic crystalline substrates, we find that more complex stable oscillatory states can be reached through period-doubling bifurcation at island sizes larger than those at the Hopf points. We characterize in detail the island morphology and dynamical response at the stable time-periodic asymptotic states, determine the range of stability of these oscillatory states terminated by island breakup, and explain the morphological features of the stable oscillating islands on the basis of linear stability theory.

  17. Salt-Driven Deposition of Thermoresponsive Polymer-Coated Metal Nanoparticles on Solid Substrates.

    PubMed

    Zhang, Zhiyue; Maji, Samarendra; da Fonseca Antunes, André B; De Rycke, Riet; Hoogenboom, Richard; De Geest, Bruno G

    2016-06-13

    Here we report on a simple, generally applicable method for depositing metal nanoparticles on a wide variety of solid surfaces under all aqueous conditions. Noble-metal nanoparticles obtained by citrate reduction followed by coating with thermoresponsive polymers spontaneously form a monolayer-like structure on a wide variety of substrates in presence of sodium chloride whereas this phenomenon does not occur in salt-free medium. Interestingly, this phenomenon occurs below the cloud point temperature of the polymers and we hypothesize that salt ion-induced screening of electrostatic charges on the nanoparticle surface entropically favors hydrophobic association between the polymer-coated nanoparticles and a hydrophobic substrate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanoparticle-nanoparticle vs. nanoparticle-substrate hot spot contributions to the SERS signal: studying Raman labelled monomers, dimers and trimers.

    PubMed

    Sergiienko, Sergii; Moor, Kamila; Gudun, Kristina; Yelemessova, Zarina; Bukasov, Rostislav

    2017-02-08

    We used a combination of Raman microscopy, AFM and TEM to quantify the influence of dimerization on the surface enhanced Raman spectroscopy (SERS) signal for gold and silver nanoparticles (NPs) modified with Raman reporters and situated on gold, silver, and aluminum films and a silicon wafer. The overall increases in the mean SERS enhancement factor (EF) upon dimerization (up by 43% on average) and trimerisation (up by 96% on average) of AuNPs and AgNPs on the studied metal films are within a factor of two, which is moderate when compared to most theoretical models. However, the maximum ratio of EFs for some dimers to the mean EF of monomers can be as high as 5.5 for AgNPs on a gold substrate. In contrast, for dimerization and trimerization of gold and silver NPs on silicon, the mean EF increases by 1-2 orders of magnitude relative to the mean EF of single NPs. Therefore, hot spots in the interparticle gap between gold nanoparticles rather than hot spots between Au nanoparticles and the substrate dominate SERS enhancement for dimers and trimers on a silicon substrate. However, Raman labeled noble metal nanoparticles on plasmonic metal films generate on average SERS enhancement of the same order of magnitude for both types of hot spot zones (e.g. NP/NP and NP/metal film).

  19. Depositing nanoparticles on a silicon substrate using a freeze drying technique.

    PubMed

    Sigehuzi, Tomoo

    2017-08-28

    For the microscopic observation of nanoparticles, an adequate sample preparation is an essential part of this task. Much research has been performed for usable preparation methods that will yield aggregate-free samples. A freeze drying technique, which only requires a -80  ° C freezer and a freeze dryer, is shown to provide an on-substrate dispersion of mostly isolated nanoparticles. The particle density could be made sufficiently high for efficient observations using atomic force microscopy. Since this sandwich method is purely physical, it could be applied to deposit various nanoparticles independent of their surface chemical properties. Suspension film thickness, or the dimensionality of the suspension film, was shown to be crucial for the isolation of the particles. Silica nanoparticles were dispersed on a silicon substrate using this method and the sample properties were examined using atomic force microscopy.

  20. Nanomolar detection of glucose using SERS substrates fabricated with albumin coated gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Perez-Mayen, Leonardo; Oliva, Jorge; Salas, P.; de La Rosa, Elder

    2016-06-01

    This work presents the design of substrates for Surface Enhanced Raman Scattering (SERS) using star-like gold nanoparticles synthesized by a wet chemical method. The SERS substrates were used for glucose detection for concentrations as low as 10-7 M, which represents an enhancement factor (EF) of 109, as a result of the hot spot formed by the spike termination and appropriate distribution of the gold nanoparticles. An improvement of two orders of magnitude was obtained by coating the gold nanoparticles with albumin with the configuration: glass/Au nanoparticles/albumin. In this case the lowest detection was at a concentration of 10-9 M for an EF of 1011. The albumin molecule allowed us to enhance the Raman signal because of the formation of peptide bonds (COOH-NH2) generated due to the interaction of glucose with albumin, and the appropriate separation distance between the glucose molecules and gold nanoparticles. The presence of such peptide conjugates was confirmed by FTIR spectra. Thus, our results suggest that our SERS substrates can be useful for the detection of very low concentrations of glucose, which is important for the diagnosis of diabetes in the field of medicine.This work presents the design of substrates for Surface Enhanced Raman Scattering (SERS) using star-like gold nanoparticles synthesized by a wet chemical method. The SERS substrates were used for glucose detection for concentrations as low as 10-7 M, which represents an enhancement factor (EF) of 109, as a result of the hot spot formed by the spike termination and appropriate distribution of the gold nanoparticles. An improvement of two orders of magnitude was obtained by coating the gold nanoparticles with albumin with the configuration: glass/Au nanoparticles/albumin. In this case the lowest detection was at a concentration of 10-9 M for an EF of 1011. The albumin molecule allowed us to enhance the Raman signal because of the formation of peptide bonds (COOH-NH2) generated due to the

  1. Ge-rich islands grown on patterned Si substrates by low-energy plasma-enhanced chemical vapour deposition.

    PubMed

    Bollani, M; Chrastina, D; Fedorov, A; Sordan, R; Picco, A; Bonera, E

    2010-11-26

    Si(1-x)Ge(x) islands grown on Si patterned substrates have received considerable attention during the last decade for potential applications in microelectronics and optoelectronics. In this work we propose a new methodology to grow Ge-rich islands using a chemical vapour deposition technique. Electron-beam lithography is used to pre-pattern Si substrates, creating material traps. Epitaxial deposition of thin Ge films by low-energy plasma-enhanced chemical vapour deposition then leads to the formation of Ge-rich Si(1-x)Ge(x) islands (x > 0.8) with a homogeneous size distribution, precisely positioned with respect to the substrate pattern. The island morphology was characterized by atomic force microscopy, and the Ge content and strain in the islands was studied by μRaman spectroscopy. This characterization indicates a uniform distribution of islands with high Ge content and low strain: this suggests that the relatively high growth rate (0.1 nm s(-1)) and low temperature (650 °C) used is able to limit Si intermixing, while maintaining a long enough adatom diffusion length to prevent nucleation of islands outside pits. This offers the novel possibility of using these Ge-rich islands to induce strain in a Si cap.

  2. Split of surface plasmon resonance of gold nanoparticles on silicon substrate: a study of dielectric functions.

    PubMed

    Zhu, S; Chen, T P; Cen, Z H; Goh, E S M; Yu, S F; Liu, Y C; Liu, Y

    2010-10-11

    The split of surface plasmon resonance of self-assembled gold nanoparticles on Si substrate is observed from the dielectric functions of the nanoparticles. The split plasmon resonances are modeled with two Lorentz oscillators: one oscillator at ~1 eV models the polarization parallel to the substrate while the other at ~2 eV represents the polarization perpendicular to the substrate. Both parallel and perpendicular resonances are red-shifted when the nanoparticle size increases. The red shifts in both resonances are explained by the image charge effect of the Si substrate.

  3. Nanomechanical characterization of phospholipid bilayer islands on flat and porous substrates: a force spectroscopy study.

    PubMed

    Nussio, Matthew R; Oncins, Gerard; Ridelis, Ingrid; Szili, Endre; Shapter, Joseph G; Sanz, Fausto; Voelcker, Nicolas H

    2009-07-30

    In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands. For mica and silicon, significant differences in breakthrough force between the center and the edges of bilayer islands were observed for both phospolipids. These differences were more pronounced for DMPC than for DPPC, presumably due to melting effects at the edges of DMPC bilayers. In contrast, bilayer islands deposited on pSi yielded similar breakthrough forces in the central region and along the perimeter of the islands, and those values in turn were similar to those measured along the perimeter of bilayer islands deposited on the flat substrates. The study also demonstrates that pSi is suitable solid support for the formation of pore-spanning phospholipid bilayers with potential applications in transmembrane protein studies, drug delivery, and biosensing.

  4. Self-assembly of silica nanoparticles by tuning substrate-adsorbate interaction

    NASA Astrophysics Data System (ADS)

    Utsav, Khanna, Sakshum; Mukhopadhayay, Indrajit; Banerjee, Rupak

    2018-05-01

    We report on self-assembled nanodisc formations of silica nanoparticles on a surface modified silicon substrate using modified Langmuir-Schafer deposition technique (stamping). The size, inter-particle separation as well as the packing of the silica nanoparticles within the nanodiscs formed spontaneously can be tuned by the surface pressure applied on the water surface. We obtain self-assembled nanodiscs of silica nanoparticle arranged in a hexagonal symmetry. We also observe that by varying the surface pressure of deposition at the water-molecule-air interface we obtain such 2D disc-shaped structure with varying sizes and a packing ratio of the silica nanoparticle.

  5. Chemically attached gold nanoparticle-carbon nanotube hybrids for highly sensitive SERS substrate

    NASA Astrophysics Data System (ADS)

    Beqa, Lule; Singh, Anant Kumar; Fan, Zheng; Senapati, Dulal; Ray, Paresh Chandra

    2011-08-01

    Surface-enhanced Raman spectroscopy (SERS) has been shown as one of the most powerful analytical tool with high sensitivity. In this manuscript, we report the chemical design of SERS substrate, based on gold nanoparticles of different shapes-decorated with carbon nanotube with an enhancement factor of 7.5 × 1010. Shape dependent result shows that popcorn shape gold nanoparticle decorated SWCNT is the best choice for SERS substrate due to the existence of 'lightning rod effect' through several sharp edges or corners. Our results provide a good approach to develop highly sensitive SERS substrates and can help to improve the fundamental understanding of SERS phenomena.

  6. Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion

    PubMed Central

    Cha, Song-Hyun; Park, Youmie; Han, Jeong Woo; Kim, Kyeounghak; Kim, Hyun-Seok; Jang, Hong-Lae; Cho, Seonho

    2016-01-01

    From the images of HR-TEM, FE-SEM, and AFM, the cold welding of gold nanoparticles (AuNPs) on a mica substrate is observed. The cold-welded gold nanoparticles of 25 nm diameters are found on the mica substrate in AFM measurement whereas the size of cold welding is limited to 10 nm for nanowires and 2~3 nm for nanofilms. Contrary to the nanowires requiring pressure, the AuNPs are able to rotate freely due to the attractive forces from the mica substrate and thus the cold welding goes along by adjusting lattice structures. The gold nanoparticles on the mica substrate are numerically modeled and whose physical characteristics are obtained by the molecular dynamic simulations of LAMMPS. The potential and kinetic energies of AuNPs on the mica substrate provide sufficient energy to overcome the diffusion barrier of gold atoms. After the cold welding, the regularity of lattice structure is maintained since the rotation of AuNPs is allowed due to the presence of mica substrate. It turns out that the growth of AuNPs can be controlled arbitrarily and the welded region is nearly perfect and provides the same crystal orientation and strength as the rest of the nanostructures. PMID:27597438

  7. Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion

    NASA Astrophysics Data System (ADS)

    Cha, Song-Hyun; Park, Youmie; Han, Jeong Woo; Kim, Kyeounghak; Kim, Hyun-Seok; Jang, Hong-Lae; Cho, Seonho

    2016-09-01

    From the images of HR-TEM, FE-SEM, and AFM, the cold welding of gold nanoparticles (AuNPs) on a mica substrate is observed. The cold-welded gold nanoparticles of 25 nm diameters are found on the mica substrate in AFM measurement whereas the size of cold welding is limited to 10 nm for nanowires and 2~3 nm for nanofilms. Contrary to the nanowires requiring pressure, the AuNPs are able to rotate freely due to the attractive forces from the mica substrate and thus the cold welding goes along by adjusting lattice structures. The gold nanoparticles on the mica substrate are numerically modeled and whose physical characteristics are obtained by the molecular dynamic simulations of LAMMPS. The potential and kinetic energies of AuNPs on the mica substrate provide sufficient energy to overcome the diffusion barrier of gold atoms. After the cold welding, the regularity of lattice structure is maintained since the rotation of AuNPs is allowed due to the presence of mica substrate. It turns out that the growth of AuNPs can be controlled arbitrarily and the welded region is nearly perfect and provides the same crystal orientation and strength as the rest of the nanostructures.

  8. Cold welding of gold nanoparticles on mica substrate: Self-adjustment and enhanced diffusion.

    PubMed

    Cha, Song-Hyun; Park, Youmie; Han, Jeong Woo; Kim, Kyeounghak; Kim, Hyun-Seok; Jang, Hong-Lae; Cho, Seonho

    2016-09-06

    From the images of HR-TEM, FE-SEM, and AFM, the cold welding of gold nanoparticles (AuNPs) on a mica substrate is observed. The cold-welded gold nanoparticles of 25 nm diameters are found on the mica substrate in AFM measurement whereas the size of cold welding is limited to 10 nm for nanowires and 2~3 nm for nanofilms. Contrary to the nanowires requiring pressure, the AuNPs are able to rotate freely due to the attractive forces from the mica substrate and thus the cold welding goes along by adjusting lattice structures. The gold nanoparticles on the mica substrate are numerically modeled and whose physical characteristics are obtained by the molecular dynamic simulations of LAMMPS. The potential and kinetic energies of AuNPs on the mica substrate provide sufficient energy to overcome the diffusion barrier of gold atoms. After the cold welding, the regularity of lattice structure is maintained since the rotation of AuNPs is allowed due to the presence of mica substrate. It turns out that the growth of AuNPs can be controlled arbitrarily and the welded region is nearly perfect and provides the same crystal orientation and strength as the rest of the nanostructures.

  9. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands

    USGS Publications Warehouse

    Hein, J.R.; Schwab, W.C.; Davis, A.

    1988-01-01

    Ferromanganese crusts cover most hard substrates on seafloor edifices in the central Pacific basin. Crust samples and their associated substrates from seven volcanic edifices of Cretaceous age along the Ratak chain of the Marshall Islands are discussed. The two most abundant substrate lithologies recovered were limestone, dominantly fore-reef slope deposits, and volcanic breccia composed primarily of differentiated alkalic basalt and hawaiite clasts in a phosphatized carbonate matrix. The degree of mass wasting on the slopes of these seamounts is inversely correlated with the thickness of crusts. Crusts are generally thin on limestone substrate. Away from areas of active mass-wasting processes, and large atolls, crusts may be as thick as 10 cm maximum. The dominant crystalline phase in the Marshall Islands crusts is ??-MnO2 (vernadite). High concentrations of cobalt, platinum and rhodium strongly suggest that the Marshall Islands crusts are a viable source for these important metals. Many metals and the rare earth elements vary significantly on a fine scale through most crusts, thus reflecting the abundances of different host mineral phases in the crusts and changes in seawater composition with time. High concentrations of cobalt, nickel, titanium, zinc, lead, cerium and platinum result from a combination of their substitution in the iron and manganese phases and their oxidation potential. ?? 1988.

  10. Galvanic displacement reaction and rapid thermal annealing in size/shape controlling silver nanoparticles on silicon substrate

    NASA Astrophysics Data System (ADS)

    Ghosh, Tapas; Satpati, Biswarup

    2017-05-01

    The effect of the thermal annealing on silver nanoparticles deposited on silicon surface has been studied. The silver nanoparticles have been deposited by the galvanic displacement reaction. Rapid thermal annealing (RTA) has been performed on the Si substrate, containing the silver nanoparticles. The scanning transmission electron microscopy (STEM), energy dispersive X-ray (EDX) spectroscopy and scanning electron microscopy (SEM) study show that the galvanic displacement reaction and subsequent rapid thermal annealing could lead to well separated and spherical shaped larger silver nanoparticles on silicon substrate.

  11. Nucleation and island growth of alkanethiolate ligand domains on gold nanoparticles.

    PubMed

    Wang, Yifeng; Zeiri, Offer; Neyman, Alevtina; Stellacci, Francesco; Weinstock, Ira A

    2012-01-24

    The metal oxide cluster α-AlW(11)O(39)(9-) (1), readily imaged by cryogenic transmission electron microscopy (cryo-TEM), is used as a diagnostic protecting anion to investigate the self-assembly of alkanethiolate monolayers on electrostatically stabilized gold nanoparticles in water. Monolayers of 1 on 13.8 ± 0.9 nm diameter gold nanoparticles are displaced from the gold surface by mercaptoundecacarboxylate, HS(CH(2))(10)CO(2)(-) (11-MU). During this process, no aggregation is observed by UV-vis spectroscopy, and the intermediate ligand-shell organizations of 1 in cryo-TEM images indicate the presence of growing hydrophobic domains, or "islands", of alkanethiolates. UV-vis spectroscopic "titrations", based on changes in the surface plasmon resonance upon exchange of 1 by thiol, reveal that the 330 ± 30 molecules of 1 initially present on each gold nanoparticle are eventually replaced by 2800 ± 30 molecules of 11-MU. UV-vis kinetic data for 11-MU-monolayer formation reveal a slow phase, followed by rapid self-assembly. The Johnson, Mehl, Avrami, and Kolmogorov model gives an Avrami parameter of 2.9, indicating continuous nucleation and two-dimensional island growth. During nucleation, incoming 11-MU ligands irreversibly displace 1 from the Au-NP surface via an associative mechanism, with k(nucleation) = (6.1 ± 0.4) × 10(2) M(-1) s(-1), and 19 ± 8 nuclei, each comprised of ca. 8 alkanethiolates, appear on the gold-nanoparticle surface before rapid growth becomes kinetically dominant. Island growth is also first-order in [11-MU], and its larger rate constant, k(growth), (2.3 ± 0.2) × 10(4) M(-1) s(-1), is consistent with destabilization of molecules of 1 at the boundaries between the hydrophobic (alkanethiolate) and the electrostatically stabilized (inorganic) domains. © 2011 American Chemical Society

  12. SERS substrate based on silver nanoparticles and graphene: Dependence on the layer number of graphene

    NASA Astrophysics Data System (ADS)

    Garg, Preeti; Soni, R. K.; Raman, R.

    2018-05-01

    In this report, we describe a low-cost fabrication process for highly sensitive SERS substrate by using thermal evaporation technique. The SERS substrate structure consists of silver nanoparticles deposited on monolayer, bilayer and few layer graphene. The fabricated SERS substrates are investigated by field emission scanning electron microscope (FE-SEM), atomic force microscope (AFM), and confocal Raman spectroscope. From the surface morphology we have verified that the fabricated SERS substrate consist of high-density of silver nanoparticles with their size distribution varies from 10 to 150 nm. The surface-enhanced Raman scattering activities of these nanostructures is highest for monolayer graphene.

  13. Gold Nanoparticle Labels and Heterogeneous Immunoassays: The Case for the Inverted Substrate.

    PubMed

    Crawford, Alexis C; Young, Colin C; Porter, Marc D

    2018-06-15

    This paper examines how the difference in the spatial orientation of the capture substrate influences the analytical sensitivity and limits of detection for immunoassays that use gold nanoparticle labels (AuNPs) and rely on diffusion in quiet solution in the antigen capture and labeling steps. Ideally, the accumulation of both reactants should follow a dependence governed by the rate in which diffusion delivers reactants to the capture surface. In other words, the accumulation of reactants should increase with the square root of the incubation time, i.e., t1/2. The work herein shows, however, that this expectation is only obeyed when the capture substrate is oriented to direct the gravity-induced sedimentation of the AuNP labels away from the substrate. Using an assay for human IgG, the results show that circumventing the sedimentation of the gold nanoparticle labels by substrate inversion enables the dependence of the labeling step on diffusion, reduces nonspecific label adsorption, and improves the estimated detection limit by ~30×. High-density maps of the signal across the two types of substrates also demonstrate that inversion in the labeling step results in a more uniform distribution of AuNP labels across the surface, which translates to a greater measurement reproducibility. These results, which are supported by model simulations via the Mason-Weaver sedimentation-diffusion equation, and their potential implications when using other nanoparticle labels and related materials in diagnostic tests and other applications, are briefly discussed.

  14. Effect of Refractive Index of Substrate on Fabrication and Optical Properties of Hybrid Au-Ag Triangular Nanoparticle Arrays

    PubMed Central

    Liu, Jing; Chen, Yushan; Cai, Haoyuan; Chen, Xiaoyi; Li, Changwei; Yang, Cheng-Fu

    2015-01-01

    In this study, the nanosphere lithography (NSL) method was used to fabricate hybrid Au-Ag triangular periodic nanoparticle arrays. The Au-Ag triangular periodic arrays were grown on different substrates, and the effect of the refractive index of substrates on fabrication and optical properties was systematically investigated. At first, the optical spectrum was simulated by the discrete dipole approximation (DDA) numerical method as a function of refractive indexes of substrates and mediums. Simulation results showed that as the substrates had the refractive indexes of 1.43 (quartz) and 1.68 (SF5 glass), the nanoparticle arrays would have better refractive index sensitivity (RIS) and figure of merit (FOM). Simulation results also showed that the peak wavelength of the extinction spectra had a red shift when the medium’s refractive index n increased. The experimental results also demonstrated that when refractive indexes of substrates were 1.43 and 1.68, the nanoparticle arrays and substrate had better adhesive ability. Meanwhile, we found the nanoparticles formed a large-scale monolayer array with the hexagonally close-packed structure. Finally, the hybrid Au-Ag triangular nanoparticle arrays were fabricated on quartz and SF5 glass substrates and their experiment extinction spectra were compared with the simulated results.

  15. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Epitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on face-centered cubic (FCC) crystalline conducting substrate surfaces under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast diffusion direction. For larger than critical island sizes on {110} and {100} FCC substrates, we show that multiple necking instabilities generate complex island patterns, including void-containing islands, mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The analysis reveals that the pattern formation kinetics follows a universal scaling relation. Division of Materials Sciences & Engineering, Office of Basic Energy Sciences, U.S. Department of Energy (Award No.: DE-FG02-07ER46407).

  16. Substrate-mediated delivery of gene complex nanoparticles via polydopamine coating for enhancing competitiveness of endothelial cells.

    PubMed

    Li, Bo-Chao; Chang, Hao; Ren, Ke-Feng; Ji, Jian

    2016-11-01

    Substrate-mediated delivery of functional plasmid DNA (pDNA) has been proven to be a promising strategy to promote competitiveness of endothelial cells (ECs) over smooth muscle cells (SMCs), which is beneficial to inducing fast endothelialization of implanted vascular devices. Thus, it is of great importance to develop universal approaches with simplicity and easiness to immobilize DNA complex nanoparticles on substrates. In this study, the bioinspired polydopamine (PDA) coating was employed in immobilization of DNA complex nanoparticles, which were composed of protamine (PrS) and plasmid DNA encoding with hepatocyte growth factor (HGF-pDNA) gene. We demonstrated that the DNA complex nanoparticles can be successfully immobilized onto the PDA surface. Consequently, the HGF expression of both ECs and SMCs were significantly improved when they cultured on the DNA complex nanoparticles-immobilized substrates. Furthermore, EC proliferation was specifically promoted due to bioactivity of HGF, leading to an enhancement of EC competitiveness over SMCs. Our findings demonstrated the substrate-mediated functional gene nanoparticle delivery through PDA coating as a simple and efficient approach. It may hold great potential in the field of interventional cardiovascular implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Complex Pattern Formation from Current-Driven Dynamics of Single-Layer Homoepitaxial Islands on Crystalline Conducting Substrates

    NASA Astrophysics Data System (ADS)

    Kumar, Ashish; Dasgupta, Dwaipayan; Maroudas, Dimitrios

    2017-07-01

    We report a systematic study of complex pattern formation resulting from the driven dynamics of single-layer homoepitaxial islands on surfaces of face-centered-cubic (fcc) crystalline conducting substrates under the action of an externally applied electric field. The analysis is based on an experimentally validated nonlinear model of mass transport via island edge atomic diffusion, which also accounts for edge diffusional anisotropy. We analyze the morphological stability and simulate the field-driven evolution of rounded islands for an electric field oriented along the fast edge diffusion direction. For larger-than-critical island sizes on {110 } and {100 } fcc substrates, we show that multiple necking instabilities generate complex island patterns, including not-simply-connected void-containing islands mediated by sequences of breakup and coalescence events and distributed symmetrically with respect to the electric field direction. We analyze the dependence of the formed patterns on the original island size and on the duration of application of the external field. Starting from a single large rounded island, we characterize the evolution of the number of daughter islands and their average size and uniformity. The evolution of the average island size follows a universal power-law scaling relation, and the evolution of the total edge length of the islands in the complex pattern follows Kolmogorov-Johnson-Mehl-Avrami kinetics. Our study makes a strong case for the use of electric fields, as precisely controlled macroscopic forcing, toward surface patterning involving complex nanoscale features.

  18. Immobilization of recombinant vault nanoparticles on solid substrates.

    PubMed

    Xia, Yun; Ramgopal, Yamini; Li, Hai; Shang, Lei; Srinivas, Parisa; Kickhoefer, Valerie A; Rome, Leonard H; Preiser, Peter R; Boey, Freddy; Zhang, Hua; Venkatraman, Subbu S

    2010-03-23

    Native vaults are nanoscale particles found abundantly in the cytoplasm of most eukaryotic cells. They have a capsule-like structure with a thin shell surrounding a "hollow" interior compartment. Recombinant vault particles were found to self-assemble following expression of the major vault protein (MVP) in a baculovirus expression system, and these particles are virtually identical to native vaults. Such particles have been recently studied as potential delivery vehicles. In this study, we focus on immobilization of vault particles on a solid substrate, such as glass, as a first step to study their interactions with cells. To this end, we first engineered the recombinant vaults by fusing two different tags to the C-terminus of MVP, a 3 amino acid RGD peptide and a 12 amino acid RGD-strep-tag peptide. We have demonstrated two strategies for immobilizing vaults on solid substrates. The barrel-and-cap structure of vault particles was observed for the first time, by atomic force microscopy (AFM), in a dry condition. This work proved the feasibility of immobilizing vault nanoparticles on a material surface, and the possibility of using vault nanoparticles as localized and sustainable drug carriers as well as a biocompatible surface moiety.

  19. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates

    PubMed Central

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-01-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III–V and II–VI materials. PMID:24046490

  20. X-ray characterization of Ge dots epitaxially grown on nanostructured Si islands on silicon-on-insulator substrates.

    PubMed

    Zaumseil, Peter; Kozlowski, Grzegorz; Yamamoto, Yuji; Schubert, Markus Andreas; Schroeder, Thomas

    2013-08-01

    On the way to integrate lattice mismatched semiconductors on Si(001), the Ge/Si heterosystem was used as a case study for the concept of compliant substrate effects that offer the vision to be able to integrate defect-free alternative semiconductor structures on Si. Ge nanoclusters were selectively grown by chemical vapour deposition on Si nano-islands on silicon-on-insulator (SOI) substrates. The strain states of Ge clusters and Si islands were measured by grazing-incidence diffraction using a laboratory-based X-ray diffraction technique. A tensile strain of up to 0.5% was detected in the Si islands after direct Ge deposition. Using a thin (∼10 nm) SiGe buffer layer between Si and Ge the tensile strain increases to 1.8%. Transmission electron microscopy studies confirm the absence of a regular grid of misfit dislocations in such structures. This clear experimental evidence for the compliance of Si nano-islands on SOI substrates opens a new integration concept that is not only limited to Ge but also extendable to semiconductors like III-V and II-VI materials.

  1. Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate

    NASA Astrophysics Data System (ADS)

    Coman, Cristina; Leopold, Loredana Florina; Rugină, Olivia Dumitriţa; Barbu-Tudoran, Lucian; Leopold, Nicolae; Tofană, Maria; Socaciu, Carmen

    2014-01-01

    A green synthesis was used for preparing stable colloidal gold nanoparticles by using Allium sativum aqueous extract both as reducing and capping agent. The obtained nanoparticles were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and transmission electron microscopy. Moreover, their potential to be used as surface-enhanced Raman scattering (SERS) substrate was investigated. The obtained gold nanoparticles have spherical shape with mean diameters of 9-15 nm (depending on the amount of reducing agent used under boiling conditions) and are stable up to several months. FTIR spectroscopy shows that the nanoparticles are capped by protein molecules from the extract. The protein shell offers a protective coating, relatively impervious to external molecules, thus, rendering the nanoparticles stable and quite inert. These nanoparticles have the potential to be used as SERS substrates, both in solution and inside human fetal lung fibroblast HFL-1 living cells. We were able to demonstrate both the internalization of the nanoparticles inside HFL-1 cells and their ability to preserve the SERS signal after cellular internalization.

  2. Control of nanoparticle size and amount by using the mesh grid and applying DC-bias to the substrate in silane ICP-CVD process

    NASA Astrophysics Data System (ADS)

    Yoo, Seung-Wan; Hwang, Nong-Moon; You, Shin-Jae; Kim, Jung-Hyung; Seong, Dae-Jin

    2017-11-01

    The effect of applying a bias to the substrate on the size and amount of charged crystalline silicon nanoparticles deposited on the substrate was investigated in the inductively coupled plasma chemical vapor deposition process. By inserting the grounded grid with meshes above the substrate, the region just above the substrate was separated from the plasma. Thereby, crystalline Si nanoparticles formed by the gas-phase reaction in the plasma could be deposited directly on the substrate, successfully avoiding the formation of a film. Moreover, the size and the amount of deposited nanoparticles could be changed by applying direct current bias to the substrate. When the grid of 1 × 1-mm-sized mesh was used, the nanoparticle flux was increased as the negative substrate bias increased from 0 to - 50 V. On the other hand, when a positive bias was applied to the substrate, Si nanoparticles were not deposited at all. Regardless of substrate bias voltages, the most frequently observed nanoparticles synthesized with the grid of 1 × 1-mm-sized mesh had the size range of 10-12 nm in common. When the square mesh grid of 2-mm size was used, as the substrate bias was increased from - 50 to 50 V, the size of the nanoparticles observed most frequently increased from the range of 8-10 to 40-45 nm but the amount that was deposited on the substrate decreased.

  3. Rational design of Raman-labeled nanoparticles for a dual-modality, light scattering immunoassay on a polystyrene substrate.

    PubMed

    Israelsen, Nathan D; Wooley, Donald; Hanson, Cynthia; Vargis, Elizabeth

    2016-01-01

    Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to develop an optimized process for fabricating Raman-labeled nanoparticles for a SERS-based immunoassay on a polystyrene substrate. We have developed a method for fabricating SERS nanoparticle probes for use in a light scattering immunoassay on a polystyrene substrate. The light scattering profile of both spherical gold nanoparticle and gold nanorod SERS probes were characterized using Raman spectroscopy and optical absorbance spectroscopy. The effects of substrate interference and autofluorescence were reduced by selecting a Raman reporter with a strong light scattering response in a spectral region where interfering substrate emission peaks are minimized. Both spherical gold nanoparticles and gold nanorods SERS probes used in the immunoassay were detected at labeling concentrations in the low pM range. This analytical sensitivity falls within the typical dynamic range for direct labeling of cell-surface biomarkers using SERS probes. SERS nanoparticle probes were fabricated to produce a strong light scattering signal despite substrate interference. The optical extinction and inelastic light scattering of these probes was detected by optical absorbance spectroscopy and Raman spectroscopy, respectively. This immunoassay demonstrates the feasibility of analyzing strongly enhanced Raman signals on polystyrene, which is an

  4. Self-organized nickel nanoparticles on nanostructured silicon substrate intermediated by a titanium oxynitride (TiNxOy) interface

    NASA Astrophysics Data System (ADS)

    Morales, M.; Droppa, R., Jr.; de Mello, S. R. S.; Figueroa, C. A.; Zanatta, A. R.; Alvarez, F.

    2018-01-01

    In this work we report an experimental approach by combining in situ sequential top-down and bottom-up processes to induce the organization of nanosized nickel particles. The top-down process consists in xenon ion bombardment of a crystalline silicon substrate to generate a pattern, followed by depositing a ˜15 nm titanium oxynitride thin film to act as a metallic diffusion barrier. Then, metallic nanoparticles are deposited by argon ion sputtering a pure nickel target, and the sample is annealed to promote the organization of the nickel nanoparticles (a bottom-up process). According to the experimental results, the surface pattern and the substrate biaxial surface strain are the driving forces behind the alignment and organization of the nickel nanoparticles. Moreover, the ratio between the F of metallic atoms arriving at the substrate relative to its surface diffusion mobility determines the nucleation regime of the nickel nanoparticles. These features are presented and discussed considering the existing technical literature on the subject.

  5. Ultrathin diamond-like carbon film coated silver nanoparticles-based substrates for surface-enhanced Raman spectroscopy.

    PubMed

    Liu, Fanxin; Cao, Zhishen; Tang, Chaojun; Chen, Ling; Wang, Zhenlin

    2010-05-25

    We have demonstrated that by coating with a thin dielectric layer of tetrahedral amorphous carbon (ta-C), a biocompatible and optical transparent material in the visible range, the Ag nanoparticle-based substrate becomes extremely suitable for surface-enhanced Raman spectroscopy (SERS). Our measurements show that a 10 A or thicker ta-C layer becomes efficient to protect the oxygen-free Ag in air and prevent Ag ionizing in aqueous solutions. Furthermore, the Ag nanoparticles substrate coated with a 10 A ta-C film shows a higher enhancement of Raman signals than the uncoated substrate. These observations are further supported by our numerical simulations. We suggest that biomolecule detections in analytic assays could be easily realized using ta-C-coated Ag-based substrate for SERS especially in the visible range. The coated substrate also has higher mechanical stability, chemical inertness, and technological compliance, and may be useful, for example, to enhance TiO(2) photocatalysis and solar-cell efficiency by the surface plasmons.

  6. Direct-writing of copper-based micropatterns on polymer substrates using femtosecond laser reduction of copper (II) oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Mizoshiri, Mizue; Ito, Yasuaki; Sakurai, Junpei; Hata, Seiichi

    2017-04-01

    Copper (Cu)-based micropatterns were fabricated on polymer substrates using femtosecond laser reduction of copper (II) oxide (CuO) nanoparticles. CuO nanoparticle solution, which consisted of CuO nanoparticles, ethylene glycol as a reductant agent, and polyvinylpyrrolidone as a dispersant, was spin-coated on poly(dimethylsiloxane) (PDMS) substrates and was irradiated by focused femtosecond laser pulses to fabricate Cu-based micropatterns. When the laser pulses were raster-scanned onto the solution, CuO nanoparticles were reduced and sintered. Cu-rich and copper (I)-oxide (Cu2O)-rich micropatterns were formed at laser scanning speeds of 15 mm/s and 0.5 mm/s, respectively, and at a pulse energy of 0.54 nJ. Cu-rich electrically conductive micropatterns were obtained without significant damages on the substrates. On the other hand, Cu2O-rich micropatterns exhibited no electrical conductivity, indicating that microcracks were generated on the micropatterns by thermal expansion and shrinking of the substrates. We demonstrated a direct-writing of Cu-rich micro-temperature sensors on PDMS substrates using the foregoing laser irradiation condition. The resistance of the fabricated sensors increased with increasing temperature, which is consistent with that of Cu. This direct-writing technique is useful for fabricating Cu-polymer composite microstructures.

  7. Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation.

    PubMed

    Pluchery, Olivier; Caillard, Louis; Dollfus, Philippe; Chabal, Yves J

    2018-01-18

    Single charge electronics offer a way for disruptive technology in nanoelectronics. Coulomb blockade is a realistic way for controlling the electric current through a device with the accuracy of one electron. In such devices the current exhibits a step-like increase upon bias which reflects the discrete nature of the fundamental charge. We have assembled a double tunnel junction on an oxide-free silicon substrate that exhibits Coulomb staircase characteristics using gold nanoparticles (AuNPs) as Coulomb islands. The first tunnel junction is an insulating layer made of a grafted organic monolayer (GOM) developed for this purpose. The GOM also serves for attaching AuNPs covalently. The second tunnel junction is made by the tip of an STM. We show that this device exhibits reproducible Coulomb blockade I-V curves at 40 K in vacuum. We also show that depending on the doping of the silicon substrate, the whole Coulomb staircase can be adjusted. We have developed a simulation approach based on the orthodox theory that was completed by calculating the bias dependent tunnel barriers and by including an accurate calculation of the band bending. This model accounts for the experimental data and the doping dependence of Coulomb oscillations. This study opens new perspectives toward designing new kind of single electron transistors (SET) based on this dependence of the Coulomb staircase with the charge carrier concentration.

  8. Coastal Inlets Research Program. Barrier Island Migration Over a Consolidating Substrate

    DTIC Science & Technology

    2009-09-01

    the toe of the dune to the high water line) for full development of eolian transport. However, the original Shore Protection Manual (1984...tested. Barrier islands overlying a compressible substrate are more likely to have reduced dune elevations due to consolidation, incur overall...migra- tion when the dune reaches a critical elevation with respect to the prev- alent storm conditions. Initial large-scale infusion of sand from an

  9. Determining Concentration of Nanoparticles from Ellipsometry

    NASA Technical Reports Server (NTRS)

    Venkatasubbarao, Srivatsa; Kempen, Lothar U.; Chipman, Russell

    2008-01-01

    A method of using ellipsometry or polarization analysis of light in total internal reflection of a surface to determine the number density of gold nanoparticles on a smooth substrate has been developed. The method can be modified to enable determination of densities of sparse distributions of nanoparticles in general, and is expected to be especially useful for measuring gold-nanoparticle-labeled biomolecules on microarrays. The method is based on theoretical calculations of the ellipsometric responses of gold nanoparticles. Elements of the calculations include the following: For simplicity, the gold nanoparticles are assumed to be spherical and to have the same radius. The distribution of gold nanoparticles is assumed to be a sub-monolayer (that is, sparser than a monolayer). The optical response of the sub-monolayer is modeled by use of a thin-island-film theory, according to which the polarizabilities parallel and perpendicular to the substrate are functions of the wavelength of light, the dielectric functions (permittivities expressed as complex functions of frequency or wavelength) of the gold and the suspending medium (in this case, the suspending medium is air), the fraction of the substrate area covered by the nanoparticles, and the radius of the nanoparticles. For the purpose of the thin-island-film theory, the dielectric function of the gold nanoparticles is modeled as the known dielectric function of bulk gold plus a correction term that is necessitated by the fact that the mean free path length for electrons in gold decreases with decreasing radius, in such a manner as to cause the imaginary part of the dielectric function to increase with decreasing radius (see figure). The correction term is a function of the nanoparticle radius, the wavelength of light, the mean free path and the Fermi speed of electrons in bulk gold, the plasma frequency of gold, and the speed of light in a vacuum. These models are used to calculate ellipsometric responses for

  10. Fabrication of chitosan-silver nanoparticle hybrid 3D porous structure as a SERS substrate for biomedical applications

    NASA Astrophysics Data System (ADS)

    Jung, Gyeong-Bok; Kim, Ji-Hye; Burm, Jin Sik; Park, Hun-Kuk

    2013-05-01

    We propose a simple, low-cost, large-area, and functional surface enhanced Raman scattering (SERS) substrate for biomedical applications. The SERS substrate with chitosan-silver nanoparticles (chitosan-Ag NPs) hybrid 3D porous structure was fabricated simply by a one-step method. The chitosan was used as a template for the Ag NPs deposition. SERS enhancement by the chitosan-Ag NPs substrate was experimentally verified using rhodamine B as an analyte. Thiolated single stranded DNA was also measured for atopic dermatitis genetic markers (chemokines CCL17) at a low concentration of 5 pM. We successfully designed a novel SERS substrate with silver nanoparticle hybridized 3D porous chitosan that has the potential to become a highly sensitive and selective tool for biomedical applications.

  11. A high-coverage nanoparticle monolayer for the fabrication of a subwavelength structure on InP substrates.

    PubMed

    Kim, Dae-Seon; Park, Min-Su; Jang, Jae-Hyung

    2011-08-01

    Subwavelength structures (SWSs) were fabricated on the Indium Phosphide (InP) substrate by utilizing the confined convective self-assembly (CCSA) method followed by reactive ion etching (RIE). The surface condition of the InP substrate was changed by depositing a 30-nm-thick SiO2 layer and subsequently treating the surface with O2 plasma to achieve better surface coverage. The surface coverage of nanoparticle monolayer reached 90% by using O2 plasma-treated SiO2/InP substrate among three kinds of starting substrates such as the bare InP, SiO2/InP and O2 plasma-treated SiO2/InP substrate. A nanoparticle monolayer consisting of polystyrene spheres with diameter of 300 nm was used as an etch mask for transferring a two-dimensional periodic pattern onto the InP substrate. The fabricated conical SWS with an aspect ratio of 1.25 on the O2 plasma-treated SiO2/InP substrate exhibited the lowest reflectance. The average reflectance of the conical SWS was 5.84% in a spectral range between 200 and 900 nm under the normal incident angle.

  12. Substrate-specific modifications on magnetic iron oxide nanoparticles as an artificial peroxidase for improving sensitivity in glucose detection.

    PubMed

    Liu, Yanping; Yu, Faquan

    2011-04-08

    Magnetic iron oxide nanoparticles (MION) were recently found to act as a peroxidase with intrinsic advantages over natural counterparts. Their limited affinity toward catalysis substrates, however, dramatically reduces their utility. In this paper, some effective groups were screened out and conjugated on MION as substrate-specific modifications for improving MION's affinity to substrates and hence utility. Nanoparticles of four different superficial structures were synthesized and characterized by TEM, size, zeta potential and SQUID, and assayed for peroxidase activity. Glucose detection was selected as an application model system to evaluate the bonus thereof. Catalysis was found to follow Michaelis-Menten kinetics. Sulfhydryl groups incorporated on MION (SH-MION) notably improve the affinity toward a substrate (hydrogen peroxide) and so do amino groups (NH₂-MION) toward another substrate, proved by variation in the determined kinetic parameters. A synergistically positive effect was observed and an apparently elevated detection sensitivity and a significantly lowered detection limit of glucose were achieved when integrated with both sulfhydryl and amino groups (SH-NH₂-MION). Our findings suggest that substrate-specific surface modifications are a straightforward and robust strategy to improve MION peroxidase-like activity. The high activity extends magnetic nanoparticles to wide applications other than glucose detection.

  13. Ultra-high sensitive substrates for surface enhanced Raman scattering, made of 3 nm gold nanoparticles embedded on SiO2 nanospheres

    NASA Astrophysics Data System (ADS)

    Phatangare, A. B.; Dhole, S. D.; Dahiwale, S. S.; Bhoraskar, V. N.

    2018-05-01

    The surface properties of substrates made of 3 nm gold nanoparticles embedded on SiO2 nanospheres enabled fingerprint detection of thiabendazole (TBZ), crystal violet (CV) and 4-Aminothiophenol (4-ATP) at an ultralow concentration of ∼10-18 M by surface enhanced Raman spectroscopy (SERS). Gold nanoparticles of an average size of ∼3 nm were synthesized and simultaneously embedded on SiO2 nanospheres by the electron irradiation method. The substrates made from the 3 nm gold nanoparticles embedded on SiO2 nanospheres were successfully used for recording fingerprint SERS spectra of TBZ, CV and 4-ATP over a wide range of concentrations from 10-6 M to 10-18 M using 785 nm laser. The unique features of these substrates are roughness near the surface due to the inherent structural defects of 3 nm gold nanoparticles, nanogaps of ≤ 1 nm between the embedded nanoparticles and their high number. These produced an abundance of nanocavities which act as active centers of hot-spots and provided a high electric field at the reporter molecules and thus an enhancement factor required to record the SERS spectra at ultra low concentration of 10-18 M. The SERS spectra recorded by the substrates of 4 nm and 6 nm gold nanoparticles are discussed.

  14. Humidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications

    PubMed Central

    Niarchos, Georgios; Dubourg, Georges; Afroudakis, Georgios; Georgopoulos, Markos; Tsouti, Vasiliki; Makarona, Eleni; Crnojevic-Bengin, Vesna; Tsamis, Christos

    2017-01-01

    In this paper, we investigated the effect of humidity on paper substrates and propose a simple and low-cost method for their passivation using ZnO nanoparticles. To this end, we built paper-based microdevices based on an interdigitated electrode (IDE) configuration by means of a mask-less laser patterning method on simple commercial printing papers. Initial resistive measurements indicate that a paper substrate with a porous surface can be used as a cost-effective, sensitive and disposable humidity sensor in the 20% to 70% relative humidity (RH) range. Successive spin-coated layers of ZnO nanoparticles then, control the effect of humidity. Using this approach, the sensors become passive to relative humidity changes, paving the way to the development of ZnO-based gas sensors on paper substrates insensitive to humidity. PMID:28273847

  15. Immobilization of Iron Nanoparticles on Multi Substrates and Its Reduction Removal of Chromium (VI) from Waste Streams

    EPA Science Inventory

    This article describes the in-situ synthesis and immobilization of iron nanoparticles on several substrates at room temperature using NaBH4 as a reducing agent and ascorbic acid as capping agent. The method is very effective in protecting iron nanoparticles from air oxidation for...

  16. Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate

    NASA Astrophysics Data System (ADS)

    Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng

    2018-03-01

    High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.

  17. Magnetic imaging of cyanide-bridged co-ordination nanoparticles grafted on FIB-patterned Si substrates.

    PubMed

    Ghirri, Alberto; Candini, Andrea; Evangelisti, Marco; Gazzadi, Gian Carlo; Volatron, Florence; Fleury, Benoit; Catala, Laure; David, Christophe; Mallah, Talal; Affronte, Marco

    2008-12-01

    Prussian blue CsNiCr nanoparticles are used to decorate selected portions of a Si substrate. For successful grafting to take place, the Si surface needs first to be chemically functionalized. Low-dose focused ion beam patterning on uniformly functionalized surfaces selects those portions that will not participate in the grafting process. Step-by-step control is assured by atomic force and high-resolution scanning electron microscopy, revealing a submonolayer distribution of the grafted nanoparticles. By novel scanning Hall-probe microscopy, an in-depth investigation of the magnetic response of the nanoparticles to varying temperature and applied magnetic field is provided. The magnetic images acquired suggest that low-temperature canted ferromagnetism is found in the grafted nanoparticles, similar to what is observed in the equivalent bulk material.

  18. Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates

    PubMed Central

    Jackson, J. B.; Halas, N. J.

    2004-01-01

    Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the surface of smooth and roughened nanoshells reveal that surface roughness contributes only slightly to the total enhancement. SERS enhancements as large as 2.5 × 1010 on Ag nanoshell films for the nonresonant molecule p-mercaptoaniline are measured. PMID:15608058

  19. Selective DNA-Mediated Assembly of Gold Nanoparticles on Electroded Substrates

    DTIC Science & Technology

    2008-06-01

    might use the Watson - Crick base-pairing of DNA as a means for ultrahigh-precision engineering is well- known.5,6 The idea is to use the highly specific...Selective DNA -Mediated Assembly of Gold Nanoparticles on Electroded Substrates K. E. Sapsford,†,‡,∇ D. Park,§ E. R. Goldman,‡ E. E. Foos,| S. A...electrodes via DNA hybridization. Protocols are demonstrated for maximizing selectivity and coverage using 15mers as the active binding agents. Detailed

  20. Ultrasensitive nanoparticle enhanced laser-induced breakdown spectroscopy using a super-hydrophobic substrate coupled with magnetic confinement.

    PubMed

    Dong, Daming; Jiao, Leizi; Du, Xiaofan; Zhao, Chunjiang

    2017-04-20

    In this study, we developed a substrate to enhance the sensitivity of LIBS by 5 orders of magnitude. Using a combination of field enhancement due to the metal nanoparticles in the substrate, the aggregate effect of super-hydrophobic interfaces and magnetic confinement, we performed a quantitative measurement of copper in solution with concentrations on the ppt level. We also demonstrated that the substrate improves quantitative measurements by providing an opportunity for internal standardization.

  1. Erosion Characteristics of Nanoparticle-Reinforced Polyurethane Coatings on Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Syamsundar, C.; Chatterjee, Dhiman; Kamaraj, M.; Maiti, A. K.

    2015-04-01

    Hydropower generation from the Himalayan rivers in India faces challenge in the form of silt-laden water which can erode the turbine blades and reduce turbine life. To address this issue, polyurethane coatings reinforced with boron carbide (B4C) or silicon carbide (SiC) nanoparticles on 16Cr-5Ni martensitic stainless steel substrate were used in the present investigation to improve erosion wear resistance in silt erosion conditions. Slurry erosive wear tests were carried out based on ASTM G-73 protocol at various test conditions of impact velocity, impingement angle, and erodent particle size as well as slurry concentrations as determined by the implementation of Taguchi design of experiments. Analysis of variance studies of erosion rate indicated that nanoparticle content in PU material is the single most important parameter, and interaction of impact velocity and impingement angle was also proved to be significant. The coatings with B4C nanoparticles had higher wear resistances than those with SiC nanoparticles due to higher hardness of the former. An interesting finding from the results is that there is an optimum amount of nanoparticles at which mass removal is the minimum. This observation has been explained in terms of surface characteristics of coatings as brought out by a combination of measurements including SEM images as well as roughness measurement.

  2. A technique to functionalize and self-assemble macroscopic nanoparticle-ligand monolayer films onto template-free substrates.

    PubMed

    Fontana, Jake; Spillmann, Christopher; Naciri, Jawad; Ratna, Banahalli R

    2014-05-09

    This protocol describes a self-assembly technique to create macroscopic monolayer films composed of ligand-coated nanoparticles. The simple, robust and scalable technique efficiently functionalizes metallic nanoparticles with thiol-ligands in a miscible water/organic solvent mixture allowing for rapid grafting of thiol groups onto the gold nanoparticle surface. The hydrophobic ligands on the nanoparticles then quickly phase separate the nanoparticles from the aqueous based suspension and confine them to the air-fluid interface. This drives the ligand-capped nanoparticles to form monolayer domains at the air-fluid interface. The use of water-miscible organic solvents is important as it enables the transport of the nanoparticles from the interface onto template-free substrates. The flow is mediated by a surface tension gradient and creates macroscopic, high-density, monolayer nanoparticle-ligand films. This self-assembly technique may be generalized to include the use of particles of different compositions, size, and shape and may lead to an efficient assembly method to produce low-cost, macroscopic, high-density, monolayer nanoparticle films for wide-spread applications.

  3. Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Liang, Pei; Tang, Lisha; Zhou, Yongfeng; Cao, Yanting; Wu, Yanxiong; Zhang, De; Dong, Qianmin; Huang, Jie; He, Peng

    2018-04-01

    As a means of chemical identification and analysis, Surface enhanced Raman spectroscopy (SERS), with the advantages of high sensitivity and selectivity, non-destructive, high repeatability and in situ detection etc., has important significance in the field of composition detection, environmental science, biological medicine etc. Physical model of coupling effect between different semiconductor substrates and noble metal particles were investigated by using 3D-FDTD method. Mechanism and the effects of excitation wavelength, particle spacing and semiconductor substrate types on the SERS effect were discussed. The results showed that the optimal excitation wavelengths of three noble metals of Ag, Au, Cu, were located at 510, 600 and 630 nm, respectively; SERS effect of Ag, Au, Cu increases with the decreasing of the inter distance of particles, while the distance of the NPs reaches the critical value of 3 nm, the strength of SERS effect will be greatly enhanced. For the four different types of substrate of Ge, Si, SiO2 (glass) and Al2O3, the SERS effect of Ag on SiO2 > Ge > Al2O3 > Si. For Au and Cu nanoparticles, the SERS effect of them on oxide substrate is stronger than that on non-oxide substrate. In order to verify FDTD simulations, taking silver nanoparticles as an example, and silver nanoparticles prepared by chemical method were spinning coating on the four different substrates with R6G as probe molecules. The results show that the experimental results are consistent with FDTD theoretical simulations, and the SERS enhancement effect of Ag-SiO2 substrate is best. The results of this study have important theoretical significance to explain the variations of SERS enhancement on different noble metals, which is also an important guide for the preparation of SERS substrates, especially for the microfluidics. The better Raman effect can be realized by choosing proper substrate type, particle spacing and excitation wavelength, result in expanding the depth and width

  4. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse.

    PubMed

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-18

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10 -9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  5. Surface-enhanced Raman spectroscopy with Au-nanoparticle substrate fabricated by using femtosecond pulse

    NASA Astrophysics Data System (ADS)

    Zhang, Wending; Li, Cheng; Gao, Kun; Lu, Fanfan; Liu, Min; Li, Xin; Zhang, Lu; Mao, Dong; Gao, Feng; Huang, Ligang; Mei, Ting; Zhao, Jianlin

    2018-05-01

    Au-nanoparticle (Au-NP) substrates for surface-enhanced Raman spectroscopy (SERS) were fabricated by grid-like scanning a Au-film using a femtosecond pulse. The Au-NPs were directly deposited on the Au-film surface due to the scanning process. The experimentally obtained Au-NPs presented local surface plasmon resonance effect in the visible spectral range, as verified by finite difference time domain simulations and measured reflection spectrum. The SERS experiment using the Au-NP substrates exhibited high activity and excellent substrate reproducibility and stability, and a clearly present Raman spectra of target analytes, e.g. Rhodamine-6G, Rhodamine-B and Malachite green, with concentrations down to 10‑9 M. This work presents an effective approach to producing Au-NP SERS substrates with advantages in activity, reproducibility and stability, which could be used in a wide variety of practical applications for trace amount detection.

  6. Magneto-optic evaluation of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Srinath; Panmand, Rajendra; Kumar, Ganapathy; Mahajan, Satish M.; Kale, Bharat B.

    2016-03-01

    This paper presents a prima facie study of the magneto-optic response of antiferromagnetic α-Fe2O3 nanoparticles coated on a quartz substrate investigated by MOKE. The concentrations of the iron oxide nanoparticles in the films were varied from 8.6% to 21.5% and showed a linear increase in film thicknesses. As the concentration of the iron oxide nanoparticles were increased, the samples changed from a net-like morphology to a crystalline morphology. Magnetization reversals in the lower concentration samples were asymmetric with the reversals for the ascending and descending branch of the hysteresis loop occurring on the same side. The asymmetry in the magnetization reversal was attributed to the angle between the antiferromagnetic easy axis and the external magnetic field. With increase in concentration, an improvement in the magneto-optic response was observed with the magnetization reversal occurring via coherent rotation for both ascending and descending branches of the hysteresis loop. The changes in the magneto-optic behavior for the samples with higher concentrations is attributed to the strong exchange interactions and changes in the shape of the nanoparticles. Sensitivity studies performed on the samples showed an increased magneto-optic sensitivity to changes in magnetic field for samples of higher concentration. The high sensitivity of these samples could be exploited in magneto-optic sensors. Nanoparticles on a quartz substrate could find applications in bio-medicine due to their bio-compatibility.

  7. Probing the effect of charge transfer enhancement in off resonance mode SERS via conjugation of the probe dye between silver nanoparticles and metal substrates.

    PubMed

    Selvakannan, Pr; Ramanathan, Rajesh; Plowman, Blake J; Sabri, Ylias M; Daima, Hemant K; O'Mullane, Anthony P; Bansal, Vipul; Bhargava, Suresh K

    2013-08-21

    The charge transfer-mediated surface enhanced Raman scattering (SERS) of crystal violet (CV) molecules that were chemically conjugated between partially polarized silver nanoparticles and optically smooth gold and silver substrates has been studied under off-resonant conditions. Tyrosine molecules were used as a reducing agent to convert silver ions into silver nanoparticles where oxidised tyrosine caps the silver nanoparticle surface with its semiquinone group. This binding through the quinone group facilitates charge transfer and results in partially oxidised silver. This establishes a chemical link between the silver nanoparticles and the CV molecules, where the positively charged central carbon of CV molecules can bind to the terminal carboxylate anion of the oxidised tyrosine molecules. After drop casting Ag nanoparticles bound with CV molecules it was found that the free terminal amine groups tend to bind with the underlying substrates. Significantly, only those CV molecules that were chemically conjugated between the partially polarised silver nanoparticles and the underlying gold or silver substrates were found to show SERS under off-resonant conditions. The importance of partial charge transfer at the nanoparticle/capping agent interface and the resultant conjugation of CV molecules to off resonant SERS effects was confirmed by using gold nanoparticles prepared in a similar manner. In this case the capping agent binds to the nanoparticle through the amine group which does not facilitate charge transfer from the gold nanoparticle and under these conditions SERS enhancement in the sandwich configuration was not observed.

  8. Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates

    NASA Astrophysics Data System (ADS)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2011-03-01

    Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu

  9. Structure and growth of Bi(110) islands on Si(111)√{3 }×√{3 }-B substrates

    NASA Astrophysics Data System (ADS)

    Nagase, Kentaro; Kokubo, Ikuya; Yamazaki, Shiro; Nakatsuji, Kan; Hirayama, Hiroyuki

    2018-05-01

    The structure and growth of ultrathin Bi(110) islands were investigated on a Si(111)√{3 }×√{3 }-B substrate by scanning tunneling microscopy and scanning tunneling spectroscopy (STS). Both even- and odd-layer-height islands nucleated on a one-monolayer-thick wetting layer. The islands preferred the even layer heights over the odd layer heights with an area ratio of 3:1. A weak, long-range corrugation was observed to overlap on the atomic arrangement at the top of the islands. The average distance between the peaks of the corrugation oscillated in accordance with the alternation of even and odd layer heights. Nucleation of single- and double-layer terraces occurred on the islands with even layer heights but not on those with odd layer heights. The unit cell of the single-layer terrace was aligned with that of the underlying even-layer-height island. The inequality in the height preference and the height-dependent oscillation of the corrugation suggested that the even- and odd-layer-height islands possessed different structures. The dominance and stability against terrace nucleation of the even-layer-height islands were consistent with the theoretically predicted stability of the paired layer-stacked black-phosphorus (BP)-like structure for ultrathin Bi(110) films. The alignment of the unit cell at the terrace on the island and STS spectra suggested a BP-like/bulklike/BP-like sandwich structure for the odd-layer-height Bi(110) islands.

  10. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.

    PubMed

    Rao, V Kesava; Radhakrishnan, T P

    2015-06-17

    Development of facile routes to the fabrication of thin film substrates with tunable surface enhanced Raman scattering (SERS) efficiency and identification of the optimal conditions for maximizing the enhancement factor (EF) are significant in terms of both fundamental and application aspects of SERS. In the present work, polymer thin films with embedded bimetallic nanoparticles of Ag-Au are fabricated by a simple two-stage protocol. Ag nanoparticles are formed in the first stage, by the in situ reduction of silver nitrate by the poly(vinyl alcohol) (PVA) film through mild thermal annealing, without any additional reducing agent. In the second stage, aqueous solutions of chloroauric acid spread on the Ag-PVA thin film under ambient conditions, lead to the galvanic displacement of Ag by Au in situ inside the film, and the formation of Ag-Au particles. Evolution of the morphology of the bimetallic nanoparticles into hollow cage structures and the distribution of Au on the nanoparticles are revealed through electron microscopy and energy dispersive X-ray spectroscopy. The localized surface plasmon resonance (LSPR) extinction of the nanocomposite thin film evolves with the Ag-Au composition; theoretical simulation of the extinction spectra provides insight into the observed trends. The Ag-Au-PVA thin films are found to be efficient substrates for SERS. The EF follows the variation of the LSPR extinction vis-à-vis the excitation laser wavelength, but with an offset, and the maximum SERS effect is obtained at very low Au content; experiments with Rhodamine 6G showed EFs on the order of 10(8) and a limit of detection of 0.6 pmol. The present study describes a facile and simple fabrication of a nanocomposite thin film that can be conveniently deployed in SERS investigations, and the utility of the bimetallic system to tune and maximize the EF.

  11. High-yield aqueous synthesis of multi-branched iron oxide core-gold shell nanoparticles: SERS substrate for immobilization and magnetic separation of bacteria

    NASA Astrophysics Data System (ADS)

    Tamer, Ugur; Onay, Aykut; Ciftci, Hakan; Bozkurt, Akif Göktuğ; Cetin, Demet; Suludere, Zekiye; Hakkı Boyacı, İsmail; Daniel, Philippe; Lagarde, Fabienne; Yaacoub, Nader; Greneche, Jean-Marc

    2014-10-01

    The high product yield of multi-branched core-shell Fe3- x O4@Au magnetic nanoparticles was synthesized used as magnetic separation platform and surface-enhanced Raman scattering (SERS) substrates. The multi-branched magnetic nanoparticles were prepared by a seed-mediated growth approach using magnetic gold nanospheres as the seeds and subsequent reduction of metal salt with ascorbic acid in the presence of a stabilizing agent chitosan biopolymer and silver ions. The anisotropic growth of nanoparticles was observed in the presence of chitosan polymer matrix resulting in multi-branched nanoparticles with a diameter over 100 nm, and silver ions also play a crucial role on the growth of multi-branched nanoparticles. We propose the mechanism of the formation of multi-branched nanoparticles while the properties of nanoparticles embedded in chitosan matrix are discussed. The surface morphology of nanoparticles was characterized with transmission electron microscopy, scanning electron microscopy, ultraviolet visible spectroscopy (UV-Vis), X-ray diffraction, and fourier transform infrared spectroscopy and 57Fe Mössbauer spectrometry. Additionally, the magnetic properties of the nanoparticles were also examined. We also demonstrated that the synthesized Fe3- x O4@Au multi-branched nanoparticle is capable of targeted separation of pathogens from matrix and sensing as SERS substrates.

  12. SPM Investigation of Thiolated Gold Nanoparticle Patterns Deposited on Different Self-Assembled Substrates

    NASA Astrophysics Data System (ADS)

    Sbrana, F.; Parodi, M. T.; Ricci, D.; Di Zitti, E.

    We present the results of a Scanning Probe Microscopy (SPM) investigation of ordered nanosized metallo-organic structures. Our aim is to investigate the organization and stability of thiolated gold nanoparticles in a compact pattern when deposited onto gold substrates functionalized with self-assembled monolayers made from two molecules that differ essentially in their terminating group: 1,4-benzenedimethanethiol and 4-methylbenzylthiol.

  13. Effects of metallic nanoparticle doped flux on the interfacial intermetallic compounds between lead-free solder ball and copper substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sujan, G.K., E-mail: sgkumer@gmail.com; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Afifi, A.B.M., E-mail: amalina@um.edu.my

    2014-11-15

    Lead free solders currently in use are prone to develop thick interfacial intermetallic compound layers with rough morphology which are detrimental to the long term solder joint reliability. A novel method has been developed to control the morphology and growth of intermetallic compound layers between lead-free Sn–3.0Ag–0.5Cu solder ball and copper substrate by doping a water soluble flux with metallic nanoparticles. Four types of metallic nanoparticles (nickel, cobalt, molybdenum and titanium) were used to investigate their effects on the wetting behavior and interfacial microstructural evaluations after reflow. Nanoparticles were dispersed manually with a water soluble flux and the resulting nanoparticlemore » doped flux was placed on copper substrate. Lead-free Sn–3.0Ag–0.5Cu solder balls of diameter 0.45 mm were placed on top of the flux and were reflowed at a peak temperature of 240 °C for 45 s. Angle of contact, wetting area and interfacial microstructure were studied by optical microscopy, field emission scanning electron microscopy and energy-dispersive X-ray spectroscopy. It was observed that the angle of contact increased and wetting area decreased with the addition of cobalt, molybdenum and titanium nanoparticles to flux. On the other hand, wettability improved with the addition of nickel nanoparticles. Cross-sectional micrographs revealed that both nickel and cobalt nanoparticle doping transformed the morphology of Cu{sub 6}Sn{sub 5} from a typical scallop type to a planer one and reduced the intermetallic compound thickness under optimum condition. These effects were suggested to be related to in-situ interfacial alloying at the interface during reflow. The minimum amount of nanoparticles required to produce the planer morphology was found to be 0.1 wt.% for both nickel and cobalt. Molybdenum and titanium nanoparticles neither appear to undergo alloying during reflow nor have any influence at the solder/substrate interfacial reaction. Thus

  14. Field-assisted organization, substrate effects and magnetic behavior of Ag 30Co 70 core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Crisan, A. D.; Angelakeris, M.; Simeonidis, K.; Tsiaoussis, I.; Crisan, O.

    2010-11-01

    In core-shell systems with non-magnetic core and magnetic shell, the electron transport and magnetic properties are expected to show enhanced behavior due to the particular morpho-structural features of the conductive and magnetic regions. This may lead to novel advanced GMR materials and spin valves. This is the case of core-shell Ag-Co colloidal nanoscale particles that organize into regular arrays. An insight on the structure and morphology of the newly synthesized Ag-Co nanoparticles deposited on different substrates will be presented. The influence of the substrate on different morphologies and organization dynamics is discussed. It is shown that the magnetic behavior of the Ag-Co nanoparticles is highly influenced by the corona-like morphology of Co shell, chemical environment of the magnetic atoms and by the fact that they exhibit strongly reduced coordination due to the surface states.

  15. Influence of hot carriers on catalytic reaction; Pt nanoparticles on GaN substrates under light irradiation.

    PubMed

    Kim, Sun Mi; Park, Dahee; Yuk, Youngji; Kim, Sang Hoon; Park, Jeong Young

    2013-01-01

    We report the hot carrier-driven catalytic activity of two-dimensional arrays of Pt nanoparticles on GaN substrate under light irradiation. In order to elucidate the effect of a hot carrier in a catalytic chemical reaction, the CO oxidation reaction was carried out on Pt nanoparticles on p- and n-type GaN under light irradiation. Metal catalysts composed of Pt nanoparticles were prepared using two different preparation methods: the one-pot polyol reduction and are plasma deposition methods. Under light irradiation, the catalytic activity of the Pt nanoparticles supported on GaN exhibited a distinct change depending on the doping type. The catalytic activity of the Pt nanoparticles on the n-doped GaN wafer decreased by 8-28% under light irradiation, compared to no irradiation (i.e., in the dark), while the Pt nanoparticles on the p-doped GaN wafer increased by 11-33% under light irradiation, compared to no irradiation. The catalytic activity increased on the smaller Pt nanoparticles, compared to the larger nanoparticles, presumably due to the mean free path of hot carriers. Based on these results, we conclude that the flow of hot carriers generated at the Pt-GaN interface during light irradiation is responsible for the change in catalytic activity on the Pt nanoparticles.

  16. Atomic structure and bonding of the interfacial bilayer between Au nanoparticles and epitaxially regrown MgAl{sub 2}O{sub 4} substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Guo-zhen; Canadian Centre of Electron Microscopy and Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1; Majdi, Tahereh

    2014-12-08

    A unique metal/oxide interfacial bilayer formed between Au nanoparticles and MgAl{sub 2}O{sub 4} substrates following thermal treatment is reported. Associated with the formation of the bilayer was the onset of an abnormal epitaxial growth of the substrate under the nanoparticle. According to the redistribution of atoms and the changes of their electronic structure probed across the interface by a transmission electron microscopy, we suggest two possible atomic models of the interfacial bilayer.

  17. Surface-enhanced infrared spectroscopic studies of the catalytic behavior of silver nanoparticles on a germanium substrate.

    PubMed

    Liou, Yen-Chen Maggie; Yang, Jyisy; Fasasi, Ayuba; Griffiths, Peter R

    2011-05-01

    The catalytic activity of silver nanoparticles (AgNPs) on a germanium substrate is reported. Para-nitrothiophenol (pNTP) that had been adsorbed on this substrate is converted to p-aminothiophenol (pATP) under very mild reaction conditions, such as simply soaking in water. The AgNPs may be formed either by physical vapor deposition or by electroless deposition from a solution of silver nitrate. Analogous reactions were not observed on copper nanoparticles on germanium or AgNPs on silicon or zinc selenide even though very slow conversion of pNTP to pATP was observed with Au nanoparticles (AuNPs) on Ge under controlled reaction conditions. The effects of factors that could influence the catalytic reaction were examined; these included the particle size of the AgNPs, reaction temperature, concentration and chemical nature of other ions present in the solution, the pH of the water, and the nature of the substrate. The reaction rate was approximately independent of the particle size for AgNPs between 50 and 150 nm in diameter. Increasing the temperature accelerates the reaction significantly; at temperatures above 40 °C, the adsorbed pNTP is completely converted by water within five minutes. Not surprisingly, the reaction rate was increased as the pH of the solution was decreased, as the reduction of each nitro group to an amino group requires six protons. The presence of Br(-) and I(-) ions accelerated the reaction to the point that even at 4 °C, the conversion of the nitro group was still observable, while solutions containing chloride ions had to be heated to 40 °C before their effect became apparent. Apparently, Br(-) and I(-) ions remove the oxide layer from the surface of the germanium substrate, facilitating transfer of electrons from the germanium to the nitro group of the pNTP.

  18. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection.

    PubMed

    Kosović, Marin; Balarin, Maja; Ivanda, Mile; Đerek, Vedran; Marciuš, Marijan; Ristić, Mira; Gamulin, Ozren

    2015-12-01

    Microporous and macro-mesoporous silicon templates for surface-enhanced Raman scattering (SERS) substrates were produced by anodization of low doped p-type silicon wafers. By immersion plating in AgNO3, the templates were covered with silver metallic film consisting of different silver nanostructures. Scanning electron microscopy (SEM) micrographs of these SERS substrates showed diverse morphology with significant difference in an average size and size distribution of silver nanoparticles. Ultraviolet-visible-near-infrared (UV-Vis-NIR) reflection spectroscopy showed plasmonic absorption at 398 and 469 nm, which is in accordance with the SEM findings. The activity of the SERS substrates was tested using rhodamine 6G (R6G) dye molecules and 514.5 nm laser excitation. Contrary to the microporous silicon template, the SERS substrate prepared from macro-mesoporous silicon template showed significantly broader size distribution of irregular silver nanoparticles as well as localized surface plasmon resonance closer to excitation laser wavelength. Such silver morphology has high SERS sensitivity that enables ultralow concentration detection of R6G dye molecules up to 10(-15) M. To our knowledge, this is the lowest concentration detected of R6G dye molecules on porous silicon-based SERS substrates, which might even indicate possible single molecule detection.

  19. Plasmonic properties of gold nanoparticles on silicon substrates: Understanding Fano-like spectra observed in reflection

    NASA Astrophysics Data System (ADS)

    Bossard-Giannesini, Léo; Cruguel, Hervé; Lacaze, Emmanuelle; Pluchery, Olivier

    2016-09-01

    Gold nanoparticles (AuNPs) are known for their localized surface plasmon resonance (LSPR) that can be measured with UV-visible spectroscopy. AuNPs are often deposited on silicon substrates for various applications, and the LSPR is measured in reflection. In this case, optical spectra are measured by surface differential reflectance spectroscopy (SDRS) and the absorbance exhibits a negative peak. This article studies both experimentally and theoretically on the single layers of 16 nm diameter spherical gold nanoparticles (AuNPs) grafted on silicon. The morphology and surface density of AuNPs were investigated by atomic force microscopy (AFM). The plasmon response in transmission on the glass substrate and in reflection on the silicon substrate is described by an analytical model based on the Fresnel equations and the Maxwell-Garnett effective medium theory (FMG). The FMG model shows a strong dependence to the incidence angle of the light. At low incident angles, the peak appears negatively with a shallow intensity, and at angles above 30°, the usual positive shape of the plasmon is retrieved. The relevance of the FMG model is compared to the Mie theory within the dipolar approximation. We conclude that no Fano effect is responsible for this derivative shape. An easy-to-use formula is derived that agrees with our experimental data.

  20. Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Guo, Lei; Zhang, Chang Xing; Deng, Li; Zhang, Guo Xin; Xu, Hai Jun; Sun, Xiao Ming

    2014-06-01

    A green, low-cost and highly efficient surface-enhanced Raman scattering (SERS) substrate was achieved by a chemical deposition of silver nanoparticles on a cicada wing, which has the large-scale nanosized protrusions on its surface. Employing the already-formed Ag/cicada wing as substrate for SERS detection, the detection limit for rhodamine 6G could reach 10-7M, the Raman enhancement factor of the substrate was as large as 106 and the relative standard deviation remains lower than 7%. The three-dimensional finite-difference time-domain simulation results showed that two types of inter-Ag-nanoparticle nanogaps in the formed geometry created a huge number of SERS "hot spots" where the electromagnetic field is substantially amplified and contributes to the higher SERS sensitivity. Meanwhile, the water contact angle of the SERS substrate is roughly 150°, which indicates the super-hydrophobic surface of the substrate. This feature may be conducive to the gathering of target molecules during the SERS detection, which in turn further improves the detection limit of target molecules. In order to improve the application of the substrate, thiram was used as the probe molecule, and the detection limit also reached 10-7 M. Meanwhile, the calibration of the Raman peak intensities of Rhodamine 6G and thiram allowed their quantitative detection. Therefore, the green and low-cost SERS substrates could be used for fast and quantitative detection of trace organic molecules. Our findings may contribute to the development of the green and low-cost SERS substrates and will allow the fast and quantitative detection of trace organic molecules.

  1. Enhanced transparency, mechanical durability, and antibacterial activity of zinc nanoparticles on glass substrate

    PubMed Central

    Choi, Hyung-Jin; Choi, Jin-Seok; Park, Byeong-Ju; Eom, Ji-Ho; Heo, So-Young; Jung, Min-Wook; An, Ki-Seok; Yoon, Soon-Gil

    2014-01-01

    Homogeneously distributed zinc nanoparticles (NPs) on the glass substrate were investigated for the transmittance, mechanical durability, and antibacterial effect. The buffered Ti NPs between Zn NPs and glass substrate were studied for an enhancement of the transmittance and mechanical endurance. The Ti NPs buffered Zn NPs showed a high transmittance of approximately 91.5% (at a wavelength of 550 nm) and a strong antibacterial activity for Staphylococcus aureus and Escherichia coli bacteria. The buffered Ti NPs are attractive for an excellent mechanical endurance of the Zn NPs. The Zn NPs did not require the protection layer to prevent the degradation of the performance for both the antibacterial effect and the transmittance. PMID:25183360

  2. Enhanced chemiluminescence-based detection on gold substrate after electrografting of diazonium precursor-coated gold nanoparticles.

    PubMed

    Houmed Adabo, Ali; Zeggari, Rabah; Mohamed Saïd, Nasser; Bazzi, Rana; Elie-Caille, Céline; Marquette, Christophe; Martini, Matteo; Tillement, Olivier; Perriat, Pascal; Chaix, Carole; Boireau, Wilfrid; Roux, Stéphane

    2016-04-01

    Since it was demonstrated that nanostructured surfaces are more efficient for the detection based on the specific capture of analytes, there is a real need to develop strategies for grafting nanoparticles onto flat surfaces. Among the different routes for the functionalization of a surface, the reduction of diazonium salts appears very attractive for the covalent immobilization of nanoparticles because this method does not require a pre-treatment of the surface. For achieving this goal, gold nanoparticles coated by precursor of diazonium salts were synthesized by reduction of gold salt in presence of mercaptoaniline. These mercaptoaniline-coated gold nanoparticles (Au@MA) were successfully immobilized onto various conducting substrates (indium tin oxide (ITO), glassy carbon (GC) and gold electrodes with flat terraces) after addition of sodium nitrite at fixed potential. When applied onto the gold electrodes, such a grafting strategy led to an obvious enhancement of the luminescence of luminol used for the biodetection. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.

    PubMed

    Wang, Chaoguang; Wu, Xuezhong; Dong, Peitao; Chen, Jian; Xiao, Rui

    2016-12-15

    Paraquat (PQ) pollutions are ultra-toxic to human beings and hard to be decomposed in the environment, thus requiring an on-site detection strategy. Herein, we developed a robust and rapid PQ sensing strategy based on the surface-enhanced Raman scattering (SERS) technique. A hybrid SERS substrate was prepared by grafting the Au@Ag core-shell nanoparticles (NPs) on the Au film over slightly etched nanoparticles (Au FOSEN). Hotspots were engineered at the junctions as indicated by the finite difference time domain calculation. SERS performance of the hybrid substrate was explored using p-ATP as the Raman probe. The hybrid substrate gives higher enhancement factor comparing to either the Au FOSEN substrate or the Au@Ag core-shell NPs, and exhibits excellent reproducibility, homogeneity and stability. The proposed SERS substrates were prepared in batches for the practical PQ sensing. The total analysis time for a single sample, including the pre-treatment and measurement, was less than 5min with a PQ detection limit of 10nM. Peak intensities of the SERS signal were plotted as a function of the PQ concentrations to calibrate the sensitivity by fitting the Hill's equation. The plotted calibration curve showed a good log-log linearity with the coefficient of determination of 0.98. The selectivity of the sensing proposal was based on the "finger print" Raman spectra of the analyte. The proposed substrate exhibited good recovery when it applied to real water samples, including lab tap water, bottled water, and commercially obtained apple juice and grape juice. This SERS-based PQ detection method is simple, rapid, sensitive and selective, which shows great potential in pesticide residue and additives abuse monitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Modeling of the rough spherical nanoparticles manipulation on a substrate based on the AFM nanorobot

    NASA Astrophysics Data System (ADS)

    Zakeri, M.; Faraji, J.

    2014-12-01

    In this paper, dynamic behavior of the rough spherical micro/nanoparticles during pulling/pushing on the flat substrate has been investigated and analyzed. For this purpose, at first, two hexagonal roughness models (George and Cooper) were studied and then evaluations for adhesion force were determined for rough particle manipulation on flat substrate. These two models were then changed by using of the Rabinovich theory. Evaluations were determined for contact adhesion force between rough particle and flat substrate; depth of penetration evaluations were determined by the Johnson-Kendall-Roberts contact mechanic theory and the Schwartz method and according to Cooper and George roughness models. Then, the novel contact theory was used to determine a dynamic model for rough micro/nanoparticle manipulation on flat substrate. Finally, simulation of particle dynamic behavior was implemented during pushing of rough spherical gold particles with radii of 50, 150, 400, 600, and 1,000 nm. Results derived from simulations of particles with several rates of roughness on flat substrate indicated that compared to results for flat particles, inherent roughness on particles might reduce the rate of critical force needed for sliding and rolling given particles. Given a fixed radius for roughness value and increased roughness height, evaluations for sliding and rolling critical forces showed greater reduction. Alternately, the rate of critical force was shown to reduce relative to an increased roughness radius. With respect to both models, based on the George roughness model, the predicted rate of adhesion force was greater than that determined in the Cooper roughness model, and as a result, the predicted rate of critical force based on the George roughness model was closer to the critical force value of flat particle.

  5. Benthic substrate classification map: Gulf Islands National Seashore

    USGS Publications Warehouse

    Lavoie, Dawn; Flocks, James; Twichell, Dave; Rose, Kate

    2013-01-01

    The 2005 hurricane season was devastating for the Mississippi Gulf Coast. Hurricane Katrina caused significant degradation of the barrier islands that compose the Gulf Islands National Seashore (GUIS). Because of the ability of coastal barrier islands to help mitigate hurricane damage to the mainland, restoring these habitats prior to the onset of future storms will help protect the islands themselves and the surrounding habitats. During Hurricane Katrina, coastal barrier islands reduced storm surge by approximately 10 percent and moderated wave heights (Wamsley and others, 2009). Islands protected the mainland by preventing ocean waves from maintaining their size as they approached the mainland. In addition to storm protection, it is advantageous to restore these islands to preserve the cultural heritage present there (for example, Fort Massachusetts) and because of the influence that these islands have on marine ecology. For example, these islands help maintain a salinity regime favorable to oysters in the Mississippi Sound and provide critical habitats for many migratory birds and endangered species such as sea turtles (Chelonia mydas, Caretta caretta, and Dermochelys coriacea), Gulf sturgeon (Acipenser oxyrinchus desotoi), and piping plovers (Charadrius melodus) (U.S. Army Corps of Engineers, 2009a). As land manager for the GUIS, the National Park Service (NPS) has been working with the State of Mississippi and the Mobile District of the U.S. Army Corps of Engineers to provide a set of recommendations to the Mississippi Coastal Improvements Program (MsCIP) that will guide restoration planning. The final set of recommendations includes directly renourishing both West Ship Island (to protect Fort Massachusetts) and East Ship Island (to restore the French Warehouse archaeological site); filling Camille Cut to recreate a continuous Ship Island; and restoring natural regional sediment transport processes by placing sand in the littoral zone just east of Petit Bois

  6. Controlling the size of gold nanoparticles grown on indium tin oxide substrates prepared by seed mediated growth method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fauzia, Vivi, E-mail: vivi@sci.ui.ac.id; Pratiwi, Nur Intan; Adela, Faiz

    One of the unique optical properties of gold nanoparticles is the enhanced absorption and scattering light around metal nanoparticles commonly called the Localized Surface Plasmon Resonance (LSPR) effect of gold nanoparticles. This property is determined by the shape and size of gold nanoparticles. In this work, we observed the role of three materials used in synthesis process on the morphology and the LSPR effect of gold nanoparticles. The gold nanoparticles were directly grown on indium tin oxide (ITO) coated glass substrates using the seed mediated growth method with three different concentrations of trisodium citrate (Na{sub 3}C{sub 6}H{sub 5}O{sub 7}), C{submore » 16}TAB and ascorbic acid (C{sub 6}H{sub 8}O{sub 6}). Based on the FESEM image and optical absorption spectrum of gold nanoparticles, it was found that the higher concentration of those materials has decreased the size of gold nananoparticles and shifted the LSPR peaks to lower wavelength.« less

  7. Effect of Organic Substrates on the Photocatalytic Reduction of Cr(VI) by Porous Hollow Ga2O3 Nanoparticles

    PubMed Central

    Liu, Jin; Gan, Huihui; Wu, Hongzhang; Zhang, Xinlei; Zhang, Jun; Li, Lili; Wang, Zhenling

    2018-01-01

    Porous hollow Ga2O3 nanoparticles were successfully synthesized by a hydrolysis method followed by calcination. The prepared samples were characterized by field emission scanning electron microscope, transmission electron microscope, thermogravimetry and differential scanning calorimetry, UV-vis diffuse reflectance spectra and Raman spectrum. The porous structure of Ga2O3 nanoparticles can enhance the light harvesting efficiency, and provide lots of channels for the diffusion of Cr(VI) and Cr(III). Photocatalytic reduction of Cr(VI), with different initial pH and degradation of several organic substrates by porous hollow Ga2O3 nanoparticles in single system and binary system, were investigated in detail. The reduction rate of Cr(VI) in the binary pollutant system is markedly faster than that in the single Cr(VI) system, because Cr(VI) mainly acts as photogenerated electron acceptor. In addition, the type and concentration of organic substrates have an important role in the photocatalytic reduction of Cr(VI). PMID:29690548

  8. Method for forming a nano-textured substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, Sangmoo; Hu, Liangbing; Cui, Yi

    A method for forming a nano-textured surface on a substrate is disclosed. An illustrative embodiment of the present invention comprises dispensing of a nanoparticle ink of nanoparticles and solvent onto the surface of a substrate, distributing the ink to form substantially uniform, liquid nascent layer of the ink, and enabling the solvent to evaporate from the nanoparticle ink thereby inducing the nanoparticles to assemble into an texture layer. Methods in accordance with the present invention enable rapid formation of large-area substrates having a nano-textured surface. Embodiments of the present invention are well suited for texturing substrates using high-speed, large scale,more » roll-to-roll coating equipment, such as that used in office product, film coating, and flexible packaging applications. Further, embodiments of the present invention are well suited for use with rigid or flexible substrates.« less

  9. Substrate- and plant-mediated removal of citrate-coated silver nanoparticles in constructed wetlands.

    PubMed

    Auvinen, Hannele; Sepúlveda, Viviana Vásquez; Rousseau, Diederik P L; Du Laing, Gijs

    2016-11-01

    The growing production and commercial application of engineered nanoparticles (ENPs), such as Ag, CeO 2 , and TiO 2 nanoparticles, induce a risk to the environment as ENPs are released during their use. The comprehensive assessment of the environmental risk that the ENPs pose involves understanding their fate and behavior in wastewater treatment systems. Therefore, in this study, we investigate the effect of plants and different substrates on the retention and distribution of citrate-coated silver nanoparticles (Ag-NPs) in batch experimental setups simulating constructed wetlands (CWs). Sand, zeolite, and biofilm-coated gravel induce efficient removal (85, 55, and 67 %, respectively) of Ag from the water phase indicating that citrate-coated Ag-NPs are efficiently retained in CWs. Plants are a minor factor in retaining Ag as a large fraction of the recovered Ag remains in the water phase (0.42-0.58). Most Ag associated with the plant tissues is attached to or taken up by the roots, and only negligible amounts (maximum 3 %) of Ag are translocated to the leaves under the applied experimental conditions.

  10. Porous Polyurethane Foam for Use as a Particle Collection Substrate in a Nanoparticle Respiratory Deposition Sampler

    PubMed Central

    Mines, Levi W. D.; Park, Jae Hong; Mudunkotuwa, Imali A.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Porous polyurethane foam was evaluated to replace the eight nylon meshes used as a substrate to collect nanoparticles in the Nanoparticle Respiratory Deposition (NRD) sampler. Cylindrical (25-mm diameter by 40-mm deep) foam with 110 pores per inch was housed in a 25-mm-diameter conductive polypropylene cassette cowl compatible with the NRD sampler. Pristine foam and nylon meshes were evaluated for metals content via elemental analysis. The size-selective collection efficiency of the foam was evaluated using salt (NaCl) and metal fume aerosols in independent tests. Collection efficiencies were compared to the nanoparticulate matter (NPM) criterion and a semi-empirical model for foam. Changes in collection efficiency and pressure drop of the foam and nylon meshes were measured after loading with metal fume particles as measures of substrate performance. Substantially less titanium was found in the foam (0.173 μg sampler−1) compared to the nylon mesh (125 μg sampler−1), improving the detection capabilities of the NRD sampler for titanium dioxide particles. The foam collection efficiency was similar to that of the nylon meshes and the NPM criterion (R2 = 0.98, for NaCl), although the semi-empirical model underestimated the experimental efficiency (R2 = 0.38). The pressure drop across the foam was 8% that of the nylon meshes when pristine and changed minimally with metal fume loading (~ 19 mg). In contrast, the pores of the nylon meshes clogged after loading with ~ 1 mg metal fume. These results indicate that foam is a suitable substrate to collect metal (except for cadmium) nanoparticles in the NRD sampler. PMID:28867869

  11. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    PubMed

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Effect of platinum nanoparticles on morphological parameters of spring wheat seedlings in a substrate-plant system

    NASA Astrophysics Data System (ADS)

    Astafurova, T.; Zotikova, A.; Morgalev, Yu; Verkhoturova, G.; Postovalova, V.; Kulizhskiy, S.; Mikhailova, S.

    2015-11-01

    When wheat is cultivated in the media contaminated with platinum nanoparticles, the change in the morphological and physiological indexes of wheat seedlings depends on the physico-chemical parameters of the germination substrate. The changes become less pronounced with the decreasing bioaccessability of the nanomaterial in the following order: water suspension - luvisols - phaeozems. Contamination with nanoparticles affects the height parameters and activates the mechanisms protecting the plant from stress. When using wheat seedlings as test organisms for biotesting the environmental safety of NPs, it is advisable to use the following parameters: weight of roots, weight of aerial part, leaf area, and flavonoid content.

  13. Impacts of zeolite nanoparticles on substrate properties of thin film nanocomposite membranes for engineered osmosis

    NASA Astrophysics Data System (ADS)

    Salehi, Tahereh Mombeini; Peyravi, Majid; Jahanshahi, Mohsen; Lau, Woei-Jye; Rad, Ali Shokuhi

    2018-04-01

    In this work, microporous substrates modified by zeolite nanoparticles were prepared and used for composite membrane making with the aim of reducing internal concentration polarization (ICP) effect of membranes during engineered osmosis applications. Nanocomposite substrates were fabricated via phase inversion technique by embedding nanostructured zeolite (clinoptilolite) in the range of 0-0.6 wt% into matrix of polyethersulfone (PES) substrate. Of all the substrates prepared, the PES0.4 substrate (with 0.4 wt% zeolite) exhibited unique characteristics, i.e., increased surface porosity, lower structural parameter ( S) (from 0.78 to 0.48 mm), and enhanced water flux. The thin film nanocomposite (TFN) membrane made of this optimized substrate was also reported to exhibit higher water flux compared to the control composite membrane during forward osmosis (FO) and pressure-retarded osmosis (PRO) test, without compromising reverse solute flux. The water flux of such TFN membrane was 43% higher than the control TFC membrane (1.93 L/m2 h bar) with salt rejection recorded at 94.7%. An increment in water flux is ascribed to the reduction in structural parameter, leading to reduced ICP effect.

  14. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings

    PubMed Central

    2014-01-01

    Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates. PMID:24959110

  15. Naturally inspired SERS substrates fabricated by photocatalytically depositing silver nanoparticles on cicada wings

    NASA Astrophysics Data System (ADS)

    Tanahashi, Ichiro; Harada, Yoshiyuki

    2014-06-01

    Densely stacked Ag nanoparticles with an average diameter of 199 nm were effectively deposited on TiO2-coated cicada wings (Ag/TiO2-coated wings) from a water-ethanol solution of AgNO3 using ultraviolet light irradiation at room temperature. It was seen that the surfaces of bare cicada wings contained nanopillar array structures. In the optical absorption spectra of the Ag/TiO2-coated wings, the absorption peak due to the localized surface plasmon resonance (LSPR) of Ag nanoparticles was observed at 440 nm. Strong Surface-enhanced Raman scattering (SERS) signals of Rhodamine 6G adsorbed on the Ag/TiO2-coated wings were clearly observed using the 514.5-nm line of an Ar+ laser. The Ag/TiO2-coated wings can be a promising candidate for naturally inspired SERS substrates.

  16. Inverter circuits on freestanding flexible substrate using ZnO nanoparticles for cost-efficient electronics

    NASA Astrophysics Data System (ADS)

    Vidor, Fábio F.; Meyers, Thorsten; Müller, Kathrin; Wirth, Gilson I.; Hilleringmann, Ulrich

    2017-11-01

    Driven by the Internet of Things (IoT), flexible and transparent smart systems have been intensively researched by the scientific community and by several companies. This technology is already available for consumers in a wide range of innovative products, e.g., flexible displays, radio-frequency identification tags and wearable electronic skins which, for instance, collect and analyze data for medical applications. For these systems, thin-film transistors (TFTs) are the key elements responsible for the driving currents. Solution-based materials such as nanoparticle dispersions avail the fabrication on large-area substrates with high throughput processes. In this study, we discuss the integration of ZnO nanoparticle thin-film transistors and inverter circuits on freestanding polymeric substrates enclosing the main issues concerning the transfer of the integration process from a rigid substrate to a flexible one. The TFTs depict VON between -0.2 and 1 V, ION/IOFF > 104 and field-effect mobility >0.5 cm2 V-1 s-1. Additionally, in order to enhance the transistors and inverters performance, an adaptation on the device configuration, from an inverted coplanar to an inverted staggered setup, was conducted and analyzed. By employing the inverted staggered setup a considerable increase in the contact quality between the semiconductor and the drain and source electrodes was observed. As the integrated devices depict electrical characteristics which enable the fabrication of electronic circuits for the low-cost sector, inverters were fabricated and characterized, evaluating the circuit's gain as function of the applied supply voltage and circuit's geometric ratio.

  17. Silica nanoparticles with a substrate switchable luminescence

    NASA Astrophysics Data System (ADS)

    Bochkova, O. D.; Mustafina, A. R.; Fedorenko, S. V.; Konovalov, A. I.

    2011-04-01

    Silica nanoparticles with visible (Tb and Ru doped), near IR (Yb doped) and dual visible-near IR luminescence (Ru-Yb doped) were obtained by reverse w/o microemulsion procedure. Plenty of luminescent complexes (from 4900 to 10000) encapsulated into each nanoparticle ensures the intensive luminescence of nanoparticles and their applicability as biomarkers. The silica surface decoration by definite anchor groups is the required step for the gaining to these nanoparticles marking and sensing functions. Thus covalent and non-covalent surface modification of these nanoparticles was developed to provide the binding with biotargets and sensing of anions. The dicationic surfactant coating of negatively charged Tb(III)-TCAS doped silica nanoparticles was chosen as the basis for the anion responsible system. The reversible insertion of the quenching anions (namely phenol red) into the surfactant based layer at the surface of luminescent nanoparticles switches off the Tb-centered luminescence. In turn the reversible reestablishment of the luminescence results from the competitive insertion of the non-quenching anions into the surfactant layer at the silica/water interface. The hydrophobic anions exemplified by dodecylsulfates versus hydrophilic ones (hydrophosphates) are preferable in the competition with phenol red anions.

  18. Tensile characteristics of metal nanoparticle films on flexible polymer substrates for printed electronics applications.

    PubMed

    Kim, Sanghyeok; Won, Sejeong; Sim, Gi-Dong; Park, Inkyu; Lee, Soon-Bok

    2013-03-01

    Metal nanoparticle solutions are widely used for the fabrication of printed electronic devices. The mechanical properties of the solution-processed metal nanoparticle thin films are very important for the robust and reliable operation of printed electronic devices. In this paper, we report the tensile characteristics of silver nanoparticle (Ag NP) thin films on flexible polymer substrates by observing the microstructures and measuring the electrical resistance under tensile strain. The effects of the annealing temperatures and periods of Ag NP thin films on their failure strains are explained with a microstructural investigation. The maximum failure strain for Ag NP thin film was 6.6% after initial sintering at 150 °C for 30 min. Thermal annealing at higher temperatures for longer periods resulted in a reduction of the maximum failure strain, presumably due to higher porosity and larger pore size. We also found that solution-processed Ag NP thin films have lower failure strains than those of electron beam evaporated Ag thin films due to their highly porous film morphologies.

  19. Oxidase-functionalized Fe(3)O(4) nanoparticles for fluorescence sensing of specific substrate.

    PubMed

    Liu, Cheng-Hao; Tseng, Wei-Lung

    2011-10-03

    This study reports the development of a reusable, single-step system for the detection of specific substrates using oxidase-functionalized Fe(3)O(4) nanoparticles (NPs) as a bienzyme system and using amplex ultrared (AU) as a fluorogenic substrate. In the presence of H(2)O(2), the reaction pH between Fe(3)O(4) NPs and AU was similar to the reaction of oxidase and the substrate. The catalytic activity of Fe(3)O(4) NPs with AU was nearly unchanged following modification with poly(diallyldimethylammonium chloride) (PDDA). Based on these features, we prepared a composite of PDDA-modified Fe(3)O(4) NPs and oxidase for the quantification of specific substrates through the H(2)O(2)-mediated oxidation of AU. By monitoring fluorescence intensity at 587 nm of oxidized AU, the minimum detectable concentrations of glucose, galactose, and choline were found to be 3, 2, and 20 μM using glucose oxidase-Fe(3)O(4), galactose oxidase-Fe(3)O(4), and choline oxidase-Fe(3)O(4) composites, respectively. The identification of glucose in blood was selected as the model to validate the applicability of this proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Surface modification of titanium substrates with silver nanoparticles embedded sulfhydrylated chitosan/gelatin polyelectrolyte multilayer films for antibacterial application.

    PubMed

    Li, Wen; Xu, Dawei; Hu, Yan; Cai, Kaiyong; Lin, Yingcheng

    2014-06-01

    To develop Ti implants with potent antibacterial activity, a novel "sandwich-type" structure of sulfhydrylated chitosan (Chi-SH)/gelatin (Gel) polyelectrolyte multilayer films embedding silver (Ag) nanoparticles was coated onto titanium substrate using a spin-assisted layer-by-layer assembly technique. Ag ions would be enriched in the polyelectrolyte multilayer films via the specific interactions between Ag ions and -HS groups in Chi-HS, thus leading to the formation of Ag nanoparticles in situ by photo-catalytic reaction (ultraviolet irradiation). Contact angle measurement and field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscopy were employed to monitor the construction of Ag-containing multilayer on titanium surface, respectively. The functional multilayered films on titanium substrate [Ti/PEI/(Gel/Chi-SH/Ag) n /Gel] could efficiently inhibit the growth and activity of Bacillus subtitles and Escherichia coli onto titanium surface. Moreover, studies in vitro confirmed that Ti substrates coating with functional multilayer films remained the biological functions of osteoblasts, which was reflected by cell morphology, cell viability and ALP activity measurements. This study provides a simple, versatile and generalized methodology to design functional titanium implants with good cyto-compatibility and antibacterial activity for potential clinical applications.

  1. Barrier Island Sensitivity to Sea-Level Rise: Insights from Numerical Model Experiments, North Carolina Outer Banks and Chandeleur Islands, LA U.S.A

    NASA Astrophysics Data System (ADS)

    Moore, L. J.; List, J. H.; Williams, S.; Patsch, K.

    2009-12-01

    As dynamic and low-lying coastal landforms, barrier islands are especially vulnerable to sea level rise, changes in sediment supply and coastal storms. Changes in these factors may ultimately result in new conditions that are sufficiently different from present to cause a shift in equilibrium state from landward-migrating to submerging, i.e., a threshold crossing. Because the loss of barrier islands would be extremely disruptive of human activities, an understanding of how barrier islands evolve under conditions of rising sea level is vital to the development of wise coastal management practices. To advance understanding of barrier island response to changing conditions, we apply the morphological-behavior model GEOMBEST (GEOmorphic Model of Barrier and EStuarine Translations; Stolper et al., 2005, Moore et al., 2007 and Moore et al., accepted pending minor revisions) to field sites in the North Carolina Outer Banks and the Chandeleur Islands of southeastern Louisiana. Sensitivity analyses reveal that, in general, substrate sand proportion, substrate slope, sea-level rise rate and sediment-supply rate are the most important factors in determining barrier island response to sea-level rise while shoreface erosion rates, substrate erodibility, and shoreface depth are often less important. More specifically, substrate composition appears to be the most important factor in muddy coastal environments, such as the Chandeleur Islands, where model results suggest that a threshold crossing may occur on the order of decades to a century from present, while the other three factors appear to be most important in North Carolina and other similar environments. When substrate sand proportions are low and/or sediment-loss rates are high, shoreface erosion rate and substrate erodibility may become important in limiting the rate at which sand can be liberated from the substrate, thereby increasing barrier island vulnerability to threshold crossing. Barrier system history (e

  2. Fabrication of novel compound SERS substrates composed of silver nanoparticles and porous gold nanoclusters: A study on enrichment detection of urea

    NASA Astrophysics Data System (ADS)

    Li, Yali; Li, Qianwen; Sun, Chengbin; Jin, Sila; Park, Yeonju; Zhou, Tieli; Wang, Xu; Zhao, Bing; Ruan, Weidong; Jung, Young Mee

    2018-01-01

    A new type of surface-enhanced Raman scattering (SERS) substrate was fabricated through the layer-by-layer self-assembly of silver nanoparticles (AgNPs, av. 45 nm in diameter) and porous gold nanoclusters/nanoparticles (AuNPs, av. 143 nm in diameter). The development of the porosity of the AuNPs was investigated, and successful SERS applications of the porous AuNPs were also examined. As compared with AgNP films, the enhancement factor of Ag-Au compound substrates is increased 6 times at the concentration of 10-6 M. This additional enhancement contributes to the trace-amount-detection of target molecules enormously. The contribution is generated through the increase of the usable surface area arising from the nanoscale pores distributed three-dimensionally in the porous AuNPs, which enrich the adsorption sites and hot spots for the adsorption of probe molecules, making the developed nanofilms highly sensitive SERS substrates. The substrates were used for the detection of a physiological metabolite of urea molecules. The results reached to a very low concentration of 1 mM and exhibited good quantitative character over the physiological concentration range (1 ∼ 20 mM) under mimicking biophysical conditions. These results show that the prepared substrate has great potential in the ultrasensitive SERS-based detection and in SERS-based biosensors.

  3. Highly efficient SERS substrate for direct detection of explosive TNT using popcorn-shaped gold nanoparticle-functionalized SWCNT hybrid.

    PubMed

    Demeritte, Teresa; Kanchanapally, Rajashekhar; Fan, Zhen; Singh, Anant Kumar; Senapati, Dulal; Dubey, Madan; Zakar, Eugene; Ray, Paresh Chandra

    2012-11-07

    This paper reports for the first time the development of a large-scale SERS substrate from a popcorn-shaped gold nanoparticle-functionalized single walled carbon nanotubes hybrid thin film for the selective and highly sensitive detection of explosive TNT material at a 100 femtomolar (fM) level.

  4. Electrospun Nanofibers Made of Silver Nanoparticles, Cellulose Nanocrystals, and Polyacrylonitrile as Substrates for Surface-Enhanced Raman Scattering

    PubMed Central

    Ren, Suxia; Dong, Lili; Zhang, Xiuqiang; Lei, Tingzhou; Ehrenhauser, Franz; Song, Kunlin; Li, Meichun; Sun, Xiuxuan; Wu, Qinglin

    2017-01-01

    Nanofibers with excellent activities in surface-enhanced Raman scattering (SERS) were developed through electrospinning precursor suspensions consisting of polyacrylonitrile (PAN), silver nanoparticles (AgNPs), silicon nanoparticles (SiNPs), and cellulose nanocrystals (CNCs). Rheology of the precursor suspensions, and morphology, thermal properties, chemical structures, and SERS sensitivity of the nanofibers were investigated. The electrospun nanofibers showed uniform diameters with a smooth surface. Hydrofluoric (HF) acid treatment of the PAN/CNC/Ag composite nanofibers (defined as p-PAN/CNC/Ag) led to rougher fiber surfaces with certain pores and increased mean fiber diameters. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results confirmed the existence of AgNPs that were formed during heat and HF acid treatment processes. In addition, thermal stability of the electrospun nanofibers increased due to the incorporation of CNCs and AgNPs. The p-PAN/CNC/Ag nanofibers were used as a SERS substrate to detect p-aminothiophenol (p-ATP) probe molecule. The results show that this substrate exhibited high sensitivity for the p-ATP probe detection. PMID:28772428

  5. Mechanics of hard films on soft substrates

    NASA Astrophysics Data System (ADS)

    Lu, Nanshu

    2009-12-01

    strain they are subject to. Instead of using blanket films that fail at strains less than i%, we have patterned ceramic films into a lattice of periodic, isolated islands. Failure modes such as channel cracking, debonding, and wrinkling have been identified. Island behaviors are controlled by factors such as island size, thickness, and elastic mismatch with the substrate. A very soft interlayer between the islands and the underlying polyimide substrate reduces strains in the islands by orders of magnitude. Using this approach, substrates with arrays of 200 x 200 mum2 large SiNx islands were stretched beyond 20% without cracking or debonding the islands. In summary, highly stretchable thin metal films and ceramic island arrays supported by polymer substrates have been achieved, along with mechanistic understandings of their deformation and failure mechanisms.

  6. Au nanostructure arrays for plasmonic applications: annealed island films versus nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Lopatynskyi, Andrii M.; Lytvyn, Vitalii K.; Nazarenko, Volodymyr I.; Guo, L. Jay; Lucas, Brandon D.; Chegel, Volodymyr I.

    2015-03-01

    This paper attempts to compare the main features of random and highly ordered gold nanostructure arrays (NSA) prepared by thermally annealed island film and nanoimprint lithography (NIL) techniques, respectively. Each substrate possesses different morphology in terms of plasmonic enhancement. Both methods allow such important features as spectral tuning of plasmon resonance position depending on size and shape of nanostructures; however, the time and cost is quite different. The respective comparison was performed experimentally and theoretically for a number of samples with different geometrical parameters. Spectral characteristics of fabricated NSA exhibited an expressed plasmon peak in the range from 576 to 809 nm for thermally annealed samples and from 606 to 783 nm for samples prepared by NIL. Modelling of the optical response for nanostructures with typical shapes associated with these techniques (parallelepiped for NIL and semi-ellipsoid for annealed island films) was performed using finite-difference time-domain calculations. Mathematical simulations have indicated the dependence of electric field enhancement on the shape and size of the nanoparticles. As an important point, the distribution of electric field at so-called `hot spots' was considered. Parallelepiped-shaped nanoparticles were shown to yield maximal enhancement values by an order of magnitude greater than their semi-ellipsoid-shaped counterparts; however, both nanoparticle shapes have demonstrated comparable effective electrical field enhancement values. Optimized Au nanostructures with equivalent diameters ranging from 85 to 143 nm and height equal to 35 nm were obtained for both techniques, resulting in the largest electrical field enhancement. The application of island film thermal annealing method for nanochips fabrication can be considered as a possible cost-effective platform for various surface-enhanced spectroscopies; while the NIL-fabricated NSA looks like more effective for sensing of

  7. Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception Island, Antarctica

    PubMed Central

    2013-01-01

    Background The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach, for production of nanoparticles due to its low energy requirement, environmental compatibility, reduced costs of manufacture, scalability, and nanoparticle stabilization compared with the chemical synthesis. Results The production of gold nanoparticles by the thermophilic bacterium Geobacillus sp. strain ID17 is reported in this study. Cells exposed to Au3+ turned from colourless into an intense purple colour. This change of colour indicates the accumulation of intracellular gold nanoparticles. Elemental analysis of particles composition was verified using TEM and EDX analysis. The intracellular localization and particles size were verified by TEM showing two different types of particles of predominant quasi-hexagonal shape with size ranging from 5–50 nm. The mayority of them were between 10‒20 nm in size. FT-IR was utilized to characterize the chemical surface of gold nanoparticles. This assay supports the idea of a protein type of compound on the surface of biosynthesized gold nanoparticles. Reductase activity involved in the synthesis of gold nanoparticles has been previously reported to be present in others microorganisms. This reduction using NADH as substrate was tested in ID17. Crude extracts of the microorganism could catalyze the NADH-dependent Au3+ reduction. Conclusions Our results strongly suggest that the biosynthesis of gold nanoparticles by ID17 is mediated by enzymes and NADH as a cofactor for this biological transformation. PMID:23919572

  8. Magnetite nano-islands on silicon-carbide with graphene

    DOE PAGES

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron; ...

    2017-01-05

    X-ray magnetic circular dichroism (XMCD) measurements of iron nano-islands grown on graphene and covered with a Au film for passivation reveal that the oxidation through defects in the Au film spontaneously leads to the formation of magnetite nano-particles (i.e, Fe 3O 4). The Fe nano-islands (20 and 75 monolayers; MLs) are grown on epitaxial graphene formed by thermally annealing 6HSiC( 0001) and subsequently covered, in the growth chamber, with nominal 20 layers of Au. Our X-ray absorption spectroscopy and XMCD measurements at applied magnetic fields show that the thin film (20 ML) is totally converted to magnetite whereas the thickermore » lm (75 ML) exhibits properties of magnetite but also those of pure metallic iron. Temperature dependence of the XMCD signal (of both samples) shows a clear transition at T V ≈ 120 K consistent with the Verwey transition of bulk magnetite. These results have implications on the synthesis of magnetite nano-crystals and also on their regular arrangements on functional substrates such as graphene.« less

  9. Magnetite nano-islands on silicon-carbide with graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Nathaniel A.; Zhang, Qiang; Hupalo, Myron

    X-ray magnetic circular dichroism (XMCD) measurements of iron nano-islands grown on graphene and covered with a Au film for passivation reveal that the oxidation through defects in the Au film spontaneously leads to the formation of magnetite nano-particles (i.e, Fe 3O 4). The Fe nano-islands (20 and 75 monolayers; MLs) are grown on epitaxial graphene formed by thermally annealing 6HSiC( 0001) and subsequently covered, in the growth chamber, with nominal 20 layers of Au. Our X-ray absorption spectroscopy and XMCD measurements at applied magnetic fields show that the thin film (20 ML) is totally converted to magnetite whereas the thickermore » lm (75 ML) exhibits properties of magnetite but also those of pure metallic iron. Temperature dependence of the XMCD signal (of both samples) shows a clear transition at T V ≈ 120 K consistent with the Verwey transition of bulk magnetite. These results have implications on the synthesis of magnetite nano-crystals and also on their regular arrangements on functional substrates such as graphene.« less

  10. Melanoma-Targeted Chemothermotherapy and In Situ Peptide Immunotherapy through HSP Production by Using Melanogenesis Substrate, NPrCAP, and Magnetite Nanoparticles

    PubMed Central

    Jimbow, Kowichi; Ishii-Osai, Yasue; Ito, Shosuke; Tamura, Yasuaki; Ito, Akira; Yoneta, Akihiro; Kamiya, Takafumi; Yamashita, Toshiharu; Honda, Hiroyuki; Wakamatsu, Kazumasa; Murase, Katsutoshi; Nohara, Satoshi; Nakayama, Eiichi; Hasegawa, Takeo; Yamamoto, Itsuo; Kobayashi, Takeshi

    2013-01-01

    Exploitation of biological properties unique to cancer cells may provide a novel approach to overcome difficult challenges to the treatment of advanced melanoma. In order to develop melanoma-targeted chemothermoimmunotherapy, a melanogenesis substrate, N-propionyl-4-S-cysteaminylphenol (NPrCAP), sulfur-amine analogue of tyrosine, was conjugated with magnetite nanoparticles. NPrCAP was exploited from melanogenesis substrates, which are expected to be selectively incorporated into melanoma cells and produce highly reactive free radicals through reacting with tyrosinase, resulting in chemotherapeutic and immunotherapeutic effects by oxidative stress and apoptotic cell death. Magnetite nanoparticles were conjugated with NPrCAP to introduce thermotherapeutic and immunotherapeutic effects through nonapoptotic cell death and generation of heat shock protein (HSP) upon exposure to alternating magnetic field (AMF). During these therapeutic processes, NPrCAP was also expected to provide melanoma-targeted drug delivery system. PMID:23533767

  11. A highly sensitive biological detection substrate based on TiO2 nanowires supporting gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Zeng, Yuan; Tan, Hai-jun; Cheng, Xiu-Lan; Chen, Rui; Wang, Ying

    2011-12-01

    Surface enhanced Raman scattering (SERS) has attracted widespread concern in the field of bioassay because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the highly sensitive detection of molecules. Conventional SERS substrates are prepared by placing metal nanoparticles on a planar surface. Here we show a unique SERS substrate stacked by disordered TiO2 nanowires (TiO2-NWs) supportig gold nanocrystals. The structure can be easily fabricated by chemical synthesis at low cost. The COMSOL model simulation shows the designed SERS substrate is capable of output high Local Field Enhancement (LFE) in the Near Infrared region (NIR) that is the optimal wavelength in bio-detection because of both the unique coupling enhancement effect amony nearby Au nanocrystals on TiO2-NWs and the Suface Plasmon Resonance (SPR) effect of TiO2 -NWs. The as-prepared transparent and freestanding SERS substrate is capable of detecting extremely low concentration R6G molecular, showing much higher Raman signal because of the extremely large surface area and the uniqueTiO2-NWs self-assemblied by Au nanocrystals. These results provide a new approach to ultrasensitive bioassay device.

  12. Microwave sintering of Ag-nanoparticle thin films on a polyimide substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujii, S., E-mail: fujii.s.ap@m.titech.ac.jp; Department of Information and Communication System Engineering, National Institute of Technology, Okinawa College, Nago, Okinawa 905-2192; Kawamura, S.

    2015-12-15

    Ag-nanoparticle thin films on a polyimide substrate were subjected to microwave sintering by use of a single-mode waveguide applicator. A two-step sintering process was employed. First, at low conductivities of the film, the film sample was placed at the site of the maximum electric field and subjected to microwave irradiation. Second, when the conductivity of the film increased, the film sample was placed at the site of the maximum magnetic field and again subjected to microwave irradiation. The microwave sintering process was completed within 1.5 min, which is significantly lower than the time required for the oven heating process. Themore » resulting conductivity of the film, albeit only 30% of that of the bulk material, was seven times that of a film annealed at the same temperature in a furnace. Scanning electron microscopy images revealed that the nanoparticles underwent both grain necking and grain growth during microwave sintering. In addition, this sintering process was equivalent to the oven heating process performed at a 50 °C higher annealing temperature. An electromagnetic wave simulation and a heat transfer simulation of the microwave sintering process were performed to gain a thorough understanding of the process.« less

  13. Fast self-assembly of silver nanoparticle monolayer in hydrophobic environment and its application as SERS substrate

    NASA Astrophysics Data System (ADS)

    Leiterer, Christian; Zopf, David; Seise, Barbara; Jahn, Franka; Weber, Karina; Popp, Jürgen; Cialla-May, Dana; Fritzsche, Wolfgang

    2014-09-01

    We present a method which allows the straightforward wet-chemical synthesis of silver nanoparticles (AgNPs), hydrophobic coating assembling into monolayer, and their utilization as substrates for surface-enhanced Raman spectroscopy (SERS). In order to fabricate the SERS-active substrates, AgNPs were synthesized in water by chemical reduction of Ag+, coated with a hydrophobic shell (dodecanethiol), transferred to a non-polar solvent, and finally assembled through precipitation into a SERS-active self-assembled monolayer (SAM). Simple approaches for concentration and purification of the coated AgNPs are shown. The synthesized particles and SAMs were characterized by transmission electron microscopy, optical imaging, and spectroscopic measurements. This manuscript can be used as a do-it-yourself (DIY) tutorial which allows making SAMs from coated AgNPs (<15 nm) in every laboratory within less than 1 h and their utilization as potential low-cost SERS substrates (movie 1-4).

  14. Thermally-induced transition of lamellae orientation in block-copolymer films on ‘neutral’ nanoparticle-coated substrates

    DOE PAGES

    Yager, Kevin G.; Forrey, Christopher; Singh, Gurpreet; ...

    2015-06-01

    Block-copolymer orientation in thin films is controlled by the complex balance between interfacial free energies, including the inter-block segregation strength, the surface tensions of the blocks, and the relative substrate interactions. While block-copolymer lamellae orient horizontally when there is any preferential affinity of one block for the substrate, we recently described how nanoparticle-roughened substrates can be used to modify substrate interactions. We demonstrate how such ‘neutral’ substrates can be combined with control of annealing temperature to generate vertical lamellae orientations throughout a sample, at all thicknesses. We observe an orientational transition from vertical to horizontal lamellae upon heating, as confirmedmore » using a combination of atomic force microscopy (AFM), neutron reflectometry (NR) and rotational small-angle neutron scattering (RSANS). Using molecular dynamics (MD) simulations, we identify substrate-localized distortions to the lamellar morphology as the physical basis of the novel behavior. In particular, under strong segregation conditions, bending of horizontal lamellae induce a large energetic cost. At higher temperatures, the energetic cost of conformal deformations of lamellae over the rough substrate is reduced, returning lamellae to the typical horizontal orientation. Thus, we find that both surface interactions and temperature play a crucial role in dictating block-copolymer lamellae orientation. As a result, our combined experimental and simulation findings suggest that controlling substrate roughness should provide a useful and robust platform for controlling block-copolymer orientation in applications of these materials.« less

  15. Rich variety of substrates for surface enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Nguyen, Bich Ha; Hieu Nguyen, Van; Nhung Tran, Hong

    2016-09-01

    The efficiency of the application of surface enhanced Raman spectroscopy (SERS) technique to each specified purpose significantly depends on the choice of the SERS substrate with an appropriate structure as well as on its performance. Until the present time a rich variety of SERS substrates was fabricated. They can be classified according to their structures. The present work is a review of main types of SERS substrates for using in the trace analysis application. They can be classified into 4 groups: (1) Substrates using gold nanoparticles (AuNPs) with spherical shape such as colloidal AuNPs, AuNPs fabricated by pulsed laser deposition, by sputtering or by capillary force assembly (CFA), substrates fabricated by electrospinning technique, substrates using metallic nanoparticle arrays fabricated by electron beam lithography combined with CFA method, substrates using silver nanoparticle (AgNP) arrays grain by chemical seeded method, substrates with tunable surface plasmon resonance, substrates based on precies subnanometer plasmonic junctions within AuNP assemblies, substrates fabricated by simultaneously immobilizing both AuNPs and AgNPs on the same glass sides etc. (2) Substrates using nanostructures with non-spherical shapes such as gold nanowire (NW), or highly anisotropic nickel NW together with large area, free-standing carpets, substrates with obviously angular, quasi-vertically aligned cuboid-shaped TiO2 NW arrays decorated with AgNPs, substrates using gold nanoprism monolayer films, substrates using silver nanocube dimmers or monodisperse close-packed gold nanotriangle monolayers. (3) Substrates using multiparticle complex nanostructure such as nanoparticle cluster arrays, gold nanoflowers and nanodendrites. (4) Flexible substrate such as paper-based swab with gold nanorods, adhesive polymer tapes fabricated by inkjet printing method and flexible and adhesive SERS tapes fabricated by decorating AuNPs via the conventional drop-dry method.

  16. The potential for sea-level-rise-induced barrier island loss: Insights from the Chandeleur Islands, Louisiana, USA

    USGS Publications Warehouse

    Moore, Laura J.; Patsch, Kiki; List, Jeffrey H.; Williams, S. Jeffress

    2014-01-01

    As sea level rises and hurricanes become more intense, barrier islands around the world become increasingly vulnerable to conversion from self-sustaining migrating landforms to submerging or subaqueous sand bodies. To explore the mechanism by which such state changes occur and to assess the factors leading to island disintegration, we develop a suite of numerical simulations for the Chandeleur Islands in Louisiana, U.S.A., which appear to be on the verge of this transition. Our results suggest that the Chandeleurs are likely poised to change state, leading to their demise, within decades depending on future storm history. Contributing factors include high rates of relative sea level rise, limited sediment supply, muddy substrate, current island position relative to former Mississippi River distributary channels, and the effects of changes in island morphology on sediment transport pathways. Although deltaic barrier islands are most sensitive to disintegration because of their muddy substrate, the importance of relative sea level rise rate in determining the timing of threshold crossing suggests that the conceptual models for deltaic barrier island formation and disintegration may apply more broadly in the future.

  17. Flexible SERS Substrates: Challenges and Opportunities

    DTIC Science & Technology

    2016-01-28

    interactions between the analyte, silver nanoparticles , and a salt. This system has also been applied to detection of trace antibiotics for food safety...Cleanable SERS Substrates Based on Silver Nanoparticle Decorated Electrospun Nano-fibrous Membranes Chaoyang Jiang Porous electrospun nanofibrous...present our recent work on the preparation, characterization, and SERS activity of silver nanoparticle decorated polymeric electrospun nanofibers

  18. MnO Nanoparticle@Mesoporous Carbon Composites Grown on Conducting Substrates Featuring High-performance Lithium-ion Battery, Supercapacitor and Sensor

    PubMed Central

    Wang, Tianyu; Peng, Zheng; Wang, Yuhang; Tang, Jing; Zheng, Gengfeng

    2013-01-01

    We demonstrate a facile, two-step coating/calcination approach to grow a uniform MnO nanoparticle@mesoporous carbon (MnO@C) composite on conducting substrates, by direct coating of the Mn-oleate precursor solution without any conducting/binding reagents, and subsequent thermal calcination. The monodispersed, sub-10 nm MnO nanoparticles offer high theoretical energy storage capacities and catalytic properties, and the mesoporous carbon coating allows for enhanced electrolyte transport and charge transfer towards/from MnO surface. In addition, the direct growth and attachment of the MnO@C nanocomposite in the supporting conductive substrates provide much reduced contact resistances and efficient charge transfer. These excellent features allow the use of MnO@C nanocomposites as lithium-ion battery and supercapacitor electrodes for energy storage, with high reversible capacity at large current densities, as well as excellent cycling and mechanical stabilities. Moreover, this MnO@C nanocomposite has also demonstrated a high sensitivity for H2O2 detection, and also exhibited attractive potential for the tumor cell analysis. PMID:24045767

  19. Paramagnetic iron-doped hydroxyapatite nanoparticles with improved metal sorption properties. A bioorganic substrates-mediated synthesis.

    PubMed

    Mercado, D Fabio; Magnacca, Giuliana; Malandrino, Mery; Rubert, Aldo; Montoneri, Enzo; Celi, Luisella; Bianco Prevot, Alessandra; Gonzalez, Mónica C

    2014-03-26

    This paper describes the synthesis of paramegnetic iron-containing hydroxyapatite nanoparticles and their increased Cu(2+) sorbent capacity when using Ca(2+) complexes of soluble bioorganic substrates from urban wastes as synthesis precursors. A thorough characterization of the particles by TEM, XRD, FTIR spectroscopy, specific surface area, TGA, XPS, and DLS indicates that loss of crystallinity, a higher specific area, an increased surface oxygen content, and formation of surface iron phases strongly enhance Cu(2+) adsorption capacity of hydroxyapatite-based materials. However, the major effect of the surface and morphologycal modifications is the size diminution of the aggregates formed in aqueous solutions leading to an increased effective surface available for Cu(2+) adsorption. Maximum sorption values of 550-850 mg Cu(2+) per gram of particles suspended in an aqueous solution at pH 7 were determined, almost 10 times the maximum values observed for hydroxyapatite nanoparticles suspensions under the same conditions.

  20. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity

    NASA Astrophysics Data System (ADS)

    Agnihotri, Shekhar; Bajaj, Geetika; Mukherji, Suparna; Mukherji, Soumyo

    2015-04-01

    Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a nanoreactor for in situ synthesis and as an immobilizing template in the presence of arginine. The presence of arginine enhanced the stability of ZnO deposition on the glass substrate by hindering the dissolution of zinc under alkaline conditions. Various Ag/ZnO hybrid nanorod (HNR) samples were screened to obtain a high amount of silver immobilization on the ZnO substrate. Ag/ZnO HNRs displayed potent antibacterial ability and could achieve 100% kill for both Escherichia coli and Bacillus subtilis strains under various test conditions. The hybrid material mediated its dual mode of antibacterial action through direct contact-killing and release of silver ions/nanoparticles and showed superior bactericidal performance compared to pure ZnO nanorods and colloidal AgNPs. No significant decline in antibacterial efficacy was observed even after the same substrate was repeatedly reused multiple times. Interestingly, the amount of Ag and Zn release was much below their maximal limit in drinking water, thus preventing potential health hazards. Immobilized AgNPs showed no cytotoxic effects on the human hepatocarcinoma cell line (HepG2). Moreover, treating cells with the antibacterial substrate for 24 hours did not lead to significant generation of reactive oxygen species (ROS). The good biocompatibility and bactericidal efficacy would thus make it feasible to utilize this immobilization strategy for preparing new-generation antibacterial coatings.Silver-based hybrid nanomaterials are gaining interest as potential alternatives for conventional antimicrobial agents. Herein, we present a simple, facile and eco-friendly approach for the deposition of silver nanoparticles (AgNPs) on ZnO nanorods, which act as a

  1. A Generic Wet Impregnation Method for Preparing Substrate-Supported Platinum Group Metal and Alloy Nanoparticles with Controlled Particle Morphology.

    PubMed

    Zhang, Changlin; Oliaee, Shirin Norooz; Hwang, Sang Youp; Kong, Xiangkai; Peng, Zhenmeng

    2016-01-13

    Mass production of shape-controlled platinum group metal (PGM) and alloy nanoparticles is of high importance for their many fascinating properties in catalysis, electronics, and photonics. Despite of successful demonstrations at milligram scale using wet chemistry syntheses in many fundamental studies, there is still a big gap between the current methods and their real applications due to the complex synthetic procedures, scale-up difficulty, and surface contamination problem of the made particles. Here we report a generic wet impregnation method for facile, surfactant-free, and scalable preparation of nanoparticles of PGMs and their alloys on different substrate materials with controlled particle morphology and clean surface, which bridges the outstanding properties of these nanoparticles to practical important applications. The underlying particle growth and shape formation mechanisms were investigated using a combination of ex situ and in situ characterizations and were attributed to their different interactions with the applied gas molecules.

  2. Pattern transfer with stabilized nanoparticle etch masks

    NASA Astrophysics Data System (ADS)

    Hogg, Charles R.; Picard, Yoosuf N.; Narasimhan, Amrit; Bain, James A.; Majetich, Sara A.

    2013-03-01

    Self-assembled nanoparticle monolayer arrays are used as an etch mask for pattern transfer into Si and SiOx substrates. Crack formation within the array is prevented by electron beam curing to fix the nanoparticles to the substrate, followed by a brief oxygen plasma to remove excess carbon. This leaves a dot array of nanoparticle cores with a minimum gap of 2 nm. Deposition and liftoff can transform the dot array mask into an antidot mask, where the gap is determined by the nanoparticle core diameter. Reactive ion etching is used to transfer the dot and antidot patterns into the substrate. The effect of the gap size on the etching rate is modeled and compared with the experimental results.

  3. Growth kinetics of disk-shaped copper islands in electrochemical deposition.

    PubMed

    Guo, Lian; Zhang, Shouliang; Searson, Peter

    2009-05-01

    The ability to independently dictate the shape and crystal orientation of islands in electrocrystallization remains a significant challenge. The main reason for this is that the complex interplay between the substrate, nucleation, and surface chemistry is not fully understood. Here we report on the kinetics of island growth for copper on ruthenium oxide. The small nucleation overpotential leads to enhanced lateral growth and the formation of hexagonal disk-shaped islands. The amorphous substrate allows the nuclei to achieve the thermodynamically favorable orientation, i.e., a 111 surface normal. Island growth follows power law kinetics in both lateral and vertical directions. At shorter times, the two growth exponents are equal to 1/2 whereas at longer times lateral growth slows down while vertical growth speeds up. We propose a growth mechanism, wherein the lateral growth of disk-shaped islands is initiated by attachment of Cu adatoms on the ruthenium oxide surface onto the island periphery while vertical growth is initiated by two-dimensional nucleation on the top terrace and followed by lateral step propagation. These results indicate three criteria for enhanced lateral growth in electrodeposition: (i) a substrate that leads to a small nucleation overpotential, (ii) fast adatom surface diffusion on substrate to promote lateral growth, and (iii) preferential anion adsorption to stabilize the basal plane.

  4. h-BN Nanosheets as 2D Substrates to Load 0D Fe3O4 Nanoparticles: A Hybrid Anode Material for Lithium-Ion Batteries.

    PubMed

    Duan, Zhi-Qiang; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying; Zhu, Xiao-Dong

    2016-03-18

    h-BN, as an isoelectronic analogue of graphene, has improved thermal mechanical properties. Moreover, the liquid-phase production of h-BN is greener since harmful oxidants/reductants are unnecessary. Here we report a novel hybrid architecture by employing h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles, followed by phenol/formol carbonization to form a carbon coating. The resulting carbon-encapsulated h-BN@Fe3O4 hybrid architecture exhibits synergistic interactions: 1) The h-BN nanosheets act as flexible 2D substrates to accommodate the volume change of the Fe3O4 nanoparticles; 2) The Fe3O4 nanoparticles serve as active materials to contribute to a high specific capacity; and 3) The carbon coating not only protects the hybrid architecture from deformation but also keeps the whole electrode highly conductive. The synergistic interactions translate into significantly enhanced electrochemical performances, laying a basis for the development of superior hybrid anode materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Unusual island formations of Ir on Ge (111) studied by STM

    NASA Astrophysics Data System (ADS)

    van Zijll, M.; Huffman, E.; Lovinger, D. J.; Chiang, S.

    2017-12-01

    Island formation on the Ir/Ge(111) surface is studied using ultrahigh vacuum scanning tunneling microscopy. Ir was deposited at room temperature onto a Ge (111) substrate with coverages between 0.5 and 2.0 monolayers (ML). The samples were annealed to temperatures between 550 and 800 K, and then cooled prior to imaging. With 1.0 ML Ir coverage, at annealing temperatures 650-750 K, round islands form at locations where domain boundaries of the substrate reconstruction intersect. Both the substrate and the islands display a (√{ 3} x√{ 3}) R30∘ reconstruction. Additionally, a novel surface formation is observed where the Ir gathers along the antiphase domain boundaries between competing surface domains of the Ge surface reconstruction. This gives the appearance of the Ir in the domain boundaries forming pathways between different islands. The islands formed at higher annealing temperatures resulted in larger island sizes, which is evidence of Ostwald ripening. We present a model for the islands and the pathways which is consistent with our observations.

  6. The effect of realistic forces in finite epitaxial islands: Equilibrium structure, stability limits and substrate-induced dissociation of migrating clusters

    NASA Astrophysics Data System (ADS)

    Milchev, Andrey; Markov, Ivan

    1985-06-01

    The behaviour of finite epitaxial islands in the periodic field of the substrate is theoretically investigated. The harmonic interactions, traditionally adopted in the model of Frank and Van der Merwe, are replaced by Toda and Morse potentials and sets of difference recursion equations, governing the equilibrium properties of the system, are derived and solved numerically. It is shown that allowing for anharmonicity in the interactions in the deposit reveals several qualiatively new effects, such as: (1) The existence of substrate-induced rupture of anharmonic clusters which migrate on the substrate. It is predicted that such dissociation should be enhanced, if (a) the energy barrier for surface diffusion is increased, (b) the natural incompatibility between substrate and deposit is decreased, and (c) the size of the clusters grows. (2) A split in the misfit stability limits for pseudomorphism and for spontaneous generation of misfit dislocations with respect to the sign of the misfit. The limits corresponding to negative misfit rapidly increase while the positive misfit limits decrease (in absolute terms) with growing degree of anharmonicity. (3) A marked asymmetry in the magnitude of various properties of the clusters, such as adhesion to the substrate, activation energy for surface diffusion, mean strain, dislocation lengths, etc., with respect to the sign of the mismatch between surface and deposit.

  7. Shock-induced compaction of nanoparticle layers into nanostructured coating

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander E.; Ebel, Andrei A.

    2017-10-01

    A new process of shock wave consolidation of nanoparticles into a nanocrystalline coating is theoretically considered. In the proposed scheme, the nanoparticle layers, which are attached to the substrate surface by adhesion, are compacted by plane ultra-short shock waves coming from the substrate. The initial adhesion is self-arisen at any contact between the nanoparticles without a pre-compression. The absence of the nanoparticle ejections due to the shock wave action is connected with the strong adhesive forces, which allow nanoparticles to be attached to each other and to substrate while they are being compacted; this should be valid for small enough nanoparticles. Severe plastic deformation of the nanoparticles and the increased temperature due to collapse of voids between them facilitate their compaction into the monolithic nanocrystalline layer. We consider the examples of Cu and Ni nanoparticles on Al substrate using molecular dynamic simulations. We show the efficiency of the action of multiple shock waves with the duration in the range 2-20 ps and the amplitude in the range 4-12 GPa for sequential layerwise compaction of nanoparticles. A series of shock waves can be created by a repetitive powerful pulsed laser irradiation of the opposite surface of the substrate. The method offers the challenge for the formation of nanostructured coatings of various compositions. The thickness of the compacted nanocrystalline coating can be locally varied and controlled by the number of acting pulses.

  8. Electron transport in gold colloidal nanoparticle-based strain gauges.

    PubMed

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-08

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the 'regular island array model' that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy E(C). This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the E(C) values of these 14 nm NPs cannot be neglected in determining the β values.

  9. Electron transport in gold colloidal nanoparticle-based strain gauges

    NASA Astrophysics Data System (ADS)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  10. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure.

    PubMed

    Kowoll, Thomas; Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO 2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO 2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast.

  11. Incorporation of metal nanoparticles into wood substrate and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rector, Kirk D; Lucas, Marcel

    Metal nanoparticles were incorporated into wood. Ionic liquids were used to expand the wood cell wall structure for nanoparticle incorporation into the cell wall structure. Nanoparticles of elemental gold or silver were found to be effective surface enhanced Raman spectroscopy (SERS) imaging contrast or sensing agents. Nanoparticles of elemental iron were found to be efficient microwave absorbers and caused localized heating for disrupting the integrity of the lignocellulosic matrix. Controls suggest that the localized heating around the iron nanoparticles reduces losses of cellulose in the form of water, volatiles and CO.sub.2. The ionic liquid is needed during the incorporation processmore » at room temperature. The use of small amounts of ionic liquid combined with the absence of an ionic liquid purification step and a lower energy and water use are expected to reduce costs in an up-scaled pretreatment process.« less

  12. Highly active surface-enhanced Raman scattering (SERS) substrates based on gold nanoparticles infiltrated into SiO2 inverse opals

    NASA Astrophysics Data System (ADS)

    Ankudze, Bright; Philip, Anish; Pakkanen, Tuula T.; Matikainen, Antti; Vahimaa, Pasi

    2016-11-01

    SiO2 inverse opal (IO) films with embedded gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) application are reported. SiO2 IO films were loaded with AuNPs by a simple infiltration in a single cycle to form Au-SiO2 IOs. The optical property and the morphology of the Au-SiO2 IO substrates were characterized; it was observed that they retained the Bragg diffraction of SiO2 IO and the localized surface plasmon resonance (LSPR) of AuNPs. The SERS property of the Au-SiO2 IO substrates were studied with methylene blue (MB) and 4-aminothiophenol (4-ATP). The SERS enhancement factors were 107 and 106 for 4-ATP and MB, respectively. A low detection limit of 10-10 M for 4-ATP was also obtained with the Au-SiO2 IO substrate. A relative standard deviation of 18.5% for the Raman signals intensity at 1077 cm-1 for 4-ATP shows that the Au-SiO2 IO substrates have good signal reproducibility. The results of this study indicate that the Au-SiO2 IO substrates can be used in sensing and SERS applications.

  13. Wrinkling instability in nanoparticle-supported graphene: implications for strain engineering

    NASA Astrophysics Data System (ADS)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael; Einstein, Theodore

    2013-03-01

    We have carried out a systematic study of the wrinkling instability of graphene membranes supported on SiO2 substrates with randomly placed silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate and is highly conformal over the nanoparticles. With increasing nanoparticle density, and decreasing nanoparticle separation to ~100 nm, graphene's elastic response dominates substrate adhesion, and elastic stretching energy is reduced by the formation of wrinkles which connect protrusions. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, delamination from the substrate is observed. Since the wrinkling instability acts to remove inhomogeneous in-plane elastic strains through out-of-plane buckling, our results can be used to place limits on the possible in-plane strain magnitudes that may be created in graphene to realized strain-engineered electronic structures.[2] Supported by the UMD NSF-MRSEC under Grant No. DMR 05-20471, the US ONR MURI and UMD CNAM.

  14. Effects of patterning induced stress relaxation in strained SOI/SiGe layers and substrate

    NASA Astrophysics Data System (ADS)

    Hermann, P.; Hecker, M.; Renn, F.; Rölke, M.; Kolanek, K.; Rinderknecht, J.; Eng, L. M.

    2011-06-01

    Local stress fields in strained silicon structures important for CMOS technology are essentially related to size effects and properties of involved materials. In the present investigation, Raman spectroscopy was utilized to analyze the stress distribution within strained silicon (sSi) and silicon-germanium (SiGe) island structures. As a result of the structuring of initially unpatterned strained films, a size-dependent relaxation of the intrinsic film stresses was obtained in agreement with model calculations. This changed stress state in the features also results in the appearance of opposing stresses in the substrate underneath the islands. Even for strained island structures on top of silicon-on-insulator (SOI) wafers, corresponding stresses in the silicon substrate underneath the oxide were detected. Within structures, the stress relaxation is more pronounced for islands on SOI substrates as compared to those on bulk silicon substrates.

  15. Tunable and highly reproducible surface-enhanced Raman scattering substrates made from large-scale nanoparticle arrays based on periodically poled LiNbO3 templates

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoyan; Kitamura, Kenji; Yu, Qiuming; Xu, Jiajie; Osada, Minoru; Takahiro, Nagata; Li, Jiangyu; Cao, Guozhong

    2013-10-01

    This work describes novel surface-enhanced Raman scattering (SERS) substrates based on ferroelectric periodically poled LiNbO3 templates. The templates comprise silver nanoparticles (AgNPs), the size and position of which are tailored by ferroelectric lithography. The substrate has uniform and large sampling areas that show SERS effective with excellent signal reproducibility, for which the fabrication protocol is advantageous in its simplicity. We demonstrate ferroelectric-based SERS substrates with particle sizes ranging from 30 to 70 nm and present tunable SERS effect from Raman active 4-mercaptopyridine molecules attached to AgNPs when excited by a laser source at 514 nm.

  16. Nanoparticle layer deposition for highly controlled multilayer formation based on high- coverage monolayers of nanoparticles

    PubMed Central

    Liu, Yue; Williams, Mackenzie G.; Miller, Timothy J.; Teplyakov, Andrew V.

    2015-01-01

    This paper establishes a strategy for chemical deposition of functionalized nanoparticles onto solid substrates in a layer-by-layer process based on self-limiting surface chemical reactions leading to complete monolayer formation within the multilayer system without any additional intermediate layers – nanoparticle layer deposition (NPLD). This approach is fundamentally different from previously established traditional layer-by-layer deposition techniques and is conceptually more similar to well-known atomic and molecular – layer deposition processes. The NPLD approach uses efficient chemical functionalization of the solid substrate material and complementary functionalization of nanoparticles to produce a nearly 100% coverage of these nanoparticles with the use of “click chemistry”. Following this initial deposition, a second complete monolayer of nanoparticles is deposited using a copper-catalyzed “click reaction” with the azide-terminated silica nanoparticles of a different size. This layer-by-layer growth is demonstrated to produce stable covalently-bound multilayers of nearly perfect structure over macroscopic solid substrates. The formation of stable covalent bonds is confirmed spectroscopically and the stability of the multilayers produced is tested by sonication in a variety of common solvents. The 1-, 2- and 3-layer structures are interrogated by electron microscopy and atomic force microscopy and the thickness of the multilayers formed is fully consistent with that expected for highly efficient monolayer formation with each cycle of growth. This approach can be extended to include a variety of materials deposited in a predesigned sequence on different substrates with a highly conformal filling. PMID:26726273

  17. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery.Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with γ-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with

  18. Contrast of Backscattered Electron SEM Images of Nanoparticles on Substrates with Complex Structure

    PubMed Central

    Müller, Erich; Fritsch-Decker, Susanne; Hettler, Simon; Störmer, Heike; Weiss, Carsten; Gerthsen, Dagmar

    2017-01-01

    This study is concerned with backscattered electron scanning electron microscopy (BSE SEM) contrast of complex nanoscaled samples which consist of SiO2 nanoparticles (NPs) deposited on indium-tin-oxide covered bulk SiO2 and glassy carbon substrates. BSE SEM contrast of NPs is studied as function of the primary electron energy and working distance. Contrast inversions are observed which prevent intuitive interpretation of NP contrast in terms of material contrast. Experimental data is quantitatively compared with Monte-Carlo- (MC-) simulations. Quantitative agreement between experimental data and MC-simulations is obtained if the transmission characteristics of the annular semiconductor detector are taken into account. MC-simulations facilitate the understanding of NP contrast inversions and are helpful to derive conditions for optimum material and topography contrast. PMID:29109816

  19. Microfluidic setup for on-line SERS monitoring using laser induced nanoparticle spots as SERS active substrate.

    PubMed

    Buja, Oana-M; Gordan, Ovidiu D; Leopold, Nicolae; Morschhauser, Andreas; Nestler, Jörg; Zahn, Dietrich R T

    2017-01-01

    A microfluidic setup which enables on-line monitoring of residues of malachite green (MG) using surface-enhanced Raman scattering (SERS) is reported. The SERS active substrate was prepared via laser induced synthesis of silver or gold nanoparticles spot on the bottom of a 200 μm inner dimension glass capillary, by focusing the laser beam during a continuous flow of a mixture of silver nitrate or gold chloride and sodium citrate. The described microfluidic setup enables within a few minutes the monitoring of several processes: the synthesis of the SERS active spot, MG adsorption to the metal surface, detection of the analyte when saturation of the SERS signal is reached, and finally, the desorption of MG from the spot. Moreover, after MG complete desorption, the regeneration of the SERS active spot was achieved. The detection of MG was possible down to 10 -7 M concentration with a good reproducibility when using silver or gold spots as SERS substrate.

  20. Anatase/rutile bi-phasic titanium dioxide nanoparticles for photocatalytic applications enhanced by nitrogen doping and platinum nano-islands.

    PubMed

    Bear, Joseph C; Gomez, Virginia; Kefallinos, Nikolaos S; McGettrick, James D; Barron, Andrew R; Dunnill, Charles W

    2015-12-15

    Titanium dioxide (TiO2) bi-phasic powders with individual particles containing an anatase and rutile hetero-junction have been prepared using a sequential layer sol-gel deposition technique to soluble substrates. Sequential thin films of rutile and subsequently anatase TiO2 were deposited onto sodium chloride substrates yielding extremely fragile composite layered discs that fractured into "Janus-like" like powders on substrate dissolution. Nitrogen doped and platinum sputtered analogues were also prepared, and analysed for photocatalytic potential using the photodegradation of Rhodamine B, a model organic pollutant under UV and visible light irradiation. The materials were characterised using X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, Raman spectroscopy and scanning electron microscopy. This paper sheds light on the relationship between anatase and rutile materials when in direct contact and demonstrates a robust method for the synthesis of bi-phasic nanoparticles, ostensibly of any two materials, for photocatalytic reactions or otherwise. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Fast assembling microarrays of superparamagnetic Fe3O4@Au nanoparticle clusters as reproducible substrates for surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Ye, Min; Wei, Zewen; Hu, Fei; Wang, Jianxin; Ge, Guanglu; Hu, Zhiyuan; Shao, Mingwang; Lee, Shuit-Tong; Liu, Jian

    2015-08-01

    It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have demonstrated that strong SERS signals can be harvested from these substrates due to an efficient coupling effect between Fe3O4@Au NCs, with enhancement factors >106. These substrates have been confirmed to provide reproducible SERS signals, with low variations in different locations or batches of samples. We investigate the spatial distributions of electromagnetic field enhancement around Fe3O4@Au NCs assemblies using finite-difference-time-domain (FDTD) simulations. The procedure to prepare the substrates is straightforward and fast. The silicon mold can be easily cleaned out and refilled with Fe3O4@Au NCs assisted by a magnet, therefore being re-useable for many cycles. Our approach has integrated microarray technologies and provided a platform for thousands of independently addressable SERS detection, in order to meet the requirements of a rapid, robust, and high throughput performance.It is currently a very active research area to develop new types of substrates which integrate various nanomaterials for surface-enhanced Raman scattering (SERS) techniques. Here we report a unique approach to prepare SERS substrates with reproducible performance. It features silicon mold-assisted magnetic assembling of superparamagnetic Fe3O4@Au nanoparticle clusters (NCs) into arrayed microstructures on a wafer scale. This approach enables the fabrication of both silicon-based and hydrogel-based substrates in a sequential manner. We have

  2. Dendrochronology of strain-relaxed islands.

    PubMed

    Merdzhanova, T; Kiravittaya, S; Rastelli, A; Stoffel, M; Denker, U; Schmidt, O G

    2006-06-09

    We report on the observation and study of tree-ring structures below dislocated SiGe islands (superdomes) grown on Si(001) substrates. Analogous to the study of tree rings (dendrochronology), these footprints enable us to gain unambiguous information on the growth and evolution of superdomes and their neighboring islands. The temperature dependence of the critical volume for dislocation introduction is measured and related to the composition of the islands. We show clearly that island coalescence is the dominant pathway towards dislocation nucleation at low temperatures, while at higher temperatures anomalous coarsening is effective and leads to the formation of a depletion region around superdomes.

  3. Adhesion and Wetting of Soft Nanoparticles on Textured Surfaces: Transition between Wenzel and Cassie-Baxter States

    DOE PAGES

    Cao, Zhen; Stevens, Mark J.; Carrillo, Jan-Michael Y.; ...

    2015-01-16

    We use a combination of the molecular dynamics simulations and scaling analysis to study interactions between gel-like nanoparticles and substrates covered with rectangular shape posts. Our simulations have shown that nanoparticle in contact with substrate undergo first order transition between Wenzel and Cassie-Baxter state which location depends on nanoparticle shear modulus, the strength of nanoparticle-substrate interactions, height of the substrate posts and nanoparticle size, R p. There is a range of system parameters where these two states coexist such that the average indentation δ produced by substrate posts changes monotonically with nanoparticle shear modulus, G p. We have developed amore » scaling model that describes deformation of nanoparticle in contact with patterned substrate. In the framework of this model the effect of the patterned substrate can be taken into account by introducing an effective work of adhesion, W eff, which describes the first order transition between Wenzel and Cassie-Baxter states. There are two different shape deformation regimes for nanoparticles with shear modulus G p and surface tension γ p. Shape of small nanoparticles with size R p < γ p 3/2G p -1 W eff -1/2 is controlled by capillary forces while deformation of large nanoparticles, R p > γ p 3/2G p -1 W eff -1/2« less

  4. Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper

    NASA Astrophysics Data System (ADS)

    Xiao, Guina; Li, Yunxiang; Shi, Wangzhou; Shen, Leo; Chen, Qi; Huang, Lei

    2017-05-01

    Paper-based surface-enhanced Raman scattering (SERS) substrates receive a great deal of attention due to low cost and high flexibility. Herein, we developed an efficient SERS substrate by gravure printing of sulfonated reduced graphene-oxide (S-RGO) thin film and inkjet printing of silver nanoparticles (AgNPs) on weighing paper successively. Malachite green (MG) and rhodamine 6G (R6G) were chosen as probe molecules to evaluate the enhanced performance of the fabricated SERS-active substrates. It was found that the S-RGO/AgNPs composite structure possessed higher enhancement ability than the pure AgNPs. The Raman enhancement factor of S-RGO/AgNPs was calculated to be as large as 109. The minimum detection limit for MG and R6G was down to 10-7 M with good linear responses (R2 = 0.9996, 0.9983) range from 10-4 M to 10-7 M. In addition, the S-RGO/AgNPs exhibited good uniformity with a relative standard deviation (RSD) of 7.90% measured by 572 points, excellent reproducibility with RSD smaller than 3.36%, and long-term stability with RSD less than 7.19%.

  5. Effect of nanoparticle size on sessile droplet contact angle

    NASA Astrophysics Data System (ADS)

    Munshi, A. M.; Singh, V. N.; Kumar, Mukesh; Singh, J. P.

    2008-04-01

    We report a significant variation in the static contact angle measured on indium oxide (IO) nanoparticle coated Si substrates that have different nanoparticle sizes. These IO nanoparticles, which have well defined shape and sizes, were synthesized by chemical vapor deposition in a horizontal alumina tube furnace. The size of the IO nanoparticles was varied by changing the source material, substrate temperature, and the deposition time. A sessile droplet method was used to determine the macroscopic contact angle on these IO nanoparticle covered Si substrate using two different liquids: de-ionized water and diethylene glycol (DEG). It was observed that contact angle depends strongly on the nanoparticle size. The contact angle was found to vary from 24° to 67° for de-ionized water droplet and from 15° to 60° for DEG droplet, for the nanoparticle sizes varying from 14 to 620 nm. The contact angle decreases with a decrease in the particles size. We have performed a theoretical analysis to determine the dependence of contact angle on the nanoparticle size. This formulation qualitatively shows a similar trend of decrease in the contact angle with a decrease in nanoparticle size. Providing a rough estimate of nanoparticle size by sessile droplet contact angle measurement is the novelty in this work.

  6. Bathymetry, substrate and circulation in Westcott Bay, San Juan Islands, Washington

    USGS Publications Warehouse

    Grossman, Eric E.; Stevens, Andrew W.; Curran, Chris; Smith, Collin; Schwartz, Andrew

    2007-01-01

    Nearshore bathymetry, substrate type, and circulation patterns in Westcott Bay, San Juan Islands, Washington, were mapped using two acoustic sonar systems, video and direct sampling of seafloor sediments. The goal of the project was to characterize nearshore habitat and conditions influencing eelgrass (Z. marina) where extensive loss has occurred since 1995. A principal hypothesis for the loss of eelgrass is a recent decrease in light availability for eelgrass growth due to increase in turbidity associated with either an increase in fine sedimentation or biological productivity within the bay. To explore sources for this fine sediment and turbidity, a dual-frequency Biosonics sonar operating at 200 and 430 kHz was used to map seafloor depth, morphology and vegetation along 69 linear kilometers of the bay. The higher frequency 430 kHz system also provided information on particulate concentrations in the water column. A boat-mounted 600 kHz RDI Acoustic Doppler Current Profiler (ADCP) was used to map current velocity and direction and water column backscatter intensity along another 29 km, with select measurements made to characterize variations in circulation with tides. An underwater video camera was deployed to ground-truth acoustic data. Seventy one sediment samples were collected to quantify sediment grain size distributions across Westcott Bay. Sediment samples were analyzed for grain size at the Western Coastal and Marine Geology Team sediment laboratory in Menlo Park, Calif. These data reveal that the seafloor near the entrance to Westcott Bay is rocky with a complex morphology and covered with dense and diverse benthic vegetation. Current velocities were also measured to be highest at the entrance and along a deep channel extending 1 km into the bay. The substrate is increasingly comprised of finer sediments with distance into Westcott Bay where current velocities are lower. This report describes the data collected and preliminary findings of USGS Cruise B-6

  7. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles.

    PubMed

    Wu, Pae C; Khoury, Christopher G; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V; Vo-Dinh, Tuan; Brown, April S; Everitt, Henry O

    2009-09-02

    Size-controlled gallium nanoparticles deposited on sapphire were explored as alternative substrates to enhance Raman spectral signatures. Gallium's resilience following oxidation is inherently advantageous in comparison with silver for practical ex vacuo nonsolution applications. Ga nanoparticles were grown using a simple molecular beam epitaxy-based fabrication protocol, and monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry allowed the nanoparticles to be easily controlled for size. The Raman spectra obtained from cresyl fast violet (CFV) deposited on substrates with differing mean nanoparticle sizes represent the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Nonoptimized aggregate enhancement factors of approximately 80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm.

  8. Demonstration of surface-enhanced Raman scattering by tunable, plasmonic gallium nanoparticles

    PubMed Central

    Wu, Pae C; Khoury, Christopher G.; Kim, Tong-Ho; Yang, Yang; Losurdo, Maria; Bianco, Giuseppe V.; Vo-Dinh, Tuan; Brown, April S.; Everitt, Henry O.

    2009-01-01

    Size-controlled gallium nanoparticles deposited on sapphire are explored as alternative substrates to enhance Raman spectral signatures. Gallium’s resilience following oxidation is inherently advantageous compared to silver for practical ex vacuo, non-solution applications. Ga nanoparticles are grown using a simple, molecular beam epitaxy-based fabrication protocol, and by monitoring their corresponding surface plasmon resonance energy through in situ spectroscopic ellipsometry, the nanoparticles are easily controlled for size. Raman spectroscopy performed on cresyl fast violet (CFV) deposited on substrates of differing mean nanoparticle size represents the first demonstration of enhanced Raman signals from reproducibly tunable self-assembled Ga nanoparticles. Non-optimized aggregate enhancement factors of ~80 were observed from the substrate with the smallest Ga nanoparticles for CFV dye solutions down to a dilution of 10 ppm. PMID:19655747

  9. Thermal stability of supported gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Turba, Timothy Fredrick

    Nanoparticle gold is of interest for a wide array of applications including catalysis, gas sensing, and light absorption for color filters and optical switches. Many of these applications are dependent upon the particles having sizes <5nm. In this paper, the thermal stability of nanoparticle gold is evaluated. Unsupported gold nanoparticles can grow (and in some cases double their size) even at room temperature. An important approach to stabilizing gold nanoparticles is through an interaction with a suitable substrate support material. Semiconductor substrates such as GaN are important supports for gold nanoparticles for applications such as sensors, but GaN does not provide a significant stabilizing effect at high temperatures. This paper covers a number of different substrate materials and in particular shows that for some substrates, such as SiO2, gold nanoparticles can be stable at temperatures up to 500°C, which is significantly above the Tammann temperature for bulk gold (395°C). In this dissertation, gold nanoparticles are shown to have complete stability on aluminum-supported silica nanosprings at 550°C in air. This stability window is one of the highest reported for nanoparticle gold and potentially enables a number of applications for this highly active catalyst. X-ray photoelectron spectroscopy measurements were performed before and after heating to 550°C to determine the nature of the interaction between gold and SiO2. A 1.2 eV drop in gold 4f binding energy after heating signified a shift to anionic gold particles (i.e., Au delta-) indicative of strong bonds to oxygen vacancies with neighboring Sidelta+ atoms. Heating in hydrogen at 550°C resulted in a binding energy decrease of 0.4 eV due to an increased fraction of particles with decreased coordination numbers (i.e., more atoms at edges and corners). Lastly, heating gold nanoparticles in an atmosphere of 10% relative humidity at 550°C resulted in apparent encapsulation of the gold.

  10. Coupling of Ag Nanoparticle with Inverse Opal Photonic Crystals as a Novel Strategy for Upconversion Emission Enhancement of NaYF4: Yb(3+), Er(3+) Nanoparticles.

    PubMed

    Shao, Bo; Yang, Zhengwen; Wang, Yida; Li, Jun; Yang, Jianzhi; Qiu, Jianbei; Song, Zhiguo

    2015-11-18

    Rare-earth-ion-doped upconversion (UC) nanoparticles have generated considerable interest because of their potential application in solar cells, biological labeling, therapeutics, and imaging. However, the applications of UC nanoparticles were still limited because of their low emission efficiency. Photonic crystals and noble metal nanoparticles are applied extensively to enhance the UC emission of rare earth ions. In the present work, a novel substrate consisting of inverse opal photonic crystals and Ag nanoparticles was prepared by the template-assisted method, which was used to enhance the UC emission of NaYF4: Yb(3+), Er(3+) nanoparticles. The red or green UC emissions of NaYF4: Yb(3+), Er(3+) nanoparticles were selectively enhanced on the inverse opal substrates because of the Bragg reflection of the photonic band gap. Additionally, the UC emission enhancement of NaYF4: Yb(3+), Er(3+) nanoparticles induced by the coupling of metal nanoparticle plasmons and photonic crystal effects was realized on the Ag nanoparticles included in the inverse opal substrate. The present results demonstrated that coupling of Ag nanoparticle with inverse opal photonic crystals provides a useful strategy to enhance UC emission of rare-earth-ion-doped nanoparticles.

  11. Bio-inspired in situ growth of monolayer silver nanoparticles on graphene oxide paper as multifunctional substrate

    NASA Astrophysics Data System (ADS)

    Li, Shi-Kuo; Yan, You-Xian; Wang, Jin-Long; Yu, Shu-Hong

    2013-11-01

    In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a potential SERS substrate for molecular detection applications.In this study, we report a facile bio-inspired method for large-scale preparation of highly dispersed Ag nanoparticles (NPs) on the surface of flexible reduced graphene oxide (rGO) paper with using dopamine (DA) both as a reductant and a surface modifier. Through the self-polymerization of dopamine, free-standing GO paper can be simultaneously reduced and modified with following in situ growth of monolayer Ag NPs on such a substrate. The spherical Ag NPs with an average diameter of 80 nm have a narrow size distribution and tunable cover density. Such a flexible rGO/Ag hybrid paper presents enhanced antibacterial activity against E. coli and a high active and sensitive SERS response toward Rhodamine 6G (R6G) molecules. The detection signals can be obtained while the R6G concentration is as low as to 10-8 M. This work provides a simple strategy for large-scale fabrication of monolayer Ag NPs on flexible rGO paper as a portable antibacterial substrate and a

  12. Catalytic growth of carbon nanofibers on Cr nanoparticles on a carbon substrate: adsorbents for organic dyes in water

    NASA Astrophysics Data System (ADS)

    de Oliveira, Luiz Carlos Alves; da Silva, Adilson Cândido; Machado, Alan Rodrigues Teixeira; Diniz, Renata; Pereira, Márcio César

    2013-05-01

    We have produced carbon nanofibers (CNFs) using leather waste that had been tanned with a chromium bath, and when dried contained Cr2O3. Suitable reduction processing produced a carbon substrate with supported nanoparticles of chromium metal. Powder X-ray diffraction showed that the Cr2O3 is reduced on the carbon surface to produce CrC and metal Cr, which is the effective catalyst for the CNFs growth. The CNF arrays were confirmed by TEM images. Raman data revealed that the synthesized CNFs have a poor-quality graphite structure which favors their use in adsorption processes. These CNFs presented higher affinity to adsorb anionic dyes, whereas the cationic dyes are better adsorbed on the carbon substrate. The low-cost and availability of the carbon precursor makes their potential use to produce CNFs of interest.

  13. Wet-chemical systems and methods for producing black silicon substrates

    DOEpatents

    Yost, Vernon; Yuan, Hao-Chih; Page, Matthew

    2015-05-19

    A wet-chemical method of producing a black silicon substrate. The method comprising soaking single crystalline silicon wafers in a predetermined volume of a diluted inorganic compound solution. The substrate is combined with an etchant solution that forms a uniform noble metal nanoparticle induced Black Etch of the silicon wafer, resulting in a nanoparticle that is kinetically stabilized. The method comprising combining with an etchant solution having equal volumes acetonitrile/acetic acid:hydrofluoric acid:hydrogen peroxide.

  14. Bioenabled SERS Substrates for Food Safety and Drinking Water Monitoring.

    PubMed

    Yang, Jing; Rorrer, Gregory L; Wang, Alan X

    2015-04-20

    We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L.

  15. Bioenabled SERS Substrates for Food Safety and Drinking Water Monitoring

    PubMed Central

    Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.

    2016-01-01

    We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L. PMID:26900205

  16. Bioenabled SERS substrates for food safety and drinking water monitoring

    NASA Astrophysics Data System (ADS)

    Yang, Jing; Rorrer, Gregory L.; Wang, Alan X.

    2015-05-01

    We present low-cost bioenabled surface-enhanced Raman scattering (SERS) substrates that can be massively produced in sustainable and eco-friendly methods with significant commercial potentials for the detection of food contamination and drinking water pollution. The sensors are based on diatom frustules with integrated plasmonic nanoparticles. The ultra-high sensitivity of the SERS substrates comes from the coupling between the diatom frustules and Ag nanoparticles to achieve dramatically increased local optical field to enhance the light-matter interactions for SERS sensing. We successfully applied the bioenabled SERS substrates to detect melamine in milk and aromatic compounds in water with sensitivity down to 1μg/L.

  17. Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage.

    PubMed

    Marshall, Kate L A; Philpot, Kate E; Damas-Moreira, Isabel; Stevens, Martin

    2015-01-01

    Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation.

  18. Preparation and characterization of silver nanoparticles homogenous thin films

    NASA Astrophysics Data System (ADS)

    Hegazy, Maroof A.; Borham, E.

    2018-06-01

    The wet chemical method by metal salt reduction has been widely used to synthesize nanoparticles. Accordingly the silver nitrate used as silver precursor and sodium borohydrate as reduction agent. The silver nanoparticles were characterized by different characterization techniques including UV-VIS spectrometry, Transmission electron microscope (TEM), and Zeta potential technique. Thin films of the colloidal solution were fabricated using direct precipitation technique on ITO glass, silicon substrate and commercial glass substrate and characterized by imaging technique. The absorption peak of the silver nanoparticles colloidal solution was around 400 nm. The TEM images indicate that the silver nanoparticles had spherical shape and their sizes were from 10 to 17 nm. The particle size of the silver nanoparticles was confirmed by Zeta potential technique. The imaging technique indicated that the homogeneous distribution of the colloidal silver solution thin film on the silicon substrate was stronger than the ITO glass and inhomogeneous film was emerged on the commercial glass.

  19. Shape transition of endotaxial islands growth from kinetically constrained to equilibrium regimes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Zhi-Peng, E-mail: LI.Zhipeng@nims.go.jp; Global Research Center for Environment and Energy based on Nanomaterials Science, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044; Tok, Engsoon

    2013-09-01

    Graphical abstract: - Highlights: • All Fe{sub 13}Ge{sub 8} islands will grow into Ge(0 0 1) substrate at temperatures from 350 to 675 °C. • Shape transition occurred from kinetically constrained to equilibrium regime. • All endotaxial islands can be clarified into two types. • The mechanisms of endotaxial growth and shape transition have been rationalized. - Abstract: A comprehensive study of Fe grown on Ge(0 0 1) substrates has been conducted at elevated temperatures, ranging from 350 to 675 °C. All iron germinide islands, with the same Fe{sub 13}Ge{sub 8} phase, grow into the Ge substrate with the samemore » epitaxial relationship. Shape transition occurs from small square islands (low temperatures), to elongated orthogonal islands or orthogonal nanowires (intermediate temperatures), and then finally to large square orthogonal islands (high temperatures). According to both transmission electron microscopy (TEM) and atomic force microscopy (AFM) investigations, all islands can be defined as either type-I or type-II. Type-I islands usually form at kinetically constrained growth regimes, like truncated pyramids. Type-II islands usually appear at equilibrium growth regimes forming a dome-like shape. Based on a simple semi-quantitative model, type-II islands have a lower total energy per volume than type-I, which is considered as the dominant mechanism for this type of shape transition. Moreover, this study not only elucidates details of endotaxial growth in the Fe–Ge system, but also suggests the possibility of controlled fabrication of temperature-dependent nanostructures, especially in materials with dissimilar crystal structures.« less

  20. Liquid phase heteroepitaxial growth on convex substrate using binary phase field crystal model

    NASA Astrophysics Data System (ADS)

    Lu, Yanli; Zhang, Tinghui; Chen, Zheng

    2018-06-01

    The liquid phase heteroepitaxial growth on convex substrate is investigated with the binary phase field crystal (PFC) model. The paper aims to focus on the transformation of the morphology of epitaxial films on convex substrate with two different radiuses of curvature (Ω) as well as influences of substrate vicinal angles on films growth. It is found that films growth experience different stages on convex substrate with different radiuses of curvature (Ω). For Ω = 512 Δx , the process of epitaxial film growth includes four stages: island coupled with layer-by-layer growth, layer-by-layer growth, island coupled with layer-by-layer growth, layer-by-layer growth. For Ω = 1024 Δx , film growth only experience islands growth and layer-by-layer growth. Also, substrate vicinal angle (π) is an important parameter for epitaxial film growth. We find the film can grow well when π = 2° for Ω = 512 Δx , while the optimized film can be obtained when π = 4° for Ω = 512 Δx .

  1. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    PubMed

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  2. Growth and assembly of cobalt oxide nanoparticle rings at liquid nanodroplets with solid junction.

    PubMed

    Zhou, Yilong; Powers, Alexander S; Zhang, Xiaowei; Xu, Tao; Bustillo, Karen; Sun, Litao; Zheng, Haimei

    2017-09-28

    Using liquid cell TEM, we imaged the formation of CoO nanoparticle rings. Nanoparticles nucleated and grew tracing the perimeter of droplets sitting on the SiN x solid substrate, and finally formed necklace-like rings. By tracking single nanoparticle trajectories during the ring formation and an estimation of the forces between droplets and nanoparticles using a simplified model, we found the junction of liquid nanodroplets with a solid substrate is the attractive site for CoO nanoparticles. Coalescing droplets were capable of pushing nanoparticles to the perimeter of the new droplet and nanoparticles on top of the droplets rolled off toward the perimeter. We propose that the curved surface morphology of the droplets created a force gradient that contributed to the assembly of nanoparticles at the droplet perimeter. Revealing the dynamics of nanoparticle movements and the interactions of nanoparticles with the liquid nanodroplet provides insights on developing novel self-assembly strategies for building precisely defined nanostructures on solid substrates.

  3. The role of Ag buffer layer in Fe islands growth on Ge (111) surfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Tsu-Yi, E-mail: phtifu@phy.ntnu.edu.tw; Wu, Jia-Yuan; Jhou, Ming-Kuan

    2015-05-07

    Sub-monolayer iron atoms were deposited at room temperature on Ge (111)-c(2 × 8) substrates with and without Ag buffer layers. The behavior of Fe islands growth was investigated by using scanning tunneling microscope (STM) after different annealing temperatures. STM images show that iron atoms will cause defects and holes on substrates at room temperature. As the annealing temperature rises, iron atoms pull out germanium to form various kinds of alloyed islands. However, the silver layer can protect the Ag/Ge(111)-(√3×√3) reconstruction from forming defects. The phase diagram shows that ring, dot, and triangular defects were only found on Ge (111)-c(2 × 8) substrates. The kindsmore » of islands found in Fe/Ge system are similar to Fe/Ag/Ge system. It indicates that Ge atoms were pulled out to form islands at high annealing temperatures whether there was a Ag layer or not. But a few differences in big pyramidal or strip islands show that the silver layer affects the development of islands by changing the surface symmetry and diffusion coefficient. The structure characters of various islands are also discussed.« less

  4. High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chen; Ho, Hsin-Chia; Shih, Bo-Wei; Tsai, Feng-Yu; Hsueh, Chun-Hway

    2018-05-01

    Surface-enhanced Raman scattering (SERS) substrate with a higher surface area, enhanced light harvesting, multiple hot spots and strong electromagnetic field enhancements would exhibit enhanced Raman signals. Herein, the Ag nanoparticle/ZnO nanowire heterostructure decorated periodic silicon nanotube (Ag@ZnO@SiNT) substrate was proposed and fabricated. The proposed structure employed as SERS-active substrate was examined, and the results showed both the high performance in terms of high sensitivity and good reproducibility. Furthermore, the Ag@ZnO@SiNT substrate demonstrated the self-cleaning performance through the photocatalytic degradation of probed molecules upon UV-irradiation. The results showed that the proposed nanostructure had high performance, good reproducibility and reusability, and it is a promising SERS-active substrate for molecular sensing and cleaning.

  5. Invasive exotic plants in the tropical Pacific Islands: Patterns of Diversity

    Treesearch

    J.S. Denslow; J.C. Space; P.A. Thomas

    2009-01-01

    Oceanic islands are good model systems with which to explore factors affecting exotic species diversity. Islands vary in size, topography, substrate type, degree of isolation, native species diversity, history, human population characteristics, and economic development. Moreover, islands are highly vulnerable to exotic species establishment. We used AICc analyses of...

  6. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica).

    PubMed

    Rovati, José I; Pajot, Hipólito F; Ruberto, Lucas; Mac Cormack, Walter; Figueroa, Lucía I C

    2013-11-01

    Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by ’cold-loving’ fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.

  7. Intraspecific Colour Variation among Lizards in Distinct Island Environments Enhances Local Camouflage

    PubMed Central

    Marshall, Kate L. A.; Philpot, Kate E.; Damas-Moreira, Isabel; Stevens, Martin

    2015-01-01

    Within-species colour variation is widespread among animals. Understanding how this arises can elucidate evolutionary mechanisms, such as those underlying reproductive isolation and speciation. Here, we investigated whether five island populations of Aegean wall lizards (Podarcis erhardii) have more effective camouflage against their own (local) island substrates than against other (non-local) island substrates to avian predators, and whether this was linked to island differences in substrate appearance. We also investigated whether degree of local substrate matching varied among island populations and between sexes. In most populations, both sexes were better matched against local backgrounds than against non-local backgrounds, particularly in terms of luminance (perceived lightness), which usually occurred when local and non-local backgrounds were different in appearance. This was found even between island populations that historically had a land connection and in populations that have been isolated relatively recently, suggesting that isolation in these distinct island environments has been sufficient to cause enhanced local background matching, sometimes on a rapid evolutionary time-scale. However, heightened local matching was poorer in populations inhabiting more variable and unstable environments with a prolonged history of volcanic activity. Overall, these results show that lizard coloration is tuned to provide camouflage in local environments, either due to genetic adaptation or changes during development. Yet, the occurrence and extent of selection for local matching may depend on specific conditions associated with local ecology and biogeographic history. These results emphasize how anti-predator adaptations to different environments can drive divergence within a species, which may contribute to reproductive isolation among populations and lead to ecological speciation. PMID:26372454

  8. Methods and apparatus for transparent display using up-converting nanoparticles

    DOEpatents

    Hsu, Chia Wei; Qiu, Wenjun; Zhen, Bo; Shapira, Ofer; Soljacic, Marin

    2016-10-04

    Disclosed herein are transparent color displays with nanoparticles made with nonlinear materials and/or designed to exhibit optical resonances. These nanoparticles are embedded in or hosted on a transparent substrate, such as a flexible piece of clear plastic or acrylic. Illuminating the nanoparticles with invisible light (e.g., infrared or ultraviolet light) causes them to emit visible light. For example, a rare-earth doped nanoparticle may emit visible light when illuminated simultaneoulsy with a first infrared beam at a first wavelength .lamda..sub.1 and a second infrared beam at a second wavelength .lamda..sub.2. And a frequency-doubling nanoparticle may emit visible light when illuminated with a single infrared beam at the nanoparticle's resonant frequency. Selectively addressing these nanoparticles with appropiately selected pump beams yields visible light emitted from the nanoparticles hosted by the transparent substrate in a desired pattern.

  9. Quantitative determination of melamine in milk using Ag nanoparticle monolayer film as SERS substrate

    NASA Astrophysics Data System (ADS)

    Li, Ruoping; Yang, Jingliang; Han, Junhe; Liu, Junhui; Huang, Mingju

    2017-04-01

    A Raman method employing silver nanoparticle (Ag NP) monolayer film as Surface-enhanced Raman Scattering (SERS) substrate was presented to rapidly detect melamine in milk. The Ag NPs with 80 nm diameter were modified by polyvinylpyrrolidone to improve their uniformity and chemical stability. The treatment procedure of liquid milk required only addition of acetic acid and centrifugation, and required time is less than 15 min. The Ag NP monolayer film significantly enhanced Raman signal from melamine and allowed experimentally reproducible determination of the melamine concentration. A good linear relationship (R2=0.994) between the concentration and Raman peak intensity of melamine at 681 cm-1 was obtained for melamine concentrations between 0.10 mg L-1 and 5.00 mg L-1. This implies that this method can detect melamine concentrations below 1.0 mg L-1, the concentration currently considered unsafe.

  10. A flexible and stable surface-enhanced Raman scattering (SERS) substrate based on Au nanoparticles/Graphene oxide/Cicada wing array

    NASA Astrophysics Data System (ADS)

    Shi, Guochao; Wang, Mingli; Zhu, Yanying; Shen, Lin; Wang, Yuhong; Ma, Wanli; Chen, Yuee; Li, Ruifeng

    2018-04-01

    In this work, we presented an eco-friendly and low-cost method to fabricate a kind of flexible and stable Au nanoparticles/graphene oxide/cicada wing (AuNPs/GO/CW) substrate. By controlling the ratio of reactants, the optimum SERS substrate with average AuNPs size of 65 nm was obtained. The Raman enhancement factor for rhodamine 6G (R6G) was 1.08 ×106 and the limit of detection (LOD) was as low as 10-8 M. After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. In order to better understand the experimental results, the 3D finite-different time-domain simulation was used to simulate the AuNPs/GO/CW-1 (the diameter of the AuNPs was 65 nm) to further investigate the SERS enhancement effect. More importantly, the AuNPs/GO/CW-1 substrates not only can provide strong enhancement factors but also can be stable and reproducible. This SERS substrates owned a good stability for the SERS intensity which was reduced only by 25% after the aging time of 60 days and the relative standard deviation was lower than 20%, revealing excellent uniformity and reproducibility. Our positive findings can pave a new way to optimize the application of SERS substrate as well as provide more SERS platforms for quantitative detection of organic contaminants vestige, which makes it very promising in the trace detection of biological molecules.

  11. Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island.

    PubMed

    Chakraborti, Soumyananda; Mandal, Amit Kumar; Sarwar, Shamila; Singh, Prashantee; Chakraborty, Ranadhir; Chakrabarti, Pinak

    2014-09-01

    Zinc oxide nanoparticles (ZnO-NP) were synthesized by alcoholic route using zinc acetate as the precursor material and lithium hydroxide as hydrolyzing agent. Further ZnO-PEI NP (derivative of ZnO-NP) was made in aqueous medium using the capping agent polyethyleneimine (PEI). The nanoparticles were characterized by XRD measurements, TEM and other techniques; the weight % of coating shell in the polymer-capped particles was determined by TGA. ZnO-PEI NP is more soluble in water than the uncapped ZnO-NP, and forms a colloidal suspension in water. PEI-capped ZnO-NP exhibited better antibacterial activity when compared with that of uncapped ZnO-NP against a range of multiple-antibiotic-resistant (MAR) Gram-negative bacterial strains harboring genes of high-pathogenicity island. ZnO-NP effectively killed these microorganisms by generating reactive oxygen species (ROS) and damaging bacterial membrane. ZnO-PEI NP at LD50 dose in combination with tetracycline showed synergistic effect to inhibit tetracycline-resistant Escherichia coli MREC33 growth by 80%. These results open up a new vista in therapeutics to use antibiotics (which have otherwise been rendered useless against MAR bacteria) in combination with minimized dosage of nanoparticles for the more effective control of MAR pathogenic bacteria. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Silver Nanoparticle-Decorated Shape-Memory Polystyrene Sheets as Highly Sensitive Surface-Enhanced Raman Scattering Substrates with a Thermally Inducible Hot Spot Effect.

    PubMed

    Mengesha, Zebasil Tassew; Yang, Jyisy

    2016-11-15

    In this study, an active surface-enhanced Raman scattering (SERS) substrate with a thermally inducible hot spot effect for sensitive measurement of Raman-active molecules was successfully fabricated from silver nanoparticle (AgNP)-decorated shape-memory polystyrene (SMP) sheets. To prepare the SERS substrate, SMP sheets were first pretreated with n-octylamine for effective decoration with AgNPs. By varying the formulation and condition of the reduction reaction, AgNP-decorated SMP (Ag@SMP) substrates were successfully prepared with optimized particle gaps to produce inducible hot spot effects on thermal shrink. High-quality SERS spectra were easily obtained with enhancement factors higher than 10 8 by probing with aromatic thiols. Several Ag@SMP substrates produced under different reaction conditions were explored for the creation of inducible hot spot effects. The results indicated that AgNP spacing is crucial for strong hot spot effects. The suitability of Ag@SMP substrates for quantification was also evaluated according to the detection of adenine. Results confirmed that prepared Ag@SMP substrates were highly suitable for quantitative analysis because they yielded an estimated limit of detection as low as 120 pg/cm 2 , a linear range of up to 7 ng/cm 2 , and a regression coefficient (R 2 ) of 0.9959. Ag@SMP substrates were highly reproducible; the average relative standard deviation for all measurements was less than 10%.

  13. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications.

    PubMed

    Kwon, Jinhyeong; Cho, Hyunmin; Eom, Hyeonjin; Lee, Habeom; Suh, Young Duk; Moon, Hyunjin; Shin, Jaeho; Hong, Sukjoon; Ko, Seung Hwan

    2016-05-11

    Copper nanomaterials suffer from severe oxidation problem despite the huge cost effectiveness. The effect of two different processes for conventional tube furnace heating and selective laser sintering on copper nanoparticle paste is compared in the aspects of chemical, electrical and surface morphology. The thermal behavior of the copper thin films by furnace and laser is compared by SEM, XRD, FT-IR, and XPS analysis. The selective laser sintering process ensures low annealing temperature, fast processing speed with remarkable oxidation suppression even in air environment while conventional tube furnace heating experiences moderate oxidation even in Ar environment. Moreover, the laser-sintered copper nanoparticle thin film shows good electrical property and reduced oxidation than conventional thermal heating process. Consequently, the proposed selective laser sintering process can be compatible with plastic substrate for copper based flexible electronics applications.

  14. Plasmonic and silicon spherical nanoparticle antireflective coatings

    NASA Astrophysics Data System (ADS)

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-03-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes.

  15. Plasmonic and silicon spherical nanoparticle antireflective coatings

    PubMed Central

    Baryshnikova, K. V.; Petrov, M. I.; Babicheva, V. E.; Belov, P. A.

    2016-01-01

    Over the last decade, plasmonic antireflecting nanostructures have been extensively studied to be utilized in various optical and optoelectronic systems such as lenses, solar cells, photodetectors, and others. The growing interest to all-dielectric photonics as an alternative optical technology along with plasmonics motivates us to compare antireflective properties of plasmonic and all-dielectric nanoparticle coatings based on silver and crystalline silicon respectively. Our simulation results for spherical nanoparticles array on top of amorphous silicon show that both silicon and silver coatings demonstrate strong antireflective properties in the visible spectral range. For the first time, we show that zero reflectance from the structure with silicon coatings originates from the destructive interference of electric- and magnetic-dipole responses of nanoparticle array with the wave reflected from the substrate, and we refer to this reflection suppression as substrate-mediated Kerker effect. We theoretically compare the silicon and silver coating effectiveness for the thin-film photovoltaic applications. Silver nanoparticles can be more efficient, enabling up to 30% increase of the overall absorbance in semiconductor layer. Nevertheless, silicon coatings allow up to 64% absorbance increase in the narrow band spectral range because of the substrate-mediated Kerker effect, and band position can be effectively tuned by varying the nanoparticles sizes. PMID:26926602

  16. Gold nanoparticles deposited on glass: physicochemical characterization and cytocompatibility

    PubMed Central

    2013-01-01

    Properties of gold films sputtered under different conditions onto borosilicate glass substrate were studied. Mean thickness of sputtered gold film was measured by gravimetry, and film contact angle was determined by goniometry. Surface morphology was examined by atomic force microscopy, and electrical sheet resistance was determined by two-point technique. The samples were seeded with rat vascular smooth muscle cells, and their adhesion and proliferation were studied. Gold depositions lead to dramatical changes in the surface morphology and roughness in comparison to pristine substrate. For sputtered gold structures, the rapid decline of the sheet resistance appears on structures deposited for the times above 100 s. The thickness of deposited gold nanoparticles/layer is an increasing function of sputtering time and current. AFM images prove the creation of separated gold islands in the initial deposition phase and a continuous gold coverage for longer deposition times. Gold deposition has a positive effect on the proliferation of vascular smooth muscle cells. Largest number of cells was observed on sample sputtered with gold for 20 s and at the discharge current of 40 mA. This sample exhibits lowest contact angle, low relative roughness, and only mild increase of electrical conductivity. PMID:23705782

  17. Photovoltaic devices having nanoparticle dipoles for enhanced performance and methods for making same

    DOEpatents

    Williams, George M [Portland, OR; Schut, David M [Philomath, OR; Stonas, Andreas [Albany, OR

    2011-08-09

    A photovoltaic device has nanoparticles sandwiched between a conductive substrate and a charge selective transport layer. Each of the nanoparticles has a ligand shell attached to the nanoparticle core. A first type of ligand is electron rich and attached to one hemisphere of the nanoparticle core, while a second type of ligand is electron poor and attached to an opposite hemisphere of the core. Consequently, the ligand shell induces an electric field within the nanoparticle, enhancing the photovoltaic effect. The arrangement of ligands types on different sides of the nanoparticle is obtained by a process involving ligand substitution after adhering the nanoparticles to the conductive substrate.

  18. Substrate patterning with NiOx nanoparticles and hot-wire chemical vapour deposition of WO3x and carbon nanostructures

    NASA Astrophysics Data System (ADS)

    Houweling, Z. S.

    2011-10-01

    The first part of the thesis treats the formation of nickel catalyst nanoparticles. First, a patterning technique using colloids is employed to create ordered distributions of monodisperse nanoparticles. Second, nickel films are thermally dewetted, which produces mobile species that self-arrange in non-ordered distributions of polydisperse particles. Third, the mobility of the nickel species is successfully reduced by the addition of air during the dewetting and the use of a special anchoring layer. Thus, non-ordered distributions of self-arranged monodisperse nickel oxide nanoparticles (82±10 nm x 16±2 nm) are made. Studies on nickel thickness, dewetting time and dewetting temperature are conducted. With these particle templates, graphitic carbon nanotubes are synthesised using catalytic hot-wire chemical vapour deposition (HWCVD), demonstrating the high-temperature processability of the nanoparticles. The second part of this thesis treats the non-catalytic HWCVD of tungsten oxides (WO3-x). Resistively heated tungsten filaments exposed to an air flow at subatmospheric pressures, produce tungsten oxide vapour species, which are collected on substrates and are subsequently characterised. First, a complete study on the process conditions is conducted, whereby the effects of filament radiation, filament temperature, process gas pressure and substrate temperature, are investigated. The thus controlled growth of nanogranular smooth amorphous and crystalline WO3-x thin films is presented for the first time. Partially crystalline smooth hydrous WO3-x thin films consisting of 20 nm grains can be deposited at very high rates. The synthesis of ultrafine powders with particle sizes of about 7 nm and very high specific surface areas of 121.7±0.4 m2·g-1 at ultrahigh deposition rates of 36 µm·min-1, is presented. Using substrate heating to 600°C or more, while using air pressures of 3·10-5 mbar to 0.1 mbar, leads to pronounced crystal structures, from nanowires, to

  19. Incorporation of multilayered silver nanoparticles into polymer brushes as 3-dimensional SERS substrates and their application for bacteria detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Wang, Xiang-Dong; Tian, Ting; Chu, Li-Qiang

    2017-06-01

    Surface-enhanced Raman scattering (SERS) sensors have been extensively studied for ultrasensitive detection of diverse chemical or biological analytes. Facile fabrication of highly sensitive SERS substrates is believed to be of crucial importance in these analytical applications. In this regard, the preparation of 3-dimensional (3D) SERS substrates are explored via the incorporation of multilayered silver nanoparticles (AgNPs) into poly (oligo(ethylene glycol) methacrylate) (POEGMA) brushes by repeating the immersion-rinsing-drying steps for different lengths of time (i.e., the so-called in-stacking method). The POEGMA brushes of different chain lengths are synthesized by surface-initiated atom transfer radical polymerization (ATRP) with various reaction time. The resulting POEGMA/AgNP nanocomposites are characterized by FE-SEM, UV-vis and Raman spectroscopy. FE-SEM and UV-vis results indicate that the AgNPs are successfully incorporated into the POEGMA brushes with a 3D configuration. The nanocomposite films are employed as SERS substrates for the detection of a Raman reporter molecule (i.e., 4-aminothiophenol), giving rise to an enhancement factor of up to 1.29 × 107 and also having relatively good uniformity and reproducibility. The obtained 3D SERS substrates are also used for the detection of a typical gram-positive bacterium, Staphylococcus aureus. The limit of detection is found to be as low as ca. 8 CFU/mL.

  20. Facile fabrication of gold nanoparticles-poly(vinyl alcohol) electrospun water-stable nanofibrous mats: efficient substrate materials for biosensors.

    PubMed

    Wang, Juan; Yao, Hong-Bin; He, Dian; Zhang, Chuan-Ling; Yu, Shu-Hong

    2012-04-01

    Electrospun nanofibrous mats are intensively studied as efficient scaffold materials applied in the fields of tissue engineering, catalysis, and biosensors due to their flexibility and porosity. In this paper, we report a facile route to fabricate gold nanoparticles-poly(vinyl alcohol) (Au NPs-PVA) hybrid water stable nanofibrous mats with tunable densities of Au NPs and further demonstrate the potential application of as-prepared Au NPs-PVA nanofibrous mats as efficient biosensor substrate materials. First, through the designed in situ cross-linkage in coelectrospun PVA-glutaraldehyde nanofibers, water insoluble PVA nanofibrous mats with suitable tensile strength were successfully prepared. Then, 3-mercaptopropyltrimethoxysilane (MPTES) was modified on the surface of obtained PVA nanofibrous films, which triggered successful homogeneous decoration of Au NPs through gold-sulfur bonding interactions. Finally, the Au NPs-PVA nanofibrous mats embedded with horseradish peroxidase (HRP) by electrostatic interactions were used as biosensor substrate materials for H(2)O(2) detection. The fabricated HRP-Au NPs/PVA biosensor showed a highly sensitive detection of H(2)O(2) with a detection limit of 0.5 μM at a signal-to-noise ratio of 3. By modifying other different functional nanaoparticles or enzyme on the PVA nanofibrous film will further expand their potential applications as substrate materials of different biosensors.

  1. (113) Facets of Si-Ge/Si Islands; Atomic Scale Simulation

    NASA Astrophysics Data System (ADS)

    Kassem, Hassan

    We have studied, by computer simulation, some static and vibrationnal proprieties of SiGe/Si islands. We have used a Valence Force Field combined to Monte Carlo technique to study the growth of Ge and SiGe on (001)Si substrates. We have focalised on the case of large pyramidal islands presenting (113) facets on the free (001)Si surface with various non uniform composition inside the islands. The deformation inside the islands and Raman spectroscopy are discussed.

  2. Metal-support interactions during the adsorption of CO on thin layers and islands of epitaxial palladium

    NASA Technical Reports Server (NTRS)

    Park, C.; Poppa, H.; Soria, F.

    1984-01-01

    Islands and continuous layers of palladium were grown in an ultrahigh vacuum on substrates of Mo(110)c(14 x 7)-O, designated MoO(x), and of clean Mo(110). It was found that as-deposited islands and layers exhibited bulk palladium adsorption properties for CO when deposited at room temperature and for palladium thicknesses in excess of about 3 monolayers. CO adsorption was drastically reduced, however, on annealing. For islands, annealing temperatures of as low as 400 K led to some reduction in CO adsorption whereas more severe reductions were found to occur at 600 K for islands and at 800 K for continuous multilayers. The deactivation depended on the palladium thickness, the substrate species and the extent of thermal treatments. Auger electron spectroscopy, temperature-programmed desorption and Delta-Phi measurements were combined to interpret the deactivation behavior in terms of substrate-support interactions involving the diffusion of substrate species towards the palladium surface.

  3. Spontaneous formation of nanoparticle stripe patterns through dewetting

    NASA Astrophysics Data System (ADS)

    Huang, Jiaxing; Kim, Franklin; Tao, Andrea R.; Connor, Stephen; Yang, Peidong

    2005-12-01

    Significant advancement has been made in nanoparticle research, with synthetic techniques extending over a wide range of materials with good control over particle size and shape. A grand challenge is assembling and positioning the nanoparticles in desired locations to construct complex, higher-order functional structures. Controlled positioning of nanoparticles has been achieved in pre-defined templates fabricated by top-down approaches. A self-assembly method, however, is highly desirable because of its simplicity and compatibility with heterogeneous integration processes. Here we report on the spontaneous formation of ordered gold and silver nanoparticle stripe patterns on dewetting a dilute film of polymer-coated nanoparticles floating on a water surface. Well-aligned stripe patterns with tunable orientation, thickness and periodicity at the micrometre scale were obtained by transferring nanoparticles from a floating film onto a substrate in a dip-coating fashion. This facile technique opens up a new avenue for lithography-free patterning of nanoparticle arrays for various applications including, for example, multiplexed surface-enhanced Raman substrates and templated fabrication of higher-order nanostructures.

  4. Study of nanoparticles TiO2 thin films on p-type silicon substrate using different alcoholic solvents

    NASA Astrophysics Data System (ADS)

    Muaz, A. K. M.; Hashim, U.; Arshad, M. K. Md.; Ruslinda, A. R.; Ayub, R. M.; Gopinath, Subash C. B.; Voon, C. H.; Liu, Wei-Wen; Foo, K. L.

    2016-07-01

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO2) thin films. The prepared TiO2 sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO2) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO2 thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO2 films were examined with X-ray Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO2 thin films were measured using two-point-probe technique.

  5. Island growth as a growth mode in atomic layer deposition: A phenomenological model

    NASA Astrophysics Data System (ADS)

    Puurunen, Riikka L.; Vandervorst, Wilfried

    2004-12-01

    Atomic layer deposition (ALD) has recently gained world-wide attention because of its suitability for the fabrication of conformal material layers with thickness in the nanometer range. Although the principles of ALD were realized about 40 years ago, the description of many physicochemical processes that occur during ALD growth is still under development. A constant amount of material deposited in an ALD reaction cycle, that is, growth-per-cycle (GPC), has been a paradigm in ALD through decades. The GPC may vary, however, especially in the beginning of the ALD growth. In this work, a division of ALD processes to four classes is proposed, on the basis of how the GPC varies with the number of ALD reaction cycles: linear growth, substrate-enhanced growth, and substrate-inhibited growth of type 1 and type 2. Island growth is identified as a likely origin for type 2 substrate-inhibited growth, where the GPC increases and goes through a maximum before it settles to a constant value characteristic of a steady growth. A simple phenomenological model is developed to describe island growth in ALD. The model assumes that the substrate is unreactive with the ALD reactants, except for reactive defects. ALD growth is assumed to proceed symmetrically from the defects, resulting islands of a conical shape. Random deposition is the growth mode on the islands. The model allows the simulation of GPC curves, surface fraction curves, and surface roughness, with physically significant parameters. When the model is applied to the zirconium tetrachloride/water and the trimethylaluminum/water ALD processes on hydrogen-terminated silicon, the calculated GPC curves and surface fractions agree with the experiments. The island growth model can be used to assess the occurrence of island growth, the size of islands formed, and point of formation of a continuous ALD-grown film. The benefits and limitations of the model and the general characteristics of type 2 substrate-inhibited ALD are

  6. Structural and rectifying junction properties of self-assembled ZnO nanoparticles in polystyrene diblock copolymers on (1 0 0)Si substrates

    NASA Astrophysics Data System (ADS)

    Ali, H. A.; Iliadis, A. A.; Martinez-Miranda, L. J.; Lee, U.

    2006-06-01

    The structural and electronic transport properties of self-assembled ZnO nanoparticles in polystyrene-acrylic acid, [PS] m/[PAA] n, diblock copolymer on p-type (1 0 0)Si substrates are reported for the first time. Four different block repeat unit ratios ( m/ n) of 159/63, 139/17,106/17, and 106/4, were examined in order to correlate the physical parameters (size, density) of the nanoparticles with the copolymer block lengths m and n. We established that the self-assembled ZnO nanoparticle average size increased linearly with minority block length n, while the average density decreased exponentially with majority block length m. Average size varied from 20 nm to 250 nm and average density from 3.5 × 10 7 cm -2 to 1 × 10 10 cm -2, depending on copolymer parameters. X-ray diffraction studies showed the particles to have a wurtzite crystal structure with the (1 0 0) being the dominant orientation. Room temperature current-voltage characteristics measured for an Al/ZnO-nanocomposite/Si structure exhibited rectifying junction properties and indicated the formation of Al/ZnO-nanocomposite Schottky type junction with a barrier height of 0.7 V.

  7. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    NASA Technical Reports Server (NTRS)

    Pain, Bedabrata (Inventor); Zheng, Xinyu (Inventor)

    2002-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  8. Silicon-on-insulator (SOI) active pixel sensors with the photosite implemented in the substrate

    NASA Technical Reports Server (NTRS)

    Zheng, Xinyu (Inventor); Pain, Bedabrata (Inventor)

    2005-01-01

    Active pixel sensors for a high quality imager are fabricated using a silicon-on-insulator (SOI) process by integrating the photodetectors on the SOI substrate and forming pixel readout transistors on the SOI thin-film. The technique can include forming silicon islands on a buried insulator layer disposed on a silicon substrate and selectively etching away the buried insulator layer over a region of the substrate to define a photodetector area. Dopants of a first conductivity type are implanted to form a signal node in the photodetector area and to form simultaneously drain/source regions for a first transistor in at least a first one of the silicon islands. Dopants of a second conductivity type are implanted to form drain/source regions for a second transistor in at least a second one of the silicon islands. Isolation rings around the photodetector also can be formed when dopants of the second conductivity type are implanted. Interconnections among the transistors and the photodetector are provided to allow signals sensed by the photodetector to be read out via the transistors formed on the silicon islands.

  9. Combination of inverted pyramidal nanovoid with silver nanoparticles to obtain further enhancement and its detection for ricin

    NASA Astrophysics Data System (ADS)

    Wang, Meng; Wang, Bin; Wu, Shixuan; Guo, Tingke; Li, Haoyu; Guo, Zhaoqing; Wu, Junhua; Jia, Peiyuan; Wang, Yuxia; Xu, Xiaoxuan; Wang, Yufang; Zhang, Cunzhou

    2015-02-01

    We have obtained the surface-enhanced Raman scattering substrate by depositing silver nanoparticles on the surface of the inverted pyramidal nanovoid in order to improve the enhance effects. Experimental results showed that the combined substrate exhibited greater enhancement than the nanovoid substrate or nanoparticles. In order to test the SERS activity of the combined substrates, Rh6G and ricin toxin were used as Raman probes. Finite element method was employed to simulate electric field and induced charge distribution of the substrates, which have been used to explore the interaction between nanoparticles and nanovoid as well as mechanism of the great enhancement.

  10. Reduced bacteria adhesion on octenidine loaded mesoporous silica nanoparticles coating on titanium substrates.

    PubMed

    Xu, Gaoqiang; Shen, Xinkun; Dai, Liangliang; Ran, Qichun; Ma, Pingping; Cai, Kaiyong

    2017-01-01

    Bacterial infection is one of the most severe postoperative complications leading to implantation failure. The early bacterial stage (4-6h) was proved to be the "decisive period" for long-term bacteria-related infection. Thus, to endow potential early antibacterial capacity for a titanium (Ti) based implant, an effective antiseptic agent of octenidine dihydrochloride (OCT) was effectively loaded on the mesoporous silica nanoparticles (MSNs)-incorporated titania coating which was fabricated by an electrophoretic-enhanced micro-arc oxidation technique. The surface characteristic of the coatings were characterized by various methods (SEM, AFM, XPS, XRD, etc.), and its corrosion resistance was also examined by the potentiodynamic polarization curves. The composite coating without OCT loading not only displayed good cytocompatibility but also exhibited certain anti-bacterial property. After loading with OCT, its antibacterial efficiency of the titanium substrates with composite coating was greatly enhanced without compromising their cytocompatibility. The study provides an approach for the fabrication of anti-bacterial Ti implant for potential orthopedic application. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. ``The Princess and the Pea'' at the Nanoscale: Wrinkling and Delamination of Graphene on Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mahito; Pierre-Louis, Olivier; Huang, Jia; Fuhrer, Michael S.; Einstein, Theodore L.; Cullen, William G.

    2012-10-01

    Thin membranes exhibit complex responses to external forces or geometrical constraints. A familiar example is the wrinkling, exhibited by human skin, plant leaves, and fabrics, that results from the relative ease of bending versus stretching. Here, we study the wrinkling of graphene, the thinnest and stiffest known membrane, deposited on a silica substrate decorated with silica nanoparticles. At small nanoparticle density, monolayer graphene adheres to the substrate, detached only in small regions around the nanoparticles. With increasing nanoparticle density, we observe the formation of wrinkles which connect nanoparticles. Above a critical nanoparticle density, the wrinkles form a percolating network through the sample. As the graphene membrane is made thicker, global delamination from the substrate is observed. The observations can be well understood within a continuum-elastic model and have important implications for strain-engineering the electronic properties of graphene.

  12. Ordered CdSe nanoparticles within self-assembled block copolymer domains on surfaces.

    PubMed

    Zou, Shan; Hong, Rui; Emrick, Todd; Walker, Gilbert C

    2007-02-13

    Hierarchical, high-density, ordered patterns were fabricated on Si substrates by self-assembly of CdSe nanoparticles within approximately 20-nm-thick diblock copolymer films in a controlled manner. Surface-modified CdSe nanoparticles formed well-defined structures within microphase-separated polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) domains. Trioctylphosphine oxide (TOPO)-coated CdSe nanoparticles were incorporated into PS domains and polyethylene glycol-coated CdSe nanoparticles were located primarily in the P2VP domains. Nearly close-packed CdSe nanoparticles were clearly identified within the highly ordered patterns on Si substrates by scanning electron microscopy (SEM). Contact angle measurements together with SEM results indicate that TOPO-CdSe nanoparticles were partially placed at the air/copolymer interface.

  13. Nanoparticle standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Havrilla, George Joseph

    2016-12-08

    We will purchase a COTS materials printer and adapt it for solution printing of known elemental concentration solutions. A methodology will be developed to create deposits of known mass in known locations on selected substrates. The deposits will be characterized for deposited mass, physical morphology, thickness and uniformity. Once an acceptable methodology has been developed and validated, we will create round robin samples to be characterized by LGSIMS instruments at LANL, PNNL and NIST. We will demonstrate the feasibility of depositing nanoparticles in known masses with the goal of creating separated nanoparticles in known locations.

  14. Extraordinary epitaxial alignment of graphene islands on Au(111)

    NASA Astrophysics Data System (ADS)

    Wofford, Joseph M.; Starodub, Elena; Walter, Andrew L.; Nie, Shu; Bostwick, Aaron; Bartelt, Norman C.; Thürmer, Konrad; Rotenberg, Eli; McCarty, Kevin F.; Dubon, Oscar D.

    2012-05-01

    Pristine, single-crystalline graphene displays a unique collection of remarkable electronic properties that arise from its two-dimensional, honeycomb structure. Using in situ low-energy electron microscopy, we show that when deposited on the (111) surface of Au carbon forms such a structure. The resulting monolayer, epitaxial film is formed by the coalescence of dendritic graphene islands that nucleate at a high density. Over 95% of these islands can be identically aligned with respect to each other and to the Au substrate. Remarkably, the dominant island orientation is not the better lattice-matched 30° rotated orientation but instead one in which the graphene [01] and Au [011] in-plane directions are parallel. The epitaxial graphene film is only weakly coupled to the Au surface, which maintains its reconstruction under the slightly p-type doped graphene. The linear electronic dispersion characteristic of free-standing graphene is retained regardless of orientation. That a weakly interacting, non-lattice matched substrate is able to lock graphene into a particular orientation is surprising. This ability, however, makes Au(111) a promising substrate for the growth of single crystalline graphene films.

  15. Alumina nanoparticle/polymer nanocomposite dielectric for flexible amorphous indium-gallium-zinc oxide thin film transistors on plastic substrate with superior stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, Hsin-Cheng; Pei, Zingway, E-mail: zingway@dragon.nchu.edu.tw; Graduate Institute of Optoelectronic Engineering, National Chung Hsing University, Taichung 40227, Taiwan

    In this study, the Al{sub 2}O{sub 3} nanoparticles were incorporated into polymer as a nono-composite dielectric for used in a flexible amorphous Indium-Gallium-Zinc Oxide (a-IGZO) thin-film transistor (TFT) on a polyethylene naphthalate substrate by solution process. The process temperature was well below 100 °C. The a-IGZO TFT exhibit a mobility of 5.13 cm{sup 2}/V s on the flexible substrate. After bending at a radius of 4 mm (strain = 1.56%) for more than 100 times, the performance of this a-IGZO TFT was nearly unchanged. In addition, the electrical characteristics are less altered after positive gate bias stress at 10 V for 1500 s. Thus, this technology ismore » suitable for use in flexible displays.« less

  16. Surface-mode-assisted amplification of radiative heat transfer between nanoparticles

    NASA Astrophysics Data System (ADS)

    Messina, Riccardo; Biehs, Svend-Age; Ben-Abdallah, Philippe

    2018-04-01

    We show that the radiative heat flux between two nanoparticles can be significantly amplified when they are placed in proximity of a planar substrate supporting a surface resonance. The amplification factor goes beyond two orders of magnitude in the case of dielectric nanoparticles, whereas it is lower in the case of metallic nanoparticles. We analyze how this effect depends on the frequency and on the particle-surface distance by clearly identifying the signature of the surface mode producing the amplification. Finally, we show how the presence of a graphene sheet on top of the substrate can modify the effect by making an amplification of two orders of magnitude possible also in the case of metallic nanoparticles. This long-range amplification effect should play an important role in the thermal relaxation dynamics of nanoparticle networks.

  17. Preparation of a micropatterned rigid-soft composite substrate for probing cellular rigidity sensing.

    PubMed

    Wong, Stephanie; Guo, Wei-hui; Hoffecker, Ian; Wang, Yu-li

    2014-01-01

    Substrate rigidity has been recognized as an important property that affects cellular physiology and functions. While the phenomenon has been well recognized, understanding the underlying mechanism may be greatly facilitated by creating a microenvironment with designed rigidity patterns. This chapter describes in detail an optimized method for preparing substrates with micropatterned rigidity, taking advantage of the ability to dehydrate polyacrylamide gels for micropatterning with photolithography, and subsequently rehydrate the gel to regain the original elastic state. While a wide range of micropatterns may be prepared, typical composite substrates consist of micron-sized islands of rigid photoresist grafted on the surface of polyacrylamide hydrogels of defined rigidity. These islands are displaced by cellular traction forces, for a distance determined by the size of the island, the rigidity of the underlying hydrogel, and the magnitude of traction forces. Domains of rigidity may be created using this composite material to allow systematic investigations of rigidity sensing and durotaxis. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Formation of Nanoparticle Stripe Patterns via Flexible-Blade Flow Coating

    NASA Astrophysics Data System (ADS)

    Lee, Dong Yun; Kim, Hyun Suk; Parkos, Cassandra; Lee, Cheol Hee; Emrick, Todd; Crosby, Alfred

    2011-03-01

    We present the controlled formation of nanostripe patterns of nanoparticles on underlying substrates by flexible-blade flow coating. This technique exploits the combination of convective flow of confined nanoparticle solutions and programmed translation of a substrate to fabricate nanoparticle-polymer line assemblies with width below 300 nm, thickness of a single nanoparticle, and lengths exceeding 10 cm. We demonstrate how the incorporation of a flexible blade into this technique allows capillary forces to self-regulate the uniformity of convective flow processes across large lateral lengths. Furthermore, we exploit solvent mixture dynamics to enhance intra-assembly particle packing and dimensional range. This facile technique opens up a new paradigm for integration of nanoscale patterns over large areas for various applications.

  19. Glass-(nAg, nCu) biocide coatings on ceramic oxide substrates.

    PubMed

    Esteban-Tejeda, Leticia; Malpartida, Francisco; Díaz, Luis Antonio; Torrecillas, Ramón; Rojo, Fernando; Moya, José Serafín

    2012-01-01

    The present work was focused on obtaining biocide coatings constituted by a glassy soda-lime matrix containing silver or copper nanoparticles on ceramic (alumina and zirconia based) substrates. Both glassy coatings showed a high biocide activity against Gram-, Gram+ bacteria and yeast, reducing cell numbers more than three logarithms. Silver nanoparticles had a significantly higher biocide activity than copper nanoparticles, since the lixiviation levels required to reduce cell numbers more than 3 logarithms was of almost 1-2 µg/cm(2) in the case of silver nanoparticles, and 10-15 µg/cm(2) for the copper nanoparticles.

  20. Study of nanoparticles TiO{sub 2} thin films on p-type silicon substrate using different alcoholic solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muaz, A. K. M.; Ruslinda, A. R.; Ayub, R. M.

    2016-07-06

    In this paper, sol-gel method spin coating technique is adopted to prepare nanoparticles titanium dioxide (TiO{sub 2}) thin films. The prepared TiO{sub 2} sol was synthesized using titanium butoxide act as a precursor and subjected to deposited on the p-type silicon oxide (p-SiO{sub 2}) and glass slide substrates under room temperature. The effect of different alcoholic solvents of methanol and ethanol on the structural, morphological, optical and electrical properties were systematically investigated. The coated TiO{sub 2} thin films were annealed in furnace at 773 K for 1 h. The structural properties of the TiO{sub 2} films were examined with X-raymore » Diffraction (XRD). From the XRD analysis, both solvents showing good crystallinity with anatase phase were the predominant structure. Atomic Force Microscopy (AFM) was employed to study the morphological of the thin films. The optical properties were investigated by Ultraviolet-visible (UV-Vis) spectroscopy were found that ethanol as a solvent give a higher optical transmittance if compare to the methanol solvent. The electrical properties of the nanoparticles TiO{sub 2} thin films were measured using two-point-probe technique.« less

  1. Size-Selected Ag Nanoparticles with Five-Fold Symmetry

    PubMed Central

    2009-01-01

    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications. PMID:20596397

  2. Size-selected ag nanoparticles with five-fold symmetry.

    PubMed

    Gracia-Pinilla, Miguelángel; Ferrer, Domingo; Mejía-Rosales, Sergio; Pérez-Tijerina, Eduardo

    2009-05-15

    Silver nanoparticles were synthesized using the inert gas aggregation technique. We found the optimal experimental conditions to synthesize nanoparticles at different sizes: 1.3 ± 0.2, 1.7 ± 0.3, 2.5 ± 0.4, 3.7 ± 0.4, 4.5 ± 0.9, and 5.5 ± 0.3 nm. We were able to investigate the dependence of the size of the nanoparticles on the synthesis parameters. Our data suggest that the aggregation of clusters (dimers, trimer, etc.) into the active zone of the nanocluster source is the predominant physical mechanism for the formation of the nanoparticles. Our experiments were carried out in conditions that kept the density of nanoparticles low, and the formation of larges nanoparticles by coalescence processes was avoided. In order to preserve the structural and morphological properties, the impact energy of the clusters landing into the substrate was controlled, such that the acceleration energy of the nanoparticles was around 0.1 eV/atom, assuring a soft landing deposition. High-resolution transmission electron microscopy images showed that the nanoparticles were icosahedral in shape, preferentially oriented with a five-fold axis perpendicular to the substrate surface. Our results show that the synthesis by inert gas aggregation technique is a very promising alternative to produce metal nanoparticles when the control of both size and shape are critical for the development of practical applications.

  3. Ag electrode modified with polyhexamethylene biguanide stabilized silver nanoparticles: a new type of SERS substrates for detection of enzymatically generated thiocholine

    NASA Astrophysics Data System (ADS)

    Tepanov, A. A.; Nechaeva, N. L.; Prokopkina, T. A.; Kudrinskiy, A. A.; Kurochkin, I. N.; Lisichkin, G. V.

    2015-11-01

    The detection of thiocholine is one of the most widespread techniques for estimation of the cholinesterase activity - acetylcholinesterase and butyrylcholinesterase. Both cholinesterases can be inhibited by organophosphates and carbamates and accordingly can be considered for estimation of these pollutants in the environment. In the current work, SERS spectroscopy was applied for the thiocholine detection. The Ag electrodes modified with silver nanoparticles stabilized by polyhexamethylene biguanide were for the first time suggested as SERS-substrates for that purpose. Such electrodes can be applicable for SERS detection of submicromolar concentrations of thiocholine.

  4. Copper oxide thin films anchored on glass substrate by sol gel spin coating technique

    NASA Astrophysics Data System (ADS)

    Krishnaprabha, M.; Venu, M. Parvathy; Pattabi, Manjunatha

    2018-05-01

    Owing to the excellent optical, thermal, electrical and photocatalytic properties, copper oxide nanoparticles/films have found applications in optoelectronic devices like solar/photovoltaic cells, lithium ion batteries, gas sensors, catalysts, magnetic storage media etc. Copper oxide is a p-type semiconductor material having a band gap energy varying from 1.2 eV-2.1 eV. Syzygium Samarangense fruit extract was used as reducing agent to synthesize copper oxide nanostructures at room temperature from 10 mM copper sulphate pentahydrate solution. The synthesized nanostructures are deposited onto glass substrate by spin coating followed by annealing the film at 200 °C. Both the copper oxide colloid and films are characterized using UV-Vis spectroscopy, field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDS) techniques. Presence of 2 peaks at 500 nm and a broad peak centered around 800 nm in the UV-Vis absorbance spectra of copper oxide colloid/films is indicative of the formation of anisotropic copper oxide nanostructures is confirmed by the FESEM images which showed the presence of triangular shaped and rod shaped particles. The rod shaped particles inside island like structures were found in unannealed films whereas the annealed films contained different shaped particles with reduced sizes. The elemental analysis using EDS spectra of copper oxide nanoparticles/films showed the presence of both copper and oxygen. Electrical properties of copper oxide nanoparticles are affected due to quantum size effect. The electrical studies carried out on both unannealed and annealed copper oxide films revealed an increase in resistivity with annealing of the films.

  5. Examining Wetting and Dewetting Processes in Thin-films on Crystalline Substrates at the Nanoscale

    NASA Astrophysics Data System (ADS)

    Hihath, Sahar

    Controlling the wetting and dewetting of ultra-thin films on solid substrates is important for a variety of technological and fundamental research applications. These applications include film deposition for semiconductor manufacturing, the growth of nanowires through nanoparticle-based catalysis sites, to making ordered arrays of nanoscale particles for electronic and optical devices. However, despite the importance of these processes, the underlying mechanisms by which a film wets a surface or dewets from it is still often unclear and widely debated. In this dissertation we examine wetting and dewetting processes in three materials systems that are relevant for device applications with the ultimate goal of understanding what mechanisms drive the wetting (or dewetting) process in each case. First, we examine the formation of wetting layers between nanoparticle films and highly conductive GaAs substrates for spintronic applications. In this case, the formation of a wetting layer is important for nanoparticle adhesion on the substrate surface. Wetting layers can be made by annealing these systems, which causes elemental diffusion from nanoparticles into the substrate, thereby adhesion between the nanoparticles and the substrate. Here we investigate the feasibility of forming a wetting layer underneath nanoparticles post-annealing in a system of Fe3O4 nanoparticles on a (100) GaAs substrate by studying the interface structure and composition via Transmission Electron Microscopy (TEM), Scanning Transmission Electron Microscopy (STEM), Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray Spectroscopy (EDXS). Electron Energy-Loss fine structures of the Fe-L 3,2 and O-K absorption edges were quantitatively analyzed to gain insight about the compositional gradient of the interface between the nanoparticles and the GaAs substrate. Additionally, real-space density functional theory calculations of the dynamical form factor was performed to confirm the

  6. A Colloidal Route to Detection of Organic Molecules Based on Surface-Enhanced Raman Spectroscopy Using Nanostructured Substrate Derived from Aerosols

    NASA Astrophysics Data System (ADS)

    Gen, Masao; Kakuta, Hideo; Kamimoto, Yoshihito; Wuled Lenggoro, I.

    2011-06-01

    A detection method based on the surface-enhanced Raman spectroscopy (SERS)-active substrate derived from aerosol nanoparticles and a colloidal suspension for detecting organic molecules of a model analyte (a pesticide) is proposed. This approach can detect the molecules of the derived from its solution with the concentration levels of ppb. For substrate fabrication, a gas-phase method is used to directly deposit Ag nanoparticles on to a silicon substrate having pyramidal structures. By mixing the target analyte with a suspension of Ag colloids purchased in advance, clotianidin analyte on Ag colloid can exist in junctions of co-aggregated Ag colloids. Using (i) a nanostructured substrate made from aerosol nanoparticles and (ii) colloidal suspension can increase the number of activity spots.

  7. Immunosensing platform based on gallium nanoparticle arrays on silicon substrates.

    PubMed

    García Marín, Antonio; Hernández, María Jesús; Ruiz, Eduardo; Abad, Jose María; Lorenzo, Encarnación; Piqueras, Juan; Pau, Jose Luis

    2015-12-15

    Gallium nanoparticles (GaNPs) of different sizes are deposited on Si(100) substrates by thermal evaporation. Through ellipsometric analysis, it is possible to investigate the plasmonic effects in the GaNPs and exploit them to develop biosensors. The excitation of the resonant modes for certain incidence angles leads to negative values of the imaginary part of the pseudodielectric function (<εi>) obtained in ellipsometry. Furthermore, there is an abrupt sign change when the difference between the phase shifts of p- and s-polarization components reaches 180° at an energy of around 3.15 eV. At that energy, reversal of the polarization handedness (RPH) occurs for an elliptically-polarized input beam. The energy of the RPH condition reduces as the evaporation time increases. The slope of <εi> at the RPH condition is extremely sensitive to changes in the surrounding medium of the NP surface and prompts the use of the GaNP/Si system as sensor platform. Fourier transformed infrared spectroscopy (FTIR) is used before and after functionalization with 3,3'-dithiodipropionic acid di(N-succinimidyl ester) and a glutathione-specific antibody to confirm the chemical modification of the sample surface. The developed immunosensor is exposed to different concentrations of glutathione (GSH) showing a linear relationship between the slope of the pseudodielectric function at the RPH condition and the GSH concentration. The immunosensor shows a limit of detection of 10nM enabling its use for the detection of low GSH levels in different medical conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. PLGA nanoparticles as chlorhexidine-delivery carrier to resin-dentin adhesive interface.

    PubMed

    Priyadarshini, Balasankar Meera; Mitali, Kakran; Lu, Thong Beng; Handral, Harish K; Dubey, Nileshkumar; Fawzy, Amr S

    2017-07-01

    To characterize and deliver fabricated CHX-loaded PLGA-nanoparticles inside micron-sized dentinal-tubules of demineralized dentin-substrates and resin-dentin interface. Nanoparticles fabricated by emulsion evaporation were assessed in-vitro by different techniques. Delivery of drug-loaded nanoparticles to demineralized dentin substrates, interaction with collagen matrix, and ex-vivo CHX-release profiles using extracted teeth connected to experimental setup simulating pulpal hydrostatic pressure were investigated. Furthermore, nanoparticles association/interaction with a commercial dentin-adhesive applied to demineralized dentin substrates were examined. The results showed that the formulated nanoparticles demonstrated attractive physicochemical properties, low cytotoxicity, potent antibacterial efficacy, and slow degradation and gradual CHX release profiles. Nanoparticles delivered efficiently inside dentinal-tubules structure to sufficient depth (>10μm) against the simulated upward pulpal hydrostatic-pressure, even after bonding-resins infiltration and were attached/retained on collagen-fibrils. These results verified the potential significance of this newly introduced drug-delivery therapeutic strategy for future clinical applications and promote for a new era of future dental research. This innovative drug-delivery strategy has proven to be a reliable method for delivering treatments that could be elaborated for other clinical applications in adhesive and restorative dentistry. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Surface Attachment of Gold Nanoparticles Guided by Block Copolymer Micellar Films and Its Application in Silicon Etching

    PubMed Central

    Wei, Mingjie; Wang, Yong

    2015-01-01

    Patterning metallic nanoparticles on substrate surfaces is important in a number of applications. However, it remains challenging to fabricate such patterned nanoparticles with easily controlled structural parameters, including particle sizes and densities, from simple methods. We report on a new route to directly pattern pre-formed gold nanoparticles with different diameters on block copolymer micellar monolayers coated on silicon substrates. Due to the synergetic effect of complexation and electrostatic interactions between the micellar cores and the gold particles, incubating the copolymer-coated silicon in a gold nanoparticles suspension leads to a monolayer of gold particles attached on the coated silicon. The intermediate micellar film was then removed using oxygen plasma treatment, allowing the direct contact of the gold particles with the Si substrate. We further demonstrate that the gold nanoparticles can serve as catalysts for the localized etching of the silicon substrate, resulting in nanoporous Si with a top layer of straight pores. PMID:28793407

  10. Increasing light coupling in a photovoltaic film by tuning nanoparticle shape with substrate surface energy

    NASA Astrophysics Data System (ADS)

    Kataria, Devika; Krishnamoorthy, Kothandam; Iyer, S. Sundar Kumar

    2017-08-01

    Tuning metal nanoparticle (MNP) contact angle on the surface it is formed can help maximise the useful optical coupling in photovoltaic films by localized surface plasmon (LSP) resonance—opening up the possibility of building improved photovoltaic cells. In this work experimental demonstration of optical absorption increase in copper phthalocyanine (CuPc) films by tuning silver MNP shape by changing its contact angles with substrate has been reported. Thin films of poly3,4 ethylenedioxythiophene: sodium dodecycl sulphate (PEDOT:SDS) with different surface energies were formed on indium tin oxide (ITO) coated glass by electro-deposition. Silver MNPs thermally evaporated directly on ozonised ITO as well as on the PEDOT:SDS films showed contact angles ranging from 60° to 125°. The CuPc layer was deposited on top of the MNPs. For the samples studied, best optical absorption in the CuPc layer was for a contact angle of 110°.

  11. Dewetting-mediated pattern formation in nanoparticle assemblies

    NASA Astrophysics Data System (ADS)

    Stannard, Andrew

    2011-03-01

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  12. Dewetting-mediated pattern formation in nanoparticle assemblies.

    PubMed

    Stannard, Andrew

    2011-03-02

    The deposition of nanoparticles from solution onto solid substrates is a diverse subfield of current nanoscience research. Complex physical and chemical processes underpin the self-assembly and self-organization of colloidal nanoparticles at two-phase (solid-liquid, liquid-air) interfaces and three-phase (solid-liquid-air) contact lines. This review discusses key recent advances made in the understanding of nonequilibrium dewetting processes of nanoparticle-containing solutions, detailing how such an apparently simple experimental system can give rise to such a strikingly varied palette of two-dimensional self-organized nanoparticle array morphologies. Patterns discussed include worm-like domains, cellular networks, microscale rings, and fractal-like fingering structures. There remain many unresolved issues regarding the role of the solvent dewetting dynamics in assembly processes of this type, with a significant focus on how dewetting can be coerced to produce nanoparticle arrays with desirable characteristics such as long-range order. In addition to these topics, methods developed to control nanofluid dewetting through routes such as confining the geometries of drying solutions, depositing onto pre-patterned heterogeneous substrates, and post-dewetting pattern evolution via local or global manipulation are covered.

  13. Efficient Surface Enhanced Raman Scattering substrates from femtosecond laser based fabrication

    NASA Astrophysics Data System (ADS)

    Parmar, Vinod; Kanaujia, Pawan K.; Bommali, Ravi Kumar; Vijaya Prakash, G.

    2017-10-01

    A fast and simple femtosecond laser based methodology for efficient Surface Enhanced Raman Scattering (SERS) substrate fabrication has been proposed. Both nano scaffold silicon (black silicon) and gold nanoparticles (Au-NP) are fabricated by femtosecond laser based technique for mass production. Nano rough silicon scaffold enables large electromagnetic fields for the localized surface plasmons from decorated metallic nanoparticles. Thus giant enhancement (approximately in the order of 104) of Raman signal arises from the mixed effects of electron-photon-phonon coupling, even at nanomolar concentrations of test organic species (Rhodamine 6G). Proposed process demonstrates the low-cost and label-less application ability from these large-area SERS substrates.

  14. Diamond Synthesis Employing Nanoparticle Seeds

    NASA Technical Reports Server (NTRS)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  15. Fabricating solar cells with silicon nanoparticles

    DOEpatents

    Loscutoff, Paul; Molesa, Steve; Kim, Taeseok

    2014-09-02

    A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.

  16. Revealing the Atomic Restructuring of Pt–Co Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xin, Huolin L.; Alayoglu, Selim; Tao, Runzhe

    2014-06-11

    We studied Pt-Co bimetallic nanoparticles during oxidation in O2 and reduction in H2 atmospheres using an aberration corrected environmental transmission electron microscope. During oxidation Co migrates to the nanoparticle surface forming a strained epitaxial CoO film. It subsequently forms islands via strain relaxation. The atomic restructuring is captured as a function of time. During reduction cobalt migrates back to the bulk, leaving a monolayer of platinum on the surface.

  17. Laser-Induced, Local Oxidation of Copper Nanoparticle Films During Raman Measurements

    NASA Astrophysics Data System (ADS)

    Hight Walker, Angela R.; Cheng, Guangjun; Calizo, Irene

    2011-03-01

    The optical properties of gold and silver nanoparticles and their films have been thoroughly investigated as surface enhanced Raman scattering (SERS) substrates and chemical reaction promoters. Similar to gold and silver nanoparticles, copper nanoparticles exhibit distinct plasmon absorptions in the visible region. The work on copper nanoparticles and their films is limited due to their oxidization in air. However, their high reactivity actually provides an opportunity to exploit the laser-induced thermal effect and chemical reactions of these nanoparticles. Here, we present our investigation of the local oxidation of a copper nanoparticle film induced by a visible laser source during Raman spectroscopic measurements. The copper nanoparticle film is prepared by drop-casting chemically synthesized copper colloid onto silicon oxide/silicon substrate. The local oxidation induced by visible lasers in Raman spectroscopy is monitored with the distinct scattering peaks for copper oxides. Optical microscopy and scanning electron microscopy have been used to characterize the laser-induced morphological changes in the film. The results of this oxidation process with different excitation wavelengths and different laser powers will be presented.

  18. Polarized neutron reflectivity from monolayers of self-assembled magnetic nanoparticles.

    PubMed

    Mishra, D; Petracic, O; Devishvili, A; Theis-Bröhl, K; Toperverg, B P; Zabel, H

    2015-04-10

    We prepared monolayers of iron oxide nanoparticles via self-assembly on a bare silicon wafer and on a vanadium film sputter deposited onto a plane sapphire substrate. The magnetic configuration of nanoparticles in such a dense assembly was investigated by polarized neutron reflectivity. A theoretical model fit shows that the magnetic moments of nanoparticles form quasi domain-like configurations at remanence. This is attributed to the dipolar coupling amongst the nanoparticles.

  19. Self-assembly of silver nanoparticles as high active surface-enhanced Raman scattering substrate for rapid and trace analysis of uranyl(VI) ions

    NASA Astrophysics Data System (ADS)

    Wang, Shaofei; Jiang, Jiaolai; Wu, Haoxi; Jia, Jianping; Shao, Lang; Tang, Hao; Ren, Yiming; Chu, Mingfu; Wang, Xiaolin

    2017-06-01

    A facile surface-enhanced Raman scattering (SERS) substrate based on the self-assembly of silver nanoparticles on the modified silicon wafer was obtained, and for the first time, an advanced SERS analysis method basing on this as-prepared substrate was established for high sensitive and rapid detection of uranyl ions. Due to the weakened bond strength of Odbnd Udbnd O resulting from two kinds of adsorption of uranyl species (;strong; and ;weak; adsorption) on the substrate, the ν1 symmetric stretch vibration frequency of Odbnd Udbnd O shifted from 871 cm- 1 (normal Raman) to 720 cm- 1 and 826 cm- 1 (SERS) along with significant Raman enhancement. Effects of the hydrolysis of uranyl ions on SERS were also investigated, and the SERS band at 826 cm- 1 was first used to approximately define the constitution of uranyl species at trace quantity level. Besides, the SERS intensity was proportional to the variable concentrations of uranyl nitrate ranging from 10- 7 to 10- 3 mol L- 1 with an excellent linear relation (R2 = 0.998), and the detection limit was 10- 7 mol L- 1. Furthermore, the related SERS approach involves low-cost substrate fabrication, rapid and trace analysis simultaneously, and shows great potential applications for the field assays of uranyl ions in the nuclear fuel cycle and environmental monitoring.

  20. Facile fabrication of superhydrophobic hybrid nanotip and nanopore arrays as surface-enhanced Raman spectroscopy substrates

    NASA Astrophysics Data System (ADS)

    Li, Yuxin; Li, Juan; Wang, Tiankun; Zhang, Zhongyue; Bai, Yu; Hao, Changchun; Feng, Chenchen; Ma, Yingjun; Sun, Runguang

    2018-06-01

    We demonstrate the fabrication of superhydrophobic hybrid nanotip and nanopore arrays (NTNPAs) that can act as sensitive surface-enhanced Raman spectroscopy (SERS) substrates. The large-area substrates were fabricated by following a facile, low-cost process consisting of the one-step voltage-variation anodization of Al foil, followed by Ag nanoparticle deposition and fluorosilane (FS) modification. Uniformly distributed, large-area (5 × 5 cm2) NTNPAs can be obtained rapidly by anodizing Al foil for 1560 s followed by Ag deposition for 400 s, which showed good SERS reproducibility as using1 μM Rhodamine 6G (R6G) as analyte. SERS performances of superhydrophobic NTNPAs with different FS modification and Ag nanoparticle deposition orders were also studied. The nanosamples with FS modification followed by Ag nanoparticle deposition (FS-Ag) showed better SERS sensitivity than the nanosamples with Ag nanoparticle deposition followed by FS modification (Ag-FS). The detection limit of a directly dried R6G droplet can reach 10-8 M on the FS-Ag nanosamples. The results can help create practical high sensitive SERS substrates, which can be used in developing advanced bio- and chemical sensors.

  1. Nucleation Of Ge 3D-islands On Pit-patterned Si Substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, P. L.; Smagina, J. V.; Vlasov, D. Yu.

    2011-12-23

    Joint experimental and theoretical study of Ge nanoislands growth on pit-patterned Si substrate is carried out. Si substrates that have been templated by means of electron beam lithography and reactive ion etching have been used to grow Ge by molecular-beam epitaxy. Atomic-force-microscopy studies show that at Si(100) substrate temperature 550 deg. C, Ge nanoislands are formed at the pits' edges, rather than between the pits. The effect is interpreted in terms of energy barrier, that is formed near the edge of a pit and prevents Ge transport inside the pit. By molecular dynamics calculations the value of the energy barriermore » 0.9 eV was obtained.« less

  2. Generic approach for synthesizing asymmetric nanoparticles and nanoassemblies

    DOEpatents

    Sun, Yugang; Hu, Yongxing

    2015-05-26

    A generic route for synthesis of asymmetric nanostructures. This approach utilizes submicron magnetic particles (Fe.sub.3O.sub.4--SiO.sub.2) as recyclable solid substrates for the assembly of asymmetric nanostructures and purification of the final product. Importantly, an additional SiO.sub.2 layer is employed as a mediation layer to allow for selective modification of target nanoparticles. The partially patched nanoparticles are used as building blocks for different kinds of complex asymmetric nanostructures that cannot be fabricated by conventional approaches. The potential applications such as ultra-sensitive substrates for surface enhanced Raman scattering (SERS) have been included.

  3. Stable aqueous based Cu nanoparticle ink for printing well-defined highly conductive features on a plastic substrate.

    PubMed

    Jeong, Sunho; Song, Hae Chun; Lee, Won Woo; Lee, Sun Sook; Choi, Youngmin; Son, Wonil; Kim, Eui Duk; Paik, Choon Hoon; Oh, Seok Heon; Ryu, Beyong-Hwan

    2011-03-15

    With the aim of inkjet printing highly conductive and well-defined Cu features on plastic substrates, aqueous based Cu ink is prepared for the first time using water-soluble Cu nanoparticles with a very thin surface oxide layer. Owing to the specific properties, high surface tension and low boiling point, of water, the aqueous based Cu ink endows a variety of advantages over conventional Cu inks based on organic solvents in printing narrow conductive patterns without irregular morphologies. It is demonstrated how the design of aqueous based ink affects the basic properties of printed conductive features such as surface morphology, microstructure, conductivity, and line width. The long-term stability of aqueous based Cu ink against oxidation is analyzed through an X-ray photoelectron spectroscopy (XPS) based investigation on the evolution of the surface oxide layer in the aqueous based ink.

  4. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates.

    PubMed

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel; Gutiérrez-Arzaluz, Mirella; Romero-Romo, Mario

    2017-09-27

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO₂) nanoparticles plus zirconia (ZrO₂) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO₂ nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO₂ nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR).

  5. Effect of Zirconia Nanoparticles in Epoxy-Silica Hybrid Adhesives to Join Aluminum Substrates

    PubMed Central

    Figueroa-Lara, José de Jesús; Torres-Rodríguez, Miguel

    2017-01-01

    This research presents the interaction of the epoxy polymer diglicydil ether of bisphenol-A (DGEBA) with silica (SiO2) nanoparticles plus zirconia (ZrO2) nanoparticles obtained via the sol-gel method in the synthesis of an epoxy-silica-zirconia hybrid adhesive cured with polyamide. ZrO2 nanoparticles were added to the epoxy-silica hybrid adhesive produced in situ to modify the apparent shear strength of two adhesively bonded aluminum specimens. The results showed that the addition of different amounts of ZrO2 nanoparticles increased the shear strength of the adhesively bonded aluminum joint, previously treated by sandblasting, immersion in hot water and silanized with a solution of hydrolyzed 3-glycidoxipropyltrimethoxysilane (GPTMS). The morphology and microstructure of the nanoparticles and aluminum surfaces were examined by scanning electron microscopy (SEM), and elemental analysis was performed with the Energy-dispersive X-ray spectroscopy (EDS) detector; the chemical groups were investigated during the aluminum surface modification using Fourier transform infrared spectroscopy (FTIR). PMID:28953243

  6. On the Correlation Between the Self-Organized Island Pattern and Substrate Elastic Anisotropy

    DTIC Science & Technology

    2007-04-01

    eters would be most useful to experimentalists. The kinetic Monte Carlo KMC has been proposed re- cently to study QD island self-organization by many...time ti. 21,25 Based on a proposed coupled KMC , the authors simu- lated the island ordering and narrow size distribution in two dimensions and further...100, 013527 2006pattern has not been studied so far within the coupled KMC algorithm where the long-range strain energy field is in- cluded

  7. Optimized hydrogen sensing characteristic of Pd/ZnO nanoparticles based Schottky diode on glass substrate

    NASA Astrophysics Data System (ADS)

    Chandra, Lalit; Sahu, Praveen Kumar; Dwivedi, R.; Mishra, V. N.

    2017-10-01

    The present work deals with the development of the Pd/ZnO naoparticles based sensor for detection of hydrogen (H2) gas at relatively low temperature (75-110 °C). Pd/ZnO Schottky diode was fabricated by ZnO nanoparticles based thin film on glass substrate using sol-gel spin coating technique. These ZnO nanoparticles have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive x-ray spectroscope (EDS), and field emission scanning electron microscope (FE-SEM) which reveals the ZnO film having particles size in the range of ~25 to ~110 nm with ~52.73 nm surface roughness. Gas dependent diode parameters such as barrier height and ideality factor have been evaluated upon exposure of H2 gas concentration in the range from 200-2000 ppm over the temperature range from 75 to 110 °C. The sensitivity of the Pd/ZnO sensor has been studied in terms of change in diode forward current upon exposure to H2 gas. Experimental result shows the optimized sensitivity ~246.22% for H2 concentration of 2000 ppm at temperature 90 °C. The hydrogen sensing mechanism has been explained by surface and subsurface adsorption of H2 molecules on Pd surface; subsequently, dissociation of H2 molecules into H  +  H atoms and diffusion to trap sites (oxygen ions) available on ZnO surface, resulting in formation of dipole moments at Pd/ZnO interface. The variation in the sensitivity, response and recovery time with temperature of Pd/ZnO sensor has also been studied.

  8. Shape-engineering substrate-based plasmonic nanomaterials

    NASA Astrophysics Data System (ADS)

    Gilroy, Kyle D.

    The advancement of next generation technologies is reliant on our ability to engineer matter at the nanoscale. Since the morphological features of nanomaterials dictate their chemical and physical properties, a significant effort has been put forth to develop syntheses aimed at fine tuning their size, shape and composition. This massive effort has resulted in a maturing colloidal chemistry containing an extensive collection of morphologies with compositions nearly spanning the entire transition of the periodic table. While colloidal nanoparticles have opened the door to promising applications in fields such as cancer theranostics, drug delivery, catalysis and sensing; the synthetic protocols for the placement of nanomaterials on surfaces, a requisite for chip-based devices, are ill-developed. This dissertation serves to address this limitation by highlighting a series of syntheses related to the design of substrate-based nanoparticles whose size, shape and composition are controllably engineered to a desired endpoint. The experimental methods are based on a template-mediated approach which sees chemical modifications made to prepositioned thermally assembled metal nanostructures which are well bonded to a sapphire substrate. The first series of investigations will highlight synthetic routes utilizing galvanic replacement reactions, where the prepositioned templates are chemically transformed into hollow nanoshells. Detailed studies are provided highlighting discoveries related to (i) hollowing, (ii) defect transfer, (iii) strain induction, (iv) interdiffusion, (v) crystal structure and (vi) the localized surface plasmon resonance (LSPR). The second series of investigations, based on heterogeneous nucleation, have Au templates serve as nucleation sites for metal atoms arriving in either the solution- or vapor phase. The solution-phase heterogeneous nucleation of Ag on Au reveals that chemical kinetics (injection rate & precursor concentration) can be used to control

  9. Prevention of nanoparticle coalescence under high-temperature annealing.

    PubMed

    Mizuno, Mikihisa; Sasaki, Yuichi; Yu, Andrew C C; Inoue, Makoto

    2004-12-21

    An effective method of employing 3-aminopropyldimethylethoxysilane linker molecules to stabilize 4.4 nm FePt nanoparticle monolayer films on a SiO2 substrate as well as to prevent coalescence of the particles under 800 degrees C annealing is reported. As-deposited FePt nanoparticle films in chemically disordered face-centered-cubic phase transform to mostly chemically ordered L1 0 structure after annealing, while the nanoparticles are free from serious coalescence. The method may fulfill the pressing need to prevent nanoparticle coalescence under high-temperature annealing for the development of FePt nanoparticle based products, such as ultrahigh-density magnetic recording media and novel memory devices.

  10. Magnet-induced temporary superhydrophobic coatings from one-pot synthesized hydrophobic magnetic nanoparticles.

    PubMed

    Fang, Jian; Wang, Hongxia; Xue, Yuhua; Wang, Xungai; Lin, Tong

    2010-05-01

    In this paper, we report on the production of superhydrophobic coatings on various substrates (e.g., glass slide, silicon wafer, aluminum foil, plastic film, nanofiber mat, textile fabrics) using hydrophobic magnetic nanoparticles and a magnet-assembly technique. Fe(3)O(4) magnetic nanoparticles functionalized with a thin layer of fluoroalkyl silica on the surface were synthesized by one-step coprecipitation of Fe(2+)/Fe(3+) under an alkaline condition in the presence of a fluorinated alkyl silane. Under a magnetic field, the magnetic nanoparticles can be easily deposited on any solid substrate to form a thin superhydrophobic coating with water contact angle as high as 172 degrees , and the surface superhydrophobicity showed very little dependence on the substrate type. The particulate coating showed reasonable durability because of strong aggregation effect of nanoparticles, but the coating layer can be removed (e.g., by ultrasonication) to restore the original surface feature of the substrates. By comparison, the thin particle layer deposited under no magnetic field showed much lower hydrophobicity. The main reason for magnet-induced superhydrophobic surfaces is the formation of nano- and microstructured surface features. Such a magnet-induced temporary superhydrophobic coating may have wide applications in electronic, biomedical, and defense-related areas.

  11. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.

    PubMed

    Woehl, Taylor; Keller, Robert

    2016-12-01

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150mrad) and on thick substrates (>50nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. Copyright © 2016. Published by

  12. Au nanoparticles films used in biological sensing

    NASA Astrophysics Data System (ADS)

    Rosales Pérez, M.; Delgado Macuil, R.; Rojas López, M.; Gayou, V. L.; Sánchez Ramírez, J. F.

    2009-05-01

    Lactobacillus para paracasei are used commonly as functional food and probiotic substances. In this work Au nanoparticles self-assembled films were used for Lactobacillus para paracasei determination at five different concentrations. Functionalized substrates were immersed in a colloidal solution for one and a half hour at room temperature and dried at room temperature during four hours. After that, drops of Lactobacillus para paracasei in aqueous solution were put into the Au nanoparticles film and let dry at room temperature for another two hours. Infrared spectroscopy in attenuated total reflectance sampling mode was used to observe generation peaks due to substrate silanization, enhancement of Si-O band intensity due to the Au colloids added to silanized substrate and also to observe the enhancement of Lactobacillus para paracasei infrared intensity of the characteristic frequencies at 1650, 1534 and 1450 cm-1 due to surface enhancement infrared absorption.

  13. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    NASA Astrophysics Data System (ADS)

    Kashiwagi, Y.; Koizumi, A.; Takemura, Y.; Furuta, S.; Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Fujiwara, Y.; Murahashi, K.; Ohtsuka, K.; Nakamoto, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  14. When Might Barrier Island Chains 'Collapse'? An Initial Model Investigation

    NASA Astrophysics Data System (ADS)

    Slott, J. M.; Murray, A. B.

    2007-12-01

    -sized gaps, ranging between 2.5-10 km. In preliminary model experiments, where we do not limit the availability of mobile sediment nor include tidal inlet dynamics, large gaps tend to close under all of the erosion rate scenarios and gap sizes. The ends of barrier islands extend to fill in the gaps and recurve landward. The rate of closure of gaps is unaffected by sea-level rise rates even under the most extreme cases; alongshore sediment fluxes exceed those associated with sea-level rise as highly curved isolated islands migrate rapidly landward before coalescing into an island chain again at a new location. In a natural setting, the overwash and spit-growth that maintain sub-aerial islands and tend to knit them back together (respectively) could be inhibited by a lack of mobile sediment. The shoreface of the Outer Banks, for example, consists of sometimes patchy Holocene sands perched atop a semi-lithified, sometimes more muddy Pleistocene substrate. Weathering of the Pleistocene substrate over long timescales generates mobile sediment consisting of both sands and muds. The fine-grained material, however, is typically lost to the nearshore system. The shoreface may not be able to weather fast enough to keep up with rapidly migrating islands. This effect, combined with that of substrate composition, will tend to limit the rate that sediment can be liberated, and, in turn, could prevent island-chain recovery. We conduct a series of model experiments to determine the combinations of geological parameters (weathering rates, composition) and forcing parameters (rate of sea-level rise, frequency of storms) that prevent barrier-island-chain recovery.

  15. Electrocatalytic performance of Pt nanoparticles sputter-deposited on indium tin oxide toward methanol oxidation reaction: The particle size effect

    NASA Astrophysics Data System (ADS)

    Ting, Chao-Cheng; Chao, Chih-Hsuan; Tsai, Cheng Yu; Cheng, I.-Kai; Pan, Fu-Ming

    2017-09-01

    We sputter-deposited Pt nanoparticles with an average size ranging from 2.0 nm to 8.5 nm on the indium-tin oxide (ITO) glass substrate, and studied the effect of the size of Pt nanoparticles on electrocatalytic activity of the Pt/ITO electrode toward methanol oxidation reaction (MOR) in acidic solution. X-ray photoelectron spectroscopy (XPS) reveals an interfacial oxidized Pt layer present between Pt nanoparticles and the ITO substrate, which may modify the surface electronic structure of Pt nanoparticles and thus influences the electrocatalytic properties of the Pt catalyst toward MOR. According to electrochemical analyses, smaller Pt nanoparticles exhibit slower kinetics for CO electrooxidation and MOR. However, a smaller particle size enables better CO tolerance because the bifunctional mechanism is more effective on smaller Pt nanoparticles. The electrocatalytic activity decays rapidly for Pt nanoparticles with a size smaller than 3 nm and larger than 8 nm. The rapid activity decay is attributed to Pt dissolution for smaller nanoparticles and to CO poisoning for larger ones. Pt nanoparticles of 5-6 nm in size loaded on ITO demonstrate a greatly improved electrocatalytic activity and stability compared with those deposited on different substrates in our previous studies.

  16. Formation of strained ring-shaped islands around square notches.

    PubMed

    Colin, Jérôme

    2012-06-06

    The location and morphology of a two-dimensional island has been studied theoretically as a function of the misfit stress in the neighbourhood of a square notch present on the free surface of an epitaxially stressed film deposited on a substrate. From a static energy calculation, it has been shown that the notches can drive the motion of the islands towards the notches. It was then found that, depending on the side length and depth of the notch, self-organized formation at constant volume of a two-dimensional ring-shaped island can be favoured along the periphery of the pre-existing notch with respect to the notch shrinking.

  17. Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts

    PubMed Central

    Govan, Joseph; Gun’ko, Yurii K.

    2014-01-01

    Magnetic nanoparticles are a highly valuable substrate for the attachment of homogeneous inorganic and organic containing catalysts. This review deals with the very recent main advances in the development of various nanocatalytic systems by the immobilisation of homogeneous catalysts onto magnetic nanoparticles. We discuss magnetic core shell nanostructures (e.g., silica or polymer coated magnetic nanoparticles) as substrates for catalyst immobilisation. Then we consider magnetic nanoparticles bound to inorganic catalytic mesoporous structures as well as metal organic frameworks. Binding of catalytically active small organic molecules and polymers are also reviewed. After that we briefly deliberate on the binding of enzymes to magnetic nanocomposites and the corresponding enzymatic catalysis. Finally, we draw conclusions and present a future outlook for the further development of new catalytic systems which are immobilised onto magnetic nanoparticles. PMID:28344220

  18. Measurement of ablation threshold of oxide-film-coated aluminium nanoparticles irradiated by femtosecond laser pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chefonov, O V; Ovchinnikov, A V; Il'ina, I V

    We report the results of experiments on estimation of femtosecond laser threshold intensity at which nanoparticles are removed from the substrate surface. The studies are performed with nanoparticles obtained by femtosecond laser ablation of pure aluminium in distilled water. The attenuation (or extinction, i.e. absorption and scattering) spectra of nanoparticles are measured at room temperature in the UV and optical wavelength ranges. The size of nanoparticles is determined using atomic force microscopy. A new method of scanning photoluminescence is proposed to evaluate the threshold of nanoparticle removal from the surface of a glass substrate exposed to IR femtosecond laser pulsesmore » with intensities 10{sup 11} – 10{sup 13} W cm{sup -2}. (interaction of laser radiation with matter)« less

  19. [Monolithic column-gold composite substrate preparation and application to SERS detection of pigment].

    PubMed

    Xie, Yun-Fei; Li, Yan; Yu, Hui; Qian, He; Yao, Wei-Rong

    2014-03-01

    In the present study, we developed a novel SERS substrate with the porous monolith material combined with classic gold nanoparticles, and erythrosine as the research object, by adjusting the different experimental conditions for optimal SERS enhancements, including system pH and mixing time, and ultimately selected the optimum pH value 5.06 and mixing time 25 min. Compared with the traditional gold plastic substrate enhancement effect, the experimental conditions were applied to the monolith substrate SERS detection of dye erythrosine, different concentrations of samples were used for erythrosine SERS detection, and the detection limit reached 0.1 g x mL(-1). The method uses the payload of gold nanoparticles in mesoporous materials to effectively enhance the SERS signal. And this method has the advantages of simpleness and good stability, which provides a favorable theoretical basis for the rapid prohibited colorings screening.

  20. Superhydrophobic SERS substrates based on silicon hierarchical nanostructures

    NASA Astrophysics Data System (ADS)

    Chen, Xuexian; Wen, Jinxiu; Zhou, Jianhua; Zheng, Zebo; An, Di; Wang, Hao; Xie, Weiguang; Zhan, Runze; Xu, Ningsheng; Chen, Jun; She, Juncong; Chen, Huanjun; Deng, Shaozhi

    2018-02-01

    Silicon nanostructures have been cultivated as promising surface enhanced Raman scattering (SERS) substrates in terms of their low-loss optical resonance modes, facile functionalization, and compatibility with today’s state-of-the-art CMOS techniques. However, unlike their plasmonic counterparts, the electromagnetic field enhancements induced by silicon nanostructures are relatively small, which restrict their SERS sensing limit to around 10-7 M. To tackle this problem, we propose here a strategy for improving the SERS performance of silicon nanostructures by constructing silicon hierarchical nanostructures with a superhydrophobic surface. The hierarchical nanostructures are binary structures consisted of silicon nanowires (NWs) grown on micropyramids (MPs). After being modified with perfluorooctyltriethoxysilane (PFOT), the nanostructure surface shows a stable superhydrophobicity with a high contact angle of ˜160°. The substrate can allow for concentrating diluted analyte solutions into a specific area during the evaporation of the liquid droplet, whereby the analytes are aggregated into a small volume and can be easily detected by the silicon nanostructure SERS substrate. The analyte molecules (methylene blue: MB) enriched from an aqueous solution lower than 10-8 M can be readily detected. Such a detection limit is ˜100-fold lower than the conventional SERS substrates made of silicon nanostructures. Additionally, the detection limit can be further improved by functionalizing gold nanoparticles onto silicon hierarchical nanostructures, whereby the superhydrophobic characteristics and plasmonic field enhancements can be combined synergistically to give a detection limit down to ˜10-11 M. A gold nanoparticle-functionalized superhydrophobic substrate was employed to detect the spiked melamine in liquid milk. The results showed that the detection limit can be as low as 10-5 M, highlighting the potential of the proposed superhydrophobic SERS substrate in

  1. Coastal hazards and groundwater salinization on low coral islands.

    NASA Astrophysics Data System (ADS)

    Terry, James P.; Chui, T. F. May

    2016-04-01

    Remote oceanic communities living on low-lying coral islands (atolls) without surface water rely for their survival on the continuing viability of fragile groundwater resources. These exist in the form of fresh groundwater lenses (FGLs) that develop naturally within the porous coral sand and gravel substrate. Coastal hazards such as inundation by high-energy waves driven by storms and continuing sea-level rise (SLR) are among many possible threats to viable FGL size and quality on atolls. Yet, not much is known about the combined effects of wave washover during powerful storms and SLR on different sizes of coral island, nor conversely how island size influences lens resilience against damage. This study investigates FGL damage by salinization (and resilience) caused by such coastal hazards using a modelling approach. Numerical modelling is carried out to generate steady-state FGL configurations at three chosen island sizes (400, 600 and 800 m widths). Steady-state solutions reveal how FGL dimensions are related in a non-linear manner to coral island size, such that smaller islands develop much more restricted lenses than larger islands. A 40 cm SLR scenario is then imposed. This is followed by transient simulations to examine storm-induced wave washover and subsequent FGL responses to saline damage over a 1 year period. Smaller FGLs display greater potential for disturbance by SLR, while larger and more robust FGLs tend to show more resilience. Further results produce a somewhat counterintuitive finding: in the post-SLR condition, FGL vulnerability to washover salinization may actually be reduced, owing to the thinner layer of unsaturated substrate lying above the water table into which saline water can infiltrate during a storm event. Nonetheless, combined washover and SLR impacts imply overall that advancing groundwater salinization may lead to some coral islands becoming uninhabitable long before they are completely submerged by sea-level rise, thereby calling

  2. Porous silicon film formation from silicon-nanoparticle inks: The possibility of effects of van der Waals interactions on uniform film formation

    NASA Astrophysics Data System (ADS)

    Tanaka, Kazuki; Nagoya, Wataru; Moriki, Kazuya; Sato, Seiichi

    2018-02-01

    Porous Si films were formed on electrically insulative, semiconductive, and conductive substrates by depositing aqueous and nonaqueous Si nanoparticle inks. In this study, we focused on whether the Si ink deposition resulted in the formation of uniform porous Si films on various substrates. As a result of the experiments, we found that the inks showing better substrate wettabilities did not necessarily result in more uniform film formation on the substrates. This implies that the ink-solvent wettability and the nanoparticle-substrate interactions play important roles in the uniform film formation. As one of the interactions, we discussed the influence of van der Waals interactions by calculating the Hamaker constants. The calculation results indicated that the uniform film formation was hampered when the nanoparticle surface had a repulsive van der Waals interaction with the substrate.

  3. Thermal dewetting behavior of polystyrene composite thin films with organic-modified inorganic nanoparticles.

    PubMed

    Kubo, Masaki; Takahashi, Yosuke; Fujii, Takeshi; Liu, Yang; Sugioka, Ken-ichi; Tsukada, Takao; Minami, Kimitaka; Adschiri, Tadafumi

    2014-07-29

    The thermal dewetting of polystyrene composite thin films with oleic acid-modified CeO2 nanoparticles prepared by the supercritical hydrothermal synthesis method was investigated, varying the nanoparticle concentration (0-30 wt %), film thickness (approximately 50 and 100 nm), and surface energy of silanized silicon substrates on which the composite films were coated. The dewetting behavior of the composite thin films during thermal annealing was observed by an optical microscope. The presence of nanoparticles in the films affected the morphology of dewetting holes, and moreover suppressed the dewetting itself when the concentration was relatively high. It was revealed that there was a critical value of the surface energy of the substrate at which the dewetting occurred. In addition, the spatial distributions of nanoparticles in the composite thin films before thermal annealing were investigated using AFM and TEM. As a result, we found that most of nanoparticles segregated to the surface of the film, and that such distributions of nanoparticles contribute to the stabilization of the films, by calculating the interfacial potential of the films with nanoparticles.

  4. Effects of ion and nanosecond-pulsed laser co-irradiation on the surface nanostructure of Au thin films on SiO{sub 2} glass substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Ruixuan; Meng, Xuan; Takayanagi, Shinya

    2014-04-14

    Ion irradiation and short-pulsed laser irradiation can be used to form nanostructures on the surfaces of substrates. This work investigates the synergistic effects of ion and nanosecond-pulsed laser co-irradiation on surface nanostructuring of Au thin films deposited under vacuum on SiO{sub 2} glass substrates. Gold nanoparticles are randomly formed on the surface of the substrate after nanosecond-pulsed laser irradiation under vacuum at a wavelength of 532 nm with a repetition rate of 10 Hz and laser energy density of 0.124 kJ/m{sup 2}. Gold nanoparticles are also randomly formed on the substrate after 100-keV Ar{sup +} ion irradiation at doses of upmore » to 3.8 × 10{sup 15} ions/cm{sup 2}, and nearly all of these nanoparticles are fully embedded in the substrate. With increasing ion irradiation dose (number of incident laser pulses), the mean diameter of the Au nanoparticles decreases (increases). However, Au nanoparticles are only formed in a periodic surface arrangement after co-irradiation with 6000 laser pulses and 3.8 × 10{sup 15} ions/cm{sup 2}. The periodic distance is ∼540 nm, which is close to the wavelength of the nanosecond-pulsed laser, and the mean diameter of the Au nanoparticles remains at ∼20 nm with a relatively narrow distribution. The photoabsorption peaks of the ion- or nanosecond-pulsed laser-irradiated samples clearly correspond to the mean diameter of Au nanoparticles. Conversely, the photoabsorption peaks for the co-irradiated samples do not depend on the mean nanoparticle diameter. This lack of dependence is likely caused by the periodic nanostructure formed on the surface by the synergistic effects of co-irradiation.« less

  5. Nanoparticle assembly on patterned "plus/minus" surfaces from electrospray of colloidal dispersion.

    PubMed

    Lenggoro, I Wuled; Lee, Hye Moon; Okuyama, Kikuo

    2006-11-01

    Selective deposition of metal (Au) and oxide (SiO2) nanoparticles with a size range of 10-30 nm on patterned silicon-silicon oxide substrate was performed using the electrospray method. Electrical charging characteristics of particles produced by the electrospray and patterned area created by contact charging of the electrical conductor with non- or semi-conductors were investigated. Colloidal droplets were electrosprayed and subsequently dried as individual nanoparticles which then were deposited on substrates, and observed using field emission-scanning electron microscopy. The number of elementary charge units on particles generated by the electrospray was 0.4-148, and patterned area created by contact charging contained sufficient negative charges to attract multiple charged particles. Locations where nanoparticles were (reversibly) deposited depended on voltage polarity applied to the spraying colloidal droplet and the substrate, and the existence of additional ions such as those from a stabilizer.

  6. Alignment of Ge nanoislands on Si(111) by Ga-induced substrate self-patterning.

    PubMed

    Schmidt, Th; Flege, J I; Gangopadhyay, S; Clausen, T; Locatelli, A; Heun, S; Falta, J

    2007-02-09

    A novel mechanism is described which enables the selective formation of three-dimensional Ge islands. Submonolayer adsorption of Ga on Si(111) at high temperature leads to a self-organized two-dimensional pattern formation by separation of the 7 x 7 substrate and Ga/Si(111)-(square root[3] x square root[3])-R30 degrees domains. The latter evolve at step edges and domain boundaries of the initial substrate reconstruction. Subsequent Ge deposition results in the growth of 3D islands which are aligned at the boundaries between bare and Ga-covered domains. This result is explained in terms of preferential nucleation conditions due to a modulation of the surface chemical potential.

  7. New method for MBE growth of GaAs nanowires on silicon using colloidal Au nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouravleuv, A.; Ilkiv, I.; Reznik, R.; Kotlyar, K.; Soshnikov, I.; Cirlin, G.; Brunkov, P.; Kirilenko, D.; Bondarenko, L.; Nepomnyaschiy, A.; Gruznev, D.; Zotov, A.; Saranin, A.; Dhaka, V.; Lipsanen, H.

    2018-01-01

    We present a new method for the deposition of colloidal Au nanoparticles on the surface of silicon substrates based on short-time Ar plasma treatment without the use of any polymeric layers. The elaborated method is compatible with molecular beam epitaxy, which allowed us to carry out the detailed study of GaAs nanowire synthesis on Si(111) substrates using colloidal Au nanoparticles as seeds for their growth. The results obtained elucidated the causes of the difference between the initial nanoparticle sizes and the diameters of the grown nanowires.

  8. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, Y., E-mail: kasiwagi@omtri.or.jp; Yamamoto, M.; Saitoh, M.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25 nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850 °C for 10 min under atmospheric conditions, the resistivity of the ITO film was 5.2 mΩ cm. The fabricated LED up to 3 mm square surface emitted red light when the on-voltage was exceeded.

  9. Surface modification by metal ion implantation forming metallic nanoparticles in an insulating matrix

    NASA Astrophysics Data System (ADS)

    Salvadori, M. C.; Teixeira, F. S.; Sgubin, L. G.; Cattani, M.; Brown, I. G.

    2014-08-01

    There is special interest in the incorporation of metallic nanoparticles in a surrounding dielectric matrix for obtaining composites with desirable characteristics such as for surface plasmon resonance, which can be used in photonics and sensing, and controlled surface electrical conductivity. We have investigated nanocomposites produced by metal ion implantation into insulating substrates, where the implanted metal self-assembles into nanoparticles. The nanoparticles nucleate near the maximum of the implantation depth profile (projected range), which can be estimated by computer simulation using the TRIDYN code. TRIDYN is a Monte Carlo simulation program based on the TRIM (Transport and Range of Ions in Matter) code that takes into account compositional changes in the substrate due to two factors: previously implanted dopant atoms, and sputtering of the substrate surface. Our study show that the nanoparticles form a bidimentional array buried a few nanometers below the substrate surface. We have studied Au/PMMA (polymethylmethacrylate), Pt/PMMA, Ti/alumina and Au/alumina systems. Transmission electron microscopy of the implanted samples show that metallic nanoparticles form in the insulating matrix. These nanocomposites have been characterized by measuring the resistivity of the composite layer as a function of the implantation dose. The experimental results are compared with a model based on percolation theory, in which electron transport through the composite is explained by conduction through a random resistor network formed by the metallic nanoparticles. Excellent agreement is found between the experimental results and the predictions of the theory. We conclude in that the conductivity process is due only to percolation (when the conducting elements are in geometric contact) and that the contribution from tunneling conduction is negligible.

  10. Wrinkling instability in graphene supported on nanoparticle-patterned SiO2

    NASA Astrophysics Data System (ADS)

    Cullen, William; Yamamoto, Mahito; Pierre-Louis, Olivier; Einstein, Theodore; Fuhrer, Michael

    2012-02-01

    Atomically-thin graphene is arguably the thinnest possible mechanical membrane: graphene's effective thickness (the thickness of an isotropic continuum slab which would have the same elastic and bending stiffness) is significantly less than 1 å, indicating that graphene can distort out-of-plane to conform to sub-nanometer features. Here we study the elastic response of graphene supported on a SiO2 substrate covered with SiO2 nanoparticles. At a low density of nanoparticles, graphene is largely pinned to the substrate due to adhesive interaction. However, with increasing nanoparticle density, graphene's elasticity dominates adhesion and strain is relieved by the formation of wrinkles which connect peaks introduced by the supporting nanoparticles. At a critical density, the wrinkles percolate, resulting in a wrinkle network. We develop a simple elastic model allowing for adhesion which accurately predicts the critical spacing between nanoparticles for wrinkle formation. This work has been supported by the University of Maryland NSF-MRSEC under Grant No. DMR 05-20471 with supplemental funding from NRI, and NSF-DMR 08-04976.

  11. Blood test using surface-enhanced Raman spectroscopy with colloidal silver nanoparticle substrate to detect polyps and colorectal cancer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Feng, Shangyuan; Tai, Isabella T.; Chen, Guannan; Chen, Rong; Zeng, Haishan

    2016-03-01

    Colorectal cancer (CRC) is the third most common type of cancer and forth leading cause of cancer-related death. Early diagnosis is the key to long-term patient survival. Programmatic screening for the general population has shown to be cost-effective in reducing the incidence and mortality from CRC. Current CRC screening strategy relies on a broad range of test techniques such as fecal based tests and endoscopic exams. Occult blood tests like fecal immunochemical test is a cost effective way to detect CRC but have limited diagnostic values in detecting adenomatous polyp, the most treatable precursor to CRC. In the present work, we proposed the use of surface enhanced Raman spectroscopy (SERS) with silver nanoparticles as substrate to analyze blood plasma for detecting both CRC and adenomatous polyps. Blood plasma samples collected from healthy subjects and patients diagnosed with adenomas and CRC were prepared with nanoparticles and measured using a real-time fiber optic probe based Raman system. The collected SERS spectra are analyzed with partial least squares-discriminant analysis. Classification of normal versus CRC plus adenomatous polyps achieved diagnostic sensitivity of 86.4% and specificity of 80%. This exploratory study suggests that blood plasma SERS analysis has potential to become a screening test for detecting both CRC and adenomas.

  12. Regularly arranged indium islands on glass/molybdenum substrates upon femtosecond laser and physical vapor deposition processing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ringleb, F.; Eylers, K.; Teubner, Th.

    2016-03-14

    A bottom-up approach is presented for the production of arrays of indium islands on a molybdenum layer on glass, which can serve as micro-sized precursors for indium compounds such as copper-indium-gallium-diselenide used in photovoltaics. Femtosecond laser ablation of glass and a subsequent deposition of a molybdenum film or direct laser processing of the molybdenum film both allow the preferential nucleation and growth of indium islands at the predefined locations in a following indium-based physical vapor deposition (PVD) process. A proper choice of laser and deposition parameters ensures the controlled growth of indium islands exclusively at the laser ablated spots. Basedmore » on a statistical analysis, these results are compared to the non-structured molybdenum surface, leading to randomly grown indium islands after PVD.« less

  13. Catalysis by Metallic Nanoparticles in Solution: Thermosensitive Microgels as Nanoreactors

    NASA Astrophysics Data System (ADS)

    Roa, Rafael; Angioletti-Uberti, Stefano; Lu, Yan; Dzubiella, Joachim; Piazza, Francesco; Ballauff, Matthias

    2018-05-01

    Metallic nanoparticles have been used as catalysts for various reactions, and the huge literature on the subject is hard to overlook. In many applications, the nanoparticles must be affixed to a colloidal carrier for easy handling during catalysis. These "passive carriers" (e.g. dendrimers) serve for a controlled synthesis of the nanoparticles and prevent coagulation during catalysis. Recently, hybrids from nanoparticles and polymers have been developed that allow us to change the catalytic activity of the nanoparticles by external triggers. In particular, single nanoparticles embedded in a thermosensitive network made from poly(N-isopropylacrylamide) (PNIPAM) have become the most-studied examples of such hybrids: immersed in cold water, the PNIPAM network is hydrophilic and fully swollen. In this state, hydrophilic substrates can diffuse easily through the network, and react at the surface of the nanoparticles. Above the volume transition located at 32°C, the network becomes hydrophobic and shrinks. Now hydrophobic substrates will preferably diffuse through the network and react with other substrates in the reaction catalyzed by the enclosed nanoparticle. Such "active carriers", may thus be viewed as true nanoreactors that open new ways for the use of nanoparticles in catalysis. In this review, we give a survey on recent work done on these hybrids and their application in catalysis. The aim of this review is threefold: we first review hybrid systems composed of nanoparticles and thermosensitive networks and compare these "active carriers" to other colloidal and polymeric carriers (e.g. dendrimers). In a second step we discuss the model reactions used to obtain precise kinetic data on the catalytic activity of nanoparticles in various carriers and environments. These kinetic data allow us to present a fully quantitative comparison of different nanoreactors. In a final section we shall present the salient points of recent efforts in the theoretical modeling of

  14. Hydrogen sensors based on electrophoretically deposited Pd nanoparticles onto InP

    PubMed Central

    2011-01-01

    Electrophoretic deposition of palladium nanoparticles prepared by the reverse micelle technique onto InP substrates is addressed. We demonstrate that the substrate pre-deposition treatment and the deposition conditions can extensively influence the morphology of the deposited palladium nanoparticle films. Schottky diodes based on these films show notably high values of the barrier height and of the rectification ratio giving evidence of a small degree of the Fermi level pinning. Moreover, electrical characteristics of these diodes are exceptionally sensitive to the exposure to gas mixtures with small hydrogen content. PMID:21711912

  15. Velocity Dependence of the Kinetic Friction of Nanoparticles

    NASA Astrophysics Data System (ADS)

    Dietzel, Dirk; Feldmann, Michael; Schirmeisen, Andre

    2010-03-01

    The velocity dependence of interfacial friction is of high interest to unveil the fundamental processes in nanoscopic friction. So far, different forms of velocity dependence have been observed for contacts between friction force microscope (FFM) tips and a substrate surface. In this work we present velocity-dependent friction measurements performed by nanoparticle manipulation of antimony nanoparticles on atomically flat HOPG substrates under UHV conditions. This allows to analyze interfacial friction for very well defined and clean surface contacts. A novel approach to nanoparticle manipulation, the so called 'tip-on-top' technique [1], made it possible to manipulate the same particle many times while varying the velocity. The antimony particles exhibit a qualitatively different velocity dependence on friction in comparison to direct tip-HOPG contacts. A characteristic change in velocity dependence was observed when comparing freshly prepared particles to contaminated specimen, which were exposed to air before the manipulation experiments. [1] Dietzel et al., Appl. Phys. Lett. 95, 53104 (2009)

  16. Au nanoparticle arrays produced by Pulsed Laser Deposition for Surface Enhanced Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Agarwal, N. R.; Neri, F.; Trusso, S.; Lucotti, A.; Ossi, P. M.

    2012-09-01

    Using UV pulses from KrF excimer laser, Au targets were ablated in varying pressures of argon to deposit Au nanoparticle (NP) arrays. The morphology of these films from island structures to isolated NPs, observed by SEM and TEM, depends on the gas pressure (10-100 Pa) and pulse number keeping other deposition parameters constant. By fast imaging of the plasma with an iCCD camera at different time delays with respect to the arrival of the laser pulse, we study the plasma propagation regime and we measured its initial velocity. These data and the measured average ablated mass per pulse were introduced to the mixed propagation model to calculate the average asymptotic size of clusters grown in the plume which were compared with NP sizes from TEM measurements. UV-visible Spectroscopy revealed changes of surface plasmon resonance with respect to NP size and spatial density and distribution on the surface. Suitable wavelength to excite the localized surface plasmon was chosen to detect ultra-low concentrations of Rhodamine and Apomorphine as an application to biomedical sensors, using Surface Enhanced Raman Spectroscopy (SERS). A comparison of SERS spectra taken under identical conditions from commercial substrates and from PLD substrates show that the latter have superior performances.

  17. Laser-Direct Writing of Silver Metal Electrodes on Transparent Flexible Substrates with High-Bonding Strength.

    PubMed

    Zhou, Weiping; Bai, Shi; Ma, Ying; Ma, Delong; Hou, Tingxiu; Shi, Xiaomin; Hu, Anming

    2016-09-21

    We demonstrate a novel approach to rapidly fabricate conductive silver electrodes on transparent flexible substrates with high-bonding strength by laser-direct writing. A new type of silver ink composed of silver nitrate, sodium citrate, and polyvinylpyrrolidone (PVP) was prepared in this work. The role of PVP was elucidated for improving the quality of silver electrodes. Silver nanoparticles and sintered microstructures were simultaneously synthesized and patterned on a substrate using a focused 405 nm continuous wave laser. The writing was completed through the transparent flexible substrate with a programmed 2D scanning sample stage. Silver electrodes fabricated by this approach exhibit a remarkable bonding strength, which can withstand an adhesive tape test at least 50 times. After a 1500 time bending test, the resistance only increased 5.2%. With laser-induced in-situ synthesis, sintering, and simultaneous patterning of silver nanoparticles, this technology is promising for the facile fabrication of conducting electronic devices on flexible substrates.

  18. Entropically Driven Layering Near a Substrate: A Fluids DFT Study

    NASA Astrophysics Data System (ADS)

    McGarrity, Erin; Frischknecht, Amalie; Mackay, Michael

    2008-03-01

    We employ a fluids density functional theory to study the phase behavior of athermal polymer/nanoparticle blends near a hard substrate. These blends exhibit two types of first order, entropically driven layering transitions. In the first type of transition, the nanoparticles order to form a layer which is a fixed distance from the surface. The structure and location of this layer depends on nanoparticle radius. In the second type of transition, which occurs at melt-like densities, the nanoparticles and polymers form laminar structures which resemble colloidal crystals. We examine the effects of packing density, chain length and nanoparticle radius on the system and show that the transitions are first order. In addition we show that the crystalline phase is nucleated by the presence of the surface. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  19. Formation of intra-island grain boundaries in pentacene monolayers.

    PubMed

    Zhang, Jian; Wu, Yu; Duhm, Steffen; Rabe, Jürgen P; Rudolf, Petra; Koch, Norbert

    2011-12-21

    To assess the formation of intra-island grain boundaries during the early stages of pentacene film growth, we studied sub-monolayers of pentacene on pristine silicon oxide and silicon oxide with high pinning centre density (induced by UV/O(3) treatment). We investigated the influence of the kinetic energy of the impinging molecules on the sub-monolayer growth by comparing organic molecular beam deposition (OMBD) and supersonic molecular beam deposition (SuMBD). For pentacene films fabricated by OMBD, higher pentacene island-density and higher polycrystalline island density were observed on UV/O(3)-treated silicon oxide as compared to pristine silicon oxide. Pentacene films deposited by SuMBD exhibited about one order of magnitude lower island- and polycrystalline island densities compared to OMBD, on both types of substrates. Our results suggest that polycrystalline growth of single islands on amorphous silicon oxide is facilitated by structural/chemical surface pinning centres, which act as nucleation centres for multiple grain formation in a single island. Furthermore, the overall lower intra-island grain boundary density in pentacene films fabricated by SuMBD reduces the number of charge carrier trapping sites specific to grain boundaries and should thus help achieving higher charge carrier mobilities, which are advantageous for their use in organic thin-film transistors.

  20. Controlled growth of vertically aligned carbon nanotubes on metal substrates

    NASA Astrophysics Data System (ADS)

    Gao, Zhaoli

    Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their

  1. A sensitive plasmonic copper(II) sensor based on gold nanoparticles deposited on ITO glass substrate.

    PubMed

    Ding, Lijun; Gao, Yan; Di, Junwei

    2016-09-15

    Gold nanoparticles (Au NPs) based plasmonic probe was developed for sensitive and selective detection of Cu(2+) ion. The Au NPs were self-assembled on transparent indium tin oxide (ITO) film coated glass substrate using poly dimethyl diallyl ammonium chloride (PDDA) as a linker and then calcined at 400°C to obtain pure Au NPs on ITO surface (ITO/Au NPs). The probe was fabricated by functionalizing l-cysteine (Cys) on to gold surface (ITO/Au NPs/Cys). The strong chelation of Cu(2+) with Cys formed a stable Cys-Cu complex, and resulted in the red-shift of localized surface plasmon resonance (LSPR) peak of the Au NPs. The introduction of bovine serum albumin (BSA) as the second complexant could form complex of Cys-Cu-BAS and further markedly enhanced the red-shift of the LSPR peak. This plasmonic probe provided a highly sensitive and selective detection towards Cu(2+) ions, with a wide linear detection range (10(-11)-10(-5)M) over 6 orders of magnitude. The simple and cost-effective probe was successfully applied to the determination of Cu(2+) in real samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Modeling microcapsules that communicate through nanoparticles to undergo self-propelled motion.

    PubMed

    Usta, O Berk; Alexeev, Alexander; Zhu, Guangdong; Balazs, Anna C

    2008-03-01

    Using simulation and theory, we demonstrate how nanoparticles can be harnessed to regulate the interaction between two initially stationary microcapsules on a surface and promote the self-propelled motion of these capsules along the substrate. The first microcapsule, the "signaling" capsule, encases nanoparticles, which diffuse from the interior of this carrier and into the surrounding solution; the second capsule is the "target" capsule, which is initially devoid of particles. Nanoparticles released from the signaling capsule modify the underlying substrate and thereby initiate the motion of the target capsule. The latter motion activates hydrodynamic interactions, which trigger the signaling capsule to follow the target. The continued release of the nanoparticles sustains the motion of both capsules. In effect, the system constitutes a synthetic analogue of biological cell signaling and our findings can shed light on fundamental physical forces that control interactions between cells. Our findings can also yield guidelines for manipulating the interactions of synthetic microcapsules in microfluidic devices.

  3. Entropy-driven crystal formation on highly strained substrates

    PubMed Central

    Savage, John R.; Hopp, Stefan F.; Ganapathy, Rajesh; Gerbode, Sharon J.; Heuer, Andreas; Cohen, Itai

    2013-01-01

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate. PMID:23690613

  4. Templated assembly of Co-Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films.

    PubMed

    Oh, Yong-Jun; Kim, Jung-Hwan; Thompson, Carl V; Ross, Caroline A

    2013-01-07

    Templated dewetting of a Co/Pt metal bilayer film on a topographic substrate was used to assemble arrays of Co-Pt alloy nanoparticles, with highly uniform particle size, shape and notably composition compared to nanoparticles formed on an untemplated substrate. Solid-state and liquid-state dewetting processes, using furnace annealing and laser irradiation respectively, were compared. Liquid state dewetting produced more uniform, conformal nanoparticles but they had a polycrystalline disordered fcc structure and relatively low magnetic coercivity. In contrast, solid state dewetting enabled formation of magnetically hard, ordered L1(0) Co-Pt single-crystal particles with coercivity >12 kOe. Furnace annealing converted the nanoparticles formed by liquid state dewetting into the L1(0) phase.

  5. MBE growth of nanowires using colloidal Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Bouravleuv, A. D.; Ilkiv, I. V.; Reznik, R. R.; Shtrom, I. V.; Khrebtov, A. I.; Samsonenko, Yu B.; Soshnikov, I. P.; Cirlin, G. E.; Lipsanen, H.

    2017-06-01

    Ag colloidal nanoparticles are used as a catalyst for growth of GaAs nanowires by the molecular beam epitaxy on the Si(111) and GaAs(111)B substrate surfaces. The scanning electron microscopy measurements revealed that the nanowire formation occurs in different ways on different substrates, but the parameters of the synthesized nanowires open great prospects for their further use.

  6. Nanosphere Templating Through Controlled Evaporation: A High Throughput Method For Building SERS Substrates

    NASA Astrophysics Data System (ADS)

    Alexander, Kristen; Hampton, Meredith; Lopez, Rene; Desimone, Joseph

    2009-03-01

    When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.

  7. Nanosphere Templating Through Controlled Evaporation: A High Throughput Method For Building SERS Substrates

    NASA Astrophysics Data System (ADS)

    Alexander, Kristen; Lopez, Rene; Hampton, Meredith; Desimone, Joseph

    2008-10-01

    When a pair of noble metal nanoparticles are brought close together, the plasmonic properties of the pair (known as a ``dimer'') give rise to intense electric field enhancements in the interstitial gap. These fields present a simple yet exquisitely sensitive system for performing single molecule surface-enhanced Raman spectroscopy (SM-SERS). Problems associated with current fabrication methods of SERS-active substrates include reproducibility issues, high cost of production and low throughput. In this study, we present a novel method for the high throughput fabrication of high quality SERS substrates. Using a polymer templating technique followed by the placement of thiolated nanoparticles through meniscus force deposition, we are able to fabricate large arrays of identical, uniformly spaced dimers in a quick, reproducible manner. Subsequent theoretical and experimental studies have confirmed the strong dependence of the SERS enhancement on both substrate geometry (e.g. dimer size, shape and gap size) and the polarization of the excitation source.

  8. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    DOEpatents

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  9. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size.

    PubMed

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute; Wiedwald, Ulf

    2016-01-01

    Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: "small" NPs with diameters in the range of 2-3 nm and "large" ones in the range of 5-8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600-650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the effect of annealing on

  10. Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

    PubMed Central

    Schilling, Martin; Ziemann, Paul; Zhang, Zaoli; Biskupek, Johannes; Kaiser, Ute

    2016-01-01

    Summary Texture formation and epitaxy of thin metal films and oriented growth of nanoparticles (NPs) on single crystal supports are of general interest for improved physical and chemical properties especially of anisotropic materials. In the case of FePt, the main focus lies on its highly anisotropic magnetic behavior and its catalytic activity, both due to the chemically ordered face-centered tetragonal (fct) L10 phase. If the c-axis of the tetragonal system can be aligned normal to the substrate plane, perpendicular magnetic recording could be achieved. Here, we study the orientation of FePt NPs and films on a-SiO2/Si(001), i.e., Si(001) with an amorphous (a-) native oxide layer on top, on MgO(001), and on sapphire(0001) substrates. For the NPs of an approximately equiatomic composition, two different sizes were chosen: “small” NPs with diameters in the range of 2–3 nm and “large” ones in the range of 5–8 nm. The 3 nm thick FePt films, deposited by pulsed laser deposition (PLD), served as reference samples. The structural properties were probed in situ, particularly texture formation and epitaxy of the specimens by reflection high-energy electron diffraction (RHEED) and, in case of 3 nm nanoparticles, additionally by high-resolution transmission electron microscopy (HRTEM) after different annealing steps between 200 and 650 °C. The L10 phase is obtained at annealing temperatures above 550 °C for films and 600 °C for nanoparticles in accordance with previous reports. On the amorphous surface of a-SiO2/Si substrates we find no preferential orientation neither for FePt films nor nanoparticles even after annealing at 630 °C. On sapphire(0001) supports, however, FePt nanoparticles exhibit a clearly preferred (111) orientation even in the as-prepared state, which can be slightly improved by annealing at 600–650 °C. This improvement depends on the size of NPs: Only the smaller NPs approach a fully developed (111) orientation. On top of MgO(001) the

  11. Emission Properties of Fluorescent Nanoparticles Determined by Their Optical Environment

    PubMed Central

    Chung, Kelvin; Tomljenovic-Hanic, Snjezana

    2015-01-01

    The emission rate of a radiating dipole within a nanoparticle is crucially dependent on its surrounding refractive index environment. In this manuscript, we present numerical results on how the emission rates are affected for nanoparticles in a homogenous and substrate environment. These results are general, applicable to any refractive index distribution and emitter. PMID:28347043

  12. The Effect of Dielectric Constants on Noble Metal/Semiconductor SERS Enhancement: FDTD Simulation and Experiment Validation of Ag/Ge and Ag/Si Substrates

    PubMed Central

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-01-01

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 109) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 107 and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones. PMID:24514430

  13. The effect of dielectric constants on noble metal/semiconductor SERS enhancement: FDTD simulation and experiment validation of Ag/Ge and Ag/Si substrates.

    PubMed

    Wang, Tao; Zhang, Zhaoshun; Liao, Fan; Cai, Qian; Li, Yanqing; Lee, Shuit-Tong; Shao, Mingwang

    2014-02-11

    The finite-difference time-domain (FDTD) method was employed to simulate the electric field distribution for noble metal (Au or Ag)/semiconductor (Ge or Si) substrates. The simulation showed that noble metal/Ge had stronger SERS enhancement than noble metal/Si, which was mainly attributed to the different dielectric constants of semiconductors. In order to verify the simulation, Ag nanoparticles with the diameter of ca. 40 nm were grown on Ge or Si wafer (Ag/Ge or Ag/Si) and employed as surface-enhanced Raman scattering substrates to detect analytes in solution. The experiment demonstrated that both the two substrates exhibited excellent performance in the low concentration detection of Rhodamine 6G. Besides, the enhancement factor (1.3 × 10(9)) and relative standard deviation values (less than 11%) of Ag/Ge substrate were both better than those of Ag/Si (2.9 × 10(7) and less than 15%, respectively), which was consistent with the FDTD simulation. Moreover, Ag nanoparticles were grown in-situ on Ge substrate, which kept the nanoparticles from aggregation in the detection. To data, Ag/Ge substrates showed the best performance for their sensitivity and uniformity among the noble metal/semiconductor ones.

  14. QCM-D study of nanoparticle interactions.

    PubMed

    Chen, Qian; Xu, Shengming; Liu, Qingxia; Masliyah, Jacob; Xu, Zhenghe

    2016-07-01

    Quartz crystal microbalance with dissipation monitoring (QCM-D) has been proven to be a powerful research tool to investigate in situ interactions between nanoparticles and different functionalized surfaces in liquids. QCM-D can also be used to quantitatively determine adsorption kinetics of polymers, DNA and proteins from solutions on various substrate surfaces while providing insights into conformations of adsorbed molecules. This review aims to provide a comprehensive overview on various important applications of QCM-D, focusing on deposition of nanoparticles and attachment-detachment of nanoparticles on model membranes in complex fluid systems. We will first describe the working principle of QCM-D and DLVO theory pertinent to understanding nanoparticle deposition phenomena. The interactions between different nanoparticles and functionalized surfaces for different application areas are then critically reviewed. Finally, the potential applications of QCM-D in other important fields are proposed and knowledge gaps are identified. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Fabrication of superhydrophilic and antireflective silica coatings on poly(methyl methacrylate) substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Zhi; Graduate University of Chinese Academy of Sciences; He, Junhui, E-mail: jhhe@mail.ipc.ac.cn

    2012-06-15

    Graphical abstract: Self-cleaning and antireflection properties were successfully achieved by assembling (PDDA/S-20){sub n} coatings on PMMA substrates followed by oxygen plasma treatment. Highlights: ► Porous silica coatings were created by layer-by-layer assembly on PMMA substrates. ► Silica coatings were treated by oxygen plasma. ► Porous silica coatings were highly antireflective and superhydrophilic on PMMA substrates. -- Abstract: Silica nanoparticles of ca. 20 nm in size were synthesized, from which hierarchically porous silica coatings were fabricated on poly(methyl methacrylate) (PMMA) substrates via layer-by-layer (LbL) assembly followed by oxygen plasma treatment. These porous silica coatings were highly transparent and superhydrophilic. The maximummore » transmittance reached as high as 99%, whereas that of the PMMA substrate is only 92%. After oxygen plasma treatment, the time for a water droplet to spread to a contact angle of lower than 5° decreased to as short as 0.5 s. Scanning and transmission electron microscopy were used to observe the morphology and structure of nanoparticles and coating surfaces. Transmission and reflection spectra were recorded on UV–vis spectrophotometer. Surface wettability was studied by a contact angle/interface system. The influence of mesopores on the transmittance and wetting properties of coatings was discussed on the basis of experimental observations.« less

  16. Silver-gold alloy nanoparticles as tunable substrates for systematic control of ion-desorption efficiency and heat transfer in surface-assisted laser desorption/ionization.

    PubMed

    Lai, Samuel Kin-Man; Cheng, Yu-Hong; Tang, Ho-Wai; Ng, Kwan-Ming

    2017-08-09

    Systematically controlling heat transfer in the surface-assisted laser desorption/ionization (SALDI) process and thus enhancing the analytical performance of SALDI-MS remains a challenging task. In the current study, by tuning the metal contents of Ag-Au alloy nanoparticle substrates (AgNPs, Ag55Au45NPs, Ag15Au85NPs and AuNPs, ∅: ∼2.0 nm), it was found that both SALDI ion-desorption efficiency and heat transfer can be controlled in a wide range of laser fluence (21.3 mJ cm -2 to 125.9 mJ cm -2 ). It was discovered that ion detection sensitivity can be enhanced at any laser fluence by tuning up the Ag content of the alloy nanoparticle, whereas the extent of ion fragmentation can be reduced by tuning up the Au content. The enhancement effect of Ag content on ion desorption was found to be attributable to the increase in laser absorption efficiency (at 355 nm) with Ag content. Tuning the laser absorption efficiency by changing the metal composition was also effective in controlling the heat transfer from the NPs to the analytes. The laser-induced heating of Ag-rich alloy NPs could be balanced or even overridden by increasing the Au content of NPs, resulting in the reduction of the fragmentation of analytes. In the correlation of experimental measurement with molecular dynamics simulation, the effect of metal composition on the dynamics of the ion desorption process was also elucidated. Upon increasing the Ag content, it was also found that phase transition temperatures, such as melting, vaporization and phase explosion temperature, of NPs could be reduced. This further enhanced the desorption of analyte ions via phase-transition-driven desorption processes. The significant cooling effect on the analyte ions observed at high laser fluence was also determined to be originated from the phase explosion of the NPs. This study revealed that the development of alloy nanoparticles as SALDI substrates can constitute an effective means for the systematic control of ion

  17. Sensor Arrays from Multicomponent Micropatterned Nanoparticles and Graphene

    DTIC Science & Technology

    2013-10-10

    UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Case Western Reserve University,Case School of Engineering,Cleveland, OH ,44106 8...treatment, followed by region-selective substrate-enhanced electroless deposition of Au nanoparticles and solution alkalization of ferrous chloride...tetrahydrate in the presence of ammonia into Fe3O4 nanoparticles. The resultant Fe3O4/ Au multicomponent micropatterned-graphene films were found to be highly

  18. Magnetic poly(ε-caprolactone)/iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering

    PubMed Central

    Gloria, A.; Russo, T.; D'Amora, U.; Zeppetelli, S.; D'Alessandro, T.; Sandri, M.; Bañobre-López, M.; Piñeiro-Redondo, Y.; Uhlarz, M.; Tampieri, A.; Rivas, J.; Herrmannsdörfer, T.; Dediu, V. A.; Ambrosio, L.; De Santis, R.

    2013-01-01

    In biomedicine, magnetic nanoparticles provide some attractive possibilities because they possess peculiar physical properties that permit their use in a wide range of applications. The concept of magnetic guidance basically spans from drug delivery and hyperthermia treatment of tumours, to tissue engineering, such as magneto-mechanical stimulation/activation of cell constructs and mechanosensitive ion channels, magnetic cell-seeding procedures, and controlled cell proliferation and differentiation. Accordingly, the aim of this study was to develop fully biodegradable and magnetic nanocomposite substrates for bone tissue engineering by embedding iron-doped hydroxyapatite (FeHA) nanoparticles in a poly(ε-caprolactone) (PCL) matrix. X-ray diffraction analyses enabled the demonstration that the phase composition and crystallinity of the magnetic FeHA were not affected by the process used to develop the nanocomposite substrates. The mechanical characterization performed through small punch tests has evidenced that inclusion of 10 per cent by weight of FeHA would represent an effective reinforcement. The inclusion of nanoparticles also improves the hydrophilicity of the substrates as evidenced by the lower values of water contact angle in comparison with those of neat PCL. The results from magnetic measurements confirmed the superparamagnetic character of the nanocomposite substrates, indicated by a very low coercive field, a saturation magnetization strictly proportional to the FeHA content and a strong history dependence in temperature sweeps. Regarding the biological performances, confocal laser scanning microscopy and AlamarBlue assay have provided qualitative and quantitative information on human mesenchymal stem cell adhesion and viability/proliferation, respectively, whereas the obtained ALP/DNA values have shown the ability of the nanocomposite substrates to support osteogenic differentiation. PMID:23303218

  19. Selection of nanoparticles using CO.sub.2-expanded liquids

    DOEpatents

    Roberts, Christopher B; McLeod, Marshall Chandler; Anand, Madhu

    2013-02-19

    A method for size selection of nanostructures comprising utilizing a gas-expanded liquids (GEL) and controlled pressure to precipitate desired size populations of nanostructures, e.g., monodisperse. The GEL can comprise CO.sub.2 antisolvent and an organic solvent. The method can be carried out in an apparatus comprising a first open vessel configured to allow movement of a liquid/particle solution to specific desired locations within the vessel, a second pressure vessel, a location controller for controlling location of the particles and solution within the first vessel, a inlet for addition of antisolvent to the first vessel, and a device for measuring the amount of antisolvent added. Also disclosed is a method for forming nanoparticle thin films comprising utilizing a GEL containing a substrate, pressurizing the solution to precipitate and deposit nanoparticles onto the substrate, removing the solvent thereby leaving a thin nanoparticle film, removing the solvent and antisolvent, and drying the film.

  20. Stable isotopes of Hawaiian spiders reflect substrate properties along a chronosequence

    PubMed Central

    Dawson, Todd E.; Gillespie, Rosemary G.

    2018-01-01

    The Hawaiian Islands offer a unique opportunity to test how changes in the properties of an isolated ecosystem are propagated through the organisms that occur within that ecosystem. The age-structured arrangement of volcanic-derived substrates follows a regular progression over space and, by inference, time. We test how well documented successional changes in soil chemistry and associated vegetation are reflected in organisms at higher trophic levels—specifically, predatory arthropods (spiders)—across a range of functional groups. We focus on three separate spider lineages: one that builds capture webs, one that hunts actively, and one that specializes on eating other spiders. We analyze spiders from three sites across the Hawaiian chronosequence with substrate ages ranging from 200 to 20,000 years. To measure the extent to which chemical signatures of terrestrial substrates are propagated through higher trophic levels, we use standard stable isotope analyses of nitrogen and carbon, with plant leaves included as a baseline. The target taxa show the expected shift in isotope ratios of δ15N with trophic level, from plants to cursorial spiders to web-builders to spider eaters. Remarkably, organisms at all trophic levels also precisely reflect the successional changes in the soil stoichiometry of the island chronosequence, demonstrating how the biogeochemistry of the entire food web is determined by ecosystem succession of the substrates on which the organisms have evolved. PMID:29576984

  1. Formation of silver nanoparticle at phospholipid template using Langmuir-Blodgett technique and its Surface-enhanced Raman Spectroscopy application

    NASA Astrophysics Data System (ADS)

    Mahato, M.; Sarkar, R.; Pal, P.; Talapatra, G. B.

    2015-10-01

    The biosynthesis of metal nanoparticle and their suitable assembly has recently gained tremendous interest for its application in biomedical arena such as substrates for surface-enhanced Raman scattering and others. In this article, an easy, low-cost, fast, bio-friendly and toxic-reducing agent free protocol has been described for the preparation of silver nanoparticle film using biocompatible 1,2-dipalmitoyl-sn-glycero-3-phosphocholine phospholipid Langmuir monolayer template. Interactions, docking and attachment of silver ions to the above-mentioned phospholipid monolayer have been studied by surface pressure-area isotherm and compressibility analysis at the air-water interface. We have deposited the Langmuir-Blodgett monolayer/multilayer containing silver nanoparticle onto glass/SiO2/quartz substrates. The formation of phospholipid-silver nanoparticle complex in Langmuir-Blodgett film has been characterized by field emission-scanning electron microscopy and high-resolution tunneling electron microscopy images. We have applied this deposited film as a substrate for surface-enhanced Raman scattering application using rhodamine 123 to understand the existence of the surface plasmon activity of silver nanoparticle.

  2. Study of low dimensional SiGe island on Si for potential visible Metal-Semiconductor-Metal photodetector

    NASA Astrophysics Data System (ADS)

    Rahim, Alhan Farhanah Abd; Zainal Badri, Nur'Amirah; Radzali, Rosfariza; Mahmood, Ainorkhilah

    2017-11-01

    In this paper, an investigation of design and simulation of silicon germanium (SiGe) islands on silicon (Si) was presented for potential visible metal semiconductor metal (MSM) photodetector. The characterization of the performances in term of the structural, optical and electrical properties of the structures was analyzed from the simulation results. The project involves simulation using SILVACO Technology Computer Aided Design (TCAD) tools. The different structures of the silicon germanium (SiGe) island on silicon substrate were created, which were large SiGe, small SiGe, combination SiGe and bulk Ge. All the structures were tested for potential Metal Semiconductor Metal (MSM) photodetector. The extracted data such as current versus voltage characteristic, current gain and spectral response were obtained using ATLAS SILVACO tools. The performance of SiGe island structures and bulk Ge on Si substrate as (MSM) photodetector was evaluated by photo and dark current-voltage (I-V) characteristics. It was found that SiGe islands exhibited higher energy band gap compared to bulk Ge. The SiGe islands current-voltage characteristics showed improved current gain compared to bulk Ge. Specifically the enhancement of the islands gain was contributed by the enhanced photo currents and lower dark currents. The spectral responses of the SiGe islands showed peak response at 590 nm (yellow) which is at the visible wavelength. This shows the feasibility of the SiGe islands to be utilized for visible photodetections.

  3. Alterations in nanoparticle protein corona by biological surfactants: impact of bile salts on β-lactoglobulin-coated gold nanoparticles.

    PubMed

    Winuprasith, Thunnalin; Chantarak, Sirinya; Suphantharika, Manop; He, Lili; McClements, David Julian

    2014-07-15

    The impact of biological surfactants (bile salts) on the protein (β-lactoglobulin) corona surrounding gold nanoparticles (200 nm) was studied using a variety of analytical techniques at pH 7: dynamic light scattering (DLS); particle electrophoresis (ζ-potential); UV-visible (UV) spectroscopy; transmission electron microscopy (TEM); and surface-enhanced Raman scattering (SERS). The bile salts adsorbed to the protein-coated nanoparticle surfaces and altered their interfacial composition, charge, and structure. SERS spectra of protein-coated nanoparticles after bile salt addition contained bands from both protein and bile salts, indicating that the protein was not fully displaced by the bile salts. UV, DLS and TEM techniques also indicated that the protein coating was not fully displaced from the nanoparticle surfaces. The impact of bile salts could be described by an orogenic mechanism: mixed interfaces were formed that consisted of islands of aggregated proteins surrounded by a sea of bile salts. This knowledge is useful for understanding the interactions of bile salts with protein-coated colloidal particles, which may be important for controlling the fate of colloidal delivery systems in the human gastrointestinal tract, or the gastrointestinal fate of ingested inorganic nanoparticles. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. The influence of gravity on the distribution of the deposit formed onto a substrate by sessile, hanging, and sandwiched hanging drop evaporation.

    PubMed

    Sandu, Ion; Fleaca, Claudiu Teodor

    2011-06-15

    The focus of the present article is the study of the influence of gravity on the particle deposition profiles on a solid substrate during the evaporation of sessile, hanging and sandwiched hanging drops of colloidal particle suspensions. For concentrations of nanoparticles in the colloidal solutions in the range 0.0001-1 wt.%, highly diluted suspensions will preferentially form rings while concentrated suspensions will preferentially form spots in both sessile and hanging drop evaporation. For intermediary concentrations, the particle deposition profiles will depend on the nanoparticle aggregation dynamics in the suspension during the evaporation process, gravity and on the detailed evaporation geometry. The evaporation of a drop of toluene/carbon nanoparticle suspension hanging from a pendant water drop will leave on the substrate a circular spot with no visible external ring. By contrast, a clear external ring is formed on the substrate by the sessile evaporation of a similar drop of suspension sandwiched between a water drop and the substrate. From the application viewpoint, these processes can be used to create preferential electrical conductive carbon networks and contacts for arrays of self-assembled nanostructures fabricated on solid substrates as well as on flexible polymeric substrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates.

    PubMed

    Wan, Dehui; Chen, Hsuen-Li; Tseng, Shao-Chin; Wang, Lon A; Chen, Yung-Pin

    2010-01-26

    In this paper, we report a new optical data storage method: photomodification of hollow gold nanoparticle (HGN) monolayers induced by one-shot deep-ultraviolet (DUV) KrF laser recording. As far as we are aware, this study is the first to apply HGNs in optical data storage and also the first to use a recording light source for the metal nanoparticles (NPs) that is not a surface plasmon resonance (SPR) wavelength. The short wavelength of the recording DUV laser improved the optical resolution dramatically. We prepared HGNs exhibiting two absorbance regions: an SPR peak in the near-infrared (NIR) region and an intrinsic material extinction in the DUV region. A single pulse from a KrF laser heated the HGNs and transformed them from hollow structures to smaller solid spheres. This change in morphology for the HGNs was accompanied by a significant blue shift of the SPR peak. Employing this approach, we demonstrated its patterning ability with a resolving power of a half-micrometer (using a phase mask) and developed a readout method (using a blue-ray laser microscope). Moreover, we prepared large-area, uniform patterns of monolayer HGNs on various substrates (glass slides, silicon wafers, flexible plates). If this spectral recording technique could be applied onto thin flexible tapes, the recorded data density would increase significantly relative to that of current rigid discs (e.g., compact discs).

  6. Colored and semitransparent silver nanoparticle layers deposited by spin coating of silver nanoink

    NASA Astrophysics Data System (ADS)

    Yoon, Hoi Jin; Jo, Yejin; Jeong, Sunho; Lim, Jung Wook; Lee, Seung-Yun

    2018-05-01

    In this letter, we report on the fabrication and characterization of colored and semitransparent silver nanoparticle layers. A spin coating of silver nanoink is used to deposit silver nanoparticle layers onto substrates. The transmittance and color of the silver nanoparticle layers are significantly dependent on the spin speed and nanoink concentration, owing to variations in the size and distribution of the nanoparticles. Both color variation and efficiency improvement are achieved with the application of silver nanoparticles to semitransparent Si thin-film solar cells, which is associated with the excitation of the dipole or quadruple plasmon modes of the silver nanoparticles.

  7. Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani

    It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less

  8. Chain Conformation near the Buried Interface in Nanoparticle-Stabilized Polymer Thin Films

    DOE PAGES

    Barkley, Deborah A.; Jiang, Naisheng; Sen, Mani; ...

    2017-09-26

    It is known that when nanoparticles are added to polymer thin films, they often migrate to the film-substrate interface and form an “immobile interfacial layer”, which has been believed as the origin of suppression of dewetting. We here report an alternative mechanism of dewetting suppression from the structural aspect of a polymer. Dodecane thiol-functionalized gold (Au) nanoparticles embedded in PS thin films prepared on Si substrates were used as a model. It was found that thermal annealing promotes irreversible polymer adsorption onto the substrate surface along with the surface migration of the nanoparticles. We also revealed that the surface migrationmore » causes additional nanoconfined space for the adsorbed polymer chains. As a result, the self-organization process of the strongly adsorbed polymer chains on the solid surface was so hindered that the chain conformations were randomized and expanded in the film normal direction. Here, the resultant chain conformation allows the interpenetration between free chains and the adsorbed chains, promoting adhesion and hence stabilizing the thin film.« less

  9. Blinking and spectral diffusion of CdSe/ZnS nanoparticles

    NASA Astrophysics Data System (ADS)

    Lorke, Axel; Braam, Daniel; Mölleken, Andreas; Offer, Matthias; Prinz, Günther; Geller, Martin

    2012-02-01

    Even though the tunable optical properties of colloidal nanoparticles have been studied extensively, their luminescent behaviour is still not fully understood. The random emission intermittency and the power-law of on- and off-times as well as shifts in the emission wavelength still lack a comprehensive understanding [1]. We investigate the excitonic structure of CdSe/ZnS core/shell nanoparticles using a micro-photoluminescence (PL) setup with confocal as well as imaging optics. The nanoparticles are dispersed in toluene with 1% PMMA and deposited by spin-coating on different substrates (bare Si/SiO2 as well as Si/SiO2 covered with different rough metallic layers). Depending on the substrate, we observe emission intermittency or nearly blinking-free emission with spectral jumps of 25 meV in the emission energy. Both can be assigned to excitonic transitions affected by additional charge inside or outside the nanoparticle [2]. Furthermore, we observe a phonon replica of 25 meV and smaller (<10 meV) energetic shifts of the emission lines, which are likely caused random charge variations in the environment of the nanoparticle. [4pt] [1] P. Frantsuzov et al., Nature 4, 519 (2008). [0pt] [2] A. Efros, Nature Mat. 7, 612 (2008)

  10. Facile preparation of superhydrophobic surfaces based on metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Bao, Xue-Mei; Cui, Jin-Feng; Sun, Han-Xue; Liang, Wei-Dong; Zhu, Zhao-Qi; An, Jin; Yang, Bao-Ping; La, Pei-Qing; Li, An

    2014-06-01

    A novel method for fabrication of superhydrophobic surfaces was developed by facile coating various metal oxide nanoparticles, including ZnO, Al2O3 and Fe3O4, on various substrates followed by treatment with polydimethylsiloxane (PDMS) via chemical vapor deposition (CVD) method. Using ZnO nanoparticles as a model, the changes in the surface chemical composition and crystalline structures of the metal oxide nanoparticles by PDMS treatment were investigated by X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR) analysis. The results show that the combination of the improved surface roughness generated from of the nanoparticles aggregation with the low surface-energy of silicon-coating originated from the thermal pyrolysis of PDMS would be responsible for the surface superhydrophobicity. By a simple dip-coating method, we show that the metal oxide nanoparticles can be easily coated onto the surfaces of various textural and dimensional substrates, including glass slide, paper, fabric or sponge, for preparation of superhydrophobic surfaces for different purpose. The present strategy may provide an inexpensive and new route to surperhydrophobic surfaces, which would be of technological significance for various practical applications especially for separation of oils or organic contaminates from water.

  11. Sensitive Detection of Biomolecules by Surface Enhanced Raman Scattering using Plant Leaves as Natural Substrates

    NASA Astrophysics Data System (ADS)

    Sharma, Vipul; Krishnan, Venkata

    2017-03-01

    Detection of biomolecules is highly important for biomedical and other biological applications. Although several methods exist for the detection of biomolecules, surface enhanced Raman scattering (SERS) has a unique role in greatly enhancing the sensitivity. In this work, we have demonstrated the use of natural plant leaves as facile, low cost and eco-friendly SERS substrates for the sensitive detection of biomolecules. Specifically, we have investigated the influence of surface topography of five different plant leaf based substrates, deposited with Au, on the SERS performance by using L-cysteine as a model biomolecule. In addition, we have also compared the effect of sputter deposition of Au thin film with dropcast deposition of Au nanoparticles on the leaf substrates. Our results indicate that L-cysteine could be detected with high sensitivity using these plant leaf based substrates and the leaf possessing hierarchical micro/nanostructures on its surface shows higher SERS enhancement compared to a leaf having a nearplanar surface. Furthermore, leaves with drop-casted Au nanoparticle clusters performed better than the leaves sputter deposited with a thin Au film.

  12. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    PubMed Central

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO2, SnO2) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented. PMID:22574039

  13. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    PubMed

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  14. Tunable magnetic properties by interfacial manipulation of L1(0)-FePt perpendicular ultrathin film with island-like structures.

    PubMed

    Feng, C; Wang, S G; Yang, M Y; Zhang, E; Zhan, Q; Jiang, Y; Li, B H; Yu, G H

    2012-02-01

    Based on interfacial manipulation of the MgO single crystal substrate and non-magnetic AIN compound, a L1(0)-FePt perpendicular ultrathin film with the structure of MgO/FePt-AIN/Ta was designed, prepared, and investigated. The film is comprised of L1(0)-FePt "magnetic islands," which exhibits a perpendicular magnetic anisotropy (PMA), tunable coercivity (Hc), and interparticle exchange coupling (IEC). The MgO substrate promotes PMA of the film because of interfacial control of the FePt lattice orientation. The AIN compound is doped to increase the difference of surface energy between FePt layer and MgO substrate and to suppress the growth of FePt grains, which takes control of island growth mode of FePt atoms. The AIN compound also acts as isolator of L1(0)-FePt islands to pin the sites of FePt domains, resulting in the tunability of Hc and IEC of the films.

  15. Nanocolloid substrate for surface enhanced Raman scattering sensor for biological applications

    USDA-ARS?s Scientific Manuscript database

    Biopolymer encapsulated with silver nanoparticle (BeSN) substrate was prepared by chemical reduction method with silver nitrate, trisodium citrate in addition to polyvinyl alcohol. Optical properties of BeSN were analyzed with UV/Vis spectroscopy and hyperspectral microscope imaging. UV/Visible spec...

  16. Irradiation effect of low-energy ion on polyurethane nanocoating containing metal oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Verma, Jaya; Nigam, Subhasha; Sinha, Surbhi; Sikarwar, B. S.; Bhattacharya, Arpita

    2017-12-01

    Irradiation effect of low-energy ion beam has been investigated on nanocoating developed with silica, titania and silica-titania core-shell nanoparticles embedded in an organic binder for nanopaint application. In this work, we have taken polyurethane as a model organic binder. Silica nanoparticles have been prepared through sol-gel synthesis with a particle size of 85 nm. Titania and core-shell nanoparticles have been prepared through both sol-gel and peptization process. Particle sizes obtained were 107 nm for titania and 240 nm for core-shell nanoparticles prepared through sol-gel process and 75 nm for TiO2 and 144 nm for core-shell nanoparticles prepared through peptization process. The coating formulations were developed with the above nanoparticles individually and nanoparticle concentration was varied from 1 to 6 wt% and the best performance in terms of hydrophobicity was obtained with 4 wt % of the nanoparticles in polyurethane coating formulation. All the coating formulations prepared were applied on a glass substrate and dried at 100°C. The dry film thickness obtained was around 100 µm in each case. These films dried on glass substrate were irradiated by nitrogen and argon ion beam with energy of 26 keV at fluences of 1014 to 1016 ions/cm2. The anti-algal property of the irradiated samples was improved and hydrophobicity was reduced.

  17. Interferometric detection of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Karen

    Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.

  18. Isabela Island, Galapagos Islands

    NASA Image and Video Library

    1996-01-20

    STS072-732-072 (11-20 Jan. 1996) --- Three of the nineteen Galapagos Islands are visible in this image, photographed from the Earth-orbiting Space Shuttle Endeavour. The Galapagos Islands are located 600 miles (1,000 kilometers) to the west of Ecuador. The largest of the islands, Isabela, is at center (north is toward the upper right corner). The numerous circular features on the island, highlighted by clouds, are volcanoes. The Galapagos Islands owe their existence to a hot spot, or persistent heat source in the mantle, which also is located over a rift, or place where plates are separating and new crust is being created. The rift is located between the Cocos and Nazca Plates. The dark linear features on the islands are lava flows from past eruptions. The island to the left of Isabela is Fernandina, while the island to the right is San Salvador. The Galapagos Islands were visited by the English naturalist Charles Darwin in 1835.

  19. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS₂ Nanoparticles.

    PubMed

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev; Tenne, Reshef

    2018-02-26

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS₂ (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end.

  20. Nanoparticle formation after nanosecond-laser irradiation of thin gold films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratautas, Karolis; Gedvilas, Mindaugas; Raciukaitis, Gediminas

    2012-07-01

    Evolution in nanoparticle formation was observed after nanosecond-laser irradiation of thin gold films on a silicon substrate and physical phenomena leading to the formation of nanoparticles were studied. Gold films of different thickness (3, 5, 10, 15, 20, and 25 nm) were evaporated on the silicon (110) substrate and irradiated with the pulsed nanosecond laser using different pulse energies and the number of pulses in a burst. Experimentally morphological changes appeared in the films only when the pulse energy was high enough to initiate the phase transition. The threshold energy density for phase transitions in the films was estimated frommore » the thermal model of the laser beam and sample interaction. With the pulse energy just above the threshold, it was possible to observe evolution of nanoparticle formation from a plane metal film by changing the number of pulses applied, as duration of the pulse burst represented the time how long the liquid phase existed. The final size of nanoparticles was a function of the film thickness and was found to be independent of the pulse energy and the number of pulses.« less

  1. Magnetite nano-islands on Graphene

    NASA Astrophysics Data System (ADS)

    Anderson, Nathaniel; Zhang, Qiang; Rosenberg, Richard; Vaknin, David

    X-ray magnetic circular dichroism (XMCD) of ex-situ iron nano-islands grown on graphene reveals that iron oxidation spontaneously leads to the formation of magnetite nano-particles - i.e, the formation of the inverse spinel Fe3O4. Fe islands have been grown with two different heights (20 and 75 MLs) on epitaxial graphene and we have determined their magnetic behavior both as function of temperature and applied external field. Our XAS and XMCD at an applied magnetic field of B = 5 T show that the thin film (20 MLs) is totally converted to magnetite whereas the thicker film (75 MLs) exhibits magnetite properties but also those of pure metal iron. For both samples, temperature dependence of the XMCD shows clear transitions at ~120 K consistent with the Verwey transition of bulk magnetite. XMCD at low temperatures shows a weak hysteresis and provide the average spin and angular-momentum moments, the dipolar term, and the total moment . In addition, manipulation and comparison of the XMCD data from both samples allows us to extract information about the pure iron nano-islands from the thicker sample. Ames Laboratory is supported by the U.S. DOE, BES, MSE Contract No. DE-AC02-07CH11358. APS is supported by U.S. DOE Contract No. DE-AC02-06CH11357.

  2. Appropriate salt concentration of nanodiamond colloids for electrostatic self-assembly seeding of monosized individual diamond nanoparticles on silicon dioxide surfaces.

    PubMed

    Yoshikawa, Taro; Zuerbig, Verena; Gao, Fang; Hoffmann, René; Nebel, Christoph E; Ambacher, Oliver; Lebedev, Vadim

    2015-05-19

    Monosized (∼4 nm) diamond nanoparticles arranged on substrate surfaces are exciting candidates for single-photon sources and nucleation sites for ultrathin nanocrystalline diamond film growth. The most commonly used technique to obtain substrate-supported diamond nanoparticles is electrostatic self-assembly seeding using nanodiamond colloidal suspensions. Currently, monodisperse nanodiamond colloids, which have a narrow distribution of particle sizes centering on the core particle size (∼4 nm), are available for the seeding technique on different substrate materials such as Si, SiO2, Cu, and AlN. However, the self-assembled nanoparticles tend to form small (typically a few tens of nanometers or even larger) aggregates on all of those substrate materials. In this study, this major weakness of self-assembled diamond nanoparticles was solved by modifying the salt concentration of nanodiamond colloidal suspensions. Several salt concentrations of colloidal suspensions were prepared using potassium chloride as an inserted electrolyte and were examined with respect to seeding on SiO2 surfaces. The colloidal suspensions and the seeded surfaces were characterized by dynamic light scattering and atomic force microscopy, respectively. Also, the interaction energies between diamond nanoparticles in each of the examined colloidal suspensions were compared on the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. From these investigations, it became clear that the appropriate salt concentration suppresses the formation of small aggregates during the seeding process owing to the modified electrostatic repulsive interaction between nanoparticles. Finally, monosized (<10 nm) individual diamond nanoparticles arranged on SiO2 surfaces have been successfully obtained.

  3. Improving surface-enhanced Raman scattering properties of TiO(2) nanoparticles by metal Co doping.

    PubMed

    Yang, Libin; Qin, Xiaoyu; Gong, Mengdi; Jiang, Xin; Yang, Ming; Li, Xiuling; Li, Guangzhi

    2014-04-05

    In this paper, pure and different amount Co ions doped TiO2 nanoparticles were synthesized by a sol-hydrothermal method and were served as SERS-active substrate. The effect of metal Co doping on SERS properties of TiO2 nanoparticles was mostly investigated. The results indicate that abundant metal doping energy levels can be formed in the energy gap of TiO2 by an appropriate amount Co ions doping, which can promote the charge transfer from TiO2 to molecule, and subsequently enhance SERS signal of adsorbed molecule on TiO2 substrate, and improve remarkably SERS properties of TiO2 nanoparticles. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Effect of surface roughness on substrate-tuned gold nanoparticle gap plasmon resonances.

    PubMed

    Lumdee, Chatdanai; Yun, Binfeng; Kik, Pieter G

    2015-03-07

    The effect of nanoscale surface roughness on the gap plasmon resonance of gold nanoparticles on thermally evaporated gold films is investigated experimentally and numerically. Single-particle scattering spectra obtained from 80 nm diameter gold particles on a gold film show significant particle-to-particle variation of the peak scattering wavelength of ±28 nm. The experimental results are compared with numerical simulations of gold nanoparticles positioned on representative rough gold surfaces, modeled based on atomic force microscopy measurements. The predicted spectral variation and average resonance wavelength show good agreement with the measured data. The study shows that nanometer scale surface roughness can significantly affect the performance of gap plasmon-based devices.

  5. Screen-printed nanoparticles as anti-counterfeiting tags

    NASA Astrophysics Data System (ADS)

    Campos-Cuerva, Carlos; Zieba, Maciej; Sebastian, Victor; Martínez, Gema; Sese, Javier; Irusta, Silvia; Contamina, Vicente; Arruebo, Manuel; Santamaria, Jesus

    2016-03-01

    Metallic nanoparticles with different physical properties have been screen printed as authentication tags on different types of paper. Gold and silver nanoparticles show unique optical signatures, including sharp emission bandwidths and long lifetimes of the printed label, even under accelerated weathering conditions. Magnetic nanoparticles show distinct physical signals that depend on the size of the nanoparticle itself. They were also screen printed on different substrates and their magnetic signals read out using a magnetic pattern recognition sensor and a vibrating sample magnetometer. The novelty of our work lies in the demonstration that the combination of nanomaterials with optical and magnetic properties on the same printed support is possible, and the resulting combined signals can be used to obtain a user-configurable label, providing a high degree of security in anti-counterfeiting applications using simple commercially-available sensors.

  6. Screen-printed nanoparticles as anti-counterfeiting tags.

    PubMed

    Campos-Cuerva, Carlos; Zieba, Maciej; Sebastian, Victor; Martínez, Gema; Sese, Javier; Irusta, Silvia; Contamina, Vicente; Arruebo, Manuel; Santamaria, Jesus

    2016-03-04

    Metallic nanoparticles with different physical properties have been screen printed as authentication tags on different types of paper. Gold and silver nanoparticles show unique optical signatures, including sharp emission bandwidths and long lifetimes of the printed label, even under accelerated weathering conditions. Magnetic nanoparticles show distinct physical signals that depend on the size of the nanoparticle itself. They were also screen printed on different substrates and their magnetic signals read out using a magnetic pattern recognition sensor and a vibrating sample magnetometer. The novelty of our work lies in the demonstration that the combination of nanomaterials with optical and magnetic properties on the same printed support is possible, and the resulting combined signals can be used to obtain a user-configurable label, providing a high degree of security in anti-counterfeiting applications using simple commercially-available sensors.

  7. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    NASA Astrophysics Data System (ADS)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  8. Defect analysis of the LED structure deposited on the sapphire substrate

    NASA Astrophysics Data System (ADS)

    Nie, Qichu; Jiang, Zhimin; Gan, Zhiyin; Liu, Sheng; Yan, Han; Fang, Haisheng

    2018-04-01

    Transmission electron microscope (TEM) and double-crystal X-ray diffraction (DCXRD) measurements have been performed to investigate dislocations of the whole structure of the LED layers deposited on both the conventional (unpatterned sapphire substrate, UPSS) and patterned sapphire substrates (PSS). TEM results show that there exists a dislocation-accumulated region near the substrate/GaN interface, where the dislocation density is much higher with the UPPS than that with the PSS. It indicates that the pattern on the substrate surface is able to block the formation and propagation of dislocations. Further analysis discloses that slope of the pattern is found to suppress the deposition of GaN, and thus to provide more spaces for the epitaxially lateral overgrowth (ELO) of high temperature GaN, which significantly reduces the number of the initial islands, and minimizes dislocation formation due to the island coalescence. V-defect incorporating the threading dislocation is detected in the InGaN/GaN multi-quantum wells (MQWs), and its propagation mechanism is determined as the decrease of the surface energy due to the incorporation of indium. In addition, temperature dependence of dislocation formation is further investigated. The results show that dislocation with the screw component decreases monotonously as temperature goes up. However, edge dislocation firstly drops, and then increases by temperature due to the enhanced thermal mismatch stress. It implies that an optimized range of the growth temperature can be obtained to improve quality of the LED layers.

  9. Magnesium Nanoparticle Plasmonics.

    PubMed

    Biggins, John S; Yazdi, Sadegh; Ringe, Emilie

    2018-06-13

    Nanoparticles of some metals (Cu/Ag/Au) sustain oscillations of their electron cloud called localized surface plasmon resonances (LSPRs). These resonances can occur at optical frequencies and be driven by light, generating enhanced electric fields and spectacular photon scattering. However, current plasmonic metals are rare, expensive, and have a limited resonant frequency range. Recently, much attention has been focused on earth-abundant Al, but Al nanoparticles cannot resonate in the IR. The earth-abundant Mg nanoparticles reported here surmount this limitation. A colloidal synthesis forms hexagonal nanoplates, reflecting Mg's simple hexagonal lattice. The NPs form a thin self-limiting oxide layer that renders them stable suspended in 2-propanol solution for months and dry in air for at least two week. They sustain LSPRs observable in the far-field by optical scattering spectroscopy. Electron energy loss spectroscopy experiments and simulations reveal multiple size-dependent resonances with energies across the UV, visible, and IR. The symmetry of the modes and their interaction with the underlying substrate are studied using numerical methods. Colloidally synthesized Mg thus offers a route to inexpensive, stable nanoparticles with novel shapes and resonances spanning the entire UV-vis-NIR spectrum, making them a flexible addition to the nanoplasmonics toolbox.

  10. Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System.

    PubMed

    Zheng, Guangchao; Kaefer, Katharina; Mourdikoudis, Stefanos; Polavarapu, Lakshminarayana; Vaz, Belén; Cartmell, Samantha E; Bouleghlimat, Azzedine; Buurma, Niklaas J; Yate, Luis; de Lera, Ángel R; Liz-Marzán, Luis M; Pastoriza-Santos, Isabel; Pérez-Juste, Jorge

    2015-01-15

    We present a novel strategy based on the immobilization of palladium nanoparticles (Pd NPs) on filter paper for development of a catalytic system with high efficiency and recyclability. Oleylamine-capped Pd nanoparticles, dispersed in an organic solvent, strongly adsorb on cellulose filter paper, which shows a great ability to wick fluids due to its microfiber structure. Strong van der Waals forces and hydrophobic interactions between the particles and the substrate lead to nanoparticle immobilization, with no desorption upon further immersion in any solvent. The prepared Pd NP-loaded paper substrates were tested for several model reactions such as the oxidative homocoupling of arylboronic acids, the Suzuki cross-coupling reaction, and nitro-to-amine reduction, and they display efficient catalytic activity and excellent recyclability and reusability. This approach of using NP-loaded paper substrates as reusable catalysts is expected to open doors for new types of catalytic support for practical applications.

  11. Rewritable and pH-Sensitive Micropatterns Based on Nanoparticle "Inks"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, D. W.; Lagzi, Istvan; Wesson, Paul J.

    2010-08-16

    Rewritable micropatterns based on nanoparticle “inks” are created in gel substrates by wet stamping. The colors of the patterns depend on pH, reflect the degree of nanoparticle aggregation, and can be written using acids and erased using bases. Micropatterns imprinted with salts are “permanent” but can change color upon pH changes; these patterns act as multiple-use pH sensors.

  12. Z-scan studies of the nonlinear optical properties of gold nanoparticles prepared by electron beam deposition.

    PubMed

    Mezher, M H; Nady, A; Penny, R; Chong, W Y; Zakaria, R

    2015-11-20

    This paper details the fabrication process for placing single-layer gold (Au) nanoparticles on a planar substrate, and investigation of the resulting optical properties that can be exploited for nonlinear optics applications. Preparation of Au nanoparticles on the substrate involved electron beam deposition and subsequent thermal dewetting. The obtained thin films of Au had a variation in thicknesses related to the controllable deposition time during the electron beam deposition process. These samples were then subjected to thermal annealing at 600°C to produce a randomly distributed layer of Au nanoparticles. Observation from field-effect scanning electron microscope (FESEM) images indicated the size of Au nanoparticles ranges from ∼13 to ∼48  nm. Details of the optical properties related to peak absorption of localized surface plasmon resonance (LSPR) of the nanoparticle were revealed by use of UV-Vis spectroscopy. The Z-scan technique was used to measure the nonlinear effects on the fabricated Au nanoparticle layers where it strongly relates LSPR and nonlinear optical properties.

  13. Carbothermal shock synthesis of high-entropy-alloy nanoparticles

    NASA Astrophysics Data System (ADS)

    Yao, Yonggang; Huang, Zhennan; Xie, Pengfei; Lacey, Steven D.; Jacob, Rohit Jiji; Xie, Hua; Chen, Fengjuan; Nie, Anmin; Pu, Tiancheng; Rehwoldt, Miles; Yu, Daiwei; Zachariah, Michael R.; Wang, Chao; Shahbazian-Yassar, Reza; Li, Ju; Hu, Liangbing

    2018-03-01

    The controllable incorporation of multiple immiscible elements into a single nanoparticle merits untold scientific and technological potential, yet remains a challenge using conventional synthetic techniques. We present a general route for alloying up to eight dissimilar elements into single-phase solid-solution nanoparticles, referred to as high-entropy-alloy nanoparticles (HEA-NPs), by thermally shocking precursor metal salt mixtures loaded onto carbon supports [temperature ~2000 kelvin (K), 55-millisecond duration, rate of ~105 K per second]. We synthesized a wide range of multicomponent nanoparticles with a desired chemistry (composition), size, and phase (solid solution, phase-separated) by controlling the carbothermal shock (CTS) parameters (substrate, temperature, shock duration, and heating/cooling rate). To prove utility, we synthesized quinary HEA-NPs as ammonia oxidation catalysts with ~100% conversion and >99% nitrogen oxide selectivity over prolonged operations.

  14. Competing nucleation of islands and nanopits in zinc-blend Ill-nitride quaternary material system

    NASA Astrophysics Data System (ADS)

    Gambaryan, K. M.; Aroutiounian, V. M.; Simonyan, A. K.; Yeranyan, L. S.

    2016-10-01

    The growth mechanism of quantum dots (QDs), nanopits and collaborative QDs- nanopits structures in GaN-InN-AlN material system is theoretically investigated using the continuum elasticity model. The islands energy versus their volume, as well as the critical energy and volume versus the island and wetting layer lattice constants relative mismatch ratio (strain s), are calculated. It is shown that when the zinc-blend GaN is used as a substrate and when the strain between the wetting layer and a substrate overcomes critical ε* = 0.039 value, instead of QDs nucleation, the formation of nanopits becomes energetically preferable. Revealed feature is critical and has to be taking into account at QDs engineering in GaInAlN material system.

  15. Self-organization of gold nanoparticles on silanated surfaces.

    PubMed

    Kyaw, Htet H; Al-Harthi, Salim H; Sellai, Azzouz; Dutta, Joydeep

    2015-01-01

    The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications.

  16. Fabrication and characterisation of ligand-functionalised ultrapure monodispersed metal nanoparticle nanoassemblies employing advanced gas deposition technique

    NASA Astrophysics Data System (ADS)

    Geremariam Welearegay, Tesfalem; Cindemir, Umut; Österlund, Lars; Ionescu, Radu

    2018-02-01

    Here, we report for the first time the fabrication of ligand-functionalised ultrapure monodispersed metal nanoparticles (Au, Cu, and Pt) from their pure metal precursors using the advanced gas deposition technique. The experimental conditions during nanoparticle formation were adjusted in order to obtain ultrafine isolated nanoparticles on different substrates. The morphology and surface analysis of the as-deposited metal nanoparticles were investigated using scanning electron microscopy, x-ray diffraction and Fourier transform infra-red spectroscopy, which demonstrated the formation of highly ordered pure crystalline nanoparticles with a relatively uniform size distribution of ∼10 nm (Au), ∼4 nm (Cu) and ∼3 nm (Pt), respectively. A broad range of organic ligands containing thiol or amine functional groups were attached to the nanoparticles to form continuous networks of nanoparticle-ligand nanoassemblies, which were characterised by scanning electron microscopy and x-ray photoelectron spectroscopy. The electrical resistance of the functional nanoassemblies deposited in the gap spacing of two microfabricated parallel Au electrodes patterned on silicon substrates ranged between tens of kΩ and tens of MΩ, which is suitable for use in many applications including (bio)chemical sensors, surface-enhanced Raman spectroscopy and molecular electronic rectifiers.

  17. Growth graphene on silver-copper nanoparticles by chemical vapor deposition for high-performance surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Xiumei; Xu, Shicai; Jiang, Shouzhen; Wang, Jihua; Wei, Jie; Xu, Shida; Gao, Shoubao; Liu, Hanping; Qiu, Hengwei; Li, Zhen; Liu, Huilan; Li, Zhenhua; Li, Hongsheng

    2015-10-01

    We present a graphene/silver-copper nanoparticle hybrid system (G/SCNPs) to be used as a high-performance surface-enhanced Raman scattering (SERS) substrate. The silver-copper nanoparticles wrapped by a monolayer graphene layer are directly synthesized on SiO2/Si substrate by chemical vapor deposition in a mixture of methane and hydrogen. The G/SCNPs shows excellent SERS enhancement activity and high reproducibility. The minimum detected concentration of R6G is as low as 10-10 M and the calibration curve shows a good linear response from 10-6 to 10-10 M. The date fluctuations from 20 positions of one SERS substrate are less than 8% and from 20 different substrates are less than 10%. The high reproducibility of the enhanced Raman signals could be due to the presence of an ultrathin graphene layer and uniform morphology of silver-copper nanoparticles. The use of G/SCNPs for detection of nucleosides extracted from human urine demonstrates great potential for the practical applications on a variety of detection in medicine and biotechnology field.

  18. A method for the formation of Pt metal nanoparticle arrays using nanosecond pulsed laser dewetting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owusu-Ansah, Ebenezer; Horwood, Corie A.; Birss, Viola I.

    2015-05-18

    Nanosecond pulsed laser dewetting of Pt thin films, deposited on a dimpled Ta (DT) surface, has been studied here in order to form ordered Pt nanoparticle (NP) arrays. The DT substrate was fabricated via a simple electrochemical anodization process in a highly concentrated H{sub 2}SO{sub 4} and HF solution. Pt thin films (3–5 nm) were sputter coated on DT and then dewetted under vacuum to generate NPs using a 355 nm laser radiation (6–9 ns, 10 Hz). The threshold laser fluence to fully dewet a 3.5 nm thick Pt film was determined to be 300 mJ/cm{sup 2}. Our experiments have shown that shorter irradiation timesmore » (≤60 s) produce smaller nanoparticles with more uniform sizes, while longer times (>60 s) give large nanoparticles with wider size distributions. The optimum laser irradiation time of 1 s (10 pulses) has led to the formation of highly ordered Pt nanoparticle arrays with an average nanoparticle size of 26 ± 3 nm with no substrate deformation. At the optimum condition of 1 s and 500 mJ/cm{sup 2}, as many as 85% of the dewetted NPs were found neatly in the well-defined dimples. This work has demonstrated that pulsed laser dewetting of Pt thin films on a pre-patterned dimpled substrate is an efficient and powerful technique to produce highly ordered Pt nanoparticle arrays. This method can thus be used to produce arrays of other high-melting-point metal nanoparticles for a range of applications, including electrocatalysis, functionalized nanomaterials, and analytical purposes.« less

  19. Growth evolution of AlN films on silicon (111) substrates by pulsed laser deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Haiyan; Wang, Wenliang; Yang, Weijia

    2015-05-14

    AlN films with various thicknesses have been grown on Si(111) substrates by pulsed laser deposition (PLD). The surface morphology and structural property of the as-grown AlN films have been investigated carefully to comprehensively explore the epitaxial behavior. The ∼2 nm-thick AlN film initially grown on Si substrate exhibits an atomically flat surface with a root-mean-square surface roughness of 0.23 nm. As the thickness increases, AlN grains gradually grow larger, causing a relatively rough surface. The surface morphology of ∼120 nm-thick AlN film indicates that AlN islands coalesce together and eventually form AlN layers. The decreasing growth rate from 240 to 180 nm/h is amore » direct evidence that the growth mode of AlN films grown on Si substrates by PLD changes from the islands growth to the layer growth. The evolution of AlN films throughout the growth is studied deeply, and its corresponding growth mechanism is hence proposed. These results are instructional for the growth of high-quality nitride films on Si substrates by PLD, and of great interest for the fabrication of AlN-based devices.« less

  20. A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane

    NASA Astrophysics Data System (ADS)

    Hong, Jangho; Kawashima, Ayato; Hamada, Noriaki

    2017-06-01

    In this study, we developed a facile fabrication method to access a highly reproducible plasmonic surface enhanced Raman scattering substrate via the immobilization of gold nanoparticles on an Ultrafiltration (UF) membrane using a suction technique. This was combined with a simple and rapid analyte concentration and detection method utilizing portable Raman spectroscopy. The minimum detectable concentrations for aqueous thiabendazole standard solution and thiabendazole in orange extract are 0.01 μg/mL and 0.125 μg/g, respectively. The partial least squares (PLS) regression plot shows a good linear relationship between 0.001 and 100 μg/mL of analyte, with a root mean square error of prediction (RMSEP) of 0.294 and a correlation coefficient (R2) of 0.976 for the thiabendazole standard solution. Meanwhile, the PLS plot also shows a good linear relationship between 0.0 and 2.5 μg/g of analyte, with an RMSEP value of 0.298 and an R2 value of 0.993 for the orange peel extract. In addition to the detection of other types of pesticides in agricultural products, this highly uniform plasmonic substrate has great potential for application in various environmentally-related areas.

  1. Electrophoretic Deposition of Hydroxyapatite Film Containing Re-Doped MoS2 Nanoparticles

    PubMed Central

    Shalom, Hila; Feldman, Yishay; Rosentsveig, Rita; Pinkas, Iddo; Kaplan-Ashiri, Ifat; Moshkovich, Alexey; Perfilyev, Vladislav; Rapoport, Lev

    2018-01-01

    Films combining hydroxyapatite (HA) with minute amounts (ca. 1 weight %) of (rhenium doped) fullerene-like MoS2 (IF) nanoparticles were deposited onto porous titanium substrate through electrophoretic process (EPD). The films were analyzed by scanning electron microscopy (SEM), X-ray diffraction and Raman spectroscopy. The SEM analysis showed relatively uniform coatings of the HA + IF on the titanium substrate. Chemical composition analysis using energy dispersive X-ray spectroscopy (EDS) of the coatings revealed the presence of calcium phosphate minerals like hydroxyapatite, as a majority phase. Tribological tests were undertaken showing that the IF nanoparticles endow the HA film very low friction and wear characteristics. Such films could be of interest for various medical technologies. Means for improving the adhesion of the film to the underlying substrate and its fracture toughness, without compromising its biocompatibility are discussed at the end. PMID:29495394

  2. Synthesis of transparent BaTiO3 nanoparticle/polymer composite film using DC field

    NASA Astrophysics Data System (ADS)

    Kondo, Yusuke; Okumura, Yasuko; Oi, Chifumi; Sakamoto, Wataru; Yogo, Toshinobu

    2008-10-01

    Transparent BaTiO3 nanoparticle/polymer composite films were synthesized from titanium-organic film and barium ion in aqueous solution under direct current (DC) field. Titanium-organic precursor was synthesized from titanium isopropoxide, acetylacetone and methacrylate derivative. The UV treatment was effective to increase the anti-solubility of the titanium-organic film during DC processing. BaTiO3 nanoparticles were crystallized in the precursor films on stainless substrates without high temperature process, as low as 40°C. The crystallite size of BaTiO3 increased with increasing reaction temperature from 40 to 50 °C at 3.0 V/cm. BaTiO3 nanoparticles also grew in size with increasing reaction time from 15 min to 45 min at 3.0 V/cm and 50 °C. Transparent BaTiO3 nanoparticle/polymer films were synthesized on stainless substrates at 3.0 V/cm and 50°C for 45 min.

  3. Fabrication of Nanoscale Circuits on Inkjet-Printing Patterned Substrates.

    PubMed

    Chen, Shuoran; Su, Meng; Zhang, Cong; Gao, Meng; Bao, Bin; Yang, Qiang; Su, Bin; Song, Yanlin

    2015-07-08

    Nanoscale circuits are fabricated by assembling different conducting materials (e.g., metal nanoparticles, metal nano-wires, graphene, carbon nanotubes, and conducting polymers) on inkjet-printing patterned substrates. This non-litho-graphy strategy opens a new avenue for integrating conducting building blocks into nanoscale devices in a cost-efficient manner. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DNA origami based Au-Ag-core-shell nanoparticle dimers with single-molecule SERS sensitivity

    NASA Astrophysics Data System (ADS)

    Prinz, J.; Heck, C.; Ellerik, L.; Merk, V.; Bald, I.

    2016-03-01

    DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled.DNA origami nanostructures are a versatile tool to arrange metal nanostructures and other chemical entities with nanometer precision. In this way gold nanoparticle dimers with defined distance can be constructed, which can be exploited as novel substrates for surface enhanced Raman scattering (SERS). We have optimized the size, composition and arrangement of Au/Ag nanoparticles to create intense SERS hot spots, with Raman enhancement up to 1010, which is sufficient to detect single molecules by Raman scattering. This is demonstrated using single dye molecules (TAMRA and Cy3) placed into the center of the nanoparticle dimers. In conjunction with the DNA origami nanostructures novel SERS substrates are created, which can in the future be applied to the SERS analysis of more complex biomolecular targets, whose position and conformation within the SERS hot spot can be precisely controlled. Electronic supplementary information (ESI) available: Additional information about materials and methods, designs of DNA origami templates, height profiles, additional SERS spectra, assignment of DNA

  5. Selection and deposition of nanoparticles using CO.sub.2-expanded liquids

    DOEpatents

    Roberts, Christopher B [Auburn, AL; McLeod, Marshall Chandler [Hillsboro, OR; Anand, Madhu [Auburn, AL

    2008-06-10

    A method for size selection of nanostructures comprising utilizing a gas-expanded liquids (GEL) and controlled pressure to precipitate desired size populations of nanostructures, e.g., monodisperse. The GEL can comprise CO.sub.2 antisolvent and an organic solvent. The method can be carried out in an apparatus comprising a first open vessel configured to allow movement of a liquid/particle solution to specific desired locations within the vessel, a second pressure vessel, a location controller for controlling location of the particles and solution within the first vessel, a inlet for addition of antisolvent to the first vessel, and a device for measuring the amount of antisolvent added. Also disclosed is a method for forming nanoparticle thin films comprising utilizing a GEL containing a substrate, pressurizing the solution to precipitate and deposit nanoparticles onto the substrate, removing the solvent thereby leaving a thin nanoparticle film, removing the solvent and antisolvent, and drying the film.

  6. One-step flame synthesis of silver nanoparticles for roll-to-roll production of antibacterial paper

    NASA Astrophysics Data System (ADS)

    Brobbey, Kofi J.; Haapanen, Janne; Gunell, Marianne; Mäkelä, Jyrki M.; Eerola, Erkki; Toivakka, Martti; Saarinen, Jarkko J.

    2017-10-01

    Nanoparticles are used in several applications due to the unique properties they possess compared to bulk materials. Production techniques have continuously evolved over the years. Recently, there has been emphasis on environmentally friendly manufacturing processes. Substrate properties often limit the possible production techniques and, for example; until recently, it has been difficult to incorporate nanoparticles into paper. Chemical reduction of a precursor in the presence of paper changes the bulk properties of paper, which may limit intended end-use. In this study, we present a novel technique for incorporating silver nanoparticles into paper surface using a flame pyrolysis procedure known as Liquid Flame Spray. Papers precoated with mineral pigments and plastic are used as substrates. Silver nanoparticles were analyzed using SEM and XPS measurements. Results show a homogeneous monolayer of silver nanoparticles on the surface of paper, which demonstrated antibacterial properties against E. coli. Paper precoated with plastic showed more nanoparticles on the surface compared to pigment coated paper samples except for polyethylene-precoated paper. The results demonstrate a dry synthesis approach for depositing silver nanoparticles directly onto paper surface in a process which produces no effluents. The production technique used herein is up scalable for industrial production of antibacterial paper.

  7. Indium nanoparticles for ultraviolet surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Das, Rupali; Soni, R. K.

    2018-05-01

    Ultraviolet Surface-enhanced Raman spectroscopy (UVSERS) has emerged as an efficient molecular spectroscopy technique for ultra-sensitive and ultra-low detection of analyte concentration. The generic SERS substrates based on gold and silver nanostructures have been extensively explored for high local electric field enhancement only in visible-NIR region of the electromagnetic spectrum. The template synthesis of controlled nanoscale size metallic nanostructures supporting localized surface plasmon resonance (LSPR) in the UV region have been recently explored due to their ease of synthesis and potential applications in optoelectronic, catalysis and magnetism. Indium (In0) nanoparticles exhibit active surface plasmon resonance (SPR) in ultraviolet (UV) and deep-ultaviolet (DUV) region with optimal absorption losses. This extended accessibility makes indium a promising material for UV plasmonic, chemical sensing and more recently in UV-SERS. In this work, spherical indium nanoparticles (In NPs) were synthesized by modified polyol reduction method using NaBH4 having local surface plasmon resonance near 280 nm. The as-synthesized spherical In0 nanoparticles were then coated with thin silica shells of thickness ˜ 5nm by a modified Stober method protecting the nanoparticles from agglomeration, direct contact with the probed molecules as well as prevent oxidation of the nanoparticles. Morphological evolution of In0 nanoparticles and SiO2 coating were characterized by transmission electron microscope (TEM). An enhanced near resonant shell-isolated SERS activity from thin film of tryptophan (Tryp) molecules deposited on indium coated substrates under 325nm UV excitation was observed. Finite difference time domain (FDTD) method is employed to comprehend the experimental results and simulate the electric field contours which showed amplified electromagnetic field localized around the nanostructures. The comprehensive analysis indicates that indium is a promising alternate

  8. Reversible island nucleation and growth with anomalous diffusion

    NASA Astrophysics Data System (ADS)

    Sabbar, Ehsan H.; Amar, Jacques G.

    2017-10-01

    Motivated by recent experiments on submonolayer organic film growth with anomalous diffusion, a general rate-equation (RE) theory of submonolayer island nucleation and growth was developed (Amar and Semaan, 2016) [23], which takes into account the critical island-size i, island fractal dimension df, substrate dimension d, and diffusion exponent μ, and good agreement with simulations was found for the case of irreversible growth corresponding to a critical island-size i = 1 with d = 2 . However, since many experiments correspond to a critical island-size larger than 1, it is of interest to determine if the RE predictions also hold in the case of reversible island nucleation with anomalous diffusion. Here we present the results of simulations of submonolayer growth with i = 2 (d = 2) which were carried out for both the case of superdiffusion (μ > 1) and subdiffusion (μ < 1) as well as for both ramified islands (df ≃ 2) and point-islands (df = ∞) . In the case of superdiffusion, corresponding to 'hot' freshly deposited monomers, excellent agreement is obtained with the predictions of the generalized RE theory for the exponents χ(μ) and χ1(μ) which describe the dependence of the island and monomer densities at fixed coverage on deposition rate F. In addition, the exponents do not depend on whether or not monomers remain superdiffusive or are thermalized (e.g. undergo regular diffusion) after detaching from a dimer. However, we also find that, as was previously found in the case of irreversible growth, the exponent χ only approaches its asymptotic value logarithmically with increasing 1/F. This result has important implications for the interpretation of experiments. Good agreement with the RE theory is also found in the case of subdiffusion for point-islands. However, in the case of ramified islands with subdiffusion and i = 2 , the exponents are significantly higher than predicted due to the fact that monomer capture dominates in the nucleation regime. A

  9. Anomalous complete opaqueness in a sparse array of gold nanoparticle chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai Benfeng; Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing 100084; Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu

    2011-08-22

    We report on an anomalous polarization-switching extinction effect in a sparse array of gold nanoparticle chains: under normal incidence of light, the array is almost transparent for one polarization; whereas it is fully opaque (with nearly zero transmittance) for the orthogonal polarization within a narrow band, even though the nanoparticles cover only a tiny fraction (say, 3.5%) of the transparent substrate surface. We reveal that the strong polarization-dependent short-range dipolar coupling and long-range radiative coupling of gold nanoparticles in this highly asymmetric array is responsible for this extraordinary effect.

  10. Geophysical features influence the accumulation of beach debris on Caribbean islands.

    PubMed

    Schmuck, Alexandra M; Lavers, Jennifer L; Stuckenbrock, Silke; Sharp, Paul B; Bond, Alexander L

    2017-08-15

    Anthropogenic beach debris was recorded during beach surveys of 24 Caribbean islands during April 2014-April 2016. Beach debris was classified according to material type (e.g., polystyrene) and item use (e.g., fishing). Geophysical features (substrate type, beach direction, and human accessibility) of sample sites were recorded in order to investigate their relationship with debris density. Results suggest the density of macro debris (items >5mm) is highest on uninhabited, sandy beaches facing a leeward direction. Higher debris quantities on inaccessible beaches may be due to less frequent beach clean ups. Frequently accessed beaches exhibited lower macro, but higher micro debris (items 1-5mm) densities, possibly due to removal of macro debris during frequent beach clean ups. This suggests that while geophysical features have some influence on anthropogenic debris densities, high debris densities are occurring on all islands within the Caribbean region regardless of substrate, beach direction, or human accessibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues

    NASA Astrophysics Data System (ADS)

    Fan, Kelong; Cao, Changqian; Pan, Yongxin; Lu, Di; Yang, Dongling; Feng, Jing; Song, Lina; Liang, Minmin; Yan, Xiyun

    2012-07-01

    Engineered nanoparticles have been used to provide diagnostic, therapeutic and prognostic information about the status of disease. Nanoparticles developed for these purposes are typically modified with targeting ligands (such as antibodies, peptides or small molecules) or contrast agents using complicated processes and expensive reagents. Moreover, this approach can lead to an excess of ligands on the nanoparticle surface, and this causes non-specific binding and aggregation of nanoparticles, which decreases detection sensitivity. Here, we show that magnetoferritin nanoparticles (M-HFn) can be used to target and visualize tumour tissues without the use of any targeting ligands or contrast agents. Iron oxide nanoparticles are encapsulated inside a recombinant human heavy-chain ferritin (HFn) protein shell, which binds to tumour cells that overexpress transferrin receptor 1 (TfR1). The iron oxide core catalyses the oxidation of peroxidase substrates in the presence of hydrogen peroxide to produce a colour reaction that is used to visualize tumour tissues. We examined 474 clinical specimens from patients with nine types of cancer and verified that these nanoparticles can distinguish cancerous cells from normal cells with a sensitivity of 98% and specificity of 95%.

  12. Investigations on Substrate Temperature-Induced Growth Modes of Organic Semiconductors at Dielectric/semiconductor Interface and Their Correlation with Threshold Voltage Stability in Organic Field-Effect Transistors.

    PubMed

    Padma, Narayanan; Maheshwari, Priya; Bhattacharya, Debarati; Tokas, Raj B; Sen, Shashwati; Honda, Yoshihide; Basu, Saibal; Pujari, Pradeep Kumar; Rao, T V Chandrasekhar

    2016-02-10

    Influence of substrate temperature on growth modes of copper phthalocyanine (CuPc) thin films at the dielectric/semiconductor interface in organic field effect transistors (OFETs) is investigated. Atomic force microscopy (AFM) imaging at the interface reveals a change from 'layer+island' to "island" growth mode with increasing substrate temperatures, further confirmed by probing the buried interfaces using X-ray reflectivity (XRR) and positron annihilation spectroscopic (PAS) techniques. PAS depth profiling provides insight into the details of molecular ordering while positron lifetime measurements reveal the difference in packing modes of CuPc molecules at the interface. XRR measurements show systematic increase in interface width and electron density correlating well with the change from layer + island to coalesced huge 3D islands at higher substrate temperatures. Study demonstrates the usefulness of XRR and PAS techniques to study growth modes at buried interfaces and reveals the influence of growth modes of semiconductor at the interface on hole and electron trap concentrations individually, thereby affecting hysteresis and threshold voltage stability. Minimum hole trapping is correlated to near layer by layer formation close to the interface at 100 °C and maximum to the island formation with large voids between the grains at 225 °C.

  13. Self-organization of gold nanoparticles on silanated surfaces

    PubMed Central

    Kyaw, Htet H; Sellai, Azzouz; Dutta, Joydeep

    2015-01-01

    Summary The self-organization of monolayer gold nanoparticles (AuNPs) on 3-aminopropyltriethoxysilane (APTES)-functionalized glass substrate is reported. The orientation of APTES molecules on glass substrates plays an important role in the interaction between AuNPs and APTES molecules on the glass substrates. Different orientations of APTES affect the self-organization of AuNps on APTES-functionalized glass substrates. The as grown monolayers and films annealed in ultrahigh vacuum and air (600 °C) were studied by water contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, UV–visible spectroscopy and ultraviolet photoelectron spectroscopy. Results of this study are fundamentally important and also can be applied for designing and modelling of surface plasmon resonance based sensor applications. PMID:26734526

  14. Laser engineered multilayer coating of biphasic calcium phosphate/titanium nanocomposite on metal substrates.

    PubMed

    Zhang, Martin Yi; Ye, Chang; Erasquin, Uriel Joseph; Huynh, Toan; Cai, Chengzhi; Cheng, Gary J

    2011-02-01

    In this work, laser coating of biphasic calcium phosphate/titanium (BCP/Ti) nanocomposite on Ti-6Al-4 V substrates was developed. A continuous wave neodymium-doped yttrium aluminium garnet (Nd:YAG) laser was used to form a robust multilayer of BCP/Ti nanocomposite starting from hydroxyapatite and titanium nanoparticles. In this process, low power coating is realized because of the strong laser-nanoparticle interaction and good sinterability of nanosized titanium. To guide the optimization of laser processing conditions for the coating process, a multiphysics model coupling electromagnetic module with heat transfer module was developed. This model was validated by laser coating experiments. Important features of the coated samples, including microstructures, chemical compositions, and interfacial bonding strength, were characterized. We found that a multilayer of BCP, consisting of 72% hydroxyapatite (HA) and 28% beta-tricalcium phosphate (β-TCP), and titanium nanocomposite was formed on Ti-6Al-4 V substrates. Significantly, the coating/substrate interfacial bonding strength was found to be two times higher than that of the commercial plasma sprayed coatings. Preliminary cell culture studies showed that the resultant BCP/Ti nanocomposite coating supported the adhesion and proliferation of osteoblast-like UMR-106 cells.

  15. Nucleation sites of Ge nanoislands grown on pit-patterned Si substrate prepared by electron-beam lithography

    NASA Astrophysics Data System (ADS)

    Smagina, Zh. V.; Zinovyev, V. A.; Rudin, S. A.; Novikov, P. L.; Rodyakina, E. E.; Dvurechenskii, A. V.

    2018-04-01

    Regular pit-patterned Si(001) substrates were prepared by electron-beam lithography followed by plasma chemical etching. The geometry of the pits was controlled by varying the etching conditions and the electron-beam exposure duration. It was shown that the location of three-dimensional (3D) Ge nanoislands subsequently grown on the pit-patterned Si substrates depends on the shape of the pit bottom. In the case of pits having a sharp bottom, 3D Ge islands nucleate inside the pits. For pits with a wide flat bottom, the 3D Ge island nucleation takes place at the pit periphery. This effect is attributed to the strain relaxation depending not only on the initial pit shape, but also on its evolution during the Ge wetting layer deposition. It was shown by Monte Carlo simulations that in the case of a pit with a pointed bottom, the relaxation is most effective inside the pit, while for a pit with a wide bottom, the most relaxed area migrates during Ge deposition from the pit bottom to its edges, where 3D Ge islands nucleate.

  16. Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

    NASA Astrophysics Data System (ADS)

    Avci, Oguzhan

    Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization. Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light. In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses. This study investigates the integration of advanced optical schemes in WIM with two

  17. Influence of electric field on the behavior of Si nanoparticles generated by laser ablation

    NASA Astrophysics Data System (ADS)

    Muramoto, Junichi; Sakamoto, Ippei; Nakata, Yoshiki; Okada, Tatsuo; Maeda, Mitsuo

    1999-08-01

    The influence of an electric field on particle behavior was investigated to control the transport of Si nanoparticles in a laser ablation plume by an ultraviolet Rayleigh scattering (UV-RS) technique. The majority of the nanoparticles, which could be observed by the UV-RS technique, were transported to the negatively biased electrode, indicating that they were positively charged. The deposition efficiency of nanoparticles onto a substrate was also improved by applying an electric field.

  18. Robust antireflection coatings By UV cross-linking of silica nanoparticles and diazo-resin polycation

    NASA Astrophysics Data System (ADS)

    Ridley, Jason I.; Heflin, James R.; Ritter, Alfred L.

    2007-09-01

    Antireflection coatings have been fabricated by self-assembly using silica nanoparticles. The ionic self-assembled multilayer (ISAM) films are tightly packed and homogeneous. While the geometric properties of a matrix of spherical particles with corresponding void interstices are highly suitable to meet the conditions for minimal reflectivity, it is also a cause for the lack of cohesion within the constituent body, as well as to the substrate surface. This study investigates methods for improving the interconnectivity of the nanoparticle structure. One such method involves UV curing of diazo-resin (DAR)/silica nanoparticle films, thereby converting the ionic interaction into a stronger covalent bond. Factorial analysis and response surface methods are incorporated to determine factors that affect film properties, and to optimize their optical and adhesive capabilities. The second study looks at the adhesive strength of composite multilayer films. Films are fabricated with silica nanoparticles and poly(allylamine hydrochloride) (PAH), and dipped into aqueous solutions of PAH and poly(methacrylic acid, sodium salt) (PMA) to improve cohesion of silica nanoparticles in the matrix, as well as binding strength to the substrate surface. The results of the two studies are discussed.

  19. Recyclable organic solar cells on cellulose nanocrystal substrates

    PubMed Central

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M.; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P.; Moon, Robert J.; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production. PMID:23524333

  20. Recyclable organic solar cells on cellulose nanocrystal substrates.

    PubMed

    Zhou, Yinhua; Fuentes-Hernandez, Canek; Khan, Talha M; Liu, Jen-Chieh; Hsu, James; Shim, Jae Won; Dindar, Amir; Youngblood, Jeffrey P; Moon, Robert J; Kippelen, Bernard

    2013-01-01

    Solar energy is potentially the largest source of renewable energy at our disposal, but significant advances are required to make photovoltaic technologies economically viable and, from a life-cycle perspective, environmentally friendly, and consequently scalable. Cellulose nanomaterials are emerging high-value nanoparticles extracted from plants that are abundant, renewable, and sustainable. Here, we report on the first demonstration of efficient polymer solar cells fabricated on optically transparent cellulose nanocrystal (CNC) substrates. The solar cells fabricated on the CNC substrates display good rectification in the dark and reach a power conversion efficiency of 2.7%. In addition, we demonstrate that these solar cells can be easily separated and recycled into their major components using low-energy processes at room temperature, opening the door for a truly recyclable solar cell technology. Efficient and easily recyclable organic solar cells on CNC substrates are expected to be an attractive technology for sustainable, scalable, and environmentally-friendly energy production.

  1. Generation of metal nanoparticles from silver and copper objects: nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment.

    PubMed

    Glover, Richard D; Miller, John M; Hutchison, James E

    2011-11-22

    The use of silver nanoparticles (AgNPs) in antimicrobial applications, including a wide range of consumer goods and apparel, has attracted attention because of the unknown health and environmental risks associated with these emerging materials. Of particular concern is whether there are new risks that are a direct consequence of their nanoscale size. Identifying those risks associated with nanoscale structure has been difficult due to the fundamental challenge of detecting and monitoring nanoparticles in products or the environment. Here, we introduce a new strategy to directly monitor nanoparticles and their transformations under a variety of environmental conditions. These studies reveal unprecedented dynamic behavior of AgNPs on surfaces. Most notably, under ambient conditions at relative humidities greater than 50%, new silver nanoparticles form in the vicinity of the parent particles. This humidity-dependent formation of new particles was broadly observed for a variety of AgNPs and substrate surface coatings. We hypothesize that nanoparticle production occurs through a process involving three stages: (i) oxidation and dissolution of silver from the surface of the particle, (ii) diffusion of silver ion across the surface in an adsorbed water layer, and (iii) formation of new, smaller particles by chemical and/or photoreduction. Guided by these findings, we investigated non-nanoscale sources of silver such as wire, jewelry, and eating utensils that are placed in contact with surfaces and found that they also formed new nanoparticles. Copper objects display similar reactivity, suggesting that this phenomenon may be more general. These findings challenge conventional thinking about nanoparticle reactivity and imply that the production of new nanoparticles is an intrinsic property of the material that is not strongly size dependent. The discovery that AgNPs and CuNPs are generated spontaneously from manmade objects implies that humans have long been in direct

  2. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application.

    PubMed

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-22

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag + ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm 2 ) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s -1 heat-up rate at a low input power density.

  3. Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application

    NASA Astrophysics Data System (ADS)

    Park, Ji Sun; Song, Yookyung; Park, Daseul; Kim, Yeon-Won; Kim, Yoon Jin

    2018-06-01

    A facile one-pot synthetic method for preparing the Ag nanoparticle inks with a bimodal size distribution was newly devised and they were successfully employed as a conducting filler to form the metal-mesh type transparent conducting electrodes on the flexible substrate. Bimodal-sized Ag nanoparticles were synthesized through the polyol process, and their size variation was occurred via finely tuned composition ratio between Ag+ ions and polymeric capping agents. The prepared bimodal-sized Ag nanoparticles exhibited the form of well-dispersed Ag nanoparticle inks without adding any dispersants and dispersion process. By filling the patterned micro-channels engraved on the flexible polymer substrate using a bimodal-sized Ag nanoparticle ink, a metal-mesh type transparent electrode (transmittance: 90% at 550 nm, haze: 1.5, area: 8 × 8 cm2) was fabricated. By applying DC voltage to the mesh type electrode, a flexible transparent joule heater was successfully achieved with a performance of 4.5 °C s‑1 heat-up rate at a low input power density.

  4. Nanoparticle engineering of colloidal suspension behavior

    NASA Astrophysics Data System (ADS)

    Chan, Angel Thanda

    We investigate the effects of highly charged nanoparticles on the phase behavior, structure, and assembly of colloidal microsphere suspensions. Specifically, by selectively tuning the electrostatic interactions between silica microspheres and polystyrene nanoparticles, we study the behavior of four key systems: (i) strongly repulsive, (ii) haloing, (iii) weakly attractive, and (iv) strongly attractive systems. In each system, a combination of nanoparticle adsorption, zeta potential, and confocal microscopy measurements are carried out to systematically study the effects of nanoparticle volume fraction, microsphere/nanoparticle size ratios, and interparticle interactions on their behavior. Our observations indicate that minimal adsorption of highly charged nanoparticles occurs on like-charged and negligibly-charged microspheres, whereas their extent of association increases dramatically with increasing microsphere-nanoparticle attraction. A rich phase behavior emerges in these systems based on whether the nanoparticle species serve as depletants, haloing, or bridging species. The phase transitions in the haloing system occur at constant nanoparticle volume fractions, φnano, over a broad range of microsphere volume fractions, φmicro . By contrast, the observed transitions in the weakly and strongly attractive mixtures occur at a constant number ratio of nanoparticles per microsphere, Nnano/Nmicro. Important structural differences emerge, which can be exploited in the assembly of colloidal gels for direct ink writing and colloidal crystals on epitaxially patterned substrates. Finally, for the first time, we explore nanoparticle haloing as a new route for stabilizing hydrophobic colloidal drugs in aqueous suspensions media for preparation of injectable pharmaceuticals. These microsphere suspensions exhibit improved stability relative to their surfactant-stabilized counterparts after autoclaving, a critical processing step for this target applications. This research

  5. Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS.

    PubMed

    Gisbert Quilis, Nestor; Lequeux, Médéric; Venugopalan, Priyamvada; Khan, Imran; Knoll, Wolfgang; Boujday, Souhir; Lamy de la Chapelle, Marc; Dostalek, Jakub

    2018-05-23

    The facile preparation of arrays of plasmonic nanoparticles over a square centimeter surface area is reported. The developed method relies on tailored laser interference lithography (LIL) that is combined with dry etching and it offers means for the rapid fabrication of periodic arrays of metallic nanostructures with well controlled morphology. Adjusting the parameters of the LIL process allows for the preparation of arrays of nanoparticles with a diameter below hundred nanometers independently of their lattice spacing. Gold nanoparticle arrays were precisely engineered to support localized surface plasmon resonance (LSPR) with different damping at desired wavelengths in the visible and near infrared part of the spectrum. The applicability of these substrates for surface enhanced Raman scattering is demonstrated where cost-effective, uniform and reproducible substrates are of paramount importance. The role of deviations in the spectral position and the width of the LSPR band affected by slight variations of plasmonic nanostructures is discussed.

  6. Formation of nanoparticles from thin silver films irradiated by laser pulses in air

    NASA Astrophysics Data System (ADS)

    Nastulyavichus, A. A.; Smirnov, N. A.; Kudryashov, S. I.; Ionin, A. A.; Saraeva, I. N.; Busleev, N. I.; Rudenko, A. A.; Khmel'nitskii, R. A.; Zayarnyi, D. A.

    2018-03-01

    Some specific features of the transport of silver nanoparticles onto a SiO2 substrate under focused nanosecond IR laser pulses is experimentally investigated. A possibility of obtaining silver coatings is demonstrated. The formation of silver nanostructures as a result of pulsed laser ablation in air is studied. Nanoparticles are formed by exposing a silver film to radiation of an HTF MARK (Bulat) laser marker (λ = 1064 nm). The thus prepared nanoparticles are analysed using scanning electron microscopy and optical spectroscopy.

  7. Self-Assembled Double-Quarter Antireflective Coatings using Silica and Titania Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lal, Anitesh; Castedo Velasco, Raisa; Mazilu, Dan

    2011-03-01

    Antireflective coatings have a wide range of applications, from eyeglass and camera lenses, to solar panels and optoelectronic devices, to name just a few. Our study examines several factors that affect the quality of antireflective coatings created by the self-assembly of alternating layers of SiO2 and/or TiO2 nanoparticles and poly(diallyldimethylammonium chloride) polycation on glass substrates. We use a factorial design to investigate the effects of the molarity of the nanoparticle solution, the size of the nanoparticles, the pH of the nanoparticle and polycation solutions, and the number of nanoparticle-polycation bilayers on the optical properties of the films. The first order effects of these factors, as well as their interactions, on the reflectance, transmittance, and uniformity of the coatings are reported.

  8. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates

    PubMed Central

    Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio

    2014-01-01

    Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319

  9. Engineering Ni-Mo-S Nanoparticles for Hydrodesulfurization.

    PubMed

    Bodin, Anders; Christoffersen, Ann-Louise N; Elkjær, Christian F; Brorson, Michael; Kibsgaard, Jakob; Helveg, Stig; Chorkendorff, Ib

    2018-06-13

    Nanoparticle engineering for catalytic applications requires both a synthesis technique for the production of well-defined nanoparticles and measurements of their catalytic performance. In this paper, we present a new approach to rationally engineering highly active Ni-Mo-S nanoparticle catalysts for hydrodesulfurization (HDS), i.e., the removal of sulfur from fossil fuels. Nanoparticle catalysts are synthesized by the sputtering of a Mo 75 Ni 25 metal target in a reactive atmosphere of Ar and H 2 S followed by the gas aggregation of the sputtered material into nanoparticles. The nanoparticles are filtered by a quadrupole mass filter and subsequently deposited on a planar substrate, such as a grid for electron microscopy or a microreactor. By varying the mass of the deposited nanoparticles, it is demonstrated that the Ni-Mo-S nanoparticles can be tuned into fullerene-like particles, flat-lying platelets, and upright-oriented platelets. The nanoparticle morphologies provide different abundances of Ni-Mo-S edge sites, which are commonly considered the catalytically important sites. Using a microreactor system, we assess the catalytic activity of the Ni-Mo-S nanoparticles for the HDS of dibenzothiophene. The measurements show that platelets are twice as active as the fullerene-like particles, demonstrating that the Ni-Mo-S edges are more active than basal planes for the HDS. Furthermore, the upright-standing orientation of platelets show an activity that is six times higher than the fullerene-like particles, demonstrating the importance of the edge site number and accessibility to reducing, e.g., sterical hindrance for the reacting molecules.

  10. Shaping Ge islands on Si(001) surfaces with misorientation angle.

    PubMed

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2010-01-22

    A complete description of Ge growth on vicinal Si(001) surfaces in the angular miscut range 0 degrees -8 degrees is presented. The key role of substrate vicinality is clarified from the very early stages of Ge deposition up to the nucleation of 3D islands. By a systematic scanning tunneling microscopy investigation we are able to explain the competition between step-flow growth and 2D nucleation and the progressive elongation of the 3D islands along the miscut direction [110]. Using finite element calculations, we find a strict correlation between the morphological evolution and the energetic factors which govern the {105} faceting at atomic scale.

  11. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles.

    PubMed

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel; Hilfiker, Andres

    2016-01-01

    Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle-cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN.

  12. Critical assessment of enhancement factor measurements in surface-enhanced Raman scattering on different substrates.

    PubMed

    Rodrigues, Daniel C; de Souza, Michele L; Souza, Klester S; dos Santos, Diego P; Andrade, Gustavo F S; Temperini, Marcia L A

    2015-09-07

    The SERS enhancement factor (SERS-EF) is one of the most important parameters that characterizes the ability of a given substrate to enhance the Raman signal for SERS applications. The comparison of SERS intensities and SERS-EF values across different substrates is a common practice to unravel the performance of a given substrate. In this study, it is shown that such a comparison may lack significance if we compare substrates of very distinct nature and optical properties. It is specifically shown that the SERS-EF values for static substrates (e.g. immobilized metallic nanostructures) cannot be compared to those of dynamic ones (e.g. colloidal metal nanoparticle solutions), and that the optical properties for the latter show strong dependence on the metal-molecule interaction dynamics. The most representative experimental results concerning the dynamic substrates have been supported by generalized Mie theory simulations, which are tools used to describe the substrate complexity and the microscopic information not usually taken into account.

  13. Surface enhanced Raman scattering substrates prepared by thermal evaporation on liquid surfaces.

    PubMed

    Ye, Ziran; Sun, Guofang; Sui, Chenghua; Yan, Bo; Gao, Fan; Cai, Pinggen; Lv, Bin; Li, Yun; Chen, Naibo; Xu, Fengyun; Wang, Ke; Ye, Gaoxiang; Yang, Shikuan

    2018-06-25

    We present an effective surface-enhancement Raman scattering(SERS) substrate enabled by depositing metallic film on a liquid surface at room temperature. Thermal evaporation is used to deposit Au atoms on silicone oil surface and then form quasi-continuous films. Due to the isotropic characteristics of the liquid surface, this film consists of substantial nanoparticles with uniform diameter, which is different from films fabricated on solid substrates and can be served as an applicable substrate for SERS detection. With the assistance of this substrate, SERS signals of Rhodamine 6G(R6G) were significantly enhanced, the dependence between SERS spectra and film thickness was investigated. Analytical simulation results confirm the experimental observations and the superiorities of our proposed method for preparation of SERS substrate. This work provides a potential application of metallic film deposition on free-sustained surface and holds promise as an efficient sensor in rapid trace detection of small molecule analytes. © 2018 IOP Publishing Ltd.

  14. Metallic nanoparticle-based strain sensors elaborated by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Puyoo, E.; Malhaire, C.; Thomas, D.; Rafaël, R.; R'Mili, M.; Malchère, A.; Roiban, L.; Koneti, S.; Bugnet, M.; Sabac, A.; Le Berre, M.

    2017-03-01

    Platinum nanoparticle-based strain gauges are elaborated by means of atomic layer deposition on flexible polyimide substrates. Their electro-mechanical response is tested under mechanical bending in both buckling and conformational contact configurations. A maximum gauge factor of 70 is reached at a strain level of 0.5%. Although the exponential dependence of the gauge resistance on strain is attributed to the tunneling effect, it is shown that the majority of the junctions between adjacent Pt nanoparticles are in a short circuit state. Finally, we demonstrate the feasibility of an all-plastic pressure sensor integrating Pt nanoparticle-based strain gauges in a Wheatstone bridge configuration.

  15. Role of surface energy on the morphology and optical properties of GaP micro & nano structures grown on polar and non-polar substrates

    NASA Astrophysics Data System (ADS)

    Roychowdhury, R.; Kumar, Shailendra; Wadikar, A.; Mukherjee, C.; Rajiv, K.; Sharma, T. K.; Dixit, V. K.

    2017-10-01

    Role of surface energy on the morphology, crystalline quality, electronic structure and optical properties of GaP layer grown on Si (001), Si (111), Ge (111) and GaAs (001) is investigated. GaP layers are grown on four different substrates under identical growth kinetics by metal organic vapour phase epitaxy. The atomic force microscopy images show that GaP layer completely covers the surface of GaAs substrate. On the other hand, the surfaces of Si (001), Si (111), Ge (111) substrates are partially covered with crystallographically morphed GaP island type micro and nano-structures. Origin of these crystallographically morphed GaP island is explained by the theoretical calculation of surface energy of the layer and corresponding substrates respectively. The nature of GaP island type micro and nano-structures and layers are single crystalline with existence of rotational twins on Si and Ge (111) substrates which is confirmed by the phi, omega and omega/2theta scans of high resolution x-ray diffraction. The electronic valence band offsets between the GaP and substrates have been determined from the valence band spectra of ultraviolet photoelectron spectroscopy. The valence electron plasmon of GaP are investigated by studying the energy values of Ga (3d) core level along with loss peaks in the energy dependent photoelectron spectra. The peak observed within the range of 3-6 eV from the Ga (3d) core level in the photoelectron spectra are associated to inter band transitions as their energy values are estimated from the pseudo dielectric function by the spectroscopic ellipsometry.

  16. Biosynthesis of nanoparticles using microbes- a review.

    PubMed

    Hulkoti, Nasreen I; Taranath, T C

    2014-09-01

    The biosynthesis of nanoparticles by microorganism is a green and eco-friendly technology. This review focuses on the use of consortium of diverse microorganisms belonging to both prokaryotes and eukaryotes for the synthesis of metallic nanoparticles viz. silver, gold, platinum, zirconium, palladium, iron, cadmium and metal oxides such as titanium oxide, zinc oxide, etc. These microorganisms include bacteria, actinomycetes, fungi and algae. The synthesis of nanoparticles may be intracellular or extracellular. The several workers have reported that NADH dependent nitrate reductase enzyme plays a vital role in the conversion of metallic ions to nanoparticles. The FTIR study reveals that diverse biomolecules viz. carboxyl group, primary and secondary amines, amide I, II, and III bands etc serve as a tool for bioreduction and capping agents there by offering stability to particles by preventing agglomeration and growth. The size and shape of the nanoparticles vary with the organism employed and conditions employed during the synthesis which included pH, temperature and substrate concentration. The microorganisms provide diverse environment for biosynthesis of nanoparticles. These particles are safe and eco-friendly with a lot of applications in medicine, agriculture, cosmetic industry, drug delivery and biochemical sensors. The challenges for redressal include optimal production and minimal time to obtain desired size and shape, to enhance the stability of nanoparticles and optimization of specific microorganisms for specific application. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Synthesis and standardization of biologically synthesized silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Roy, Swarup; Das, Tapan Kumar

    2013-06-01

    The biological silver nanoparticle was synthesized extracellularly by using a fungi Aspergillus foetidus. The live cell filtrate of fungi has been used as reducing agent in the process of nanoparticles synthesis. In 50 ml cell filtrate a volume of AgNO3 stock solution was added to make finally the concentration as 1 mM of AgNO3 and allowed to shake in an incubator for several hrs in dark. The changed color was considered as the primary indication of nanoparticles formation and studies of UV-VIS, DLS, FTIR, AFM, TEM, EDS, Zeta pot. and nitrate reductase assay confirmed the same. It was indicated that stable & 20-40 nm roughly spherical shaped silver nanoparticles was formed. To standardize the nanoparticles biosynthesis different physical parameters like Substrate cone. (0-8 mM), PH-(5-12), Temp.-(5-50°C), incubation time (0-120) hrs and salinity (0.1-1.0 %) were investigated and it was observed that 4 mM AgNO3 conc., PH-9, Temp. -30°C, incubation time 72h and 0.2 % salinity were found to be optimum for the synthesis & stability of the silver nanoparticles.

  18. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method

    PubMed Central

    Malashchonak, Mikalai V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    Summary The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100–120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles. PMID:26734517

  19. Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method.

    PubMed

    Malashchonak, Mikalai V; Mazanik, Alexander V; Korolik, Olga V; Streltsov, Еugene А; Kulak, Anatoly I

    2015-01-01

    The photoelectrochemical properties of nanoheterostructures based on the wide band gap oxide substrates (ZnO, TiO2, In2O3) and CdS nanoparticles deposited by the successive ionic layer adsorption and reaction (SILAR) method have been studied as a function of the CdS deposition cycle number (N). The incident photon-to-current conversion efficiency (IPCE) passes through a maximum with the increase of N, which is ascribed to the competition between the increase in optical absorption and photocarrier recombination. The maximal IPCE values for the In2O3/CdS and ZnO/CdS heterostructures are attained at N ≈ 20, whereas for TiO2/CdS, the appropriate N value is an order of magnitude higher. The photocurrent and Raman spectroscopy studies of CdS nanoparticles revealed the occurrence of the quantum confinement effect, demonstrating the most rapid weakening with the increase of N in ZnO/CdS heterostructures. The structural disorder of CdS nanoparticles was characterized by the Urbach energy (E U), spectral width of the CdS longitudinal optical (LO) phonon band and the relative intensity of the surface optical (SO) phonon band in the Raman spectra. Maximal values of E U (100-120 meV) correspond to СdS nanoparticles on a In2O3 surface, correlating with the fact that the CdS LO band spectral width and intensity ratio for the CdS SO and LO bands are maximal for In2O3/CdS films. A notable variation in the degree of disorder of CdS nanoparticles is observed only in the initial stages of CdS growth (several tens of deposition cycles), indicating the preservation of the nanocrystalline state of CdS over a wide range of SILAR cycles.

  20. Substrate doping: A strategy for enhancing reactivity on gold nanocatalysts by tuning sp bands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mammen, Nisha; Narasimhan, Shobhana; Gironcoli, Stefano de

    2015-10-14

    We suggest that the reactivity of Au nanocatalysts can be greatly increased by doping the oxide substrate on which they are placed with an electron donor. To demonstrate this, we perform density functional theory calculations on a model system consisting of a 20-atom gold cluster placed on a MgO substrate doped with Al atoms. We show that not only does such substrate doping switch the morphology of the nanoparticles from the three-dimensional tetrahedral form to the two-dimensional planar form, but it also significantly lowers the barrier for oxygen dissociation by an amount proportional to the dopant concentration. At a dopingmore » level of 2.78%, the dissociation barrier is reduced by more than half, which corresponds to a speeding up of the oxygen dissociation rate by five orders of magnitude at room temperature. This arises from a lowering in energy of the s and p states of Au. The d states are also lowered in energy, however, this by itself would have tended to reduce reactivity. We propose that a suitable measure of the reactivity of Au nanoparticles is the difference in energy of sp and d states.« less

  1. Fast optoelectric printing of plasmonic nanoparticles into tailored circuits

    NASA Astrophysics Data System (ADS)

    Rodrigo, José A.

    2017-04-01

    Plasmonic nanoparticles are able to control light at nanometre-scale by coupling electromagnetic fields to the oscillations of free electrons in metals. Deposition of such nanoparticles onto substrates with tailored patterns is essential, for example, in fabricating plasmonic structures for enhanced sensing. This work presents an innovative micro-patterning technique, based on optoelectic printing, for fast and straightforward fabrication of curve-shaped circuits of plasmonic nanoparticles deposited onto a transparent electrode often used in optoelectronics, liquid crystal displays, touch screens, etc. We experimentally demonstrate that this kind of plasmonic structure, printed by using silver nanoparticles of 40 nm, works as a plasmonic enhanced optical device allowing for polarized-color-tunable light scattering in the visible. These findings have potential applications in biosensing and fabrication of future optoelectronic devices combining the benefits of plasmonic sensing and the functionality of transparent electrodes.

  2. Electron beam patterning for writing of positively charged gold colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Zafri, Hadar; Azougi, Jonathan; Girshevitz, Olga; Zalevsky, Zeev; Zitoun, David

    2018-02-01

    Synthesis at the nanoscale has progressed at a very fast pace during the last decades. The main challenge today lies in precise localization to achieve efficient nanofabrication of devices. In the present work, we report on a novel method for the patterning of gold metallic nanoparticles into nanostructures on a silicon-on-insulator (SOI) wafer. The fabrication makes use of relatively accessible equipment, a scanning electron microscope (SEM), and wet chemical synthesis. The electron beam implants electrons into the insulating material, which further anchors the positively charged Au nanoparticles by electrostatic attraction. The novel fabrication method was applied to several substrates useful in microelectronics to add plasmonic particles. The resolution and surface density of the deposition were tuned, respectively, by the electron energy (acceleration voltage) and the dose of electronic irradiation. We easily achieved the smallest written feature of 68 ± 18 nm on SOI, and the technique can be extended to any positively charged nanoparticles, while the resolution is in principle limited by the particle size distribution and the scattering of the electrons in the substrate. [Figure not available: see fulltext.

  3. High resolution SEM imaging of gold nanoparticles in cells and tissues.

    PubMed

    Goldstein, A; Soroka, Y; Frušić-Zlotkin, M; Popov, I; Kohen, R

    2014-12-01

    The growing demand of gold nanoparticles in medical applications increases the need for simple and efficient characterization methods of the interaction between the nanoparticles and biological systems. Due to its nanometre resolution, modern scanning electron microscopy (SEM) offers straightforward visualization of metallic nanoparticles down to a few nanometre size, almost without any special preparation step. However, visualization of biological materials in SEM requires complicated preparation procedure, which is typically finished by metal coating needed to decrease charging artefacts and quick radiation damage of biomaterials in the course of SEM imaging. The finest conductive metal coating available is usually composed of a few nanometre size clusters, which are almost identical to the metal nanoparticles employed in medical applications. Therefore, SEM monitoring of metal nanoparticles within cells and tissues is incompatible with the conventional preparation methods. In this work, we show that charging artefacts related to non-conductive biological specimen can be successfully eliminated by placing the uncoated biological sample on a conductive substrate. By growing the cells on glass pre-coated with a chromium layer, we were able to observe the uptake of 10 nm gold nanoparticles inside uncoated and unstained macrophages and keratinocytes cells. Imaging in back scattered electrons allowed observation of gold nanoparticles located inside the cells, while imaging in secondary electron gave information on gold nanoparticles located on the surface of the cells. By mounting a skin cross-section on an improved conductive holder, consisting of a silicon substrate coated with copper, we were able to observe penetration of gold nanoparticles of only 5 nm size through the skin barrier in an uncoated skin tissue. The described method offers a convenient modification in preparation procedure for biological samples to be analyzed in SEM. The method provides high

  4. Modeling the heterogeneous catalytic activity of a single nanoparticle using a first passage time distribution formalism

    NASA Astrophysics Data System (ADS)

    Das, Anusheela; Chaudhury, Srabanti

    2015-11-01

    Metal nanoparticles are heterogeneous catalysts and have a multitude of non-equivalent, catalytic sites on the nanoparticle surface. The product dissociation step in such reaction schemes can follow multiple pathways. Proposed here for the first time is a completely analytical theoretical framework, based on the first passage time distribution, that incorporates the effect of heterogeneity in nanoparticle catalysis explicitly by considering multiple, non-equivalent catalytic sites on the nanoparticle surface. Our results show that in nanoparticle catalysis, the effect of dynamic disorder is manifested even at limiting substrate concentrations in contrast to an enzyme that has only one well-defined active site.

  5. Complexities in barrier island response to sea level rise: Insights from numerical model experiments, North Carolina Outer Banks

    USGS Publications Warehouse

    Moore, Laura J.; List, Jeffrey H.; Williams, S. Jeffress; Stolper, David

    2010-01-01

    Using a morphological-behavior model to conduct sensitivity experiments, we investigate the sea level rise response of a complex coastal environment to changes in a variety of factors. Experiments reveal that substrate composition, followed in rank order by substrate slope, sea level rise rate, and sediment supply rate, are the most important factors in determining barrier island response to sea level rise. We find that geomorphic threshold crossing, defined as a change in state (e.g., from landward migrating to drowning) that is irreversible over decadal to millennial time scales, is most likely to occur in muddy coastal systems where the combination of substrate composition, depth-dependent limitations on shoreface response rates, and substrate erodibility may prevent sand from being liberated rapidly enough, or in sufficient quantity, to maintain a subaerial barrier. Analyses indicate that factors affecting sediment availability such as low substrate sand proportions and high sediment loss rates cause a barrier to migrate landward along a trajectory having a lower slope than average barrier island slope, thereby defining an “effective” barrier island slope. Other factors being equal, such barriers will tend to be smaller and associated with a more deeply incised shoreface, thereby requiring less migration per sea level rise increment to liberate sufficient sand to maintain subaerial exposure than larger, less incised barriers. As a result, the evolution of larger/less incised barriers is more likely to be limited by shoreface erosion rates or substrate erodibility making them more prone to disintegration related to increasing sea level rise rates than smaller/more incised barriers. Thus, the small/deeply incised North Carolina barriers are likely to persist in the near term (although their long-term fate is less certain because of the low substrate slopes that will soon be encountered). In aggregate, results point to the importance of system history (e

  6. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer.

    PubMed

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S; Atif, Muhammad; Ansari, Anees A; Willander, Magnus

    2013-09-30

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices.

  7. Fabrication of Well-Aligned ZnO Nanorods Using a Composite Seed Layer of ZnO Nanoparticles and Chitosan Polymer

    PubMed Central

    Khun, Kimleang; Ibupoto, Zafar Hussain; AlSalhi, Mohamad S.; Atif, Muhammad; Ansari, Anees A.; Willander, Magnus

    2013-01-01

    In this study, by taking the advantage of both inorganic ZnO nanoparticles and the organic material chitosan as a composite seed layer, we have fabricated well-aligned ZnO nanorods on a gold-coated glass substrate using the hydrothermal growth method. The ZnO nanoparticles were characterized by the Raman spectroscopic techniques, which showed the nanocrystalline phase of the ZnO nanoparticles. Different composites of ZnO nanoparticles and chitosan were prepared and used as a seed layer for the fabrication of well-aligned ZnO nanorods. Field emission scanning electron microscopy, energy dispersive X-ray, high-resolution transmission electron microscopy, X-ray diffraction, and infrared reflection absorption spectroscopic techniques were utilized for the structural characterization of the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods on a gold-coated glass substrate. This study has shown that the ZnO nanorods are well-aligned, uniform, and dense, exhibit the wurtzite hexagonal structure, and are perpendicularly oriented to the substrate. Moreover, the ZnO nanorods are only composed of Zn and O atoms. An optical study was also carried out for the ZnO nanoparticles/chitosan seed layer-coated ZnO nanorods, and the obtained results have shown that the fabricated ZnO nanorods exhibit good crystal quality. This study has provided a cheap fabrication method for the controlled morphology and good alignment of ZnO nanorods, which is of high demand for enhancing the working performance of optoelectronic devices. PMID:28788336

  8. Sensing based on surface-enhanced Raman scattering using self-forming ZnO nanoarrays coated with gold as substrates

    NASA Astrophysics Data System (ADS)

    Tang, Feng; Adam, Pierre-Michel; Rogers, David J.; Sandana, Vinod E.; Bove, Philippe; Teherani, Ferechteh H.

    2018-03-01

    Surface-Enhanced Raman spectroscopy (SERS) is a widely used technique adopted in both academia and industry for the detection of trace quantities of Raman active molecules. This is usually accomplished by functionalizing distributions of plasmonic metal nanoparticles with the analyte molecules. Recently metal-coated nanostructures have been investigated as alternatives to dispersions of metal nanoparticles in order to avoid clustering and homogeneity/reproducibility issues. In this paper, several samples of Au-coated ZnO nanoarrays are adopted as SERS substrates in order to investigate the molecular sensing capacity for methylene blue (MB) molecules. Self-forming ZnO nanoarrays were grown on both c-sapphire and silicon substrates by pulsed laser deposition. The nanoarrays were then coated with 30 nm of gold using thermal evaporation and the SERS signals of MB functionalized samples were obtained with a Raman microspectrometer. The ratio of SERS intensity to that of an MB functionalized glass substrate (ISERS/IRaman) was calculated based on the averaged SERS signals. A relatively good within-wafer homogeneity of the enhancement effect was found with ISERS/IRaman values as high as 64.2 for Au-coated nano ZnO grown on silicon substrates. The experimental results show that the Au-coated ZnO nanoarrays can be excellent SERS substrates for molecular/chemical analyte sensing.

  9. Growth of carbon nanotubes by Fe-catalyzed chemical vapor processes on silicon-based substrates

    NASA Astrophysics Data System (ADS)

    Angelucci, Renato; Rizzoli, Rita; Vinciguerra, Vincenzo; Fortuna Bevilacqua, Maria; Guerri, Sergio; Corticelli, Franco; Passini, Mara

    2007-03-01

    In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.

  10. Low temperature deposition of polycrystalline silicon thin films on a flexible polymer substrate by hot wire chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Sang-hoon; Jung, Jae-soo; Lee, Sung-soo; Lee, Sung-bo; Hwang, Nong-moon

    2016-11-01

    For the applications such as flexible displays and solar cells, the direct deposition of crystalline silicon films on a flexible polymer substrate has been a great issue. Here, we investigated the direct deposition of polycrystalline silicon films on a polyimide film at the substrate temperature of 200 °C. The low temperature deposition of crystalline silicon on a flexible substrate has been successfully made based on two ideas. One is that the Si-Cl-H system has a retrograde solubility of silicon in the gas phase near the substrate temperature. The other is the new concept of non-classical crystallization, where films grow by the building block of nanoparticles formed in the gas phase during hot-wire chemical vapor deposition (HWCVD). The total amount of precipitation of silicon nanoparticles decreased with increasing HCl concentration. By adding HCl, the amount and the size of silicon nanoparticles were reduced remarkably, which is related with the low temperature deposition of silicon films of highly crystalline fraction with a very thin amorphous incubation layer. The dark conductivity of the intrinsic film prepared at the flow rate ratio of RHCl=[HCl]/[SiH4]=3.61 was 1.84×10-6 Scm-1 at room temperature. The Hall mobility of the n-type silicon film prepared at RHCl=3.61 was 5.72 cm2 V-1s-1. These electrical properties of silicon films are high enough and could be used in flexible electric devices.

  11. Vertical-Substrate MPCVD Epitaxial Nanodiamond Growth

    DOE PAGES

    Tzeng, Yan-Kai; Zhang, Jingyuan Linda; Lu, Haiyu; ...

    2017-02-09

    Color center-containing nanodiamonds have many applications in quantum technologies and biology. Diamondoids, molecular-sized diamonds have been used as seeds in chemical vapor deposition (CVD) growth. However, optimizing growth conditions to produce high crystal quality nanodiamonds with color centers requires varying growth conditions that often leads to ad-hoc and time-consuming, one-at-a-time testing of reaction conditions. In order to rapidly explore parameter space, we developed a microwave plasma CVD technique using a vertical, rather than horizontally oriented stage-substrate geometry. With this configuration, temperature, plasma density, and atomic hydrogen density vary continuously along the vertical axis of the substrate. Finally, this variation allowedmore » rapid identification of growth parameters that yield single crystal diamonds down to 10 nm in size and 75 nm diameter optically active center silicon-vacancy (Si-V) nanoparticles. Furthermore, this method may provide a means of incorporating a wide variety of dopants in nanodiamonds without ion irradiation damage.« less

  12. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    NASA Astrophysics Data System (ADS)

    Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.

    2011-12-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  13. The nearshore benthic community of Kasatochi Island, one year after the 2008 volcanic eruption

    USGS Publications Warehouse

    Jewett, S.C.; Bodkin, James L.; Chenelot, H.; Esslinger, George G.; Hoberg, M.K.

    2010-01-01

    A description is presented of the nearshore benthic community of Kasatochi Island 10–12 months after a catastrophic volcanic eruption in 2008. The eruption extended the coastline of the island approximately 400 m offshore, mainly along the south, southeast, and southwest shores, to roughly the 20 m isobath. Existing canopy kelp of Eualaria (Alaria) fistulosa, as well as limited understory algal species and associated fauna (e.g., urchin barrens) on the hard substratum were apparently buried following the eruption. Samples and observations revealed the substrate around the island in 2009 was comprised almost entirely of medium and coarse sands with a depauperate benthic community, dominated by opportunistic pontogeneiid amphipods. Comparisons of habitat and biological communities with other nearby Aleutian Islands, as well as with the Icelandic volcanic island of Surtsey, confirm dramatic reductions in flora and fauna consistent with an early stage of recovery from a large-scale disturbance event.

  14. Three-dimensional self-organization of crystalline gold nanoparticles in amorphous alumina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Chunming; Zhou Honghui; Wei Wei

    Multilayered heterostructures containing gold nanoparticles embedded in amorphous alumina matrices were deposited on silicon (001) substrates using pulsed laser deposition. The three-dimensional ordering of gold nanoparticles within these multilayered heterostructures was investigated using cross-sectional transmission electron microscopy and image Fourier transformation. Self-organization of gold nanoparticles along the vertical direction was observed in films grown at 20 and at 320 deg. C. Self-organization occurred by means of two different growth modes; both vertically correlated growth (top-on-top) and anticorrelated growth (top-on-middle) mechanisms were observed. The results of these studies suggest that the driving force for vertical ordering in this material is relatedmore » to the long-range elastic interactions among the nanoparticles within the growing films.« less

  15. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    PubMed Central

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  16. Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

    PubMed Central

    Braniste, Tudor; Tiginyanu, Ion; Horvath, Tibor; Raevschi, Simion; Cebotari, Serghei; Lux, Marco; Haverich, Axel

    2016-01-01

    Summary Nanotechnology is a rapidly growing and promising field of interest in medicine; however, nanoparticle–cell interactions are not yet fully understood. The goal of this work was to examine the interaction between endothelial cells and gallium nitride (GaN) semiconductor nanoparticles. Cellular viability, adhesion, proliferation, and uptake of nanoparticles by endothelial cells were investigated. The effect of free GaN nanoparticles versus the effect of growing endothelial cells on GaN functionalized surfaces was examined. To functionalize surfaces with GaN, GaN nanoparticles were synthesized on a sacrificial layer of zinc oxide (ZnO) nanoparticles using hydride vapor phase epitaxy. The uptake of GaN nanoparticles by porcine endothelial cells was strongly dependent upon whether they were fixed to the substrate surface or free floating in the medium. The endothelial cells grown on surfaces functionalized with GaN nanoparticles demonstrated excellent adhesion and proliferation, suggesting good biocompatibility of the nanostructured GaN. PMID:27826507

  17. Electrical and mechanical characteristics of fully transparent IZO thin-film transistors on stress-relieving bendable substrates

    NASA Astrophysics Data System (ADS)

    Park, Sukhyung; Cho, Kyoungah; Oh, Hyungon; Kim, Sangsig

    2016-10-01

    In this study, we report the electrical and mechanical characteristics of fully transparent indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated on stress-relieving bendable substrates. An IZO TFT on a stress-relieving substrate can operate normally at a bending radius of 6 mm, while an IZO TFT on a normal plastic substrate fails to operate normally at a bending radius of 15 mm. A plastic island with high Young's modulus embedded on a soft elastomer layer with low Young's modulus plays the role of a stress-relieving substrate for the operation of the bent IZO TFT. The stress and strain distributions over the IZO TFT will be analyzed in detail in this paper.

  18. Influence of support morphology on the bonding of molecules to nanoparticles

    PubMed Central

    Yim, Chi Ming; Pang, Chi L.; Hermoso, Diego R.; Dover, Coinneach M.; Muryn, Christopher A.; Maccherozzi, Francesco; Dhesi, Sarnjeet S.; Pérez, Rubén; Thornton, Geoff

    2015-01-01

    Supported metal nanoparticles form the basis of heterogeneous catalysts. Above a certain nanoparticle size, it is generally assumed that adsorbates bond in an identical fashion as on a semiinfinite crystal. This assumption has allowed the database on metal single crystals accumulated over the past 40 years to be used to model heterogeneous catalysts. Using a surface science approach to CO adsorption on supported Pd nanoparticles, we show that this assumption may be flawed. Near-edge X-ray absorption fine structure measurements, isolated to one nanoparticle, show that CO bonds upright on the nanoparticle top facets as expected from single-crystal data. However, the CO lateral registry differs from the single crystal. Our calculations indicate that this is caused by the strain on the nanoparticle, induced by carpet growth across the substrate step edges. This strain also weakens the CO–metal bond, which will reduce the energy barrier for catalytic reactions, including CO oxidation. PMID:26080433

  19. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.

    PubMed

    Liu, Yi-Kai; Lee, Ming-Tsang

    2014-08-27

    This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.

  20. Low-Cost Manufacturing of Bioresorbable Conductors by Evaporation-Condensation-Mediated Laser Printing and Sintering of Zn Nanoparticles.

    PubMed

    Shou, Wan; Mahajan, Bikram K; Ludwig, Brandon; Yu, Xiaowei; Staggs, Joshua; Huang, Xian; Pan, Heng

    2017-07-01

    Currently, bioresorbable electronic devices are predominantly fabricated by complex and expensive vacuum-based integrated circuit (IC) processes. Here, a low-cost manufacturing approach for bioresorbable conductors on bioresorbable polymer substrates by evaporation-condensation-mediated laser printing and sintering of Zn nanoparticle is reported. Laser sintering of Zn nanoparticles has been technically difficult due to the surface oxide on nanoparticles. To circumvent the surface oxide, a novel approach is discovered to print and sinter Zn nanoparticle facilitated by evaporation-condensation in confined domains. The printing process can be performed on low-temperature substrates in ambient environment allowing easy integration on a roll-to-roll platform for economical manufacturing of bioresorbable electronics. The fabricated Zn conductors show excellent electrical conductivity (≈1.124 × 10 6 S m -1 ), mechanical durability, and water dissolvability. Successful demonstration of strain gauges confirms the potential application in various environmentally friendly sensors and circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Surface enhanced Raman spectroscopy analysis of HeLa cells using a multilayer substrate

    NASA Astrophysics Data System (ADS)

    Aguilar-Hernández, I. A.; Pichardo-Molina, J. L.; Lopez-Luke, T.; Ornelas-Soto, N.

    2017-08-01

    Single cell analysis can provide important information regarding cell composition, and can be used for biomedical applications. In this work, a SERS active substrate formed by 3 layers of gold nanospheres and a final layer of gold nanocubes was used for the label-free SERS analysis of HeLa cells. Nanocubes were selected due to the high electromagnetic enhancement expected in nanoparticles with sharp corners. Significant improvement in the reproducibility and quality of SERS spectra was found when compared to the spectra obtained using a nanosphere-only substrate and normal Raman spectroscopy.

  2. Improved thermal stability of oxide-supported naked gold nanoparticles by ligand-assisted pinning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreno, C; Divins, N. J.; Gazquez, Jaume

    We report a method to improve the thermal stability, up to 900 C, of bare-metal (naked) gold nanoparticles supported on top of SiO{sub 2} and SrTiO{sub 3} substrates via ligand-assisted pinning. This approach leads to monodisperse naked gold nanoparticles without significant sintering after thermal annealing in air at 900 C. The ligand-assisted pinning mechanism is described.

  3. A novel approach to fabricate dye-encapsulated polymeric micro- and nanoparticles by thin film dewetting technique.

    PubMed

    Chatterjee, Manosree; Hens, Abhiram; Mahato, Kuldeep; Jaiswal, Namita; Mahato, Nivedita; Nagahanumaiah; Chanda, Nripen

    2017-11-15

    A new method is reported for fabrication of polymeric micro- and nanoparticles from an intermediate patterned surface originated by dewetting of a polymeric thin film. Poly (d, l-lactide-co-glycolide) or PLGA, a biocompatible polymer is used to develop a thin film over a clean glass substrate which dewets spontaneously in the micro-/nano-patterned surface of size range 50nm to 3.5µm. Since another water-soluble polymer, poly vinyl alcohol (PVA) is coated on the same glass substrate before PLGA thin film formation, developed micro-/nano-patterns are easily extracted in water in the form of micro- and nanoparticle mixture of size range 50nm to 3.0µm. This simplified method is also used to effectively encapsulate a dye molecule, rhodamine B inside the PLGA micro-/nanoparticles. The developed dye-encapsulated nanoparticles, PLGA-rhodamine are separated from the mixture and tested for in-vitro delivery application of external molecules inside human lung cancer cells. For the first time, the use of thin film dewetting technique is reported as a potential route for the synthesis of polymeric micro-/nanoparticles and effective encapsulation of external species therein. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Highly sensitive surface-enhanced Raman scattering substrate made from superaligned carbon nanotubes.

    PubMed

    Sun, Yinghui; Liu, Kai; Miao, Jiao; Wang, Zheyao; Tian, Baozhong; Zhang, Lina; Li, Qunqing; Fan, Shoushan; Jiang, Kaili

    2010-05-12

    Surface-enhanced Raman scattering (SERS) has attracted wide attention because it can enhance normally weak Raman signal by several orders of magnitude and facilitate the sensitive detection of molecules. Conventional SERS substrates are constructed by placing metal nanoparticles on a planar surface. Here we show that, if the planar surface was substituted by a unique nanoporous surface, the enhancement effect can be dramatically improved. The nanoporous surface can be easily fabricated in batches and at low costs by cross stacking superaligned carbon nanotube films. The as-prepared transparent and freestanding SERS substrate is capable of detecting ambient trinitrotoluene vapor, showing much higher Raman enhancement than ordinary planar substrates because of the extremely large surface area and the unique zero-dimensional at one-dimensional nanostructure. These results not only provide a new approach to ultrasensitive SERS substrates, but also are helpful for improving the fundamental understanding of SERS phenomena.

  5. Simulation and Implementation of a Morphology-Tuned Gold Nano-Islands Integrated Plasmonic Sensor

    PubMed Central

    Ozhikandathil, Jayan; Packirisamy, Muthukumaran

    2014-01-01

    This work presents simulation, analysis and implementation of morphology tuning of gold nano-island structures deposited by a novel convective assembly technique. The gold nano-islands were simulated using 3D Finite-Difference Time-Domain (FDTD) techniques to investigate the effect of morphological changes and adsorption of protein layers on the localized surface plasmon resonance (LSPR) properties. Gold nano-island structures were deposited on glass substrates by a novel and low-cost convective assembly process. The structure formed by an uncontrolled deposition method resulted in a nano-cluster morphology, which was annealed at various temperatures to tune the optical absorbance properties by transforming the nano-clusters to a nano-island morphology by modifying the structural shape and interparticle separation distances. The dependence of the size and the interparticle separation distance of the nano-islands on the LSPR properties were analyzed in the simulation. The effect of adsorption of protein layer on the nano-island structures was simulated and a relation between the thickness and the refractive index of the protein layer on the LSPR peak was presented. Further, the sensitivity of the gold nano-island integrated sensor against refractive index was computed and compared with the experimental results. PMID:24932868

  6. Morphology and chemical composition of cobalt germanide islands on Ge(001).

    PubMed

    Ewert, M; Schmidt, Th; Flege, J I; Heidmann, I; Grzela, T; Klesse, W M; Foerster, M; Aballe, L; Schroeder, T; Falta, J

    2016-08-12

    The reactive growth of cobalt germanide on Ge(001) was investigated by means of in situ x-ray absorption spectroscopy photoemission electron microscopy (XAS-PEEM), micro-illumination low-energy electron diffraction (μ-LEED), and ex situ atomic force microscopy (AFM). At a Co deposition temperature of 670 °C, a rich morphology with different island shapes and dimensions is observed, and a correlation between island morphology and stoichiometry is found. By combining XAS-PEEM and μ-LEED, we were able to identify a large part of the islands to consist of CoGe2, with many of them having an unusual epitaxial relationship: CoGe2 [Formula: see text] [Formula: see text] Ge [Formula: see text]. Side facets with (112) and (113) orientation have been found for such islands. However, two additional phases were observed, most likely Co5Ge7 and CoGe. Comparing growth on Ge(001) single crystals and on Ge(001)/Si(001) epilayer substrates, the occurrence of these intermediate phases seems to be promoted by defects or residual strain.

  7. Gadolinium nanoparticle based switchable mirrors: quenching of hydrogenation-dehydrogenation hysteresis.

    PubMed

    Aruna, I; Mehta, B R; Malhotra, L K

    2007-06-01

    A continuous and reversible 'structural, optical, and electronic' transition between the reflecting metallic dihydride and transparent semiconducting trihydride states observed in rare earth metals on hydrogenation make these materials and their hydrides suitable for switchable mirror, sensing, and other technological applications. Recently Pd capped Gd nanoparticle based 'new generation' switchable mirrors have been fabricated with extended color neutrality, better optical contrast, and faster kinetics in comparison to the polycrystalline, epitaxial, alloy, and multilayer films. The present report aims at investigating the effect of nanoparticle nature on the hydrogenation-dehydrogenation hysteresis in switchable mirrors by carrying out in situ measurement of optical transmittance and electrode potentials during electrochemical hydrogen loading-deloading of Gd nanoparticle samples. Interestingly, Gd nanoparticle samples were observed to exhibit quenched hysteresis. The quenching of hysteresis in hydrogen-induced properties has been attributed to the absence of structural transition upon hydrogenation, reduction in topographical interlocking of the grains and elimination of lateral clamping of the slack nanoparticle layer to the substrate.

  8. The significance of nanoparticles on bond strength of polymer concrete to steel

    DOE PAGES

    Douba, A.; Genedy, M.; Matteo, E. N.; ...

    2017-01-03

    Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less

  9. The significance of nanoparticles on bond strength of polymer concrete to steel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Douba, A.; Genedy, M.; Matteo, E. N.

    Here, polymer concrete (PC) is a commonly used material in construction due to its improved durability and good bond strength to steel substrate. PC has been suggested as a repair and seal material to restore the bond between the cement annulus and the steel casing in wells that penetrate formations under consideration for CO 2 sequestration. Nanoparticles including Multi-Walled Carbon Nano Tubes (MWCNTs), Aluminum Nanoparticles (ANPs) and Silica Nano particles (SNPs) were added to an epoxy-based PC to examine how the nanoparticles affect the bond strength of PC to a steel substrate. Slant shear tests were used to determine themore » bond strength of PC incorporating nanomaterials to steel; results reveal that PC incorporating nanomaterials has an improved bond strength to steel substrate compared with neat PC. In particular, ANPs improve the bond strength by 51% over neat PC. Local shear stresses, extracted from Finite Element (FE) analysis of the slant shear test, were found to be as much as twice the apparent/average shear/bond strength. These results suggest that the impact of nanomaterials is higher than that shown by the apparent strength. Fourier Transform Infrared (FTIR) measurements of epoxy with and without nanomaterials showed ANPs to influence curing of epoxy, which might explain the improved bond strength of PC incorporating ANPs.« less

  10. Engineering the Intracellular Micro- and Nano-environment via Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Peter

    Single cells, despite being the base unit of living organisms, possess a high degree of hierarchical structure and functional compartmentalization. This complexity exists for good reason: cells must respond efficiently and effectively to its surrounding environment by differentiating, moving, interacting, and more in order to survive or inhabit its role in the larger biological system. At the core of these responses is cellular decision-making. Cells process cues internally and externally from the environment and effect intracellular asymmetry in biochemistry and structure in order to carry out the proper biological responses. Functionalized magnetic particles have shown to be a powerful tool in interacting with biological matter, through either cell or biomolecule sorting, and the activation of biological processes. This dissertation reports on techniques utilizing manipulated magnetic nanoparticles (internalized by cells) to spatially and temporally localize intracellular cues, and examines the resulting asymmetry in biological processes generated by our methods. We first examine patterned micromagnetic elements as a simple strategy of rapidly manipulating magnetic nanoparticles throughout the intracellular space. Silicon or silicon dioxide substrates form the base for electroplated NiFe rods, which are repeated at varying size and pitch. A planarizing resin, initially SU-8, is used as the substrate layer for cellular adhesion. We demonstrate that through the manipulations of a simple external magnet, these micro-fabricated substrates can mediate rapid (under 2 s) and precise (submicron), reversible translation of magnetic nanoparticles through cellular space. Seeding cells on substrates composed of these elements allows simultaneous control of ensembles of nanoparticles over thousands of cells at a time. We believe such substrates could form the basis of magnetically based tools for the activation of biological matter. We further utilize these strategies to

  11. Correlating the chemical composition and size of various metal oxide substrates with the catalytic activity and stability of as-deposited Pt nanoparticles for the methanol oxidation reaction

    DOE PAGES

    Megan E. Scofield; Wong, Stanislaus S.; Koenigsmann, Christopher; ...

    2015-12-09

    The performance of electrode materials in conventional direct alcohol fuel cells (DAFC) is constrained by (i) the low activity of the catalyst materials relative to their overall cost, (ii) the poisoning of the active sites due to the presence of partially oxidized carbon species (such as but not limited to CO, formate, and acetate) produced during small molecule oxidation, and (iii) the lack of catalytic stability and durability on the underlying commercial carbon support. Therefore, as a viable alternative, we have synthesized various metal oxide and perovskite materials of different sizes and chemical compositions as supports for Pt nanoparticles (NPs).more » Our results including unique mechanistic studies demonstrate that the SrRuO 3 substrate with immobilized Pt NPs at its surface evinces the best methanol oxidation performance as compared with all of the other substrate materials tested herein, including commercial carbon itself. In addition, data from electron energy loss spectroscopy (EELS) and X-ray photoelectron spectroscopy (XPS) confirmed the presence of electron transfer from bound Pt NPs to surface Ru species within the SrRuO 3 substrate itself, thereby suggesting that favorable metal support interactions are responsible for the increased methanol oxidation reaction (MOR) activity of Pt species with respect to the underlying SrRuO 3 composite catalyst material.« less

  12. All-nanoparticle self-assembly ZnO/TiO₂ heterojunction thin films with remarkably enhanced photoelectrochemical activity.

    PubMed

    Yuan, Sujun; Mu, Jiuke; Mao, Ruiyi; Li, Yaogang; Zhang, Qinghong; Wang, Hongzhi

    2014-04-23

    The multilaminated ZnO/TiO2 heterojunction films were successfully deposited on conductive substrates including fluorine-doped tin oxide (FTO) glass and flexible indium tin oxide coated poly(ethylene terephthalate) via the layer-by-layer (LBL) self assembly method from the oxide colloids without using any polyelectrolytes. The positively charged ZnO nanoparticles and the negatively charged TiO2 nanoparticles were directly used as the components in the consecutive deposition process to prepare the heterojunction thin films by varying the thicknesses. Moreover, the crystal growth of both oxides could be efficiently inhibited by the good connection between ZnO and TiO2 nanoparticles even after calcination at 500 °C, especially for ZnO which was able to keep the crystallite size under 25 nm. The as-prepared films were used as the working electrodes in the three-electrode photoelectrochemical cells. Because the well-contacted nanoscale heterojunctions were formed during the LBL self-assembling process, the ZnO/TiO2 all-nanoparticle films deposited on both substrates showed remarkably enhanced photoelectrochemical properties compared to that of the well-established TiO2 LBL thin films with similar thicknesses. The photocurrent response collected from the ZnO/TiO2 electrode on the FTO glass substrate was about five times higher than that collected from the TiO2 electrode. Owing to the absence of the insulating layer of dried polyelectrolytes, the ZnO/TiO2 all-nanoparticle heterojunction films were expected to be used in the photoelectrochemical device before calcination.

  13. Barriers on the brink? The complex intertwined roles of geologic framework, sediment availability and sea-level rise in island evolution

    USGS Publications Warehouse

    Moore, Laura; List, Jeffrey H.; Williams, S. Jeffress; Patsch, Kiki; Rosati, Julie D.; Wang, Ping; Roberts, Tiffany M.

    2011-01-01

    Sensitivity experiments in the North Carolina Outer Banks (OBX) have previously revealed that substrate sand proportion, followed by substrate slope, sea-level rise rate and sediment-loss rate are the most important factors in determining how barrier islands respond to sea-level rise. High sediment-loss rates and low substrate sand proportions cause barriers to be smaller and more deeply incised. Thus, as sea level rise rates increase, more deeply incised barriers do not need to migrate as far landward as larger, less-incised barriers to liberate sand from the shoreface. However, if the combination of sand losses and substrate sand proportions requires a barrier to migrate landward faster than the shoreface can erode to replenish losses, a barrier will change state and begin to disintegrate. Because the substrate of the OBXis sand-rich, these barriers are likely to persist in the near-term. In contrast, model simulations for the Chandeleur Islands, Louisiana suggest sediment loss rates are too high and/or substrate sand proportions are too low to be matched by liberation of shoreface sand. These simulations further suggest that a state change, from a landward-migrating barrier system to a subaqueous shoal complex, is either already underway or imminent.

  14. Exploring the effective photon management by InP nanoparticles: Broadband light absorption enhancement of InP/In{sub 0.53}Ga{sub 0.47}As/InP thin-film photodetectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Dong; Zhu, Xi; Li, Jian

    2015-05-28

    High-index dielectric and semiconductor nanoparticles with the characteristics of low absorption loss and strong scattering have attracted more and more attention for improving performance of thin-film photovoltaic devices. In this paper, we focus our attention on InP nanoparticles and study the influence of the substrate and the geometrical configurations on their scattering properties. We demonstrate that, compared with the InP sphere, the InP cylinder has higher coupling efficiency due to the stronger interactions between the optical mode in the nanoparticle and its induced mirror image in the substrate. Moreover, we propose novel thin-film InGaAs photodetectors integrated with the periodically arrangedmore » InP nanoparticles on the substrate. Broadband light absorption enhancement is achieved over the wavelength range between 1.0 μm and 1.7 μm. The highest average absorption enhancement of 59.7% is realized for the photodetector with the optimized cylinder InP nanoparticles. These outstanding characteristics attribute to the preferentially forward scattering of single InP nanoparticle along with the effective coupling of incident light into the guided modes through the collective diffraction effect of InP nanoparticles array.« less

  15. Cytocompatibility of polyethylene grafted with triethylenetetramine functionalized carbon nanoparticles

    NASA Astrophysics Data System (ADS)

    Žáková, Pavlína; Slepičková Kasálková, Nikola; Slepička, Petr; Kolská, Zdeňka; Karpíšková, Jana; Stibor, Ivan; Švorčík, Václav

    2017-11-01

    Various carbon nanostructures are widely researched as scaffolds for tissue engineering. We evaluated the surface properties and cell-substrate interactions of carbon nanoparticles functionalized with triethylenetetramine (CNPs) grafted polymer film. Two forms of polyethylene (HDPE, LDPE) were treated in an inert argon plasma discharge and, subsequently, grafted with CNPs. The surface properties were studied using multiple methods, including Raman spectroscopy, goniometry, atomic force microscopy, X-ray photoelectron spectroscopy and electrokinetic analysis. Cell-substrate interactions were determined in vitro by studying adhesion, proliferation and viability of vascular smooth muscle cells (VSMCs) from the aorta of a rat. Cell-substrate interactions on pristine and modified substrates were compared to standard tissue culture polystyrene. Our results show that CNPs affect surface morphology and wettability and therefore adhesion, proliferation and viability of cultured muscle cells.

  16. Gold nanoparticles-based protease assay

    PubMed Central

    Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo

    2006-01-01

    We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range. PMID:16537471

  17. Gold nanoparticles-based protease assay.

    PubMed

    Guarise, Cristian; Pasquato, Lucia; De Filippis, Vincenzo; Scrimin, Paolo

    2006-03-14

    We describe here a simple assay that allows the visual detection of a protease. The method takes advantage of the high molar absorptivity of the plasmon band of gold colloids and is based on the color change of their solution when treated with dithiols. We used C- and N-terminal cysteinyl derivatives of a peptide substrate exploiting its selective recognition and cleavage by a specific protease. Contrary to the native ones, cleaved peptides are unable to induce nanoparticles aggregation; hence, the color of the solution does not change. The detection of two proteases is reported: thrombin (involved in blood coagulation and thrombosis) and lethal factor (an enzyme component of the toxin produced by Bacillus anthracis). The sensitivity of this nanoparticle-based assay is in the low nanomolar range.

  18. Uncapped silver nanoparticles synthesized by DC arc thermal plasma technique for conductor paste formulation

    NASA Astrophysics Data System (ADS)

    Shinde, Manish; Pawar, Amol; Karmakar, Soumen; Seth, Tanay; Raut, Varsha; Rane, Sunit; Bhoraskar, Sudha; Amalnerkar, Dinesh

    2009-11-01

    Uncapped silver nanoparticles were synthesized by DC arc thermal plasma technique. The synthesized nanoparticles were structurally cubic and showed wide particle size variation (between 20-150 nm). Thick film paste formulated from such uncapped silver nanoparticles was screen-printed on alumina substrates and the resultant `green' films were fired at different firing temperatures. The films fired at 600 °C revealed better microstructure properties and also yielded the lowest value of sheet resistance in comparison to those corresponding to conventional peak firing temperature of 850 °C. Our findings directly support the role of silver nanoparticles in substantially depressing the operative peak firing temperature involved in traditional conductor thick films technology.

  19. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarycheva, Asia; Makaryan, Taron; Maleski, Kathleen

    Here, noble metal (gold or silver) nanoparticles or patterned films are typically used as substrates for surface-enhanced Raman spectroscopy (SERS). Two-dimensional (2D) carbides and nitrides (MXenes) exhibit unique electronic and optical properties, including metallic conductivity and plasmon resonance in the visible or near-infrared range, making them promising candidates for a wide variety of applications. Herein, we show that 2D titanium carbide, Ti 3C 2T x, enhances Raman signal from organic dyes on a substrate and in solution. As a proof of concept, MXene SERS substrates were manufactured by spray-coating and used to detect several common dyes, with calculated enhancement factorsmore » reaching ~10 6. Titanium carbide MXene demonstrates SERS effect in aqueous colloidal solutions, suggesting the potential for biomedical or environmental applications, where MXene can selectively enhance positively charged molecules.« less

  20. Nanoparticles Stabilize Thin Polymer Films: A Fundamental Study to Understand the Phenomenon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael E. Mackay

    2009-03-04

    A new understanding of thermodynamics at the nanoscale resulted in a recently discovered first order phase transition that nanoparticles in a polymer film will all segregate to the supporting substrate. This is an unusual phase transition that was predicted using a modeling technique developed at Sandia National Laboratories and required the equivalent of many computational years on one computer. This project is a collaboration between Prof. Michael Mackay's group and Dr. Amalie Frischknecht (Sandia National Laboratories) where experimental observation and theoretical rationalization and prediction are brought together. Other discoveries were that this phase transition could be avoided by changing themore » nanoparticle properties yielding control of the assembly process at the nanoscale. In fact, the nanoparticles could be made to assemble to the supporting substrate, to the air interface or not assemble at all within a thin polymer film of order 100 nm in thickness. However, when the assembly process is present it is so robust that it is possible to make rough liquid films at the nanoscale due to nanoparticles assembling around three-dimensional objects. From this knowledge we are able to design and manufacture new coatings with particular emphasis on polymer-based solar cells. Careful control of the morphology at the nanoscale is expected to provide more efficient devices since the physics of these systems is dictated at this length scale and assembly of nanoparticles to various interfaces is critical to operation.« less

  1. Synthesis and Characterization of Superhydrophobic, Self-cleaning NIR-reflective Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Sriramulu, Deepa; Reed, Ella Louise; Annamalai, Meenakshi; Venkatesan, Thirumalai Venky; Valiyaveettil, Suresh

    2016-11-01

    Multifunctional coatings offer many advantages towards protecting various surfaces. Here we apply aggregation induced segregation of perylene diimide (PDI) to control the surface morphology and properties of silica nanoparticles. Differentially functionalized PDI was incorporated on the surface of silica nanoparticles through Si-O-Si bonds. The absorption and emission spectra of the resultant functionalised nanoparticles showed monomeric or excimeric peaks based on the amounts of perylene molecules present on the surface of silica nanoparticles. Contact angle measurements on thin films prepared from nanoparticles showed that unfunctionalised nanoparticles were superhydrophilic with a contact angle (CA) of 0°, whereas perylene functionalised silica particles were hydrophobic (CA > 130°) and nanoparticles functionalised with PDI and trimethoxy(octadecyl)silane (TMODS) in an equimolar ratio were superhydrophobic with static CA > 150° and sliding angle (SA) < 10°. In addition, the near infrared (NIR) reflectance properties of PDI incorporated silica nanoparticles can be used to protect various heat sensitive substrates. The concept developed in this paper offers a unique combination of super hydrophobicity, interesting optical properties and NIR reflectance in nanosilica, which could be used for interesting applications such as surface coatings with self-cleaning and NIR reflection properties.

  2. Systematic investigation of the SERS efficiency and SERS hotspots in gas-phase deposited Ag nanoparticle assemblies.

    PubMed

    He, L B; Wang, Y L; Xie, X; Han, M; Song, F Q; Wang, B J; Cheng, W L; Xu, H X; Sun, L T

    2017-02-15

    Gas-phase deposited Ag nanoparticle assemblies are one of the most commonly used plasmonic substrates benefiting from their remarkable advantages such as clean particle surface, tunable particle density, available inter-particle gaps, low-cost and scalable fabrication, and excellent industry compatibility. However, their performance efficiencies are difficult to optimize due to the lack of knowledge of the hotspots inside their structures. We here report a design of delicate rainbow-like Ag nanoparticle assemblies, based on which the hotspots can be revealed through a combinatorial approach. The findings show that the hotspots in gas-phase deposited Ag nanoparticle assemblies are uniquely entangled by the excitation energy and specific inter-particle gaps, differing from the matching conditions in periodic arrays. For Ag nanoparticle assemblies deposited on Formvar-filmed substrates, the mean particle size is maintained around 10 nm, while the particle density can be widely tuned. The one possessing the highest SERS efficiency (under 473 nm excitation) have a particle number density of around 7100 μm -2 . Gaps with an inter-particle spacing of around 3 nm are found to serve as SERS hotspots, and these hotspots contribute to 68% of the overall SERS intensity. For Ag nanoparticle assemblies fabricated on carbon-filmed substrates, the mean particle size can be feasibly tuned. The one possessing the highest SERS efficiency under 473 nm excitation has a particle number density of around 460 μm -2 and a mean particle size of around 42.1 nm. The construction of Ag-analyte-Ag sandwich-like nanoparticle assemblies by a two-step-deposition method slightly improves the SERS efficiency when the particle number density is low, but suppresses the SERS efficiency when the particle number density is high.

  3. Ultrafast dynamics of photogenerated electrons in CdS nanocluster multilayers assembled on solid substrates: effects of assembly and electrode potential.

    PubMed

    Yagi, Ichizo; Mikami, Kensuke; Okamura, Masayuki; Uosaki, Kohei

    2013-07-22

    The ultrafast dynamics of photogenerated electrons in multilayer assemblies of CdS nanoparticles prepared on quartz and indium-tin oxide (ITO) substrates were followed by femtosecond (fs) visible-pump/mid-IR probe spectroscopy. Based on the observation of the photoinduced transient absorption spectra in the broad mid-IR range at the multilayer assembly of CdS nanoparticles, the occupation and fast relaxation of higher electronic states (1P(e)) were clarified. As compared with the electron dynamics of isolated (dispersed in solution) nanoparticles, the decay of photoexcited electrons in the multilayer assembly was clearly accelerated probably due to both electron hopping and scattering during interparticle electron tunneling. By using an ITO electrode as a substrate, the effect of the electric field on the photoelectron dynamics in the multilayer assembly was also investigated in situ. Both the amplitude and lifetime of photoexcited electrons gradually reduced as the potential became more positive. This result was explained by considering the reduction of the interparticle tunneling probability and the increase in the electron-transfer rate from the CdS nanoparticle assembly to the ITO electrode. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. SIMS depth profiling of working environment nanoparticles

    NASA Astrophysics Data System (ADS)

    Konarski, P.; Iwanejko, I.; Mierzejewska, A.

    2003-01-01

    Morphology of working environment nanoparticles was analyzed using sample rotation technique in secondary ion mass spectrometry (SIMS). The particles were collected with nine-stage vacuum impactor during gas tungsten arc welding (GTAW) process of stainless steel and shielded metal arc welding (SMAW) of mild steel. Ion erosion of 300-400 nm diameter nanoparticles attached to indium substrate was performed with 2 keV, 100 μm diameter, Ar + ion beam at 45° ion incidence and 1 rpm sample rotation. The results show that both types of particles have core-shell morphology. A layer of fluorine, chlorine and carbon containing compounds covers stainless steel welding fume particles. The cores of these particles are enriched in iron, manganese and chromium. Outer shell of mild steel welding fume particles is enriched in carbon, potassium, chlorine and fluorine, while the deeper layers of these nanoparticles are richer in main steel components.

  5. Encapsulation of Au Nanoparticles on a Silicon Wafer During Thermal Oxidation

    PubMed Central

    2013-01-01

    We report the behavior of Au nanoparticles anchored onto a Si(111) substrate and the evolution of the combined structure with annealing and oxidation. Au nanoparticles, formed by annealing a Au film, appear to “float” upon a growing layer of SiO2 during oxidation at high temperature, yet they also tend to become partially encapsulated by the growing silica layers. It is proposed that this occurs largely because of the differential growth rates of the silica layer on the silicon substrate between the particles and below the particles due to limited access of oxygen to the latter. This in turn is due to a combination of blockage of oxygen adsorption by the Au and limited oxygen diffusion under the gold. We think that such behavior is likely to be seen for other metal–semiconductor systems. PMID:24163715

  6. Scalable creation of gold nanostructures on high performance engineering polymeric substrate

    NASA Astrophysics Data System (ADS)

    Jia, Kun; Wang, Pan; Wei, Shiliang; Huang, Yumin; Liu, Xiaobo

    2017-12-01

    The article reveals a facile protocol for scalable production of gold nanostructures on a high performance engineering thermoplastic substrate made of polyarylene ether nitrile (PEN) for the first time. Firstly, gold thin films with different thicknesses of 2 nm, 4 nm and 6 nm were evaporated on a spin-coated PEN substrate on glass slide in vacuum. Next, the as-evaporated samples were thermally annealed around the glass transition temperature of the PEN substrate, on which gold nanostructures with island-like morphology were created. Moreover, it was found that the initial gold evaporation thickness and annealing atmosphere played an important role in determining the morphology and plasmonic properties of the formulated Au NPs. Interestingly, we discovered that isotropic Au NPs can be easily fabricated on the freestanding PEN substrate, which was fabricated by a cost-effective polymer solution casting method. More specifically, monodispersed Au nanospheres with an average size of ∼60 nm were obtained after annealing a 4 nm gold film covered PEN casting substrate at 220 °C for 2 h in oxygen. Therefore, the scalable production of Au NPs with controlled morphology on PEN substrate would open the way for development of robust flexible nanosensors and optical devices using high performance engineering polyarylene ethers.

  7. Capture zone area distributions for nucleation and growth of islands during submonolayer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yong; Li, Maozhi; Evans, James W.

    2016-12-07

    A fundamental evolution equation is developed to describe the distribution of areas of capture zones (CZs) associated with islands formed by homogeneous nucleation and growth during submonolayer deposition on perfect flat surfaces. This equation involves various quantities which characterize subtle spatial aspects of the nucleation process. These quantities in turn depend on the complex stochastic geometry of the CZ tessellation of the surface, and their detailed form determines the CZ area distribution (CZD) including its asymptotic features. For small CZ areas, behavior of the CZD reflects the critical island size, i. For large CZ areas, it may reflect the probabilitymore » for nucleation near such large CZs. Predictions are compared with kinetic Monte Carlo simulation data for models with two-dimensional compact islands with i = 1 (irreversible island formation by diffusing adatom pairs) and i = 0 (adatoms spontaneously convert to stable nuclei, e.g., by exchange with the substrate).« less

  8. Fabrication and functionalization of carbon nanotube field effect transistors for bio-sensing applications

    NASA Astrophysics Data System (ADS)

    Zhou, Jianyun

    Single walled carbon nanotube based field effect transistors are fabricated using photolithography and electron beam lithography techniques. First catalyst islands are deposited onto the substrate using standard optical lithographic techniques, and the nanotubes are grown by catalytic chemical vapor deposition from the pre-patterned catalyst islands. After imaging the grown nanotubes, the metal contact electrodes are patterned using lithography, followed by metal deposition using a sputtering technique. Both single nanotube devices and nanotube film devices are fabricated using this method. The single nanotube devices can be semiconducting, ambipolar, or metallic, with the resistance ranging from tens of kilo ohms to a few mega ohms, while the film devices are generally metallic, with only a few kilo ohms of resistance. Semiconducting single nanotube devices are functionalized for sensor applications. An electrodeposition technique was developed to functionalize the nanotube with a few materials, including avidin, chitosan, and metal nanoparticles. Among them, metal nanoparticle deposition is the most successful, and both gold and silver nanoparticles have been successfully deposited onto the sidewalls of the nanotubes from an "in situ" sacrificial electrode. The size and density of the nanoparticles, to some extent, can be tailored by controlling the deposition voltage. The gold nanoparticles are generally spherical, while the silver nanoparticles have branching snowflake shapes. These nanoparticles change the ON-state conductance of the nanotube while maintaining its semiconducting characteristics. The gold nanoparticles on the nanotube sidewalls can serve as anchoring sites for thiol-terminated biomolecules to functionalize the device for biosensing purposes. Results have shown that the thiol-terminated molecules can bind to the Au nanoparticles; however, nonspecific binding to the SiO2 surface is still abundant. Therefore, a self assembled monolayer (SAM) of

  9. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3

    DOE PAGES

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.; ...

    2016-11-11

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less

  10. Dynamic Scaling and Island Growth Kinetics in Pulsed Laser Deposition of SrTiO 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eres, Gyula; Tischler, J. Z.; Rouleau, C. M.

    We use real-time diffuse surface x-ray diffraction to probe the evolution of island size distributions and its effects on surface smoothing in pulsed laser deposition (PLD) of SrTiO 3. In this study, we show that the island size evolution obeys dynamic scaling and two distinct regimes of island growth kinetics. Our data show that PLD film growth can persist without roughening despite thermally driven Ostwald ripening, the main mechanism for surface smoothing, being shut down. The absence of roughening is concomitant with decreasing island density, contradicting the prevailing view that increasing island density is the key to surface smoothing inmore » PLD. We also report a previously unobserved crossover from diffusion-limited to attachment-limited island growth that reveals the influence of nonequilibrium atomic level surface transport processes on the growth modes in PLD. We show by direct measurements that attachment-limited island growth is the dominant process in PLD that creates step flowlike behavior or quasistep flow as PLD “self-organizes” local step flow on a length scale consistent with the substrate temperature and PLD parameters.« less

  11. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles.

    PubMed

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-14

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10 -12  M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  12. A New Smart Surface-Enhanced Raman Scattering Sensor Based on pH-Responsive Polyacryloyl Hydrazine Capped Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Yuan, Shuai; Ge, Fengyan; Zhou, Man; Cai, Zaisheng; Guang, Shanyi

    2017-08-01

    A novel pH-responsive Ag@polyacryloyl hydrazide (Ag@PAH) nanoparticle for the first time as a surface-enhanced Raman scattering (SERS) substrate was prepared without reducing agent and end-capping reagent. Ag@PAH nanoparticles exhibited an excellent tunable detecting performance in the range from pH = 4 to pH = 9. This is explained that the swelling-shrinking behavior of responsive PAH can control the distance between Ag NPs and the target molecules under external pH stimuli, resulting in the tunable LSPR and further controlled SERS. Furthermore, Ag@PAH nanoparticles possessed an ultra-sensitive detecting ability and the detection limit of Rhodamine 6G reduced to 10-12 M. These advantages qualified Ag@PAH NP as a promising smart SERS substrate in the field of trace analysis and sensors.

  13. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.

    PubMed

    Teschome, Bezu; Facsko, Stefan; Gothelf, Kurt V; Keller, Adrian

    2015-11-24

    DNA origami has become an established technique for designing well-defined nanostructures with any desired shape and for the controlled arrangement of functional nanostructures with few nanometer resolution. These unique features make DNA origami nanostructures promising candidates for use as scaffolds in nanoelectronics and nanophotonics device fabrication. Consequently, a number of studies have shown the precise organization of metallic nanoparticles on various DNA origami shapes. In this work, we fabricated large arrays of aligned DNA origami decorated with a high density of gold nanoparticles (AuNPs). To this end, we first demonstrate the high-yield assembly of high-density AuNP arrangements on DNA origami adsorbed to Si surfaces with few unbound background nanoparticles by carefully controlling the concentrations of MgCl2 and AuNPs in the hybridization buffer and the hybridization time. Then, we evaluate two methods, i.e., hybridization to prealigned DNA origami and molecular combing in a receding meniscus, with respect to their potential to yield large arrays of aligned AuNP-decorated DNA origami nanotubes. Because of the comparatively low MgCl2 concentration required for the efficient immobilization of the AuNPs, the prealigned DNA origami become mobile and displaced from their original positions, thereby decreasing the alignment yield. This increased mobility, on the other hand, makes the adsorbed origami susceptible to molecular combing, and a total alignment yield of 86% is obtained in this way.

  14. Molecular dynamics study of the growth of a metal nanoparticle array by solid dewetting

    NASA Astrophysics Data System (ADS)

    Luan, Yanhua; Li, Yanru; Nie, Tiaoping; Yu, Jun; Meng, Lijun

    2018-03-01

    We investigated the effect of the substrate and the ambient temperature on the growth of a metal nanoparticle array (nanoarray) on a solid-patterned substrate by dewetting a Au liquid film using an atomic simulation technique. The patterned substrate was constructed by introducing different interaction potentials for two atom groups ( C 1 and C 2) in the graphene-like substrate. The C 1 group had a stronger interaction between the Au film and the substrate and was composed of regularly distributed circular disks with radius R and distance D between the centers of neighboring disks. Our simulation results demonstrate that R and D have a strikingly different influence on the growth of the nanoparticle arrays. The degree of order of the nanoarray increases first before it reaches a peak and then decreases for increasing R at fixed D. However, the degree of order increases monotonously when D is increased and reaches a saturated value beyond a critical value of D for a fixed R. Interestingly, a labyrinth-like structure appeared during the dewetting process of the metal film. The simulation results also indicated that the temperature was an important factor in controlling the properties of the nanoarray. An appropriate temperature leads to an optimized nanoarray with a uniform grain size and well-ordered particle distribution. These results are important for understanding the dewetting behaviors of metal films on solid substrates and understanding the growth of highly ordered metal nanoarrays using a solid-patterned substrate method.

  15. Free-Standing Metal Oxide Nanoparticle Superlattices Constructed with Engineered Protein Containers Show in Crystallo Catalytic Activity.

    PubMed

    Lach, Marcel; Künzle, Matthias; Beck, Tobias

    2017-12-11

    The construction of defined nanostructured catalysts is challenging. In previous work, we established a strategy to assemble binary nanoparticle superlattices with oppositely charged protein containers as building blocks. Here, we show that these free-standing nanoparticle superlattices are catalytically active. The metal oxide nanoparticles inside the protein scaffold are accessible for a range of substrates and show oxidase-like and peroxidase-like activity. The stable superlattices can be reused for several reaction cycles. In contrast to bulk nanoparticle-based catalysts, which are prone to aggregation and difficult to characterize, nanoparticle superlattices based on engineered protein containers provide an innovative synthetic route to structurally defined heterogeneous catalysts with control over nanoparticle size and composition. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Biologically Derived Nanoparticle Arrays via a Site-Specific Reconstitution of Ferritin and their Electrochemistry

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo; Choi, Sang H.; Lillehei, Peter T.; King, Glen C.; Elliott, James R.; Chu, Sang-Hyon; Park, Yeonjoon; Watt, Gerald D.

    2004-01-01

    Nanoparticle arrays biologically derived from an electrochemically-controlled site-specific biomineralization were fabricated on a gold substrate through the immobilization process of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, the fabrication of self-assembled arrays with the immobilized ferritin, and the electrochemical characterization of various core materials. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of electrochemical site-specific biomineralization with a protein cage loads ferritins with different core materials such as Pt, Co, Mn, and Ni. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. The nano-sized metalcored ferritins on a gold substrate displayed a good electrochemical activity for the electron transport and storage, which is suitable for bioelectronics applications such as biofuel cell, bionanobattery, biosensors, etc. Keywords: Ferritin, immobilization, site-specific reconstitution, biomineralization, and bioelectronics

  17. Performance-Enhancing Methods for Au Film over Nanosphere Surface-Enhanced Raman Scattering Substrate and Melamine Detection Application

    PubMed Central

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm−1 and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect. PMID:24886913

  18. Performance-enhancing methods for Au film over nanosphere surface-enhanced Raman scattering substrate and melamine detection application.

    PubMed

    Wang, Jun Feng; Wu, Xue Zhong; Xiao, Rui; Dong, Pei Tao; Wang, Chao Guang

    2014-01-01

    A new high-performance surface-enhanced Raman scattering (SERS) substrate with extremely high SERS activity was produced. This SERS substrate combines the advantages of Au film over nanosphere (AuFON) substrate and Ag nanoparticles (AgNPs). A three order enhancement of SERS was observed when Rhodamine 6G (R6G) was used as a probe molecule to compare the SERS effects of the new substrate and commonly used AuFON substrate. These new SERS substrates can detect R6G down to 1 nM. The new substrate was also utilized to detect melamine, and the limit of detection (LOD) is 1 ppb. A linear relationship was also observed between the SERS intensity at Raman peak 682 cm(-1) and the logarithm of melamine concentrations ranging from 10 ppm to 1 ppb. This ultrasensitive SERS substrate is a promising tool for detecting trace chemical molecules because of its simple and effective fabrication procedure, high sensitivity and high reproducibility of the SERS effect.

  19. Competing Classical and Quantum Effects in Shape Relaxation of a Metallic Island

    NASA Technical Reports Server (NTRS)

    Okamoto, Rowland H.; Chen, D.; Yamada, T.

    2002-01-01

    Pb islands grown on a silicon substrate transform at room temperature from the initially flattop facet geometry into an unusual ring, shape with a volume-preserving mass transport process catalysed by the tip electrical field of a scanning tunnelling microscope. The formation of such ring shape morphology results from the competing classical and quantum effects in the shape relaxation. The latter also leads to a sequential regrowth on alternating, strips of the same facet defined by the underlying substrate steps, showing for the first time the dynamical impact of the quantum size effect on the stability of a nanostructure.

  20. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection.

    PubMed

    Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James

    2009-12-09

    A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO(3) concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).

  1. Synthesis and characterization of silver-nanoparticle-impregnated fiberglass and utility in water disinfection

    NASA Astrophysics Data System (ADS)

    Nangmenyi, Gordon; Yue, Zhongren; Mehrabi, Sharifeh; Mintz, Eric; Economy, James

    2009-12-01

    A number of researchers have deployed silver (Ag) nanoparticles through a number of techniques on various substrates including carbon, zeolites and polymers for water disinfection applications. However, Ag impregnated on an inorganic fiberglass surface through a simple electroless process was only recently reported for the first time. Fiberglass impregnated with Ag nanoparticles displays superior performance over carbon-based silver support systems but little is known about the factors that affect the architecture of the system, its interfacial properties and its consequent bactericidal activity. In this study, Ag content and particle size on a fiberglass substrate were manipulated by adjusting the AgNO3 concentration, immersion time, temperature, solution pH and reduction temperature. The reduction chemistry of the Ag-nanoparticle-impregnated fiberglass is described and supported with thermal gravimetric analysis (TGA) and photoelectron spectroscopy (XPS) measurements. The Ag content along with the particle size and particle size distribution were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive x-ray spectroscopy (EDS) and x-ray diffraction (XRD). The Ag content on the fiberglass mats ranged from 0.04 to 4.7 wt% Ag/g-fiber with a size distribution of 10-900 nm under standard processing conditions. Inductively coupled plasma mass spectrometry (ICP-MS) was used to analyze the Ag desorption from the fiberglass substrate, while the bactericidal properties were evaluated against Escherichia coli (E. coli).

  2. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles.

    PubMed

    Gentle, A R; Smith, G B

    2010-02-10

    Nanoparticles that have narrow absorption bands that lie entirely within the atmosphere's transparent window from 7.9 to 13 mum can be used to radiatively cool to temperatures that are well below ambient. Heating from incoming atmospheric radiation in the remainder of the Planck radiation spectrum, where the atmosphere is nearly "black", is reduced if the particles are dopants in infrared transmitting polymers, or in transmitting coatings on low emittance substrates. Crystalline SiC nanoparticles stand out with a surface phonon resonance from 10.5 to 13 mum clear of the atmospheric ozone band. Resonant SiO(2) nanoparticles are complementary, absorbing from 8 to 10 mum, which includes atmospheric ozone emissions. Their spectral location has made SiC nanoparticles in space dust a feature in ground-based IR astronomy. Optical properties are presented and subambient cooling performance analyzed for doped polyethylene on aluminum. A mixture of SiC and SiO(2) nanoparticles yields high performance cooling at low cost within a practical cooling rig.

  3. Substrate-induced interfacial plasmonics for photovoltaic conversion

    PubMed Central

    Li, Xinxi; Jia, Chuancheng; Ma, Bangjun; Wang, Wei; Fang, Zheyu; Zhang, Guoqing; Guo, Xuefeng

    2015-01-01

    Surface plasmon resonance (SPR) is widely used as light trapping schemes in solar cells, because it can concentrate light fields surrounding metal nanostructures and realize light management at the nanoscale. SPR in photovoltaics generally occurs at the metal/dielectric interfaces. A well-defined interface is therefore required to elucidate interfacial SPR processes. Here, we designed a photovoltaic device (PVD) with an atomically flat TiO2 dielectric/dye/graphene/metal nanoparticle (NP) interface for quantitatively studying the SPR enhancement of the photovoltaic conversion. Theoretical and experimental results indicated that the graphene monolayer was transparent to the electromagnetic field. This transparency led to significant substrate-induced plasmonic hybridization at the heterostructure interface. Combined with interparticle plasmonic coupling, the substrate-induced plasmonics concentrated light at the interface and enhanced the photo-excitation of dyes, thus improving the photoelectric conversion. Such a mechanistic understanding of interfacial plasmonic enhancement will further promote the development of efficient plasmon-enhanced solar cells and composite photocatalysts. PMID:26412576

  4. In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Rahin; Kim, Jeonghyo; Tran, Van Tan; Suzuki, Tetsuro; Neethirajan, Suresh; Lee, Jaebeom; Park, Enoch Y.

    2017-03-01

    Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. An in situ method has been developed to fabricate gold nanoparticle (Au NP) films on different substrates, regardless of whether they are hydrophilic or hydrophobic surfaces, including glass, 96-well polystyrene plates, and polydimethylsiloxane (PDMS). A mixture of sodium formate (HCOONa) and chloroauric acid (HAuCl4) solution was used to prepare Au NP films at room temperature. An experimental study of the mechanism revealed that film formation is dependent on surface wettability and inter particle attraction. The as-fabricated Au NP films were further applied to the colorimetric detection of influenza virus. The response to the commercial target, New Caledonia/H1N1/1999 influenza virus, was linear in the range from 10 pg/ml to 10 μg/ml and limit of detection was 50.5 pg/ml. In the presence of clinically isolated influenza A virus (H3N2), the optical density of developed color was dependent on the virus concentration (10-50,000 PFU/ml). The limit of detection of this study was 24.3 PFU/ml, a limit 116 times lower than that of conventional ELISA (2824.3 PFU/ml). The sensitivity was also 500 times greater than that of commercial immunochromatography kits.

  5. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garabagiu, Sorina, E-mail: sgarabagiu@itim-cj.ro

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer The interaction was studied using UV-vis and fluorescence spectroscopy. Black-Right-Pointing-Pointer Gold nanoparticles quench the fluorescence emission of hemoglobin solution. Black-Right-Pointing-Pointer The binding and thermodynamic constants were calculated. Black-Right-Pointing-Pointer Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV-vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longermore » wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern-Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.« less

  6. Microwave-assisted synthesis of sensitive silver substrate for surface-enhanced Raman scattering spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia Lixin; Wang Haibo; Wang Jian

    A sensitive silver substrate for surface-enhanced Raman scattering (SERS) spectroscopy is synthesized under multimode microwave irradiation. The microwave-assisted synthesis of the SERS-active substrate was carried out in a modified domestic microwave oven of 2450 MHz, and the reductive reaction was conducted in a polypropylene container under microwave irradiation with a power of 100 W for 5 min. Formaldehyde was employed as both the reductant and microwave absorber in the reductive process. The effects of different heating methods (microwave dielectric and conventional) on the properties of the SERS-active substrates were investigated. Samples obtained with 5 min of microwave irradiation at amore » power of 100 W have more well-defined edges, corners, and sharper surface features, while the samples synthesized with 1 h of conventional heating at 40 deg. C consist primarily of spheroidal nanoparticles. The SERS peak intensity of the {approx}1593 cm{sup -1} band of 4-mercaptobenzoic acid adsorbed on silver nanoparticles synthesized with 5 min of microwave irradiation at a power of 100 W is about 30 times greater than when it is adsorbed on samples synthesized with 1 h of conventional heating at 40 deg. C. The results of quantum chemical calculations are in good agreement with our experimental data. This method is expected to be utilized for the synthesis of other metal nanostructural materials.« less

  7. Zn nanoparticle formation in FIB irradiated single crystal ZnO

    NASA Astrophysics Data System (ADS)

    Pea, M.; Barucca, G.; Notargiacomo, A.; Di Gaspare, L.; Mussi, V.

    2018-03-01

    We report on the formation of Zn nanoparticles induced by Ga+ focused ion beam on single crystal ZnO. The irradiated materials have been studied as a function of the ion dose by means of atomic force microscopy, scanning electron microscopy, Raman spectroscopy and transmission electron microscopy, evidencing the presence of Zn nanoparticles with size of the order of 5-30 nm. The nanoparticles are found to be embedded in a shallow amorphous ZnO matrix few tens of nanometers thick. Results reveal that ion beam induced Zn clustering occurs producing crystalline particles with the same hexagonal lattice and orientation of the substrate, and could explain the alteration of optical and electrical properties found for FIB fabricated and processed ZnO based devices.

  8. Hydrogen dissociation catalyzed by carbon-coated nickel nanoparticles: experiment and theory.

    PubMed

    Yermakov, Anatoliy Ye; Boukhvalov, Danil W; Uimin, Michael A; Lokteva, Ekaterina S; Erokhin, Alexey V; Schegoleva, Nina N

    2013-02-04

    Based on the combination of experimental measurements and first-principles calculations we report a novel carbon-based catalytic material and describe significant acceleration of the hydrogenation of magnesium at room temperature in the presence of nickel nanoparticles wrapped in multilayer graphene. The increase in rate of magnesium hydrogenation in contrast to a mix of graphite and nickel nanoparticles evidences intrinsic catalytic properties of the nanocomposites explored. The results from simulation demonstrate that doping of the metal substrate and the presence of Stone-Wales defects turn multilayer graphene from being chemically inert to chemically active. The role of the size of the nanoparticles and temperature are also discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plasmonic nanoparticle lithography: Fast resist-free laser technique for large-scale sub-50 nm hole array fabrication

    NASA Astrophysics Data System (ADS)

    Pan, Zhenying; Yu, Ye Feng; Valuckas, Vytautas; Yap, Sherry L. K.; Vienne, Guillaume G.; Kuznetsov, Arseniy I.

    2018-05-01

    Cheap large-scale fabrication of ordered nanostructures is important for multiple applications in photonics and biomedicine including optical filters, solar cells, plasmonic biosensors, and DNA sequencing. Existing methods are either expensive or have strict limitations on the feature size and fabrication complexity. Here, we present a laser-based technique, plasmonic nanoparticle lithography, which is capable of rapid fabrication of large-scale arrays of sub-50 nm holes on various substrates. It is based on near-field enhancement and melting induced under ordered arrays of plasmonic nanoparticles, which are brought into contact or in close proximity to a desired material and acting as optical near-field lenses. The nanoparticles are arranged in ordered patterns on a flexible substrate and can be attached and removed from the patterned sample surface. At optimized laser fluence, the nanohole patterning process does not create any observable changes to the nanoparticles and they have been applied multiple times as reusable near-field masks. This resist-free nanolithography technique provides a simple and cheap solution for large-scale nanofabrication.

  10. Selective Catalysis in Nanoparticle Metal-Organic Framework Composites

    NASA Astrophysics Data System (ADS)

    Stephenson, Casey Justin

    The design of highly selective catalysts are becoming increasingly important, especially as chemical and pharmaceutical industries seek to improve atom economy and minimize energy intensive separations that are often required to separate side products from the desired product. Enzymes are among the most selective of all catalysts, generally operating through molecular recognition whereby an active site analogous to a lock and the substrate is analogous to a key. The assembly of a porous, crystalline material around a catalytically active metal particle could serve as an artificial enzyme. In this vein, we first synthesized the polyvinylpyrrolidone (PVP) coated nanoparticles of interest and then encapsulated them within zeolitic imidazolate framework 8 or ZIF-8. 2.8 nm Pt-PVP nanoparticles, which were encapsulated within ZIF-8 to form Pt ZIF-8 composite. Pt ZIF-8 was inactive for the hydrogenation of cyclic olefins such as cis-cyclooctene and cis-cyclohexene while the composite proved to be a highly selective catalyst for the hydrogenation of terminal olefins, hydrogenating trans-1,3-hexadiene to 3-hexene in 95% selectivity after 24 hours under 1 bar H2. We extended our encapsulation method to sub-2 nm Au nanoparticles to form Au ZIF-8. Au ZIF-8 served as a highly chemoselective catalyst for the hydrogenation of crotonaldehyde an alpha,beta-unsaturated aldehyde, to crotyl alcohol an alpha,beta-unsaturated alcohol, in 90-95% selectivity. In order to investigate nanoparticle size effects on selectivity, 6-10 nm Au nanoparticles were encapsulated within ZIF-8 to form Au6 ZIF-8. Control catalysts with nanoparticles supported on the surface of ZIF-8 were synthesized as well, Au/ZIF-8 and Au6/ZIF-8. Au6 ZIF-8 hydrogenated crotonaldehyde in 85% selectivity towards the unsaturated alcohol. Catalysts with nanoparticles supported on the exterior of ZIF-8 were far less selective towards the unsaturated alcohol. Post-catalysis transmission electron microscopy analysis of Au ZIF

  11. Quantitative Characterization of Magnetic Mobility of Nanoparticle in Solution-Based Condition.

    PubMed

    Rodoplu, Didem; Boyaci, Ismail H; Bozkurt, Akif G; Eksi, Haslet; Zengin, Adem; Tamer, Ugur; Aydogan, Nihal; Ozcan, Sadan; Tugcu-Demiröz, Fatmanur

    2015-01-01

    Magnetic nanoparticles are considered as the ideal substrate to selectively isolate target molecules or organisms from sample solutions in a wide variety of applications including bioassays, bioimaging and environmental chemistry. The broad array of these applications in fields requires the accurate magnetic characterization of nanoparticles for a variety of solution based-conditions. Because the freshly synthesized magnetic nanoparticles demonstrated a perfect magnetization value in solid form, they exhibited a different magnetic behavior in solution. Here, we present simple quantitative method for the measurement of magnetic mobility of nanoparticles in solution-based condition. Magnetic mobility of the nanoparticles was quantified with initial mobility of the particles using UV-vis absorbance spectroscopy in water, ethanol and MES buffer. We demonstrated the efficacy of this method through a systematic characterization of four different core-shell structures magnetic nanoparticles over three different surface modifications. The solid nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD) and saturation magnetization (Ms). The surfaces of the nanoparticles were functionalized with 11-mercaptoundecanoic acid and bovine serum albumin BSA was selected as biomaterial. The effect of the surface modification and solution media on the stability of the nanoparticles was monitored by zeta potentials and hydrodynamic diameters of the nanoparticles. Results obtained from the mobility experiments indicate that the initial mobility was altered with solution media, surface functionalization, size and shape of the magnetic nanoparticle. The proposed method easily determines the interactions between the magnetic nanoparticles and their surrounding biological media, the magnetophoretic responsiveness of nanoparticles and the initial mobilities of the nanoparticles.

  12. Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects.

    PubMed

    Janesko, Benjamin G; Scuseria, Gustavo E

    2006-09-28

    We present a model for electromagnetic enhancements in surface enhanced Raman optical activity (SEROA) spectroscopy. The model extends previous treatments of SEROA to substrates, such as metal nanoparticles in solution, that are orientationally averaged with respect to the laboratory frame. Our theoretical treatment combines analytical expressions for unenhanced Raman optical activity with molecular polarizability tensors that are dressed by the substrate's electromagnetic enhancements. We evaluate enhancements from model substrates to determine preliminary scaling laws and selection rules for SEROA. We find that dipolar substrates enhance Raman optical activity (ROA) scattering less than Raman scattering. Evanescent gradient contributions to orientationally averaged ROA scale to first or higher orders in the gradient of the incident plane-wave field. These evanescent gradient contributions may be large for substrates with quadrupolar responses to the plane-wave field gradient. Some substrates may also show a ROA contribution that depends only on the molecular electric dipole-electric dipole polarizability. These conclusions are illustrated via numerical calculations of surface enhanced Raman and ROA spectra from (R)-(-)-bromochlorofluoromethane on various model substrates.

  13. Detoxification of Organophosphate Poisoning Using Nanoparticle Bioscavengers

    PubMed Central

    Pang, Zhiqing; Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Gao, Weiwei; Wang, Fei; Chuluun, Erdembileg; Angsantikul, Pavimol; Thamphiwatana, Soracha; Lu, Weiyue; Jiang, Xinguo; Zhang, Liangfang

    2016-01-01

    Organophosphate poisoning is highly lethal as organophosphates, which are commonly found in insecticides and nerve agents, cause irreversible phosphorylation and inactivation of acetylcholinesterase (AChE), leading to neuromuscular disorders via accumulation of acetylcholine in the body. Direct interception of organophosphates in the systemic circulation thus provides a desirable strategy in treatment of the condition. Inspired by the presence of acetylcholinesterase on red blood cell (RBC) membranes, we explored a biomimetic nanoparticle consisting of a polymeric core surrounded by RBC membranes to serve as an anti-organophosphate agent. Through in vitro studies, we demonstrated that the biomimetic nanoparticles retain the enzymatic activity of membrane-bound AChE and are able to bind to a model organophosphate, dichlorvos, precluding its inhibitory effect on other enzymatic substrates. In a mouse model of organophosphate poisoning, the nanoparticles were shown to improve the AChE activity in the blood and markedly improved the survival of dichlorvos-challenged mice. PMID:26053868

  14. Growth of ultra-thin TiO 2 films by spray pyrolysis on different substrates

    NASA Astrophysics Data System (ADS)

    Oja Acik, I.; Junolainen, A.; Mikli, V.; Danilson, M.; Krunks, M.

    2009-12-01

    In the present study TiO 2 films were deposited by spray pyrolysis method onto ITO covered glass and Si (1 0 0) substrates. The spray solution containing titanium(IV) isopropoxide, acetylacetone and ethanol was sprayed at a substrate temperature of 450 °C employing 1-125 spray pulses (1 s spray and 30 s pause). According to AFM, continuous coverage of ITO and Si substrates with TiO 2 layer is formed by 5-10 and below 5 spray pulses, respectively. XPS studies revealed that TiO 2 film growth on Si substrate using up to 4 spray pulses follows 2D or layer-by-layer-growth. Above 4 spray pulses, 3D or island growth becomes dominant irrespective of the substrate. Only 50 spray pulses result in TiO 2 layer with the thickness more than XPS measurement escape depth as any signal from the substrate could not be detected. TiO 2 grain size remains 30 nm on ITO and increases from 10-20 nm to 50-100 nm on Si substrate with the number of spray pulses from 1 to 125.

  15. Characteristics of indium-tin-oxide (ITO) nanoparticle ink-coated layers recycled from ITO scraps

    NASA Astrophysics Data System (ADS)

    Cha, Seung-Jae; Hong, Sung-Jei; Lee, Jae Yong

    2015-09-01

    This study investigates the characteristics of an indium-tin-oxide (ITO) ink layer that includes nanoparticles synthesized from ITO target scraps. The particle size of the ITO nanoparticle was less than 15 nm, and the crystal structure was cubic with a (222) preferred orientation. Also, the composition ratio of In to Sn was 92.7 to 7.3 in weight. The ITO nanoparticles were well dispersed in the ink solvent to formulate a 20-wt% ITO nanoparticle ink. Furthermore, the ITO nanoparticle ink was coated onto a glass substrate, followed by heat-treatment at 600 °C. The layer showed good sheet resistances below 400 Ω/□ and optical transmittances higher than 88% at 550 nm. Thus, we can conclude that the characteristics of the layer make it highly applicable to a transparent conductive electrode.

  16. Natural vegetation groups and canopy chemical markers in a dry subtropical forest on calcareous substrate: the vegetation of Mona Island, Puerto Rico

    Treesearch

    E. Medina; E.H. Helmer; E. Melendez-Ackerman; H. Marcano-Vega

    2014-01-01

    Mona Island is the third largest island in the archipelago of Puerto Rico located about 70 km west of the main island. Presently it is a wilderness refuge that contains well-preserved arboreal and shrubby vegetation, and distinct cactus forests, covering the calcareous, elevated plateau. During a forest inventory conducted by the US Forest Service, we obtained leaves...

  17. Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Jiang, Shou Zhen; Yang, Cheng; Li, Chong Hui; Huo, Yan Yan; Liu, Xiao Yun; Liu, Ai Hua; Wei, Qin; Gao, Sai Sai; Gao, Xing Guo; Man, Bao Yuan

    2016-05-01

    A novel and efficient surface enhanced Raman scattering (SERS) substrate has been presented based on Gold@silver/pyramidal silicon 3D substrate (Au@Ag/3D-Si). By combining the SERS activity of Ag, the chemical stability of Au and the large field enhancement of 3D-Si, the Au@Ag/3D-Si substrate possesses perfect sensitivity, homogeneity, reproducibility and chemical stability. Using R6G as probe molecule, the SERS results imply that the Au@Ag/3D-Si substrate is superior to the 3D-Si, Ag/3D-Si and Au/3D-Si substrate. We also confirmed these excellent behaviors in theory via a commercial COMSOL software. The corresponding experimental and theoretical results indicate that our proposed Au@Ag/3D-Si substrate is expected to develop new opportunities for label-free SERS detections in biological sensors, biomedical diagnostics and food safety.

  18. Protein and cell micropatterning and its integration with micro/nanoparticles assembly.

    PubMed

    Yap, F L; Zhang, Y

    2007-01-15

    Micropatterning of proteins and cells has become very popular over the past decade due to its importance in the development of biosensors, microarrays, tissue engineering and cellular studies. This article reviews the techniques developed for protein and cell micropatterning and its biomedical applications. The prospect of integrating micro and nanoparticles with protein and cell micropatterning is discussed. The micro/nanoparticles are assembled into patterns and form the substrate for proteins and cell attachment. The assembled particles create a micro or nanotopography, depending on the size of the particles employed. The nonplanar structure can increase the surface area for biomolecules attachment and therefore enhance the sensitivity for detection in biosensors. Furthermore, a nanostructured substrate can influence the conformation and functionality of protein attached to it, while cellular response in terms of morphology, adhesion, proliferation, differentiation, etc. can be affected by a surface expressing micro or nanoscale structures. Proteins and cells tend to lose their normal functions upon attachment to substrate. By recognizing the types of topography that are favourable for preserving proteins and cell behaviour, and integrating it with micropattering will lead to the development of functional protein and cell patterns.

  19. Development of a highly transparent superamphiphobic plastic sheet by nanoparticle and chemical coating.

    PubMed

    Wong, Ten It; Wang, Hao; Wang, Fuke; Sin, Sau Leng; Quan, Cheng Gen; Wang, Shi Jie; Zhou, Xiaodong

    2016-04-01

    A highly transparent superamphiphobic plastic sheet was developed. The plastic sheet polymethyl methacrylate (PMMA) was spin-coated on a glass substrate. Synthesized silica nanoparticles were sprayed on PMMA, followed by fluorosilane drop-coating. The results of contact angle measurements show that the developed PMMA sheet has superamphiphobic properties with high advancing contact angles for water (154°), toluene (139°), and silicone oil (132.9°). The amphiphobicity of the plastic sheet can be tuned by the surface coverage of the silica nanoparticles distributed on the PMMA surface. The surface coverage of the nanoparticles on our PMMA sheet is about 20%, and it agrees with our contact angle calculations for the sheet with and without nanoparticles. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Room Temperature Synthesis of Highly Monodisperse and Sers-Active Glucose-Reduced Gold Nanoparticles

    NASA Astrophysics Data System (ADS)

    Boitor, R. A.; Tódor, I. Sz.; Leopold, L. F.; Leopold, N.

    2015-07-01

    A novel method of synthesizing gold nanoparticles was developed through which glucose-coated nanospheres of high monodispersity were synthesized at room temperature. More than 85% of the nanoparticles showed a mean diameter of 8-9 nm. The nanoparticles were characterized through TEM, UV-Vis absorption spectroscopy, dynamic light scattering (DLS), and Zeta potential measurements and were found to be highly stable in colloidal form over time with a surface potential of -38.7 mV. The nanoparticles also showed a great Raman enhancing factor when they were tested as a surface-enhanced Raman scattering (SERS) substrate on various analytes such as rhodamine 6G, crystal violet chloride, cresyl violet chloride, rose bengal, and the Cu(II) 4-(2-pyridylazo)resorcinol complex at micromolar concentrations.

  1. Ge growth on vicinal si(001) surfaces: island's shape and pair interaction versus miscut angle.

    PubMed

    Persichetti, L; Sgarlata, A; Fanfoni, M; Balzarotti, A

    2011-10-01

    A complete description of Ge growth on vicinal Si(001) surfaces is provided. The distinctive mechanisms of the epitaxial growth process on vicinal surfaces are clarified from the very early stages of Ge deposition to the nucleation of 3D islands. By interpolating high-resolution scanning tunneling microscopy measurements with continuum elasticity modeling, we assess the dependence of island's shape and elastic interaction on the substrate misorientation. Our results confirm that vicinal surfaces offer an additional degree of control over the shape and symmetry of self-assembled nanostructures.

  2. Design of water-repellant coating using dual scale size of hybrid silica nanoparticles on polymer surface

    NASA Astrophysics Data System (ADS)

    Conti, J.; De Coninck, J.; Ghazzal, M. N.

    2018-04-01

    The dual-scale size of the silica nanoparticles is commonly aimed at producing dual-scale roughness, also called hierarchical roughness (Lotus effect). In this study, we describe a method to build a stable water-repellant coating with controlled roughness. Hybrid silica nanoparticles are self-assembled over a polymeric surface by alternating consecutive layers. Each one uses homogenously distributed silica nanoparticles of a particular size. The effect of the nanoparticle size of the first layer on the final roughness of the coating is studied. The first layer enables to adjust the distance between the silica nanoparticles of the upper layer, leading to a tuneable and controlled final roughness. An optimal size nanoparticle has been found for higher water-repellency. Furthermore, the stability of the coating on polymeric surface (Polycarbonate substrate) is ensured by photopolymerization of hybridized silica nanoparticles using Vinyl functional groups.

  3. Silver nanoparticles with tunable work functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Pangpang, E-mail: pangpang@molecular-device.kyushu-u.ac.jp; Tanaka, Daisuke; Ryuzaki, Sou

    To improve the efficiencies of electronic devices, materials with variable work functions are required to decrease the energy level differences at the interfaces between working layers. Here, we report a method to obtain silver nanoparticles with tunable work functions, which have the same silver core of 5 nm in diameter and are capped by myristates and 1-octanethoilates self-assembled monolayers, respectively. The silver nanoparticles capped by organic molecules can form a uniform two-dimensional sheet at air-water interface, and the sheet can be transferred on various hydrophobic substrates. The surface potential of the two-dimensional nanoparticle sheet was measured in terms of Kelvin probemore » force microscopy, and the work function of the sheet was then calculated from the surface potential value by comparing with a reference material. The exchange of the capping molecules results in a work function change of approximately 150–250 meV without affecting their hydrophobicity. We systematically discussed the origin of the work function difference and found it should come mainly from the anchor groups of the ligand molecules. The organic molecule capped nanoparticles with tunable work functions have a potential for the applications in organic electronic devices.« less

  4. Self-assembled silver nanoparticle films at an air-liquid interface and their applications in SERS and electrochemistry

    NASA Astrophysics Data System (ADS)

    Wang, Li; Sun, Yujing; Che, Guangbo; Li, Zhuang

    2011-06-01

    In this paper, we present a novel technique to prepare silver nanoparticle films by controlling the self-assembly of nanoparticles at an air-liquid interface. In an ethanol-water phase, silver nanoparticles were prepared by reduction of AgNO 3 aqueous solution with NaBH 4 in the presence of cinnamic acid. It was found that the silver nanoparticles in this process could be trapped at the air-liquid interface to form 2-dimensional nanoparticle films. The morphology of nanoparticle films could be controlled by systematic variation of the experimental parameters. It is worth noting that the nanoparticle films could serve as the active substrates for surface-enhanced Raman scattering (SERS). 4-Aminothiophenol (4-ATP) molecule was used as a test probe to investigate the SERS sensitivity of different nanoparticle films. The results indicated that the nanoparticle films showed excellent Raman enhancement effect. Furthermore, the nanoparticle films prepared by our strategy were found to be efficient electrocatalysts for anodic oxidation of formaldehyde in alkaline medium.

  5. Conical islands of TiO2 nanotube arrays in the photoelectrode of dye-sensitized solar cells.

    PubMed

    Kim, Woong-Rae; Park, Hun; Choi, Won-Youl

    2015-01-01

    Ti conical island structures were fabricated using photolithography and the reactive ion etching method. The resulting conical island structures were anodized in ethylene glycol solution containing 0.25 wt% NH4F and 2 vol% H2O, and conical islands composed of TiO2 nanotubes were successfully formed on the Ti foils. The conical islands composed of TiO2 nanotubes were employed in photoelectrodes for dye-sensitized solar cells (DSCs). DSC photoelectrodes based on planar Ti structures covered with TiO2 nanotubes were also fabricated as a reference. The short-circuit current (J sc) and efficiency of DSCs based on the conical island structures were higher than those of the reference samples. The efficiency of DSCs based on the conical island structures reached up to 1.866%. From electrochemical impedance spectroscopy and open-circuit voltage (V oc) decay measurements, DSCs based on the conical island structures exhibited a lower charge transfer resistance at the counter cathode and a longer electron lifetime at the interface of the photoelectrode and electrolyte compared to the reference samples. The conical island structure was very effective at improving performances of DSCs based on TiO2 nanotubes. Graphical AbstractConical islands of TiO2 nanotube arrays are fabricated by an anodizing process with Ti protruding dots which have a conical shape. The conical islands are applied for use in DSC photoelectrodes. DSCs based on the conical islands of TiO2 nanotube arrays have the potential to achieve higher efficiency levels compared to DSCs based on normal TiO2 nanotubes and TiO2 nanoparticles because the conical islands of TiO2 nanotube arrays enlarge the surface area for dye adsorption.

  6. Nonlinear optical behavior of DNA-functionalized gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Kulyk, B.; Krupka, O.; Smokal, V.; Figà, V.; Czaplicki, R.; Sahraoui, B.

    2018-03-01

    The third-order nonlinear optical properties of gold nanoparticles embedded in the DNA-based composites were investigated by means of the third harmonic generation. With this purpose, the thin films comprising DNA-based complexes and Au nanoparticles were spin-deposited on glass substrate and their optical and nonlinear optical features were studied using the Maker-fringe technique at a laser fundamental wavelength of 1064 nm. The values of the third-order susceptibility χ (3)(- 3ω; ω, ω, ω) of the composite films based on DNA complex doped with 5 wt% of N-ethyl-N-(2-hydroxyethyl)-4-(4-nitrophenylazo)aniline were found to be significantly higher than those for pure composite films. Meanwhile, the presence of Au nanoparticles noticeable decreases the third-order nonlinear response of DNA-based composite mainly due to the enhanced absorption and scattering of laser and generated beam, respectively.

  7. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference

    NASA Astrophysics Data System (ADS)

    Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Sims, P. C.; O'braztsova, A.

    2017-06-01

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference.

  8. Effect of linoleic-acid modified carboxymethyl chitosan on bromelain immobilization onto self-assembled nanoparticles

    NASA Astrophysics Data System (ADS)

    Tan, Yu-long; Liu, Chen-guang; Yu, Le-jun; Chen, Xi-guang

    2008-06-01

    Hydrogel nanoparticles could be prepared by using linoleic acid (LA) modified carboxymethyl chitosan (CMCS) after sonication. Bromelain could be loaded onto nanoparticles of LA-CMCS. Factors affecting the activity of the immobilized enzyme, including temperature, storage etc., were investigated in this study. The results showed that the stability of bromelain for heat and storage was improved after immobilization on nanoparticles. The Michaelis constant ( K m) of the immobilized enzyme was smaller than that of free enzyme, indicating that the immobilization could promote the stability of the enzyme and strengthen the affinity of the enzyme for the substrate.

  9. Ober's Island: The Mallard Ober's Island, One of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Ober's Island: The Mallard - Ober's Island, One of the Review Islands on Rainy Lake, bounded on the south by The Hawk Island and on the north by The Crow Island. These islands are located seven miles east of Ranier, Minnesota, three miles west of Voyageur National Park, and one mile south of the international border of the United States of America and Canada. The legal description of Mallard Island is Lot 6, Section 19, T-17-N, R-22-W, Koochiching County, Minnesota, Ranier, Koochiching County, MN

  10. Mechanism of nanoparticle actuation by responsive polymer brushes: from reconfigurable composite surfaces to plasmonic effects.

    PubMed

    Roiter, Yuri; Minko, Iryna; Nykypanchuk, Dmytro; Tokarev, Ihor; Minko, Sergiy

    2012-01-07

    The mechanism of nanoparticle actuation by stimuli-responsive polymer brushes triggered by changes in the solution pH was discovered and investigated in detail in this study. The finding explains the high spectral sensitivity of the composite ultrathin film composed of a poly(2-vinylpyridine) (P2VP) brush that tunes the spacing between two kinds of nanoparticles-gold nanoislands immobilized on a transparent support and gold colloidal particles adsorbed on the brush. The optical response of the film relies on the phenomenon of localized surface plasmon resonances in the noble metal nanoparticles, giving rise to an extinction band in visible spectra, and a plasmon coupling between the particles and the islands that has a strong effect on the band position and intensity. Since the coupling is controlled by the interparticle spacing, the pH-triggered swelling-shrinking transition in the P2VP brush leads to pronounced changes in the transmission spectra of the hybrid film. It was not established in the previous publications how the actuation of gold nanoparticles within a 10-15 nm interparticle distance could result in the 50-60 nm shift in the absorbance maximum in contrast to the model experiments and theoretical estimations of several nanometer shifts. In this work, the extinction band was deconvoluted into four spectrally separated and overlapping contributions that were attributed to different modes of interactions between the particles and the islands. These modes came into existence due to variations in the thickness of the grafted polymeric layer on the profiled surface of the islands. In situ atomic force microscopy measurements allowed us to explore the behavior of the Au particles as the P2VP brush switched between the swollen and collapsed states. In particular, we identified an interesting, previously unanticipated regime when a particle position in a polymer brush was switched between two distinct states: the particle exposed to the surface of the

  11. Island Formation: Constructing a Coral Island

    ERIC Educational Resources Information Center

    Austin, Heather; Edd, Amelia

    2009-01-01

    The process of coral island formation is often difficult for middle school students to comprehend. Coral island formation is a dynamic process, and students should have the opportunity to experience this process in a synergistic context. The authors provide instructional guidelines for constructing a coral island. Students play an interactive role…

  12. Slider thickness promotes lubricity: from 2D islands to 3D clusters

    NASA Astrophysics Data System (ADS)

    Guerra, Roberto; Tosatti, Erio; Vanossi, Andrea

    2016-05-01

    The sliding of three-dimensional clusters and two-dimensional islands adsorbed on crystal surfaces represents an important test case to understand friction. Even for the same material, monoatomic islands and thick clusters will not as a rule exhibit the same friction, but specific differences have not been explored. Through realistic molecular dynamics simulations of the static friction of gold on graphite, an experimentally relevant system, we uncover as a function of gold thickness a progressive drop of static friction from monolayer islands, that are easily pinned, towards clusters, that slide more readily. The main ingredient contributing to this thickness-induced lubricity appears to be the increased effective rigidity of the atomic contact, acting to reduce the cluster interdigitation with the substrate. A second element which plays a role is the lateral contact size, which can accommodate the solitons typical of the incommensurate interface only above a critical contact diameter, which is larger for monolayer islands than for thick clusters. The two effects concur to make clusters more lubric than islands, and large sizes more lubric than smaller ones. These conclusions are expected to be of broader applicability in diverse nanotribological systems, where the role played by static, and dynamic, friction is generally quite important.

  13. Slider thickness promotes lubricity: from 2D islands to 3D clusters.

    PubMed

    Guerra, Roberto; Tosatti, Erio; Vanossi, Andrea

    2016-06-07

    The sliding of three-dimensional clusters and two-dimensional islands adsorbed on crystal surfaces represents an important test case to understand friction. Even for the same material, monoatomic islands and thick clusters will not as a rule exhibit the same friction, but specific differences have not been explored. Through realistic molecular dynamics simulations of the static friction of gold on graphite, an experimentally relevant system, we uncover as a function of gold thickness a progressive drop of static friction from monolayer islands, that are easily pinned, towards clusters, that slide more readily. The main ingredient contributing to this thickness-induced lubricity appears to be the increased effective rigidity of the atomic contact, acting to reduce the cluster interdigitation with the substrate. A second element which plays a role is the lateral contact size, which can accommodate the solitons typical of the incommensurate interface only above a critical contact diameter, which is larger for monolayer islands than for thick clusters. The two effects concur to make clusters more lubric than islands, and large sizes more lubric than smaller ones. These conclusions are expected to be of broader applicability in diverse nanotribological systems, where the role played by static, and dynamic, friction is generally quite important.

  14. Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

    PubMed Central

    Wiens, Matthew; Lakatos, Mathias; Heerwig, Andreas; Ostermaier, Frieder; Haufe, Nora

    2016-01-01

    Summary DNA nanostructures are promising construction materials to bridge the gap between self-assembly of functional molecules and conventional top-down fabrication methods in nanotechnology. Their positioning onto specific locations of a microstructured substrate is an important task towards this aim. Here we study manipulation and positioning of pristine and of gold nanoparticle-conjugated tubular DNA origami structures using ac dielectrophoresis. The dielectrophoretic behavior was investigated employing fluorescence microscopy. For the pristine origami, a significant dielectrophoretic response was found to take place in the megahertz range, whereas, due to the higher polarizability of the metallic nanoparticles, the nanoparticle/DNA hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in between electrodes at applied frequencies in the megahertz range was observed. The long-range chain formation is caused by a local, gold nanoparticle-induced field concentration along the DNA nanostructures, which in turn, creates dielectrophoretic forces that enable the observed self-alignment of the hybrid structures. PMID:27547612

  15. Extraordinarily high conductivity of flexible adhesive films by hybrids of silver nanoparticle-nanowires

    NASA Astrophysics Data System (ADS)

    Muhammed Ajmal, C.; Mol Menamparambath, Mini; Ryeol Choi, Hyouk; Baik, Seunghyun

    2016-06-01

    Highly conductive flexible adhesive (CFA) film was developed using micro-sized silver flakes (primary fillers), hybrids of silver nanoparticle-nanowires (secondary fillers) and nitrile butadiene rubber. The hybrids of silver nanoparticle-nanowires were synthesized by decorating silver nanowires with silver nanoparticle clusters using bifunctional cysteamine as a linker. The dispersion in ethanol was excellent for several months. Silver nanowires constructed electrical networks between the micro-scale silver flakes. The low-temperature surface sintering of silver nanoparticles enabled effective joining of silver nanowires to silver flakes. The hybrids of silver nanoparticle-nanowires provided a greater maximum conductivity (54 390 S cm-1) than pure silver nanowires, pure multiwalled carbon nanotubes, and multiwalled carbon nanotubes decorated with silver nanoparticles in nitrile butadiene rubber matrix. The resistance change was smallest upon bending when the hybrids of silver nanoparticle-nanowires were employed. The adhesion of the film on polyethylene terephthalate substrate was excellent. Light emitting diodes were successfully wired to the CFA circuit patterned by the screen printing method for application demonstration.

  16. Laser-ablative fabrication of nanoparticle inks for 3D inkjetprinting of multifunctional coatings

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Ivanova, A. K.; Khmel'nitskii, R. A.; Klevkov, Yu V.; Kudryashov, S. I.; Mel'nik, N. N.; Nastulyavichus, A. A.; Rudenko, A. A.; Saraeva, I. N.; Smirnov, N. A.; Zayarny, D. A.

    2017-12-01

    We report the fabrication of multifunctional coatings via inkjet printing using water-based nanoinks in the form of selenium (Se) and gold (Au) nanoparticle (NP) colloids, prepared by laser ablation of solid targets in deionized water or 50%-isopropyl alcohol solution. Nanoparticles and NP-based coatings were deposited onto silver films, magnetronsputtered to silica-glass substrates, and characterized by means of scanning and transmission electron microscopy (SEM, TEM), UV-vis-IR, Raman and energy-dispersive X-ray spectroscopies.

  17. Habitat and environment of islands: primary and supplemental island sets

    USGS Publications Warehouse

    Matalas, Nicholas C.; Grossling, Bernardo F.

    2002-01-01

    The original intent of the study was to develop a first-order synopsis of island hydrology with an integrated geologic basis on a global scale. As the study progressed, the aim was broadened to provide a framework for subsequent assessments on large regional or global scales of island resources and impacts on those resources that are derived from global changes. Fundamental to the study was the development of a comprehensive framework?a wide range of parameters that describe a set of 'saltwater' islands sufficiently large to Characterize the spatial distribution of the world?s islands; Account for all major archipelagos; Account for almost all oceanically isolated islands, and Account collectively for a very large proportion of the total area of the world?s islands whereby additional islands would only marginally contribute to the representativeness and accountability of the island set. The comprehensive framework, which is referred to as the ?Primary Island Set,? is built on 122 parameters that describe 1,000 islands. To complement the investigations based on the Primary Island Set, two supplemental island sets, Set A?Other Islands (not in the Primary Island Set) and Set B?Lagoonal Atolls, are included in the study. The Primary Island Set, together with the Supplemental Island Sets A and B, provides a framework that can be used in various scientific disciplines for their island-based studies on broad regional or global scales. The study uses an informal, coherent, geophysical organization of the islands that belong to the three island sets. The organization is in the form of a global island chain, which is a particular sequential ordering of the islands referred to as the 'Alisida.' The Alisida was developed through a trial-and-error procedure by seeking to strike a balance between 'minimizing the length of the global chain' and 'maximizing the chain?s geophysical coherence.' The fact that an objective function cannot be minimized and maximized simultaneously

  18. Fabrication of Conductive Paths on a Fused Deposition Modeling Substrate using Inkjet Deposition

    DOE PAGES

    Zhou, Wenchao; List, III, Frederick Alyious; Duty, Chad E.; ...

    2015-01-15

    Inkjet deposition is one of the most attractive fabrication techniques for producing cost efficient and lightweight electronic devices on various substrates with low environmental impact. Fused Deposition Modeling (FDM) is one of the most used and reliable additive manufacturing processes by extrusion of wire-shaped thermoplastic materials, which provides an opportunity for embedding printed electronics into mechanical structures during the building process and enables the design of compact smart structures that can sense and adapt to their own state and the environment. This paper represents one of the first explorations of integrating inkjet deposition of silver nanoparticle inks with the FDMmore » process for making compact electro-mechanical structures. Three challenges have been identified and investigated, including the discontinuity of the printed lines resulting from the irregular surface of the FDM substrate, the non-conductivity of the printed lines due to the particle segregation during the droplet drying process, and the slow drying process caused by the skinning effect . Two different techniques are developed in this paper to address the issue of continuity of the printed lines, including surface ironing and a novel thermal plow technique that plows a channel in the FDM substrate to seal off the pores in the substrate and contain the deposited inks. Two solutions are also found for obtaining conductivity from the continuous printed lines, including porous surface coating and using a more viscous ink with larger nanoparticle size. Then the effects of the printing and post-processing parameters on the conductivity are examined. It is found that post-processing is a dominant factor in determining the conductivity of the printed lines.« less

  19. Optical and electronic properties of self-assembled nanoparticle-ligand metasurfaces

    NASA Astrophysics Data System (ADS)

    Fontana, Jake; Livenere, John; Caldwell, Joshua; Spillmann, Christopher; Naciri, Jawad; Rendell, Ronald; Ratna, Banahalli

    2013-03-01

    The optical and electronic properties of inorganic nanoparticles organized into two-dimensional lattices sensitively depend on the properties of the organic ligand shell coating the nanoparticles. We study the optical and electronic properties of these two-dimensional metasurfaces consisting of gold nanoparticles functionalized with ligands and self-assembled into macroscopic monolayers on non-templated substrates. Using these metasurfaces we demonstrate an average surface-enhanced Raman scattering (SERS) enhancement factor on the order of 108 for benzenethiol ligands and study the mechanisms that influence the enhancement. These metasurfaces may provide a platform for the development of low-power, low-cost next-generation chem/bio-sensors and new insights into the organic-inorganic interface at the nanoscale. This work was supported with funding provided from the Office of Naval Research

  20. Heat Islands

    EPA Pesticide Factsheets

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  1. Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.

    PubMed

    Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano

    2018-06-18

    A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.

  2. Plasmonic Ag nanostructures on thin substrates for enhanced energy harvesting

    NASA Astrophysics Data System (ADS)

    Osgood, R. M.; Giardini, S. A.; Carlson, J. B.; Gear, C.; Diest, K.; Rothschild, M.; Fernandes, G. E.; Xu, J.; Kooi, S.; Periasamy, P.; O'Hayre, R.; Parilla, P.; Berry, J.; Ginley, D.

    2013-09-01

    Nanoparticles and nanostructures with plasmonic resonances are currently being employed to enhance the efficiency of solar cells. Ag stripe arrays have been shown theoretically to enhance the short-circuit current of thin silicon layers. Such Ag stripes are combined with 200 nm long and 60 nm wide "teeth", which act as nanoantennas, and form vertical rectifying metal-insulator-metal (MIM) nanostructures on metallic substrates coated with thin oxides, such as Nb/NbOx films. We characterize experimentally and theoretically the visible and near-infrared spectra of these "stripeteeth" arrays, which act as microantenna arrays for energy harvesting and detection, on silicon substrates. Modeling the stripe-teeth arrays predicts a substantial net a.c. voltage across the MIM diode, even when the stripe-teeth microrectenna arrays are illuminated at normal incidence.

  3. Characterization of crystal structure features of a SIMOX substrate

    NASA Astrophysics Data System (ADS)

    Eidelman, K. B.; Shcherbachev, K. D.; Tabachkova, N. Yu.; Podgornii, D. A.; Mordkovich, V. N.

    2015-12-01

    The SIMOX commercial sample (Ibis corp.) was investigated by a high-resolution X-ray diffraction (HRXRD), a high-resolution transmission electron microscopy (HRTEM) and an Auger electron spectroscopy (AES) to determine its actual parameters (the thickness of the top Si and a continuous buried oxide layer (BOX), the crystalline quality of the top Si layer). Under used implantation conditions, the thickness of the top Si and BOX layers was 200 nm and 400 nm correspondingly. XRD intensity distribution near Si(0 0 4) reciprocal lattice point was investigated. According to the oscillation period of the diffraction reflection curve defined thickness of the overtop silicon layer (220 ± 2) nm. HRTEM determined the thickness of the oxide layer (360 nm) and revealed the presence of Si islands with a thickness of 30-40 nm and a length from 30 to 100 nm in the BOX layer nearby "BOX-Si substrate" interface. The Si islands are faceted by (1 1 1) and (0 0 1) faces. No defects were revealed in these islands. The signal from Si, which corresponds to the particles in an amorphous BOX matrix, was revealed by AES in the depth profiles. Amount of Si single crystal phase at the depth, where the particles are deposited, is about 10-20%.

  4. Lattice-patterned LC-polymer composites containing various nanoparticles as additives

    PubMed Central

    2012-01-01

    In this study, we show the effect of various nanoparticle additives on phase separation behavior of a lattice-patterned liquid crystal [LC]-polymer composite system and on interfacial properties between the LC and polymer. Lattice-patterned LC-polymer composites were fabricated by exposing to UV light a mixture of a prepolymer, an LC, and SiO2 nanoparticles positioned under a patterned photomask. This resulted in the formation of an LC and prepolymer region through phase separation. We found that the incorporation of SiO2 nanoparticles significantly affected the electro-optical properties of the lattice-patterned LC-polymer composites. This effect is a fundamental characteristic of flexible displays. The electro-optical properties depend on the size and surface functional groups of the SiO2 nanoparticles. Compared with untreated pristine SiO2 nanoparticles, which adversely affect the performance of LC molecules surrounded by polymer walls, SiO2 nanoparticles with surface functional groups were found to improve the electro-optical properties of the lattice-patterned LC-polymer composites by increasing the quantity of SiO2 nanoparticles. The surface functional groups of the SiO2 nanoparticles were closely related to the distribution of SiO2 nanoparticles in the LC-polymer composites, and they influenced the electro-optical properties of the LC molecules. It is clear from our work that the introduction of nanoparticles into a lattice-patterned LC-polymer composite provides a method for controlling and improving the composite's electro-optical properties. This technique can be used to produce flexible substrates for various flexible electronic devices. PMID:22222011

  5. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks.

    PubMed

    Li, Z P; Xu, Z M; Qu, X P; Wang, S B; Peng, J; Mei, L H

    2017-03-03

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  6. Fabrication of nanopore and nanoparticle arrays with high aspect ratio AAO masks

    NASA Astrophysics Data System (ADS)

    Li, Z. P.; Xu, Z. M.; Qu, X. P.; Wang, S. B.; Peng, J.; Mei, L. H.

    2017-03-01

    How to use high aspect ratio anodic aluminum oxide (AAO) membranes as an etching and evaporation mask is one of the unsolved problems in the application of nanostructured arrays. Here we describe the versatile utilizations of the highly ordered AAO membranes with a high aspect ratio of more than 20 used as universal masks for the formation of various nanostructure arrays on various substrates. The result shows that the fabricated nanopore and nanoparticle arrays of substrates inherit the regularity of the AAO membranes completely. The flat AAO substrates and uneven AAO frontages were attached to the Si substrates respectively as an etching mask, which demonstrates that the two kinds of replication, positive and negative, represent the replication of the mirroring of Si substrates relative to the flat AAO substrates and uneven AAO frontages. Our work is a breakthrough for the broad research field of surface nano-masking.

  7. Some optical and catalytic properties of metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Tabor, Christopher Eugene

    Nanomaterials have been the focus of many previous publications and studies. This fact is due to the wealth of new and tunable properties that exist when a material is confined in size. This thesis discusses some of those properties pertaining to metallic nanoparticles. The primarily focus is on the plasmonic properties of gold nanoparticles with a final chapter discussing nanocatalysis and the nature of nanocatalytic reactions. The strong electromagnetic field that is induced at the surface of a plasmonic nanoparticle can be utilized for many important applications, including spectroscopic enhancements for molecular sensors and electromagnetic waveguides for sub-wavelength light manipulation. For many of these applications, it is necessary to use two or more nanoparticles in close proximity with overlapping plasmonic fields. Knowledge of how these overlapping fields are affected by the particle orientation, size, and shape is critically important, not only in understanding the fundamental properties of plasmons but also in designing future architectures that employ plasmonic particles. The field of metallic nanoparticles is introduced from its beginning, with artistic use as early as the 4th century AD through current applications and understanding. The broad spectrum of current methodologies for fabricating nanoparticles is discussed, from top down methods using lithography and from bottom up methods using metal salt reduction in solution. There are several methods used in this thesis, all of which are discussed in great detail, with some details pertaining to the specific instrumentation used here. The first study is on the transfer of surface supported gold nanoprisms from a substrate into solution using photo-thermal heating with a femtosecond pulse coincident with the plasmon resonance frequency of the nanoprisms. The mechanism of transfer is discovered to be due to super heating of solvent molecules dissolved at the particle-substrate interface. This process

  8. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE PAGES

    Wu, Yiren; Su, Dong; Qin, Dong

    2017-02-22

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  9. Bifunctional Ag@SiO 2 /Au Nanoparticles for Probing Sequential Catalytic Reactions by Surface-Enhanced Raman Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yiren; Su, Dong; Qin, Dong

    Here, we report the synthesis of bifunctional Ag@SiO 2/Au nanoparticles with an “islands in the sea” configuration by titrating HAuCl 4 solution into an aqueous suspension of Ag@SiO 2 core–shell nanocubes in the presence of NaOH, ascorbic acid, and poly(vinyl pyrrolidone) at pH 11.9. The NaOH plays an essential role in generating small pores in the SiO 2 shell in situ, followed by the epitaxial deposition of Au from the Ag surface through the pores, leading to the formation of Au islands (6–12 nm in size) immersed in a SiO 2 sea. Furthermore, by controlling the amount of HAuCl 4more » titrated into the reaction system, the Au islands can be made to pass through and protrude from the SiO 2 shell, embracing catalytic activity toward the reduction of 4-nitrophenol to 4-aminophenol by NaBH4. And while the Ag in the core provides a strong surface-enhanced Raman scattering activity, the SiO 2 sea helps maintain the Au component as compact, isolated, and stabilized islands. The Ag@SiO 2/Au nanoparticles can serve as a bifunctional probe to monitor the stepwise Au-catalyzed reduction of 4-nitrothiophenol to 4-aminothiophenol by NaBH 4 and Ag-catalyzed oxidation of 4-aminothiophenol to trans-4,4'-dimercaptoazobenzene by the O 2 from air in the same reaction system.« less

  10. Laser desorption/ionization mass spectrometry of lipids using etched silver substrates.

    PubMed

    Schnapp, Andreas; Niehoff, Ann-Christin; Koch, Annika; Dreisewerd, Klaus

    2016-07-15

    Silver-assisted laser desorption/ionization mass spectrometry can be used for the analysis of small molecules. For example, adduct formation with silver cations enables the molecular analysis of long-chain hydrocarbons, which are difficult to ionize via conventional matrix-assisted laser desorption ionization (MALDI). Here we used highly porous silver foils, produced by etching with nitric acid, as sample substrates for LDI mass spectrometry. As model system for the analysis of complex lipid mixtures, cuticular extracts of fruit flies (Drosophila melanogaster) and worker bees (Apis mellifera) were investigated. The mass spectra obtained by spotting extract onto the etched silver substrates demonstrate the sensitive detection of numerous lipid classes such as long-chain saturated and unsaturated hydrocarbons, fatty acyl alcohols, wax esters, and triacylglycerols. MS imaging of cuticular surfaces with a lateral resolution of a few tens of micrometers became possible after blotting, i.e., after transferring lipids by physical contact with the substrate. The examples of pheromone-producing male hindwings of the squinting bush brown butterfly (Bicyclus anynana) and a fingermark are shown. Because the substrates are also easy to produce, they provide a viable alternative to colloidal silver nanoparticles and other so far described silver substrates. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Water flattens graphene wrinkles: laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays

    PubMed Central

    Hu, Yaowu; Lee, Seunghyun; Kumar, Prashant; Nian, Qiong; Wang, Wenqi; Irudayaraj, Joseph; Cheng, Gary J.

    2018-01-01

    Hot electron injection into an exceptionally high mobility material can be realized in graphene-plasmonic nanoantenna hybrid nanosystems, which can be exploited for several front-edge applications including photovoltaics, plasmonic waveguiding and molecular sensing at trace level. Wrinkling instabilities of graphene on these plasmonic nanostructures, however, would cause reactive oxygen or sulfur species diffuse and react with the materials, decrease charge transfer rate and block intense hot-spots. No ex-situ graphene wrapping technique has been explored so far to control these wrinkles. Here, we present a method to generate seamless integration by using water as a flyer to transfer the laser shock pressure to wrap graphene onto plasmonic nanocrystals. This technique decrease the interfacial gap between graphene and the covered substrate-supported plasmonic nanoparticle arrays, by exploiting a shock pressure generated by laser ablation of graphite and water impermeability nature of graphene. Graphene wrapping of chemically synthesized crystalline gold nanospheres, nanorods and bipyramids with different field confinement capabilities are investigated. A combined experimental and computational method, including SEM and AFM morphological investigation, molecular dynamics simulation, and Raman spectroscopy characterization, is used to demonstrate the effectiveness of this technique. Graphene covered gold bipyramid exhibits the best result among the hybrid nanosystems studied. We have shown that the hybrid system fabricated by laser shock can be used for enhanced molecular sensing. The technique developed has the characteristics of tight integration, chemical/thermal stability, instantaneous, scale and room temperature processing capability, and can be further extended to integrate other 2D material with various 0-3D nanomaterials. PMID:26394237

  12. Self-assembly of large-scale crack-free gold nanoparticle films using a ‘drain-to-deposit’ strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Guang; Hallinan, Daniel T.

    2016-04-26

    Gold nanoparticles are widely studied due to the ease of controlled synthesis, facile surface modification, and interesting physical properties. However, a technique for depositing large-area, crack-free monolayers on solid substrates is lacking. Herein is presented a method for accomplishing this. Spherical gold nanoparticles were synthesized as an aqueous dispersion. Assembly into monolayers and ligand exchange occurred simultaneously at an organic/aqueous interface. Then the monolayer film was deposited onto arbitrary solid substrates by slowly pumping out the lower, aqueous phase. This allowed the monolayer film (and liquid–liquid interface) to descend without significant disturbance, eventually reaching substrates contained in the aqueous phase.more » The resulting macroscopic quality of the films was found to be superior to films transferred by Langmuir techniques. The surface plasmon resonance and Raman enhancement of the films were evaluated and found to be uniform across the surface of each film.« less

  13. Growth and dielectric properties of ZnO nanoparticles deposited by using electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Chung, Yoonsung; Park, Hyejin; Kim, Dong-Joo; Cho, Sung Baek; Yoon, Young Soo

    2015-05-01

    The deposition behavior of ZnO nanoparticles on metal plates and conductive fabrics was investigated using electrophoretic deposition (EPD). The deposition kinetics on both metal plates and fabrics were examined using the Hamaker equation. Fabric substrates give more deposited weight than flat substrates due to their rougher shape and higher surface area. The morphologies and the structures of the deposited ZnO layers showed uniform deposition without any preferred orientation on both substrates. The dielectric properties of the ZnO layers formed by using EPD showed values that were reduced, but comparable to those of bulk ZnO. This result suggests that EPD is a convenient method to deposit functional oxides on flexible substrates.

  14. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  15. Structure determination of a multilayer with an island-like overlayer using hard x-ray photoelectron spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isomura, N., E-mail: isomura@mosk.tytlabs.co.jp; Kataoka, K.; Horibuchi, K.

    We use hard X-ray photoelectron spectroscopy (HAXPES) to obtain the surface structure of a multilayer Au/SiO{sub 2}/Si substrate sample with an island-like overlayer. Photoelectron intensities are measured as a function of incident photon energy (PE) and take-off angle (TOA, measured from the sample surface). The Au layer coverage and Au and SiO{sub 2} layer thicknesses are obtained by the PE dependence, and are used for the following TOA analysis. The Au island lateral width in the cross section is obtained by the TOA dependence, including information about surface roughness, in consideration of the island shadowing at small TOAs. In bothmore » cases, curve-fitting analysis is conducted. The surface structure, which consists of layer thicknesses, overlayer coverage and island width, is determined nondestructively by a combination of PE and TOA dependent HAXPES measurements.« less

  16. Synthesis of FeCoNi nanoparticles by galvanostatic technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budi, Setia, E-mail: setiabudi@unj.ac.id; Department of Chemistry, Faculty of Mathematics and Sciences, Universitas Negeri Jakarta, Jl. Pemuda No.10, Rawamangun, Jakarta 13220; Hafizah, Masayu Elita

    Soft magnetic nanoparticles of FeCoNi have been becoming interesting objects for many researchers due to its potential application in electronic devices. One of the most promising methods for material preparation is the electrodeposition which capable of growing nanoparticles alloy directly onto the substrate. In this paper, we report our electrodeposition studies on nanoparticles synthesis using galvanostatic electrodeposition technique. Chemical composition of the synthesized FeCoNi was successfully controlled through the adjustment of the applied currents. It is revealed that the content of each element, obtained from quantitative analysis using atomic absorption spectrometer (AAS), could be modified by the adjustment of currentmore » in which Fe and Co content decreased at larger applied currents, while Ni content increased. The nanoparticles of Co-rich FeCoNi and Ni-rich FeCoNi were obtained from sulphate electrolyte at the range of applied current investigated in this work. Broad diffracted peaks in the X-ray diffractograms indicated typical nanostructures of the solid solution of FeCoNi.« less

  17. Dynamics of nanoparticle morphology under low energy ion irradiation.

    PubMed

    Holland-Moritz, Henry; Graupner, Julia; Möller, Wolfhard; Pacholski, Claudia; Ronning, Carsten

    2018-08-03

    If nanostructures are irradiated with energetic ions, the mechanism of sputtering becomes important when the ion range matches about the size of the nanoparticle. Gold nanoparticles with diameters of ∼50 nm on top of silicon substrates with a native oxide layer were irradiated by gallium ions with energies ranging from 1 to 30 keV in a focused ion beam system. High resolution in situ scanning electron microscopy imaging permits detailed insights in the dynamics of the morphology change and sputter yield. Compared to bulk-like structures or thin films, a pronounced shaping and enhanced sputtering in the nanostructures occurs, which enables a specific shaping of these structures using ion beams. This effect depends on the ratio of nanoparticle size and ion energy. In the investigated energy regime, the sputter yield increases at increasing ion energy and shows a distinct dependence on the nanoparticle size. The experimental findings are directly compared to Monte Carlo simulations obtained from iradina and TRI3DYN, where the latter takes into account dynamic morphological and compositional changes of the target.

  18. Aleutian Islands

    NASA Image and Video Library

    2014-05-21

    Remote, rugged and extraordinarily beautiful, Alaska’s Aleutian Islands are best known for wildlife reserves, military bases, fishing, furs and fog. The sprawling volcanic archipelago was brought into the spotlight by the Russian-supported expedition of Alexey Chirikov and Vitus Bering in 1741, and soon became controlled by the Russian-American Fur Company. In 1867 the United States purchased Alaska, including the Aleutian Islands, from Russia. By 1900 the port in Unalaska was well established as a shipping port for Alaska gold. The archipelago sweeps about 1,200 miles (1,800 km) from the tip of the Alaskan Peninsula to Attu, the most westward island. Four major island groups hold 14 large islands, about 55 smaller islands, and a large number of islets, adding up to roughly 150 islands/islets in total. This chain separates the Bering Sea (north) from the Pacific Ocean (south) and the islands are connected by the Marine Highway Ferry – at least as far as Unalaska. For the most remote islands, such as birding paradise of Attu, the western-most Aleutian Island, travel becomes trickier and relies primarily on custom charter. The Moderate Resolution Imaging Spectroradiometer (MODIS) flew over the region and captured this spectacular true-color image of the eastern Aleutian Islands on May 15, 2014. In this image, the Alaskan Peninsula protrudes from the mainland and sweeps to the southwest. The first set of islands are called the Fox Island group. Unalaska Island is part of this group and can be identified, with some imagination, as an island formed in the shape of a flying cherub, with two arms (peninsulas) outstretched towards the northeast, seemingly reaching for the round “balls” of Akutan and Akun Islands. The smallest islands in the west of the image belong to the group known as the Islands of Four Mountains. The Aleutians continue far to the west of this image. Fog surrounds the Aleutians, stretching from just off the southwestern Alaska mainland to the

  19. High spatial resolution mapping of surface plasmon resonance modes in single and aggregated gold nanoparticles assembled on DNA strands

    NASA Astrophysics Data System (ADS)

    Diaz-Egea, Carlos; Sigle, Wilfried; van Aken, Peter A.; Molina, Sergio I.

    2013-07-01

    We present the mapping of the full plasmonic mode spectrum for single and aggregated gold nanoparticles linked through DNA strands to a silicon nitride substrate. A comprehensive analysis of the electron energy loss spectroscopy images maps was performed on nanoparticles standing alone, dimers, and clusters of nanoparticles. The experimental results were confirmed by numerical calculations using the Mie theory and Gans-Mie theory for solving Maxwell's equations. Both bright and dark surface plasmon modes have been unveiled.

  20. Tenarife Island, Canary Island Archipelago, Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Tenarife Island is one of the most volcanically active of the Canary Island archipelago, Atlantic Ocean, just off the NW coast of Africa, (28.5N, 16.5W). The old central caldera, nearly filled in by successive volcanic activity culminating in two stratocones. From those two peaks, a line of smaller cinder cones extend to the point of the island. Extensive gullies dissect the west side of the island and some forests still remain on the east side.

  1. Tenarife Island, Canary Island Archipelago, Atlantic Ocean

    NASA Image and Video Library

    1991-08-11

    Tenarife Island is one of the most volcanically active of the Canary Island archipelago, Atlantic Ocean, just off the NW coast of Africa, (28.5N, 16.5W). The old central caldera, nearly filled in by successive volcanic activity culminating in two stratocones. From those two peaks, a line of smaller cinder cones extend to the point of the island. Extensive gullies dissect the west side of the island and some forests still remain on the east side.

  2. In situ self-assembly of gold nanoparticles on hydrophilic and hydrophobic substrates for influenza virus-sensing platform

    PubMed Central

    Ahmed, Syed Rahin; Kim, Jeonghyo; Tran, Van Tan; Suzuki, Tetsuro; Neethirajan, Suresh; Lee, Jaebeom; Park, Enoch Y.

    2017-01-01

    Nanomaterials without chemical linkers or physical interactions that reside on a two-dimensional surface are attractive because of their electronic, optical and catalytic properties. An in situ method has been developed to fabricate gold nanoparticle (Au NP) films on different substrates, regardless of whether they are hydrophilic or hydrophobic surfaces, including glass, 96-well polystyrene plates, and polydimethylsiloxane (PDMS). A mixture of sodium formate (HCOONa) and chloroauric acid (HAuCl4) solution was used to prepare Au NP films at room temperature. An experimental study of the mechanism revealed that film formation is dependent on surface wettability and inter particle attraction. The as-fabricated Au NP films were further applied to the colorimetric detection of influenza virus. The response to the commercial target, New Caledonia/H1N1/1999 influenza virus, was linear in the range from 10 pg/ml to 10 μg/ml and limit of detection was 50.5 pg/ml. In the presence of clinically isolated influenza A virus (H3N2), the optical density of developed color was dependent on the virus concentration (10–50,000 PFU/ml). The limit of detection of this study was 24.3 PFU/ml, a limit 116 times lower than that of conventional ELISA (2824.3 PFU/ml). The sensitivity was also 500 times greater than that of commercial immunochromatography kits. PMID:28290527

  3. Parameter optimization for Ag-coated TiO2 nanotube arrays as recyclable SERS substrates

    NASA Astrophysics Data System (ADS)

    Sun, Yuyang; Yang, Lulu; Liao, Fan; Dang, Qian; Shao, Mingwang

    2018-06-01

    The Ag-coated titanium dioxide nanotube arrays (Ag-coated TNTs) are obtained via the deposition of Ag nanoparticles on the two-step anodized TNTs. The wall thickness of TNTs is modulated via finite difference time domain simulation to get the favorable electromagnetic field for surface enhanced Raman scattering (SERS). Ag-coated TNTs with optimal wall thickness of 20 nm were employed as the SERS substrates to detect 2-mercaptobenzoxazole, which show superior detection sensitivity and uniformity. In addition, due to the photocatalysis of TNTs, the SERS substrates could clean themselves and be repeatedly used by photo-degradation of target molecules under the ultra-violet irradiation. The Ag-coated TNTs are a kind of bifunctional SERS substrates which can produce high-quality SERS signals and reuse to reduce the cost.

  4. Effect of a Stepped Si(100) Surface on the Nucleation Process of Ge Islands

    NASA Astrophysics Data System (ADS)

    Yesin, M. Yu.; Nikiforov, A. I.; Timofeev, V. A.; Mashanov, V. I.; Tuktamyshev, A. R.; Loshkarev, I. D.; Pchelyakov, O. P.

    2018-03-01

    Nucleation of Ge islands on a stepped Si(100) surface is studied. It is shown by diffraction of fast electrons that at a temperature of 600°C, constant flux of Si, and deposition rate of 0.652 Å/s, a series of the 1×2 superstructure reflections completely disappears, if the Si (100) substrate deviated by an angle of 0.35° to the (111) face is preliminarily heated to 1000°C. The disappearance of the 1×2 superstructure reflexes is due to the transition from the surface with monoatomic steps to that with diatomic ones. Investigations of the Ge islands' growth were carried out on the Si(100) surface preliminarily annealed at temperatures of 800 and 1000°C. It is shown that the islands tend to nucleate at the step edges.

  5. On the Mechanism of In Nanoparticle Formation by Exposing ITO Thin Films to Hydrogen Plasmas.

    PubMed

    Fan, Zheng; Maurice, Jean-Luc; Chen, Wanghua; Guilet, Stéphane; Cambril, Edmond; Lafosse, Xavier; Couraud, Laurent; Merghem, Kamel; Yu, Linwei; Bouchoule, Sophie; Roca I Cabarrocas, Pere

    2017-10-31

    We present our systematic work on the in situ generation of In nanoparticles (NPs) from the reduction of ITO thin films by hydrogen (H 2 ) plasma exposure. In contrast to NP deposition from the vapor phase (i.e., evaporation), the ITO surface can be considered to be a solid reservoir of In atoms thanks to H 2 plasma reduction. On one hand, below the In melting temperature, solid In NP formation is governed by the island-growth mode, which is a self-limiting process because the H 2 plasma/ITO interaction will be gradually eliminated by the growing In NPs that cover the ITO surface. On the other hand, we show that above the melting temperature In droplets prefer to grow along the grain boundaries on the ITO surface and dramatic coalescence occurs when the growing NPs connect with each other. This growth-connection-coalescence behavior is even strengthened on In/ITO bilayers, where In particles larger than 10 μm can be formed, which are made of evaporated In atoms and in situ released ones. Thanks to this understanding, we manage to disperse dense evaporated In NPs under H 2 plasma exposure when inserting an ITO layer between them and substrate like c-Si wafer or glass by modifying the substrate surface chemistry. Further studies are needed for more precise control of this self-assembling method. We expect that our findings are not limited to ITO thin films but could be applicable to various metal NPs generation from the corresponding metal oxide thin films.

  6. Molecular dynamic simulations of the high-speed copper nanoparticles collision with the aluminum surface

    NASA Astrophysics Data System (ADS)

    Pogorelko, V. V.; Mayer, A. E.

    2016-11-01

    With the use of the molecular dynamic simulations, we investigated the effect of the high-speed (500 m/s, 1000 m/s) copper nanoparticle impact on the mechanical properties of an aluminum surface. Dislocation analysis shows that a large number of dislocations are formed in the impact area; the total length of dislocations is determined not only by the speed and size of the incoming copper nanoparticle (kinetic energy of the nanoparticle), but by a temperature of the system as well. The dislocations occupy the whole area of the aluminum single crystal at high kinetic energy of the nanoparticle. With the decrease of the nanoparticle kinetic energy, the dislocation structures are formed in the near-surface layer; formation of the dislocation loops takes place. Temperature rise of the system (aluminum substrate + nanoparticle) reduces the total dislocation length in the single crystal of aluminum; there is deeper penetration of the copper atoms in the aluminum at high temperatures. Average energy of the nanoparticles and room temperature of the system are optimal for production of high-quality layers of copper on the aluminum surface.

  7. Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher-Jones, Marcus; Dias, Carlos Sato Baraldi; Pryor, Alan

    Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here in this paper, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features inmore » the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe 3O 4 core encased by a 25-nm-thick fluorescent silica (SiO 2) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.« less

  8. Correlative cellular ptychography with functionalized nanoparticles at the Fe L-edge

    DOE PAGES

    Gallagher-Jones, Marcus; Dias, Carlos Sato Baraldi; Pryor, Alan; ...

    2017-07-06

    Precise localization of nanoparticles within a cell is crucial to the understanding of cell-particle interactions and has broad applications in nanomedicine. Here in this paper, we report a proof-of-principle experiment for imaging individual functionalized nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model system, we implemented a graphene-oxide layer as a substrate to significantly reduce background scattering. We identified cellular features of interest by fluorescence microscopy, followed by scanning transmission X-ray tomography to localize the particles in 3D, and ptychographic coherent diffractive imaging of the fine features inmore » the region at high resolution. By tuning the X-ray energy to the Fe L-edge, we demonstrated sensitive detection of nanoparticles composed of a 22 nm magnetic Fe 3O 4 core encased by a 25-nm-thick fluorescent silica (SiO 2) shell. These fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular context. Our correlative microscopy results confirmed a subset of particles to be fully internalized, and high-contrast ptychographic images showed two oxidation states of individual nanoparticles with a resolution of ~16.5 nm. The ability to precisely localize individual fluorescent nanoparticles within mammalian cells will expand our understanding of the structure/function relationships for functionalized nanoparticles.« less

  9. Controllable optical activity of non-spherical Ag and Co SERS substrate with different magnetic field

    NASA Astrophysics Data System (ADS)

    Fan, Chun-Zhen; Zhu, Shuang-Mei; Xin, Hao-Yi

    2017-02-01

    We experimentally fabricate a non-spherical Ag and Co surface-enhanced Raman scattering (SERS) substrate, which not only retains the metallic plasmon resonant effect, but also possesses the magnetic field controllable characteristics. Raman detections are carried out with the test crystal violet (CV) and rhodamine 6G (R6G) molecules with the initiation of different magnitudes of external magnetic field. Experimental results indicate that our prepared substrate shows a higher SERS activity and magnetic controllability, where non-spherical Ag nanoparticles are driven to aggregate effectively by the magnetized Co and plenty of hot-spots are built around the metallic Ag nanoparticles, thereby leading to the enhancement of local electromagnetic field. Moreover, when the external magnetic field is increased, our prepared substrate demonstrates excellent SERS enhancement. With the 2500 Gs and 3500 Gs (1 Gs = 10-4 T) magnetic fields, SERS signal can also be obtained with the detection limit lowering down to 10-9 M. These results indicate that our proposed magnetic field controlled substrate enables us to freely achieve the enhanced and controllable SERS effect, which can be widely used in the optical sensing, single molecule detection and bio-medical applications. Project supported by the Key Science and Technology Research Project of Henan Province, China (Grant No. 162102210164), the Natural Science Foundation of Henan Educational Committee, China (Grant No. 17A140002), the National Natural Science Foundations of China (Grant Nos. 11574276, 11404291, and 11604079), and the Program for Science & Technology Innovation Talents in Universities of Henan Province, China (Grant No. 17HASTIT0).

  10. MBE growth of GaAs and InAs nanowires using colloidal Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilkiv, I. V.; Reznik, R. R.; Kotlyar, K. P.; Bouravleuv, A. D.; Cirlin, G. E.

    2017-11-01

    Ag colloidal nanoparticles were used as a catalyst for molecular beam epitaxy of GaAs and InAs nanowires on the Si(111) substrates. The scanning electron microscopy measurements revealed that nanowires obtained are uniform and have small size distribution.

  11. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  12. Au-coated 3-D nanoporous titania layer prepared using polystyrene-b-poly(2-vinylpyridine) block copolymer nanoparticles.

    PubMed

    Shin, Won-Jeong; Basarir, Fevzihan; Yoon, Tae-Ho; Lee, Jae-Suk

    2009-04-09

    New nanoporous structures of Au-coated titania layers were prepared by using amphiphilic block copolymer nanoparticles as a template. A 3-D template composed of self-assembled quaternized polystyrene-b-poly(2-vinylpyridine) (Q-PS-b-P2VP) block copolymer nanoparticles below 100 nm was prepared. The core-shell-type nanoparticles were well ordered three-dimensionally using the vertical immersion method on the substrate. The polar solvents were added to the polymer solution to prevent particle merging at 40 degrees C when considering the interaction between polymer nanoparticles and solvents. Furthermore, Au-coated PS-b-P2VP nanoparticles were prepared using thiol-capped Au nanoparticles (3 nm). The 3-D arrays with Au-coated PS-b-P2VP nanoparticles as a template contributed to the preparation of the nanoporous Au-coated titania layer. Therefore, the nanoporous Au-coated titania layer was fabricated by removing PS-b-P2VP block copolymer nanoparticles by oxygen plasma etching.

  13. Canary Islands

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This easterly looking view shows the seven major volcanic islands of the Canary Island chain (28.0N, 16.5W) and offers a unique view of the islands that have become a frequent vacation spot for Europeans. The northwest coastline of Africa, (Morocco and Western Sahara), is visible in the background. Frequently, these islands create an impact on local weather (cloud formations) and ocean currents (island wakes) as seen in this photo.

  14. A separable surface-enhanced Raman scattering substrate modified with MIL-101 for detection of overlapping and invisible compounds after thin-layer chromatography development.

    PubMed

    Zhang, Bin Bin; Shi, Yi; Chen, Hui; Zhu, Qing Xia; Lu, Feng; Li, Ying Wei

    2018-01-02

    By coupling surface-enhanced Raman spectroscopy (SERS) with thin-layer chromatography (TLC), a powerful method for detecting complex samples was successfully developed. However, in the TLC-SERS method, metal nanoparticles serving as the SERS-active substrate are likely to disturb the detection of target compounds, particularly in overlapping compounds after TLC development. In addition, the SERS detection of compounds that are invisible under both visible light and UV 254/365 after TLC development is still a significant challenge. In this study, we demonstrated a facile strategy to fabricate a TLC plate with metal-organic framework-modified gold nanoparticles as a separable SERS substrate, on which all separated components, including overlapping and invisible compounds, could be detected by a point-by-point SERS scan along the developing direction. Rhodamine 6G (R6G) was used as a probe to evaluate the performance of the substrate. The results indicated that the substrate provided good sensitivity and reproducibility, and optimal SERS signals could be collected in 5 s. Furthermore, this new substrate exhibited a long shelf life. Thus, our method has great potential for the sensitive and rapid detection of overlapping and invisible compounds in complex samples after TLC development. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Facile synthesis of PbTe nanoparticles and thin films in alkaline aqueous solution at room temperature

    NASA Astrophysics Data System (ADS)

    Wang, Y. Y.; Cai, K. F.; Yao, X.

    2009-12-01

    A novel, simple, and cost-effective route to PbTe nanoparticles and films is reported in this paper. The PbTe nanoparticles and films are fabricated by a chemical bath method, at room temperature and ambient pressure, using conventional chemicals as starting materials. The average grain size of the nanoparticles collected at the bottom of the bath is ˜25 nm. The film deposited on glass substrate is dense, smooth, and uniform with silver gray metallic luster. The film exhibits p-type conduction and has a moderate Seebeck coefficient value (˜147 μV K -1) and low electrical conductivity (˜0.017 S cm -1). The formation mechanism of the PbTe nanoparticles and films is proposed.

  16. Impact of Substrate Types on Structure and Emission of ZnO Nanocrystalline Films

    NASA Astrophysics Data System (ADS)

    Ballardo Rodriguez, I. Ch.; El Filali, B.; Díaz Cano, A. I.; Torchynska, T. V.

    2018-02-01

    Zinc oxide (ZnO) films were simultaneously synthesized by an ultrasonic spray pyrolysis (USP) method on p-type Si (100), silicon carbide polytype [6H-SiC (0001)], porous 6H-SiC and amorphous glass substrates with the aim of studying the impact of substrate types on the structure and emission of ZnO nanocrystalline films. Porous silicon carbide (P-SiC) was prepared by the electrochemical anodization method at a constant potential of 20 V and etching time of 12 min. ZnO films grown on the SiC and P-SiC substrates are characterized by a wurtzite crystal structure with preferential growth along the (002) direction and with grain sizes of 90-180 and 70-160 nm, respectively. ZnO films grown on the Si substrate have just some small irregular hexagonal islands. The amorphous glass substrate did not promote the formation of any regular crystal forms. The obtained x-ray diffraction and photoluminescence (PL) results have shown that the better ZnO film crystallinity and high PL intensity of near-band edge emissions were achieved in the films grown on the porous SiC and SiC substrates. The preferential growth and crystalline nature of ZnO films on the SiC substrate have been discussed from the point of view of the lattice parameter compatibility between ZnO and SiC crystals.

  17. Metallic Films with Fullerene-Like WS2 (MoS2) Nanoparticles: Self-Lubricating Coatings with Potential Applications

    NASA Astrophysics Data System (ADS)

    Eidelman, O.; Friedman, H.; Tenne, R.

    Metallic films impregnated with fullerene-like-WS2 (MoS2) nanoparticles were fabricated on stainless steel and Ti-Ni substrates using galvanic and electroless deposition. The coatings were obtained from aqueous suspensions containing the metallic salts as well as the dispersed nanoparticles. Tribological tests showed that the films have low friction and wear. Such coatings could be useful for numerous civilian and defense-related applications.

  18. SERS substrates fabricated using ceramic filters for the detection of bacteria: Eliminating the citrate interference.

    PubMed

    Mosier-Boss, P A; Sorensen, K C; George, R D; Sims, P C; O'braztsova, A

    2017-06-05

    It was found that spectra obtained for bacteria on SERS substrates fabricated by filtering citrate-generated Ag nanoparticles (NPs) onto rigid, ceramic filters exhibited peaks due to citrate as well as the bacteria. In many cases the citrate spectrum overwhelmed that of the bacteria. Given the simplicity of the method to prepare these substrates, means of eliminating this citrate interference were explored. It was found that allowing a mixture of bacteria suspension and citrate-generated Ag NPs to incubate prior to filtering onto the ceramic filter eliminated this interference. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Amphiphilic Fluorinated Polymer Nanoparticle Film Formation and Dissolved Oxygen Sensing Application

    NASA Astrophysics Data System (ADS)

    Gao, Yu; Zhu, Huie; Yamamoto, Shunsuke; Miyashita, Tokuji; Mitsuishi, Masaya

    2016-04-01

    Fluorinated polymer nanoparticle films were prepared by dissolving amphiphilic fluorinated polymer, poly (N-1H, 1H-pentadecafluorooctylmethacrylamide) (pC7F15MAA) in two miscible solvents (AK-225 and acetic acid). A superhydrophobic and porous film was obtained by dropcasting the solution on substrates. With higher ratios of AK-225 to acetic acid, pC7F15MAA was densified around acetic acid droplets, leading to the formation of pC7F15MAA nanoparticles. The condition of the nanoparticle film preparation was investigated by varying the mixing ratio or total concentration. A highly sensitive dissolved oxygen sensor system was successfully prepared utilizing a smart surface of superhydrophobic and porous pC7F15MAA nanoparticle film. The sensitivity showed I0/I40 = 126 in the range of dissolved oxygen concentration of 0 ~ 40 mg L-1. The oxygen sensitivity was compared with that of previous reports.

  20. Island-Trapped Waves, Internal Waves, and Island Circulation

    DTIC Science & Technology

    2014-09-30

    from the government of Palau to allow us to deliver some water and food to the officers. Governor Patris of Hatohobei State and the Coral Reef ...Island-trapped waves , internal waves , and island circulation T. M. Shaun Johnston Scripps Institution of Oceanography University of California...large islands (Godfrey, 1989; Firing et al., 1999); • Westward propagating eddies and/or Rossby waves encounter large islands and produce boundary