Sample records for nanoparticle overcoming multidrug

  1. A Salmonella nanoparticle mimic overcomes multidrug resistance in tumours.

    PubMed

    Mercado-Lubo, Regino; Zhang, Yuanwei; Zhao, Liang; Rossi, Kyle; Wu, Xiang; Zou, Yekui; Castillo, Antonio; Leonard, Jack; Bortell, Rita; Greiner, Dale L; Shultz, Leonard D; Han, Gang; McCormick, Beth A

    2016-07-25

    Salmonella enterica serotype Typhimurium is a food-borne pathogen that also selectively grows in tumours and functionally decreases P-glycoprotein (P-gp), a multidrug resistance transporter. Here we report that the Salmonella type III secretion effector, SipA, is responsible for P-gp modulation through a pathway involving caspase-3. Mimicking the ability of Salmonella to reverse multidrug resistance, we constructed a gold nanoparticle system packaged with a SipA corona, and found this bacterial mimic not only accumulates in tumours but also reduces P-gp at a SipA dose significantly lower than free SipA. Moreover, the Salmonella nanoparticle mimic suppresses tumour growth with a concomitant reduction in P-gp when used with an existing chemotherapeutic drug (that is, doxorubicin). On the basis of our finding that the SipA Salmonella effector is fundamental for functionally decreasing P-gp, we engineered a nanoparticle mimic that both overcomes multidrug resistance in cancer cells and increases tumour sensitivity to conventional chemotherapeutics.

  2. CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming

    2015-03-01

    Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.

  3. Folate-mediated mitochondrial targeting with doxorubicin-polyrotaxane nanoparticles overcomes multidrug resistance

    PubMed Central

    Yan, Fengjiao; Sun, Mingna; Du, Lingran; Peng, Wei; Li, Qiuli; Feng, Yinghong; Zhou, Yi

    2015-01-01

    Resistance to treatment with anticancer drugs is a significant obstacle and a fundamental cause of therapeutic failure in cancer therapy. Functional doxorubicin (DOX) nanoparticles for targeted delivery of the classical cytotoxic anticancer drug DOX to tumor cells, using folate-terminated polyrotaxanes along with dequalinium, have been developed and proven to overcome this resistance due to specific molecular features, including a size of approximately 101 nm, a zeta potential of 3.25 mV and drug-loading content of 18%. Compared with free DOX, DOX hydrochloride, DOX nanoparticles, and targeted DOX nanoparticles, the functional DOX nanoparticles exhibited the strongest anticancer efficacy in vitro and in the drug-resistant MCF-7/ Adr (DOX) xenograft tumor model. More specifically, the nanoparticles significantly increased the intracellular uptake of DOX, selectively accumulating in mitochondria and the endoplasmic reticulum after treatment, with release of cytochrome C as a result. Furthermore, the caspase-9 and caspase-3 cascade was activated by the functional DOX nanoparticles through upregulation of the pro-apoptotic proteins Bax and Bid and suppression of the antiapoptotic protein Bcl-2, thereby enhancing apoptosis by acting on the mitochondrial signaling pathways. In conclusion, functional DOX nanoparticles may provide a strategy for increasing the solubility of DOX and overcoming multidrug-resistant cancers. PMID:25605018

  4. A Novel Docetaxel-Loaded Poly (ɛ-Caprolactone)/Pluronic F68 Nanoparticle Overcoming Multidrug Resistance for Breast Cancer Treatment

    NASA Astrophysics Data System (ADS)

    Mei, Lin; Zhang, Yangqing; Zheng, Yi; Tian, Ge; Song, Cunxian; Yang, Dongye; Chen, Hongli; Sun, Hongfan; Tian, Yan; Liu, Kexin; Li, Zhen; Huang, Laiqiang

    2009-12-01

    Multidrug resistance (MDR) in tumor cells is a significant obstacle to the success of chemotherapy in many cancers. The purpose of this research is to test the possibility of docetaxel-loaded poly (ɛ-caprolactone)/Pluronic F68 (PCL/Pluronic F68) nanoparticles to overcome MDR in docetaxel-resistance human breast cancer cell line. Docetaxel-loaded nanoparticles were prepared by modified solvent displacement method using commercial PCL and self-synthesized PCL/Pluronic F68, respectively. PCL/Pluronic F68 nanoparticles were found to be of spherical shape with a rough and porous surface. The nanoparticles had an average size of around 200 nm with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a biphasic release pattern. There was an increased level of uptake of PCL/Pluronic F68 nanoparticles in docetaxel-resistance human breast cancer cell line, MCF-7 TAX30, when compared with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxotere® in the MCF-7 TAX30 cell culture, but the differences were not significant ( p > 0.05). However, the PCL/Pluronic F68 nanoparticles achieved significantly higher level of cytotoxicity than both of PCL nanoparticles and Taxotere® ( p < 0.05), indicating docetaxel-loaded PCL/Pluronic F68 nanoparticles could overcome multidrug resistance in human breast cancer cells and therefore have considerable potential for treatment of breast cancer.

  5. A novel paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment.

    PubMed

    Zhang, Yangqing; Tang, Lina; Sun, Leilei; Bao, Junbo; Song, Cunxian; Huang, Laiqiang; Liu, Kexin; Tian, Yan; Tian, Ge; Li, Zhen; Sun, Hongfan; Mei, Lin

    2010-06-01

    Multidrug resistance (MDR) of tumor cells is a major obstacle to the success of cancer chemotherapy. Poloxamers have been used in cancer therapy to overcome MDR. The objective of this research is to test the feasibility of paclitaxel-loaded poly(epsilon-caprolactone)/Poloxamer 188 (PCL/Poloxamer 188) nanoparticles to overcome MDR in a paclitaxel-resistant human breast cancer cell line. Paclitaxel-loaded nanoparticles were prepared by a water-acetone solvent displacement method using commercial PCL and self-synthesized PCL/Poloxamer 188 compound, respectively. PCL/Poloxamer 188 nanoparticles were found to be of spherical shape and tended to have a rough and porous surface. The nanoparticles had an average size of around 220nm, with a narrow size distribution. The in vitro drug release profile of both nanoparticle formulations showed a clear biphasic release pattern. There was an increased level of uptake of PCL/Poloxamer 188 nanoparticles (PPNP) in the paclitaxel-resistant human breast cancer cell line MCF-7/TAX, in comparison with PCL nanoparticles. The cytotoxicity of PCL nanoparticles was higher than commercial Taxol in the MCF-7/TAX cell culture, but the differences were not significant. However, the PCL/Poloxamer 188 nanoparticles achieved a significantly higher level of cytotoxicity than both of PCL nanoparticle formulation and Taxol(R), indicating that paclitaxel-loaded PCL/Poloxamer 188 nanoparticles could overcome MDR in human breast cancer cells and therefore could have considerable therapeutic potential for breast cancer. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance

    PubMed Central

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Background Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe3O4 magnetic nanoparticles (Fe3O4-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Methods Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe3O4-MNP, and Fe3O4-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe3O4-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Results Fe3O4-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe3O4-MNP and Fe3O4-MNP-DNR-5-BrTet groups, especially in the Fe3O4-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe3O4-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Conclusion Fe3O4-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia. PMID:22619560

  7. Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance.

    PubMed

    Ren, Yanyan; Zhang, Haijun; Chen, Baoan; Cheng, Jian; Cai, Xiaohui; Liu, Ran; Xia, Guohua; Wu, Weiwei; Wang, Shuai; Ding, Jiahua; Gao, Chong; Wang, Jun; Bao, Wen; Wang, Lei; Tian, Liang; Song, Huihui; Wang, Xuemei

    2012-01-01

    Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe(3)O(4) magnetic nanoparticles (Fe(3)O(4)-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia. Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe(3)O(4)-MNP, and Fe(3)O(4)-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe(3)O(4)-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance. Fe(3)O(4)-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe(3)O(4)-MNP and Fe(3)O(4)-MNP-DNR-5-BrTet groups, especially in the Fe(3)O(4)-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression. Fe(3)O(4)-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.

  8. Nanoparticle therapeutics: Technologies and methods for overcoming cancer.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2015-11-01

    It is anticipated that by 2030 approximately 13 million people will die of cancer. Common cancer therapy often fails due to the development of multidrug resistance (MDR), resulting in high morbidity and poor patient prognosis. Nanotechnology seeks to use drug delivery vehicles of 1-100 nm in diameter, made up of several different materials to deliver anti-cancer drugs selectively to cancer cells and potentially overcome MDR. Several technologies exist for manufacturing and functionalizing nanoparticles. When functionalized appropriately, nanoparticles have been shown to overcome several mechanisms of MDR in vivo and in vitro, reduce drug side effects and represent a promising new area of anti-cancer therapy. This review discusses the fundamental concepts of enhanced permeability and retention (EPR) effect and explores the mechanisms proposed to enhance preferential "retention" in the tumour. The overall objective of this review was to enhance our understanding in the design and development of therapeutic nanoparticles for treatment of cancer. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  9. Co-delivery nanoparticles with characteristics of intracellular precision release drugs for overcoming multidrug resistance

    PubMed Central

    Zhang, DanDan; Kong, Yan Yan; Sun, Jia Hui; Huo, Shao Jie; Zhou, Min; Gui, Yi Ling; Mu, Xu; Chen, Huan; Yu, Shu Qin; Xu, Qian

    2017-01-01

    Combination chemotherapy in clinical practice has been generally accepted as a feasible strategy for overcoming multidrug resistance (MDR). Here, we designed and successfully prepared a co-delivery system named S-D1@L-D2 NPs, where denoted some smaller nanoparticles (NPs) carrying a drug doxorubicin (DOX) were loaded into a larger NP containing another drug (vincristine [VCR]) via water-in-oil-in-water double-emulsion solvent diffusion-evaporation method. Chitosan-alginate nanoparticles carrying DOX (CS-ALG-DOX NPs) with a smaller diameter of about 20 nm formed S-D1 NPs; vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate-modified poly(lactic-co-glycolic acid) nanoparticles carrying VCR (TPGS-PLGA-VCR NPs) with a larger diameter of about 200 nm constituted L-D2 NPs. Some CS-ALG-DOX NPs loaded into TPGS-PLGA-VCR NPs formed CS-ALG-DOX@TPGS-PLGA-VCR NPs. Under the acidic environment of cytosol and endosome or lysosome in MDR cell, CS-ALG-DOX@TPGS-PLGA-VCR NPs released VCR and CS-ALG-DOX NPs. VCR could arrest cell cycles at metaphase by inhibiting microtubule polymerization in the cytoplasm. After CS-ALG-DOX NPs escaped from endosome, they entered the nucleus through the nuclear pore and released DOX in the intra-nuclear alkaline environment, which interacted with DNA to stop the replication of MDR cells. These results indicated that S-D1@L-D2 NPs was a co-delivery system of intracellular precision release loaded drugs with pH-sensitive characteristics. S-D1@L-D2 NPs could obviously enhance the in vitro cytotoxicity and the in vivo anticancer efficiency of co-delivery drugs, while reducing their adverse effects. Overall, S-D1@L-D2 NPs can be considered an innovative platform for the co-delivery drugs of clinical combination chemotherapy for the treatment of MDR tumor. PMID:28356731

  10. Doxorubicin loaded iron oxide nanoparticles overcome multidrug resistance in cancer in vitro

    PubMed Central

    Kievit, Forrest M.; Wang, Freddy Y.; Fang, Chen; Mok, Hyejung; Wang, Kui; Silber, John R.; Ellenbogen, Richard G.; Zhang, Miqin

    2011-01-01

    Multidrug resistance (MDR) is characterized by the overexpression of ATP-binding cassette (ABC) transporters that actively pump a broad class of hydrophobic chemotherapeutic drugs out of cancer cells. MDR is a major mechanism of treatment resistance in a variety of human tumors, and clinically applicable strategies to circumvent MDR remain to be characterized. Here we describe the fabrication and characterization of a drug-loaded iron oxide nanoparticle designed to circumvent MDR. Doxorubicin (DOX), an anthracycline antibiotic commonly used in cancer chemotherapy and substrate for ABC-mediated drug efflux, was covalently bound to polyethylenimine via a pH sensitive hydrazone linkage and conjugated to an iron oxide nanoparticle coated with amine terminated polyethylene glycol. Drug loading, physiochemical properties and pH lability of the DOX-hydrazone linkage were evaluated in vitro. Nanoparticle uptake, retention, and dose-dependent effects on viability were compared in wild-type and DOX-resistant ABC transporter over-expressing rat glioma C6 cells. We found that DOX release from nanoparticles was greatest at acidic pH, indicative of cleavage of the hydrazone linkage. DOX-conjugated nanoparticles were readily taken up by wild-type and drug-resistant cells. In contrast to free drug, DOX-conjugated nanoparticles persisted in drug-resistant cells, indicating that they were not subject to drug efflux. Greater retention of DOX-conjugated nanoparticles was accompanied by reduction of viability relative to cells treated with free drug. Our results suggest that DOX-conjugated nanoparticles could improve the efficacy of chemotherapy by circumventing MDR. PMID:21277920

  11. Rational design of cancer-targeted selenium nanoparticles to antagonize multidrug resistance in cancer cells.

    PubMed

    Liu, Ting; Zeng, Lilan; Jiang, Wenting; Fu, Yuanting; Zheng, Wenjie; Chen, Tianfeng

    2015-05-01

    Multidrug resistance is one of the greatest challenges in cancer therapy. Herein we described the synthesis of folate (FA)-conjugated selenium nanoparticles (SeNPs) as cancer-targeted nano-drug delivery system for ruthenium polypyridyl (RuPOP) exhibits strong fluorescence, which allows the direct imaging of the cellular trafficking of the nanosystem. This nanosystem could effectively antagonize against multidrug resistance in liver cancer. FA surface conjugation significantly enhanced the cellular uptake of SeNPs by FA receptor-mediated endocytosis through nystain-dependent lipid raft-mediated and clathrin-mediated pathways. The nanomaterials overcame the multidrug resistance in R-HepG2 cells through inhibition of ABC family proteins expression. Internalized nanoparticles triggered ROS overproduction and induced apoptosis by activating p53 and MAPKs pathways. Moreover, FA-SeNPs exhibited low in vivo acute toxicity, which verified the safety and application potential of FA-SeNPs as nanodrugs. This study provides an effective strategy for the design of cancer-targeted nanodrugs against multidrug resistant cancers. In the combat against hepatocellular carcinoma, multidrug resistance remains one of the obstacles to be overcome. The authors designed and synthesized folate (FA)-conjugated selenium nanoparticles (SeNPs) with enhanced cancer-targeting capability. This system carried ruthenium polypyridyl (RuPOP), an efficient metal-based anti-cancer drug with strong fluorescence. It was shown that this combination was effective in antagonizing against multidrug resistance in vitro. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Mesoporous silica nanoparticles loading doxorubicin reverse multidrug resistance: performance and mechanism

    NASA Astrophysics Data System (ADS)

    Shen, Jianan; He, Qianjun; Gao, Yu; Shi, Jianlin; Li, Yaping

    2011-10-01

    Multidrug resistance (MDR) is one of the major obstacles for successful chemotherapy in cancer. One of the effective approaches to overcome MDR is to use nanoparticle-mediated drug delivery to increase drug accumulation in drug resistant cancer cells. In this work, we first report that the performance and mechanism of an inorganic engineered delivery system based on mesoporous silica nanoparticles (MSNs) loading doxorubicin (DMNs) to overcome the MDR of MCF-7/ADR (a DOX-resistant and P-glycoprotein (P-gp) over-expression cancer cell line). The experimental results showed that DMNs could enhance the cellular uptake of doxorubicin (DOX) and increase the cell proliferation suppression effect of DOX against MCF-7/ADR cells. The IC50 of DMNs against MCF-7/ADR cells was 8-fold lower than that of free DOX. However, an improved effect of DOX in DMNs against MCF-7 cells (a DOX-sensitive cancer cell line) was not found. The increased cellular uptake and nuclear accumulation of DOX delivered by DMNs in MCF-7/ADR cells was confirmed by confocal laser scanning microscopy, and could result from the down-regulation of P-gp and bypassing the efflux action by MSNs themselves. The cellular uptake mechanism of DMNs indicated that the macropinocytosis was one of the pathways for the uptake of DMNs by MCF-7/ADR cells. The in vivo biodistribution showed that DMNs induced a higher accumulation of DOX in drug resistant tumors than free DOX. These results suggested that MSNs could be an effective delivery system to overcome multidrug resistance.

  13. Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan-graft poly(caprolactone)-based nanoparticles.

    PubMed

    Shi, Wei-Bin; Le, Van-Minh; Gu, Chun-Hua; Zheng, Yuan-Hong; Lang, Mei-Dong; Lu, Yan-Hua; Liu, Jian-Wen

    2014-04-01

    The principal limitations of chemotherapy are dose-limiting systemic toxicity and the development of multidrug-resistant phenotypes. The aim of this study was to investigate the efficiency of a new sustained drug delivery system based on chitosan and ε-caprolactone to overcome multidrug resistance in monolayer and drug resistance associated with the three-dimensional (3D) tumor microenvironment in our established 3D models. The 5-fluorouracil (5-FU)-loaded nanoparticles (NPs) were characterized by transmission electron microscope and dynamic light scattering, and its released property was determined at different pH values. 5-FU/NPs exhibited well-sustained release properties and markedly enhanced the cytotoxicity of 5-FU against HCT116/L-OHP or HCT8/VCR MDR cells in two-dimensional (2D) and its parental cells in 3D collagen gel culture with twofold to threefold decrease in the IC50 values, as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, Hoechst/propidium iodide staining and flow cytometry analysis. Furthermore, the possible mechanism was explored by high-performance liquid chromatography and rhodamine 123 accumulation experiment. Overall, the results demonstrated that 5-FU/NPs increase intracellular concentration of 5-FU and enhance its anticancer efficiency by inducing apoptosis. It was suggested that this novel NPs are a promising carrier to decrease toxic of 5-FU and has the potential to reverse the forms of both intrinsic and acquired drug resistance in 2D and 3D cultures. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  14. pH-Dependent doxorubicin release from terpolymer of starch, polymethacrylic acid and polysorbate 80 nanoparticles for overcoming multi-drug resistance in human breast cancer cells.

    PubMed

    Shalviri, Alireza; Raval, Gaurav; Prasad, Preethy; Chan, Carol; Liu, Qiang; Heerklotz, Heiko; Rauth, Andrew Michael; Wu, Xiao Yu

    2012-11-01

    This work investigated the capability of a new nanoparticulate system, based on terpolymer of starch, polymethacrylic acid and polysorbate 80, to load and release doxorubicin (Dox) as a function of pH and to evaluate the anticancer activity of Dox-loaded nanoparticles (Dox-NPs) to overcome multidrug resistance (MDR) in human breast cancer cells in vitro. The Dox-NPs were characterized by Fourier transform infrared spectroscopy (FTIR), isothermal titration calorimetry (ITC), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The cellular uptake and cytotoxicity of the Dox-loaded nanoparticles were investigated using fluorescence microscopy, flow cytometry, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay. The nanoparticles were able to load up to 49.7±0.3% of Dox with a high loading efficiency of 99.9±0.1%, while maintaining good colloidal stability. The nanoparticles released Dox at a higher rate at acidic pH attributable to weaker Dox-polymer molecular interactions evidenced by ITC. The Dox-NPs were taken up by the cancer cells in vitro and significantly enhanced the cytotoxicity of Dox against human MDR1 cells with up to a 20-fold decrease in the IC50 values. The results suggest that the new terpolymeric nanoparticles are a promising vehicle for the controlled delivery of Dox for treatment of drug resistant breast cancer. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Engineered Cationic Antimicrobial Peptides To Overcome Multidrug Resistance by ESKAPE Pathogens

    PubMed Central

    Deslouches, Berthony; Steckbeck, Jonathan D.; Craigo, Jodi K.; Doi, Yohei; Burns, Jane L.

    2014-01-01

    Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings. PMID:25421473

  16. Engineered cationic antimicrobial peptides to overcome multidrug resistance by ESKAPE pathogens.

    PubMed

    Deslouches, Berthony; Steckbeck, Jonathan D; Craigo, Jodi K; Doi, Yohei; Burns, Jane L; Montelaro, Ronald C

    2015-02-01

    Multidrug resistance constitutes a threat to the medical achievements of the last 50 years. In this study, we demonstrated the abilities of two de novo engineered cationic antibiotic peptides (eCAPs), WLBU2 and WR12, to overcome resistance from 142 clinical isolates representing the most common multidrug-resistant (MDR) pathogens and to display a lower propensity to select for resistant bacteria in vitro compared to that with colistin and LL37. The results warrant an exploration of eCAPs for use in clinical settings. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance

    PubMed Central

    Conde, João; Oliva, Nuria; Artzi, Natalie

    2015-01-01

    Multidrug resistance (MDR) in cancer cells is a substantial limitation to the success of chemotherapy. Here, we describe facile means to overcome resistance by silencing the multidrug resistance protein 1 (MRP1), before chemotherapeutic drug delivery in vivo with a single local application. Our platform contains hydrogel embedded with dark-gold nanoparticles modified with 5-fluorouracil (5-FU)-intercalated nanobeacons that serve as an ON/OFF molecular nanoswitch triggered by the increased MRP1 expression within the tumor tissue microenvironment. This nanoswitch can sense and overcome MDR prior to local drug release. The nanobeacons comprise a 5-FU intercalated DNA hairpin, which is labeled with a near-infrared (NIR) dye and a dark-quencher. The nanobeacons are designed to open and release the intercalated drug only upon hybridization of the DNA hairpin to a complementary target, an event that restores fluorescence emission due to nanobeacons conformational reorganization. Despite the cross-resistance to 5-FU, more than 90% tumor reduction is achieved in vivo in a triple-negative breast cancer model following 80% MRP1 silencing compared with the continuous tumor growth following only drug or nanobeacon administration. Our approach can be applied to reverse cross-resistance to other chemotherapeutic drugs and restore treatment efficacy. As a universal nanotheranostic probe, this platform can pave the way to early cancer detection and treatment. PMID:25733851

  18. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance

    PubMed Central

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance. PMID:27375779

  19. Green Tea Catechin-Based Complex Micelles Combined with Doxorubicin to Overcome Cardiotoxicity and Multidrug Resistance.

    PubMed

    Cheng, Tangjian; Liu, Jinjian; Ren, Jie; Huang, Fan; Ou, Hanlin; Ding, Yuxun; Zhang, Yumin; Ma, Rujiang; An, Yingli; Liu, Jianfeng; Shi, Linqi

    2016-01-01

    Chemotherapy for cancer treatment has been demonstrated to cause some side effects on healthy tissues and multidrug resistance of the tumor cells, which greatly limits therapeutic efficacy. To address these limitations and achieve better therapeutic efficacy, combination therapy based on nanoparticle platforms provides a promising approach through delivering different agents simultaneously to the same destination with synergistic effect. In this study, a novel green tea catechin-based polyion complex (PIC) micelle loaded with doxorubicin (DOX) and (-)-Epigallocatechin-3-O-gallate (EGCG) was constructed through electrostatic interaction and phenylboronic acid-catechol interaction between poly(ethylene glycol)-block-poly(lysine-co-lysine-phenylboronic acid) (PEG-PLys/PBA) and EGCG. DOX was co-loaded in the PIC micelles through π-π stacking interaction with EGCG. The phenylboronic acid-catechol interaction endowed the PIC micelles with high stability under physiological condition. Moreover, acid cleavability of phenylboronic acid-catechol interaction in the micelle core has significant benefits for delivering EGCG and DOX to same destination with synergistic effects. In addition, benefiting from the oxygen free radicals scavenging activity of EGCG, combination therapy with EGCG and DOX in the micelle core could protect the cardiomyocytes from DOX-mediated cardiotoxicity according to the histopathologic analysis of hearts. Attributed to modulation of EGCG on P-glycoprotein (P-gp) activity, this kind of PIC micelles could effectively reverse multidrug resistance of cancer cells. These results suggested that EGCG based PIC micelles could effectively overcome DOX induced cardiotoxicity and multidrug resistance.

  20. A multifunctional lipid nanoparticle for co-delivery of paclitaxel and curcumin for targeted delivery and enhanced cytotoxicity in multidrug resistant breast cancer cells

    PubMed Central

    Baek, Jong-Suep; Cho, Cheong-Weon

    2017-01-01

    The objective of the work was to develop a multifunctional nanomedicine based on a folate-conjugated lipid nanoparticles loaded with paclitaxel and curcumin. The novel system combines therapeutic advantageous of efficient targeted delivery via folate and timed-release of curcumin and paclitaxel via 2-hydroxypropyl-ß-cyclodextrin, thereby overcoming multidrug resistance in breast cancer cells (MCF-7/ADR). The faster release of curcumin from the folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables sufficient p-glycoprotein inhibition, which allows increased cellular uptake and cytotoxicity of paclitaxel. In western blot assay, curcumin can efficiently inhibit the expression of p-glycoprotein, conformed the enhancement of cytotoxicity by paclitaxel. Furthermore, folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles exhibited increased uptake of paclitaxel and curcumin into MCF-7/ADR cells through the folate receptor-mediated internalization. Taken together, these results indicate that folate-conjugated curcumin and paclitaxel-loaded lipid nanoparticles enables the enhanced, folate-targeted delivery of multiple anticancer drugs by inhibiting the multi-drug resistance efficiently, which may also serve as a useful nano-system for co-delivery of other anticancer drugs. PMID:28423731

  1. Dual Agent Loaded PLGA Nanoparticles Enhanced Antitumor Activity in a Multidrug-Resistant Breast Tumor Eenograft Model

    PubMed Central

    Chen, Yan; Zheng, Xue-Lian; Fang, Dai-Long; Yang, Yang; Zhang, Jin-Kun; Li, Hui-Li; Xu, Bei; Lei, Yi; Ren, Ke; Song, Xiang-Rong

    2014-01-01

    Multidrug-resistant breast cancers have limited and ineffective clinical treatment options. This study aimed to develop PLGA nanoparticles containing a synergistic combination of vincristine and verapamil to achieve less toxicity and enhanced efficacy on multidrug-resistant breast cancers. The 1:250 molar ratio of VCR/VRP showed strong synergism with the reversal index of approximately 130 in the multidrug-resistant MCF-7/ADR cells compared to drug-sensitive MCF-7 cells. The lyophilized nanoparticles could get dispersed quickly with the similar size distribution, zeta potential and encapsulation efficiency to the pre-lyophilized nanoparticles suspension, and maintain the synergistic in vitro release ratio of drugs. The co-encapsulated nanoparticle formulation had lower toxicity than free vincristine/verapamil combinations according to the acute-toxicity test. Furthermore, the most effective tumor growth inhibition in the MCF-7/ADR human breast tumor xenograft was observed in the co-delivery nanoparticle formulation group in comparison with saline control, free vincristine, free vincristine/verapamil combinations and single-drug nanoparticle combinations. All the data demonstrated that PLGANPs simultaneously loaded with chemotherapeutic drug and chemosensitizer might be one of the most potential formulations in the treatment of multidrug-resistant breast cancer in clinic. PMID:24552875

  2. Immunoliposomal delivery of doxorubicin can overcome multidrug resistance mechanisms in EGFR-overexpressing tumor cells.

    PubMed

    Mamot, Christoph; Ritschard, Reto; Wicki, Andreas; Küng, Willy; Schuller, Jan; Herrmann, Richard; Rochlitz, Christoph

    2012-06-01

    Immunoliposomes (ILs) can be constructed to target the epidermal growth factor receptor (EGFR) to provide efficient intracellular drug delivery in tumor cells. We hypothesized that this approach might be able to overcome drug resistance mechanisms, which remain an important obstacle to better outcomes in cancer therapy. ILs were evaluated in vitro and in vivo against EGFR-overexpressing pairs of human cancer cells (HT-29 and MDA-MB-231) that either lack or feature the multidrug resistance (mdr) phenotype. In multidrug-resistant cell lines, ILs loaded with doxorubicin (DOX) produced 19-216-fold greater cytotoxicity than free DOX, whereas in nonresistant cells, immunoliposomal cytotoxicity of DOX was comparable with that of the free drug. In intracellular distribution studies, free DOX was efficiently pumped out of the multidrug-resistant tumor cells, whereas immunoliposomal DOX leads to 3.5-8 times higher accumulation of DOX in the cytoplasm and 3.5-4.9 times in the nuclei compared with the free drug. Finally, in vivo studies in the MDA-MB-231 Vb100 xenograft model confirmed the ability of anti-EGFR ILs-DOX to efficiently target multidrug-resistant cells and showed impressive antitumor effects, clearly superior to all other treatments. In conclusion, ILs provide efficient and targeted drug delivery to EGFR-overexpressing tumor cells and are capable of completely reversing the multidrug-resistant phenotype of human cancer cells.

  3. A simple reduction-sensitive micelles co-delivery of paclitaxel and dasatinib to overcome tumor multidrug resistance

    PubMed Central

    Lu, Xiao; He, Jing; Jin, Shidai

    2017-01-01

    Multidrug resistance (MDR) is one of the major obstacles in successful chemotherapy. The combination of chemotherapy drugs and multidrug-resistant reversing agents for treating MDR tumor is a good strategy to overcome MDR. In this work, we prepared the simple redox-responsive micelles based on mPEG-SS-C18 as a co-delivery system to load the paclitaxel (PTX) and dasatinib (DAS) for treatment of MCF-7/ADR cells. The co-loaded micelles had a good dispersity and a spherical shape with a uniform size distribution, and they could quickly disassemble and rapidly release drugs under the reduction environment. Compared with MCF-7 cells, the DAS and PTX co-loaded redox-sensitive micelle (SS-PDNPs) showed stronger cytotoxicity and a more improving intracellular drug concentration than other drug formulations in MCF-7/ADR cells. In summary, the results suggested that the simple co-delivery micelles of PTX and DAS possessed significant potential to overcome drug resistance in cancer therapy. PMID:29138561

  4. Synthesis of Nanodiamond-Daunorubicin Conjugates to Overcome Multidrug Chemoresistance in Leukemia

    PubMed Central

    Man, Han B.; Kim, Hansung; Kim, Ho-Joong; Robinson, Erik; Liu, Wing Kam; Chow, Edward Kai-Hua; Ho, Dean

    2013-01-01

    Nanodiamonds (NDs) are promising candidates in nanomedicine, demonstrating significant potential as gene/drug delivery platforms for cancer therapy. We have synthesized ND vectors capable of chemotherapeutic loading and delivery with applications towards chemoresistant leukemia. The loading of Daunorubicin (DNR) onto NDs was optimized by adjusting reaction parameters such as acidity and concentration. The resulting conjugate, a novel therapeutic payload for NDs, was characterized extensively for size, surface charge, and loading efficiency. A K562 human myelogenous leukemia cell line, with multidrug resistance conferred by incremental DNR exposure, was used to demonstrate the efficacy enhancement resulting from ND-based delivery. While resistant K562 cells were able to overcome treatment from DNR alone, as compared with non-resistant K562 cells, NDs were able to improve DNR delivery into resistant K562 cells. By overcoming efflux mechanisms present in this resistant leukemia line, ND-enabled therapeutics have demonstrated the potential to improve cancer treatment efficacy, especially towards resistant strains. PMID:23916889

  5. Laser thermal ablation of multidrug-resistant bacteria using functionalized gold nanoparticles

    PubMed Central

    Mocan, Lucian; Tabaran, Flaviu A; Mocan, Teodora; Pop, Teodora; Mosteanu, Ofelia; Agoston-Coldea, Lucia; Matea, Cristian T; Gonciar, Diana; Zdrehus, Claudiu; Iancu, Cornel

    2017-01-01

    The issue of multidrug resistance (MDR) has become an increasing threat to public health. One alternative strategy against MDR bacteria would be to construct therapeutic vectors capable of physically damaging these microorganisms. Gold nanoparticles hold great promise for the development of such therapeutic agents, since the nanoparticles exhibit impressive properties, of which the most important is the ability to convert light into heat. This property has scientific significance since is exploited to develop nano-photothermal vectors to destroy bacteria at a molecular level. The present paper summarizes the latest advancements in the field of nanotargeted laser hyperthermia of MDR bacteria mediated by gold nanoparticles. PMID:28356741

  6. Strategies to overcome or circumvent P-glycoprotein mediated multidrug resistance.

    PubMed

    Yuan, Hongyu; Li, Xun; Wu, Jifeng; Li, Jinpei; Qu, Xianjun; Xu, Wenfang; Tang, Wei

    2008-01-01

    Cancer patients who receive chemotherapy often experience intrinsic or acquired resistance to a broad spectrum of chemotherapeutic agents. The phenomenon, termed multidrug resistance (MDR), is often associated with the over-expression of P-glycoprotein, a transmembrane protein pump, which can enhance efflux of a various chemicals structurally unrelated at the expense of ATP depletion, resulting in decrease of the intracellular cytotoxic drug accumulation. The MDR has been a big threaten to the human health and the war fight for it continues. Although several other mechanisms for MDR are elucidated in recent years, considerable efforts attempting to inverse MDR are involved in exploring P-glycoprotein modulators and suppressing P-glycoprotein expression. In this review, we will report on the recent advances in various strategies for overcoming or circumventing MDR mediated by P-glycoprotein.

  7. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance.

    PubMed

    Yhee, Ji Young; Song, Seungyong; Lee, So Jin; Park, Sung-Gurl; Kim, Ki-Suk; Kim, Myung Goo; Son, Sejin; Koo, Heebeom; Kwon, Ick Chan; Jeong, Ji Hoon; Jeong, Seo Young; Kim, Sun Hwa; Kim, Kwangmeyung

    2015-01-28

    P-glycoprotein (Pgp) mediated multi-drug resistance (MDR) is a major cause of failure in chemotherapy. In this study, small interfering RNA (siRNA) for Pgp down-regulation was delivered to tumors to overcome MDR in cancer. To achieve an efficient siRNA delivery in vivo, self-polymerized 5'-end thiol-modified siRNA (poly-siRNA) was incorporated in tumor targeting glycol chitosan nanoparticles. Pgp-targeted poly-siRNA (psi-Pgp) and thiolated glycol chitosan polymers (tGC) formed stable nanoparticles (psi-Pgp-tGC NPs), and the resulting nanoparticles protected siRNA molecules from enzymatic degradation. The psi-Pgp-tGC NPs could release functional siRNA molecules after cellular delivery, and they were able to facilitate siRNA delivery to Adriamycin-resistant breast cancer cells (MCF-7/ADR). After intravenous administration, the psi-Pgp-tGC NPs accumulated in MCF-7/ADR tumors and down-regulated P-gp expression to sensitize cancer cells. Consequently, chemo-siRNA combination therapy significantly inhibited tumor growth without systemic toxicity. These psi-Pgp-tGC NPs showed great potential as a supplementary therapeutic agent for drug-resistant cancer. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria.

    PubMed

    Cavassin, Emerson Danguy; de Figueiredo, Luiz Francisco Poli; Otoch, José Pinhata; Seckler, Marcelo Martins; de Oliveira, Roberto Angelo; Franco, Fabiane Fantinelli; Marangoni, Valeria Spolon; Zucolotto, Valtencir; Levin, Anna Sara Shafferman; Costa, Silvia Figueiredo

    2015-10-05

    Multidrug resistant microorganisms are a growing challenge and new substances that can be useful to treat infections due to these microorganisms are needed. Silver nanoparticle may be a future option for treatment of these infections, however, the methods described in vitro to evaluate the inhibitory effect are controversial. This study evaluated the in vitro activity of silver nanoparticles against 36 susceptible and 54 multidrug resistant Gram-positive and Gram-negative bacteria from clinical sources. The multidrug resistant bacteria were oxacilin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus spp., carbapenem- and polymyxin B-resistant A. baumannii, carbapenem-resistant P. aeruginosa and carbapenem-resistant Enterobacteriaceae. We analyzed silver nanoparticles stabilized with citrate, chitosan and polyvinyl alcohol and commercial silver nanoparticle. Silver sulfadiazine and silver nitrate were used as control. Different methods were used: agar diffusion, minimum inhibitory concentration, minimum bactericidal concentration and time-kill. The activity of AgNPs using diffusion in solid media and the MIC methods showed similar effect against MDR and antimicrobial-susceptible isolates, with a higher effect against Gram-negative isolates. The better results were achieved with citrate and chitosan silver nanoparticle, both with MIC90 of 6.75 μg mL(-1), which can be due the lower stability of these particles and, consequently, release of Ag(+) ions as revealed by X-ray diffraction (XRD). The bactericidal effect was higher against antimicrobial-susceptible bacteria. It seems that agar diffusion method can be used as screening test, minimum inhibitory concentration/minimum bactericidal concentration and time kill showed to be useful methods. The activity of commercial silver nanoparticle and silver controls did not exceed the activity of the citrate and chitosan silver nanoparticles. The in vitro inhibitory effect was stronger against Gram

  9. Overcoming the Challenges of siRNA Delivery: Nanoparticle Strategies.

    PubMed

    Shajari, Neda; Mansoori, Behzad; Davudian, Sadaf; Mohammadi, Ali; Baradaran, Behzad

    2017-01-01

    Despite therapeutics based on siRNA have an immense potential for the treatment of incurable diseases such as cancers. However, the in vivo utilization of siRNA and also the delivery of this agent to the target site is one of the most controversial challenges. The helpful assistance by nanoparticles can improve stable delivery and also enhance efficacy. More nanoparticle-based siRNA therapeutics is expected to become available in the near future. The search strategy followed the guidelines of the Centre of Reviews and Dissemination. The studies were identified from seven databases (Scopus, Web of Science, Academic Search Premiere, CINAHL, Medline Ovid, Eric and Cochrane Library). Studies was selected based on titles, abstracts and full texts. One hundred twenty nine papers were included in the review. These papers defined hurdles in RNAi delivery and also strategies to overcome these hurdles. This review discussed the existing hurdles for systemic administration of siRNA as therapeutic agents and highlights the various strategies to overcome these hurdles, including lipid-based nanoparticles and polymeric nanoparticles, and we also briefly reviewed chemical modification. Delivery of siRNA to the target site is the biggest challenge for its application in the clinic. The findings of this review confirmed by encapsulation siRNA in the nanoparticles can overcome these challenges. The rapid progress in nanotechnology has enabled the development of effective nanoparticles as the carrier for siRNA delivery. However, our data about siRNA-based therapeutics and also nanomedicine are still limited. More clinical data needs to be completely understood in the benefits and drawbacks of siRNA-based therapeutics. Prospective studies must pay attention to the in vivo safety profiles of the different delivery systems, including uninvited immune system stimulation and cytotoxicity. In essence, the development of nontoxic, biocompatible, and biodegradable delivery systems for

  10. Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria.

    PubMed

    Luo, Yang; Hossain, Mainul; Wang, Chaoming; Qiao, Yong; An, Jincui; Ma, Liyuan; Su, Ming

    2013-01-21

    This paper describes a nanoparticle enhanced X-ray irradiation based strategy that can be used to kill multidrug resistant (MDR) bacteria. In the proof-of-concept experiment using MDR Pseudomonas aeruginosa (P. aeruginosa) as an example, polyclonal antibody modified bismuth nanoparticles are introduced into bacterial culture to specifically target P. aeruginosa. After washing off uncombined bismuth nanoparticles, the bacteria are irradiated with X-rays, using a setup that mimics a deeply buried wound in humans. Results show that up to 90% of MDR P. aeruginosa are killed in the presence of 200 μg ml(-1) bismuth nanoparticles, whereas only ∼6% are killed in the absence of bismuth nanoparticles when exposed to 40 kVp X-rays for 10 min. The 200 μg ml(-1) bismuth nanoparticles enhance localized X-ray dose by 35 times higher than the control with no nanoparticles. In addition, no significant harmful effects on human cells (HeLa and MG-63 cells) have been observed with 200 μg ml(-1) bismuth nanoparticles and 10 min 40 kVp X-ray irradiation exposures, rendering the potential for future clinical use. Since X-rays can easily penetrate human tissues, this bactericidal strategy has the potential to be used in effectively killing deeply buried MDR bacteria in vivo.

  11. Nanodrug delivery in reversing multidrug resistance in cancer cells

    PubMed Central

    Kapse-Mistry, Sonali; Govender, Thirumala; Srivastava, Rohit; Yergeri, Mayur

    2014-01-01

    Different mechanisms in cancer cells become resistant to one or more chemotherapeutics is known as multidrug resistance (MDR) which hinders chemotherapy efficacy. Potential factors for MDR includes enhanced drug detoxification, decreased drug uptake, increased intracellular nucleophiles levels, enhanced repair of drug induced DNA damage, overexpression of drug transporter such as P-glycoprotein(P-gp), multidrug resistance-associated proteins (MRP1, MRP2), and breast cancer resistance protein (BCRP). Currently nanoassemblies such as polymeric/solid lipid/inorganic/metal nanoparticles, quantum dots, dendrimers, liposomes, micelles has emerged as an innovative, effective, and promising platforms for treatment of drug resistant cancer cells. Nanocarriers have potential to improve drug therapeutic index, ability for multifunctionality, divert ABC-transporter mediated drug efflux mechanism and selective targeting to tumor cells, cancer stem cells, tumor initiating cells, or cancer microenvironment. Selective nanocarrier targeting to tumor overcomes dose-limiting side effects, lack of selectivity, tissue toxicity, limited drug access to tumor tissues, high drug doses, and emergence of multiple drug resistance with conventional or combination chemotherapy. Current review highlights various nanodrug delivery systems to overcome mechanism of MDR by neutralizing, evading, or exploiting the drug efflux pumps and those independent of drug efflux pump mechanism by silencing Bcl-2 and HIF1α gene expressions by siRNA and miRNA, modulating ceramide levels and targeting NF-κB. “Theragnostics” combining a cytotoxic agent, targeting moiety, chemosensitizing agent, and diagnostic imaging aid are highlighted as effective and innovative systems for tumor localization and overcoming MDR. Physical approaches such as combination of drug with thermal/ultrasound/photodynamic therapies to overcome MDR are focused. The review focuses on newer drug delivery systems developed to overcome

  12. Bacterial resistance to silver nanoparticles and how to overcome it

    NASA Astrophysics Data System (ADS)

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  13. Bacterial resistance to silver nanoparticles and how to overcome it.

    PubMed

    Panáček, Aleš; Kvítek, Libor; Smékalová, Monika; Večeřová, Renata; Kolář, Milan; Röderová, Magdalena; Dyčka, Filip; Šebela, Marek; Prucek, Robert; Tomanec, Ondřej; Zbořil, Radek

    2018-01-01

    Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.

  14. Increasing the cytotoxicity of doxorubicin in breast cancer MCF-7 cells with multidrug resistance using a mesoporous silica nanoparticle drug delivery system.

    PubMed

    Wang, Xin; Teng, Zhaogang; Wang, Haiyan; Wang, Chunyan; Liu, Ying; Tang, Yuxia; Wu, Jiang; Sun, Jin; Wang, Hai; Wang, Jiandong; Lu, Guangming

    2014-01-01

    Resistance to cytotoxic chemotherapy is the main cause of therapeutic failure and death in women with breast cancer. Overexpression of various members of the superfamily of adenosine triphosphate binding cassette (ABC)-transporters has been shown to be associated with multidrug resistance (MDR) phenotype in breast cancer cells. MDR1 protein promotes the intracellular efflux of drugs. A novel approach to address cancer drug resistance is to take advantage of the ability of nanocarriers to sidestep drug resistance mechanisms by endosomal delivery of chemotherapeutic agents. Doxorubicin (DOX) is an anthracycline antibiotic commonly used in breast cancer chemotherapy and a substrate for ABC-mediated drug efflux. In the present study, we developed breast cancer MCF-7 cells with overexpression of MDR1 and designed mesoporous silica nanoparticles (MSNs) which were used as a drug delivery system. We tested the efficacy of DOX in the breast cancer cell line MCF-7/MDR1 and in a MCF-7/MDR1 xenograft nude mouse model using the MSNs drug delivery system. Our data show that drug resistance in the human breast cancer cell line MCF-7/MDR1 can be overcome by treatment with DOX encapsulated within mesoporous silica nanoparticles.

  15. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Hanh, Truong Thi; Thu, Nguyen Thi; Hien, Nguyen Quoc; An, Pham Ngoc; Loan, Truong Thi Kieu; Hoa, Phan Thi

    2016-04-01

    The silver nanoparticles (AgNPs)/peco fabrics were prepared by immobilization of AgNPs on fabrics in which AgNPs were synthesized by γ-irradiation of the 10 mM AgNO3 chitosan solution at the dose of 17.6 kGy. The AgNPs size has been estimated to be about 11 nm from TEM image. The AgNPs content onto peco fabrics was of 143±6 mg/kg at the initial AgNPs concentration of 100 ppm. The AgNPs colloidal solution was characterized by UV-vis spectroscopy and TEM image. The antibacterial activity of AgNPs/peco fabrics after 60 washings against Staphylococcus aureus and Klebsiella pneumoniae was found to be over 99%. Effects of AgNPs fabics on multidrug-resistant pathogens from the clinical specimens were also tested.

  16. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition.

    PubMed

    He, Qianjun; Shi, Jianlin

    2014-01-22

    In the anti-cancer war, there are three main obstacles resulting in high mortality and recurrence rate of cancers: the severe toxic side effect of anti-cancer drugs to normal tissues due to the lack of tumor-selectivity, the multi-drug resistance (MDR) to free chemotherapeutic drugs and the deadly metastases of cancer cells. The development of state-of-art nanomedicines based on mesoporous silica nanoparticles (MSNs) is expected to overcome the above three main obstacles. In the view of the fast development of anti-cancer strategy, this review highlights the most recent advances of MSN anti-cancer nanomedicines in enhancing chemotherapeutic efficacy, overcoming the MDR and inhibiting metastasis. Furthermore, we give an outlook of the future development of MSNs-based anti-cancer nanomedicines, and propose several innovative and forward-looking anti-cancer strategies, including tumor tissue-cell-nuclear successionally targeted drug delivery strategy, tumor cell-selective nuclear-targeted drug delivery strategy, multi-targeting and multi-drug strategy, chemo-/radio-/photodynamic-/ultrasound-/thermo-combined multi-modal therapy by virtue of functionalized hollow/rattle-structured MSNs. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Multiple molecular mechanisms for multidrug resistance transporters.

    PubMed

    Higgins, Christopher F

    2007-04-12

    The acquisition of multidrug resistance is a serious impediment to improved healthcare. Multidrug resistance is most frequently due to active transporters that pump a broad spectrum of chemically distinct, cytotoxic molecules out of cells, including antibiotics, antimalarials, herbicides and cancer chemotherapeutics in humans. The paradigm multidrug transporter, mammalian P-glycoprotein, was identified 30 years ago. Nonetheless, success in overcoming or circumventing multidrug resistance in a clinical setting has been modest. Recent structural and biochemical data for several multidrug transporters now provide mechanistic insights into how they work. Organisms have evolved several elegant solutions to ridding the cell of such cytotoxic compounds. Answers are emerging to questions such as how multispecificity for different drugs is achieved, why multidrug resistance arises so readily, and what chance there is of devising a clinical solution.

  18. Multidrug Resistance: Physiological Principles and Nanomedical Solutions

    PubMed Central

    Storm, Gert; Kiessling, Fabian; Lammers, Twan

    2014-01-01

    Multidrug (MDR) resistance is a pathophysiological phenomenon employed by cancer cells which limits the prolonged and effective use of chemotherapeutic agents. MDR is primarily based on the over-expression of drug efflux pumps in the cellular membrane. Prominent examples of such efflux pumps, which belong to the ATP-binding cassette (ABC) superfamily of proteins, are Pgp (P-glycoprotein) and MRP (multidrug resistance-associated protein), nowadays officially known as ABCB1 and ABCC1. Over the years, several strategies have been evaluated to overcome MDR, based not only on the use of low-molecular-weight MDR modulators, but also on the implementation of 1-100(0) nm-sized drug delivery systems. In the present manuscript, after introducing the most important physiological principles of MDR, we summarize prototypic nanomedical strategies to overcome multidrug resistance, including the use of carrier materials with intrinsic anti-MDR properties, the use of nanomedicines to modify the mode of cellular uptake, and the co-formulation of chemotherapeutic drugs together with low- and high-molecular-weight MDR inhibitors within a single drug delivery system. While certain challenges still need to be overcome before such constructs and concepts can be widely applied in the clinic, the insights obtained and the progress made strongly suggest that nanomedicine formulations hold significant potential for improving the treatment of multidrug-resistant malignancies. PMID:24120954

  19. A novel paclitaxel-loaded poly(d,l-lactide-co-glycolide)-Tween 80 copolymer nanoparticle overcoming multidrug resistance for lung cancer treatment

    PubMed Central

    Yuan, Xun; Ji, Wenxiang; Chen, Si; Bao, Yuling; Tan, Songwei; Lu, Shun; Wu, Kongming; Chu, Qian

    2016-01-01

    Drug resistance has become a main obstacle for the effective treatment of lung cancer. To address this problem, a novel biocompatible nanoscale package, poly(d,l-lactide-co-glycolide)-Tween 80, was designed and synthesized to overcome paclitaxel (PTX) resistance in a PTX-resistant human lung cancer cell line. The poly(d,l-lactide-co-glycolide) (PLGA)-Tween 80 nanoparticles (NPs) could efficiently load PTX and release the drug gradually. There was an increased level of uptake of PLGA-Tween 80 in PTX-resistant lung cancer cell line A549/T, which achieved a significantly higher level of cytotoxicity than both PLGA NP formulation and Taxol®. The in vivo antitumor efficacy also showed that PLGA-Tween 80 NP was more effective than Taxol®, indicating that PLGA-Tween 80 copolymer was a promising carrier for PTX in resistant lung cancer. PMID:27307727

  20. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains

    PubMed Central

    Scandorieiro, Sara; de Camargo, Larissa C.; Lancheros, Cesar A. C.; Yamada-Ogatta, Sueli F.; Nakamura, Celso V.; de Oliveira, Admilton G.; Andrade, Célia G. T. J.; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K. T.

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  1. Synergistic and Additive Effect of Oregano Essential Oil and Biological Silver Nanoparticles against Multidrug-Resistant Bacterial Strains.

    PubMed

    Scandorieiro, Sara; de Camargo, Larissa C; Lancheros, Cesar A C; Yamada-Ogatta, Sueli F; Nakamura, Celso V; de Oliveira, Admilton G; Andrade, Célia G T J; Duran, Nelson; Nakazato, Gerson; Kobayashi, Renata K T

    2016-01-01

    Bacterial resistance to conventional antibiotics has become a clinical and public health problem, making therapeutic decisions more challenging. Plant compounds and nanodrugs have been proposed as potential antimicrobial alternatives. Studies have shown that oregano (Origanum vulgare) essential oil (OEO) and silver nanoparticles have potent antibacterial activity, also against multidrug-resistant strains; however, the strong organoleptic characteristics of OEO and the development of resistance to these metal nanoparticles can limit their use. This study evaluated the antibacterial effect of a two-drug combination of biologically synthesized silver nanoparticles (bio-AgNP), produced by Fusarium oxysporum, and OEO against Gram-positive and Gram-negative bacteria, including multidrug-resistant strains. OEO and bio-AgNP showed bactericidal effects against all 17 strains tested, with minimal inhibitory concentrations (MIC) ranging from 0.298 to 1.193 mg/mL and 62.5 to 250 μM, respectively. Time-kill curves indicated that OEO acted rapidly (within 10 min), while the metallic nanoparticles took 4 h to kill Gram-negative bacteria and 24 h to kill Gram-positive bacteria. The combination of the two compounds resulted in a synergistic or additive effect, reducing their MIC values and reducing the time of action compared to bio-AgNP used alone, i.e., 20 min for Gram-negative bacteria and 7 h for Gram-positive bacteria. Scanning electron microscopy (SEM) revealed similar morphological alterations in Staphylococcus aureus (non-methicillin-resistant S. aureus, non-MRSA) cells exposed to three different treatments (OEO, bio-AgNP and combination of the two), which appeared cell surface blebbing. Individual and combined treatments showed reduction in cell density and decrease in exopolysaccharide matrix compared to untreated bacterial cells. It indicated that this composition have an antimicrobial activity against S. aureus by disrupting cells. Both compounds showed very low

  2. Anti-P-glycoprotein conjugated nanoparticles for targeting drug delivery in cancer treatment.

    PubMed

    Iangcharoen, Pantiwa; Punfa, Wanisa; Yodkeeree, Supachai; Kasinrerk, Watchara; Ampasavate, Chadarat; Anuchapreeda, Songyot; Limtrakul, Pornngarm

    2011-10-01

    Targeting therapeutics to specific sites can enhance the efficacy of drugs, reduce required doses as well as unwanted side effects. In this work, using the advantages of the specific affinity of an immobilized antibody to membrane P-gp in two different nanoparticle formulations were thus developed for targeted drug delivery to multi-drug resistant cervical carcinoma (KB-V1) cells. Further, this was compared to the human drug sensitive cervical carcinoma cell line (KB-3-1) cells. The two nanoparticle preparations were: NP1, anti-P-gp conjugated with poly (DL-lactic-coglycolic acid) (PLGA) nanoparticle and polyethylene glycol (PEG); NP2, anti-P-gp conjugated to a modified poloxamer on PLGA nanoparticles. The cellular uptake capacity of nanoparticles was confirmed by fluorescent microscopy. Comparing with each counterpart core particles, there was a higher fluorescence intensity of the targeted nanoparticles in KBV1 cells compared to KB-3-1 cells suggesting that the targeted nanoparticles were internalized into KB-V1 cells to a greater extent than KB-3-1 cell. The results had confirmed the specificity and the potential of the developed targeted delivery system for overcoming multi-drug resistance induced by overexpression of P-gp on the cell membrane.

  3. Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells

    PubMed Central

    Zhang, Jinming; Wang, Lu; Fai Chan, Hon; Xie, Wei; Chen, Sheng; He, Chengwei; Wang, Yitao; Chen, Meiwan

    2017-01-01

    One of the promising strategies to overcome tumor multidrug resistance (MDR) is to deliver anticancer drug along with P-glycoprotein (P-gp) inhibitor simultaneously. To enhance the cancer cellular internalization and implement the controlled drug release, herein an iRGD peptide-modified lipid-polymer hybrid nanosystem (LPN) was fabricated to coload paclitaxel (PTX) and tetrandrine (TET) at a precise combination ratio. In this co-delivery system, PTX was covalently conjugated to poly (D,L-lactide-co-glycolide) polymeric core by redox-sensitive disulfide bond, while TET was physically capsulated spontaneously for the aim to suppress P-gp in advance by the earlier released TET in cancer cells. As a result, the PTX+TET/iRGD LPNs with a core-shell structure possessed high drug loading efficiency, stability and redox-sensitive drug release profiles. Owing to the enhanced cellular uptake and P-gp suppression mediated by TET, significantly more PTX accumulated in A2780/PTX cells treated with PTX+TET/iRGD LPNs than either free drugs or non-iRGD modified LPNs. As expected, PTX+TET/iRGD LPNs presented the highest cytotoxicity against A2780/PTX cells and effectively promoted ROS production, enhanced apoptosis and cell cycle arrests particularly. Taken together, the co-delivery system demonstrated great promise as potential treatment for MDR-related tumors based on the synergistic effects of P-gp inhibition, enhanced endocytosis and intracellular sequentially drug release. PMID:28470171

  4. Preparation of psoralen polymer-lipid hybrid nanoparticles and their reversal of multidrug resistance in MCF-7/ADR cells.

    PubMed

    Huang, Qingqing; Cai, Tiange; Li, Qianwen; Huang, Yinghong; Liu, Qian; Wang, Bingyue; Xia, Xi; Wang, Qi; Whitney, John C C; Cole, Susan P C; Cai, Yu

    2018-11-01

    Multidrug resistance (MDR) is the leading cause of failure for breast cancer in the clinic. Thus far, polymer-lipid hybrid nanoparticles (PLN) loaded chemotherapeutic agents has been used to overcome MDR in breast cancer. In this study, we prepared psoralen polymer-lipid hybrid nanoparticles (PSO-PLN) to reverse drug resistant MCF-7/ADR cells in vitro and in vivo. PSO-PLN was prepared by the emulsification evaporation-low temperature solidification method. The formulation, water solubility and bioavailability, particle size, zeta potential and entrapment efficiency, and in vitro release experiments were optimized in order to improve the activity of PSO to reverse MDR. Optimal formulation: soybean phospholipids 50 mg, poly(lactic-co-glycolic) acid (PLGA) 15 mg, PSO 3 mg, and Tween-80 1%. The PSO-PLN possessed a round appearance, uniform size, exhibited no adhesion. The average particle size was 93.59 ± 2.87 nm, the dispersion co-efficient was 0.249 ± 0.06, the zeta potential was 25.47 ± 2.84 mV. In vitro analyses revealed that PSO resistance index was 3.2, and PSO-PLN resistance index was 5.6, indicating that PSO-PLN versus MCF-7/ADR reversal effect was significant. Moreover, PSO-PLN is somewhat targeted to the liver, and has an antitumor effect in the xenograft model of drug-resistant MCF-7/ADR cells. In conclusion, PSO-PLN not only reverses MDR but also improves therapeutic efficiency by enhancing sustained release of PSO.

  5. β-casein nanovehicles for oral delivery of chemotherapeutic Drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells.

    PubMed

    Bar-Zeev, Maya; Assaraf, Yehuda G; Livney, Yoav D

    2016-04-26

    Multidrug resistance (MDR) is a primary obstacle to curative cancer therapy. We have previously demonstrated that β-casein (β-CN) micelles (β-CM) can serve as nanovehicles for oral delivery and target-activated release of hydrophobic drugs in the stomach. Herein we introduce a novel nanosystem based on β-CM, to orally deliver a synergistic combination of a chemotherapeutic drug (Paclitaxel) and a P-glycoprotein-specific transport inhibitor (Tariquidar) individually encapsulated within β-CM, for overcoming MDR in gastric cancer. Light microscopy, dynamic light scattering and zeta potential analyses revealed solubilization of these drugs by β-CN, suppressing drug crystallization. Spectrophotometry demonstrated high loading capacity and good encapsulation efficiency, whereas spectrofluorometry revealed high affinity of these drugs to β-CN. In vitro cytotoxicity assays exhibited remarkable synergistic efficacy against human MDR gastric carcinoma cells with P-glycoprotein overexpression. Oral delivery of β-CN - based nanovehicles carrying synergistic drug combinations to the stomach constitutes a novel efficacious therapeutic system that may overcome MDR in gastric cancer.

  6. Production of putrescine-capped stable silver nanoparticle: its characterization and antibacterial activity against multidrug-resistant bacterial strains

    NASA Astrophysics Data System (ADS)

    Saha, Saswati; Gupta, Bhaskar; Gupta, Kamala; Chaudhuri, Mahua Ghosh

    2016-11-01

    Integration of biology with nanotechnology is now becoming attention-grabbing area of research. The antimicrobial potency of silver has been eminent from antiquity. Due to the recent desire for the enhancement of antibacterial efficacy of silver, various synthesis methods of silver in their nano dimensions are being practiced using a range of capping material. The present work highlights a facile biomimetic approach for production of silver nanoparticle being capped and stabilized by putrescine, possessing a diameter of 10-25 ± 1.5 nm. The synthesized nanoparticles have been analyzed spectrally and analytically. Morphological studies are carried out by high-resolution transmission electron microscopy and crystallinity by selected area electron diffraction patterns. Moreover, the elemental composition of the capped nanoparticles was confirmed by energy-dispersive X-ray spectroscopy analysis. A comparative study (zone of inhibition and minimum inhibitory concentration) regarding the interactions and antibacterial potentiality of the capped silver nanoparticles with respect to the bare ones reveal the efficiency of the capped one over the bare one. The bacterial kinetic study was executed to monitor the interference of nanoparticles with bacterial growth rate. The results also highlight the efficacy of putrescine-capped silver nanoparticles as effective growth inhibitors against multi-drug resistant human pathogenic bacterial strains, which may, thus, potentially be applicable as an effective antibacterial control system to fight diseases.

  7. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria.

    PubMed

    Naqvi, Syed Zeeshan Haider; Kiran, Urooj; Ali, Muhammad Ishtiaq; Jamal, Asif; Hameed, Abdul; Ahmed, Safia; Ali, Naeem

    2013-01-01

    Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs) was probed by reacting the precursor salt of silver nitrate (AgNO3) with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400-470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ) corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5-30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby-Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm) of antibiotics, AgNPs, and their conjugates against bacterial group (average) was; ciprofloxacin + AgNPs (23) . imipenem + AgNPs (21) > gentamycin + AgNPs (19) > vancomycin + AgNPs (16) > AgNPs (15) . imipenem (14) > trimethoprim + AgNPs (14) > ciprofloxacin (13) > gentamycin (11) > vancomycin (4) > trimethoprim (0). Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2-7.0 (average, 2.8) fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in combination with antibiotics in order to improve their efficacy against various pathogenic microbes.

  8. Schiff base derived from thiosemicarbazone and anthracene showed high potential in overcoming multidrug resistance in vitro with low drug resistance index.

    PubMed

    Bai, Jie; Wang, Rui-Hui; Qiao, Yan; Wang, Aidong; Fang, Chen-Jie

    2017-01-01

    Multidrug resistance (MDR) is a huge obstacle in cancer chemotherapeutics. Overcoming MDR is a great challenge for anticancer drug discovery. Here, DNA binding and cytotoxicity of Schiff base L1 and L2 were explored to assess their efficiency in fighting cancer and overcoming the MDR. L1 and L2 could treat extremely chemoresistant MCF-7/ADR cell as drug-sensitive cell, with drug resistance index (DRI) <2.13, showing high potential in overcoming the MDR. The apoptotic ratio induced by L1 and L2 was low for both MCF-7 and MCF-7/ADR cells. L1 and L2 induced an impairment of cell cycle progression of MCF-7 and MCF-7/ADR cell lines and suppressed cell growth by perturbing progress through the G0/G1 phase, with L2 causing more profound effect, which might account for lower drug resistance after L2 treatment. The molecular docking revealed weak interaction between L1/L2 and P-glycoprotein (P-gp), the most important drug efflux pump and intracellular Rhodamine 123 accumulation indicated that the activity of P-gp was not inhibited by L1 and L2. Combined with the cellular uptake results, it implied that L1 and L2 could bypass P-gp efflux to exert anticancer activity.

  9. Overcoming Multidrug Resistance via Photodestruction of ABCG2-Rich Extracellular Vesicles Sequestering Photosensitive Chemotherapeutics

    PubMed Central

    Goler-Baron, Vicky; Assaraf, Yehuda G.

    2012-01-01

    Multidrug resistance (MDR) remains a dominant impediment to curative cancer chemotherapy. Efflux transporters of the ATP-binding cassette (ABC) superfamily including ABCG2, ABCB1 and ABCC1 mediate MDR to multiple structurally and functionally distinct antitumor agents. Recently we identified a novel mechanism of MDR in which ABCG2-rich extracellular vesicles (EVs) form in between attached neighbor breast cancer cells and highly concentrate various chemotherapeutics in an ABCG2-dependent manner, thereby sequestering them away from their intracellular targets. Hence, development of novel strategies to overcome MDR modalities is a major goal of cancer research. Towards this end, we here developed a novel approach to selectively target and kill MDR cancer cells. We show that illumination of EVs that accumulated photosensitive cytotoxic drugs including imidazoacridinones (IAs) and topotecan resulted in intravesicular formation of reactive oxygen species (ROS) and severe damage to the EVs membrane that is shared by EVs-forming cells, thereby leading to tumor cell lysis and the overcoming of MDR. Furthermore, consistent with the weak base nature of IAs, MDR cells that are devoid of EVs but contained an increased number of lysosomes, highly accumulated IAs in lysosomes and upon photosensitization were efficiently killed via ROS-dependent lysosomal rupture. Combining targeted lysis of IAs-loaded EVs and lysosomes elicited a synergistic cytotoxic effect resulting in MDR reversal. In contrast, topotecan, a bona fide transport substrate of ABCG2, accumulated exclusively in EVs of MDR cells but was neither detected in lysosomes of normal breast epithelial cells nor in non-MDR breast cancer cells. This exclusive accumulation in EVs enhanced the selectivity of the cytotoxic effect exerted by photodynamic therapy to MDR cells without harming normal cells. Moreover, lysosomal alkalinization with bafilomycin A1 abrogated lysosomal accumulation of IAs, consequently preventing

  10. Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma

    PubMed Central

    Alisi, Anna; Cho, William C.; Locatelli, Franco; Fruci, Doriana

    2013-01-01

    Chemotherapy is one of the major modalities in treating cancers. However, its effectiveness is limited by the acquisition of multidrug resistance (MDR). Several mechanisms could explain the up-regulation of MDR genes/proteins in cancer after chemotherapy. It is known that cancer stem cells (CSCs) play a role as master regulators. Therefore, understanding the mechanisms that regulate some traits of CSCs may help design efficient strategies to overcome chemoresistance. Different CSC phenotypes have been identified, including those found in some pediatric malignancies. As solid tumors in children significantly differ from those observed in adults, this review aims at providing an overview of the mechanistic relationship between MDR and CSCs in common solid tumors, and, in particular, focuses on clinical as well as experimental evidence of the relations between CSCs and MDR in neuroblastoma and hepatoblastoma. Finally, some novel approaches, such as concomitant targeting of multiple key transcription factors governing the stemness of CSCs, as well as nanoparticle-based approaches will also be briefly addressed. PMID:24351843

  11. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro.

    PubMed

    Khdair, Ayman; Handa, Hitesh; Mao, Guangzhao; Panyam, Jayanth

    2009-02-01

    Drug resistance limits the success of many anticancer drugs. Reduced accumulation of the drug at its intracellular site of action because of overexpression of efflux transporters such as P-glycoprotein (P-gp) is a major mechanism of drug resistance. In this study, we investigated whether photodynamic therapy (PDT) using methylene blue, also a P-gp inhibitor, can be used to enhance doxorubicin-induced cytotoxicity in drug-resistant tumor cells. Aerosol OT (AOT)-alginate nanoparticles were used as a carrier for the simultaneous cellular delivery of doxorubicin and methylene blue. Methylene blue was photoactivated using light of 665 nm wavelength. Induction of apoptosis and necrosis following treatment with combination chemotherapy and PDT was investigated in drug-resistant NCI/ADR-RES cells using flow cytometry and fluorescence microscopy. Effect of encapsulation in nanoparticles on the intracellular accumulation of doxorubicin and methylene blue was investigated qualitatively using fluorescence microscopy and was quantitated using HPLC. Encapsulation in AOT-alginate nanoparticles significantly enhanced the cytotoxicity of combination therapy in resistant tumor cells. Nanoparticle-mediated combination therapy resulted in a significant induction of both apoptosis and necrosis. Improvement in cytotoxicity could be correlated with enhanced intracellular and nuclear delivery of the two drugs. Further, nanoparticle-mediated combination therapy resulted in significantly elevated reactive oxygen species (ROS) production compared to single drug treatment. In conclusion, nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

  12. Overcoming Multidrug Resistance in Human Cancer Cells by Natural Compounds

    PubMed Central

    Nabekura, Tomohiro

    2010-01-01

    Multidrug resistance is a phenomenon whereby tumors become resistant to structurally unrelated anticancer drugs. P-glycoprotein belongs to the large ATP-binding cassette (ABC) transporter superfamily of membrane transport proteins. P-glycoprotein mediates resistance to various classes of anticancer drugs including vinblastine, daunorubicin, and paclitaxel, by actively extruding the drugs from the cells. The quest for inhibitors of anticancer drug efflux transporters has uncovered natural compounds, including (-)-epigallocatechin gallate, curcumin, capsaicin, and guggulsterone, as promising candidates. In this review, studies on the effects of natural compounds on P-glycoprotein and anticancer drug efflux transporters are summarized. PMID:22069634

  13. Arsenite-loaded nanoparticles inhibit PARP-1 to overcome multidrug resistance in hepatocellular carcinoma cells

    NASA Astrophysics Data System (ADS)

    Liu, Hanyu; Zhang, Zongjun; Chi, Xiaoqin; Zhao, Zhenghuan; Huang, Dengtong; Jin, Jianbin; Gao, Jinhao

    2016-08-01

    Hepatocellular carcinoma (HCC) is one of the highest incidences in cancers; however, traditional chemotherapy often suffers from low efficiency caused by drug resistance. Herein, we report an arsenite-loaded dual-drug (doxorubicin and arsenic trioxide, i.e., DOX and ATO) nanomedicine system (FeAsOx@SiO2-DOX, Combo NP) with significant drug synergy and pH-triggered drug release for effective treatment of DOX resistant HCC cells (HuH-7/ADM). This nano-formulation Combo NP exhibits the synergistic effect of DNA damage by DOX along with DNA repair interference by ATO, which results in unprecedented killing efficiency on DOX resistant cancer cells. More importantly, we explored the possible mechanism is that the activity of PARP-1 is inhibited by ATO during the treatment of Combo NP, which finally induces apoptosis of HuH-7/ADM cells by poly (ADP-ribosyl) ation suppression and DNA lesions accumulation. This study provides a smart drug delivery strategy to develop a novel synergistic combination therapy for effectively overcome drug- resistant cancer cells.

  14. Synergistic antimicrobial therapy using nanoparticles and antibiotics for the treatment of multidrug-resistant bacterial infection

    NASA Astrophysics Data System (ADS)

    Gupta, Akash; Saleh, Neveen M.; Das, Riddha; Landis, Ryan F.; Bigdeli, Arafeh; Motamedchaboki, Khatereh; Rosa Campos, Alexandre; Pomeroy, Kenneth; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-06-01

    Infections caused by multidrug-resistant (MDR) bacteria pose a serious global burden of mortality, causing thousands of deaths each year. Antibiotic treatment of resistant infections further contributes to the rapidly increasing number of antibiotic-resistant species and strains. Synthetic macromolecules such as nanoparticles (NPs) exhibit broad-spectrum activity against MDR species, however lack of specificity towards bacteria relative to their mammalian hosts limits their widespread therapeutic application. Here, we demonstrate synergistic antimicrobial therapy using hydrophobically functionalized NPs and fluoroquinolone antibiotics for treatment of MDR bacterial strains. An 8-16-fold decrease in antibiotic dosage is achieved in presence of engineered NPs to combat MDR strains. This strategy demonstrates the potential of using NPs to ‘revive’ antibiotics that have been rendered ineffective due to the development of resistance by pathogenic bacteria.

  15. Spatiotemporally and Sequentially-Controlled Drug Release from Polymer Gatekeeper-Hollow Silica Nanoparticles

    NASA Astrophysics Data System (ADS)

    Palanikumar, L.; Jeena, M. T.; Kim, Kibeom; Yong Oh, Jun; Kim, Chaekyu; Park, Myoung-Hwan; Ryu, Ja-Hyoung

    2017-04-01

    Combination chemotherapy has become the primary strategy against cancer multidrug resistance; however, accomplishing optimal pharmacokinetic delivery of multiple drugs is still challenging. Herein, we report a sequential combination drug delivery strategy exploiting a pH-triggerable and redox switch to release cargos from hollow silica nanoparticles in a spatiotemporal manner. This versatile system further enables a large loading efficiency for both hydrophobic and hydrophilic drugs inside the nanoparticles, followed by self-crosslinking with disulfide and diisopropylamine-functionalized polymers. In acidic tumour environments, the positive charge generated by the protonation of the diisopropylamine moiety facilitated the cellular uptake of the particles. Upon internalization, the acidic endosomal pH condition and intracellular glutathione regulated the sequential release of the drugs in a time-dependent manner, providing a promising therapeutic approach to overcoming drug resistance during cancer treatment.

  16. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance.

    PubMed

    Bar-Zeev, Maya; Livney, Yoav D; Assaraf, Yehuda G

    2017-03-01

    Intrinsic anticancer drug resistance appearing prior to chemotherapy as well as acquired resistance due to drug treatment, remain the dominant impediments towards curative cancer therapy. Hence, novel targeted strategies to overcome cancer drug resistance constitute a key aim of cancer research. In this respect, targeted nanomedicine offers innovative therapeutic strategies to overcome the various limitations of conventional chemotherapy, enabling enhanced selectivity, early and more precise cancer diagnosis, individualized treatment as well as overcoming of drug resistance, including multidrug resistance (MDR). Delivery systems based on nanoparticles (NPs) include diverse platforms enabling a plethora of rationally designed therapeutic nanomedicines. Here we review NPs designed to enhance antitumor drug uptake and selective intracellular accumulation using strategies including passive and active targeting, stimuli-responsive drug activation or target-activated release, triggered solely in the cancer cell or in specific organelles, cutting edge theranostic multifunctional NPs delivering drug combinations for synergistic therapy, while facilitating diagnostics, and personalization of therapeutic regimens. In the current paper we review the recent findings of the past four years and discuss the advantages and limitations of the various novel NPs-based drug delivery systems. Special emphasis is put on in vivo study-based evidences supporting significant therapeutic impact in chemoresistant cancers. A future perspective is proposed for further research and development of complex targeted, multi-stage responsive nanomedical drug delivery systems for personalized cancer diagnosis and efficacious therapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance.

    PubMed

    Rai, Mahendra; Ingle, Avinash P; Pandit, Raksha; Paralikar, Priti; Gupta, Indarchand; Chaud, Marco V; Dos Santos, Carolina Alves

    2017-10-30

    Now-a-days development of microbial resistancce have become one of the most important global public health concerns. It is estimated that about 2 million people are infected in USA with multidrug resistant bacteria and out of these, about 23,000 die per year. In Europe, the number of deaths associated with infection caused by MDR bacteria is about 25,000 per year, However, the situation in Asia and other devloping countries is more critical. Considering the increasing rate of antibiotic resistance in various pathogens, it is estimated that MDR organisms can kill about 10 million people every year by 2050. The use of antibiotics in excessive and irresponsible manner is the main reason towards its ineffectiveness. However, in this context, promising application of nanotechnology in our everyday life has generated a new avenue for the development of potent antimicrobial materials and compounds (nanoantimicrobials) capable of dealing with microbial resistance. The devlopement and safe incorporation of nanoantimicrobials will bring a new revolution in health sector. In this review, we have critically focused on current worldwide situation of antibiotic resistance. In addition, the role of various nanomaterials in the management of microbial resistance and the possible mechanisms for antibacterial action of nanoparticles alone and nanoparticle-antibiotics conjuagte are also discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Biomimetic RNA-silencing nanocomplexes: overcoming multidrug resistance in cancer cells.

    PubMed

    Wang, Zhongliang; Wang, Zhe; Liu, Dingbin; Yan, Xuefeng; Wang, Fu; Niu, Gang; Yang, Min; Chen, Xiaoyuan

    2014-02-10

    RNA interference (RNAi) is an RNA-dependent gene silencing approach controlled by an RNA-induced silencing complex (RISC). Herein, we present a synthetic RISC-mimic nanocomplex, which can actively cleave its target RNA in a sequence-specific manner. With high enzymatic stability and efficient self-delivery to target cells, the designed nanocomplex can selectively and potently induce gene silencing without cytokine activation. These nanocomplexes, which target multidrug resistance, are not only able to bypass the P-glycoprotein (Pgp) transporter, due to their nano-size effect, but also effectively suppress Pgp expression, thus resulting in successful restoration of drug sensitivity of OVCAR8/ADR cells to Pgp-transportable cytotoxic agents. This nanocomplex approach has the potential for both functional genomics and cancer therapy. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Targeted chimera delivery to ovarian cancer cells by heterogeneous gold magnetic nanoparticle

    NASA Astrophysics Data System (ADS)

    Chen, Yao; Xu, Mengjiao; Guo, Yi; Tu, Keyao; Wu, Weimin; Wang, Jianjun; Tong, Xiaowen; Wu, Wenjuan; Qi, Lifeng; Shi, Donglu

    2017-01-01

    Efficient delivery of small interfering RNAs (siRNAs) to the targeted cells has remained a significant challenge in clinical applications. In the present study, we developed a novel aptamer-siRNA chimera delivery system mediated by cationic Au-Fe3O4 nanoparticles (NPs). The chimera constructed by VEGF RNA aptamer and Notch3 siRNA was bonded with heterogeneous Au-Fe3O4 nanoparticles by electrostatic interaction. The obtained complex exhibited much higher silencing efficiency against Notch3 gene compared with chimera alone and lipofectamine-siRNA complex, and improved the antitumor effects of the loaded chimera. Moreover, the efficient delivery of the chimera by Au-Fe3O4 NPs could reverse multi-drug resistance (MDR) of ovarian cancer cells against the chemotherapeutic drug cisplatin, indicating its potential capability for future targeted cancer therapy while overcoming MDR.

  20. Potential strategies for the eradication of multidrug-resistant Gram-negative bacterial infections.

    PubMed

    Huwaitat, Rawan; McCloskey, Alice P; Gilmore, Brendan F; Laverty, Garry

    2016-07-01

    Antimicrobial resistance is one of the leading threats to society. The increasing burden of multidrug-resistant Gram-negative infection is particularly concerning as such bacteria are demonstrating resistance to nearly all currently licensed therapies. Various strategies have been hypothesized to treat multidrug-resistant Gram-negative infections including: targeting the Gram-negative outer membrane; neutralization of lipopolysaccharide; inhibition of bacterial efflux pumps and prevention of protein folding. Silver and silver nanoparticles, fusogenic liposomes and nanotubes are potential strategies for extending the activity of licensed, Gram-positive selective, antibiotics to Gram-negatives. This may serve as a strategy to fill the current void in pharmaceutical development in the short term. This review outlines the most promising strategies that could be implemented to solve the threat of multidrug-resistant Gram-negative infections.

  1. Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties.

    PubMed

    Jha, Diksha; Thiruveedula, Prasanna Kumar; Pathak, Rajiv; Kumar, Bipul; Gautam, Hemant K; Agnihotri, Shrish; Sharma, Ashwani Kumar; Kumar, Pradeep

    2017-11-01

    This study demonstrates the therapeutic potential of silver nanoparticles (AgNPs), which were biosynthesized using the extracts of Citrus maxima plant. Characterization through UV-Vis spectrophotometry, Dynamic Light Scattering (DLS), Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) confirmed the formation of AgNps in nano-size range. These nanoparticles exhibited enhanced antioxidative activity and showed commendable antimicrobial activity against wide range of microbes including multi-drug resistant bacteria that were later confirmed by TEM. These particles exhibited minimal toxicity when cytotoxicity study was performed on normal human lung fibroblast cell line as well as human red blood cells. It was quite noteworthy that these particles showed remarkable cytotoxicity on human fibrosarcoma and mouse melanoma cell line (B16-F10). Additionally, the apoptotic topographies of B16-F10 cells treated with AgNps were confirmed by using acridine orange and ethidium bromide dual dye staining, caspase-3 assay, DNA fragmentation assay followed by cell cycle analysis using fluorescence-activated cell sorting. Taken together, these results advocate promising potential of the biosynthesized AgNps for their use in therapeutic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance.

    PubMed

    Liu, Juan; Wei, Tuo; Zhao, Jing; Huang, Yuanyu; Deng, Hua; Kumar, Anil; Wang, Chenxuan; Liang, Zicai; Ma, Xiaowei; Liang, Xing-Jie

    2016-06-01

    By its unique advantages over traditional medicine, nanomedicine has offered new strategies for cancer treatment. In particular, the development of drug delivery strategies has focused on nanoscale particles to improve bioavailability. However, many of these nanoparticles are unable to overcome tumor resistance to chemotherapeutic agents. Recently, new opportunities for drug delivery have been provided by oligonucleotides that can self-assemble into three-dimensional nanostructures. In this work, we have designed and developed functional DNA nanostructures to deliver the chemotherapy drug doxorubicin (Dox) to resistant cancer cells. These nanostructures have two components. The first component is a DNA aptamer, which forms a dimeric G-quadruplex nanostructure to target cancer cells by binding with nucleolin. The second component is double-stranded DNA (dsDNA), which is rich in -GC- base pairs that can be applied for Dox delivery. We demonstrated that Dox was able to efficiently intercalate into dsDNA and this intercalation did not affect the aptamer's three-dimensional structure. In addition, the Aptamer-dsDNA (ApS) nanoparticle showed good stability and protected the dsDNA from degradation in bovine serum. More importantly, the ApS&Dox nanoparticle efficiently reversed the resistance of human breast cancer cells to Dox. The mechanism circumventing doxorubicin resistance by ApS&Dox nanoparticles may be predominantly by cell cycle arrest in S phase, effectively increased cell uptake and decreased cell efflux of doxorubicin. Furthermore, the ApS&Dox nanoparticles could effectively inhibit tumor growth, while less cardiotoxicity was observed. Overall, this functional DNA nanostructure provides new insights into the design of nanocarriers to overcome multidrug resistance through targeted drug delivery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. A self-assembled polyjuglanin nanoparticle loaded with doxorubicin and anti-Kras siRNA for attenuating multidrug resistance in human lung cancer.

    PubMed

    Wen, Zhong-Mei; Jie, Jing; Zhang, Yuan; Liu, Han; Peng, Li-Ping

    2017-12-02

    Lung cancer is a leading cause of cancer-associated mortality worldwide, which has a low survival rate. Multidrug resistance (MDR) is a major obstacle that hinders the treatment of lung cancer. Doxorubicin (DOX) is an anthracycline glycoside antibiotic, having a broad spectrum of anticancer activity against various solid tumors. Juglanin is a natural production, mainly extracted from green walnut husks of Juglans mandshurica, exhibiting various bioactivities. Here, we demonstrated that the combination of drug, gene and nanoparticle overcame MDR, inhibiting lung cancer progression. A novel nanoparticular pre-chemosensitizer was applied to develop a self-assembled nanoparticle formula of amphiphilic poly(juglanin (Jug) dithiodipropionic acid (DA))-b-poly(ethylene glycol) (PEG)-siRNA Kras with DOX in the core (DOX/PJAD-PEG-siRNA). The formed nanoparticles, appeared spherical shape, had mean particle size of 81.8 nm, and the zeta potential was -18.62 mV. The in vitro drug release results suggested that a sustained release was observed in DOX/PJAD-PEG-siRNA nanoparticles compared to the free DOX. Jug could improve the cytotoxicity of DOX to cancer cells with MDR. Oncogene, Kras, was dose-dependently reduced by treatment of DOX/PJAD-PEG-siRNA nanoparticles. Additionally, P-glycoprotein (MDR1) and c-Myc, contributing to tumor progression, were suppressed by the nanoparticles, while p53 was improved in drug-resistant cells. Colony formation analysis suggested that DOX/PJAD-PEG-siRNA nanoparticles showed the most effective role in reducing cancer cell proliferation. In vivo, DOX/PJAD-PEG-siRNA nanoparticles reduced tumor growth compared to the free DOX, accompanied with reduced KI-67 and enhanced TUNEL positive levels in drug-resistant xenografted nude mice. Thus, the findings above indicated that juglanin, as a chemosensitizer, potentiate the anti-cancer role of DOX in drug-resistant cancer cells. And the nanoparticles exhibited stronger antitumor efficiency

  4. Considerations and Some Practical Solutions to Overcome Nanoparticle Interference with LAL Assays and to Avoid Endotoxin Contamination in Nanoformulations.

    PubMed

    Neun, Barry W; Dobrovolskaia, Marina A

    2018-01-01

    Monitoring endotoxin contamination in drugs and medical devices is required to avoid pyrogenic response and septic shock in patients receiving these products. Endotoxin contamination of engineered nanomaterials and nanotechnology-based medical products represents a significant translational hurdle. Nanoparticles often interfere with an in vitro Limulus Amebocyte Lysate (LAL) assay commonly used in the pharmaceutical industry for the detection and quantification of endotoxin. Such interference challenges the preclinical development of nanotechnology-formulated drugs and medical devices containing engineered nanomaterials. Protocols for analysis of nanoparticles using LAL assays have been reported before. Here, we discuss considerations for selecting an LAL format and describe a few experimental approaches for overcoming nanoparticle interference with the LAL assays to obtain more accurate estimation of endotoxin contamination in nanotechnology-based products. The discussed approaches do not solve all types of nanoparticle interference with the LAL assays but could be used as a starting point to address the problem. This chapter also describes approaches to prevent endotoxin contamination in nanotechnology-formulated products.

  5. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    PubMed

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria.

  6. Folate Decorated Dual Drug Loaded Nanoparticle: Role of Curcumin in Enhancing Therapeutic Potential of Nutlin-3a by Reversing Multidrug Resistance

    PubMed Central

    Das, Manasi; Sahoo, Sanjeeb K.

    2012-01-01

    Retinoblastoma is the most common intraocular tumor in children. Malfunctioning of many signaling pathways regulating cell survival or apoptosis, make the disease more vulnerable. Notably, resistance to chemotherapy mediated by MRP-1, lung-resistance protein (LRP) is the most challenging aspect to treat this disease. Presently, much attention has been given to the recently developed anticancer drug nutlin-3a because of its non-genotoxic nature and potency to activate tumor suppressor protein p53. However, being a substrate of multidrug resistance protein MRP1 and Pgp its application has become limited. Currently, research has step towards reversing Multi drug resistance (MDR) by using curcumin, however its clinical relevance is restricted by plasma instability and poor bioavailability. In the present investigation we tried to encapsulate nutlin-3a and curcumin in PLGA nanoparticle (NPs) surface functionalized with folate to enhance therapeutic potential of nutlin-3a by modulating MDR. We document that curcumin can inhibit the expression of MRP-1 and LRP gene/protein in a concentration dependent manner in Y79 cells. In vitro cellular cytotoxicity, cell cycle analysis and apoptosis studies were done to compare the effectiveness of native drugs (single or combined) and single or dual drug loaded nanoparticles (unconjugated/folate conjugated). The result demonstrated an augmented therapeutic efficacy of targeted dual drug loaded NPs (Fol-Nut-Cur-NPs) over other formulation. Enhanced expression or down regulation of proapoptotic/antiapoptotic proteins respectively and down-regulation of bcl2 and NFκB gene/protein by Fol-Nut-Cur-NPs substantiate the above findings. This is the first investigation exploring the role of curcumin as MDR modulator to enhance the therapeutic potentiality of nutlin-3a, which may opens new direction for targeting cancer with multidrug resistance phenotype. PMID:22470431

  7. Biodistribution and Pharmacokinetic Analysis of Combination Lonidamine and Paclitaxel Delivery in an Orthotopic Animal Model of Multi-drug Resistant Breast Cancer Using EGFR-Targeted Polymeric Nanoparticles

    PubMed Central

    Milane, Lara; Duan, Zhen-feng; Amiji, Mansoor

    2011-01-01

    The aim of this study was to assess the biodistribution and pharmacokinetics of epidermal growth factor receptor (EGFR)-targeted polymer blend nanoparticles loaded with the anticancer drugs lonidamine and paclitaxel. Plasma, tumor, and tissue distribution profiles were quantified in an orthotopic animal model of multi-drug resistant (MDR) breast cancer and were compared to treatment with non-targeted nanoparticles and to treatment with drug solution. Poly(D,L-lactide-co-glycolide)/poly(ethylene glycol)/EGFR targeting peptide (PLGA/PEG/EFGR peptide) construct was synthesized for incorporation in poly(ε-caprolactone) (PCL) particles to achieve active EGFR targeting. An isocratic HPLC method was developed to quantify lonidamine and paclitaxel in mice plasma, tumors, and vital organs. The targeted nanoparticles demonstrated superior pharmacokinetic profile relative to drug solution and non-targeted nanoparticles, particularly for lonidamine delivery. The first target site of accumulation is the liver, followed by the kidneys, and then the tumor mass; maximal tumor accumulation occurs at 3 hours post-administration. Lonidamine/paclitaxel combination therapy administered via EGFR-targeted polymer blend nanocarriers may become a viable platform for the future treatment of MDR cancer. PMID:21220050

  8. Photoexcited quantum dots for killing multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Courtney, Colleen M.; Goodman, Samuel M.; McDaniel, Jessica A.; Madinger, Nancy E.; Chatterjee, Anushree; Nagpal, Prashant

    2016-05-01

    Multidrug-resistant bacterial infections are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Metal nanoparticles can induce cell death, yet the toxicity effect is typically nonspecific. Here, we show that photoexcited quantum dots (QDs) can kill a wide range of multidrug-resistant bacterial clinical isolates, including methicillin-resistant Staphylococcus aureus, carbapenem-resistant Escherichia coli, and extended-spectrum β-lactamase-producing Klebsiella pneumoniae and Salmonella typhimurium. The killing effect is independent of material and controlled by the redox potentials of the photogenerated charge carriers, which selectively alter the cellular redox state. We also show that the QDs can be tailored to kill 92% of bacterial cells in a monoculture, and in a co-culture of E. coli and HEK 293T cells, while leaving the mammalian cells intact, or to increase bacterial proliferation. Photoexcited QDs could be used in the study of the effect of redox states on living systems, and lead to clinical phototherapy for the treatment of infections.

  9. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers

    PubMed Central

    Liu, Jian-ping; Wang, Ting-ting; Wang, Dang-ge; Dong, An-jie; Li, Ya-ping; Yu, Hai-jun

    2017-01-01

    The therapeutic outcome of chemotherapy is severely limited by intrinsic or acquired drug resistance, the most common causes of chemotherapy failure. In the past few decades, advancements in nanotechnology have provided alternative strategies for combating tumor drug resistance. Drug-loaded nanoparticles (NPs) have several advantages over the free drug forms, including reduced cytotoxicity, prolonged circulation in the blood and increased accumulation in tumors. Currently, however, nanoparticulate drugs have only marginally improved the overall survival rate in clinical trials because of the various pathophysiological barriers that exist in the tumor microenvironment, such as intratumoral distribution, penetration and intracellular trafficking, etc. Smart NPs with stimulus-adaptable physico-chemical properties have been extensively developed to improve the therapeutic efficacy of nanomedicine. In this review, we summarize the recent advances of employing smart NPs to treat the drug-resistant tumors by overcoming the pathophysiological barriers in the tumor microenvironment. PMID:27569390

  10. Smart nanoparticles improve therapy for drug-resistant tumors by overcoming pathophysiological barriers.

    PubMed

    Liu, Jian-Ping; Wang, Ting-Ting; Wang, Dang-Ge; Dong, An-Jie; Li, Ya-Ping; Yu, Hai-Jun

    2017-01-01

    The therapeutic outcome of chemotherapy is severely limited by intrinsic or acquired drug resistance, the most common causes of chemotherapy failure. In the past few decades, advancements in nanotechnology have provided alternative strategies for combating tumor drug resistance. Drug-loaded nanoparticles (NPs) have several advantages over the free drug forms, including reduced cytotoxicity, prolonged circulation in the blood and increased accumulation in tumors. Currently, however, nanoparticulate drugs have only marginally improved the overall survival rate in clinical trials because of the various pathophysiological barriers that exist in the tumor microenvironment, such as intratumoral distribution, penetration and intracellular trafficking, etc. Smart NPs with stimulus-adaptable physico-chemical properties have been extensively developed to improve the therapeutic efficacy of nanomedicine. In this review, we summarize the recent advances of employing smart NPs to treat the drug-resistant tumors by overcoming the pathophysiological barriers in the tumor microenvironment.

  11. Engineering nanoparticles to overcome barriers to immunotherapy

    PubMed Central

    Toy, Randall

    2016-01-01

    Abstract Advances in immunotherapy have led to the development of a variety of promising therapeutics, including small molecules, proteins and peptides, monoclonal antibodies, and cellular therapies. Despite this wealth of new therapeutics, the efficacy of immunotherapy has been limited by challenges in targeted delivery and controlled release, that is, spatial and temporal control on delivery. Particulate carriers, especially nanoparticles have been widely studied in drug delivery and vaccine research and are being increasingly investigated as vehicles to deliver immunotherapies. Nanoparticle‐mediated drug delivery could provide several benefits, including control of biodistribution and transport kinetics, the potential for site‐specific targeting, immunogenicity, tracking capability using medical imaging, and multitherapeutic loading. There are also a unique set of challenges, which include nonspecific uptake by phagocytic cells, off‐target biodistribution, permeation through tissue (transport limitation), nonspecific immune‐activation, and poor control over intracellular localization. This review highlights the importance of understanding the relationship between a nanoparticle's size, shape, charge, ligand density and elasticity to its vascular transport, biodistribution, cellular internalization, and immunogenicity. For the design of an effective immunotherapy, we highlight the importance of selecting a nanoparticle's physical characteristics (e.g., size, shape, elasticity) and its surface functionalization (e.g., chemical or polymer modifications, targeting or tissue‐penetrating peptides) with consideration of its reactivity to the targeted microenvironment (e.g., targeted cell types, use of stimuli‐sensitive biomaterials, immunogenicity). Applications of this rational nanoparticle design process in vaccine development and cancer immunotherapy are discussed. PMID:29313006

  12. Exploiting Nanotechnology to Overcome Tumor Drug Resistance: Challenges and Opportunities

    PubMed Central

    Kirtane, Ameya; Kalscheuer, Stephen; Panyam, Jayanth

    2013-01-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. PMID:24036273

  13. HSA-based multi-target combination therapy: regulating drugs' release from HSA and overcoming single drug resistance in a breast cancer model.

    PubMed

    Gou, Yi; Zhang, Zhenlei; Li, Dongyang; Zhao, Lei; Cai, Meiling; Sun, Zhewen; Li, Yongping; Zhang, Yao; Khan, Hamid; Sun, Hongbing; Wang, Tao; Liang, Hong; Yang, Feng

    2018-11-01

    Multi-drug delivery systems, which may be promising solution to overcome obstacles, have limited the clinical success of multi-drug combination therapies to treat cancer. To this end, we used three different anticancer agents, Cu(BpT)Br, NAMI-A, and doxorubicin (DOX), to build human serum albumin (HSA)-based multi-drug delivery systems in a breast cancer model to investigate the therapeutic efficacy of overcoming single drug (DOX) resistance to cancer cells in vivo, and to regulate the drugs' release from HSA. The HSA complex structure revealed that NAMI-A and Cu(BpT)Br bind to the IB and IIA sub-domain of HSA by N-donor residue replacing a leaving group and coordinating to their metal centers, respectively. The MALDI-TOF mass spectra demonstrated that one DOX molecule is conjugated with lysine of HSA by a pH-sensitive linker. Furthermore, the release behavior of three agents form HSA can be regulated at different pH levels. Importantly, in vivo results revealed that the HSA-NAMI-A-Cu(BpT)Br-DOX complex not only increases the targeting ability compared with a combination of the three agents (the NAMI-A/Cu(BpT)Br/DOX mixture), but it also overcomes DOX resistance to drug-resistant breast cancer cell lines.

  14. Multifunctional polyamidoamine-modified selenium nanoparticles dual-delivering siRNA and cisplatin to A549/DDP cells for reversal multidrug resistance.

    PubMed

    Zheng, Wenjing; Cao, Chengwen; Liu, Yanan; Yu, Qianqian; Zheng, Chuping; Sun, Dongdong; Ren, Xiaofan; Liu, Jie

    2015-01-01

    Multidrug resistance (MDR) is a major barrier against effective cancer treatment. Dual-delivering a therapeutic small interfering RNA (siRNA) and chemotherapeutic agents has been developed to reverse drug resistance in tumor cells. In this study, amine-terminated generation 5 polyamidoamine (PAMAM) dendrimers (G5.NH2)-modified selenium nanoparticles (G5@Se NP) were synthesized for the systemic dual-delivery of mdr1 siRNA and cisplatin (cis-diamminedichloroplatinum-(II), DDP), which was demonstrated to enhance siRNA loading, releasing efficiency and gene-silencing efficacy. When the mdr1 siRNA was conjugated with G5@Se NP via electrostatic interaction, a significant down-regulation of P-glycoprotein and multidrug resistance-associated protein expression was observed; G5@Se-DDP-siRNA arrested A549/DDP cells at G1 phase and led to enhanced cytotoxicity in A549/DDP cells through induction of apoptosis involving the AKT and ERK signaling pathways. Interestingly, G5@Se-DDP NP were much less reactive than DDP in the reactions with both MT and GSH, indicating that loading of DDP in a nano-delivery system could effectively prevent cell detoxification. Furthermore, animal studies demonstrated that the new delivery system of G5@Se-DDP-siRNA significantly enhanced the anti-tumor effect on tumor-bearing nude mice, with no appreciable abnormality in the major organs. These results suggest that G5@Se NP could be a potential platform to combine chemotherapy and gene therapy technology in the treatment of human disease. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Overcoming Multidrug Resistance through the GLUT1-Mediated and Enzyme-Triggered Mitochondrial Targeting Conjugate with Redox-Sensitive Paclitaxel Release.

    PubMed

    Ma, Pengkai; Chen, Jianhua; Bi, Xinning; Li, Zhihui; Gao, Xing; Li, Hongpin; Zhu, Hongyu; Huang, Yunfang; Qi, Jing; Zhang, Yujie

    2018-04-18

    Multidrug resistance (MDR) is thought to be the major obstacle leading to the failure of paclitaxel (PTX) chemotherapy. To solve this problem, a glucose transporter-mediated and matrix metalloproteinase 2 (MMP2)-triggered mitochondrion-targeting conjugate [glucose-polyethylene glycol (PEG)-peptide-triphenylphosponium-polyamidoamine (PAMAM)-PTX] composed of a PAMAM dendrimer and enzymatic detachable glucose-PEG was constructed for mitochondrial delivery of PTX. The conjugate was characterized by a 30 nm sphere particle, MMP2-sensitive PEG outer layer detachment from PAMAM, and glutathione (GSH)-sensitive PTX release. It showed higher cellular uptake both in glucose transporter 1 (GLUT1) overexpressing MCF-7/MDR monolayer cell (2D) and multicellular tumor spheroids (3D). The subcellular location study showed that it could specifically accumulate in the mitochondria. Moreover, it exhibited higher cytotoxicity against MCF-7/MDR cells, which significantly reverse the MDR of MCF-7/MDR cells. The MDR reverse might be caused by reducing the ATP content through destroying the mitochondrial membrane as well as by down-regulating P-gp expression. In vivo imaging and tissue distribution indicated more conjugate accumulated in the tumor of the tumor-bearing mice model. Consequently, the conjugate showed better tumor inhibition rate and lower body weight loss, which demonstrated that it possessed high efficiency and low toxicity. This study provides glucose-mediated GLUT targeting, MMP2-responsive PEG detachment, triphenylphosponium-mediated mitochondria targeting, and a GSH-sensitive intracellular drug release conjugate that has the potential to be exploited for overcoming MDR of PTX.

  16. Nanomedicine to Deal With Cancer Cell Biology in Multi-Drug Resistance.

    PubMed

    Tekchandani, Pawan; Kurmi, Balak Das; Paliwal, Shivani Rai

    2017-01-01

    Today Cancer still remains a major cause of mortality and death worldwide, in humans. Chemotherapy, a key treatment strategy in cancer, has significant hurdles such as the occurrence of chemoresistance in cancer, which is inherent unresponsiveness or acquired upon exposure to chemotherapeutics. The resistance of cancer cells to an antineoplastic agent accompanied to other chemotherapeutic drugs with different structures and mechanisms of action called multi-drug resistance (MDR) plays an important role in the failure of chemo- therapeutics. MDR is primarily based on the overexpression of drug efflux pumps in the cellular membrane, which belongs to the ATP-binding cassette (ABC) superfamily of proteins, are P-gp (P-glycoprotein) and multidrug resistance-associated protein (MRP). Over the years, various strategies have been evaluated to overcome MDR, based not only on the use of MDR modulators but also on the implementation an innovative approach and advanced nanosized drug delivery systems. Nanomedicine is an emerging tool of chemotherapy that focuses on alternative drug delivery for improvement of the treatment efficacy and reducing side effects to normal tissues. This review aims to focus on the details biology, reversal strategies option with the limitation of MDR and various advantages of the present medical science nanotechnology with intracellular delivery aspects for overcoming the significant potential for improving the treatment of MDR malignancies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Disinfection of Multidrug Resistant Escherichia coli by Solar-Photocatalysis using Fe-doped ZnO Nanoparticles.

    PubMed

    Das, Sourav; Sinha, Sayantan; Das, Bhaskar; Jayabalan, R; Suar, Mrutyunjay; Mishra, Amrita; Tamhankar, Ashok J; Stålsby Lundborg, Cecilia; Tripathy, Suraj K

    2017-03-07

    Spread of antibiotic resistant bacteria through water, is a threat to global public health. Here, we report Fe-doped ZnO nanoparticles (Fe/ZnO NPs) based solar-photocatalytic disinfection (PCD) of multidrug resistant Escherichia coli (MDR E. coli). Fe/ZnO NPs were synthesized by chemical precipitation technique, and when used as photocatalyst for disinfection, proved to be more effective (time for complete disinfection = 90 min) than ZnO (150 min) and TiO 2 (180 min). Lipid peroxidation and potassium (K + ) ion leakage studies indicated compromisation of bacterial cell membrane and electron microscopy and live-dead staining confirmed the detrimental effects on membrane integrity. Investigations indicated that H 2 O 2 was the key species involved in solar-PCD of MDR E. coli by Fe/ZnO NPs. X-ray diffraction and atomic absorption spectroscopy studies showed that the Fe/ZnO NPs system remained stable during the photocatalytic process. The Fe/ZnO NPs based solar-PCD process proved successful in the disinfection of MDR E. coli in real water samples collected from river, pond and municipal tap. The Fe/ZnO NPs catalyst made from low cost materials and with high efficacy under solar light may have potential for real world applications, to help reduce the spread of resistant bacteria.

  18. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer

    PubMed Central

    Mohana, S; Ganesan, M; Agilan, B; Karthikeyan, R; Srithar, G; Beaulah Mary, R; Ananthakrishnan, D; Velmurugan, D; Rajendra Prasad, N; Ambudkar, Suresh V.

    2016-01-01

    P-glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various approaches of virtual screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and significantly reduced resistance in cytotoxicity assay to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer. PMID:27216424

  19. Screening dietary flavonoids for the reversal of P-glycoprotein-mediated multidrug resistance in cancer.

    PubMed

    Mohana, S; Ganesan, M; Agilan, B; Karthikeyan, R; Srithar, G; Beaulah Mary, R; Ananthakrishnan, D; Velmurugan, D; Rajendra Prasad, N; Ambudkar, Suresh V

    2016-07-19

    P-Glycoprotein (P-gp) serves as a therapeutic target for the development of inhibitors to overcome multidrug resistance in cancer cells. Although various screening procedures have been practiced so far to develop first three generations of P-gp inhibitors, their toxicity and drug interaction profiles are still a matter of concern. To address the above important problem of developing safe and effective P-gp inhibitors, we have made systematic computational and experimental studies on the interaction of natural phytochemicals with human P-gp. Molecular docking and QSAR studies were carried out for 40 dietary phytochemicals in the drug-binding site of the transmembrane domains (TMDs) of P-gp. Dietary flavonoids exhibit better interactions with homology modeled human P-gp. Based on the computational analysis, selected flavonoids were tested for their inhibitory potential against P-gp transport function in drug resistant cell lines using calcein-AM and rhodamine 123 efflux assays. It has been found that quercetin and rutin were the highly desirable flavonoids for the inhibition of P-gp transport function and they significantly reduced resistance in cytotoxicity assays to paclitaxel in P-gp overexpressing MDR cell lines. Hence, quercetin and rutin may be considered as potential chemosensitizing agents to overcome multidrug resistance in cancer.

  20. The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels.

    PubMed

    Franke, Karolin; Kettering, Melanie; Lange, Kathleen; Kaiser, Werner A; Hilger, Ingrid

    2013-01-01

    The presence of multidrug resistance-associated protein (MRP) in cancer cells is known to be responsible for many therapeutic failures in current oncological treatments. Here, we show that the combination of different effectors like hyperthermia, iron oxide nanoparticles, and chemotherapeutics influences expression of MRP 1 and 3 in an adenocarcinoma cell line. BT-474 cells were treated with magnetic nanoparticles (MNP; 1.5 to 150 μg Fe/cm(2)) or mitomycin C (up to 1.5 μg/cm(2), 24 hours) in the presence or absence of hyperthermia (43°C, 15 to 120 minutes). Moreover, cells were also sequentially exposed to these effectors (MNP, hyperthermia, and mitomycin C). After cell harvesting, mRNA was extracted and analyzed via reverse transcription polymerase chain reaction. Additionally, membrane protein was isolated and analyzed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. When cells were exposed to the effectors alone or to combinations thereof, no effects on MRP 1 and 3 mRNA expression were observed. In contrast, membrane protein expression was influenced in a selective manner. The effects on MRP 3 expression were less pronounced compared with MRP 1. Treatment with mitomycin C decreased MRP expression at high concentrations and hyperthermia intensified these effects. In contrast, the presence of MNP only increased MRP 1 and 3 expression, and hyperthermia reversed these effects. When combining hyperthermia, magnetic nanoparticles, and mitomycin C, no further suppression of MRP expression was observed in comparison with the respective dual treatment modalities. The different MRP 1 and 3 expression levels are not associated with de novo mRNA expression, but rather with an altered translocation of MRP 1 and 3 to the cell membrane as a result of reactive oxygen species production, and with shifting of intracellular MRP storage pools, changes in membrane fluidity, etc, at the protein level. Our results could be used to develop

  1. The exposure of cancer cells to hyperthermia, iron oxide nanoparticles, and mitomycin C influences membrane multidrug resistance protein expression levels

    PubMed Central

    Franke, Karolin; Kettering, Melanie; Lange, Kathleen; Kaiser, Werner A; Hilger, Ingrid

    2013-01-01

    Purpose The presence of multidrug resistance-associated protein (MRP) in cancer cells is known to be responsible for many therapeutic failures in current oncological treatments. Here, we show that the combination of different effectors like hyperthermia, iron oxide nanoparticles, and chemotherapeutics influences expression of MRP 1 and 3 in an adenocarcinoma cell line. Methods BT-474 cells were treated with magnetic nanoparticles (MNP; 1.5 to 150 μg Fe/cm2) or mitomycin C (up to 1.5 μg/cm2, 24 hours) in the presence or absence of hyperthermia (43°C, 15 to 120 minutes). Moreover, cells were also sequentially exposed to these effectors (MNP, hyperthermia, and mitomycin C). After cell harvesting, mRNA was extracted and analyzed via reverse transcription polymerase chain reaction. Additionally, membrane protein was isolated and analyzed via sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Results When cells were exposed to the effectors alone or to combinations thereof, no effects on MRP 1 and 3 mRNA expression were observed. In contrast, membrane protein expression was influenced in a selective manner. The effects on MRP 3 expression were less pronounced compared with MRP 1. Treatment with mitomycin C decreased MRP expression at high concentrations and hyperthermia intensified these effects. In contrast, the presence of MNP only increased MRP 1 and 3 expression, and hyperthermia reversed these effects. When combining hyperthermia, magnetic nanoparticles, and mitomycin C, no further suppression of MRP expression was observed in comparison with the respective dual treatment modalities. Discussion The different MRP 1 and 3 expression levels are not associated with de novo mRNA expression, but rather with an altered translocation of MRP 1 and 3 to the cell membrane as a result of reactive oxygen species production, and with shifting of intracellular MRP storage pools, changes in membrane fluidity, etc, at the protein level. Our

  2. Structural basis of RND-type multidrug exporters

    PubMed Central

    Yamaguchi, Akihito; Nakashima, Ryosuke; Sakurai, Keisuke

    2015-01-01

    Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular self-defense mechanism. The most notable characteristics of multidrug exporters is that they export a wide range of drugs and toxic compounds. The overexpression of these exporters causes multidrug resistance. Multidrug-resistant pathogens have become a serious problem in modern chemotherapy. Over the past decade, investigations into the structure of bacterial multidrug exporters have revealed the multidrug recognition and export mechanisms. In this review, we primarily discuss RND-type multidrug exporters particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type drug exporters are tripartite complexes comprising a cell membrane transporter, an outer membrane channel and an adaptor protein. Cell membrane transporters and outer membrane channels are homo-trimers; however, there is no consensus on the number of adaptor proteins in these tripartite complexes. The three monomers of a cell membrane transporter have varying conformations (access, binding, and extrusion) during transport. Drugs are exported following an ordered conformational change in these three monomers, through a functional rotation mechanism coupled with the proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug recognition is based on a multisite drug-binding mechanism, in which two voluminous multidrug-binding pockets in cell membrane exporters recognize a wide range of substrates as a result of permutations at numerous binding sites that are specific for the partial structures of substrate molecules. The voluminous multidrug-binding pocket may have numerous binding sites even for a single substrate, suggesting that substrates may move between binding sites during transport, an idea named as multisite-drug-oscillation hypothesis. This hypothesis is consistent with the apparently broad substrate specificity of cell membrane exporters and their highly efficient

  3. Structural basis of RND-type multidrug exporters.

    PubMed

    Yamaguchi, Akihito; Nakashima, Ryosuke; Sakurai, Keisuke

    2015-01-01

    Bacterial multidrug exporters are intrinsic membrane transporters that act as cellular self-defense mechanism. The most notable characteristics of multidrug exporters is that they export a wide range of drugs and toxic compounds. The overexpression of these exporters causes multidrug resistance. Multidrug-resistant pathogens have become a serious problem in modern chemotherapy. Over the past decade, investigations into the structure of bacterial multidrug exporters have revealed the multidrug recognition and export mechanisms. In this review, we primarily discuss RND-type multidrug exporters particularly AcrAB-TolC, major drug exporter in Gram-negative bacteria. RND-type drug exporters are tripartite complexes comprising a cell membrane transporter, an outer membrane channel and an adaptor protein. Cell membrane transporters and outer membrane channels are homo-trimers; however, there is no consensus on the number of adaptor proteins in these tripartite complexes. The three monomers of a cell membrane transporter have varying conformations (access, binding, and extrusion) during transport. Drugs are exported following an ordered conformational change in these three monomers, through a functional rotation mechanism coupled with the proton relay cycle in ion pairs, which is driven by proton translocation. Multidrug recognition is based on a multisite drug-binding mechanism, in which two voluminous multidrug-binding pockets in cell membrane exporters recognize a wide range of substrates as a result of permutations at numerous binding sites that are specific for the partial structures of substrate molecules. The voluminous multidrug-binding pocket may have numerous binding sites even for a single substrate, suggesting that substrates may move between binding sites during transport, an idea named as multisite-drug-oscillation hypothesis. This hypothesis is consistent with the apparently broad substrate specificity of cell membrane exporters and their highly efficient

  4. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    NASA Astrophysics Data System (ADS)

    Chen, Fei-yan; Zhang, Yu; Chen, Xiang-yu; Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun

    2017-04-01

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsOx) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  5. CIP-36, a novel topoisomerase II-targeting agent, induces the apoptosis of multidrug-resistant cancer cells in vitro.

    PubMed

    Cao, Bo; Chen, Hong; Gao, Ying; Niu, Cong; Zhang, Yuan; Li, Ling

    2015-03-01

    The need to overcome cancer multidrug resistance (MDR) has fueled considerable interest in the development of novel synthetic antitumor agents with cytotoxicity against cancer cell lines with MDR. In this study, we aimed to investigate CIP-36, a novel podophyllotoxin derivative, for its inhibitory effects on human cancer cells from multiple sources, particularly cells with MDR in vitro. The human leukemia cell line, K562, and the adriamycin-resistant subline, K562/A02, were exposed to CIP-36 or anticancer agents, and various morphological and biochemical properties were assessed by Hoechst 33342 staining under a fluorescence microscope. Subsequently, cytotoxicity, cell growth curves and the cell cycle were analyzed. Finally, the effects of CIP-36 on topoisomerase IIα (Topo IIα) activity were determined. Treatment with CIP-36 significantly inhibited the growth of the K562 and MDR K562/A02 cells. Our data demonstrated that CIP-36 induced apoptosis, inhibited cell cycle progression and inhibited Topo IIα activity. These findings suggest that CIP-36 has the potential to overcome the multidrug resistance of K562/A02 cells by mediating Topo IIα activity.

  6. NIR-triggered high-efficient photodynamic and chemo-cascade therapy using caspase-3 responsive functionalized upconversion nanoparticles.

    PubMed

    Zhao, Na; Wu, Baoyan; Hu, Xianglong; Xing, Da

    2017-10-01

    Stimuli-responsive nanoparticles with multiple therapeutic/diagnostic functions are highly desirable for effective tumor treatment. Herein novel caspase-3 responsive functionalized upconversion nanoparticles (CFUNs) were fabricated with three-in-one functional integration: near-infrared (NIR) triggered photodynamic damage along with caspase-3 activation, subsequent caspase-3 responsive drug release, and cascade chemotherapeutic activation. CFUNs were formulated from the self-assembly of caspase-3 responsive doxorubicin (DOX) prodrug tethered with DEVD peptide (DEVD-DOX), upconversion nanoparticles (UCNP), a photosensitizer (pyropheophorbide-a methyl ester, MPPa), and tumor-targeting cRGD-PEG-DSPE to afford multifunctional CFUNs, MPPa/UCNP-DEVD-DOX/cRGD. Upon cellular uptake and NIR irradiation, the visible light emission of UCNP could excite MPPa to produce reactive oxygen species for photodynamic therapy (PDT) along with the activation of caspase-3, which further cleaved DEVD peptide to release DOX within tumor cells, thus accomplishing NIR-triggered PDT and cascade chemotherapy. CFUNs presented silent therapeutic potency and negligible cytotoxicity in the dark, whereas in vitro and in vivo experiments demonstrated the NIR-triggered cascade therapeutic activation and tumor inhibition due to consecutive PDT and chemotherapy. Current NIR-activated cascade tumor therapy with two distinct mechanisms is significantly favorable to overcome multidrug resistance and tumor heterogeneity for persistent tumor treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. EmrE, a multidrug transporter from Escherichia coli, transports monovalent and divalent substrates with the same stoichiometry.

    PubMed

    Rotem, Dvir; Schuldiner, Shimon

    2004-11-19

    Multidrug transporters recognize and transport substrates with apparently little common structural features. At times these substrates are neutral, negatively, or positively charged, and only limited information is available as to how these proteins deal with the energetic consequences of transport of substrates with different charges. Multidrug transporters and drug-specific efflux systems are responsible for clinically significant resistance to chemotherapeutic agents in pathogenic bacteria, fungi, parasites, and human cancer cells. Understanding how these efflux systems handle different substrates may also have practical implications in the development of strategies to overcome the resistance mechanisms mediated by these proteins. Here, we compare transport of monovalent and divalent substrates by EmrE, a multidrug transporter from Escherichia coli, in intact cells and in proteoliposomes reconstituted with the purified protein. The results demonstrated that whereas the transport of monovalent substrates involves charge movement (i.e. electrogenic), the transport of divalent substrate does not (i.e. electroneutral). Together with previous results, these findings suggest that an EmrE dimer exchanges two protons per substrate molecule during each transport cycle. In intact cells, under conditions where the only driving force is the electrical potential, EmrE confers resistance to monovalent substrates but not to divalent ones. In the presence of proton gradients, resistance to both types of substrates is detected. The finding that under some conditions EmrE does not remove certain types of drugs points out the importance of an in-depth understanding of mechanisms of action of multidrug transporters to devise strategies for coping with the problem of multidrug resistance.

  8. Popcorn-shaped magnetic core-plasmonic shell multifunctional nanoparticles for the targeted magnetic separation and enrichment, label-free SERS imaging, and photothermal destruction of multidrug-resistant bacteria.

    PubMed

    Fan, Zhen; Senapati, Dulal; Khan, Sadia Afrin; Singh, Anant Kumar; Hamme, Ashton; Yust, Brian; Sardar, Dhiraj; Ray, Paresh Chandra

    2013-02-18

    Over the last few years, one of the most important and complex problems facing our society is treating infectious diseases caused by multidrug-resistant bacteria (MDRB), by using current market-existing antibiotics. Driven by this need, we report for the first time the development of the multifunctional popcorn-shaped iron magnetic core-gold plasmonic shell nanotechnology-driven approach for targeted magnetic separation and enrichment, label-free surface-enhanced Raman spectroscopy (SERS) detection, and the selective photothermal destruction of MDR Salmonella DT104. Due to the presence of the "lightning-rod effect", the core-shell popcorn-shaped gold-nanoparticle tips provided a huge field of SERS enhancement. The experimental data show that the M3038 antibody-conjugated nanoparticles can be used for targeted separation and SERS imaging of MDR Salmonella DT104. A targeted photothermal-lysis experiment, by using 670 nm light at 1.5 W cm(-2) for 10 min, results in selective and irreparable cellular-damage to MDR Salmonella. We discuss the possible mechanism and operating principle for the targeted separation, label-free SERS imaging, and photothermal destruction of MDRB by using the popcorn-shaped magnetic/plasmonic nanotechnology. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Overcoming acquired drug resistance in colorectal cancer cells by targeted delivery of 5-FU with EGF grafted hollow mesoporous silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Lijue; She, Xiaodong; Wang, Tao; He, Li; Shigdar, Sarah; Duan, Wei; Kong, Lingxue

    2015-08-01

    Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The effect and mechanism of 5-FU loaded EGF grafted HMSNs (EGF-HMSNs-5-FU) in overcoming acquired drug resistance in SW480/ADR cells were studied. The EGF-HMSNs were demonstrated to be specifically internalized in EGFR overexpressed SW480/ADR cells via a receptor-mediated endocytosis and can escape from endo-lysosomes. The EGF-HMSNs-5-FU exhibited much higher cytotoxicity on SW480/ADR cells than HMSNs-5-FU and free 5-FU while the plain HMSNs did not show significant cytotoxicity. The mechanism of EGF-HMSNs-5-FU in overcoming drug resistance in SW480/ADR cells could be attributed to the specific internalization of EGF-HMSNs-5-FU in EGFR overexpressed cells which can lead to high intracellular drug accumulation and cause cell death through S phase arrest.Acquired drug resistance (ADR) can be developed in colorectal cancer cells after 5-fluorouracil (5-FU) treatment and diminish the effectiveness of chemotherapy. In this work, acquired 5-FU resistance in the colorectal cancer cell line SW480 was obtained with the up-regulation of dihydropyrimidine dehydrogenase (DPYD) gene expression which can convert 5-FU to its inactive metabolite. To overcome ADR in colorectal cancer, hollow mesoporous silica nanoparticles (HMSNs) grafted with epidermal growth factor (EGF) were used as nanocarriers to deliver 5-FU to colorectal cancer cells with acquired drug resistance. The

  10. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields

    PubMed Central

    Novickij, Vitalij; Stanevičienė, Ramunė; Vepštaitė-Monstavičė, Iglė; Gruškienė, Rūta; Krivorotova, Tatjana; Sereikaitė, Jolanta; Novickij, Jurij; Servienė, Elena

    2018-01-01

    Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11–13 nm) capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm-1 electric field pulses (100 μs × 8) separately and in combination with two pulsed magnetic field protocols: (1) high dB/dt 3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high dB/dt pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections. PMID:29375537

  11. Overcoming Antimicrobial Resistance in Bacteria Using Bioactive Magnetic Nanoparticles and Pulsed Electromagnetic Fields.

    PubMed

    Novickij, Vitalij; Stanevičienė, Ramunė; Vepštaitė-Monstavičė, Iglė; Gruškienė, Rūta; Krivorotova, Tatjana; Sereikaitė, Jolanta; Novickij, Jurij; Servienė, Elena

    2017-01-01

    Nisin is a known bacteriocin, which exhibits a wide spectrum of antimicrobial activity, while commonly being inefficient against Gram-negative bacteria. In this work, we present a proof of concept of novel antimicrobial methodology using targeted magnetic nisin-loaded nano-carriers [iron oxide nanoparticles (NPs) (11-13 nm) capped with citric, ascorbic, and gallic acids], which are activated by high pulsed electric and electromagnetic fields allowing to overcome the nisin-resistance of bacteria. As a cell model the Gram-positive bacteria Bacillus subtilis and Gram-negative Escherichia coli were used. We have applied 10 and 30 kV cm -1 electric field pulses (100 μs × 8) separately and in combination with two pulsed magnetic field protocols: (1) high d B /d t 3.3 T × 50 and (2) 10 mT, 100 kHz, 2 min protocol to induce additional permeabilization and local magnetic hyperthermia. We have shown that the high d B /d t pulsed magnetic fields increase the antimicrobial efficiency of nisin NPs similar to electroporation or magnetic hyperthermia methods and a synergistic treatment is also possible. The results of our work are promising for the development of new methods for treatment of the drug-resistant foodborne pathogens to minimize the risks of invasive infections.

  12. Engineered nanoparticles against MDR in cancer: The state of the art and its prospective

    PubMed Central

    Greig, Nigel H.; Kamal, Mohammad Amjad; Midoux, Patrick; Pichon, Chantal

    2016-01-01

    Cancer is a highly heterogeneous disease, both within a single patient as well as between patients, and is the leading cause of death worldwide. A variety of mono and combinational therapies, including chemotherapy, have been developed and refined over recent years for its effective treatment. However, the evolution of chemotherapeutic resistance or multidrug resistance (MDR) in cancer has become a major challenge to successful chemotherapy. MDR is a complex process that combines multifaceted non-cellular and cellular-based mechanisms. Research in the area of cancer nanotechnology over the past two decades has reached the point where smartly designed nanoparticles with targeting ligands can aid successful chemotherapy by preferentially accumulating within the tumor region through means of active and passive targeting to overcome MDR, and simultaneously reduce the off-target accumulation of their payload. Such nanoparticle formulations – sometimes termed nanomedicines - are at different stages of cancer clinical trials and show promise in resistant cases. Nanoparticles as chemotherapeutics carriers provide the opportunity to have multiple payloads of drug and/or imaging agents for combinational and theranostic therapy. Moreover, nanotechnology has the potential to combine new treatment strategies, such as near-infrared (NIR), magnetic resonance imaging (MRI), and high intensity focused ultrasound (HIFU) into cancer chemotherapy and imaging. Here we discuss the cellular/non-cellular factors that underpin MDR in cancer, and the potential of nanomedicines to combat MDR, along with recent advances in combining nanotechnology with other approaches in cancer therapy. PMID:27319945

  13. Strategies to potentiate antimicrobial photoinactivation by overcoming resistant phenotypes†

    PubMed Central

    Vera, D. Mariano A.; Haynes, Mark H; Ball, Anthony R.; Dai, D. Tianhong; Astrakas, Christos; Kelso, Michael J; Hamblin, Michael R; Tegos, George P.

    2012-01-01

    Conventional antimicrobial strategies have become increasingly ineffective due to the emergence of multidrug resistance among pathogenic microorganisms. The need to overcome these deficiencies has triggered the exploration of alternative treatments and unconventional approaches towards controlling microbial infections. Photodynamic therapy was originally established as an anti-cancer modality and is currently used in the treatment of age related macular degeneration. The concept of photodynamic inactivation requires cell exposure to light energy, typically wavelengths in the visible region that causes the excitation of photosensitizer molecules either exogenous or endogenous, which results in the production of reactive oxygen species. ROS produce cell inactivation and death through modification of intracellular components. The versatile characteristics of PDT prompted its investigation as an anti-infective discovery platform. Advances in understanding of microbial physiology have shed light on a series of pathways, and phenotypes that serve as putative targets for antimicrobial drug discovery. Investigations of these phenotypic elements in concert with PDT have been reported focused on multidrug efflux systems, biofilms, virulence and pathogenesis determinants. In many instances the results are promising but only preliminary and require further investigation. This review discusses the different antimicrobial PDT strategies and highlights the need for highly informative and comprehensive discovery approaches. PMID:22242675

  14. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance.

    PubMed

    Khdair, Ayman; Chen, Di; Patil, Yogesh; Ma, Linan; Dou, Q Ping; Shekhar, Malathy P V; Panyam, Jayanth

    2010-01-25

    Tumor drug resistance significantly limits the success of chemotherapy in the clinic. Tumor cells utilize multiple mechanisms to prevent the accumulation of anticancer drugs at their intracellular site of action. In this study, we investigated the anticancer efficacy of doxorubicin in combination with photodynamic therapy using methylene blue in a drug-resistant mouse tumor model. Surfactant-polymer hybrid nanoparticles formulated using an anionic surfactant, Aerosol-OT (AOT), and a naturally occurring polysaccharide polymer, sodium alginate, were used for synchronized delivery of the two drugs. Balb/c mice bearing syngeneic JC tumors (mammary adenocarcinoma) were used as a drug-resistant tumor model. Nanoparticle-mediated combination therapy significantly inhibited tumor growth and improved animal survival. Nanoparticle-mediated combination treatment resulted in enhanced tumor accumulation of both doxorubicin and methylene blue, significant inhibition of tumor cell proliferation, and increased induction of apoptosis. These data suggest that nanoparticle-mediated combination chemotherapy and photodynamic therapy using doxorubicin and methylene blue has significant therapeutic potential against drug-resistant tumors. Copyright 2009 Elsevier B.V. All rights reserved.

  15. Pristimerin overcomes adriamycin resistance in breast cancer cells through suppressing Akt signaling

    PubMed Central

    XIE, GUI'E; YU, XINPEI; LIANG, HUICHAO; CHEN, JINGSONG; TANG, XUEWEI; WU, SHAOQING; LIAO, CAN

    2016-01-01

    Breast cancer remains a major public health problem worldwide. Chemotherapy serves an important role in the treatment of breast cancer. However, resistance to chemotherapeutic agents, in particular, multi-drug resistance (MDR), is a major cause of treatment failure in cancer. Agents that can either enhance the effects of chemotherapeutics or overcome chemoresistance are urgently needed for the treatment of breast cancer. Pristimerin, a quinonemethide triterpenoid compound isolated from Celastraceae and Hippocrateaceae, has been shown to possess antitumor, anti-inflammatory, antioxidant and insecticidal properties. The aim of the present study was to investigate whether pristimerin can override chemoresistance in MCF-7/adriamycin (ADR)-resistant human breast cancer cells. The results demonstrated that pristimerin indeed displayed potent cytocidal effect on multidrug-resistant MCF-7/ADR breast cancer cells, and that these effects occurred through the suppression of Akt signaling, which in turn led to the downregulation of antiapoptotic effectors and increased apoptosis. These findings indicate that use of pristimerin may represent a potentially promising approach for the treatment of ADR-resistant breast cancer. PMID:27123073

  16. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite.

    PubMed

    Malka, Eyal; Perelshtein, Ilana; Lipovsky, Anat; Shalom, Yakov; Naparstek, Livnat; Perkas, Nina; Patick, Tal; Lubart, Rachel; Nitzan, Yeshayahu; Banin, Ehud; Gedanken, Aharon

    2013-12-09

    Zinc-doped copper oxide nanoparticles are synthesized and simultaneously deposited on cotton fabric using ultrasound irradiation. The optimization of the processing conditions, the specific reagent ratio, and the precursor concentration results in the formation of uniform nanoparticles with an average size of ≈30 nm. The antibacterial activity of the Zn-doped CuO Cu₀.₈₈Zn₀.₁₂O in a colloidal suspension or deposited on the fabric is tested against Escherichia coli (Gram negative) and Staphylococcus aureus (Gram positive) bacteria. A substantial enhancement of 10,000 times in the antimicrobial activity of the Zn-CuO nanocomposite compared to the pure CuO and ZnO nanoparticles (NPs) is observed after 10 min exposure to the bacteria. Similar activities are observed against multidrug-resistant bacteria (MDR), (i.e., Methicillin-resistant S. aureus and MDR E. coli) further emphasizing the efficacy of this composite. Finally, the mechanism for this enhanced antibacterial activity is presented. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. pH/NIR Light-Controlled Multidrug Release via a Mussel-Inspired Nanocomposite Hydrogel for Chemo-Photothermal Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Ghavaminejad, Amin; Samarikhalaj, Melisa; Aguilar, Ludwig Erik; Park, Chan Hee; Kim, Cheol Sang

    2016-09-01

    This study reports on an intelligent composite hydrogel with both pH-dependent drug release in a cancer environment and heat generation based on NIR laser exposure, for the combined application of photothermal therapy (PTT) and multidrug chemotherapy. For the first time in the literature, Dopamine nanoparticle (DP) was incorporated as a highly effective photothermal agent as well as anticancer drug, bortezomib (BTZ) carrier inside a stimuli responsive pNIPAAm-co-pAAm hydrogel. When light is applied to the composite hydrogel, DP nanoparticle absorbs the light, which is dissipated locally as heat to impact cancer cells via hyperthermia. On the other hand, facile release of the anticancer drug BTZ from the surface of DP encapsulated hydrogel could be achieved due to the dissociation between catechol groups of DP and the boronic acid functionality of BTZ in typical acidic cancer environment. In order to increase the synergistic effect by dual drug delivery, Doxorubicin (DOXO) were also loaded to pNIPAAm-co-pAAm/DP-BTZ hydrogel and the effect of monotherapy as well as combined therapy were detailed by a complete characterization. Our results suggest that these mussel inspired nanocomposite with excellent heating property and controllable multidrug release can be considered as a potential material for cancer therapy.

  18. A RNA nanotechnology platform for a simultaneous two-in-one siRNA delivery and its application in synergistic RNAi therapy

    PubMed Central

    Jang, Mihue; Han, Hee Dong; Ahn, Hyung Jun

    2016-01-01

    Incorporating multiple copies of two RNAi molecules into a single nanostructure in a precisely controlled manner can provide an efficient delivery tool to regulate multiple gene pathways in the relation of mutual dependence. Here, we show a RNA nanotechnology platform for a two-in-one RNAi delivery system to contain polymeric two RNAi molecules within the same RNA nanoparticles, without the aid of polyelectrolyte condensation reagents. As our RNA nanoparticles lead to the simultaneous silencing of two targeted mRNAs, of which biological functions are highly interdependent, combination therapy for multi-drug resistance cancer cells, which was studied as a specific application of our two-in-one RNAi delivery system, demonstrates the efficient synergistic effects for cancer therapy. Therefore, this RNA nanoparticles approach has an efficient tool for a simultaneous co-delivery of RNAi molecules in the RNAi-based biomedical applications, and our current studies present an efficient strategy to overcome multi-drug resistance caused by malfunction of genes in chemotherapy. PMID:27562435

  19. Small-molecule inhibitors of multidrug resistance-associated protein 1 and related processes: A historic approach and recent advances.

    PubMed

    Stefan, Sven Marcel; Wiese, Michael

    2018-05-29

    Multidrug resistance-associated protein 1 (MRP1, ABCC1) is an ATP-binding cassette (ABC) transport protein. This efflux pump uses the energy of ATP hydrolysis to export structurally diverse antineoplastic agents in human cancers. The upregulation of MRP1 (either inherent or acquired) is one major reason for the occurrence of the phenomenon called multidrug resistance (MDR). MDR is characterized by a reduced outcome of chemotherapy due to the active intracellular clearance of cytostatic drugs below the necessary effect concentration. Much effort has been made to overcome MDR, which implied high-throughput screenings of already known pharmacological and natural compounds, modification of intrinsic substrates, as well as design and synthesis of new inhibitors. This review is meant not only to summarize the most recent results over the past 10 years, but also to highlight major achievements regarding reversal of MRP1-mediated MDR, from the time of its discovery until today. The focus lies on small-molecule compounds that feature either direct MRP1 inhibition/transport blockage, toxicity against MRP1-overexpressing cells, inhibition/modification of intracellular processes necessary for MRP1 function, or modification of MRP1-related metabolic and genomic mechanisms. Considering all aspects, this review might be useful to (re)consider possible strategies to overcome MRP1-mediated MDR. Furthermore, it may be the basis for developing new, even better, highly potent, less toxic, and selective (as well as broad-spectrum) MRP1 inhibitors that will enter clinical evaluations in different malignancies and finally conduce to overcome MDR in general. © 2018 Wiley Periodicals, Inc.

  20. Novel antimicrobial peptide CPF-C1 analogs with superior stabilities and activities against multidrug-resistant bacteria.

    PubMed

    Xie, Junqiu; Zhao, Qian; Li, Sisi; Yan, Zhibin; Li, Jing; Li, Yao; Mou, Lingyun; Zhang, Bangzhi; Yang, Wenle; Miao, Xiaokang; Jiang, Xianxing; Wang, Rui

    2017-11-01

    As numerous clinical isolates are resistant to most conventional antibiotics, infections caused by multidrug-resistant bacteria are associated with a higher death rate. Antimicrobial peptides show great potential as new antibiotics. However, a major obstacle to the development of these peptides as useful drugs is their low stability. To overcome the problem of the natural antimicrobial peptide CPF-C1, we designed and synthesized a series of analogs. Our results indicated that by introducing lysine, which could increase the number of positive charges, and by introducing tryptophan, which could increase the hydrophobicity, we could improve the antimicrobial activity of the peptides against multidrug-resistant strains. The introduction of d-amino acids significantly improved stability. Certain analogs demonstrated antibiofilm activities. In mechanistic studies, the analogs eradicated bacteria not just by interrupting the bacterial membranes, but also by linking to DNA, which was not impacted by known mechanisms of resistance. In a mouse model, certain analogs were able to significantly reduce the bacterial load. Among the analogs, CPF-9 was notable due to its greater antimicrobial potency in vitro and in vivo and its superior stability, lower hemolytic activity, and higher antibiofilm activity. This analog is a potential antibiotic candidate for treating infections induced by multidrug-resistant bacteria. © 2017 John Wiley & Sons A/S.

  1. Alloy nanoparticle synthesis using ionizing radiation

    DOEpatents

    Nenoff, Tina M [Sandia Park, NM; Powers, Dana A [Albuquerque, NM; Zhang, Zhenyuan [Durham, NC

    2011-08-16

    A method of forming stable nanoparticles comprising substantially uniform alloys of metals. A high dose of ionizing radiation is used to generate high concentrations of solvated electrons and optionally radical reducing species that rapidly reduce a mixture of metal ion source species to form alloy nanoparticles. The method can make uniform alloy nanoparticles from normally immiscible metals by overcoming the thermodynamic limitations that would preferentially produce core-shell nanoparticles.

  2. Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Dominik; Institute of Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg; Daniel, Volker

    2010-04-16

    Leukemia stem cells are known to exhibit multidrug resistance by expression of ATP-binding cassette (ABC) transporters which constitute transmembrane proteins capable of exporting a wide variety of chemotherapeutic drugs from the cytosol. We show here that human promyeloblastic leukemia KG-1a cells exposed to the histone deacetylase inhibitor phenylbutyrate resemble many characteristics of leukemia stem cells, including expression of functional ABC transporters such as P-glycoprotein, BCRP and MRP8. Consequently, KG-1a cells display resistance to the induction of apoptosis by various chemotherapeutic drugs. Resistance to apoptosis induction by chemotherapeutic drugs can be reversed by cyclosporine A, which effectively inhibits the activity ofmore » P-glycoprotein and BCRP, thus demonstrating ABC transporter-mediated drug resistance in KG-1a cells. However, KG-1a are highly sensitive to apoptosis induction by salinomycin, a polyether ionophore antibiotic that has recently been shown to kill human breast cancer stem cell-like cells and to induce apoptosis in human cancer cells displaying multiple mechanisms of drug and apoptosis resistance. Whereas KG-1a cells can be adapted to proliferate in the presence of apoptosis-inducing concentrations of bortezomib and doxorubicin, salinomycin does not permit long-term adaptation of the cells to apoptosis-inducing concentrations. Thus, salinomycin should be regarded as a novel and effective agent for the elimination of leukemia stem cells and other tumor cells exhibiting ABC transporter-mediated multidrug resistance.« less

  3. Enhancing endosomal escape for nanoparticle mediated siRNA delivery

    NASA Astrophysics Data System (ADS)

    Ma, Da

    2014-05-01

    Gene therapy with siRNA is a promising biotechnology to treat cancer and other diseases. To realize siRNA-based gene therapy, a safe and efficient delivery method is essential. Nanoparticle mediated siRNA delivery is of great importance to overcome biological barriers for systemic delivery in vivo. Based on recent discoveries, endosomal escape is a critical biological barrier to be overcome for siRNA delivery. This feature article focuses on endosomal escape strategies used for nanoparticle mediated siRNA delivery, including cationic polymers, pH sensitive polymers, calcium phosphate, and cell penetrating peptides. Work has been done to develop different endosomal escape strategies based on nanoparticle types, administration routes, and target organ/cell types. Also, enhancement of endosomal escape has been considered along with other aspects of siRNA delivery to ensure target specific accumulation, high cell uptake, and low toxicity. By enhancing endosomal escape and overcoming other biological barriers, great progress has been achieved in nanoparticle mediated siRNA delivery.

  4. Imipenem/cilastatin encapsulated polymeric nanoparticles for destroying carbapenem-resistant bacterial isolates.

    PubMed

    Shaaban, Mona I; Shaker, Mohamed A; Mady, Fatma M

    2017-04-11

    Carbapenem-resistance is an extremely growing medical threat in antibacterial therapy as the incurable resistant strains easily develop a multi-resistance action to other potent antimicrobial agents. Nonetheless, the protective delivery of current antibiotics using nano-carriers opens a tremendous approach in the antimicrobial therapy, allowing the nano-formulated antibiotics to beat these health threat pathogens. Herein, we encapsulated imipenem into biodegradable polymeric nanoparticles to destroy the imipenem-resistant bacteria and overcome the microbial adhesion and dissemination. Imipenem loaded poly Ɛ-caprolactone (PCL) and polylactide-co-glycolide (PLGA) nanocapsules were formulated using double emulsion evaporation method. The obtained nanocapsules were characterized for mean particle diameter, morphology, loading efficiency, and in vitro release. The in vitro antimicrobial and anti adhesion activities were evaluated against selected imipenem-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa clinical isolates. The obtained results reveal that imipenem loaded PCL nano-formulation enhances the microbial susceptibility and antimicrobial activity of imipenem. The imipenem loaded PCL nanoparticles caused faster microbial killing within 2-3 h compared to the imipenem loaded PLGA and free drug. Successfully, PCL nanocapsules were able to protect imipenem from enzymatic degradation by resistant isolates and prevent the emergence of the resistant colonies, as it lowered the mutation prevention concentration of free imipenem by twofolds. Moreover, the imipenem loaded PCL eliminated bacterial attachment and the biofilm assembly of P. aeruginosa and K. pneumoniae planktonic bacteria by 74 and 78.4%, respectively. These promising results indicate that polymeric nanoparticles recover the efficacy of imipenem and can be considered as a new paradigm shift against multidrug-resistant isolates in treating severe bacterial infections.

  5. Daunorubicin and gambogic acid coloaded cysteamine-CdTe quantum dots minimizing the multidrug resistance of lymphoma in vitro and in vivo

    PubMed Central

    Zhou, Yi; Wang, Ruju; Chen, Bing; Sun, Dan; Hu, Yong; Xu, Peipei

    2016-01-01

    To minimize the side effects and the multidrug resistance (MDR) arising from daunorubicin (DNR) treatment of malignant lymphoma, a chemotherapy formulation of cysteamine-modified cadmium tellurium (Cys-CdTe) quantum dots coloaded with DNR and gambogic acid (GA) nanoparticles (DNR-GA-Cys-CdTe NPs) was developed. The physical property, drug-loading efficiency and drug release behavior of these DNR-GA-Cys-CdTe NPs were evaluated, and their cytotoxicity was explored by 3-[4,5-dimethylthiazol-2-y1]-2,5-diphenyltetrazolium bromide assay. These DNR-GA-Cys-CdTe NPs possessed a pH-responsive behavior, and displayed a dose-dependent antiproliferative activity on multidrug-resistant lymphoma Raji/DNR cells. The accumulation of DNR inside the cells, revealed by flow cytometry assay, and the down-regulated expression of P-glycoprotein inside the Raji/DNR cells measured by Western blotting assay indicated that these DNR-GA-Cys-CdTe NPs could minimize the MDR of Raji/DNR cells. This multidrug delivery system would be a promising strategy for minimizing MDR against the lymphoma. PMID:27799767

  6. Principles of nanoparticle design for overcoming biological barriers to drug delivery

    PubMed Central

    Blanco, Elvin; Shen, Haifa; Ferrari, Mauro

    2016-01-01

    Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery. PMID:26348965

  7. Phase I trial and pharmacokinetics of the tubulin inhibitor 1069C85--a synthetic agent binding at the colchicine site designed to overcome multidrug resistance.

    PubMed Central

    Judson, I.; Briasoulis, E.; Raynaud, F.; Hanwell, J.; Berry, C.; Lacey, H.

    1997-01-01

    The orally administered tubulin-binding agent 1069C85 was developed with the hope of overcoming the multidrug resistance associated with existing anti-tubulin agents, such as the vinca alkaloids. A phase I study was performed using a single oral dose every 3 weeks, administered as a suspension reconstituted in 0.1% Tween 80 and 0.9% saline. The starting dose was 2.8 mg m-2, and dose doubling was permitted until the area under curve (AUC) was > or = 40% of that at the mouse LD10; thereafter, a modified Fibonacci scheme was used. The formulation proved to be unsatisfactory, resulting in inconsistent absorption. The terminal elimination half-life was prolonged (range 18-73.5 h). Sporadic central neurotoxicity was observed, which was grade 3 in one patient treated at 200 mg m-2. A revised formulation with micronized drug was more easily suspended and appeared to increase the bioavailability by a factor of 2-4. Severe central neurotoxicity, up to grade 4, was then observed at doses of 50-100 mg m-2. Unfortunately, toxicity was not predictable and one patient, with a previous history of partial intestinal obstruction, treated at 50 mg m-2, cleared the drug very slowly, possibly because of prolonged, delayed absorption. This patient died from pancytopenia and severe gastrointestinal damage. It was concluded that such unpredictable behaviour would be incompatible with safe evaluation in phase II studies; the trial was closed and further clinical development abandoned. PMID:9052420

  8. Targeted nanoparticle delivery overcomes off-target immunostimulatory effects of oligonucleotides and improves therapeutic efficacy in chronic lymphocytic leukemia

    PubMed Central

    Yu, Bo; Mao, Yicheng; Bai, Li-Yuan; Herman, Sarah E. M.; Wang, Xinmei; Ramanunni, Asha; Jin, Yan; Mo, Xiaokui; Cheney, Carolyn; Chan, Kenneth K.; Jarjoura, David; Marcucci, Guido; Lee, Robert J.; Byrd, John C.

    2013-01-01

    Several RNA-targeted therapeutics, including antisense oligonucleotides (ONs), small interfering RNAs, and miRNAs, constitute immunostimulatory CpG motifs as an integral part of their design. The limited success with free antisense ONs in hematologic malignancies in recent clinical trials has been attributed to the CpG motif–mediated, TLR-induced prosurvival effects and inefficient target modulation in desired cells. In an attempt to diminish their off-target prosurvival and proinflammatory effects and specific delivery, as a proof of principle, in the present study, we developed an Ab-targeted liposomal delivery strategy using a clinically relevant CD20 Ab (rituximab)–conjugated lipopolyplex nanoparticle (RIT-INP)– and Bcl-2–targeted antisense G3139 as archetypical antisense therapeutics. The adverse immunostimulatory responses were abrogated by selective B cell–targeted delivery and early endosomal compartmentalization of G3139-encapsulated RIT-INPs, resulting in reduced NF-κB activation, robust Bcl-2 down-regulation, and enhanced sensitivity to fludarabine-induced cytotoxicity. Furthermore, significant in vivo therapeutic efficacy was noted after RIT-INP–G3139 administration in a disseminated xenograft leukemia model. The results of the present study demonstrate that CD20-targeted delivery overcomes the immunostimulatory properties of CpG-containing ON therapeutics and improves efficient gene silencing and in vivo therapeutic efficacy for B-cell malignancies. The broader implications of similar approaches in overcoming immunostimulatory properties of RNA-directed therapeutics in hematologic malignancies are also discussed. PMID:23165478

  9. Rational Design of Iron Oxide Nanoparticles as Targeted Nanomedicines for Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Kievit, Forrest M.

    2011-07-01

    Nanotechnology provides a flexible platform for the development of effective therapeutic nanomaterials that can interact specifically with a target in a biological system and provoke a desired biological response. Of the nanomaterials studied, superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as one of top candidates for cancer therapy due to their intrinsic superparamagnetism that enables non-invasive magnetic resonance imaging (MRI) and biodegradability favorable for in vivo application. This dissertation is aimed at development of SPION-based nanomedicines to overcome the current limitations in cancer therapy. These limitations include non-specificity of therapy which can harm healthy tissue, the difficulty in delivering nucleic acids for gene therapy, the formation of drug resistance, and the inability to detect and treat micrometastases. First, a SPION-based non-viral gene delivery vehicle was developed through functionalization of the SPION core with a co-polymer designed to provide stable binding of DNA and low toxicity which showed excellent gene delivery in vitro and in vivo. This SPION-based non-viral gene delivery vehicle was then activated with a targeting agent to improve gene delivery throughout a xenograft tumor of brain cancer. It was found that targeting did not promote the accumulation of SPIONs at the tumor site, but rather improved the distribution of SPIONs throughout the tumor so a higher proportion of cells received treatment. Next, the high surface area of SPIONs was utilized for loading large amounts of drug which was shown to overcome the multidrug resistance acquired by many cancer cells. Drug bound to SPIONs showed significantly higher multidrug resistant cell uptake as compared to free drug which translated into improved cell kill. Also, an antibody activated SPION was developed and was shown to be able to target micrometastases in a transgenic animal model of metastatic breast cancer. These SPION-based nanomedicines

  10. A targeted nanoplatform co-delivering chemotherapeutic and antiangiogenic drugs as a tool to reverse multidrug resistance in breast cancer.

    PubMed

    Tian, Fengchun; Dahmani, Fatima Zohra; Qiao, Jianan; Ni, Jiang; Xiong, Hui; Liu, Tengfei; Zhou, Jianping; Yao, Jing

    2018-06-03

    Several obstacles are currently impeding the successful treatment of breast cancer, namely impaired drug accumulation into the tumor site, toxicity to normal cells and narrow therapeutic index of chemotherapy, multidrug resistance (MDR) and the metastatic spread of cancer cells through the blood and lymphatic vessels. In this regard, we designed a novel multifunctional nano-sized drug delivery system based on LyP-1 peptide-modified low-molecular-weight heparin-quercetin conjugate (PLQ). This nanosystem was developed for targeted co-delivery of multiple anticancer drugs to p32-overexpressing tumor cells and peritumoral lymphatic vessels, using LyP-1 peptide as active targeting ligand, with the aim to achieve a targeted combinatorial chemo/angiostatic therapy and MDR reversal. The cellular uptake of PLQ nanoparticles by p32-overexpressing breast cancer cells was significantly higher than nonfunctionalized nanoparticles. Besides, the anti-angiogenic activity of PLQ nanoparticles was proven by the effective inhibition of the bFGF-induced neovascularization in subcutaneous Matrigel plugs. More importantly, PLQ/GA nanoparticles with better targeting ability toward p32-positive tumors, displayed a high antitumor outcome by inhibition of tumor cells proliferation and angiogenesis. Immunohistochemistry and western blot assay showed that PLQ/GA nanoparticles significantly disrupted the lymphatic formation of tumor, and inhibited the P-glycoprotein (P-gp) expression in MCF-7 tumor cells, respectively. In conclusion, PLQ/GA nanoparticles provide a synergistic strategy for effective targeted co-delivery of chemotherapeutic and antiangiogenic agents and reversing MDR and metastasis in breast cancer. Herein, we successfully developed a novel amphiphilic nanomaterial, LyP-1-LMWH-Qu (PLQ) conjugate, consisting of a tumor-targeting moiety LyP-1, a hydrophobic quercetin (a multidrug resistance [MDR]-reversing drug) inner core, and a hydrophilic low-molecular-weight heparin (an

  11. Gum arabic capped-silver nanoparticles inhibit biofilm formation by multi-drug resistant strains of Pseudomonas aeruginosa.

    PubMed

    Ansari, Mohammad Azam; Khan, Haris Manzoor; Khan, Aijaz Ahmed; Cameotra, Swaranjit Singh; Saquib, Quaiser; Musarrat, Javed

    2014-07-01

    Clinical isolates (n = 55) of Pseudomonas aeruginosa were screened for the extended spectrum β-lactamases and metallo-β-lactamases activities and biofilm forming capability. The aim of the study was to demonstrate the antibiofilm efficacy of gum arabic capped-silver nanoparticles (GA-AgNPs) against the multi-drug resistant (MDR) biofilm forming P. aeruginosa. The GA-AgNPs were characterized by UV-spectroscopy, X-ray diffraction, and high resolution-transmission electron microscopy analysis. The isolates were screened for their biofilm forming ability, using the Congo red agar, tube method and tissue culture plate assays. The biofilm forming ability was further validated and its inhibition by GA-AgNPs was demonstrated by performing the scanning electron microscopy (SEM) and confocal laser scanning microscopy. SEM analysis of GA-AgNPs treated bacteria revealed severely deformed and damaged cells. Double fluorescent staining with propidium iodide and concanavalin A-fluorescein isothiocyanate concurrently detected the bacterial cells and exopolysaccharides (EPS) matrix. The CLSM results exhibited the GA-AgNPs concentration dependent inhibition of bacterial growth and EPS matrix of the biofilm colonizers on the surface of plastic catheters. Treatment of catheters with GA-AgNPs at 50 µg ml(-1) has resulted in 95% inhibition of bacterial colonization. This study elucidated the significance of GA-AgNPs, as the next generation antimicrobials, in protection against the biofilm mediated infections caused by MDR P. aeruginosa. It is suggested that application of GA-AgNPs, as a surface coating material for dispensing antibacterial attributes to surgical implants and implements, could be a viable approach for controlling MDR pathogens after adequate validations in clinical settings. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Optical Characterization of Single Plasmonic Nanoparticles

    PubMed Central

    Olson, Jana; Dominguez-Medina, Sergio; Hoggard, Anneli; Wang, Lin-Yung; Chang, Wei-Shun; Link, Stephan

    2015-01-01

    This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles. PMID:24979351

  13. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells.

    PubMed

    Chen, Bao-an; Mao, Pei-pei; Cheng, Jian; Gao, Feng; Xia, Guo-hua; Xu, Wen-lin; Shen, Hui-lin; Ding, Jia-hua; Gao, Chong; Sun, Qian; Chen, Wen-ji; Chen, Ning-na; Liu, Li-jie; Li, Xiao-mao; Wang, Xue-mei

    2010-08-09

    In many instances, multidrug resistance (MDR) is mediated by increasing the expression at the cell surface of the MDR1 gene product, P-glycoprotein (P-gp), a 170-kD energy-dependent efflux pump. The aim of this study was to investigate the potential benefit of combination therapy with magnetic Fe(3)O(4) nanoparticle [MNP (Fe(3)O(4))] and MDR1 shRNA expression vector in K562/A02 cells. For stable reversal of "classical" MDR by short hairpin RNA (shRNA) aiming directly at the target sequence (3491-3509, 1539-1557, and 3103-3121 nucleotide) of MDR1 mRNA. PGC silencer-U6-neo-GFP-shRNA/MDR1 called PGY1-1, PGY1-2, and PGY1-3 were constructed and transfected into K562/A02 cells by lipofectamine 2000. After transfected and incubated with or without MNP (Fe(3)O(4)) for 48 hours, the transcription of MDR1 mRNA and the expression of P-gp were detected by quantitative real-time PCR and Western-blot assay respectively. Meanwhile intracellular concentration of DNR in K562/A02 cells was detected by flow cytometry (FCM). PGC silencer-U6-neo-GFP-shRNA/MDR1 was successfully constructed, which was confirmed by sequencing and PGY1-2 had the greatest MDR1 gene inhibitory ratio. Analysis of the reversal ratio of MDR, the concentration of daunorubicin (DNR) and the transcription of MDR1 gene and expression of P-gp in K562/A02 showed that combination of DNR with either MNP (Fe(3)O(4)) or PGY1-2 exerted a potent cytotoxic effect on K562/A02 cells, while combination of MNP (Fe(3)O(4)) and PGY1-2 could synergistically reverse multidrug resistance. Thus our in vitro data strongly suggested that a combination of MNP (Fe(3)O(4)) and shRNA expression vector might be a more sufficient and less toxic anti-MDR method on leukemia.

  14. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells† †Electronic supplementary information (ESI) available: The synthesis procedure of Biotin–PEG–PCDA and the experimental results of MTT. See DOI: 10.1039/c5tb02450a Click here for additional data file.

    PubMed Central

    Wang, Jining; Wang, Feihu; Li, Fangzhou; Zhang, Wenjun

    2016-01-01

    A multifunctional anti-cancer nanomedicine based on a biotin–poly(ethylene glycol)–poly(curcumin-dithio dipropionic acid) (Biotin–PEG–PCDA) polymeric nanocarrier loaded with paclitaxel (PTX), magnetic nanoparticles (MNPs) and quantum dots (QDs) is developed. It combines advantageous properties of efficient targeted delivery and uptake (via biotin and MNP), intracellular responsive release (via cleavable PCDA polymer), fluorescence imaging (via QD) and combined PTX-curcumin dual-drug treatment, allowing for overcoming drug resistance mechanisms of model multidrug resistant breast cancer cells (MCF-7/ADR). The PTX/MNPs/QDs@Biotin–PEG–PCDA nanoparticles are highly stable under physiological conditions, but are quickly disassembled to release their drug load in the presence of 10 mM glutathione (GSH). The nanoparticles show high uptake by tumour cells from a combined effect of magnet targeting and biotin receptor-mediated internalization. Moreover, curcumin, an intracellularly cleaved product of PCDA, can effectively down regulate the expression of drug efflux transporters such as P-glycoprotein (P-gp) to increase PTX accumulation within target cancer cells, thereby enhancing PTX induced cytotoxicity and therapeutic efficacy against MCF-7/ADR cells. Taken together, this novel tumour-targeting and traceable multifunctional nanomedicine is highly effective against model MDR cancer at the cellular level. PMID:27152196

  15. Overcoming the Coupling Dilemma in DNA-Programmable Nanoparticle Assemblies by "Ag+ Soldering".

    PubMed

    Wang, Huiqiao; Li, Yulin; Liu, Miao; Gong, Ming; Deng, Zhaoxiang

    2015-05-20

    Strong coupling between nanoparticles is critical for facilitating charge and energy transfers. Despite the great success of DNA-programmable nanoparticle assemblies, the very weak interparticle coupling represents a key barrier to various applications. Here, an extremely simple, fast, and highly efficient process combining DNA-programming and molecular/ionic bonding is developed to address this challenge, which exhibits a seamless fusion with DNA nanotechnology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Therapeutic options and emerging alternatives for multidrug resistant staphylococcal infections.

    PubMed

    Magana, Maria; Ioannidis, Anastasios; Magiorkinis, Emmanouil; Ursu, Oleg; Bologa, Cristian G; Chatzipanagiotou, Stylianos; Hamblin, Michael R; Tegos, George P

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) remains the single biggest challenge in infectious disease in the civilized world. Moreover, vancomycin resistance is also spreading, leading to fears of untreatable infections as were common in ancient times. Molecular microbiology and bioinformatics have revealed many of the mechanisms involved in resistance development. Mobile genetic elements, up-regulated virulence factors and multi-drug efflux pumps have been implicated. A range of approved antibiotics from the glycopeptide, lipopeptide, pleuromutilin, macrolide, oxazolidinone, lincosamide, aminoglycoside, tetracycline, steptogramin, and cephalosporin classes has been employed to treat MRSA infections. The upcoming pipeline of drugs for MRSA includes some new compounds from the above classes, together with fluoroquinolones, antibacterial peptide mimetics, aminomethylciclines, porphyrins, peptide deformylase inhibitors, oxadiazoles, and diaminopyrimidines. A range of non-drug alternative approaches has emerged for MRSA treatment. Bacteriophage-therapy including purified lysins has made a comeback after being discovered in the 1930s. Quorum-sensing inhibitors are under investigation. Small molecule inhibitors of multi-drug efflux pumps may potentiate existing antibiotics. The relative failure of staphylococcal vaccines is being revisited by efforts with multi-valent vaccines and improved adjuvants. Photodynamic therapy uses non-toxic photosensitizers and harmless visible light to produce reactive oxygen species that can nonspecifically destroy bacteria while preserving host cells. Preparation of nanoparticles can kill bacteria themselves, as well as improve the delivery of anti-bacterial drugs. Anti-MRSA drug discovery remains an exciting field with great promise for the future.

  17. Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma

    PubMed Central

    Xue, Huiying; Yu, Zhaoyang; Liu, Yong; Yuan, Weigang; Yang, Tan; You, Jia; He, Xingxing; Lee, Robert J; Li, Lei; Xu, Chuanrui

    2017-01-01

    Multidrug resistance (MDR) due to overexpression of P-glycoprotein (P-gp) is a major obstacle that hinders the treatment of hepatocellular carcinoma (HCC). It has been shown that miR-375 inhibits P-gp expression via inhibition of astrocyte elevated gene-1 (AEG-1) expression in HCC, and induces apoptosis in HCC cells by targeting AEG-1 and YAP1. In this study, we prepared lipid-coated hollow mesoporous silica nanoparticles (LH) containing doxorubicin hydrochloride (DOX) and miR-375 (LHD/miR-375) to deliver the two agents into MDR HCC cells in vitro and in vivo. We found that LHD/miR-375 overcame drug efflux and delivered miR-375 and DOX into MDR HepG2/ADR cells or HCC tissues. MiR-375 delivered by LHD/miR-375 was taken up through phagocytosis and clathrin- and caveolae-mediated endocytosis. Following release from late endosomes, it repressed the expression of P-gp in HepG2/ADR cells. The synergistic effects of miR-375 and hollow mesoporous silica nanoparticles (HMSN) resulted in a profound increase in the uptake of DOX by the HCC cells and prevented HCC cell growth. Enhanced antitumor effects of LHD/miR-375 were also validated in HCC xenografts and primary tumors; however, no significant toxicity was observed. Mechanistic studies also revealed that miR-375 and DOX exerted a synergistic antitumor effect by promoting apoptosis. Our study illustrates that delivery of miR-375 using HMSN is a feasible approach to circumvent MDR in the management of HCC. It, therefore, merits further development for potential clinical application. PMID:28769563

  18. Multidrug Efflux Systems in Microaerobic and Anaerobic Bacteria

    PubMed Central

    Xu, Zeling; Yan, Aixin

    2015-01-01

    Active drug efflux constitutes an important mechanism of antibiotic and multidrug resistance in bacteria. Understanding the distribution, expression, and physiological functions of multidrug efflux pumps, especially under physiologically and clinically relevant conditions of the pathogens, is the key to combat drug resistance. In animal hosts, most wounded, infected and inflamed tissues display low oxygen tensions. In this article, we summarize research development on multidrug efflux pumps in the medicinally relevant microaerobic and anaerobic pathogens and their implications in the effort to combat drug-resistant infections. PMID:27025630

  19. Surface charge-specific interactions between polymer nanoparticles and ABC transporters in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.

    2013-06-01

    The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).

  20. Design, Synthesis and Evaluation of a Novel Series of Inhibitors Reversing P-Glycoprotein-Mediated Multidrug Resistance.

    PubMed

    Ghaleb, Hesham; Li, Huilan; Kairuki, Mutta; Qiu, Qianqian; Bi, Xinzhou; Liu, Chunxia; Liao, Chen; Li, Jieming; Hezam, Kamal; Huang, Wenlong; Qian, Hai

    2018-05-22

    Multidrug resistance (MDR) is still the main barrier to attaining effective results with chemotherapy. Discovery of new chemo-reversal agents is needed to overcome MDR. Our study focused on a better way to obtain novel drugs with triazole rings that have an MDR-reversal ability through click chemistry. Among 20 developed compounds, compound 19 had a minimal cytotoxic effect compared to tariquidar and verapamil (VRP) and showed a higher reversal activity than VRP through increased accumulation in K562/A02 cells. Compound 19 also played an important role in the P-gp efflux function of intracellular Rh123 and doxorubicin (DOX) accumulation in K562/A02 cells. Moreover, compound 19 exhibited a long lifetime of approximately 24 h. These results indicated that compound 19 is a potential lead compound for the design of new drugs to overcome cancer MDR. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Polymeric mixed micelles loaded mitoxantrone for overcoming multidrug resistance in breast cancer via photodynamic therapy

    PubMed Central

    Zhao, Yiqiao; Yu, Hua; Zhou, Haiyu; Chen, Meiwan

    2017-01-01

    Mitoxantrone (MIT) is an anticancer agent with photosensitive properties that is commonly used in various cancers. Multidrug resistance (MDR) effect has been an obstacle to using MIT for cancer therapy. Photochemical internalization, on account of photodynamic therapy, has been applied to improve the therapeutic effect of cancers with MDR effect. In this study, an MIT-poly(ε-caprolactone)-pluronic F68-poly(ε-caprolactone)/poly(d,l-lactide-co-glycolide)–poly(ethylene glycol)–poly(d,l-lactide-co-glycolide) (MIT-PFP/PPP) mixed micelles system was applied to reverse the effect of MDR in MCF-7/ADR cells via photochemical reaction when exposed to near-infrared light. MIT-PFP/PPP mixed micelles showed effective interaction with near-infrared light at the wavelength of 660 nm and exerted great cytotoxicity in MCF-7/ADR cells with irradiation. Furthermore, MIT-PFP/PPP mixed micelles could improve reactive oxygen species (ROS) levels, decrease P-glycoprotein activity, and increase the cellular uptake of drugs with improved intracellular drug concentrations, which induced cell apoptosis in MCF-7/ADR cells under irradiation, despite MDR effect, as indicated by the increased level of cleaved poly ADP-ribose polymerase. These findings suggested that MIT-PFP/PPP mixed micelles may become a promising strategy to effectively reverse the MDR effect via photodynamic therapy in breast cancer. PMID:28919756

  2. Current Advances in Developing Inhibitors of Bacterial Multidrug 
Efflux Pumps

    PubMed Central

    Mahmood, Hannah Y.; Jamshidi, Shirin; Sutton, J. Mark; Rahman, Khondaker M.

    2016-01-01

    Antimicrobial resistance represents a significant challenge to future healthcare provision. An acronym ESKAPEE has been derived from the names of the organisms recognised as the major threats although there are a number of other organisms, notably Neisseria gonorrhoeae, that have become equally challenging to treat in the clinic. These pathogens are characterised by the ability to rapidly develop and/or acquire resistance mechanisms in response to exposure to different antimicrobial agents. A key part of the armoury of these pathogens is a series of efflux pumps, which effectively exclude or reduce the intracellular concentration of a large number of antibiotics, making the pathogens significantly more resistant. These efflux pumps are the topic of considerable interest, both from the perspective of basic understanding of efflux pump function, and its role in drug resistance but also as targets for the development of novel adjunct therapies. The necessity to overcome antimicrobial resistance has encouraged investigations into the characterisation of resistance-modifying efflux pump inhibitors to block the mechanisms of drug extrusion, thereby restoring antibacterial susceptibility and returning existing antibiotics into the clinic. A greater understanding of drug recognition and transport by multidrug efflux pumps is needed to develop clinically useful inhibitors, given the breadth of molecules that can be effluxed by these systems. This review discusses different bacterial EPIs originating from both natural source and chemical synthesis and examines the challenges to designing successful EPIs that can be useful against multidrug resistant bacteria. PMID:26947776

  3. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei.

    PubMed

    Gregory, Anthony E; Judy, Barbara M; Qazi, Omar; Blumentritt, Carla A; Brown, Katherine A; Shaw, Andrew M; Torres, Alfredo G; Titball, Richard W

    2015-02-01

    Burkholderia mallei are Gram-negative bacteria, responsible for the disease glanders. B. mallei has recently been classified as a Tier 1 agent owing to the fact that this bacterial species can be weaponised for aerosol release, has a high mortality rate and demonstrates multi-drug resistance. Furthermore, there is no licensed vaccine available against this pathogen. Lipopolysaccharide (LPS) has previously been identified as playing an important role in generating host protection against Burkholderia infection. In this study, we present gold nanoparticles (AuNPs) functionalised with a glycoconjugate vaccine against glanders. AuNPs were covalently coupled with one of three different protein carriers (TetHc, Hcp1 and FliC) followed by conjugation to LPS purified from a non-virulent clonal relative, B. thailandensis. Glycoconjugated LPS generated significantly higher antibody titres compared with LPS alone. Further, they improved protection against a lethal inhalation challenge of B. mallei in the murine model of infection. Burkholderia mallei is associated with multi-drug resistance, high mortality and potentials for weaponization through aerosol inhalation. The authors of this study present gold nanoparticles (AuNPs) functionalized with a glycoconjugate vaccine against this Gram negative bacterium demonstrating promising results in a murine model even with the aerosolized form of B. Mallei. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Composite nanoparticles for gene delivery.

    PubMed

    Wang, Yuhua; Huang, Leaf

    2014-01-01

    Nanoparticle-mediated gene and siRNA delivery has been an appealing area to gene therapists when they attempt to treat the diseases by manipulating the genetic information in the target cells. However, the advances in materials science could not keep up with the demand for multifunctional nanomaterials to achieve desired delivery efficiency. Researchers have thus taken an alternative approach to incorporate various materials into single composite nanoparticle using different fabrication methods. This approach allows nanoparticles to possess defined nanostructures as well as multiple functionalities to overcome the critical extracellular and intracellular barriers to successful gene delivery. This chapter will highlight the advances of fabrication methods that have the most potential to translate nanoparticles from bench to bedside. Furthermore, a major class of composite nanoparticle-lipid-based composite nanoparticles will be classified based on the components and reviewed in details.

  5. Block Copolymer Nanoparticles Remove Biofilms of Drug-Resistant Gram-Positive Bacteria by Nanoscale Bacterial Debridement.

    PubMed

    Li, Jianghua; Zhang, Kaixi; Ruan, Lin; Chin, Seow Fong; Wickramasinghe, Nirmani; Liu, Hanbin; Ravikumar, Vikashini; Ren, Jinghua; Duan, Hongwei; Yang, Liang; Chan-Park, Mary B

    2018-06-26

    Biofilms and the rapid evolution of multidrug resistance complicate the treatment of bacterial infections. Antibiofilm agents such as metallic-inorganic nanoparticles or peptides act by exerting antibacterial effects and, hence, do not combat biofilms of antibiotics-resistant strains. In this Letter, we show that the block copolymer DA95B5, dextran- block-poly((3-acrylamidopropyl) trimethylammonium chloride (AMPTMA)- co-butyl methacrylate (BMA)), effectively removes preformed biofilms of various clinically relevant multidrug-resistant Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (VRE V583), and Enteroccocus faecalis (OG1RF). DA95B5 self-assembles into core-shell nanoparticles with a nonfouling dextran shell and a cationic core. These nanoparticles diffuse into biofilms and attach to bacteria but do not kill them; instead, they promote the gradual dispersal of biofilm bacteria, probably because the solubility of the bacteria-nanoparticle complex is enhanced by the nanoparticle dextran shell. DA95B5, when applied as a solution to a hydrogel pad dressing, shows excellent in vivo MRSA biofilm removal efficacy of 3.6 log reduction in a murine excisional wound model, which is significantly superior to that for vancomycin. Furthermore, DA95B5 has very low in vitro hemolysis and negligible in vivo acute toxicity. This new strategy for biofilm removal (nanoscale bacterial debridement) is orthogonal to conventional rapidly developing resistance traits in bacteria so that it is as effective toward resistant strains as it is toward sensitive strains and may have widespread applications.

  6. Supermolecular drug challenge to overcome drug resistance in cancer cells.

    PubMed

    Onishi, Yasuhiko; Eshita, Yuki; Ji, Rui-Cheng; Kobayashi, Takashi; Onishi, Masayasu; Mizuno, Masaaki; Yoshida, Jun; Kubota, Naoji

    2018-06-04

    Overcoming multidrug resistance (MDR) of cancer cells can be accomplished using drug delivery systems in large-molecular-weight ATP-binding cassette transporters before entry into phagolysosomes and by particle-cell-surface interactions. However, these hypotheses do not address the intratumoral heterogeneity in cancer. Anti-MDR must be related to alterations of drug targets, expression of detoxification, as well as altered proliferation. In this study, it is shown that the excellent efficacy and sustainability of anti-MDR is due to a stable ES complex because of the allosteric facilities of artificial enzymes when they are used as supramolecular complexes. The allosteric effect of supermolecular drugs can be explained by the induced-fit model and can provide stable feedback control systems through the loop transfer function of the Hill equation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Silver nanoparticles as potential antibacterial agents.

    PubMed

    Franci, Gianluigi; Falanga, Annarita; Galdiero, Stefania; Palomba, Luciana; Rai, Mahendra; Morelli, Giancarlo; Galdiero, Massimiliano

    2015-05-18

    Multi-drug resistance is a growing problem in the treatment of infectious diseases and the widespread use of broad-spectrum antibiotics has produced antibiotic resistance for many human bacterial pathogens. Advances in nanotechnology have opened new horizons in nanomedicine, allowing the synthesis of nanoparticles that can be assembled into complex architectures. Novel studies and technologies are devoted to understanding the mechanisms of disease for the design of new drugs, but unfortunately infectious diseases continue to be a major health burden worldwide. Since ancient times, silver was known for its anti-bacterial effects and for centuries it has been used for prevention and control of disparate infections. Currently nanotechnology and nanomaterials are fully integrated in common applications and objects that we use every day. In addition, the silver nanoparticles are attracting much interest because of their potent antibacterial activity. Many studies have also shown an important activity of silver nanoparticles against bacterial biofilms. This review aims to summarize the emerging efforts to address current challenges and solutions in the treatment of infectious diseases, particularly the use of nanosilver antimicrobials.

  8. Silver nanoparticles: Synthesis methods, bio-applications and properties.

    PubMed

    Abbasi, Elham; Milani, Morteza; Fekri Aval, Sedigheh; Kouhi, Mohammad; Akbarzadeh, Abolfazl; Tayefi Nasrabadi, Hamid; Nikasa, Parisa; Joo, San Woo; Hanifehpour, Younes; Nejati-Koshki, Kazem; Samiei, Mohammad

    2016-01-01

    Silver nanoparticles size makes wide range of new applications in various fields of industry. Synthesis of noble metal nanoparticles for applications such as catalysis, electronics, optics, environmental and biotechnology is an area of constant interest. Two main methods for Silver nanoparticles are the physical and chemical methods. The problem with these methods is absorption of toxic substances onto them. Green synthesis approaches overcome this limitation. Silver nanoparticles size makes wide range of new applications in various fields of industry. This article summarizes exclusively scalable techniques and focuses on strengths, respectively, limitations with respect to the biomedical applicability and regulatory requirements concerning silver nanoparticles.

  9. High-Affinity Binding of Silybin Derivatives to the Nucleotide-Binding Domain of a Leishmania tropica P-Glycoprotein-Like Transporter and Chemosensitization of a Multidrug-Resistant Parasite to Daunomycin

    PubMed Central

    Pérez-Victoria, José M.; Pérez-Victoria, F. Javier; Conseil, Gwenaëlle; Maitrejean, Mathias; Comte, Gilles; Barron, Denis; Di Pietro, Attilio; Castanys, Santiago; Gamarro, Francisco

    2001-01-01

    In order to overcome the multidrug resistance mediated by P-glycoprotein-like transporters in Leishmania spp., we have studied the effects produced by derivatives of the flavanolignan silybin and related compounds lacking the monolignol unit on (i) the affinity of binding to a recombinant C-terminal nucleotide-binding domain of the L. tropica P-glycoprotein-like transporter and (ii) the sensitization to daunomycin on promastigote forms of a multidrug-resistant L. tropica line overexpressing the transporter. Oxidation of the flavanonol silybin to the corresponding flavonol dehydrosilybin, the presence of the monolignol unit, and the addition of a hydrophobic substituent such as dimethylallyl, especially at position 8 of ring A, considerably increased the binding affinity. The in vitro binding affinity of these compounds for the recombinant cytosolic domain correlated with their modulation of drug resistance phenotype. In particular, 8-(3,3-dimethylallyl)-dehydrosilybin effectively sensitized multidrug-resistant Leishmania spp. to daunomycin. The cytosolic domains are therefore attractive targets for the rational design of inhibitors against P-glycoprotein-like transporters. PMID:11158738

  10. Structural basis for the blockade of MATE multidrug efflux pumps

    DOE PAGES

    Radchenko, Martha; Symersky, Jindrich; Nie, Rongxin; ...

    2015-08-06

    Multidrug and toxic compound extrusion (MATE) transporters underpin multidrug resistance by using the H + or Na + electrochemical gradient to extrude different drugs across cell membranes. MATE transporters can be further parsed into the DinF, NorM and eukaryotic subfamilies based on their amino-acid sequence similarity. Here we report the 3.0 Å resolution X-ray structures of a protonation-mimetic mutant of an H +-coupled DinF transporter, as well as of an H +-coupled DinF and a Na +-coupled NorM transporters in complexes with verapamil, a small-molecule pharmaceutical that inhibits MATE-mediated multidrug extrusion. Combining structure-inspired mutational and functional studies, we confirm themore » biological relevance of our crystal structures, reveal the mechanistic differences among MATE transporters, and suggest how verapamil inhibits MATE-mediated multidrug efflux. Our findings offer insights into how MATE transporters extrude chemically and structurally dissimilar drugs and could inform the design of new strategies for tackling multidrug resistance.« less

  11. A co-delivery nanosystem of chemotherapeutics and DNAzyme overcomes cancer drug resistance and metastasis

    NASA Astrophysics Data System (ADS)

    Sun, Shu-Pin; Liu, Ching-Ping; Huang, I.-Ping; Chu, Chia-Hui; Chung, Ming-Fang; Cheng, Shih-Hsun; Lin, Shu-Yi; Lo, Leu-Wei

    2017-12-01

    Multidrug resistance (MDR) constitutes a major problem in the management of cancer and cancer metastasized from primary-source tumor causes cancer-related deaths. Our new approach is the co-delivery of chemotherapy drugs with a transcription-factor-targeting genetic agent to simultaneously inhibit the growth and metastasis of cancer cells. C-Jun is a transcription factor that regulates multidrug resistance-associated protein 1 (MRP1) pump efflux transcription and tumor metastasis. In this work, we reported that mesoporous silica nanoparticles (MSNs) can be functionalized to co-deliver doxorubicin (Dox) and DNAzyme (Dz) to increase cancer cell killing in an additive fashion. The MSNs were sequentially conjugated with Dox into the MSNs’ nanochannels and Dz onto the MSNs’ outermost surface to target c-Jun as the Dox@MSN-Dz co-delivery system. The Dox-resistant PC-3 cells treated with Dox@MSN-Dz efficiently enhanced the intracellular Dox concentration due to the abrogation of Dox-induced MRP1 expression through the downregulation of c-Jun expression by Dz. Additionally, significant reductions in invasion and migration related to metastasis were also observed in cells treated with Dox@MSN-Dz. Therefore, our results contribute new insight to the treatment of MDR combined metastatic cancer cells, worthwhile for studying its potential for development in clinical translation.

  12. Mechanistic study on antibacterial action of zinc oxide nanoparticles synthesized using green route.

    PubMed

    Happy Agarwal; Soumya Menon; Venkat Kumar, S; Rajeshkumar, S

    2018-04-25

    A large array of diseases caused by bacterial pathogens and origination of multidrug resistance in their gene provokes the need of developing new vectors or novel drug molecules for effective drug delivery and thus, better treatment of disease. The nanoparticle has emerged as a novel drug molecule in last decade and has been used in various industrial fields like cosmetics, healthcare, agricultural, pharmaceuticals due to their high optical, electronic, medicinal properties. Use of nanoparticles as an antibacterial agent remain in current studies with metal nanoparticles like silver, gold, copper, iron and metal oxide nanoparticles like zinc oxide, copper oxide, titanium oxide and iron oxide nanoparticles. The high anti-bacterial activity of nanoparticles is due to their large surface area to volume ratio which allows binding of a large number of ligands on nanoparticle surface and hence, its complexation with receptors present on the bacterial surface. Green synthesis of Zinc Oxide Nanoparticle (ZnO NP) and its anti-bacterial application has been particularly discussed in the review literature. The present study highlights differential nanoparticle attachment to gram + and gram - bacterial surface and different mechanism adopted by nanoparticle for bacterial control. Pharmacokinetics and applications of ZnO NP are also discussed briefly. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Exosomes play an important role in the process of psoralen reverse multidrug resistance of breast cancer.

    PubMed

    Wang, Xiaohong; Xu, Chengfeng; Hua, Yitong; Sun, Leitao; Cheng, Kai; Jia, Zhongming; Han, Yong; Dong, Jianli; Cui, Yuzhen; Yang, Zhenlin

    2016-12-01

    Release of exosomes have been shown to play critical roles in drug resistance by delivering cargo. Targeting the transfer of exosomes from resistant cells to sensitive cells may be an approach to overcome some cases of drug resistance. In this study, we investigated the potential role of exosomes in the process of psoralen reverse multidrug resistance of MCF-7/ADR cells. Exosomes were isolated by differential centrifugation of culture media from MCF-7/ADR cells (ADR/exo) and MCF-7 parental cells (S/exo). Exosomes were characterized by morphology, exosomal markers and size distribution. The ability of ADR/exo to transfer multidrug resistance was assessed by MTT and real-time quantitative PCR. The different formation and secretion of exosomes were detected by immunofluorescence and transmission electron microscopy. Then we performed comparative transcriptomic analysis using RNA-Seq technology and real-time quantitative PCR to better understand the gene expression regulation in exosmes formation and release after psoralen treatment. Our data showed that exosomes derived from MCF-7/ADR cells were able to promote active sequestration of drugs and could induce a drug resistance phenotype by transferring drug-resistance-related gene MDR-1 and P-glycoprotein protein. Psoralen could reduce the formation and secretion of exosomes to overcome drug resistance. There were 21 differentially expressed genes. Gene ontology (GO) pathway analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the most significantly expressed genes were linked to PPAR and P53 signaling pathways which were related to exosomes formation, secretion and cargo sorting. Psoralen can affect the exosomes and induce the reduction of resistance transmission via exosomes might through PPAR and P53 signaling pathways, which might provide a novel strategy for breast cancer resistance to chemotherapy in the future.

  14. Multidrug resistance in enteric and other gram-negative bacteria.

    PubMed

    George, A M

    1996-05-15

    In Gram-negative bacteria, multidrug resistance is a term that is used to describe mechanisms of resistance by chromosomal genes that are activated by induction or mutation caused by the stress of exposure to antibiotics in natural and clinical environments. Unlike plasmid-borne resistance genes, there is no alteration or degradation of drugs or need for genetic transfer. Exposure to a single drug leads to cross-resistance to many other structurally and functionally unrelated drugs. The only mechanism identified for multidrug resistance in bacteria is drug efflux by membrane transporters, even though many of these transporters remain to be identified. The enteric bacteria exhibit mostly complex multidrug resistance systems which are often regulated by operons or regulons. The purpose of this review is to survey molecular mechanisms of multidrug resistance in enteric and other Gram-negative bacteria, and to speculate on the origins and natural physiological functions of the genes involved.

  15. Marine Natural Products as Models to Circumvent Multidrug Resistance.

    PubMed

    Long, Solida; Sousa, Emília; Kijjoa, Anake; Pinto, Madalena M M

    2016-07-08

    Multidrug resistance (MDR) to anticancer drugs is a serious health problem that in many cases leads to cancer treatment failure. The ATP binding cassette (ABC) transporter P-glycoprotein (P-gp), which leads to premature efflux of drugs from cancer cells, is often responsible for MDR. On the other hand, a strategy to search for modulators from natural products to overcome MDR had been in place during the last decades. However, Nature limits the amount of some natural products, which has led to the development of synthetic strategies to increase their availability. This review summarizes the research findings on marine natural products and derivatives, mainly alkaloids, polyoxygenated sterols, polyketides, terpenoids, diketopiperazines, and peptides, with P-gp inhibitory activity highlighting the established structure-activity relationships. The synthetic pathways for the total synthesis of the most promising members and analogs are also presented. It is expected that the data gathered during the last decades concerning their synthesis and MDR-inhibiting activities will help medicinal chemists develop potential drug candidates using marine natural products as models which can deliver new ABC transporter inhibitor scaffolds.

  16. Multifunctional nanoplatforms for targeted multidrug-resistant-bacteria theranostic applications.

    PubMed

    Dai, Xuemei; Fan, Zhen; Lu, Yuefeng; Ray, Paresh Chandra

    2013-11-13

    The emergence of multidrug-resistant-bacteria (MDRB) infection poses a major burden to modern healthcare. Early detection in the bloodstream and a new strategy development for MDRB infection treatment without antibiotics are clinically significant to save millions of lives every year. To tackle the MDRB challenge, the current manuscript reports the design of "multifunctional nanoplatforms" consisting of a magnetic core-plasmonic shell nanoparticle, a methylene blue-bound aptamer, and an MDRB Salmonella DT104 specific antibody. The reported "multifunctional nanoplatform" is capable of targeted separation from a blood sample and sensing and multimodal therapeutic killing of MDRB. Experimental data using an MDRB-infected whole-blood sample show that nanoplatforms can be used for selective magnetic separation and fluorescence imaging. In vitro light-triggered photodestruction of MDRB, using combined photodynamic and photothermal treatment, shows that the multimodal treatment regime can enhance MDRB killing significantly. We discussed the possible mechanisms on combined synergistic therapy for killing MDRB. The "multifunctional nanoplatform" reported in this manuscript has great potential for the imaging and combined therapy of MDRB in clinical settings.

  17. Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika

    2011-01-07

    Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplishedmore » by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte

  18. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: Their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii.

    PubMed

    Chang, T Y; Chen, C C; Cheng, K M; Chin, C Y; Chen, Y H; Chen, X A; Sun, J R; Young, J J; Chiueh, T S

    2017-07-01

    We report a facile route for the green synthesis of trimethyl chitosan nitrate-capped silver nanoparticles (TMCN-AgNPs) with positive surface charge. In this synthesis, silver nitrate, glucose, and trimethyl chitosan nitrate (TMCN) were used as silver precursor, reducing agent, and stabilizer, respectively. The reaction was carried out in a stirred basic aqueous medium at room temperature without the use of energy-consuming or expensive equipment. We investigated the effects of the concentrations of NaOH, glucose, and TMCN on the particle size, zeta potential, and formation yield. The AgNPs were characterized by UV-vis spectroscopy, photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The catalytic activity of the TMCN-AgNPs was studied by the reduction of 4-nitrophenol using NaBH 4 as a reducing agent. We evaluated the antibacterial effects of the TMCN-AgNPs on Acinetobacter baumannii, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus using the broth microdilution method. The results showed that both gram-positive and gram-negative bacteria were killed by the TMCN-AgNPs at very low concentration (<6.13μg/mL). Moreover, the TMCN-AgNPs also showed high antibacterial activity against clinically isolated multidrug-resistant A. baumannii strains, and the minimum inhibitory concentration (MIC) was ≤12.25μg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Targeting Strategies for Multifunctional Nanoparticles in Cancer Imaging and Therapy

    PubMed Central

    Yu, Mi Kyung; Park, Jinho; Jon, Sangyong

    2012-01-01

    Nanomaterials offer new opportunities for cancer diagnosis and treatment. Multifunctional nanoparticles harboring various functions including targeting, imaging, therapy, and etc have been intensively studied aiming to overcome limitations associated with conventional cancer diagnosis and therapy. Of various nanoparticles, magnetic iron oxide nanoparticles with superparamagnetic property have shown potential as multifunctional nanoparticles for clinical translation because they have been used asmagnetic resonance imaging (MRI) constrast agents in clinic and their features could be easily tailored by including targeting moieties, fluorescence dyes, or therapeutic agents. This review summarizes targeting strategies for construction of multifunctional nanoparticles including magnetic nanoparticles-based theranostic systems, and the various surface engineering strategies of nanoparticles for in vivo applications. PMID:22272217

  20. Novel quinolone chalcones targeting colchicine-binding pocket kill multidrug-resistant cancer cells by inhibiting tubulin activity and MRP1 function.

    PubMed

    Lindamulage, I Kalhari; Vu, Hai-Yen; Karthikeyan, Chandrabose; Knockleby, James; Lee, Yi-Fang; Trivedi, Piyush; Lee, Hoyun

    2017-08-31

    Agents targeting colchicine-binding pocket usually show a minimal drug-resistance issue, albeit often associated with high toxicity. Chalcone-based compounds, which may bind to colchicine-binding site, are found in many edible fruits, suggesting that they can be effective drugs with less toxicity. Therefore, we synthesized and examined 24 quinolone chalcone compounds, from which we identified ((E)-3-(3-(2-Methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-17) and ((E)-6-Methoxy-3-(3-(2-methoxyphenyl)-3-oxoprop-1-enyl) quinolin-2(1H)-one) (CTR-20) as promising leads. In particular, CTR-20 was effective against 65 different cancer cell lines originated from 12 different tissues, largely in a cancer cell-specific manner. We found that both CTR-17 and CTR-20 reversibly bind to the colchicine-binding pocket on β-tubulin. Interestingly however, both the CTRs were highly effective against multidrug-resistant cancer cells while colchicine, paclitaxel and vinblastine were not. Our study with CTR-20 showed that it overcomes multidrug-resistance through its ability to impede MRP1 function while maintaining strong inhibition against microtubule activity. Data from mice engrafted with the MDA-MB-231 triple-negative breast cancer cells showed that both CTR-17 and CTR-20 possess strong anticancer activity, alone or in combination with paclitaxel, without causing any notable side effects. Together, our data demonstrates that both the CTRs can be effective and safe drugs against many different cancers, especially against multidrug-resistant tumors.

  1. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice

    PubMed Central

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe3O4 (MNP-Fe3O4) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 × 107 cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe3O4 combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe3O4 combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe3O4 combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe3O4 inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe3O4 combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model. PMID:19421372

  2. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice.

    PubMed

    Chen, Baoan; Cheng, Jian; Wu, Yanan; Gao, Feng; Xu, Wenlin; Shen, Huilin; Ding, Jiahua; Gao, Chong; Sun, Qian; Sun, Xinchen; Cheng, Hongyan; Li, Guohong; Chen, Wenji; Chen, Ningna; Liu, Lijie; Li, Xiaomao; Wang, Xuemei

    2009-01-01

    In this paper we establish the xenograft leukemia model with stable multidrug resistance in nude mice and to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (MNP-Fe(3)O(4)) combined with daunorubicin (DNR) in vivo. Two subclones of K562 and K562/A02 cells were inoculated subcutaneously into the back of athymic nude mice (1 x 10(7) cells/each) respectively to establish leukemia xenograft models. Drug-resistant and sensitive tumor-bearing nude mice were assigned randomly into five groups which were treated with normal saline; DNR; NP-Fe(3)O(4) combined with DNR; 5-BrTet combined with DNR; 5-BrTet and MNP-Fe(3)O(4) combined with DNR, respectively. The incidence of formation, growth characteristics, weight, and volume of tumors were observed. The histopathologic examination of tumors and organs were detected. For resistant tumors, the protein levels of Bcl-2, and BAX were detected by Western blot. Bcl-2, BAX, and caspase-3 genes were also detected. For K562/A02 cells xenograft tumors, 5-BrTet and MNP-Fe(3)O(4) combined with DNR significantly suppressed growth of tumor. A histopathologic examination of tumors clearly showed necrosis of the tumors. Application of 5-BrTet and MNP-Fe(3)O(4) inhibited the expression of Bcl-2 protein and upregulated the expression of BAX and caspase-3 proteins in K562/A02 cells xenograft tumor. It is concluded that 5-BrTet and MNP-Fe(3)O(4) combined with DNR had a significant tumor-suppressing effect on a MDR leukemia cells xenograft model.

  3. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors

    PubMed Central

    Kopecka, Joanna; Porto, Stefania; Lusa, Sara; Gazzano, Elena; Salzano, Giuseppina; Pinzòn-Daza, Martha Leonor; Giordano, Antonio; Desiderio, Vincenzo; Ghigo, Dario; De Rosa, Giuseppe; Caraglia, Michele; Riganti, Chiara

    2016-01-01

    The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking. The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization. NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors. Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells. PMID:26980746

  4. Multidrug resistance in fungi: regulation of transporter-encoding gene expression

    PubMed Central

    Paul, Sanjoy; Moye-Rowley, W. Scott

    2014-01-01

    A critical risk to the continued success of antifungal chemotherapy is the acquisition of resistance; a risk exacerbated by the few classes of effective antifungal drugs. Predictably, as the use of these drugs increases in the clinic, more resistant organisms can be isolated from patients. A particularly problematic form of drug resistance that routinely emerges in the major fungal pathogens is known as multidrug resistance. Multidrug resistance refers to the simultaneous acquisition of tolerance to a range of drugs via a limited or even single genetic change. This review will focus on recent progress in understanding pathways of multidrug resistance in fungi including those of most medical relevance. Analyses of multidrug resistance in Saccharomyces cerevisiae have provided the most detailed outline of multidrug resistance in a eukaryotic microorganism. Multidrug resistant isolates of S. cerevisiae typically result from changes in the activity of a pair of related transcription factors that in turn elicit overproduction of several target genes. Chief among these is the ATP-binding cassette (ABC)-encoding gene PDR5. Interestingly, in the medically important Candida species, very similar pathways are involved in acquisition of multidrug resistance. In both C. albicans and C. glabrata, changes in the activity of transcriptional activator proteins elicits overproduction of a protein closely related to S. cerevisiae Pdr5 called Cdr1. The major filamentous fungal pathogen, Aspergillus fumigatus, was previously thought to acquire resistance to azole compounds (the principal antifungal drug class) via alterations in the azole drug target-encoding gene cyp51A. More recent data indicate that pathways in addition to changes in the cyp51A gene are important determinants in A. fumigatus azole resistance. We will discuss findings that suggest azole resistance in A. fumigatus and Candida species may share more mechanistic similarities than previously thought. PMID:24795641

  5. The reversal effects of 3-bromopyruvate on multidrug resistance in vitro and in vivo derived from human breast MCF-7/ADR cells.

    PubMed

    Wu, Long; Xu, Jun; Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer's instructions. 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely, a decrease in the intracellular

  6. The Reversal Effects of 3-Bromopyruvate on Multidrug Resistance In Vitro and In Vivo Derived from Human Breast MCF-7/ADR Cells

    PubMed Central

    Yuan, Weiqi; Wu, Baojian; Wang, Hao; Liu, Guangquan; Wang, Xiaoxiong; Du, Jun; Cai, Shaohui

    2014-01-01

    Purpose P-glycoprotein mediated efflux is one of the main mechanisms for multidrug resistance in cancers, and 3-Bromopyruvate acts as a promising multidrug resistance reversal compound in our study. To test the ability of 3-Bromopyruvate to overcome P-glycoprotein-mediated multidrug resistance and to explore its mechanisms of multidrug resistance reversal in MCF-7/ADR cells, we evaluate the in vitro and in vivo modulatory activity of this compound. Methods The in vitro and in vivo activity was determined using the MTT assay and human breast cancer xenograft models. The gene and protein expression of P-glycoprotein were determined using real-time polymerase chain reaction and the Western blotting technique, respectively. ABCB-1 bioactivity was tested by fluorescence microscopy, multi-mode microplate reader, and flow cytometry. The intracellular levels of ATP, HK-II, and ATPase activity were based on an assay kit according to the manufacturer’s instructions. Results 3-Bromopyruvate treatment led to marked decreases in the IC50 values of selected chemotherapeutic drugs [e.g., doxorubicin (283 folds), paclitaxel (85 folds), daunorubicin (201 folds), and epirubicin (171 folds)] in MCF-7/ADR cells. 3-Bromopyruvate was found also to potentiate significantly the antitumor activity of epirubicin against MCF-7/ADR xenografts. The intracellular level of ATP decreased 44%, 46% in the presence of 12.5.25 µM 3-Bromopyruvate, whereas the accumulation of rhodamine 123 and epirubicin (two typical P-glycoprotein substrates) in cells was significantly increased. Furthermore, we found that the mRNA and the total protein level of P-glycoprotein were slightly altered by 3-Bromopyruvate. Moreover, the ATPase activity was significantly inhibited when 3-Bromopyruvate was applied. Conclusion We demonstrated that 3-Bromopyruvate can reverse P-glycoprotein-mediated efflux in MCF-7/ADR cells. Multidrug resistance reversal by 3-Bromopyruvate occurred through at least three approaches, namely

  7. Expression of multidrug resistance proteins in retinoblastoma

    PubMed Central

    Shukla, Swati; Srivastava, Arpna; Kumar, Sunil; Singh, Usha; Goswami, Sandeep; Chawla, Bhavna; Bajaj, Mandeep Singh; Kashyap, Seema; Kaur, Jasbir

    2017-01-01

    AIM To elucidate the mechanism of multidrug resistance in retinoblastoma, and to acquire more insights into in vivo drug resistance. METHODS Three anticancer drug resistant Y79 human RB cells were generated against vincristine, etoposide or carboplatin, which are used for conventional chemotherapy in RB. Primary cultures from enucleated eyes after chemotherapy (PCNC) were also prepared. Their chemosensitivity to chemotherapeutic agents (vincristine, etoposide and carboplatin) were measured using MTT assay. Western blot analysis was performed to evaluate the expression of p53, Bcl-2 and various multidrug resistant proteins in retinoblastoma cells. RESULTS Following exposure to chemotherapeutic drugs, PCNC showed less sensitivity to drugs. No significant changes observed in the p53 expression, whereas Bcl-2 expression was found to be increased in the drug resistant cells as well as in PCNC. Increased expression of P-glycoprotein (P-gp) was observed in drug resistant Y79 cells; however there was no significant change in the expression of P-gp found between primary cultures of primarily enucleated eyes and PCNC. Multidrug resistance protein 1 (Mrp-1) expression was found to be elevated in the drug resistant Y79 cells as well as in PCNC. No significant change in the expression of lung resistance associated protein (Lrp) was observed in the drug resistant Y79 cells as well as in PCNC. CONCLUSION Our results suggest that multidrug resistant proteins are intrinsically present in retinoblastoma which causes treatment failure in managing retinoblastoma with chemotherapy. PMID:29181307

  8. Poly (amidoamine) (PAMAM) dendrimer mediated delivery of drug and pDNA/siRNA for cancer therapy.

    PubMed

    Li, Jun; Liang, Huamin; Liu, Jing; Wang, Ziyuan

    2018-07-30

    Poly (amidoamine) (PAMAM) dendrimers are well-defined, highly branched macromolecules with numerous active amine groups on the surface. Because of their unique properties, PAMAM dendrimers have steadily grown in popularity in drug delivery, gene therapy, medical imaging and diagnostic application. This review focuses on the recent developments on the application in PAMAM dendrimers as effective carriers for drug and gene (pDNA, siRNA) delivery in cancer therapy, including: a) PAMAM for anticancer drug delivery; b) PAMAM and gene therapy; c) PAMAM used in overcoming tumor multidrug resistance; d) PAMAM used for hybrid nanoparticles; and e) PAMAM linked or loaded in other nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. In vivo nanotoxicology of hybrid systems based on copolymer/silica/anticancer drug

    NASA Astrophysics Data System (ADS)

    Silveira, C. P.; Paula, A. J.; Apolinário, L. M.; Fávaro, W. J.; Durán, N.

    2015-05-01

    One of the major problems in cancer therapies is the high occurrence of side effects intrinsic of anticancer drugs. Doxorrubicin is a conventional anticancer molecule used to treat a wide range of cancer, such as breast, ovarian and prostate. However, its use is associated with a number of side effects like multidrug resistance and cardiotoxicity. The association with nanomaterials has been considered in the past decade to overcome the high toxicity of these drugs. In this context, mesoporous silica nanoparticles are great candidates to be used as carriers once they are very biocompatible. Taking into account the combination of nanoparticles and doxorrubicin, we treated rats with chemically induced prostate cancer with systems based on mesoporous silica nanoparticles and a thermoreversible block copolymer (Pluronic F-127) containing doxorrubicin. Preliminary results show a possible improvement in tumor conditions proportional to the concentration of the nanoparticles, opening a perspective to use mesoporous silica nanoparticles as carrier for doxorrubicin in prostate cancer treatment.

  10. Regulation of the Expression of Bacterial Multidrug Exporters by Two-Component Signal Transduction Systems.

    PubMed

    Nishino, Kunihiko

    2018-01-01

    Bacterial multidrug exporters confer resistance to a wide range of antibiotics, dyes, and biocides. Recent studies have shown that there are many multidrug exporters encoded in bacterial genome. For example, it was experimentally identified that E. coli has at least 20 multidrug exporters. Because many of these multidrug exporters have overlapping substrate spectra, it is intriguing that bacteria, with their economically organized genomes, harbor such large sets of multidrug exporter genes. The key to understanding how bacteria utilize these multiple exporters lies in the regulation of exporter expression. Bacteria have developed signaling systems for eliciting a variety of adaptive responses to their environments. These adaptive responses are often mediated by two-component regulatory systems. In this chapter, the method to identify response regulators that affect expression of multidrug exporters is described.

  11. Review: nanoparticles in delivery of cardiovascular drugs.

    PubMed

    Arayne, M Saeed; Sultana, Najma; Qureshi, Faiza

    2007-10-01

    Everything in nature is built upward from the atomic level to define limits and structures to everything. Nanomedicines marked the field of medicine from nanobiotechnology, biological micro-electromechanical systems, microfluidics, biosensors, drug delivery, microarrays to tissue microengineering. Since then nanoparticles has overcome many challenges from blood brain barrier to targeting tumors. Where solid biodegradable nanoparticles were a step up liposome, targeting nanoparticles opened a whole new field for drug delivery. In this article, we attempt to discuss how the pioneered technique is serving in the drug delivery to cardiovascular system and how with the manipulation of their properties, nanoparticles can be made to fulfill desired function. Also how nanocarriers are improving molecular imaging to help improve diagnosis and treatment of cardiovascular disease is focused in this article.

  12. Fabrication of core-shell micro/nanoparticles for programmable dual drug release by emulsion electrospraying

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Zhang, Yiqiong; Wang, Bochu; Cao, Yang; Yu, Qingsong; Yin, Tieying

    2013-06-01

    The study aimed at constructing a novel drug delivery system for programmable multiple drug release controlled with core-shell structure. The core-shell structure consisted of chitosan nanoparticles as core and polyvinylpyrrolidone micro/nanocoating as shell to form core-shell micro/nanoparticles, which was fabricated by ionic gelation and emulsion electrospray methods. As model drug agents, Naproxen and rhodamine B were encapsulated in the core and shell regions, respectively. The core-shell micro/nanoparticles thus fabricated were characterized and confirmed by scanning electron microscope, transmission electron microscope, and fluorescence optical microscope. The core-shell micro/nanoparticles showed good release controllability through drug release experiment in vitro. It was noted that a programmable release pattern for dual drug agents was also achieved by adjusting their loading regions in the core-shell structures. The results indicate that emulsion electrospraying technology is a promising approach in fabrication of core-shell micro/nanoparticles for programmable dual drug release. Such a novel multi-drug delivery system has a potential application for the clinical treatment of cancer, tuberculosis, and tissue engineering.

  13. Tailoring shape and size of biogenic silver nanoparticles to enhance antimicrobial efficacy against MDR bacteria.

    PubMed

    Kumari, Madhuree; Pandey, Shipra; Giri, Ved Prakash; Bhattacharya, Arpita; Shukla, Richa; Mishra, Aradhana; Nautiyal, C S

    2017-04-01

    Spherical, rectangular, penta, and hexagonal silver nanoparticles of different dimensions were biosynthesized in an eco-friendly manner by biocontrol agent, Trichoderma viride by manipulating physical parameters, pH, temperature, and reaction time. The particles were characterized by UV-vis spectroscopy; Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and Fourier Transform Infra-red Spectroscopy (FTIR). Shape and size dependent antimicrobial activity of nanoparticles against human pathogens was observed. Maximum inhibition was found with spherical nanoparticles (2-5 nm) showing 40, 51, 43, 53.9 and 55.8% against Shigella sonnei, Escherichia coli, Serratia marcescens, Staphylococcus. aureus and Pseudomonas aeruginosa respectively, where as pentagonal and hexagonal nanoparticles (50-100 nm) demonstrated 32, 41, 31, 42.84 and 42.80% of inhibition as compared to control. Nanoparticles of different geometry and dimension established enhanced antagonistic activity against pathogens with all the tested antibiotics. Excellent antimicrobial efficacy was obtained with spherical nanoparticles of 2-5 nm with ampicillin and penicillin. Shape and size played major role in enhancing antimicrobial potential of silver nanoparticles, both singly and synergistically with antibiotics which can be exploited to combat the spread of multidrug resistant pathogens. Copyright © 2016. Published by Elsevier Ltd.

  14. In situ reduction of antibacterial silver ions to metallic silver nanoparticles on bioactive glasses functionalized with polyphenols

    NASA Astrophysics Data System (ADS)

    Ferraris, S.; Miola, M.; Cochis, A.; Azzimonti, B.; Rimondini, L.; Prenesti, E.; Vernè, E.

    2017-02-01

    The realization of surfaces with antibacterial properties due to silver nanoparticles loaded through a green approach is a promising research challenge of the biomaterial field. In this research work, two bioactive glasses have been doubly surface functionalized with polyphenols (gallic acid or natural polyphenols extracted from red grape skins and green tea leaves) and silver nanoparticles deposited by in situ reduction from a silver nitrate aqueous solution. The presence of biomolecules - showing reducing ability to directly obtain in situ metallic silver - and silver nanoparticles was investigated by means of UV-vis spectroscopy, X-Ray Photoelectron Spectroscopy (XPS) and Field Emission Scanning Electron Microscopy (FESEM). The antibacterial activity of the modified surfaces was tested against a multidrug resistant Staphylococcus aureus bacterial strain.

  15. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells

    PubMed Central

    Seo, Hye-Sook; Ku, Jin Mo; Choi, Hyeong Sim; Woo, Jong-Kyu; Lee, Byung Hoon; Kim, Doh Sun; Song, Hyun Jong; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2017-01-01

    Drug resistance in chemotherapy is a serious obstacle for the successful treatment of cancer. Drug resistance is caused by various factors, including the overexpression of P-glycoprotein (P-gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in vivo and in vitro. In the present study, we investigated whether apigenin is able to reverse drug resistance using adriamycin-resistant breast cancer cells (MCF-7/ADR). In our experiments, apigenin significantly decreased cell growth and colony formation in MCF-7/ADR cells and parental MCF-7 cells. This growth inhibition was related to the accumulation of cells in the sub-G0/G1 apoptotic population and an increase in the number of apoptotic cells. Apigenin reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance-associated proteins (MRPs) in MCF-7/ADR cells. Apigenin also downregulated the expression of P-gp. Apigenin reversed drug efflux from MCF-7/ADR cells, resulting in rhodamine 123 (Rho123) accumulation. Inhibition of drug resistance by apigenin is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Apigenin decreased STAT3 activation (p-STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP-9, which are STAT3 target genes. A STAT3 inhibitor, JAK inhibitor I and an HIF-1α inhibitor decreased cell growth in MCF-7 and MCF-7/ADR cells. Taken together, these results demonstrate that apigenin can overcome drug resistance. PMID:28656316

  16. Apigenin overcomes drug resistance by blocking the signal transducer and activator of transcription 3 signaling in breast cancer cells.

    PubMed

    Seo, Hye-Sook; Ku, Jin Mo; Choi, Hyeong Sim; Woo, Jong-Kyu; Lee, Byung Hoon; Kim, Doh Sun; Song, Hyun Jong; Jang, Bo-Hyoung; Shin, Yong Cheol; Ko, Seong-Gyu

    2017-08-01

    Drug resistance in chemotherapy is a serious obstacle for the successful treatment of cancer. Drug resistance is caused by various factors, including the overexpression of P‑glycoprotein (P‑gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in vivo and in vitro. In the present study, we investigated whether apigenin is able to reverse drug resistance using adriamycin‑resistant breast cancer cells (MCF‑7/ADR). In our experiments, apigenin significantly decreased cell growth and colony formation in MCF‑7/ADR cells and parental MCF‑7 cells. This growth inhibition was related to the accumulation of cells in the sub‑G0/G1 apoptotic population and an increase in the number of apoptotic cells. Apigenin reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance‑associated proteins (MRPs) in MCF‑7/ADR cells. Apigenin also downregulated the expression of P‑gp. Apigenin reversed drug efflux from MCF‑7/ADR cells, resulting in rhodamine 123 (Rho123) accumulation. Inhibition of drug resistance by apigenin is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Apigenin decreased STAT3 activation (p‑STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP‑9, which are STAT3 target genes. A STAT3 inhibitor, JAK inhibitor I and an HIF‑1α inhibitor decreased cell growth in MCF‑7 and MCF‑7/ADR cells. Taken together, these results demonstrate that apigenin can overcome drug resistance.

  17. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition.

    PubMed

    Morales, Eva; Cots, Francesc; Sala, Maria; Comas, Mercè; Belvis, Francesc; Riu, Marta; Salvadó, Margarita; Grau, Santiago; Horcajada, Juan P; Montero, Maria Milagro; Castells, Xavier

    2012-05-23

    We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact.

  18. Structures of a Na+-coupled, substrate-bound MATE multidrug transporter

    PubMed Central

    Lu, Min; Symersky, Jindrich; Radchenko, Martha; Koide, Akiko; Guo, Yi; Nie, Rongxin; Koide, Shohei

    2013-01-01

    Multidrug transporters belonging to the multidrug and toxic compound extrusion (MATE) family expel dissimilar lipophilic and cationic drugs across cell membranes by dissipating a preexisting Na+ or H+ gradient. Despite its clinical relevance, the transport mechanism of MATE proteins remains poorly understood, largely owing to a lack of structural information on the substrate-bound transporter. Here we report crystal structures of a Na+-coupled MATE transporter NorM from Neisseria gonorrheae in complexes with three distinct translocation substrates (ethidium, rhodamine 6G, and tetraphenylphosphonium), as well as Cs+ (a Na+ congener), all captured in extracellular-facing and drug-bound states. The structures revealed a multidrug-binding cavity festooned with four negatively charged amino acids and surprisingly limited hydrophobic moieties, in stark contrast to the general belief that aromatic amino acids play a prominent role in multidrug recognition. Furthermore, we discovered an uncommon cation–π interaction in the Na+-binding site located outside the drug-binding cavity and validated the biological relevance of both the substrate- and cation-binding sites by conducting drug resistance and transport assays. Additionally, we uncovered potential rearrangement of at least two transmembrane helices upon Na+-induced drug export. Based on our structural and functional analyses, we suggest that Na+ triggers multidrug extrusion by inducing protein conformational changes rather than by directly competing for the substrate-binding amino acids. This scenario is distinct from the canonical antiport mechanism, in which both substrate and counterion compete for a shared binding site in the transporter. Collectively, our findings provide an important step toward a detailed and mechanistic understanding of multidrug transport. PMID:23341609

  19. Analysis of nanoparticle delivery to tumours

    NASA Astrophysics Data System (ADS)

    Wilhelm, Stefan; Tavares, Anthony J.; Dai, Qin; Ohta, Seiichi; Audet, Julie; Dvorak, Harold F.; Chan, Warren C. W.

    2016-05-01

    Targeting nanoparticles to malignant tissues for improved diagnosis and therapy is a popular concept. However, after surveying the literature from the past 10 years, only 0.7% (median) of the administered nanoparticle dose is found to be delivered to a solid tumour. This has negative consequences on the translation of nanotechnology for human use with respect to manufacturing, cost, toxicity, and imaging and therapeutic efficacy. In this article, we conduct a multivariate analysis on the compiled data to reveal the contributions of nanoparticle physicochemical parameters, tumour models and cancer types on the low delivery efficiency. We explore the potential causes of the poor delivery efficiency from the perspectives of tumour biology (intercellular versus transcellular transport, enhanced permeability and retention effect, and physicochemical-dependent nanoparticle transport through the tumour stroma) as well as competing organs (mononuclear phagocytic and renal systems) and present a 30-year research strategy to overcome this fundamental limitation. Solving the nanoparticle delivery problem will accelerate the clinical translation of nanomedicine.

  20. Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications.

    PubMed

    Singh, Richa; Shedbalkar, Utkarsha U; Wadhwani, Sweety A; Chopade, Balu A

    2015-06-01

    Silver nanoparticles (AgNPs) have received tremendous attention due to their significant antimicrobial properties. Large numbers of reports are available on the physical, chemical, and biological syntheses of colloidal AgNPs. Since there is a great need to develop ecofriendly and sustainable methods, biological systems like bacteria, fungi, and plants are being employed to synthesize these nanoparticles. The present review focuses specifically on bacteria-mediated synthesis of AgNPs, its mechanism, and applications. Bacterial synthesis of extra- and intracellular AgNPs has been reported using biomass, supernatant, cell-free extract, and derived components. The extracellular mode of synthesis is preferred over the intracellular mode owing to easy recovery of nanoparticles. Silver-resistant genes, c-type cytochromes, peptides, cellular enzymes like nitrate reductase, and reducing cofactors play significant roles in AgNP synthesis in bacteria. Organic materials released by bacteria act as natural capping and stabilizing agents for AgNPs, thereby preventing their aggregation and providing stability for a longer time. Regulation over reaction conditions has been suggested to control the morphology, dispersion, and yield of nanoparticles. Bacterial AgNPs have anticancer and antioxidant properties. Moreover, the antimicrobial activity of AgNPs in combination with antibiotics signifies their importance in combating the multidrug-resistant pathogenic microorganisms. Multiple microbicidal mechanisms exhibited by AgNPs, depending upon their size and shape, make them very promising as novel nanoantibiotics.

  1. Codelivery of doxorubicin and MDR1-siRNA by mesoporous silica nanoparticles-polymerpolyethylenimine to improve oral squamous carcinoma treatment

    PubMed Central

    Zhang, Kai; Sun, Bin; Wang, Lu; Meng, Lin; Liu, Qilin; Zheng, Changyu; Yang, Bai; Sun, Hongchen

    2018-01-01

    Oral cancer is a type of head and neck cancer that is the seventh most frequent cancer and the ninth most frequent cause of death globally. About 90% of oral cancer is of squamous cell carcinoma type. Surgery and radiation with and without chemotherapy are the major treatments for oral cancer. Better advanced treatment is still needed. Multidrug resistance plays an important role in failure of oral cancer chemotherapy. In this study, we tried to fabricate a novel nanoparticle that could carry both MDR1-siRNA to block MDR1 expression and doxorubicin (DOX), a chemotherapy drug, into cancer cells in order to directly kill the cells with little or no effect of multidrug resistance. Results showed that mesoporous silica nanoparticles (MSNP) can be modified by cationic polymerpolyethylenimine (PEI) to obtain positive charges on the surface, which could enable the MSNP to carry MDR1-siRNA and DOX. The transfection efficiency assays demonstrated that the MSNP-PEI-DOX/ MDR1-siRNA was efficiently transfected into KBV cells in vitro. KBV cells transfected with MSNP-PEI-DOX/MDR1-siRNA could effectively decrease gene expression of MDR1 (~70% increase after 72 hours posttreatment) and induce the apoptosis of KBV cells (24.27% after 48 hours posttreatment) in vitro. Importantly, MSNP-PEI-DOX/MDR1-siRNA dramatically reduced the tumor size (81.64% decrease after 28 days posttreatment) and slowed down tumor growth rate compared to the control group in vivo (P<0.05). In the aggregate, newly synthesized MSNP-PEI-DOX/MDR1-siRNA improves cancer chemotherapy effect in terms of treating multidrug-resistant cancer compared to DOX only, clearly demonstrating that MSNP-PEI-DOX/MDR1-siRNA has potential therapeutic application for multidrug-resistant cancer in the future. PMID:29343957

  2. Antituberculous effect of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Kreytsberg, G. N.; Gracheva, I. E.; Kibrik, B. S.; Golikov, I. V.

    2011-04-01

    The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.

  3. Co-delivery of pemetrexed and miR-21 antisense oligonucleotide by lipid-polymer hybrid nanoparticles and effects on glioblastoma cells.

    PubMed

    Küçüktürkmen, Berrin; Devrim, Burcu; Saka, Ongun M; Yilmaz, Şükran; Arsoy, Taibe; Bozkir, Asuman

    2017-01-01

    Combination therapy using anticancer drugs and nucleic acid is a more promising strategy to overcome multidrug resistance in cancer and to enhance apoptosis. In this study, lipid-polymer hybrid nanoparticles (LPNs), which contain both pemetrexed and miR-21 antisense oligonucleotide (anti-miR-21), have been developed for treatment of glioblastoma, the most aggressive type of brain tumor. Prepared LPNs have been well characterized by particle size distribution and zeta potential measurements, determination of encapsulation efficiency, and in vitro release experiments. Morphology of LPNs was determined by transmission electron microscopy. LPNs had a hydrodynamic size below 100 nm and exhibited sustained release of pemetrexed up to 10 h. Encapsulation of pemetrexed in LPNs increased cellular uptake from 6% to 78%. Results of confocal microscopy analysis have shown that co-delivery of anti-miR-21 significantly improved accumulation of LPNs in the nucleus of U87MG cells. Nevertheless, more effective cytotoxicity results could not be obtained due to low concentration of anti-miR-21, loaded in LPNs. We expect that the effective drug delivery systems can be obtained with higher concentration of anti-miR-21 for the treatment of glioblastoma.

  4. Characterization and interplay of bacteriocin and exopolysaccharide-mediated silver nanoparticles as an antibacterial agent.

    PubMed

    Ansari, Asma; Pervez, Sidra; Javed, Urooj; Abro, Muhammad Ishaque; Nawaz, Muhammad Asif; Qader, Shah Ali Ul; Aman, Afsheen

    2018-04-22

    Metallic nanoparticles have a substantial scientific interest because of their distinctive physicochemical and antimicrobial properties and the emergence of multidrug resistant pathogens could unlock the potential of nanoparticles to combat infectious diseases. The aim of the current study is to enhance the antibacterial potential of purified bacteriocin by combining bacteriocin and antibacterial silver nanoparticles (AgNPs). Hence, the interaction of natural antimicrobial compounds and antibacterial nanoparticles can be used as a potential tool for combating infectious diseases. In this study, a green, simple and effective approach is used to synthesize antibacterial AgNPs using fungal exopolysaccharide as both a reducing and stabilizing agent. The AgNPs were characterized by spectroscopic analysis, Scanning Electron Microscopy (SEM), Energy Dispersive X-ray spectroscopy (EDX) and Dynamic Light Scattering (DLS). Furthermore, the synergistic effect of bacteriocin-AgNPs was determined against pathogenic strains. The histogram of AgNPs indicated well-dispersed, stabilized and negatively charged particles with variable size distribution. The combination of bacteriocin with nanoparticles found to be more effective due to broad antibacterial potential with possibly lower doses. The current study is imperative to provide an alternative for the chemical synthesis of silver nanoparticles. It showed environmental friendly and cost effective green synthesis of antibacterial nanoparticles. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. CXCR4-targeted lipid-coated PLGA nanoparticles deliver sorafenib and overcome acquired drug resistance in liver cancer.

    PubMed

    Gao, Dong-Yu; Lin, Ts-Ting; Sung, Yun-Chieh; Liu, Ya Chi; Chiang, Wen-Hsuan; Chang, Chih-Chun; Liu, Jia-Yu; Chen, Yunching

    2015-10-01

    Sorafenib, a multikinase inhibitor, has been used as an anti-angiogenic agent against highly vascular hepatocellular carcinoma (HCC) - yet associated with only moderate therapeutic effect and the high incidence of HCC recurrence. We have shown intratumoral hypoxia induced by sorafenib activated C-X-C receptor type 4 (CXCR4)/stromal-derived factor 1α (SDF1α) axis, resulting in polarization toward a tumor-promoting microenvironment and resistance to anti-angiogenic therapy in HCC. Herein, we formulated sorafenib in CXCR4-targeted lipid-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) modified with a CXCR4 antagonist, AMD3100 to systemically deliver sorafenib into HCC and sensitize HCC to sorafenib treatment. We demonstrated that CXCR4-targeted NPs efficiently delivered sorafenib into HCCs and human umbilical vein endothelial cells (HUVECs) to achieve cytotoxicity and anti-angiogenic effect in vitro and in vivo. Despite the increased expression of SDF1α upon the persistent hypoxia induced by sorafenib-loaded CXCR4-targeted NPs, AMD3100 attached to the NPs can block CXCR4/SDF1α, leading to the reduced infiltration of tumor-associated macrophages, enhanced anti-angiogenic effect, a delay in tumor progression and increased overall survival in the orthotopic HCC model compared with other control groups. In conclusion, our results highlight the clinical potential of CXCR4-targeted NPs for delivering sorafenib and overcoming acquired drug resistance in liver cancer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    PubMed Central

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  7. Increase of electrodeposited catalyst stability via plasma grown vertically oriented graphene nanoparticle movement restriction.

    PubMed

    Vanrenterghem, Bart; Hodnik, Nejc; Bele, Marjan; Šala, Martin; Amelinckx, Giovanni; Neukermans, Sander; Zaplotnik, Rok; Primc, Gregor; Mozetič, Miran; Breugelmans, Tom

    2017-08-17

    Beside activity, electrocatalyst stability is gaining in importance. The most common degradation mechanism is the loss of the active surface area due to nanoparticle growth via coalescence/agglomeration. We propose a particle confinement strategy via vertically oriented graphene deposition to overcome degradation of the nanoparticles.

  8. Research Progress in Reversal of Tumor Multi-drug Resistance via Natural Products.

    PubMed

    Guo, Qi; Cao, Hongyan; Qi, Xianghui; Li, Huikai; Ye, Peizhi; Wang, Zhiguo; Wang, Danqiao; Sun, Mingyu

    2017-11-24

    Multidrug resistance occurs when a tumor develops resistance to multiple chemotherapeutic drugs, which may include antitumor drugs with different chemical structures and mechanisms. Multidrug resistance limits the treatment effects of antitumor drugs, and is the main cause of chemotherapy failure. Multidrug resistance is caused by numerous factors including changes in ATP-binding cassette transporters, target proteins, detoxification, deoxyribonucleic acid repair, drug metabolic enzymes, and signal pathways of apoptosis. Clinical research indicates that natural products have great potential to treat tumors and reverse multidrug resistance. Natural products, which often have multiple targets, could play an important role in tumor treatment, have beneficial effects on tumor inhibition, improve symptoms, reduce radiotherapy and chemotherapy side effects, enhance immunity, and prolong survival. Because natural products often have few adverse reactions and less drug resistance, the antitumor activities of natural products have attracted extensive research. We aimed to review the basic research and clinical application of natural products in the reversal of multidrug resistance. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Antibacterial efficacy of silver nanoparticles and ethyl acetate's metabolites of the potent halophilic (marine) bacterium, Bacillus cereus A30 on multidrug resistant bacteria.

    PubMed

    Arul, Dhayalan; Balasubramani, Govindasamy; Balasubramanian, Velramar; Natarajan, Thillainathan; Perumal, Pachiappan

    2017-10-01

    Bacteria are generally responsible for the prevalence of several diseases and pathogenic bacteria are showing increasing resistance to different antibacterials. During the present study an extremophilic bacterium-A30 isolated from the marine waters was characterized and evaluated against four multi-drug resistant (MDR) pathogens, viz; Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The sensitivity pattern of the selected pathogens was tested with 31 antibiotics. Among the 47 marine microbial extracts tested on 4-MDR pathogens viz: Methicillin-resistant Staphylococcus aureus (MRSA), E. coli, K. pneumoniae and P. aeruginosa, only our strain A30 strain exhibited highest efficacy. This strain was subsequently subjected to 16S rDNA sequencing which confirmed its allocation as Bacillus cereus. Silver nanoparticle (AgNPs) synthesis and ethyl acetate extraction were performed using the supernatant of B. cereus. The synthesized AgNPs were characterized by UV-Visible, Fourier-transform infra-red (FT-IR), X-ray diffraction (XRD), Field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX), and Zeta potential analyses. The presence of functional groups and 13 bioactive components in the ethyl acetate extract were analyzed using FT-IR and gas chromatography-mass spectrometry (GC-MS). The synthesized of AgNPs and the ethyl acetate extract showed preponderant activity against P. aeruginosa and MRSA, respectively. The effects of AgNPs were significant when compared to ethyl acetate extract. Therefore, the halophilic bacterium, B. cereus mediated AgNPs could provide antibacterial applications in the biomedical industries.

  10. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria

    NASA Astrophysics Data System (ADS)

    Feng, Yan; Chen, Wenwen; Jia, Yuexiao; Tian, Yue; Zhao, Yuyun; Long, Fei; Rui, Yukui; Jiang, Xingyu

    2016-07-01

    We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs.We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03317b

  11. Nanoparticles as conjugated delivery agents for therapeutic applications

    NASA Astrophysics Data System (ADS)

    Muroski, Megan Elizabeth

    efficient inducer of protein expression following a single treatment of femur bone marrow isolated rat MSCs. Use of the neutral penta-peptide, Ku70, designed from Bax-inhibiting peptides in a 500:1 ratio to the linearized gene yields >80% transfection efficiencies. Chapter 5 further develops this idea by using cell penetrating peptides. Research over the past decade has identified several of the key limiting features in multidrug resistance therapy applications, such as, cellular targeting, protection from multidrug resistant mediators and retention of intact and functional drugs. Cell penetrating peptides are able to overcome the difficulties of drug transport resulting in improved efficacy of delivery. Functionalizing the cell penetrating peptide onto the surface of a quantum dot, allows the capability of creating an individualized package for further downstream studies. Four distinct cell penetrating peptides, TAT, VP-22, Ku-70, and hCT (9-32), were utilized to study the different profiles in gliosarcoma lines (rat 9L) with varying resistances to one of the most prescribed drugs in treating glioblastoma in the clinic; BCNU. (Abstract shortened by UMI.)

  12. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris

    PubMed Central

    Zhao, Yanan; Lockhart, Shawn R.; Berrio, Indira

    2017-01-01

    ABSTRACT Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii, Candida haemulonii, and Candida lusitaniae. Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. PMID:28539346

  13. Rapid and Accurate Molecular Identification of the Emerging Multidrug-Resistant Pathogen Candida auris.

    PubMed

    Kordalewska, Milena; Zhao, Yanan; Lockhart, Shawn R; Chowdhary, Anuradha; Berrio, Indira; Perlin, David S

    2017-08-01

    Candida auris is an emerging multidrug-resistant fungal pathogen causing nosocomial and invasive infections associated with high mortality. C. auris is commonly misidentified as several different yeast species by commercially available phenotypic identification platforms. Thus, there is an urgent need for a reliable diagnostic method. In this paper, we present fast, robust, easy-to-perform and interpret PCR and real-time PCR assays to identify C. auris and related species: Candida duobushaemulonii , Candida haemulonii , and Candida lusitaniae Targeting rDNA region nucleotide sequences, primers specific for C. auris only or C. auris and related species were designed. A panel of 140 clinical fungal isolates was used in both PCR and real-time PCR assays followed by electrophoresis or melting temperature analysis, respectively. The identification results from the assays were 100% concordant with DNA sequencing results. These molecular assays overcome the deficiencies of existing phenotypic tests to identify C. auris and related species. Copyright © 2017 Kordalewska et al.

  14. From Nano to Micro: using nanotechnology to combat microorganisms and their multidrug resistance.

    PubMed

    Natan, Michal; Banin, Ehud

    2017-05-01

    The spread of antibiotic resistance and increasing prevalence of biofilm-associated infections is driving demand for new means to treat bacterial infection. Nanotechnology provides an innovative platform for addressing this challenge, with potential to manage even infections involving multidrug-resistant (MDR) bacteria. The current review summarizes recent progress over the last 2 years in the field of antibacterial nanodrugs, and describes their unique properties, mode of action and activity against MDR bacteria and biofilms. Biocompatibility and commercialization are also discussed. As opposed to the more common division of nanoparticles (NPs) into organic- and inorganic-based materials, this review classifies NPs into two functional categories. The first includes NPs exhibiting intrinsic antibacterial properties and the second is devoted to NPs serving as a cargo for delivering antibacterial agents. Antibacterial nanomaterials used to decorate medical devices and implants are reviewed here as well. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Multidrug-resistant strains of Salmonella enterica Typhimurium, United States, 1997-1998.

    PubMed

    Rabatsky-Ehr, Therese; Whichard, Jean; Rossiter, Shannon; Holland, Ben; Stamey, Karen; Headrick, Marcia L; Barrett, Timothy J; Angulo, Frederick J

    2004-05-01

    To evaluate multidrug-resistant strains of Salmonella enterica serotype Typhimurium, including definitive type 104 (DT104) in the United States, we reviewed data from the National Antimicrobial Resistance Monitoring System (NARMS). In 1997 to 1998, 703 (25%) of 2,767 serotyped Salmonella isolates received at NARMS were S. Typhimurium; antimicrobial susceptibility testing and phage typing were completed for 697. Fifty-eight percent (402) were resistant to > or = 1 antimicrobial agent. Three multidrug-resistant (> or = 5 drugs) strains accounted for (74%) 296 of all resistant isolates. Ceftriaxone resistance was present in 8 (3%), and nalidixic acid resistance in 4 (1%), of these multidrug-resistant strains. By phage typing, 259 (37%) of S. Typhimurium isolates were DT104, 209 (30%) were of undefined type and 103 (15%) were untypable. Fifty percent (202) of resistant (> or = 1 drug) isolates were DT104. Multidrug-resistant S. Typhimurium isolates, particularly DT104, account for a substantial proportion of S. Typhimurium isolates; ceftriaxone resistance is exhibited by some of these strains.

  16. Osthole shows the potential to overcome P-glycoprotein‑mediated multidrug resistance in human myelogenous leukemia K562/ADM cells by inhibiting the PI3K/Akt signaling pathway.

    PubMed

    Wang, Hong; Jia, Xiu-Hong; Chen, Jie-Ru; Wang, Jian-Yong; Li, You-Jie

    2016-06-01

    P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) has been reported to play a pivotal role in tumor chemotherapy failure. Study after study has illustrated that the phosphoinositide 3-kinase (PI3K)/Akt signaling cascade is involved in the MDR phenotype and is correlated with P-gp expression in many human malignancies. In the present study, osthole, an O-methylated coumarin, exhibited potent reversal capability of MDR in myelogenous leukemia K562/ADM cells. Simultaneously, the uptake and efflux of Rhodamine-123 (Rh-123) and the accumulation of doxorubicin assays combined with flow cytometric analysis suggested that osthole could increase intracellular drug accumulation. Furthermore, osthole decreased the expression of multidrug resistance gene 1 (MDR1) at both the mRNA and protein levels. Further experiments elucidated that osthole could suppress P-gp expression by inhibiting the PI3K/Akt signaling pathway which might be the main mechanism accounting for the reversal potential of osthole in the MDR in K562/ADM cells. In conclusion, osthole combats MDR and could be a promising candidate for the development of novel MDR reversal modulators.

  17. Bactericidal efficacy of molybdenum oxide nanoparticles against antimicrobial-resistant pathogens.

    PubMed

    Lopes, E; Piçarra, S; Almeida, P L; de Lencastre, H; Aires-de-Sousa, M

    2018-06-25

    Multidrug-resistant bacteria pose a major threat to effective antibiotics and alternatives to fight multidrug-resistant pathogens are needed. We synthetized molybdenum oxide (MoO3) nanoparticles (NP) and determined their antibacterial activity against 39 isolates: (i) eight Staphylococcus aureus, including representatives of methicillin-resistant S. aureus epidemic clones; (ii) six enterococci, including vancomycin-resistant isolates; and (iii) 25 Gram-negative isolates (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae), including extended spectrum beta-lactamases and carbapenemases producers. All isolates showed a MoO3 NP MIC of 700-800 mg l -1 . MoO3 NP produced a clear inhibition zone for S. aureus and all Gram-negative isolates at concentrations ≥25 mg ml -1 and ≥50 mg ml -1 for enterococci. When the NP solutions were adjusted to pH ~7, the biocidal activity was completely abolished. MoO3 NP create an acidic pH and show a universal antimicrobial activity against susceptible and resistant isolates belonging to the most relevant bacterial species responsible for hospital-acquired infections.

  18. Nanoparticle delivery of chemosensitizers improve chemotherapy efficacy without incurring additional toxicity

    NASA Astrophysics Data System (ADS)

    Caster, Joseph M.; Sethi, Manish; Kowalczyk, Sonya; Wang, Edina; Tian, Xi; Nabeel Hyder, Sayed; Wagner, Kyle T.; Zhang, Ying-Ao; Kapadia, Chintan; Man Au, Kin; Wang, Andrew Z.

    2015-01-01

    Chemosensitizers can improve the therapeutic index of chemotherapy and overcome treatment resistance. Successful translation of chemosensitizers depends on the development of strategies that can preferentially deliver chemosensitizers to tumors while avoiding normal tissue. We hypothesized that nanoparticle (NP) formulation of chemosensitizers can improve their delivery to tumors which can in turn improve their therapeutic index. To demonstrate the proof of principle of this approach, we engineered NP formulations of two chemosensitizers, the PI3-kindase inhibitor wortmanin (Wtmn) and the PARP inhibitor olaparib. NP Wtmn and NP olaparib were evaluated as chemosensitizers using lung cancer cells and breast cancer cells respectively. We found Wtmn to be an efficient chemosensitizer in all tested lung-cancer cell lines reducing tumor cell growth between 20 and 60% compared to drug alone. NP formulation did not decrease its efficacy in vitro. Olaparib showed less consistent chemosensitization as a free drug or in NP formulation. NP Wtmn was further evaluated as a chemosensitizer using mouse models of lung cancer. We found that NP Wtmn is an effective chemosensitizer and more effective than free Wtmn showing a 32% reduction in tumor growth compared to free Wtmn when given with etoposide. Importantly, NP Wtmn was able to sensitize the multi-drug resistant H69AR cells to etoposide. Additionally, the combination of NP Wtmn and etoposide chemotherapy did not significantly increase toxicity. The present study demonstrates the proof of principle of using NP formulation of chemosensitizing drugs to improve the therapeutic index of chemotherapy.

  19. Multidrug-Resistant Gram-Negative Bacilli: Infection Control Implications.

    PubMed

    Adler, Amos; Friedman, N Deborah; Marchaim, Dror

    2016-12-01

    Antimicrobial resistance is a common iatrogenic complication of both modern life and medical care. Certain multidrug resistant and extensively drug resistant Gram-negative organisms pose the biggest challenges to health care today, predominantly owing to a lack of therapeutic options. Containing the spread of these organisms is challenging, and in reality, the application of multiple control measures during an evolving outbreak makes it difficult to measure the relative impact of each measure. This article reviews the usefulness of various infection control measures in containing the spread of multidrug-resistant Gram-negative bacilli. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases.

    PubMed

    Bisht, Rohit; Mandal, Abhirup; Jaiswal, Jagdish K; Rupenthal, Ilva D

    2018-03-01

    Effective drug delivery to the retina still remains a challenge due to ocular elimination mechanisms and complex barriers that selectively limit the entry of drugs into the eye. To overcome these barriers, frequent intravitreal injections are currently used to achieve high drug concentrations in vitreous and retina. However, these repetitive injections may result in several side effects. Recent advancements in the field of nanoparticle-based drug delivery could overcome some of these unmet needs and various preclinical studies conducted to date have demonstrated promising results of nanotherapies in the treatment of retinal diseases. Compared to the majority of commercially available ocular implants, the biodegradable nature of most nanoparticles (NPs) avoids the need for surgical implantation and removal after the release of the payload. In addition, the sustained drug release from NPs over an extended period of time reduces the need for frequent intravitreal injections and the risk of associated side effects. The nanometer size and highly modifiable surface properties make NPs excellent candidates for targeted ocular drug delivery. Studies have shown that nanocarriers enhance the intravitreal half-life and thus bioavailability of a number of drugs including proteins and peptides. In addition, they have shown promising results in delivering genetic material to the retinal tissues by protecting it from possible intravitreal degradation. This review covers the various challenges associated with drug delivery to the posterior segment of the eye, particularly the retina, and highlights the application of nanocarriers to overcome these challenges in context with recent advances in preclinical studies. WIREs Nanomed Nanobiotechnol 2018, 10:e1473. doi: 10.1002/wnan.1473 This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Implantable Materials and Surgical Technologies > Nanomaterials and Implants. © 2017 Wiley Periodicals

  1. Multidrug-Resistant Shigella Infections in Patients with Diarrhea, Cambodia, 2014-2015.

    PubMed

    Poramathikul, Kamonporn; Bodhidatta, Ladaporn; Chiek, Sivhour; Oransathid, Wilawan; Ruekit, Sirigade; Nobthai, Panida; Lurchachaiwong, Woradee; Serichantalergs, Oralak; Lon, Chanthap; Swierczewski, Brett

    2016-09-01

    We observed multidrug resistance in 10 (91%) of 11 Shigella isolates from a diarrheal surveillance study in Cambodia. One isolate was resistant to fluoroquinolones and cephalosporins and showed decreased susceptibility to azithromycin. We found mutations in gyrA, parC, β-lactamase, and mphA genes. Multidrug resistance increases concern about shigellosis treatment options.

  2. Multidrug-resistant malaria and the impact of mass drug administration.

    PubMed

    Zuber, Janie Anne; Takala-Harrison, Shannon

    2018-01-01

    Based on the emergence and spread throughout the Greater Mekong Subregion (GMS) of multiple artemisinin-resistant lineages, the prevalence of multidrug resistance leading to high rates of artemisinin-based combination treatment failure in parts of the GMS, and the declining malaria burden in the region, the World Health Organization has recommended complete elimination of falciparum malaria from the GMS. Mass drug administration (MDA) is being piloted as one elimination intervention to be employed as part of this effort. However, concerns remain as to whether MDA might exacerbate the already prevalent problem of multidrug resistance in the region. In this review, we briefly discuss challenges of MDA, the use of MDA in the context of multidrug-resistant malaria, and the potential of different drug combinations and drug-based elimination strategies for mitigating the emergence and spread of resistance.

  3. Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.

    PubMed

    Gopinath, V; MubarakAli, D; Priyadarshini, S; Priyadharsshini, N Meera; Thajuddin, N; Velusamy, P

    2012-08-01

    In the recent decades, increased development of green synthesis of nanoparticles is inevitable because of its incredible applications in all fields of science. There were numerous work have been produced based on the plant and its extract mediated synthesis of nanoparticles, in this present study to explore that the novel approaches for the biosynthesis of silver nanoparticles using plant fruit bodies. The plant, Tribulus terrestris L. fruit bodies are used in this study, where the dried fruit body extract was mixed with silver nitrate in order to synthesis of silver nanoparticles. The active phytochemicals present in the plant were responsible for the quick reduction of silver ion (Ag(+)) to metallic silver nanoparticles (Ag(0)). The reduced silver nanoparticles were characterized by Transmission Electron Microscope (TEM), Atomic Force Microscope (AFM), XRD, FTIR, UV-vis spectroscopy. The spherical shaped silver nanoparticles were observed and it was found to be 16-28 nm range of sizes. The diffraction pattern also confirmed that the higher percentage of silver with fine particles size. The antibacterial property of synthesized nanoparticles was observed by Kirby-Bauer method with clinically isolated multi-drug resistant bacteria such as Streptococcus pyogens, Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus aureus. The plant materials mediated synthesis of silver nanoparticles have comparatively rapid and less expensive and wide application to antibacterial therapy in modern medicine. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Potential of insulin nanoparticle formulations for oral delivery and diabetes treatment.

    PubMed

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2017-10-28

    Nanoparticles have demonstrated significant advancements in potential oral delivery of insulin. In this publication, we review the current status of polymeric, inorganic and solid-lipid nanoparticles designed for oral administration of insulin. Firstly, the structure and physiological function of insulin are examined. Then, the efficiency and shortcomings of insulin nanoparticle are discussed. These include the susceptibility to digestive enzyme degradation, instability in the acidic pH environment, poor mucus diffusion and inadequate permeation through the gastrointestinal epithelium. In order to optimise the nanocarriers, the following considerations, including polymer nature, surface charge, size, polydispersity index and morphology of nanoparticles, have to be taken into account. Some novel designs such as chitosan-based glucose-responsive nanoparticles, layer by layer technique-based nanoparticles and zwitterion nanoparticles are being adopted to overcome the physiological challenges. The review ends with some future directions and challenges to be addressed for the success of oral delivery of insulin-loaded nanoparticle formulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Multidrug-resistant Strains of Salmonella enterica Typhimurium, United States, 1997–19981

    PubMed Central

    Whichard, Jean; Rossiter, Shannon; Holland, Ben; Stamey, Karen; Headrick, Marcia L.; Barrett, Timothy J.; Angulo, Frederick J.

    2004-01-01

    To evaluate multidrug-resistant strains of Salmonella enterica Typhimurium, including definitive type 104 (DT104) in the United States, we reviewed data from the National Antimicrobial Resistance Monitoring System (NARMS). In 1997–1998, 25% (703) of 2,767 serotyped Salmonella isolates received at NARMS were S. Typhimurium; antimicrobial susceptibility testing and phage typing were completed for 697. Fifty-eight percent (402) were resistant to >1 antimicrobial agent. Three multidrug-resistant (>5 drugs) strains accounted for 74% (296) of all resistant isolates. Ceftriaxone resistance was present in 3% (8), and nalidixic acid resistance in 1% (4), of these multidrug-resistant strains. By phage typing, 37% (259) of S. Typhimurium isolates were DT104, 30% (209) were of undefined type and 15% (103) were untypable. Fifty percent (202) of resistant (>1 drug) isolates were DT104. Multidrug-resistant S. Typhimurium isolates, particularly DT104, account for a substantial proportion of S. Typhimurium isolates; ceftriaxone resistance is exhibited by some of these strains. PMID:15200811

  6. Combination Approaches to Combat Multi-Drug Resistant Bacteria

    PubMed Central

    Worthington, Roberta J.; Melander, Christian

    2013-01-01

    The increasing prevalence of infections caused by multi-drug resistant bacteria is a global health problem that is exacerbated by the dearth of novel classes of antibiotics entering the clinic over the past 40 years. Herein we describe recent developments toward combination therapies for the treatment of multi-drug resistant bacterial infections. These efforts include antibiotic-antibiotic combinations, and the development of adjuvants that either directly target resistance mechanisms such as the inhibition of β-lactamase enzymes, or indirectly target resistance by interfering with bacterial signaling pathways such as two-component systems. We also discuss screening of libraries of previously approved drugs to identify non-obvious antimicrobial adjuvants. PMID:23333434

  7. Superparamagnetic nanoparticles for enhanced magnetic resonance and multimodal imaging

    NASA Astrophysics Data System (ADS)

    Sikma, Elise Ann Schultz

    Magnetic resonance imaging (MRI) is a powerful tool for noninvasive tomographic imaging of biological systems with high spatial and temporal resolution. Superparamagnetic (SPM) nanoparticles have emerged as highly effective MR contrast agents due to their biocompatibility, ease of surface modification and magnetic properties. Conventional nanoparticle contrast agents suffer from difficult synthetic reproducibility, polydisperse sizes and weak magnetism. Numerous synthetic techniques and nanoparticle formulations have been developed to overcome these barriers. However, there are still major limitations in the development of new nanoparticle-based probes for MR and multimodal imaging including low signal amplification and absence of biochemical reporters. To address these issues, a set of multimodal (T2/optical) and dual contrast (T1/T2) nanoparticle probes has been developed. Their unique magnetic properties and imaging capabilities were thoroughly explored. An enzyme-activatable contrast agent is currently being developed as an innovative means for early in vivo detection of cancer at the cellular level. Multimodal probes function by combining the strengths of multiple imaging techniques into a single agent. Co-registration of data obtained by multiple imaging modalities validates the data, enhancing its quality and reliability. A series of T2/optical probes were successfully synthesized by attachment of a fluorescent dye to the surface of different types of nanoparticles. The multimodal nanoparticles generated sufficient MR and fluorescence signal to image transplanted islets in vivo. Dual contrast T1/T2 imaging probes were designed to overcome disadvantages inherent in the individual T1 and T2 components. A class of T1/T2 agents was developed consisting of a gadolinium (III) complex (DTPA chelate or DO3A macrocycle) conjugated to a biocompatible silica-coated metal oxide nanoparticle through a disulfide linker. The disulfide linker has the ability to be reduced

  8. Disulfide Cross-linking of a Multidrug and Toxic Compound Extrusion Transporter Impacts Multidrug Efflux*

    PubMed Central

    Radchenko, Martha; Nie, Rongxin; Lu, Min

    2016-01-01

    Multidrug and toxic compound extrusion (MATE) transporters contribute to multidrug resistance by extruding different drugs across cell membranes. The MATE transporters alternate between their extracellular and intracellular facing conformations to propel drug export, but how these structural changes occur is unclear. Here we combine site-specific cross-linking and functional studies to probe the movement of transmembrane helices in NorM from Neiserria gonorrheae (NorM-NG), a MATE transporter with known extracellular facing structure. We generated an active, cysteine-less NorM-NG and conducted pairwise cysteine mutagenesis on this variant. We found that copper phenanthroline catalyzed disulfide bond formation within five cysteine pairs and increased the electrophoretic mobility of the corresponding mutants. Furthermore, copper phenanthroline abolished the activity of the five paired cysteine mutants, suggesting that these substituted amino acids come in spatial proximity during transport, and the proximity changes are functionally indispensable. Our data also implied that the substrate-binding transmembrane helices move up to 10 Å in NorM-NG during transport and afforded distance restraints for modeling the intracellular facing transporter, thereby casting new light on the underlying mechanism. PMID:26975373

  9. Epoxy Nanocomposites filled with Carbon Nanoparticles.

    PubMed

    Martin-Gallego, M; Yuste-Sanchez, V; Sanchez-Hidalgo, R; Verdejo, R; Lopez-Manchado, M A

    2018-01-10

    Over the past decades, the development of high performance lightweight polymer nanocomposites and, in particular, of epoxy nanocomposites has become one the greatest challenges in material science. The ultimate goal of epoxy nanocomposites is to extrapolate the exceptional intrinsic properties of the nanoparticles to the bulk matrix. However, in spite of the efforts, this objective is still to be attained at commercially attractive scales. Key aspects to achieve this are ultimately the full understanding of network structure, the dispersion degree of the nanoparticles, the interfacial adhesion at the phase boundaries and the control of the localization and orientation of the nanoparticles in the epoxy system. In this Personal Account, we critically discuss the state of the art and evaluate the strategies to overcome these barriers. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Metal nanoparticles in DBS card materials modification

    NASA Astrophysics Data System (ADS)

    Metelkin, A.; Frolov, G.; Kuznetsov, D.; Kolesnikov, E.; Chuprunov, K.; Kondakov, S.; Osipov, A.; Samsonova, J.

    2015-11-01

    In the recent years the method of collecting and storing Dried Blood Spots (DBS) on special cellulose membrane (paper) has gained wide popularity. But possible damage of biosamples caused by microorganisms in case of their incomplete drying is a disadvantage of the method. It can be overcome by treating sample-collection membranes with colloidal solutions of metal nanoparticles, having antibacterial effect. The team studied antibacterial properties of nonwoven material samples with various coatings (alcohol sols of copper, aluminium, iron, titanium, silver and vanadium nanoparticles). Colloidal solutions of nanoparticles were obtained by means of electroerosion method with further low-temperature plasma condensation. Antibacterial activity of fiberglass and cellulose membrane samples with nanoparticle coatings was studied using B. cereus and plaque bacteria cultures. It was revealed that nanostructured coatings can suppress bacterial activity; in addition they can diffuse from the membrane surface into medium which leads to widening the areas of inhibiting testing cultures’ growth. Thus, membrane materials treatment with alcohol-sols of metal nanoparticles can be seen as promising for conferring antibacterial properties to DBS carriers.

  11. Overcoming the heterologous bias: an in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata.

    PubMed

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika; Sanglard, Dominique; Prasad, Rajendra

    2011-01-07

    We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the artefactual concerns encountered in using heterologous systems are totally excluded. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jian, E-mail: zhangjian197011@yahoo.com; Zhang, Tao; Ti, Xinyu

    2010-08-13

    Research highlights: {yields} Curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells {yields} Curcumin promotes apoptosis in A549/DDP cells through a miRNA signaling pathway {yields} Curcumin induces A549/DDP cell apoptosis by downregulating miR-186* {yields} miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin -- Abstract: Curcumin extracted from the rhizomes of Curcuma longa L. has been shown to have inhibitory effects on cancers through its anti-proliferative and pro-apoptotic activities. Emerging evidence demonstrates that curcumin can overcome drug resistance to classical chemotherapies. Thus, the mechanisms underlying the anti-tumor activities ofmore » curcumin require further study. In our study, we first demonstrated that curcumin had anti-cancer effects on A549/DDP multidrug-resistant human lung adenocarcinoma cells. Further studies showed that curcumin altered miRNA expression; in particular, significantly downregulated the expression of miR-186* in A549/DDP. In addition, transfection of cells with a miR-186* inhibitor promoted A549/DDP apoptosis, and overexpression of miR-186* significantly inhibited curcumin-induced apoptosis in A549/DDP cells. These observations suggest that miR-186* may serve as a potential gene therapy target for refractory lung cancer that is sensitive to curcumin.« less

  13. Magnetically triggered release of molecular cargo from iron oxide nanoparticle loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Carregal-Romero, Susana; Guardia, Pablo; Yu, Xiang; Hartmann, Raimo; Pellegrino, Teresa; Parak, Wolfgang J.

    2014-12-01

    Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat-mediators for local heating, which can be triggered by applying an alternating magnetic field (AMF). AMFs are much less absorbed by tissue than light and thus can penetrate deeper overcoming the above mentioned limitations. Here we present iron oxide nanocube-modified microcapsules as a platform for magnetically triggered molecular release. Layer-by-layer assembled polyelectrolyte microcapsules with 4.6 μm diameter, which had 18 nm diameter iron oxide nanocubes integrated in their walls, were synthesized. The microcapsules were further loaded with an organic fluorescent polymer (Cascade Blue-labelled dextran), which was used as a model of molecular cargo. Through an AMF the magnetic nanoparticles were able to heat their surroundings and destroy the microcapsule walls, leading to a final release of the embedded cargo to the surrounding solution. The cargo release was monitored in solution by measuring the increase in both absorbance and fluorescence signal after the exposure to an AMF. Our results demonstrate that magnetothermal release of the encapsulated material is possible using magnetic nanoparticles with a high heating performance.Photothermal release of cargo molecules has been extensively studied for bioapplications. For instance, microcapsules decorated with plasmonic nanoparticles have been widely used in in vitro assays. However, some concerns about their suitability for some in vivo applications cannot be easily overcome, in particular the limited penetration depth of light (even infrared). Magnetic nanoparticles are alternative heat

  14. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application

    PubMed Central

    Naseri, Neda; Valizadeh, Hadi; Zakeri-Milani, Parvin

    2015-01-01

    Lipid nanoparticles (LNPs) have attracted special interest during last few decades. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are two major types of Lipid-based nanoparticles. SLNs were developed to overcome the limitations of other colloidal carriers, such as emulsions, liposomes and polymeric nanoparticles because they have advantages like good release profile and targeted drug delivery with excellent physical stability. In the next generation of the lipid nanoparticle, NLCs are modified SLNs which improve the stability and capacity loading. Three structural models of NLCs have been proposed. These LNPs have potential applications in drug delivery field, research, cosmetics, clinical medicine, etc. This article focuses on features, structure and innovation of LNPs and presents a wide discussion about preparation methods, advantages, disadvantages and applications of LNPs by focusing on SLNs and NLCs. PMID:26504751

  15. Nuclear Multidrug-Resistance Related Protein 1 Contributes to Multidrug-Resistance of Mucoepidermoid Carcinoma Mainly via Regulating Multidrug-Resistance Protein 1: A Human Mucoepidermoid Carcinoma Cells Model and Spearman's Rank Correlation Analysis

    PubMed Central

    Liu, Yuan; Xu, Xiaofang; Guan, Sumin; Wu, Junzheng; Liu, Yanpu

    2013-01-01

    Background Multidrug resistance-related protein 1 (MRP1/ABCC1) and multidrug resistance protein 1 (MDR1/P-glycoprotein/ABCB1) are both membrane-bound drug transporters. In contrast to MDR1, MRP1 also transports glutathione (GSH) and drugs conjugated to GSH. Due to its extraordinary transport properties, MRP1/ABCC1 contributes to several physiological functions and pathophysiological incidents. We previously found that nuclear translocation of MRP1 contributes to multidrug-resistance (MDR) of mucoepidermoid carcinoma (MEC). The present study investigated how MRP1 contributes to MDR in the nuclei of MEC cells. Methods Western blot and RT-PCR was carried out to investigate the change of multidrug-resistance protein 1 (MDR1) in MC3/5FU cells after MRP1 was downregulated through RNA interference (RNAi). Immunohistochemistry (IHC) staining of 127 cases of MEC tissues was scored with the expression index (EI). The EI of MDR1 and MRP1 (or nuclear MRP1) was analyzed with Spearman's rank correlation analysis. Using multiple tumor tissue assays, the location of MRP1 in other tissues was checked by HIC. Luciferase reporter assays of MDR1 promoter was carried out to check the connection between MRP1 and MDR1 promoter. Results MRP1 downregulation led to a decreased MDR1 expression in MC3/5FU cells which was caused by decreased activity of MDR1 promoter. IHC study of 127 cases of MEC tissues demonstrated a strong positive correlation between nuclear MRP1 expression and MDR1 expression. Furthermore, IHC study of multiple tumor tissue array sections showed that although nuclear MRP1 widely existed in MEC tissues, it was not found in normal tissues or other tumor tissues. Conclusions Our findings indicate that nuclear MRP1 contributes to MDR mainly through regulating MDR1 expression in MEC. And the unique location of MRP1 made it an available target in identifying MEC from other tumors. PMID:24013781

  16. Case Western Reserve University — Treatment of Glioblastoma Using Chain-Like Nanoparticles

    Cancer.gov

    To overcome the limitations of current drugs to treat brain tumors, Case Western University seeks to integrate the unique features of a chain-like nanoparticle with the appropriate combination of complementary drugs.

  17. Potential application of metal nanoparticles for dosimetric systems: Concepts and perspectives

    NASA Astrophysics Data System (ADS)

    Guidelli, Eder José; Baffa, Oswaldo

    2014-11-01

    Metallic nanoparticles increase the delivered dose and consequently enhance tissue radio sensitization during radiation therapy of cancer. The Dose Enhancement Factor (DEF) corresponds to the ratio between the dose deposited on a tissue containing nanoparticles, and the dose deposited on a tissue without nanoparticles. In this sense, we have used electron spin resonance spectroscopy (ESR) to investigate how silver and gold nanoparticles affect the dose deposition in alanine dosimeters, which act as a surrogate of soft tissue. Besides optimizing radiation absorption by the dosimeter, the optical properties of these metal nanoparticles could also improve light emission from materials employed as radiation detectors. Therefore, we have also examined how the plasmonic properties of noble metal nanoparticles could enhance radiation detection using optically stimulated luminescence (OSL) dosimetry. This work will show results on how the use of gold and silver nanoparticles are beneficial for the ESR and OSL dosimetric techniques, and will describe the difficulties we have been facing, the challenges to overcome, and the perspectives.

  18. Multidrug resistant tuberculosis diagnosed by synovial fluid analysis.

    PubMed

    van Zeller, M; Monteiro, R; Ramalho, J; Almeida, I; Duarte, R

    2012-01-01

    Tuberculosis remains a major public health problem worldwide. HIV co-infection is contributing to an increased incidence of the disease, particularly that caused by multidrug resistant strains of Mycobacterium tuberculosis (MT). We describe an HIV-infected patient with pleural and lymph node tuberculosis diagnosed by pleural effusion characteristics and biopsy specimens, without MT identification, that further presented with knee-joint involvement. Arthrocentesis allowed MT isolation and drug susceptibility testing, resulting in a diagnosis of multidrug-resistant tuberculosis and an appropriate treatment regimen. MT identification and drug susceptibility tests are very important, especially for HIV co-infected patients. Copyright © 2011 Sociedade Portuguesa de Pneumologia. Published by Elsevier España. All rights reserved.

  19. Alpha-tocopheryl polyethylene glycol succinate-emulsified poly(lactic-co-glycolic acid) nanoparticles for reversal of multidrug resistance in vitro

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Guo, Miao; Lu, Yu; Ding, Li-Ying; Ron, Wen-Ting; Liu, Ya-Qing; Song, Fei-Fei; Yu, Shu-Qin

    2012-12-01

    Multidrug resistance (MDR) is one of the factors in the failure of anticancer chemotherapy. In order to enhance the anticancer effect of P-glycoprotein (P-gp) substrates, inhibition of the P-gp efflux pump on MDR cells is a good tactic. We designed novel multifunctional drug-loaded alpha-tocopheryl polyethylene glycol succinate (TPGS)/poly(lactic-co-glycolic acid) (PLGA) nanoparticles (TPGS/PLGA/SN-38 NPs; SN-38 is 7-ethyl-10-hydroxy-camptothecin), with TPGS-emulsified PLGA NPs as the carrier and modulator of the P-gp efflux pump and SN-38 as the model drug. TPGS/PLGA/SN-38 NPs were prepared using a modified solvent extraction/evaporation method. Physicochemical characterizations of TPGS/PLGA/SN-38 NPs were in conformity with the principle of nano-drug delivery systems (nDDSs), including a diameter of about 200 nm, excellent spherical particles with a smooth surface, narrow size distribution, appropriate surface charge, and successful drug-loading into the NPs. The cytotoxicity of TPGS/PLGA/SN-38 NPs to MDR cells was increased by 3.56 times compared with that of free SN-38. Based on an intracellular accumulation study relative to the time-dependent uptake and efflux inhibition, we suggest novel mechanisms of MDR reversal of TPGS/PLGA NPs. Firstly, TPGS/PLGA/SN-38 NPs improved the uptake of the loaded drug by clathrin-mediated endocytosis in the form of unbroken NPs. Simultaneously, intracellular NPs escaped the recognition of P-gp by MDR cells. After SN-38 was released from TPGS/PLGA/SN-38 NPs in MDR cells, TPGS or/and PLGA may modulate the efflux microenvironment of the P-gp pump, such as mitochondria and the P-gp domain with an ATP-binding site. Finally, the controlled-release drug entered the nucleus of the MDR cell to induce cytotoxicity. The present study showed that TPGS-emulsified PLGA NPs could be functional carriers in nDDS for anticancer drugs that are also P-gp substrates. More importantly, to enhance the therapeutic effect of P-gp substrates, this work

  20. Bioresponsive polymer coating on nanoparticles

    NASA Astrophysics Data System (ADS)

    Laemthong, Tunyaboon

    Nanotechnology incorporated with molecular biology became a promising way to treat cancer. The size of nanoparticles enables them to overcome the side effects noticed in cancer treatment like chemotherapy and surgery. Various types and shapes of nanoparticles have been synthesized and used in drug delivery to tumor sites. However, one of problems of using these nanoparticles is the aggregation after injecting them into human body due to flow rate of bloodstream. The coagulation and aggregation will result in clogging blood vessel and lower therapeutic efficacy. In this thesis, a solution to the aggregation problem was proposed, which is coating biopolymer on nanoparticles (NPs). The experimental sections covered synthesis and characterization of breast cancer specific targeting drug-encapsulated NPs and biopolymer coating on the surface of Au-Fe3O4 NPs for thermal therapy. Furthermore, in vitro studies of these NPs with breast cancer cells were also included. The specific targeting anticancer drug-encapsulated NRs showed significant inhibition in BT-474 breast cancer cell growth. The Au-Fe3O4 NPs has a possibility to treat cancer cells using the thermal therapy approach.

  1. Electrochemical synthesis, characterisation and phytogenic properties of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Singaravelan, R.; Bangaru Sudarsan Alwar, S.

    2015-12-01

    This work exemplifies a simple and rapid method for the synthesis of silver nanodendrite with a novel electrochemical technique. The antibacterial activity of these silver nanoparticles (Ag NPs) against pathogenic bacteria was investigated along with the routine study of optical and spectral characterisation. The optical properties of the silver nanoparticles were characterised by diffuse reflectance spectroscopy. The optical band gap energy of the electrodeposited Ag NPs was determined from the diffuse reflectance using Kubelka-Munk formula. X-ray diffraction (XRD) studies were carried out to determine the crystalline nature of the silver nanoparticles which confirmed the formation of silver nanocrystals. The XRD pattern revealed that the electrodeposited Ag NPs were in the cubic geometry with dendrite preponderance. The average particle size and the peak broadening were deliberated using Debye-Scherrer equation and lattice strain due to the peak broadening was studied using Williamson-Hall method. Surface morphology of the Ag NPs was characterised by high-resolution scanning electron microscope and the results showed the high degree of aggregation in the particles. The antibacterial activity of the Ag NPs was evaluated and showed unprecedented level antibacterial activity against multidrug resistant strains such as Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumonia and Escherichia coli in combination with Streptomycin.

  2. Nanoparticle-based Therapies for Wound Biofilm Infection: Opportunities and Challenges

    PubMed Central

    Kim, Min-Ho

    2016-01-01

    Clinical data from human chronic wounds implicates biofilm formation with the onset of wound chronicity. Despite the development of novel antimicrobial agents, the cost and complexity of treating chronic wound infections associated with biofilms remain a serious challenge, which necessitates the development of new and alternative approaches for effective anti-biofilm treatment. Recent advancement in nanotechnology for developing a new class of nanoparticles that exhibit unique chemical and physical properties holds promise for the treatment of biofilm infections. Over the last decade, nanoparticle-based approaches against wound biofilm infection have been directed toward developing nanoparticles with intrinsic antimicrobial properties, utilizing nanoparticles for controlled antimicrobials delivery, and applying nanoparticles for antibacterial hyperthermia therapy. In addition, a strategy to functionalize nanoparticles towards enhanced penetration through the biofilm matrix has been receiving considerable interest recently by means of achieving an efficient targeting to the bacterial cells within biofilm matrix. This review summarizes and highlights the recent development of these nanoparticle-based approaches as potential therapeutics for controlling wound biofilm infection, along with current challenges that need to be overcome for their successful clinical translation. PMID:26955044

  3. Preparation of Silica Nanoparticles Through Microwave-assisted Acid-catalysis

    PubMed Central

    Lovingood, Derek D.; Owens, Jeffrey R.; Seeber, Michael; Kornev, Konstantin G.; Luzinov, Igor

    2013-01-01

    Microwave-assisted synthetic techniques were used to quickly and reproducibly produce silica nanoparticle sols using an acid catalyst with nanoparticle diameters ranging from 30-250 nm by varying the reaction conditions. Through the selection of a microwave compatible solvent, silicic acid precursor, catalyst, and microwave irradiation time, these microwave-assisted methods were capable of overcoming the previously reported shortcomings associated with synthesis of silica nanoparticles using microwave reactors. The siloxane precursor was hydrolyzed using the acid catalyst, HCl. Acetone, a low-tan δ solvent, mediates the condensation reactions and has minimal interaction with the electromagnetic field. Condensation reactions begin when the silicic acid precursor couples with the microwave radiation, leading to silica nanoparticle sol formation. The silica nanoparticles were characterized by dynamic light scattering data and scanning electron microscopy, which show the materials' morphology and size to be dependent on the reaction conditions. Microwave-assisted reactions produce silica nanoparticles with roughened textured surfaces that are atypical for silica sols produced by Stöber's methods, which have smooth surfaces. PMID:24379052

  4. Targeting Cancer using Polymeric Nanoparticle mediated Combination Chemotherapy

    PubMed Central

    Gad, Aniket; Kydd, Janel; Piel, Brandon; Rai, Prakash

    2016-01-01

    Cancer forms exhibiting poor prognosis have been extensively researched for therapeutic solutions. One of the conventional modes of treatment, chemotherapy shows inadequacy in its methodology due to imminent side-effects and acquired drug-resistance by cancer cells. However, advancements in nanotechnology have opened new frontiers to significantly alleviate collateral damage caused by current treatments via innovative delivery techniques, eliminating pitfalls encountered in conventional treatments. Properties like reduced drug-clearance and increased dose efficacy by the enhanced permeability and retention effect deem nanoparticles suitable for this application. Optimization of size, surface charge and surface modifications have provided nanoparticles with stealth properties capable of evading immune responses, thus deeming them as excellent carriers of chemotherapeutic agents. Biocompatible and biodegradable forms of polymers enhance the bioavailability of chemotherapeutic agents, and permit a sustained and time-dependent release of drugs which is a characteristic of their composition, thereby providing a controlled therapeutic approach. Studies conducted in vitro and animal models have also demonstrated a synergism in cytotoxicity given the mechanism of action of anticancer drugs when administered in combination providing promising results. Combination therapy has also shown implications in overcoming multiple-drug resistance, which can however be subdued by the adaptable nature of tumor microenvironment. Surface modifications with targeting moieties can therefore feasibly increase nanoparticle uptake by specific receptor-ligand interactions, increasing dose efficacy which can seemingly overcome drug-resistance. This article reviews recent trends and investigations in employing polymeric nanoparticles for effectively delivering combination chemotherapy, and modifications in delivery parameters enhancing dose efficacy, thus validating the potential in this

  5. Omega 3 fatty acids chemosensitize multidrug resistant colon cancer cells by down-regulating cholesterol synthesis and altering detergent resistant membranes composition

    PubMed Central

    2013-01-01

    Background The activity of P-glycoprotein (Pgp) and multidrug resistance related protein 1 (MRP1), two membrane transporters involved in multidrug resistance of colon cancer, is increased by high amounts of cholesterol in plasma membrane and detergent resistant membranes (DRMs). It has never been investigated whether omega 3 polyunsatured fatty acids (PUFAs), which modulate cholesterol homeostasis in dyslipidemic syndromes and have chemopreventive effects in colon cancer, may affect the response to chemotherapy in multidrug resistant (MDR) tumors. Methods We studied the effect of omega 3 PUFAs docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) in human chemosensitive colon cancer HT29 cells and in their MDR counterpart, HT29-dx cells. Results MDR cells, which overexpressed Pgp and MRP1, had a dysregulated cholesterol metabolism, due to the lower expression of ubiquitin E3 ligase Trc8: this produced lower ubiquitination rate of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCoAR), higher cholesterol synthesis, higher cholesterol content in MDR cells. We found that DHA and EPA re-activated Trc8 E3 ligase in MDR cells, restored the ubiquitination rate of HMGCoAR to levels comparable with chemosensitive cells, reduced the cholesterol synthesis and incorporation in DRMs. Omega 3 PUFAs were incorporated in whole lipids as well as in DRMs of MDR cells, and altered the lipid composition of these compartments. They reduced the amount of Pgp and MRP1 contained in DRMs, decreased the transporters activity, restored the antitumor effects of different chemotherapeutic drugs, restored a proper tumor-immune system recognition in response to chemotherapy in MDR cells. Conclusions Our work describes a new biochemical effect of omega 3 PUFAs, which can be useful to overcome chemoresistance in MDR colon cancer cells. PMID:24225025

  6. Nanoparticle-facilitated functional and molecular imaging for the early detection of cancer

    PubMed Central

    Sivasubramanian, Maharajan; Hsia, Yu; Lo, Leu-Wei

    2014-01-01

    Cancer detection in its early stages is imperative for effective cancer treatment and patient survival. In recent years, biomedical imaging techniques, such as magnetic resonance imaging, computed tomography and ultrasound have been greatly developed and have served pivotal roles in clinical cancer management. Molecular imaging (MI) is a non-invasive imaging technique that monitors biological processes at the cellular and sub-cellular levels. To achieve these goals, MI uses targeted imaging agents that can bind targets of interest with high specificity and report on associated abnormalities, a task that cannot be performed by conventional imaging techniques. In this respect, MI holds great promise as a potential therapeutic tool for the early diagnosis of cancer. Nevertheless, the clinical applications of targeted imaging agents are limited due to their inability to overcome biological barriers inside the body. The use of nanoparticles has made it possible to overcome these limitations. Hence, nanoparticles have been the subject of a great deal of recent studies. Therefore, developing nanoparticle-based imaging agents that can target tumors via active or passive targeting mechanisms is desirable. This review focuses on the applications of various functionalized nanoparticle-based imaging agents used in MI for the early detection of cancer. PMID:25988156

  7. Pegylated liposomal formulation of doxorubicin overcomes drug resistance in a genetically engineered mouse model of breast cancer.

    PubMed

    Füredi, András; Szebényi, Kornélia; Tóth, Szilárd; Cserepes, Mihály; Hámori, Lilla; Nagy, Veronika; Karai, Edina; Vajdovich, Péter; Imre, Tímea; Szabó, Pál; Szüts, Dávid; Tóvári, József; Szakács, Gergely

    2017-09-10

    Success of cancer treatment is often hampered by the emergence of multidrug resistance (MDR) mediated by P-glycoprotein (ABCB1/Pgp). Doxorubicin (DOX) is recognized by Pgp and therefore it can induce therapy resistance in breast cancer patients. In this study our aim was to evaluate the susceptibility of the pegylated liposomal formulation of doxorubicin (PLD/Doxil®/Caelyx®) to MDR. We show that cells selected to be resistant to DOX are cross-resistant to PLD and PLD is also ineffective in an allograft model of doxorubicin-resistant mouse B-cell leukemia. In contrast, PLD was far more efficient than DOX as reflected by a significant increase of both relapse-free and overall survival of Brca1 -/- ;p53 -/- mammary tumor bearing mice. Increased survival could be explained by the delayed onset of drug resistance. Consistent with the higher Pgp levels needed to confer resistance, PLD administration was able to overcome doxorubicin insensitivity of the mouse mammary tumors. Our results indicate that the favorable pharmacokinetics achieved with PLD can effectively overcome Pgp-mediated resistance, suggesting that PLD therapy could be a promising strategy for the treatment of therapy-resistant breast cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Self-Delivery Nanoparticles of Amphiphilic Methotrexate-Gemcitabine Prodrug for Synergistic Combination Chemotherapy via Effect of Deoxyribonucleotide Pools.

    PubMed

    Wang, Yao; Huang, Ping; Hu, Minxi; Huang, Wei; Zhu, Xinyuan; Yan, Deyue

    2016-11-16

    The distinct and complementary biochemical mechanisms of folic acid analog methotrexate (MTX) and cytidine analog gemcitabine (GEM) make their synergistic combination effective. Unfortunately, such a combination faces severe pharmacokinetic problems and several transportation barriers. To overcome these problems, a new strategy of amphiphilic small molecule prodrug (ASMP) is developed to improve their synergistic combination effect. The ASMP was prepared by the amidation of the hydrophilic GEM with the hydrophobic MTX at a fixed ratio. Owing to its inherent amphiphilicity, the MTX-GEM ASMP self-assembled into stable nanoparticles (ASMP-NPs) with high drug loading capacity (100%), in which the MTX and GEM could self-deliver without any carriers and release synchronously in cancer cells. In vitro studies showed that the MTX-GEM ASMP-NPs could greatly improve the synergistic combination effects by the reason of arresting more S phase of the cell cycle and reducing levels of deoxythymidine triphosphate (dTTP), deoxyadenosine triphosphate (dATP), and deoxycytidine triphosphate (dCTP). The stronger synergistic effects caused the higher cell cytotoxicity and apoptotic ratio, and circumvented the multidrug resistance (MDR) of tumor cells. Additionally, MTX-GEM ASMP-NPs could achieve the same anticancer effect with the greatly reduced dosage compared with the free drugs according to the dose-reduction index (DRI) values of MTX and GEM in MTX-GEM ASMP-NPs, which may be beneficial for reducing the side effects.

  9. Recent advancements in nanoparticle based drug delivery for gastrointestinal disorders.

    PubMed

    Mittal, Rahul; Patel, Amit P; Jhaveri, Vasanti M; Kay, Sae-In S; Debs, Luca H; Parrish, James M; Pan, Debbie R; Nguyen, Desiree; Mittal, Jeenu; Jayant, Rahul Dev

    2018-03-01

    The emergent field of nanoparticles has presented a wealth of opportunities for improving the treatment of human diseases. Recent advances have allowed for promising developments in drug delivery, diagnostics, and therapeutics. Modified delivery systems allow improved drug delivery over traditional pH, microbe, or receptor dependent models, while antibody association allows for more advanced imaging modalities. Nanoparticles have potential clinical application in the field of gastroenterology as they offer several advantages compared to the conventional treatment systems including target drug delivery, enhanced treatment efficacy, and reduced side effects. Areas covered: The aim of this review article is to summarize the recent advancements in developing nanoparticle technologies to treat gastrointestinal diseases. We have covered the application of nanoparticles in various gastrointestinal disorders including inflammatory bowel disease and colorectal cancer. We also have discussed how the gut microbiota affects the nanoparticle based drug delivery in the gastrointestinal tract. Expert opinion: Nanoparticles based drug delivery offers a great platform for targeted drug delivery for gastrointestinal disorders. However, it is influenced by the presence of microbiota, drug interaction with nanoparticles, and cytotoxicity of nanoparticles. With the advancements in nanoparticle technology, it may be possible to overcome these barriers leading to efficient drug delivery for gastrointestinal disorders based on nanoparticle platform.

  10. Protamine-based nanoparticles as new antigen delivery systems.

    PubMed

    González-Aramundiz, José Vicente; Peleteiro Olmedo, Mercedes; González-Fernández, África; Alonso Fernández, María José; Csaba, Noemi Stefánia

    2015-11-01

    The use of biodegradable nanoparticles as antigen delivery vehicles is an attractive approach to overcome the problems associated with the use of Alum-based classical adjuvants. Herein we report, the design and development of protamine-based nanoparticles as novel antigen delivery systems, using recombinant hepatitis B surface antigen as a model viral antigen. The nanoparticles, composed of protamine and a polysaccharide (hyaluronic acid or alginate), were obtained using a mild ionic cross-linking technique. The size and surface charge of the nanoparticles could be modulated by adjusting the ratio of the components. Prototypes with optimal physicochemical characteristics and satisfactory colloidal stability were selected for the assessment of their antigen loading capacity, antigen stability during storage and in vitro and in vivo proof-of-concept studies. In vitro studies showed that antigen-loaded nanoparticles induced the secretion of cytokines by macrophages more efficiently than the antigen in solution, thus indicating a potential adjuvant effect of the nanoparticles. Finally, in vivo studies showed the capacity of these systems to trigger efficient immune responses against the hepatitis B antigen following intramuscular administration, suggesting the potential interest of protamine-polysaccharide nanoparticles as antigen delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. MarA-Like Regulator of Multidrug Resistance in Yersinia pestis

    PubMed Central

    Udani, Rupa A.; Levy, Stuart B.

    2006-01-01

    MarA47Yp from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47Yp gene was overexpressed. The findings suggest that marA47Yp is a marA ortholog in Y. pestis. PMID:16940090

  12. MarA-like regulator of multidrug resistance in Yersinia pestis.

    PubMed

    Udani, Rupa A; Levy, Stuart B

    2006-09-01

    MarA47(Yp) from Yersinia pestis, showing 47% identity to Escherichia coli MarA in its N terminus, caused resistance to antibiotics and to organic solvents when expressed in both E. coli and Y. pestis. Resistance was linked to increased expression of the AcrAB multidrug efflux pump. In four of five spontaneous multidrug-resistant mutants of Y. pestis independently selected by growth on tetracycline, the marA47(Yp) gene was overexpressed. The findings suggest that marA47(Yp) is a marA ortholog in Y. pestis.

  13. Multidrug resistance-selective antiproliferative activity of Piper amide alkaloids and synthetic analogues.

    PubMed

    Wang, Yue-Hu; Goto, Masuo; Wang, Li-Ting; Hsieh, Kan-Yen; Morris-Natschke, Susan L; Tang, Gui-Hua; Long, Chun-Lin; Lee, Kuo-Hsiung

    2014-10-15

    Twenty-five amide alkaloids (1-25) from Piper boehmeriifolium and 10 synthetic amide alkaloid derivatives (39-48) were evaluated for antiproliferative activity against eight human tumor cell lines, including chemosensitive and multidrug-resistant (MDR) cell lines. The results suggested tumor type-selectivity. 1-[7-(3,4,5-Trimethoxyphenyl)heptanoyl]piperidine (46) exhibited the best inhibitory activity (IC50=4.94 μM) against the P-glycoprotein (P-gp)-overexpressing KBvin MDR sub-line, while it and all other tested compounds, except 9, were inactive (IC50 >40 μM) against MDA-MB-231 and SK-BR-3. Structure-activity relationships (SARs) indicated that (i) 3,4,5-trimethoxy phenyl substitution is critical for selectivity against KBvin, (ii) the 4-methoxy group in this pattern is crucial for antiproliferative activity, (iii) double bonds in the side chain are not needed for activity, and (iv), in arylalkenylacyl amide alkaloids, replacement of an isobutylamino group with pyrrolidin-1-yl or piperidin-1-yl significantly improved activity. Further study on Piper amides is warranted, particularly whether side chain length affects the ability to overcome the MDR cancer phenotype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis.

    PubMed

    Chen, Tao; Li, Qiang; Guo, Lina; Yu, Li; Li, Zhenyan; Guo, Huixin; Li, Haicheng; Zhao, Meigui; Chen, Liang; Chen, Xunxun; Zhong, Qiu; Zhou, Lin; Wu, Ting

    2016-01-01

    To overcome the undesirable side effects and reduce the cytotoxicity of isoniazid (INH) and rifampin (RMP) in the digestive tract, a poly(methacrylic acid) (PMAA) nanogel was developed as a carrier of INH and RMP. This PMAA/INH/RMP nanogel was prepared as a treatment for intestinal tuberculosis caused by multidrug-resistant Mycobacterium tuberculosis (MTB). The morphology, size, and in vitro release properties were evaluated in a simulated gastrointestinal medium, and long-term antibacterial performance, cytotoxicity, stability, and activity of this novel PMAA/INH/RMP nanogel against multidrug-resistant MTB in the intestine were investigated. Our results indicate that the PMAA/INH/RMP nanogel exhibited extended antibacterial activity by virtue of its long-term release of INH and RMP in the simulated gastrointestinal medium. Further, this PMAA/INH/RMP nanogel exhibited lower cytotoxicity than did INH or RMP alone, suggesting that this PMAA/INH/RMP nanogel could be a more useful dosage form than separate doses of INH and RMP for intestinal MTB. The novel aspects of this study include the cytotoxicity study and the three-phase release profile study, which might be useful for other researchers in this field. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  15. Multidrug-Resistant Candida: Epidemiology, Molecular Mechanisms, and Treatment.

    PubMed

    Arendrup, Maiken Cavling; Patterson, Thomas F

    2017-08-15

    Invasive Candida infections remain an important cause of morbidity and mortality, especially in hospitalized and immunocompromised or critically ill patients. A limited number of antifungal agents from only a few drug classes are available to treat patients with these serious infections. Resistance can be either intrinsic or acquired. Resistance mechanisms are not exchanged between Candida; thus, acquired resistance either emerges in response to an antifungal selection pressure in the individual patient or, more rarely, occur due to horizontal transmission of resistant strains between patients. Although multidrug resistance is uncommon, increasing reports of multidrug resistance to the azoles, echinocandins, and polyenes have occurred in several Candida species, most notably Candida glabrata and more recently Candida auris. Drivers are overall antifungal use, subtherapeutic drug levels at sites of infection/colonization, drug sequestration in the biofilm matrix, and, in the setting of outbreaks, suboptimal infection control. Moreover, recent research suggests that DNA mismatch repair gene mutations may facilitate acquisition of resistance mutations in C. glabrata specifically. Diagnosis of antifungal-resistant Candida infections is critical to the successful management of patients with these infections. Reduction of unnecessary use of antifungals via antifungal stewardship is critical to limit multidrug resistance emergence. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  16. Multidrug resistant Acinetobacter baumannii in veterinary medicine--emergence of an underestimated pathogen?

    PubMed

    Müller, Stefanie; Janssen, Traute; Wieler, Lothar H

    2014-01-01

    The proportion of multidrug resistant bacteria causing infections in animals has continuously been increasing. While the relevance of ESBL (extended spectrum beta-lactamase)-producing Enterobacteriaceae spp. and MRSA (methicillin resistant Staphylococcus aureus) is unquestionable, knowledge about multidrug resistant Acinetobacter baumannii in veterinary medicine is scarce. This is a worrisome situation, as A. baumannii are isolated from veterinary clinical specimens with rising frequency. The remarkable ability of A. baumannii to develop multidrug resistance and the high risk of transmission are known in human medicine for years. Despite this, data regarding A. baumannii isolates of animal origin are missing. Due to the changing role of companion animals with closer contact between animal and owner, veterinary intensive care medicine is steadily developing. It can be assumed that the number of "high risk" patients with an enhanced risk for hospital acquired infections will be rising simultaneously. Thus, development and spread of multidrug resistant pathogens is envisioned to rise. It is possible, that A. baumannii will evolve into a veterinary nosocomial pathogen similar to ESBL-producing Enterobacteriaceae and MRSA. The lack of attention paid to A. baumannii in veterinary medicine is even more worrying, as first reports indicate a transmission between humans and animals. Essential questions regarding the role of livestock, especially as a potential source of multidrug resistant isolates, remain unanswered. This review summarizes the current knowledge on A. baumannii in veterinary medicine for the first time. It underlines the utmost significance of further investigations of A. baumannii animal isolates, particularly concerning epidemiology and resistance mechanisms.

  17. Multidrug-resistant tuberculosis, Somalia, 2010-2011.

    PubMed

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal; Zignol, Matteo

    2013-03-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia.

  18. Histone deacetylase inhibitor (HDACI) PCI-24781 enhances chemotherapy induced apoptosis in multidrug resistant sarcoma cell lines

    PubMed Central

    Yang, Cao; Choy, Edwin; Hornicek, Francis J.; Wood, Kirkham B; Schwab, Joseph H; Liu, Xianzhe; Mankin, Henry; Duan, Zhenfeng

    2013-01-01

    The anti-tumor activity of histone deacetylase inhibitors (HDACI) on multi-drug resistant sarcoma cell lines has never been previously described. Four multidrug resistant sarcoma cell lines treated with HDACI PCI-24781 resulted in dose-dependent accumulation of acetylated histones, p21 and PARP cleavage products. Growth of these cell lines was inhibited by PCI-24781 at IC50 of 0.43 to 2.7. When we looked for synergy of PCI-24781 with chemotherapeutic agents, we found that PCI-24781 reverses drug resistance in all four multidrug resistant sarcoma cell lines and synergizes with chemotherapeutic agents to enhance caspase-3/7 activity. Expression of RAD51 (a marker for DNA double-strand break repair) was inhibited and the expression of GADD45α (a marker for growth arrest and DNA-damage) was induced by PCI-24781 in multidrug resistant sarcoma cell lines. In conclusion, HDACI PCI-24781 synergizes with chemotherapeutic drugs to induce apoptosis and reverses drug resistance in multidrug resistant sarcoma cell lines. PMID:21508354

  19. Management of multidrug-resistant tuberculosis in human immunodeficiency virus patients

    NASA Astrophysics Data System (ADS)

    Jamil, K. F.

    2018-03-01

    Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis(MTB). 10.4 million new TB cases will appear in 2015 worldwide. There were an estimated 1.4 million TB deaths in 2015, and an additional 0.4 million deaths resulting from TB disease among people living with human immunodeficiency virus (HIV). Multidrug- resistant and extensively drug-resistant tuberculosis (MDR and XDR-TB) are major public health concerns worldwide. 480.000 new cases of MDR-TB will appear in 2015 and an additional 100,000 people with rifampicin-resistant TB (RR-TB) who were also newly eligible for MDR-TB treatment. Their association with HIV infection has contributed to the slowing down of TB incidence decline over the last two decades, therefore representing one important barrier to reach TB elimination. Patients infected with MDR-TB require more expensive treatment regimens than drug-susceptible TB, with poor treatment.Patients with multidrug- resistant tuberculosis do not receive rifampin; drug interactions risk is markedly reduced. However, overlapping toxicities may limit options for co-treatment of HIV and multidrug- resistant tuberculosis.

  20. Natural History of Multi-Drug Resistant Organisms in a New Military Medical Facility

    DTIC Science & Technology

    2013-12-01

    environment plays in the transmission of multidrug- resistant Gram-negative bacteria and methicillin - resistant Staphylococcus aureus (MDRO) is increasingly...Pseudomonas aeruginosa, methicillin - resistant Staphylococcus aureus (MRSA); Klebsiella pneumoniea; and Clostridium difficile. Multidrug- resistance (MDR...target organism infection was Staphylococcus aureus (n=77), followed by E coli (56), Klebsiella pneumoniae (28), and Pseudomonas aeruginosa (11

  1. Worldwide Endemicity of a Multidrug-Resistant Staphylococcus capitis Clone Involved in Neonatal Sepsis.

    PubMed

    Butin, Marine; Martins-Simões, Patricia; Rasigade, Jean-Philippe; Picaud, Jean-Charles; Laurent, Frédéric

    2017-03-01

    A multidrug-resistant Staphylococcus capitis clone, NRCS-A, has been isolated from neonatal intensive care units in 17 countries throughout the world. S. capitis NRCS-A prevalence is high in some neonatal intensive care units in France. These data highlight the worldwide endemicity and epidemiologic relevance of this multidrug-resistant, coagulase-negative staphylococci clone.

  2. Multidrug Efflux Pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus Bacterial Food Pathogens

    PubMed Central

    Andersen, Jody L.; He, Gui-Xin; Kakarla, Prathusha; KC, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F.

    2015-01-01

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations. PMID:25635914

  3. Multidrug efflux pumps from Enterobacteriaceae, Vibrio cholerae and Staphylococcus aureus bacterial food pathogens.

    PubMed

    Andersen, Jody L; He, Gui-Xin; Kakarla, Prathusha; K C, Ranjana; Kumar, Sanath; Lakra, Wazir Singh; Mukherjee, Mun Mun; Ranaweera, Indrika; Shrestha, Ugina; Tran, Thuy; Varela, Manuel F

    2015-01-28

    Foodborne illnesses caused by bacterial microorganisms are common worldwide and constitute a serious public health concern. In particular, microorganisms belonging to the Enterobacteriaceae and Vibrionaceae families of Gram-negative bacteria, and to the Staphylococcus genus of Gram-positive bacteria are important causative agents of food poisoning and infection in the gastrointestinal tract of humans. Recently, variants of these bacteria have developed resistance to medically important chemotherapeutic agents. Multidrug resistant Escherichia coli, Salmonella enterica, Vibrio cholerae, Enterobacter spp., and Staphylococcus aureus are becoming increasingly recalcitrant to clinical treatment in human patients. Of the various bacterial resistance mechanisms against antimicrobial agents, multidrug efflux pumps comprise a major cause of multiple drug resistance. These multidrug efflux pump systems reside in the biological membrane of the bacteria and actively extrude antimicrobial agents from bacterial cells. This review article summarizes the evolution of these bacterial drug efflux pump systems from a molecular biological standpoint and provides a framework for future work aimed at reducing the conditions that foster dissemination of these multidrug resistant causative agents through human populations.

  4. Multidrug-resistant Salmonella Typhimurium in Four Animal Facilities

    PubMed Central

    Wright, Jennifer G.; Tengelsen, Leslie A.; Smith, Kirk E.; Bender, Jeff B.; Frank, Rodney K.; Grendon, John H.; Rice, Daniel H.; Thiessen, Ann Marie B.; Gilbertson, Catherine Jo; Sivapalasingam, Sumathi; Barrett, Timothy J.; Besser, Thomas E.; Hancock, Dale D.

    2005-01-01

    In 1999 and 2000, 3 state health departments reported 4 outbreaks of gastrointestinal illness due to Salmonella enterica serotype Typhimurium in employees, clients, and client animals from 3 companion animal veterinary clinics and 1 animal shelter. More than 45 persons and companion animals became ill. Four independent investigations resulted in the testing of 19 human samples and >200 animal samples; 18 persons and 36 animals were culture-positive for S. Typhimurium. One outbreak was due to multidrug-resistant S. Typhimurium R-type ACKSSuT, while the other 3 were due to multidrug-resistant S. Typhimurium R-type ACSSuT DT104. This report documents nosocomial transmission of S. Typhimurium and demonstrates that companion animal facilities may serve as foci of transmission for salmonellae between animals and humans if adequate precautions are not followed. PMID:16102313

  5. A new method for encapsulating hydrophobic compounds within cationic polymeric nanoparticles.

    PubMed

    Ben Yehuda Greenwald, Maya; Ben Sasson, Shmuel; Bianco-Peled, Havazelet

    2013-01-01

    Here we present the newly developed "solvent exchange" method that overcomes the challenge of encapsulating hydrophobic compounds within nanoparticle of water soluble polymers. Our studies involved the model polymer polyvinylpyrrolidone (PVP) and the hydrophobic dye Nile red. We found that the minimum molecular weight of the polymer required for nanoparticle formation was 49 KDa. Dynamic Light Scattering (DLS) and Cryo-Transmission Electron Microscopy (cryo-TEM) studies revealed spherical nanoparticles with an average diameter ranging from 20 to 33 nm. Encapsulation efficiency was evaluated using UV spectroscopy and found to be around 94%. The nanocarriers were found to be highly stable; less than 2% of Nile red release from nanoparticles after the addition of NaCl. Nanoparticles containing Nile red were able to penetrate into glioma cells. The solvent exchange method was proved to be applicable for other model hydrophobic drug molecules including ketoprofen, ibuprofen and indomethacin, as well as other solvents.

  6. Current Challenges and Future of Lipid nanoparticles formulations for topical drug application to oral mucosa, skin, and eye.

    PubMed

    Guilherme, Viviane A; Ribeiro, Ligia N M; Tofoli, Giovana Radomille; Franz-Montan, Michelle; de Paula, Eneida; de Jesus, Marcelo Bispo

    2017-11-21

    Topical drug administration offers an attractive route with minimal invasiveness. It also avoids limitations of intravenous administration such as the first pass metabolism and presystemic elimination within the gastrointestinal tract. Furthermore, topical drug administration is safe, have few side effects, is easy to apply, and offers a fast onset of action. However, the development of effective topical formulations still represents a challenge for the desired effect to be reached, locally or systemically. Solid lipid nanoparticles and nanostructured lipid carriers are particular candidates to overcome the problem of topical drug administration. The nanometric particle size of lipid nanoparticles favors the physical adhesion to the skin or mucosal, what can also be attained with the formation of hybrid (nanoparticles/polymer) systems. In this review, we discuss the major challenges for lipid nanoparticles formulations for topical application to oral mucosa, skin, and eye, highlighting the strategies to improve the performance of lipid nanoparticles for topical applications. Next, we critically analyzed the in vitro and in vivo approaches used to evaluate lipid nanoparticles performance and toxicity. We addressed some major drawbacks related to lipid nanoparticle topical formulations and concluded the key points that have to be overcome to help them to reach the market in topical formulations to oral mucosa, skin and eye. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Methadone, commonly used as maintenance medication for outpatient treatment of opioid dependence, kills leukemia cells and overcomes chemoresistance.

    PubMed

    Friesen, Claudia; Roscher, Mareike; Alt, Andreas; Miltner, Erich

    2008-08-01

    The therapeutic opioid drug methadone (d,l-methadone hydrochloride) is the most commonly used maintenance medication for outpatient treatment of opioid dependence. In our study, we found that methadone is also a potent inducer of cell death in leukemia cells and we clarified the unknown mechanism of methadone-induced cell killing in leukemia cells. Methadone inhibited proliferation in leukemia cells and induced cell death through apoptosis induction and activated apoptosis pathways through the activation of caspase-9 and caspase-3, down-regulation of Bcl-x(L) and X chromosome-linked inhibitor of apoptosis, and cleavage of poly(ADP-ribose) polymerase. In addition, methadone induced cell death not only in anticancer drug-sensitive and apoptosis-sensitive leukemia cells but also in doxorubicin-resistant, multidrug-resistant, and apoptosis-resistant leukemia cells, which anticancer drugs commonly used in conventional therapies of leukemias failed to kill. Depending on caspase activation, methadone overcomes doxorubicin resistance, multidrug resistance, and apoptosis resistance in leukemia cells through activation of mitochondria. In contrast to leukemia cells, nonleukemic peripheral blood lymphocytes survived after methadone treatment. These findings show that methadone kills leukemia cells and breaks chemoresistance and apoptosis resistance. Our results suggest that methadone is a promising therapeutic approach not only for patients with opioid dependence but also for patients with leukemias and provide the foundation for new strategies using methadone as an additional anticancer drug in leukemia therapy, especially when conventional therapies are less effective.

  8. A Modular Coassembly Approach to All-In-One Multifunctional Nanoplatform for Synergistic Codelivery of Doxorubicin and Curcumin

    PubMed Central

    Yang, Muyang; Yu, Lixia; Guo, Ruiwei; Dong, Anjie; Lin, Cunguo

    2018-01-01

    Synergistic combination therapy by integrating chemotherapeutics and chemosensitizers into nanoparticles has demonstrated great potential to reduce side effects, overcome multidrug resistance (MDR), and thus improve therapeutic efficacy. However, with regard to the nanocarriers for multidrug codelivery, it remains a strong challenge to maintain design simplicity, while incorporating the desirable multifunctionalities, such as coloaded high payloads, targeted delivery, hemodynamic stability, and also to ensure low drug leakage before reaching the tumor site, but simultaneously the corelease of drugs in the same cancer cell. Herein, we developed a facile modular coassembly approach to construct an all-in-one multifunctional multidrug delivery system for the synergistic codelivery of doxorubicin (DOX, chemotherapeutic agent) and curcumin (CUR, MDR modulator). The acid-cleavable PEGylated polymeric prodrug (DOX-h-PCEC), tumor cell-specific targeting peptide (CRGDK-PEG-PCL), and natural chemosensitizer (CUR) were ratiometrically assembled into in one single nanocarrier (CUR/DOX-h-PCEC@CRGDK NPs). The resulting CUR/DOX-h-PCEC@CRGDK NPs exhibited several desirable characteristics, such as efficient and ratiometric drug loading, high hemodynamic stability and low drug leakage, tumor intracellular acid-triggered cleavage, and subsequent intracellular simultaneous drug corelease, which are expected to maximize a synergistic effect of chemotherapy and chemosensitization. Collectively, the multifunctional nanocarrier is feasible for the creation of a robust nanoplatform for targeted multidrug codelivery and efficient MDR modulation. PMID:29543780

  9. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria.

    PubMed

    Medina, Eva; Pieper, Dietmar Helmut

    With the advent of the antibiotic era, the overuse and inappropriate consumption and application of antibiotics have driven the rapid emergence of multidrug-resistant pathogens. Antimicrobial resistance increases the morbidity, mortality, length of hospitalization and healthcare costs. Among Gram-positive bacteria, Staphylococcus aureus (MRSA) and multidrug-resistant (MDR) Mycobacterium tuberculosis, and among the Gram-negative bacteria, extended-spectrum beta-lactamase (ESBLs)-producing bacteria have become a major global healthcare problem in the 21st century. The pressure to use antibiotics guarantees that the spread and prevalence of these as well as of future emerging multidrug-resistant pathogens will be a persistent phenomenon. The unfeasibility of reversing antimicrobial resistance back towards susceptibility and the critical need to treat bacterial infection in modern medicine have burdened researchers and pharmaceutical companies to develop new antimicrobials effective against these difficult-to-treat multidrug-resistant pathogens. However, it can be anticipated that antibiotic resistance will continue to develop more rapidly than new agents to treat these infections become available and a better understanding of the molecular, evolutionary and ecological mechanisms governing the spread of antibiotic resistance is needed. The only way to curb the current crisis of antimicrobial resistance will be to develop entirely novel strategies to fight these pathogens such as combining antimicrobial drugs with other agents that counteract and obstruct the antibiotic resistant mechanisms expressed by the pathogen. Furthermore, as many antibiotics are often inappropriately prescribed, a more personalized approach based on precise diagnosis tools will ensure that proper treatments can be promptly applied leading to more targeted and effective therapies. However, in more general terms, also the overall use and release of antibiotics in the environment needs to be

  10. Bacillus subtilis from Soybean Food Shows Antimicrobial Activity for Multidrug-Resistant Acinetobacter baumannii by Affecting the adeS Gene.

    PubMed

    Wang, Tieshan; Su, Jianrong

    2016-12-28

    Exploring novel antibiotics is necessary for multidrug-resistant pathogenic bacteria. Because the probiotics in soybean food have antimicrobial activities, we investigated their effects on multidrug-resistant Acinetobacter baumannii . Nineteen multidrug-resistant A. baumannii strains were clinifcally isolated as an experimental group and 11 multidrug-sensitive strains as controls. The growth rates of all bacteria were determined by using the analysis for xCELLigence Real-Time Cell. The combination of antibiotics showed synergistic effects on the strains in the control group but no effect on the strains in the experimental group. Efflux pump gene adeS was absent in all the strains from the control group, whereas it exists in all the strains from the experimental group. Furthermore, all the strains lost multidrug resistance when an adeS inhibitor was used. One strain of probiotics isolated from soybean food showed high antimicrobial activity for multidrug-resistant A. baumannii . The isolated strain belongs to Bacillus subtilis according to 16S RNA analysis. Furthermore, E. coli showed multidrug resistance when it was transformed with the adeS gene from A. baumannii whereas the resistant bacteria could be inhibited completely by isolated Bacillus subtilis . Thus, probiotics from soybean food provide potential antibiotics against multidrug-resistant pathogenic bacteria.

  11. Uptake Mechanism of ApoE-Modified Nanoparticles on Brain Capillary Endothelial Cells as a Blood-Brain Barrier Model

    PubMed Central

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier. PMID:22396775

  12. Uptake mechanism of ApoE-modified nanoparticles on brain capillary endothelial cells as a blood-brain barrier model.

    PubMed

    Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen

    2012-01-01

    The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.

  13. Targeting Nrf2 with wogonin overcomes cisplatin resistance in head and neck cancer.

    PubMed

    Kim, Eun Hye; Jang, Hyejin; Shin, Daiha; Baek, Seung Ho; Roh, Jong-Lyel

    2016-11-01

    A principal limitation to the clinical use of cisplatin is the high incidence of chemoresistance to this drug. Combination treatments with other drugs may help to circumvent this problem. Wogonin, one of the major natural flavonoids, is known to reverse multidrug resistance in several types of cancers. We investigated the ability of wogonin to overcome cisplatin resistance in head and neck cancer (HNC) cells and further clarified its molecular mechanisms of action. Two cisplatin-resistant HNC cell lines (AMC-HN4R and -HN9R) and their parental and other human HNC cell lines were used. The effects of wogonin, either alone or in combination with cisplatin, were assessed in HNC cells and normal cells using cell cycle and death assays and by measuring cell viability, reactive oxygen species (ROS) production, and protein expression, and in tumor xenograft mouse models. Wogonin selectively killed HNC cells but spared normal cells. It inhibited nuclear factor erythroid 2-related factor 2 and glutathione S-transferase P in cisplatin-resistant HNC cells, resulting in increased ROS accumulation in HNC cells, an effect that could be blocked by the antioxidant N-acetyl-L-cysteine. Wogonin also induced selective cell death by targeting the antioxidant defense mechanisms enhanced in the resistant HNC cells and activating cell death pathways involving PUMA and PARP. Hence, wogonin significantly sensitized resistant HNC cells to cisplatin both in vitro and in vivo. Wogonin is a promising anticancer candidate that induces ROS accumulation and selective cytotoxicity in HNC cells and can help to overcome cisplatin-resistance in this cancer.

  14. Theranostic barcoded nanoparticles for personalized cancer medicine

    PubMed Central

    Yaari, Zvi; da Silva, Dana; Zinger, Assaf; Goldman, Evgeniya; Kajal, Ashima; Tshuva, Rafi; Barak, Efrat; Dahan, Nitsan; Hershkovitz, Dov; Goldfeder, Mor; Roitman, Janna Shainsky; Schroeder, Avi

    2016-01-01

    Personalized medicine promises to revolutionize cancer therapy by matching the most effective treatment to the individual patient. Using a nanoparticle-based system, we predict the therapeutic potency of anticancer medicines in a personalized manner. We carry out the diagnostic stage through a multidrug screen performed inside the tumour, extracting drug activity information with single cell sensitivity. By using 100 nm liposomes, loaded with various cancer drugs and corresponding synthetic DNA barcodes, we find a correlation between the cell viability and the drug it was exposed to, according to the matching barcodes. Based on this screen, we devise a treatment protocol for mice bearing triple-negative breast-cancer tumours, and its results confirm the diagnostic prediction. We show that the use of nanotechnology in cancer care is effective for generating personalized treatment protocols. PMID:27830705

  15. Wound infections with multi-drug resistant bacteria.

    PubMed

    Pîrvănescu, H; Bălăşoiu, M; Ciurea, M E; Bălăşoiu, A T; Mănescu, R

    2014-01-01

    Wound infections remain a public health problem, despite the progress made on improving surgical techniques and antibiotic prophylaxis application. Misuse of antibiotics to prevent bacterial infections leads to increased bacterial resistance and their dissemination. The study refers to 470 samples taken from wound infections of which only multi-drug resistant strains were selected for study, using two special culture mediums (Metistaph-2 for methicillin-resistant staphylococci and ESBLs-Agar for extended-spectrum betalactamases secreting bacteria). Sensitivity of these strains was tested using the diffusion method. Of all studied samples, a rate of 27.6 bacterial strains showed multi-drug resistance. Among them stood primarily Staphylococcus aureus; both MRSA strains and ESBL Gram negative bacteria studied showed high resistance to aminoglycosides, quinolones, third generation cephalosporins and low to fourth generation cephalosporins. No vancomycin resitant nor vancomycin-intermediate Staphylococcus aureus strains were isolated. Knowing the antibiotic resistance is very useful in antibiotic "cycling"application, avoiding this way the emergence of increased resistant strains. Celsius.

  16. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide.

    PubMed

    Castro, Pedro M; Baptista, Patrícia; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E

    2018-05-22

    Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Synthesis and characterization of a poly(lactic-co-glycolic acid) core + poly(N-isopropylacrylamide) shell nanoparticle system

    PubMed Central

    Kosinski, Aaron M.; Brugnano, Jamie L.; Seal, Brandon L.; Knight, Frances C.; Panitch, Alyssa

    2012-01-01

    Poly(lactic-co-glycolic acid) (PLGA) is a popular material used to prepare nanoparticles for drug delivery. However, PLGA nanoparticles lack desirable attributes including active targeting abilities, resistance to aggregation during lyophilization, and the ability to respond to dynamic environmental stimuli. To overcome these issues, we fabricated a nanoparticle consisting of a PLGA core encapsulated within a shell of poly(N-isopropylacrylamide). Dynamic light scattering and transmission electron microscope imaging were used to characterize the nanoparticles, while an MTT assay and ELISA suggested biocompatibility in THP1 cells. Finally, a collagen type II binding assay showed successful modification of these nanoparticles with an active targeting moiety. PMID:23507885

  18. Fe(II)-substituted cobalt ferrite nanoparticles against multidrug resistant microorganisms

    NASA Astrophysics Data System (ADS)

    Žalnėravičius, Rokas; Paškevičius, Algimantas; Mažeika, Kęstutis; Jagminas, Arūnas

    2018-03-01

    The present study is focused on the determination the influence of cobalt content in the magnetic cobalt ferrite nanoparticles (Nps) on their antibacterial efficiency against gram-negative Escherichia coli and gram-positive Staphylococcus aureus bacteria and several Candida species, in particular C. parapsilosis and C. albicans. For the synthesis of Fe(II) substituted cobalt ferrite Nps by co-precipitation way, the L-lysine was used as the capping biocompatible agent and the particle size was successfully controlled to be in the range of 5-6.4 nm. The antimicrobial efficiencies of the CoxFe1-xFe2O4@Lys Nps, where x varies from 0.2 to 1.0, were evaluated through the quantitative analysis by comparing with that of Fe3O4@Lys Nps and L-lysine. In this way, it was evidenced that increase in the Co2+ content in the similar sized cobalt ferrite Nps resulted in an increase in their antimicrobial potency into 93.1-86.3 % for eukaryotic and into 96.4-42.7 % for prokaryotic strains. For characterization the composition, structure, and morphology of the tested herein Nps inductively coupled plasma optical emission spectrometry, X-ray diffraction, high-resolution transmission electron microscopy, Mössbauer, and FTIR spectroscopy techniques were conferred.

  19. Green synthesized zinc oxide nanoparticles as a therapeutic tool to combat candidiasis

    NASA Astrophysics Data System (ADS)

    Rathod, Tejas; Padalia, Hemali; Chanda, Sumitra

    2017-05-01

    Advancement of modern medicine, the increasing ratio of immunocompromised and immunosuppressive individuals is increased in hospitalized with serious underlying disease. This has resulted in a rise in the incidence of fungal infections, especially those due to Candida species. For many years the conventional antibiotic therapy has been critical in the fight against Candidiasis. Candidiasis is a fungal infection due to various types of Candida (yeast) species. In this study, zinc oxide nanoparticles (ZnONPs) were synthesized using the Cinnamomum verum bark plus Cassia auriculata leaf powder extracts. The characterization of synthesized ZnONPs was done by UV-Vis spectrophotometer and SEM analysis. The average size of nanoparticles was 77 nm. Synergistic anticandidal activity of ZnONPs (ZnONPs plus antibiotics) was determined by disc diffusion method against 16 multidrug resistant clinical pathogens of Candida species. Antibiotic Ketoconazole plus ZnONPs showed best synergistic anticandidal activity against all the 16 isolates. Green synthesized ZnONPs appears to be a new promising approach to fight against Candidiasis.

  20. Designing and Testing Functional RNA Nanoparticles | Center for Cancer Research

    Cancer.gov

    Recent advances in nanotechnology have generated excitement that nanomaterials may provide novel approaches for the diagnosis and treatment of deadly diseases, such as cancer. However, the use of synthetic materials to generate nanoparticles can present challenges with endotoxin content, sterility, or biocompatibility. Employing biological materials may overcome these issues

  1. Gold nanoparticles to improve HIV drug delivery.

    PubMed

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy.

  2. Recent progress on nanoparticle-based drug delivery systems for cancer therapy

    PubMed Central

    Xin, Yanru; Yin, Mingming; Zhao, Liyuan; Meng, Fanling; Luo, Liang

    2017-01-01

    The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years. PMID:28884040

  3. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo.

    PubMed

    Lu, Wei-Dong; Qin, Yong; Yang, Chuang; Li, Lei; Fu, Zhong-Xue

    2013-05-01

    To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo.

  4. Self-assembling Gold Nanoparticle Monolayers in a Three-phase System - Overcoming Ligand Size Limitations

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T., Jr.

    An effective self-assembly technique was developed to prepare centimeter-scale monolayer gold nanoparticle (Au NP) films of long-range order with hydrophobic ligands. Aqueous Au NPs were entrapped in the organic/aqueous interface where the Au NP surface was in situ modified with different types of amine ligands, including amine-terminated polystyrene. The Au NPs then spontaneously relocated to the air/water interface to form an NP monolayer. The spontaneous formation of an Au NP film at the organic/water interface was due to the minimization of the system Helmholtz free energy. Self-assembled Au NP films has a hexagonal close packed structure. The interparticle spacing was dictated by the amine ligand length. Thus-assembled Au NP monolayers exhibit tunable surface plasma resonance and excellent spacial homogeneity of surface-enhanced Raman-scattering. The ``air/water/oil'' self-assembly method developed in this study not only benefits the fundamental understanding of NP ligand conformations, but is also promising to scale up the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. This study was financially supported by start-up funding supplied by the Florida State University and the FAMU-FSU College of Engineering.

  5. The emergence and outbreak of multidrug-resistant typhoid fever in China.

    PubMed

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-06-22

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes.

  6. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging.

    PubMed

    Li, Kai; Liu, Bin

    2014-09-21

    Polymer encapsulated organic nanoparticles have recently attracted increasing attention in the biomedical field because of their unique optical properties, easy fabrication and outstanding performance as imaging and therapeutic agents. Of particular importance is the polymer encapsulated nanoparticles containing conjugated polymers (CP) or fluorogens with aggregation induced emission (AIE) characteristics as the core, which have shown significant advantages in terms of tunable brightness, superb photo- and physical stability, good biocompatibility, potential biodegradability and facile surface functionalization. In this review, we summarize the latest advances in the development of polymer encapsulated CP and AIE fluorogen nanoparticles, including preparation methods, material design and matrix selection, nanoparticle fabrication and surface functionalization for fluorescence and photoacoustic imaging. We also discuss their specific applications in cell labeling, targeted in vitro and in vivo imaging, blood vessel imaging, cell tracing, inflammation monitoring and molecular imaging. We specially focus on strategies to fine-tune the nanoparticle property (e.g. size and fluorescence quantum yield) through precise engineering of the organic cores and careful selection of polymer matrices. The review also highlights the merits and limitations of these nanoparticles as well as strategies used to overcome the limitations. The challenges and perspectives for the future development of polymer encapsulated organic nanoparticles are also discussed.

  7. Turning the gun on cancer: Utilizing lysosomal P-glycoprotein as a new strategy to overcome multi-drug resistance.

    PubMed

    Seebacher, Nicole; Lane, Darius J R; Richardson, Des R; Jansson, Patric J

    2016-07-01

    Oxidative stress plays a role in the development of drug resistance in cancer cells. Cancer cells must constantly and rapidly adapt to changes in the tumor microenvironment, due to alterations in the availability of nutrients, such as glucose, oxygen and key transition metals (e.g., iron and copper). This nutrient flux is typically a consequence of rapid growth, poor vascularization and necrosis. It has been demonstrated that stress factors, such as hypoxia and glucose deprivation up-regulate master transcription factors, namely hypoxia inducible factor-1α (HIF-1α), which transcriptionally regulate the multi-drug resistance (MDR), transmembrane drug efflux transporter, P-glycoprotein (Pgp). Interestingly, in addition to the established role of plasma membrane Pgp in MDR, a new paradigm of intracellular resistance has emerged that is premised on the ability of lysosomal Pgp to transport cytotoxic agents into this organelle. This mechanism is enabled by the topological inversion of Pgp via endocytosis resulting in the transporter actively pumping agents into the lysosome. In this way, classical Pgp substrates, such as doxorubicin (DOX), can be actively transported into this organelle. Within the lysosome, DOX becomes protonated upon acidification of the lysosomal lumen, causing its accumulation. This mechanism efficiently traps DOX, preventing its cytotoxic interaction with nuclear DNA. This review discusses these effects and highlights a novel mechanism by which redox-active and protonatable Pgp substrates can utilize lysosomal Pgp to gain access to this compartment, resulting in catastrophic lysosomal membrane permeabilization and cell death. Hence, a key MDR mechanism that utilizes Pgp (the "gun") to sequester protonatable drug substrates safely within lysosomes can be "turned on" MDR cancer cells to destroy them from within. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Polymeric micelles for multi-drug delivery in cancer.

    PubMed

    Cho, Hyunah; Lai, Tsz Chung; Tomoda, Keishiro; Kwon, Glen S

    2015-02-01

    Drug combinations are common in cancer treatment and are rapidly evolving, moving beyond chemotherapy combinations to combinations of signal transduction inhibitors. For the delivery of drug combinations, i.e., multi-drug delivery, major considerations are synergy, dose regimen (concurrent versus sequential), pharmacokinetics, toxicity, and safety. In this contribution, we review recent research on polymeric micelles for multi-drug delivery in cancer. In concurrent drug delivery, polymeric micelles deliver multi-poorly water-soluble anticancer agents, satisfying strict requirements in solubility, stability, and safety. In sequential drug delivery, polymeric micelles participate in pretreatment strategies that "prime" solid tumors and enhance the penetration of secondarily administered anticancer agent or nanocarrier. The improved delivery of multiple poorly water-soluble anticancer agents by polymeric micelles via concurrent or sequential regimens offers novel and interesting strategies for drug combinations in cancer treatment.

  9. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy?

    PubMed

    Callaghan, Richard; Luk, Frederick; Bebawy, Mary

    2014-04-01

    P-glycoprotein (P-gp) is a key player in the multidrug-resistant phenotype in cancer. The protein confers resistance by mediating the ATP-dependent efflux of an astonishing array of anticancer drugs. Its broad specificity has been the subject of numerous attempts to inhibit the protein and restore the efficacy of anticancer drugs. The general strategy has been to develop compounds that either compete with anticancer drugs for transport or act as direct inhibitors of P-gp. Despite considerable in vitro success, there are no compounds currently available to "block" P-gp-mediated resistance in the clinic. The failure may be attributed to toxicity, adverse drug interaction, and numerous pharmacokinetic issues. This review provides a description of several alternative approaches to overcome the activity of P-gp in drug-resistant cells. These include 1) drugs that specifically target resistant cells, 2) novel nanotechnologies to provide high-dose, targeted delivery of anticancer drugs, 3) compounds that interfere with nongenomic transfer of resistance, and 4) approaches to reduce the expression of P-gp within tumors. Such approaches have been developed through the pursuit of greater understanding of resistance mediators such as P-gp, and they show considerable potential for further application.

  10. Simple Recovery of Intracellular Gold Nanoparticles from Peanut Seedling Roots.

    PubMed

    Raju, D; Mehta, Urmil J; Ahmad, Absar

    2015-02-01

    Fabrication of inorganic nanomaterials via a biological route witnesses the formation either extracellularly, intracellulary or both. Whereas extracellular formation of these nanomaterials is cherished owing to their easy and economical extraction and purification processes; the intracellular formation of nanomaterials, due to the lack of a proper recovery protocol has always been dreaded, as the extraction processes used so far were tedious, costly, time consuming and often resulting in very low recovery. The aim of the present study was to overcome the problems related with the extraction and recovery of intracellularly synthesized inorganic nanoparticles, and to devise a method to increasing the output, the shape, size, composition and dispersal of nanoparticles is not altered. Water proved to be much better system as it provided well dispersed, stable gold nanoparticles and higher recovery. This is the first report, where intracellular nanoparticles have been recovered using a very cost-effective and eco-friendly approach.

  11. Self-assembled nano-balls released from multistage vector for cancer therapy

    NASA Astrophysics Data System (ADS)

    Qian, Jin; Xia, Xiaojun; Xie, Yan

    2017-03-01

    The efficacy of cancer drugs is often compromised due to the existence of biological barriers such as nonspecific distribution, hemorheological flow limitation and endothelial extravasation, impaired delivery across tumor cell membranes and tissue, and multidrug resistance. To overcome these obstacles, Xu et al developed an injectable nanoparticle generator platform to negotiate with the biological barriers and enable self-assembly of nano-balls in situ in order to maximize drug accumulation inside the tumor tissues and hence the therapeutic efficacy. This perspective aims to elaborate the designing strategy, and discuss the mechanism of action of the new drug and the potential for future development of nanoparticulate drugs.

  12. New developments in breast cancer therapy: role of iron oxide nanoparticles

    NASA Astrophysics Data System (ADS)

    Thoidingjam, Shivani; Bhan Tiku, Ashu

    2017-06-01

    Breast cancer is one of the leading causes of deaths in females worldwide. The high metastatic rate and drug resistance makes it one of the difficult cancers to treat. Early diagnosis and treatment are keys to better survival of breast cancer patients. Conventional treatment approaches like chemotherapy, radiotherapy and surgery suffer from major drawbacks. Novel approaches to improve cancer therapy with minimal damage to normal tissues and better quality of life for cancer patients need to be developed. Among various approaches used for treatment and diagnosis of breast cancer, use of nanoparticles (NPs) is coming up as a new and promising treatment regime. It can help overcome various limitations of conventional therapies like non-targeted effects, resistance to treatment, late diagnosis, etc. Among various nanoparticles studied for their biomedical applications, especially for breast cancer therapy, iron oxide nanoparticles (IONPs) are perhaps the most exciting due to their biocompatibility, biodegradability, size and properties like superparamagnetism. Besides, IONPs are also the only metal oxide nanoparticles approved for clinical use in magnetic resonance imaging (MRI) which is an added advantage for early detection. Therefore in this mini review, we are discussing the developments made in the use of IONPs for breast cancer therapy over the short span of the last five years i.e. 2010-2015. Since late diagnosis and therapy resistance are important drawbacks in breast cancer therapy, the potential of IONPs to overcome these limitations are also evaluated.

  13. Structure of the transcriptional regulator LmrR and its mechanism of multidrug recognition.

    PubMed

    Madoori, Pramod Kumar; Agustiandari, Herfita; Driessen, Arnold J M; Thunnissen, Andy-Mark W H

    2009-01-21

    LmrR is a PadR-related transcriptional repressor that regulates the production of LmrCD, a major multidrug ABC transporter in Lactococcus lactis. Transcriptional regulation is presumed to follow a drug-sensitive induction mechanism involving the direct binding of transporter ligands to LmrR. Here, we present crystal structures of LmrR in an apo state and in two drug-bound states complexed with Hoechst 33342 and daunomycin. LmrR shows a common topology containing a typical beta-winged helix-turn-helix domain with an additional C-terminal helix involved in dimerization. Its dimeric organization is highly unusual with a flat-shaped hydrophobic pore at the dimer centre serving as a multidrug-binding site. The drugs bind in a similar manner with their aromatic rings sandwiched in between the indole groups of two dimer-related tryptophan residues. Multidrug recognition is facilitated by conformational plasticity and the absence of drug-specific hydrogen bonds. Combined analyses using site-directed mutagenesis, fluorescence-based drug binding and protein-DNA gel shift assays reveal an allosteric coupling between the multidrug- and DNA-binding sites of LmrR that most likely has a function in the induction mechanism.

  14. Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage.

    PubMed

    Rosenholm, Jessica M; Mamaeva, Veronika; Sahlgren, Cecilia; Lindén, Mika

    2012-01-01

    Nanotechnology may help overcome persisting limitations of current cancer treatment and thus contribute to the creation of more effective, safer and more affordable therapies. While some nanotechnology-based drug delivery systems are already being marketed and others are in clinical trial, most still remain in the preclinical development stage. Mesoporous silica nanoparticles have been highlighted as an interesting drug delivery platform, due to their flexibility and high drug load potential. Although numerous reports demonstrate sophisticated drug delivery mechanisms in vitro, the therapeutic benefit of these systems for in vivo applications have been under continuous debate. This has been due to nontranslatable conditions used in the in vitro studies, as well as contradictory conclusions drawn from preclinical (in vivo) studies. However, recent studies have indicated that the encouraging cellular studies could in fact be repeated also in vivo. Here, we report on these recent advances regarding therapeutic efficacy, targeting and safety issues related to the application of mesoporous silica nanoparticles in cancer therapy.

  15. Dual drug loaded chitosan nanoparticles-sugar--coated arsenal against pancreatic cancer.

    PubMed

    David, Karolyn Infanta; Jaidev, Leela Raghav; Sethuraman, Swaminathan; Krishnan, Uma Maheswari

    2015-11-01

    Pancreatic cancer is an aggressive form of cancer with poor survival rates. The increased mortality due to pancreatic cancer arises due to many factors such as development of multidrug resistance, presence of cancer stem cells, development of a stromal barrier and a hypoxic environment due to hypo-perfusion. The present study aims to develop a nanocarrier for a combination of drugs that can address these multiple issues. Quercetin and 5-fluorouracil were loaded in chitosan nanoparticles, individually as well as in combination. The nanoparticles were characterized for morphology, size, zeta potential, percentage encapsulation of drugs as well as their release profiles in different media. The dual drug-loaded carrier exhibited good entrapment efficiency (quercetin 95% and 5-fluorouracil 75%) with chitosan: quercetin: 5-fluorouracil in the ratio 3:1:2. The release profiles suggest that 5-fluorouracil preferentially localized in the periphery while quercetin was located towards the core of chitosan nanoparticles. Both drugs exhibited considerable association with the chitosan matrix. The dual drug-loaded carrier system exhibited significant toxicity towards pancreatic cancer cells both in the 2D as well as in the 3D cultures. We believe that the results from these studies can open up interesting options in the treatment of pancreatic cancer. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The emergence and outbreak of multidrug-resistant typhoid fever in China

    PubMed Central

    Yan, Meiying; Li, Xinlan; Liao, Qiaohong; Li, Fang; Zhang, Jing; Kan, Biao

    2016-01-01

    Typhoid fever remains a severe public health problem in developing countries. The emergence of resistant typhoid, particularly multidrug-resistant typhoid infections, highlights the necessity of monitoring the resistance characteristics of this invasive pathogen. In this study, we report a typhoid fever outbreak caused by multidrug-resistant Salmonella enterica serovar Typhi strains with an ACSSxtT pattern. Resistance genes conferring these phenotypes were harbored by a large conjugative plasmid, which increases the threat of Salmonella Typhi and thus requires close surveillance for dissemination of strains containing such genes. PMID:27329848

  17. Understanding institutional stakeholders’ perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study

    PubMed Central

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Background Information lacks about institutional stakeholders’ perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term “institutional stakeholder” includes persons in leading positions with responsibility in hospitals’ multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders’ individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Methods Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Results Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients’ and family caregivers’ needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients’ quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. Conclusion The institutional stakeholders’ perspectives and their suggestion of a case-based approach advance the development

  18. Understanding institutional stakeholders' perspectives on multidrug-resistant bacterial organism at the end of life: a qualitative study.

    PubMed

    Heckel, Maria; Herbst, Franziska A; Adelhardt, Thomas; Tiedtke, Johanna M; Sturm, Alexander; Stiel, Stephanie; Ostgathe, Christoph

    2017-01-01

    Information lacks about institutional stakeholders' perspectives on management approaches of multidrug-resistant bacterial organism in end-of-life situations. The term "institutional stakeholder" includes persons in leading positions with responsibility in hospitals' multidrug-resistant bacterial organism management. They have great influence on how strategies on multidrug-resistant bacterial organism management approaches in institutions of the public health system are designed. This study targeted institutional stakeholders' individual perspectives on multidrug-resistant bacterial organism colonization or infection and isolation measures at the end of life. Between March and December 2014, institutional stakeholders of two study centers, a German palliative care unit and a geriatric ward, were queried in semistructured interviews. Interviews were audiotaped, transcribed verbatim, and analyzed qualitatively with the aid of the software MAXQDA for qualitative data analysis using principles of Grounded Theory. In addition, two external stakeholders were interviewed to enrich data. Key issues addressed by institutional stakeholders (N=18) were the relevance of multidrug-resistant bacterial organism in palliative and geriatric care, contradictions between hygiene principles and patients' and family caregivers' needs and divergence from standards, frame conditions, and reflections on standardization of multidrug-resistant bacterial organism end-of-life care procedures. Results show that institutional stakeholders face a dilemma between their responsibility in protecting third persons and ensuring patients' quality of life. Until further empirical evidence establishes a clear multidrug-resistant bacterial organism management approach in end-of-life care, stakeholders suggest a case-based approach. The institutional stakeholders' perspectives and their suggestion of a case-based approach advance the development process of a patient-, family-, staff-, and institutional

  19. Indolcarboxamide is a preclinical candidate for treating multidrug-resistant tuberculosis.

    PubMed

    Rao, Srinivasa P S; Lakshminarayana, Suresh B; Kondreddi, Ravinder R; Herve, Maxime; Camacho, Luis R; Bifani, Pablo; Kalapala, Sarath K; Jiricek, Jan; Ma, Ng L; Tan, Bee H; Ng, Seow H; Nanjundappa, Mahesh; Ravindran, Sindhu; Seah, Peck G; Thayalan, Pamela; Lim, Siao H; Lee, Boon H; Goh, Anne; Barnes, Whitney S; Chen, Zhong; Gagaring, Kerstin; Chatterjee, Arnab K; Pethe, Kevin; Kuhen, Kelli; Walker, John; Feng, Gu; Babu, Sreehari; Zhang, Lijun; Blasco, Francesca; Beer, David; Weaver, Margaret; Dartois, Veronique; Glynne, Richard; Dick, Thomas; Smith, Paul W; Diagana, Thierry T; Manjunatha, Ujjini H

    2013-12-04

    New chemotherapeutic compounds against multidrug-resistant Mycobacterium tuberculosis (Mtb) are urgently needed to combat drug resistance in tuberculosis (TB). We have identified and characterized the indolcarboxamides as a new class of antitubercular bactericidal agent. Genetic and lipid profiling studies identified the likely molecular target of indolcarboxamides as MmpL3, a transporter of trehalose monomycolate that is essential for mycobacterial cell wall biosynthesis. Two lead candidates, NITD-304 and NITD-349, showed potent activity against both drug-sensitive and multidrug-resistant clinical isolates of Mtb. Promising pharmacokinetic profiles of both compounds after oral dosing in several species enabled further evaluation for efficacy and safety. NITD-304 and NITD-349 were efficacious in treating both acute and chronic Mtb infections in mouse efficacy models. Furthermore, dosing of NITD-304 and NITD-349 for 2 weeks in exploratory rat toxicology studies revealed a promising safety margin. Finally, neither compound inhibited the activity of major cytochrome P-450 enzymes or the hERG (human ether-a-go-go related gene) channel. These results suggest that NITD-304 and NITD-349 should undergo further development as a potential treatment for multidrug-resistant TB.

  20. Enzyme decorated drug carriers: Targeted swords to cleave and overcome the mucus barrier.

    PubMed

    Menzel, Claudia; Bernkop-Schnürch, Andreas

    2018-01-15

    The use of mucus permeating drug carrier systems being able to overcome the mucus barrier can lead to a remarkable enhancement in bioavailability. One promising approach is the design of mucolytic enzyme decorated carrier systems (MECS). These systems include micro- and nanoparticles as well as self-emulsifying drug delivery systems (SEDDS) decorated with mucin cleaving enzymes such as papain (PAP) or bromelain (BRO). MECS are able to cross the mucus barrier in a comparatively efficient manner by cleaving mucus substructures in front of them on their way to the epithelium. Thereby these enzymes hydrolyze peptide bonds of mucus glycoproteins forming tiny holes or passages through the mucus. In various in vitro and in vivo studies MECS proved to be superior in their mucus permeating properties over nanocarriers without enzyme decoration. PAP decorated nanoparticles, for instance, remained 3h after oral administration to an even 2.5-fold higher extend in rat small intestine than the corresponding undecorated nanoparticles permeating the intestinal mucus gel layer to a much lower degree. As MECS break up the mucus network only locally without destroying its overall protective barrier function, even long term treatments with such systems seem feasible. Within this review article we address different drug carrier systems decorated with various types of enzymes, their particular pros and cons and potential applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Antitumor Agents 293. Non-toxic Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) Analogs Chemosensitize Multidrug Resistant Cancer Cells to Clinical Anticancer Drugs

    PubMed Central

    Hung, Hsin-Yi; Ohkoshi, Emika; Goto, Masuo; Bastow, Kenneth F.; Nakagawa-Goto, Kyoko; Lee, Kuo-Hsiung

    2012-01-01

    Novel dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxybiphenyl-2,2′-dicarboxylate (DDB) analogs were designed and synthesized to improve their chemosensitizing action on KBvin (vincristine resistant nasopharyngeal carcinoma) cells, a multi-drug resistant cell line over-expressing P-glycoprotein (P-gp). Structure-activity relationship analysis showed that aromatic and bulky aliphatic side chains at the 2,2′-positions effectively and significantly sensitized P-gp overexpressing multidrug resistant (MDR) cells to anticancer drugs, such as paclitaxel (TAX), vincristine (VCR), and doxorubicin (DOX). DDB derivatives 16 and 23 showed 5–10 times more effective reversal ability than verapamil (VRP) for TAX and VCR. Analog 6 also exhibited five times greater chemosensitizing effect against DOX than VRP. Importantly, no cytotoxicity was observed by the active DDB analogs against both non-MDR and MDR cells, suggesting that DDB analogs serve as the novel lead compounds for the development of chemosensitizers to overcome MDR phenotype. The mechanism of action studies demonstrated that effective inhibition of P-glycoprotein by DDB analogs dramatically elevated cellular concentration of anticancer drugs. PMID:22612652

  2. Endotoxin hitchhiking on polymer nanoparticles

    NASA Astrophysics Data System (ADS)

    Donnell, Mason L.; Lyon, Andrew J.; Mormile, Melanie R.; Barua, Sutapa

    2016-07-01

    The control of microbial infections is critical for the preparation of biological media including water to prevent lethal septic shock. Sepsis is one of the leading causes of death in the United States. More than half a million patients suffer from sepsis every year. Both gram-positive and gram-negative bacteria are responsible for septic infection by the most common organisms i.e., Escherichia coli and Pseuodomonas aeruginosa. The bacterial cell membrane releases negatively charged endotoxins upon death and enzymatic destruction, which stimulate antigenic response in humans to gram-negative infections. Several methods including distillation, ethylene oxide treatment, filtration and irradiation have been employed to remove endotoxins from contaminated samples, however, the reduction efficiency remains low, and presents a challenge. Polymer nanoparticles can be used to overcome the current inability to effectively sequester endotoxins from water. This process is termed endotoxin hitchhiking. The binding of endotoxin on polymer nanoparticles via electrostatic and hydrophobic interactions offers efficient removal from water. However, the effect of polymer nanoparticles and its surface areas has not been investigated for removal of endotoxins. Poly(ε-caprolactone) (PCL) polymer was tested for its ability to effectively bind and remove endotoxins from water. By employing a simple one-step phase separation technique, we were able to synthesize PCL nanoparticles of 398.3 ± 95.13 nm size and a polydispersity index of 0.2. PCL nanoparticles showed ∼78.8% endotoxin removal efficiency, the equivalent of 3.9 × 105 endotoxin units (EU) per ml. This is 8.34-fold more effective than that reported for commercially available membranes. Transmission electron microscopic images confirmed binding of multiple endotoxins to the nanoparticle surface. The concept of using nanoparticles may be applicable not only to eliminate gram-negative bacteria, but also for any gram

  3. Delamanid for multidrug-resistant pulmonary tuberculosis.

    PubMed

    Gler, Maria Tarcela; Skripconoka, Vija; Sanchez-Garavito, Epifanio; Xiao, Heping; Cabrera-Rivero, Jose L; Vargas-Vasquez, Dante E; Gao, Mengqiu; Awad, Mohamed; Park, Seung-Kyu; Shim, Tae Sun; Suh, Gee Young; Danilovits, Manfred; Ogata, Hideo; Kurve, Anu; Chang, Joon; Suzuki, Katsuhiro; Tupasi, Thelma; Koh, Won-Jung; Seaworth, Barbara; Geiter, Lawrence J; Wells, Charles D

    2012-06-07

    Delamanid (OPC-67683), a nitro-dihydro-imidazooxazole derivative, is a new antituberculosis medication that inhibits mycolic acid synthesis and has shown potent in vitro and in vivo activity against drug-resistant strains of Mycobacterium tuberculosis. In this randomized, placebo-controlled, multinational clinical trial, we assigned 481 patients (nearly all of whom were negative for the human immunodeficiency virus) with pulmonary multidrug-resistant tuberculosis to receive delamanid, at a dose of 100 mg twice daily (161 patients) or 200 mg twice daily (160 patients), or placebo (160 patients) for 2 months in combination with a background drug regimen developed according to World Health Organization guidelines. Sputum cultures were assessed weekly with the use of both liquid broth and solid medium; sputum-culture conversion was defined as a series of five or more consecutive cultures that were negative for growth of M. tuberculosis. The primary efficacy end point was the proportion of patients with sputum-culture conversion in liquid broth medium at 2 months. Among patients who received a background drug regimen plus 100 mg of delamanid twice daily, 45.4% had sputum-culture conversion in liquid broth at 2 months, as compared with 29.6% of patients who received a background drug regimen plus placebo (P=0.008). Likewise, as compared with the placebo group, the group that received the background drug regimen plus 200 mg of delamanid twice daily had a higher proportion of patients with sputum-culture conversion (41.9%, P=0.04). The findings were similar with assessment of sputum-culture conversion in solid medium. Most adverse events were mild to moderate in severity and were evenly distributed across groups. Although no clinical events due to QT prolongation on electrocardiography were observed, QT prolongation was reported significantly more frequently in the groups that received delamanid. Delamanid was associated with an increase in sputum-culture conversion at 2

  4. Crystal Structure of a Plant Multidrug and Toxic Compound Extrusion Family Protein.

    PubMed

    Tanaka, Yoshiki; Iwaki, Shigehiro; Tsukazaki, Tomoya

    2017-09-05

    The multidrug and toxic compound extrusion (MATE) family of proteins consists of transporters responsible for multidrug resistance in prokaryotes. In plants, a number of MATE proteins were identified by recent genomic and functional studies, which imply that the proteins have substrate-specific transport functions instead of multidrug extrusion. The three-dimensional structure of eukaryotic MATE proteins, including those of plants, has not been reported, preventing a better understanding of the molecular mechanism of these proteins. Here, we describe the crystal structure of a MATE protein from the plant Camelina sativa at 2.9 Å resolution. Two sets of six transmembrane α helices, assembled pseudo-symmetrically, possess a negatively charged internal pocket with an outward-facing shape. The crystal structure provides insight into the diversity of plant MATE proteins and their substrate recognition and transport through the membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Forthcoming therapeutic perspectives for infections due to multidrug-resistant Gram-positive pathogens.

    PubMed

    Cornaglia, G; Rossolini, G M

    2009-03-01

    Multidrug resistance in Gram-positive pathogens emerged as a major therapeutic challenge over two decades ago. The worldwide spread of methicillin-resistant Staphylococcus aureus (MRSA), glycopeptide-resistant enterococci and other resistant Gram-positive pathogens had a major impact on antibiotic policies, and prompted the discovery and development of new antibiotics to combat difficult-to-treat infections caused by such pathogens. Several new antibiotics active against multidrug-resistant Gram-positive pathogens have recently been introduced into clinical practice, and the antibiotic pipeline contains additional anti-Gram-positive drugs at an advanced stage of development, including new glycopeptides (dalbavancin, oritavancin, and telavancin), new anti-MRSA beta-lactams (ceftobiprole), and new diaminopyrimidines (iclaprim). This article provides a brief overview of these upcoming agents, partially based on the material presented at the ESCMID Conference entitled 'Fighting infections due to multidrug-resistant Gram-positives' (Venice, Italy, 29-31 May 2008) and on the most recent literature.

  6. Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer.

    PubMed

    Lv, Li; Liu, Chunxia; Chen, Chuxiong; Yu, Xiaoxia; Chen, Guanghui; Shi, Yonghui; Qin, Fengchao; Ou, Jiebin; Qiu, Kaifeng; Li, Guocheng

    2016-05-31

    The combination of a chemotherapeutic drug with a chemosensitizer has emerged as a promising strategy for cancers showing multidrug resistance (MDR). Herein we describe the simultaneous targeted delivery of two drugs to tumor cells by using biotin-decorated poly(ethylene glycol)-b-poly(ε-caprolactone) nanoparticles encapsulating the chemotherapeutic drug doxorubicin and the chemosensitizer quercetin (BNDQ). Next, the potential ability of BNDQ to reverse MDR in vitro and in vivo was investigated. Studies demonstrated that BNDQ was more effectively taken up with less efflux by doxorubicin-resistant MCF-7 breast cancer cells (MCF-7/ADR cells) than by the cells treated with the free drugs, single-drug-loaded nanoparticles, or non-biotin-decorated nanoparticles. BNDQ exhibited clear inhibition of both the activity and expression of P-glycoprotein in MCF-7/ADR cells. More importantly, it caused a significant reduction in doxorubicin resistance in MCF-7/ADR breast cancer cells both in vitro and in vivo, among all the groups. Overall, this study suggests that BNDQ has a potential role in the treatment of drug-resistant breast cancer.

  7. Effect of curcumin on human colon cancer multidrug resistance in vitro and in vivo

    PubMed Central

    Lu, Wei-Dong; Qin, Yong; Yang, Chuang; Li, Lei

    2013-01-01

    OBJECTIVE: To determine whether curcumin reverses the multidrug resistance of human colon cancer cells in vitro and in vivo. METHODS: In a vincristine-resistant cell line of human colon cancer, the cell viability of curcumin-treated cells was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Rhodamine123 efflux was evaluated to detect P-glycoprotein transporter activity, and expression of the multidrug resistance protein 1 and survivin genes was analyzed by reverse transcription polymerase chain reaction and western blotting. In addition, xenograft mouse tumors were grown and treated with curcumin. The morphology of the xenografts was investigated by hematoxylin-eosin staining. The in vivo expression of the multidrug resistance gene and P-glycoprotein and survivin genes and proteins was observed using reverse transcription-polymerase chain reaction and western blotting, respectively. RESULTS: Curcumin was not obviously toxic to the vincristine-resistant human colon cancer cells at concentrations less than 25 μM, but the growth of cells was significantly inhibited. At concentrations greater than 25 μM, curcumin was toxic in a concentration-dependent manner. The sensitivity of cells to vincristine, cisplatin, fluorouracil, and hydroxycamptothecin was enhanced, intracellular Rhodamine123 accumulation was increased (p<0.05), and the expression of the multidrug resistance gene and P-glycoprotein were significantly suppressed (p<0.05). The combination of curcumin and vincristine significantly inhibited xenograft growth. The expression of the multidrug resistance protein 1 and survivin genes was significantly reduced in xenografts of curcumin-treated mice and mice treated with both curcumin and vincristine relative to control mice. CONCLUSION: Curcumin has strong reversal effects on the multidrug resistance of human colon carcinoma in vitro and in vivo. PMID:23778405

  8. Induction of apoptosis and reversal of permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM by ginsenoside Rh2.

    PubMed

    Zhang, Hui; Gong, Jian; Zhang, Huilai; Kong, Di

    2015-01-01

    Multidrug resistance is a phenomenon that cancer cells develop a cross-resistant phenotype against several unrelated drugs, and permeability glycoprotein derived from the overexpression of multidrug resistance gene 1 has been taken as the most significant cause of multidrug resistance. In the present study, ginsenoside Rh2 was used to reverse permeability glycoprotein-mediated multidrug resistance of MCF-7/ADM cell line. Effects of ginsenoside Rh2 on the apoptotic process and caspase-3 activity of MCF-7 and MCF-7/ADM cell lines were determined using flow cytometry and microplate reader. Methyl thiazolyl tetrazolium test was conducted to assess the IC50 values of ginsenoside Rh2 and adriamycin on MCF-7 and MCF-7/ADM cultures; Rhodamin 123 assay was used to assess the retention of permeability glycoprotein after ginsenoside Rh2 treatment; flow cytometry and real time polymerase chain reaction were used to determine the expression levels of permeability glycoprotein and multidrug resistance gene 1 in drug-resistant cells and their parental cells after exposure to ginsenoside Rh2. The results showed that ginsenoside Rh2, except for inducing apoptosis, had the ability to reverse multidrug resistance in MCF-7/ADM cell line without changing the expression levels of permeability glycoprotein and multidrug resistance gene 1. Our findings provided some valuable information for the application of ginsenoside Rh2 in cancer therapy, especially for multidrug resistance reversal in clinic.

  9. Cyclodextrin-PEG conjugate-wrapped magnetic ferrite nanoparticles for enhanced drug loading and release

    NASA Astrophysics Data System (ADS)

    Enoch, Israel V. M. V.; Ramasamy, Sivaraj; Mohiyuddin, Shanid; Gopinath, Packirisamy; Manoharan, R.

    2018-05-01

    Magnetic nanoparticles are envisaged to overcome the impediments in the methods of targeted drug delivery and hence cure cancer effectively. We report herein, manganese ferrite nanoparticles, coated with β-cyclodextrin-modified polyethylene glycol as a carrier for the drug, camptothecin. The particles are of the size of 100 nm and they show superparamagnetic behaviour. The saturation magnetization does not get diminished on polymer coverage of the nanoparticles. The β-cyclodextrin-polyethylene glycol conjugates are characterized using NMR and mass spectrometric techniques. By coating the magnetic nanoparticles with the cyclodextrin-tethered polymer, the drug-loading capacity is enhanced and the observed release of the drug is slow and sustained. The cell viability of HEK293 and HCT15 cells is evaluated and the cytotoxicity is enhanced when the drug is loaded in the polymer-coated magnetic nanoparticles. The noncovalent-binding based and enhanced drug loading on the nanoparticles and the sustained release make the nanocarrier a promising agent for carrying the payload to the target.

  10. Time multiplexing super-resolution nanoscopy based on the Brownian motion of gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Ilovitsh, Tali; Ilovitsh, Asaf; Wagner, Omer; Zalevsky, Zeev

    2017-02-01

    Super-resolution localization microscopy can overcome the diffraction limit and achieve a tens of order improvement in resolution. It requires labeling the sample with fluorescent probes followed with their repeated cycles of activation and photobleaching. This work presents an alternative approach that is free from direct labeling and does not require the activation and photobleaching cycles. Fluorescently labeled gold nanoparticles in a solution are distributed on top of the sample. The nanoparticles move in a random Brownian motion, and interact with the sample. By obscuring different areas in the sample, the nanoparticles encode the sub-wavelength features. A sequence of images of the sample is captured and decoded by digital post processing to create the super-resolution image. The achievable resolution is limited by the additive noise and the size of the nanoparticles. Regular nanoparticles with diameter smaller than 100nm are barely seen in a conventional bright field microscope, thus fluorescently labeled gold nanoparticles were used, with proper

  11. Multidrug-resistant opportunistic pathogens challenging veterinary infection control.

    PubMed

    Walther, Birgit; Tedin, Karsten; Lübke-Becker, Antina

    2017-02-01

    Although the problems associated with healthcare-associated infections (HAI) and the emergence of zoonotic and multidrug-resistant pathogens in companion animal (dogs, cats and horses) medicine have been well-known for decades, current progress with respect to practical implementation of infection control programs in veterinary clinics has been limited. Clinical outbreak events reported for methicillin-resistant Staphylooccus aureus (MRSA) and Staphylococcus pseudintermedius (MRSP), extended spectrum beta-lactamase (ESBL)-producing Escherichia coli and multidrug-resistant (MDR) Salmonella Serovars indicate the necessity of infection control strategies for protecting animal patients at risk as well as veterinary personnel. The close bond between humans and their companion animals provides opportunities for exchange of microorganisms, including MDR pathogens. This particular aspect of the "One Health" idea requires more representative surveillance efforts and infection control strategies with respect to animal-species specific characters. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Designing and Testing Functional RNA Nanoparticles | Center for Cancer Research

    Cancer.gov

    Recent advances in nanotechnology have generated excitement that nanomaterials may provide novel approaches for the diagnosis and treatment of deadly diseases, such as cancer. However, the use of synthetic materials to generate nanoparticles can present challenges with endotoxin content, sterility, or biocompatibility. Employing biological materials may overcome these issues with RNA being particularly attractive given the clinical applications of RNA interference and the abundance of functional RNAs, including aptamers and ribozymes. RNA can form stable three-dimensional nanoparticle structures that can be decorated with other nucleic acids, small molecules, or proteins, potentially increasing local concentrations of therapeutic agents and acting synergistically when combined.

  13. Multidrug resistance in pediatric urinary tract infections.

    PubMed

    Gaspari, Romolo J; Dickson, Eric; Karlowsky, James; Doern, Gary

    2006-01-01

    Urinary tract infections (UTIs) represent a common infection in the pediatric population. Escherichia coli is the most common uropathogen in children, and antimicrobial resistance in this species complicates the treatment of pediatric UTIs. Despite the impact of resistance on empiric antibiotic choice, there is little data on multidrug resistance in pediatric patients. In this paper, we describe characteristics of multidrug-resistant E. coli in pediatric patients using a large national database of uropathogens antimicrobial sensitivities. Antimicrobial susceptibility patterns to commonly prescribed antibiotics were performed on uropathogens isolated from children presenting to participating hospitals between 1999 and 2001. Data were analyzed separately for four pediatric age groups. Single and multidrug resistance to ampicillin, amoxicillin-clavulanate, cefazolin, ciprofloxacin, nitrofurantoin, and trimethoprim-sulfamethoxazole (TMP-SMX) were performed on all specimens. There were a total of 11,341 E. coli urine cultures from 343 infants (0-4 weeks), 1,801 toddlers (5 weeks-24 months), 6,742 preteens (2-12 years), and 2,455 teens (13-17 years). E. coli resistance to ampicillin peaked in toddlers (52.8%) but was high in preteens (52.1%), infants (50.4%), and teens (40.6%). Resistance to two or more antibiotics varied across age groups, with toddlers (27%) leading preteens (23.1%), infants (21%), and teens (15.9%). Resistance to three or more antibiotics was low in all age groups (range 3.1-5.2%). The most common co-resistance in all age groups was ampicillin/TMP-SMZ. In conclusion, less than half of all pediatric UTIs are susceptible to all commonly used antibiotics. In some age groups, there is a significant percentage of co-resistance between the two most commonly used antibiotics (ampicillin and TMP-SMZ).

  14. Clonal Multidrug-Resistant Corynebacterium striatum Strains, Italy

    PubMed Central

    Campanile, Floriana; Carretto, Edoardo; Barbarini, Daniela; Grigis, Annalisa; Falcone, Marco; Goglio, Antonio; Venditti, Mario

    2009-01-01

    We assessed the clinical relevance and performed molecular characterization of 36 multidrug-resistant strains of Corynebacterium striatum. Pulsed-field gel electrophoresis confirmed a single clone, possessing erm(X), tetA/B, cmxA/B, and aphA1 genes, but few related subclones. This strain is emerging as a pathogen in Italy. PMID:19116057

  15. Multidrug-Resistant Pathogens in Hospitalized Syrian Children.

    PubMed

    Kassem, Diana Faour; Hoffmann, Yoav; Shahar, Naama; Ocampo, Smadar; Salomon, Liora; Zonis, Zeev; Glikman, Daniel

    2017-01-01

    Since 2013, wounded and ill children from Syria have received treatment in Israel. Screening cultures indicated that multidrug-resistant (MDR) pathogens colonized 89 (83%) of 107 children. For 58% of MDR infections, the pathogen was similar to that identified during screening. MDR screening of these children is valuable for purposes of isolation and treatment.

  16. Systems-level thinking for nanoparticle-mediated therapeutic delivery to neurological diseases.

    PubMed

    Curtis, Chad; Zhang, Mengying; Liao, Rick; Wood, Thomas; Nance, Elizabeth

    2017-03-01

    Neurological diseases account for 13% of the global burden of disease. As a result, treating these diseases costs $750 billion a year. Nanotechnology, which consists of small (~1-100 nm) but highly tailorable platforms, can provide significant opportunities for improving therapeutic delivery to the brain. Nanoparticles can increase drug solubility, overcome the blood-brain and brain penetration barriers, and provide timed release of a drug at a site of interest. Many researchers have successfully used nanotechnology to overcome individual barriers to therapeutic delivery to the brain, yet no platform has translated into a standard of care for any neurological disease. The challenge in translating nanotechnology platforms into clinical use for patients with neurological disease necessitates a new approach to: (1) collect information from the fields associated with understanding and treating brain diseases and (2) apply that information using scalable technologies in a clinically-relevant way. This approach requires systems-level thinking to integrate an understanding of biological barriers to therapeutic intervention in the brain with the engineering of nanoparticle material properties to overcome those barriers. To demonstrate how a systems perspective can tackle the challenge of treating neurological diseases using nanotechnology, this review will first present physiological barriers to drug delivery in the brain and common neurological disease hallmarks that influence these barriers. We will then analyze the design of nanotechnology platforms in preclinical in vivo efficacy studies for treatment of neurological disease, and map concepts for the interaction of nanoparticle physicochemical properties and pathophysiological hallmarks in the brain. WIREs Nanomed Nanobiotechnol 2017, 9:e1422. doi: 10.1002/wnan.1422 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  17. Gold nanoparticles to improve HIV drug delivery

    PubMed Central

    Garrido, Carolina; Simpson, Carrie A; Dahl, Noelle P; Bresee, Jamee; Whitehead, Daniel C; Lindsey, Erick A; Harris, Tyler L; Smith, Candice A; Carter, Carly J; Feldheim, Daniel L; Melander, Christian; Margolis, David M

    2015-01-01

    Background: Antiretroviral therapy (ART) has improved lifespan and quality of life of patients infected with the HIV-1. However, ART has several potential limitations, including the development of drug resistance and suboptimal penetration to selected anatomic compartments. Improving the delivery of antiretroviral molecules could overcome several of the limitations of current ART. Results & Conclusion: Two to ten nanometer diameter inorganic gold crystals serve as a base scaffold to combine molecules with an array of properties in its surface. We show entry into different cell types, antiviral activity of an HIV integrase inhibitor conjugated in a gold nanoparticle and penetration into the brain in vivo without toxicity. Herein, gold nanoparticles prove to be a promising tool to use in HIV therapy. PMID:26132521

  18. Nanoparticle formulations of cisplatin for cancer therapy

    PubMed Central

    Duan, Xiaopin; He, Chunbai; Kron, Stephen J.; Lin, Wenbin

    2016-01-01

    The genotoxic agent cisplatin, used alone or in combination with radiation and/or other chemotherapeutic agents, is an important first-line chemotherapy for a broad range of cancers. The clinical utility of cisplatin is limited both by intrinsic and acquired resistance and dose-limiting normal tissue toxicity. That cisplatin shows little selectivity for tumor versus normal tissue may be a critical factor limiting its value. To overcome the low therapeutic ratio of the free drug, macromolecular, liposomal and nanoparticle drug delivery systems have been explored toward leveraging the enhanced permeability and retention (EPR) effect and promoting delivery of cisplatin to tumors. Here, we survey recent advances in nanoparticle formulations of cisplatin, focusing on agents that show promise in preclinical or clinical settings. PMID:26848041

  19. Molecular characterization of multidrug-resistant Shigella spp. of food origin.

    PubMed

    Ahmed, Ashraf M; Shimamoto, Tadashi

    2015-02-02

    Shigella spp. are the causative agents of food-borne shigellosis, an acute enteric infection. The emergence of multidrug-resistant clinical isolates of Shigella presents an increasing challenge for clinicians in the treatment of shigellosis. Several studies worldwide have characterized the molecular basis of antibiotic resistance in clinical Shigella isolates of human origin, however, to date, no such characterization has been reported for Shigella spp. of food origin. In this study, we characterized the genetic basis of multidrug resistance in Shigella spp. isolated from 1600 food samples (800 meat products and 800 dairy products) collected from different street venders, butchers, retail markets, and slaughterhouses in Egypt. Twenty-four out of 27 Shigella isolates (88.9%) showed multidrug resistance phenotypes to at least three classes of antimicrobials. The multidrug-resistant Shigella spp. were as follows: Shigella flexneri (66.7%), Shigella sonnei (18.5%), and Shigella dysenteriae (3.7%). The highest resistance was to streptomycin (100.0%), then to kanamycin (95.8%), nalidixic acid (95.8%), tetracycline (95.8%), spectinomycin (93.6%), ampicillin (87.5%), and sulfamethoxazole/trimethoprim (87.5%). PCR and DNA sequencing were used to screen and characterize integrons and antibiotic resistance genes. Our results indicated that 11.1% and 74.1% of isolates were positive for class 1 and class 2 integrons, respectively. Beta-lactamase-encoding genes were identified in 77.8% of isolates, and plasmid-mediated quinolone resistance genes were identified in 44.4% of isolates. These data provide useful information to better understand the molecular basis of antimicrobial resistance in Shigella spp. To the best of our knowledge, this is the first report of the molecular characterization of antibiotic resistance in Shigella spp. isolated from food. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Substrate-bound structure of the E. coli multidrug resistance transporter MdfA

    PubMed Central

    Heng, Jie; Zhao, Yan; Liu, Ming; Liu, Yue; Fan, Junping; Wang, Xianping; Zhao, Yongfang; Zhang, Xuejun C

    2015-01-01

    Multidrug resistance is a serious threat to public health. Proton motive force-driven antiporters from the major facilitator superfamily (MFS) constitute a major group of multidrug-resistance transporters. Currently, no reports on crystal structures of MFS antiporters in complex with their substrates exist. The E. coli MdfA transporter is a well-studied model system for biochemical analyses of multidrug-resistance MFS antiporters. Here, we report three crystal structures of MdfA-ligand complexes at resolutions up to 2.0 Å, all in the inward-facing conformation. The substrate-binding site sits proximal to the conserved acidic residue, D34. Our mutagenesis studies support the structural observations of the substrate-binding mode and the notion that D34 responds to substrate binding by adjusting its protonation status. Taken together, our data unveil the substrate-binding mode of MFS antiporters and suggest a mechanism of transport via this group of transporters. PMID:26238402

  1. Molecular Imaging with Theranostic Nanoparticles

    PubMed Central

    Jokerst, Jesse V.; Gambhir, Sanjiv S.

    2011-01-01

    or more. While the most clinically translatable nanoparticles have been used in the field of magnetic resonance imaging, other types are quickly becoming more biocompatible by overcoming toxicity and biodistribution concerns. The document details diagnostic imaging and therapeutic uses of nanoparticles. We propose five main types of nanoparticles with concurrent diagnostic and thereapeutic uses and offer examples of each. PMID:21919457

  2. Micelle-like Nanoparticles as Carriers for DNA and siRNA

    PubMed Central

    Navarro, Gemma; Pan, Jiayi; Torchilin, Vladimir P.

    2015-01-01

    Gene therapy represents a potential efficient approach of disease prevention and therapy. However, due to their poor in vivo stability, gene molecules need to be associated with delivery systems to overcome extracellular and intracellular barriers and allow access to the site of action. Cationic polymeric nanoparticles are popular carriers for small interfering RNA (siRNA) and DNA-based therapeutics for which efficient and safe delivery are important factors that need to be optimized. Micelle-like nanoparticles (MNP) (half micelles, half polymeric nanoparticles) can overcome some of the disadvantages of such cationic carriers by unifying in one single carrier the best of both delivery systems. In this review, we will discuss how the unique properties of MNP including self-assembly, condensation and protection of nucleic acids, improved cell association and gene transfection, and low toxicity may contribute to the successful application of siRNA- and DNA-based therapeutics into the clinic. Recent developments of MNP involving the addition of stimulus-sensitive functions to respond specifically to pathological or externally applied “triggers” (e.g., temperature, pH or enzymatic catalysis, light, or magnetic fields) will be discussed. Finally, we will overview the use of MNP as two-in-one carriers for the simultaneous delivery of different agents (small molecules, imaging agents) and nucleic acid combinations. PMID:25557580

  3. Multidrug-Resistant Pathogens in Hospitalized Syrian Children

    PubMed Central

    Kassem, Diana Faour; Hoffmann, Yoav; Shahar, Naama; Ocampo, Smadar; Salomon, Liora; Zonis, Zeev

    2017-01-01

    Since 2013, wounded and ill children from Syria have received treatment in Israel. Screening cultures indicated that multidrug-resistant (MDR) pathogens colonized 89 (83%) of 107 children. For 58% of MDR infections, the pathogen was similar to that identified during screening. MDR screening of these children is valuable for purposes of isolation and treatment. PMID:27618479

  4. Multidrug-Resistant Tuberculosis, Somalia, 2010–2011

    PubMed Central

    Sindani, Ireneaus; Fitzpatrick, Christopher; Falzon, Dennis; Suleiman, Bashir; Arube, Peter; Adam, Ismail; Baghdadi, Samiha; Bassili, Amal

    2013-01-01

    In a nationwide survey in 2011, multidrug-resistant tuberculosis (MDR TB) was found in 5.2% and 40.8% of patients with new and previously treated TB, respectively. These levels of drug resistance are among the highest ever documented in Africa and the Middle East. This finding presents a serious challenge for TB control in Somalia. PMID:23621911

  5. pH-Dependent anticancer drug release from silk nanoparticles

    PubMed Central

    Seib, F. Philipp; Jones, Gregory T.; Rnjak-Kovacina, Jelena; Lin, Yinan; Kaplan, David L.

    2013-01-01

    Silk has traditionally been used as a suture material because of its excellent mechanical properties and biocompatibility. These properties have led to the development of different silk-based material formats for tissue engineering and regenerative medicine. Although there have been a small number of studies about the use of silk particles for drug delivery, none of these studies have assessed the potential of silk to act as a stimulus-responsive anticancer nanomedicine. This report demonstrates that an acetone precipitation of silk allowed the formation of uniform silk nanoparticles (98 nm diameter, polydispersity index 0.109), with an overall negative surface charge (-33.6 ±5.8 mV), in a single step. Silk nanoparticles were readily loaded with doxorubicin (40 ng doxorubicin/μg silk) and showed pH-dependent release (pH 4.5>> 6.0 > 7.4). In vitro studies with human breast cancer cell lines demonstrated that the silk nanoparticles were not cytotoxic (IC50 >120/μ/ml) and that doxorubicin-loaded silk nanoparticles were able to overcome drug resistance mechanisms. Live cell fluorescence microscopy studies showed endocytic uptake and lysosomal accumulation of silk nanoparticles. In summary, the pH-dependent drug release and lysosomal accumulation of silk nanoparticles demonstrated the ability of drug-loaded silk nanoparticles to serve as a lysosomotropic anticancer nanomedicine. PMID:23625825

  6. Multidrug-resistant organisms in military wounds from Iraq and Afghanistan.

    PubMed

    Calhoun, Jason H; Murray, Clinton K; Manring, M M

    2008-06-01

    Mortality from battlefield wounds has historically declined, thanks to better surgical management, faster transport of casualties, and improved antibiotics. Today, one of the major challenges facing U.S. military caregivers is the presence of multidrug-resistant organisms in orthopaedic extremity wounds. The most frequently identified resistant strains of bacteria are Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus-baumannii complex. Overuse of broad-spectrum antibiotics may be an important factor in building resistant strains. Acinetobacter infections appear to hospital-acquired and not from an initial colonization of the injury. More research is required to give military physicians the tools they require to reduce the infection rate and defeat multidrug-resistant organisms.

  7. PLGA nanoparticles codeliver paclitaxel and Stat3 siRNA to overcome cellular resistance in lung cancer cells

    PubMed Central

    Su, Wen-Pin; Cheng, Fong-Yu; Shieh, Dar-Bin; Yeh, Chen-Sheng; Su, Wu-Chou

    2012-01-01

    Background: Effective cancer chemotherapy remains an important issue in cancer treatment, and signal transducer and activator of transcription-3 (Stat3) activation leads to cellular resistance of anticancer agents. Polymers are ideal vectors to carry both chemotherapeutics and small interfering ribonucleic acid (siRNA) to enhance antitumor efficacy. In this paper, poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with paclitaxel and Stat3 siRNA were successfully synthesized, and their applications in cancer cells were investigated. Methods: Firstly, paclitaxel was enclosed by PLGA nanoparticles through solvent evaporation. They were then coated with cationic polyethylenimine polymer (PLGA-PEI-TAX), enabling it to carry Stat3 siRNA on its surface through electrostatic interactions (PLGA-PEI-TAX-S3SI). The size, zeta potential, deliver efficacy, and release profile of the PLGA nanocomplexes were characterized in vitro. The cellular uptake, intracellular nanoparticle trajectory, and subsequent cellular events were evaluated after treatment with various PLGA nanocomplexes in human lung cancer A549 cells and A549-derived paclitaxel-resistant A549/T12 cell lines with α-tubulin mutation. Results: A549 and A549/T12 cells contain constitutively activated Stat3, and silencing Stat3 by siRNA made both cancer cells more sensitive to paclitaxel. Therefore, PLGA-PEI-TAX-S3SI was synthesized to test its therapeutic role in A549 and A549/T12 cells. Transmission electron microscopy showed the size of PLGA-PEI-TAX-S3SI to be around 250 nm. PLGA-PEI nanoparticles were nontoxic. PLGA-PEI-TAX was taken up by A549 and A549/T12 cells more than free paclitaxel, and they induced more condensed microtubule bundles and had higher cytotoxicity in these cancer cells. Moreover, the yellowish fluorescence observed in the cytoplasm of the cancer cells indicates that the PLGA-PEI nanoparticles were still simultaneously delivering Oregon Green paclitaxel and cyanine-5-labeled Stat3 siRNA 3

  8. Growth-dissolution-regrowth transitions of Fe3O4 nanoparticles as building blocks for 3D magnetic nanoparticle clusters under hydrothermal conditions.

    PubMed

    Lin, Mouhong; Huang, Haoliang; Liu, Zuotao; Liu, Yingju; Ge, Junbin; Fang, Yueping

    2013-12-10

    Magnetic nanoparticle clusters (MNCs) are a class of secondary structural materials that comprise chemically defined nanoparticles assembled into clusters of defined size. Herein, MNCs are fabricated through a one-pot solvothermal reaction featuring self-limiting assembly of building blocks and the controlled reorganization process. Such growth-dissolution-regrowth fabrication mechanism overcomes some limitations of conventional solvothermal fabrication methods with regard to restricted available feature size and structural complexity, which can be extended to other oxides (as long as one can be chelated by EDTA-2Na). Based on this method, the nanoparticle size of MNCs is tuned between 6.8 and 31.2 nm at a fixed cluster diameter of 120 nm, wherein the critical size for superparamagnetic-ferromagnetic transition is estimated from 13.5 to 15.7 nm. Control over the nature and secondary structure of MNCs gives an excellent model system to understand the nanoparticle size-dependent magnetic properties of MNCs. MNCs have potential applications in many different areas, while this work evaluates their cytotoxicity and Pb(2+) adsorption capacity as initial application study.

  9. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2

    PubMed Central

    Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J.; Robey, Robert W.; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T.; Bates, Susan E.; Ambudkar, Suresh V.; Chen, Zhe-Sheng

    2014-01-01

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients. PMID:24980828

  10. Icotinib antagonizes ABCG2-mediated multidrug resistance, but not the pemetrexed resistance mediated by thymidylate synthase and ABCG2.

    PubMed

    Wang, De-Shen; Patel, Atish; Shukla, Suneet; Zhang, Yun-Kai; Wang, Yi-Jun; Kathawala, Rishil J; Robey, Robert W; Zhang, Li; Yang, Dong-Hua; Talele, Tanaji T; Bates, Susan E; Ambudkar, Suresh V; Xu, Rui-Hua; Chen, Zhe-Sheng

    2014-06-30

    ABCG2 is a potential biomarker causing multidrug resistance (MDR) in Non-Small Cell Lung Cancer (NSCLC). We conducted this study to investigate whether Icotinib, a small-molecule inhibitor of EGFR tyrosine kinase, could interact with ABCG2 transporter in NSCLC. Our results showed that Icotinib reversed ABCG2-mediated MDR by antagonizing the drug efflux function of ABCG2. Icotinib stimulated the ATPase activity in a concentration-dependent manner and inhibited the photolabeling of ABCG2 with [125I]-Iodoarylazidoprazosin, demonstrating that it interacts at the drug-binding pocket. Homology modeling predicted the binding conformation of Icotinib at Asn629 centroid-based grid of ABCG2. However, Icotinib at reversal concentration did not affect the expression levels of AKT and ABCG2. Furthermore, a combination of Icotinib and topotecan exhibited significant synergistic anticancer activity against NCI-H460/MX20 tumor xenografts. However, the inhibition of transport activity of ABCG2 was insufficient to overcome pemetrexed resistance in NCI-H460/MX20 cells, which was due to the co-upregulated thymidylate synthase (TS) and ABCG2 expression. This is the first report to show that the up-regulation of TS in ABCG2-overexpressing cell line NCI-H460/MX20 may play a role of resistance to pemetrexate. Our findings suggested different possible strategies of overcoming the resistance of topotecan and pemetrexed in the NSCLC patients.

  11. Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells.

    PubMed

    Figueroa-González, Gabriela; Jacobo-Herrera, Nadia; Zentella-Dehesa, Alejandro; Pereda-Miranda, Rogelio

    2012-01-27

    Reversal of multidrug resistance (MDR) by thirty resin glycosides from the morning glory family (Convolvulaceae) was evaluated in vinblastine-resistant human breast carcinoma cells (MCF-7/Vin). The effects of these amphipathic compounds on the cytotoxicity and P-glycoprotein (P-gp)-mediated MDR were estimated with the sulforhodamine B colorimetric assay. Active noncytotoxic compounds exerted a potentiation effect of vinblastine susceptibility by 1- to over 1906-fold at tested concentrations of 5 and 25 μg/mL. Murucoidin V (1) enhanced vinblastine activity 255-fold when incorporated at 25 μg/mL and also, based on flow cytometry, significantly increased the intracellular accumulation of rhodamine 123 with the use of reserpine as a positive control for a MDR reversal agent. Incubation of MCF-7/Vin cells with 1 caused an increase in uptake and notably lowered the efflux rate of rhodamine 123. Decreased expression of P-glycoprotein by compound 1 was detected by immunofluorescence flow cytometry after incubation with an anti-P-gp monoclonal antibody. These results suggest that resin glycosides represent potential efflux pump inhibitors for overcoming MDR in cancer therapy.

  12. Multifunctional platinum-based nanoparticles for biomedical applications.

    PubMed

    Cheng, Qinqin; Liu, Yangzhong

    2017-03-01

    Platinum-based anticancer drugs play a central role in current cancer therapy. However, their applicability and efficacy are limited by drug resistance and adverse effects. Nanocarrier-based platinum drug delivery systems are promising alternatives to circumvent the disadvantages of bare platinum drugs. The various properties of nanoparticle chemistry allow for the trend toward multiple functionality. Nanoparticles preferentially accumulate at the tumor site through passive targeting, and the attachment of tumor targeting moieties further enhances their tumor-specific localization as well as tumor cell uptake. The introduction of stimuli-responsive groups into drug delivery systems can further achieve spatially and temporally controlled drug release in response to specific stimuli. Combination therapy strategies have been used to promote synergetic efficacy and overcome the resistance of platinum drugs. The tumor-localized drug delivery strategies exhibit benefits for preventing local tumor recurrence. In addition, the combination of platinum drugs and imaging agents in one unity allows the cancer diagnostics for real-time monitoring the distribution of drug-loaded nanoparticles inside the body and tumor. This review discusses recent scientific advances in multifunctional nanoparticle formulations of platinum drugs, and these designs exhibit new potential of multifunctional nanoparticles for delivering platinum-based anticancer drugs. WIREs Nanomed Nanobiotechnol 2017, 9:e1410. doi: 10.1002/wnan.1410 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.

  13. Conquering the Dark Side: Colloidal Iron Oxide Nanoparticles

    PubMed Central

    Senpan, Angana; Caruthers, Shelton D.; Rhee, Ilsu; Mauro, Nicholas A.; Pan, Dipanjan; Hu, Grace; Scott, Michael J.; Fuhrhop, Ralph W.; Gaffney, Patrick J.; Wickline, Samuel A.; Lanza, Gregory M.

    2009-01-01

    Nanomedicine approaches to atherosclerotic disease will have significant impact on the practice and outcomes of cardiovascular medicine. Iron oxide nanoparticles have been extensively used for nontargeted and targeted imaging applications based upon highly sensitive T2* imaging properties, which typically result in negative contrast effects that can only be imaged 24 or more hours after systemic administration due to persistent blood pool interference. Although recent advances involving MR pulse sequences have converted these dark contrast voxels into bright ones, the marked delays in imaging from persistent magnetic background interference and prominent dipole blooming effects of the magnetic susceptibility remain barriers to overcome. We report a T1-weighted (T1w) theranostic colloidal iron oxide nanoparticle platform, CION, which is achieved by entrapping oleate-coated magnetite particles within a cross-linked phospholipid nanoemulsion. Contrary to expectations, this formulation decreased T2 effects thus allowing positive T1w contrast detection down to low nanomolar concentrations. CION, a vascular constrained nanoplatform administered in vivo permitted T1w molecular imaging 1 hour after treatment without blood pool interference, although some T2 shortening effects on blood, induced by the superparamagnetic particles persisted. Moreover, CION was shown to encapsulate antiangiogenic drugs, like fumagillin, and retained them under prolonged dissolution, suggesting significant theranostic functionality. Overall, CION is a platform technology, developed with generally recognized as safe components, that overcomes the temporal and spatial imaging challenges associated with current iron oxide nanoparticle T2 imaging agents, and which has theranostic potential in vascular diseases for detecting unstable ruptured plaque or treating atherosclerotic angiogenesis. PMID:19908850

  14. Structural basis for the inhibition of bacterial multidrug exporters.

    PubMed

    Nakashima, Ryosuke; Sakurai, Keisuke; Yamasaki, Seiji; Hayashi, Katsuhiko; Nagata, Chikahiro; Hoshino, Kazuki; Onodera, Yoshikuni; Nishino, Kunihiko; Yamaguchi, Akihito

    2013-08-01

    The multidrug efflux transporter AcrB and its homologues are important in the multidrug resistance of Gram-negative pathogens. However, despite efforts to develop efflux inhibitors, clinically useful inhibitors are not available at present. Pyridopyrimidine derivatives are AcrB- and MexB-specific inhibitors that do not inhibit MexY; MexB and MexY are principal multidrug exporters in Pseudomonas aeruginosa. We have previously determined the crystal structure of AcrB in the absence and presence of antibiotics. Drugs were shown to be exported by a functionally rotating mechanism through tandem proximal and distal multisite drug-binding pockets. Here we describe the first inhibitor-bound structures of AcrB and MexB, in which these proteins are bound by a pyridopyrimidine derivative. The pyridopyrimidine derivative binds tightly to a narrow pit composed of a phenylalanine cluster located in the distal pocket and sterically hinders the functional rotation. This pit is a hydrophobic trap that branches off from the substrate-translocation channel. Phe 178 is located at the edge of this trap in AcrB and MexB and contributes to the tight binding of the inhibitor molecule through a π-π interaction with the pyridopyrimidine ring. The voluminous side chain of Trp 177 located at the corresponding position in MexY prevents inhibitor binding. The structure of the hydrophobic trap described in this study will contribute to the development of universal inhibitors of MexB and MexY in P. aeruginosa.

  15. Reversal of multidrug resistance in xenograft nude-mice by magnetic Fe(3)O(4) nanoparticles combined with daunorubicin and 5-bromotetrandrine.

    PubMed

    Wu, Ya-Nan; Chen, Bao-An; Cheng, Jian; Gao, Feng; Xu, Wen-Lin; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Li, Guo-Hong; Chen, Wen-Ji; Liu, Li-Jie; Li, Xiao-Mao; Wang, Xue-Mei

    2009-02-01

    This study was aimed to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (Fe(3)O(4)-MNPs) combined with DNR in vivo. The xenograft leukemia model with stable multiple drug resistance in nude mice was established. The two sub-clones of K562 and K562/A02 cells were respectively inoculated subcutaneously into back of athymic nude mice (1 x 10(7) cells/each) to establish the leukemia xenograft models. Drug resistant and the sensitive tumor-bearing nude mice were both assigned randomly into 5 groups: group A was treated with NS; group B was treated with DNR; group C was treated with nanoparticle of Fe(3)O(4) combined with DNR; group D was treated with 5-BrTet combined with DNR; group E was treated with 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR. The incidence of tumor formation, growth characteristics, weight and volume of tumor were observed. The histopathologic examination of tumors and organs were carried out. The protein levels of BCL-2, BAX, and Caspase-3 in resistant tumors were detected by Western blot. The results indicated that 5-BrTet and magnetic nanoparticle of Fe(3)O(4) combined with DNR significantly suppressed growth of K562/A02 cell xenograft tumor, histopathologic examination of tumors showed the tumors necrosis obviously. Application of 5-BrTet and magnetic nanoparticle of Fe(3)O(4) inhibited the expression of BCL-2 protein and up-regulated the expression of BAX, and Caspase-3 protein in K562/A02 cell xenograft tumor. It is concluded that 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR have significant tumor-suppressing effect on MDR leukemia cell xenograft model.

  16. Detection of Multi-drug Resistant Acinetobacter Lwoffii Isolated from Soil of Mink Farm.

    PubMed

    Sun, Na; Wen, Yong Jun; Zhang, Shu Qin; Zhu, Hong Wei; Guo, Li; Wang, Feng Xue; Chen, Qiang; Ma, Hong Xia; Cheng, Shi Peng

    2016-07-01

    There were 4 Acinetobacter lwoffii obtained from soil samples. The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method. Three isolates showed the multi-drug resistance. The presence of resistance genes and integrons was determined using PCR. The aadA1, aac(3')-IIc, aph(3')-VII, aac(6')-Ib, sul2, cat2, floR, and tet(K) genes were detected, respectively. Three class 1 integrons were obtained. The arr-3-aacA4 and blaPSE-1 gene cassette, which cause resistance to aminoglycoside and beta-lactamase antibiotics. Our results reported the detection of multi-drug resistant and carried resistant genes Acinetobacter lwoffii from soil. The findings suggested that we should pay close attention to the prevalence of multi-drug resistant bacterial species of environment. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  17. Enhancing Docetaxel Delivery to Multidrug-Resistant Cancer Cells with Albumin-Coated Nanocrystals.

    PubMed

    Gad, Sheryhan F; Park, Joonyoung; Park, Ji Eun; Fetih, Gihan N; Tous, Sozan S; Lee, Wooin; Yeo, Yoon

    2018-01-29

    Intravenous delivery of poorly water-soluble anticancer drugs such as docetaxel (DTX) is challenging due to the low bioavailability and the toxicity related to solubilizing excipients. Colloidal nanoparticles are used as alternative carriers, but low drug loading capacity and circulation instability limit their clinical translation. To address these challenges, DTX nanocrystals (NCs) were prepared using Pluronic F127 as an intermediate stabilizer and albumin as a functional surface modifier, which were previously found to be effective in producing small and stable NCs. We hypothesize that the albumin-coated DTX NCs (DTX-F-alb) will remain stable in serum-containing medium so as to effectively leverage the enhanced permeability and retention effect. In addition, the surface-bound albumin, in its native form, may contribute to cellular transport of NCs through interactions with albumin-binding proteins such as secreted protein acidic and rich in cysteine (SPARC). DTX-F-alb NCs showed sheet-like structure with an average length, width, and thickness of 284 ± 96, 173 ± 56, and 40 ± 8 nm and remained stable in 50% serum solution at a concentration greater than 10 μg/mL. Cytotoxicity and cellular uptake of DTX-F-alb and unformulated (free) DTX were compared on three cell lines with different levels of SPARC expression and DTX sensitivity. While the uptake of free DTX was highly dependent on DTX sensitivity, DTX-F-alb treatment resulted in relatively consistent cellular levels of DTX. Free DTX was more efficient in entering drug-sensitive B16F10 and SKOV-3 cells than DTX-F-alb, with consistent cytotoxic effects. In contrast, multidrug-resistant NCI/ADR-RES cells took up DTX-F-alb more than free DTX with time and responded better to the former. This difference was reduced by SPARC knockdown. The high SPARC expression level of NCI/ADR-RES cells, the known affinity of albumin for SPARC, and the opposing effect of SPARC knockdown support that DTX-F-alb have exploited the

  18. Principles for designing future regimens for multidrug-resistant tuberculosis.

    PubMed

    Brigden, Grania; Nyang'wa, Bern-Thomas; du Cros, Philipp; Varaine, Francis; Hughes, Jennifer; Rich, Michael; Horsburgh, C Robert; Mitnick, Carole D; Nuermberger, Eric; McIlleron, Helen; Phillips, Patrick P J; Balasegaram, Manica

    2014-01-01

    Fewer than 20% of patients with multidrug-resistant (MDR) tuberculosis are receiving treatment and there is an urgent need to scale up treatment programmes. One of the biggest barriers to scale-up is the treatment regimen, which is lengthy, complex, ineffective, poorly tolerated and expensive. For the first time in over 50 years, new drugs have been developed specifically to treat tuberculosis, with bedaquiline and potentially delamanid expected to be available soon for treatment of MDR cases. However, if the new drugs are merely added to the current treatment regimen, the new regimen will be at least as lengthy, cumbersome and toxic as the existing one. There is an urgent need for strategy and evidence on how to maximize the potential of the new drugs to improve outcomes and shorten treatment. We devised eight key principles for designing future treatment regimens to ensure that, once they are proven safe in clinical trials, they will be clinically effective and programmatically practicable. Regimens should contain at least one new class of drug; be broadly applicable for use against MDR and extensively drug-resistant Mycobacterium tuberculosis complex strains; contain three to five effective drugs, each from a different drug class; be delivered orally; have a simple dosing schedule; have a good side-effect profile that allows limited monitoring; last a maximum of 6 months; and have minimal interaction with antiretrovirals. Following these principles will maximize the potential of new compounds and help to overcome the clinical and programmatic disadvantages and scale-up constraints that plague the current regimen.

  19. Prevalence and risk factors for carriage of multi-drug resistant Staphylococci in healthy cats and dogs

    PubMed Central

    Regula, Gertraud; Petrini, Orlando; Zinsstag, Jakob; Schelling, Esther

    2013-01-01

    We investigated the distribution of commensal staphylococcal species and determined the prevalence of multi-drug resistance in healthy cats and dogs. Risk factors associated with the carriage of multi-drug resistant strains were explored. Isolates from 256 dogs and 277 cats were identified at the species level using matrix-assisted laser desorption ionisation-time of flight mass spectrometry. The diversity of coagulase-negative Staphylococci (CNS) was high, with 22 species in dogs and 24 in cats. Multi-drug resistance was frequent (17%) and not always associated with the presence of the mecA gene. A stay in a veterinary clinic in the last year was associated with an increased risk of colonisation by multi-drug resistant Staphylococci (OR = 2.4, 95% CI: 1.1~5.2, p value LRT = 0.04). When identifying efficient control strategies against antibiotic resistance, the presence of mechanisms other than methicillin resistance and the possible role of CNS in the spread of resistance determinants should be considered. PMID:23820161

  20. Electromagnetic energy transport in nanoparticle chains via dark plasmon modes.

    PubMed

    Solis, David; Willingham, Britain; Nauert, Scott L; Slaughter, Liane S; Olson, Jana; Swanglap, Pattanawit; Paul, Aniruddha; Chang, Wei-Shun; Link, Stephan

    2012-03-14

    Using light to exchange information offers large bandwidths and high speeds, but the miniaturization of optical components is limited by diffraction. Converting light into electron waves in metals allows one to overcome this problem. However, metals are lossy at optical frequencies and large-area fabrication of nanometer-sized structures by conventional top-down methods can be cost-prohibitive. We show electromagnetic energy transport with gold nanoparticles that were assembled into close-packed linear chains. The small interparticle distances enabled strong electromagnetic coupling causing the formation of low-loss subradiant plasmons, which facilitated energy propagation over many micrometers. Electrodynamic calculations confirmed the dark nature of the propagating mode and showed that disorder in the nanoparticle arrangement enhances energy transport, demonstrating the viability of using bottom-up nanoparticle assemblies for ultracompact opto-electronic devices. © 2012 American Chemical Society

  1. Smart nanoparticles as targeting platforms for HIV infections

    NASA Astrophysics Data System (ADS)

    Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti

    2015-04-01

    While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.

  2. Smart nanoparticles as targeting platforms for HIV infections.

    PubMed

    Adhikary, Rishi Rajat; More, Prachi; Banerjee, Rinti

    2015-05-07

    While Human Immunodeficiency Virus (HIV) infections are reducing in incidence with the advent of Highly Active Anti-retroviral Therapy (HAART), there remain a number of challenges including the existence of reservoirs, drug resistance and anatomical barriers to antiretroviral therapy. To overcome these, smart nanoparticles with stimuli responsive release are proposed for delivery of anti-retroviral agents. The paper highlights the strategic similarities between the design of smart antiretroviral nanocarriers and those optimized for cancer chemotherapy. This includes the development of nanoparticles capable of passive and active targeting as well as those that are responsive to various internal and external triggers. For antiretroviral therapy, the relevant triggers for stimuli responsive release of drugs include semen, enzymes, endosomal escape, temperature and magnetic field. Deriving from the experience of cancer chemotherapy, additional potential triggers are light and ultrasound which remain hitherto unexplored in HIV therapy. In addition, the roles of nanomicrobicides (nanogels) and virus mimetic nanoparticles are discussed from the point of view of prevention of HIV transmission. The challenges associated with translation of smart nanoparticles for HIV infections to realize the Millennium Development Goal of combating HIV infections are discussed.

  3. A multiscale modeling study of particle size effects on the tissue penetration efficacy of drug-delivery nanoparticles.

    PubMed

    Islam, Mohammad Aminul; Barua, Sutapa; Barua, Dipak

    2017-11-25

    Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.

  4. Promising upshot of silver nanoparticles primed from Gracilaria crassa against bacterial pathogens.

    PubMed

    Lavakumar, V; Masilamani, K; Ravichandiran, V; Venkateshan, N; Saigopal, D V R; Ashok Kumar, C K; Sowmya, C

    2015-01-01

    The study on newer antimicrobial agent from metal based nano materials has augmented in recent years for the management of multidrug resistance microorganisms. In our present investigation, we synthesized silver nanoparticles (AgNP's) from red algae, Gracilaria crassa as beginning material which effectively condensed the silver ions to silver nanoparticles with less price tag and no risk. Silver nanoparticles were prepared by simple reaction of 1 mM AgNO3 with G. crassa extracts at room temperature. The fabricated AgNP's were subjected for characterization and screened against various microorganisms for antibacterial activity. UV-Vis spectroscopy (200-800 nm), XRD, FESEM and EDAX, were performed for AgNP's. UV-Vis spectroscopy demonstrated the absorption edge at 443 nm and EDAX pattern is purely due to the particle size and face centered cubic (fcc) symmetry of nanoparticles. Average size lays at 122.7 nm and zeta potential was found to be -34.9 mV. The antibacterial outcome of synthesized AgNP's (at the dose of 20 and 40 µg/ml) was evaluated against Escherichia coli, Proteus mirabilis, Bacillus subtilis and Pseudomonas aeruginosa. The mechanism of synthesized AgNP's bactericidal bustle is discussed in terms of interaction with the cell membrane of bacteria. The activity was found to be sky-scraping in a dose dependent manner. Thus, environmental friendly, cost effective, non hazardous stable nanoparticles were prepared by green synthesis using red algae, G. crassa. Synthesized G. crassa AgNP's were in acceptable size and shape. Further, it elicits better bactericidal activity against microorganism. This will assure the out put of superior antibacterial formulation for near future.

  5. Rational Design of Multifunctional Polymeric Nanoparticles Based on Poly(l-histidine) and d-α-Vitamin E Succinate for Reversing Tumor Multidrug Resistance.

    PubMed

    Li, Zhen; Chen, Qixian; Qi, Yan; Liu, Zhihao; Hao, Tangna; Sun, Xiaoxin; Qiao, Mingxi; Ma, Xiaodong; Xu, Ting; Zhao, Xiuli; Yang, Chunrong; Chen, Dawei

    2018-04-11

    A multifunctional nanoparticulate system composed of methoxy poly(ethylene glycol)-poly(l-histidine)-d-α-vitamin E succinate (MPEG-PLH-VES) copolymers for encapsulation of doxorubicin (DOX) was elaborated with the aim of circumventing the multidrug resistance (MDR) in breast cancer treatment. The MPEG-PLH-VES nanoparticles (NPs) were subsequently functionalized with biotin motif for targeted drug delivery. The MPEG-PLH-VES copolymer exerts no obvious effect on the P-gp expression level of MCF-7/ADR but exhibited a significant influence on the loss of mitochondrial membrane potential, the reduction of intracellular ATP level, and the inhibition of P-gp ATPase activity of MCF-7/ADR cells. The constructed MPEG-PLH-VES NPs exhibited an acidic pH-induced increase on particle size in aqueous solution. The DOX-encapsulated MPEG-PLH-VES/biotin-PEG-VES (MPEG-PLH-VES/B) NPs were characterized to possess high drug encapsulation efficiency of approximate 90%, an average particle size of approximately 130 nm, and a pH-responsive drug release profile in acidic milieu. Confocal laser scanning microscopy (CLSM) investigations revealed that the DOX-loaded NPs resulted in an effective delivery of DOX into MCF-/ADR cells and a notable carrier-facilitated escape from endolysosomal entrapment. Pertaining to the in vitro cytotoxicity evaluation, the DOX-loaded MPEG-PLH-VES/B NPs resulted in more pronounced cytotoxicity to MCF-/ADR cells compared with DOX-loaded MPEG-PLH-VES NPs and free DOX solution. In vivo imaging study in MCF-7/ADR tumor-engrafted mice exhibited that the MPEG-PLH-VES/B NPs accumulated at the tumor site more effectively than MPEG-PLH-VES NPs due to the biotin-mediated active targeting effect. In accordance with the in vitro results, DOX-loaded MPEG-PLH-VES/B NPs showed the strongest inhibitory effect against the MCF-7/ADR xenografted tumors with negligible systemic toxicity, as evidenced by the histological analysis and change of body weight. The multifunctional MPEG

  6. Platinum folate nanoparticles toxicity: cancer vs. normal cells.

    PubMed

    Mironava, Tatsiana; Simon, Marcia; Rafailovich, Miriam H; Rigas, Basil

    2013-03-01

    Almost for two decades metallic nanoparticles are successfully used for cancer detection, imaging and treatment. Due to their high electron density they can be easily observed by electron microscopy and used in laser and radiofrequency therapy as energy releasing agents. However, the limitation for this practice is an inability to generate tumor-specific heating in a minimally invasive manner to the healthy tissue. To overcome this restraint we proposed to use folic acid coated metallic nanoparticles and determine whether they preferentially penetrate cancer cells. We developed technique for synthesizing platinum nanoparticles using folic acid as stabilizing agent which produced particles of relatively narrow size distribution, having d=2.3 ± 0.5 nm. High resolution TEM and zeta potential analysis indicated that the particles produced by this method had a high degree of crystalline order with no amorphous outer shell and a high degree of colloidal stability. The keratinocytes and mammary breast cells (cancer and normal) were incubated with platinum folate nanoparticles, and the results showed that the IC50 was significantly higher for the normal cells than the cancer cells in both cases, indicating that these nanoparticles preferentially target the cancer cells. TEM images of thin sections taken from the two types of cells indicated that the number of vacuoles and morphology changes after incubation with nanoparticles was also larger for the cancer cells in both types of tissue studied. No preferential toxicity was observed when folic acid receptors were saturated with free folic acid prior to exposure to nanoparticles. These results confirm our hypothesis regarding the preferential penetration of folic acid coated nanoparticles to cancer cells due to receptor mediated endocytosis. Published by Elsevier Ltd.

  7. Diverse and abundant multi-drug resistant E. coli in Matang mangrove estuaries, Malaysia

    PubMed Central

    Ghaderpour, Aziz; Ho, Wing Sze; Chew, Li-Lee; Bong, Chui Wei; Chong, Ving Ching; Thong, Kwai-Lin; Chai, Lay Ching

    2015-01-01

    E.coli, an important vector distributing antimicrobial resistance in the environment, was found to be multi-drug resistant, abundant, and genetically diverse in the Matang mangrove estuaries, Malaysia. One-third (34%) of the estuarine E. coli was multi-drug resistant. The highest antibiotic resistance prevalence was observed for aminoglycosides (83%) and beta-lactams (37%). Phylogenetic groups A and B1, being the most predominant E. coli, demonstrated the highest antibiotic resistant level and prevalence of integrons (integron I, 21%; integron II, 3%). Detection of phylogenetic group B23 downstream of fishing villages indicates human fecal contamination as a source of E. coli pollution. Enteroaggregative E. coli (1%) were also detected immediately downstream of the fishing village. The results indicated multi-drug resistance among E. coli circulating in Matang estuaries, which could be reflective of anthropogenic activities and aggravated by bacterial and antibiotic discharges from village lack of a sewerage system, aquaculture farms and upstream animal husbandry. PMID:26483759

  8. Nanoparticle-based photodynamic therapy on non-melanoma skin cancer

    NASA Astrophysics Data System (ADS)

    Fanjul-Vélez, F.; Arce-Diego, J. L.

    2018-02-01

    There are several advantages of Photodynamic Therapy (PDT) for nonmelanoma skin cancer treatment compared to conventional treatment techniques such as surgery, radiotherapy or chemotherapy. Among these advantages its noninvasive nature, the use of non ionizing radiation and its high selectivity can be mentioned. Despite all these advantages, the therapeutic efficiency of the current clinical protocol is not complete in all the patients and depends on the type of pathology. An adequate dosimetry is needed in order to personalize the protocol. There are strategies that try to overcome the current PDT shortcomings, such as the improvement of the photosensitizer accumulation in the target tissue, optical radiation distribution optimization or photochemical reactions maximization. These strategies can be further complemented by the use of nanostructures with conventional PDT. Customized dosimetry for nanoparticle-based PDT requires models in order to adjust parameters of different nature to get an optimal tumor removal. In this work, a predictive model of nanoparticle-based PDT is proposed and analyzed. Dosimetry in nanoparticle-based PDT is going to be influenced by photosensitizer-nanoparticle distribution in the malignant tissue, its influence in the optical radiation distribution and the subsequent photochemical reactions. Nanoparticles are considered as photosensitizer carriers on several types of non-melanoma skin cancer. Shielding effects are taken into account. The results allow to compare the estimated treatment outcome with and without nanoparticles.

  9. In vitro antibacterial activity of rifampicin in combination with imipenem, meropenem and doripenem against multidrug-resistant clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Hu, Yi-Fan; Liu, Chang-Pan; Wang, Nai-Yu; Shih, Shou-Chuan

    2016-08-24

    Multidrug-resistant Pseudomonas aeruginosa has emerged as one of the most important healthcare-associated pathogens. Colistin is regarded as the last-resort antibiotic for multidrug-resistant Gram-negative bacteria, but is associated with high rates of acute kidney injury. The aim of this in vitro study is to search for an alternative treatment to colistin for multidrug-resistant P. aeruginosa infections. Multidrug and carbapenem-resistant P. aeruginosa isolates were collected between January 2009 and December 2012 at MacKay Memorial Hospital. Minimal inhibitory concentrations (MICs) were determined for various antibiotic combinations. Carbapenemase-producing genes including bla VIM, other β-lactamase genes and porin mutations were screened by PCR and sequencing. The efficacy of carbapenems (imipenem, meropenem, doripenem) with or without rifampicin was correlated with the type of porin mutation (frameshift mutation, premature stop codon mutation) in multidrug-resistant P. aeruginosa isolates without carbapenemase-producing genes. Of the 71 multidrug-resistant clinical P. aeruginosa isolates, only six harboured the bla VIM gene. Imipenem, meropenem and doripenem were significantly more effective (reduced fold-change of MICs) when combined with rifampicin in bla VIM-negative isolates, especially in isolates with porin frameshift mutation. Imipenem + rifampicin combination has a low MIC against multidrug-resistant P. aeruginosa, especially in isolates with porin frameshift mutation. The imipenem + rifampicin combination may provide an alternative treatment to colistin for multidrug -resistant P. aeruginosa infections, especially for patients with renal insufficiency.

  10. Reversal of multidrug resistance by surfactants.

    PubMed Central

    Woodcock, D. M.; Linsenmeyer, M. E.; Chojnowski, G.; Kriegler, A. B.; Nink, V.; Webster, L. K.; Sawyer, W. H.

    1992-01-01

    Cremophor EL, a pharmacologically inactive solubilising agent, has been shown to reverse multidrug resistance (MDR). Using flow cytometric evaluation of equilibrium intracellular levels of daunorubicin (DNR), we found that eight other surface active agents will also reverse MDR. All the active detergents contain polyethoxylated moieties but have no similarities in their hydrophobic components. The properties of three polyethoxylated surfactants that showed the lowest toxicities, Cremophor, Tween 80 and Solutol HS15, were examined in more detail. The concentrations of Tween 80 and Solutol required to reverse DNR exclusion were 10-fold lower than for Cremophor. However while concentrations greater than or equal to 1:10(2) of the former two surfactants resulted in breakdown of cells, even 1:10 of Cremophor did not lyse cells. Studies of the effects of Cremophor on the uptake and efflux of DNR in normal and MDR cell types showed that Cremophor increases intracellular DNR primarily by locking the rapid efflux from the cells. This blockage of drug efflux may be mediated by a substantial alteration in the fluidity of cell membranes induced by Cremophor, as shown by decreased fluorescence anisotropy of a membrane probe. Consistent with these data, coinjection of adriamycin plus Cremophor into mice carrying a multidrug resistant P388 transplantable tumour significantly increased the survival time of the mice compared with adriamycin treatment alone. PMID:1637678

  11. Photostability effect of silica nanoparticles encapsulated fluorescence dye

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Razak, Khairunisak Abdul

    2017-12-01

    Fluorescence dyes are based on small organic molecules have become of interest in chemical biology and widely used for cell and intracellular imaging. However, fluorescence dyes have limitations such as photo bleaching, poor photochemical stability and has a short Stokes shift. It is less valuable for long-term cell tracking strategies and has very short lifetime. In order to overcome the problems, dye-incorporated nanomaterials become of interest. Nanomaterials encapsulation provides a protection layer around the fluorescence dye which improves the stability of fluorescence dye. In this study, silica nanoparticles encapsulated with 1,1%-dioctadecyl-3,3,3%,3%-tetramethylindocarbocyanine perchlorate (Dil) was successfully synthesised by using micelle entrapment method to investigate the effect of encapsulation of nanoparticles towards the properties of fluorescent dye. The synthesised nanoparticles (SiDil) was characterised by particle size analyser, Transmission Electron Microscopy (TEM), UV-Vis spectrometer and Fluorescent spectrometer. Observation using TEM showed spherical shape of nanoparticles with 53 nm diameter. Monodispersed and well nanoparticles distribution was confirmed by low polydispersity index of 0.063 obtained by particle size analyser. Furthermore, the photoluminescence properties of the SiDil were evaluated and compared with bare Dil dye. Both SiDil and bare Dil was radiated under 200 W of Halogen lamp for 60 minutes and the absorbance intensity was measured using UV-Vis spectrometer. The result showed more stable absorbance intensity for SiDil compared to bare Dil dye, which indicated that Si nanoparticles encapsulation improved the photostability property.

  12. Extra-pulmonary primary multidrug-resistant tubercular lymphadenitis in an HIV negative patient

    PubMed Central

    Kant, Surya; Saheer, S; Hassan, Ghulam; Parengal, Jabeed

    2012-01-01

    A 28-year-old woman without any history of prior antituberculosis treatment presented with cervical lymphadenopathy and a cold abscess near medial end of clavicle of 5 months duration. Pus culture and sensitivity revealed Mycobacterium tuberculosis resistant to rifampicin and isoniazid. Thus she was diagnosed as a case of primary multidrug-resistant tuberculosis and treated with second line drugs according to culture susceptibility pattern. On completion of therapy, patent showed good clinical response. This case highlights the observation that even extra-pulmonary primary multidrug-resistant tuberculosis can be successfully treated with currently available second line drugs. PMID:22605844

  13. Quantitative Assessment of Combination Antimicrobial Therapy against Multidrug-Resistant Acinetobacter baumannii▿

    PubMed Central

    Lim, Tze-Peng; Ledesma, Kimberly R.; Chang, Kai-Tai; Hou, Jing-Guo; Kwa, Andrea L.; Nikolaou, Michael; Quinn, John P.; Prince, Randall A.; Tam, Vincent H.

    2008-01-01

    Treatment of multidrug-resistant bacterial infections poses a therapeutic challenge to clinicians; combination therapy is often the only viable option for multidrug-resistant infections. A quantitative method was developed to assess the combined killing abilities of antimicrobial agents. Time-kill studies (TKS) were performed using a multidrug-resistant clinical isolate of Acinetobacter baumannii with escalating concentrations of cefepime (0 to 512 mg/liter), amikacin (0 to 256 mg/liter), and levofloxacin (0 to 64 mg/liter). The bacterial burden data in single and combined (two of the three agents with clinically achievable concentrations in serum) TKS at 24 h were mathematically modeled to provide an objective basis for comparing various antimicrobial agent combinations. Synergy and antagonism were defined as interaction indices of <1 and >1, respectively. A hollow-fiber infection model (HFIM) simulating various clinical (fluctuating concentrations over time) dosing exposures was used to selectively validate our quantitative assessment of the combined killing effect. Model fits in all single-agent TKS were satisfactory (r2 > 0.97). An enhanced combined overall killing effect was seen in the cefepime-amikacin combination (interactive index, 0.698; 95% confidence interval [CI], 0.675 to 0.722) and the cefepime-levofloxacin combination (interactive index, 0.929; 95% CI, 0.903 to 0.956), but no significant difference in the combined overall killing effect for the levofloxacin-amikacin combination was observed (interactive index, 0.994; 95% CI, 0.982 to 1.005). These assessments were consistent with observations in HFIM validation studies. Our method could be used to objectively rank the combined killing activities of two antimicrobial agents when used together against a multidrug-resistant A. baumannii isolate. It may offer better insights into the effectiveness of various antimicrobial combinations and warrants further investigations. PMID:18505848

  14. Tea nanoparticles for immunostimulation and chemo-drug delivery in cancer treatment.

    PubMed

    Yi, Sijia; Wang, Yongzhong; Huang, Yujian; Xia, Lijin; Sun, Leming; Lenaghan, Scott C; Zhang, Mingjun

    2014-06-01

    Many health benefits have been associated with tea consumption. In an effort to elucidate the source of these health benefits, numerous phytochemicals have been extracted from tea infusions, some of which have demonstrated promise as clinical therapeutics for cancer therapy. Considering the advantageous properties of organic nanoparticles, the purpose of this study is to develop a method for isolating nanoparticles from tea leaves, and explore potential biomedical applications for these nanoparticles. First, an infusion-dialysis procedure for isolating tea nanoparticles (TNPs) from green tea infusions is developed. Second, atomic force microscopy and scanning electron microscopy reveal that the TNPs are spherical with diameters of 100-300 nm. Third, electrophoretic light scattering is used to determine that the TNPs have a zeta potential of -26.52 mV at pH 7.0. Finally, chemical analysis demonstrates that (-) Epigallocatechin gallate, caffeine, and theobromine are not found in the TNPs. Interestingly, the TNPs do enhance the in vitro secretion of cytokines IL-6, TNF-alpha, and G-CSF, as well as the chemokines RANTES, IP-10, MDC from mouse macrophages RAW264.7, indicating an immunostimulatory effect. As a nanocarrier, the TNPs are able to form complexes with doxorubicin (DOX) and have the potential for applications in drug delivery. Further the DOX-loaded TNPs increase the cellular DOX uptake, compared to free DOX, leading to higher cytotoxicity in the A549 human lung cancer and MCF-7 breast cancer cells. More importantly, the DOX-loaded TNPs significantly increase the DOX uptake and cytotoxicity in MCF-7/ADR multidrug resistant breast cancer cells. In this work, an infusion-dialysis procedure is developed for isolation of the TNPs from green tea, and the potential of these nanoparticles as a multifunctional nanocarrier for cancer therapy in vitro is explored.

  15. Preoperative biliary colonization/infection caused by multidrug-resistant (MDR) pathogens in patients undergoing major hepatectomy with extrahepatic bile duct resection.

    PubMed

    Sugawara, Gen; Yokoyama, Yukihiro; Ebata, Tomoki; Igami, Tsuyoshi; Yamaguchi, Junpei; Mizuno, Takashi; Yagi, Tetsuya; Nagino, Masato

    2018-05-01

    The aim of this study was to review the surgical outcomes of patients who underwent major hepatectomy with extrahepatic bile duct resection after preoperative biliary drainage with a particular focus on the impact of preoperative biliary colonization/infection caused by multidrug-resistant pathogens. Medical records of patients who underwent hepatobiliary resection after preoperative external biliary drainage between 2001 and 2015 were reviewed retrospectively. Prophylactic antibiotics were selected according to the results of drug susceptibility tests of surveillance bile cultures. In total, 565 patients underwent surgical resection. Based on the results of bile cultures, the patients were classified into three groups: group A, patients with negative bile cultures (n = 113); group B, patients with positive bile cultures without multidrug-resistant pathogen growth (n = 416); and group C, patients with multidrug-resistant pathogen-positive bile culture (n = 36). The incidence of organ/space surgical site infection, bacteremia, median duration of postoperative hospital stay, and the mortality rate did not differ among the three groups. The incidence of incisional surgical site infection and infectious complications caused by multidrug-resistant pathogens was significantly higher in group C than in groups A and B. Fifty-two patients had postoperative infectious complications caused by multidrug-resistant pathogens. Multivariate analysis identified preoperative multidrug-resistant pathogen-positive bile culture as a significant independent risk factor for postoperative infectious complications caused by multidrug-resistant pathogens (P< .001). Major hepatectomy with extrahepatic bile duct resection after biliary drainage can be performed with acceptable rates of morbidity and mortality using appropriate antibiotic prophylaxis, even in patients with biliary colonization/infection caused by multidrug-resistant pathogens. Copyright © 2018 Elsevier Inc. All

  16. Epidemiologic analysis: Prophylaxis and multidrug-resistance in surgery.

    PubMed

    Solís-Téllez, H; Mondragón-Pinzón, E E; Ramírez-Marino, M; Espinoza-López, F R; Domínguez-Sosa, F; Rubio-Suarez, J F; Romero-Morelos, R D

    Surgical site infection is defined as an infection related to the surgical procedure in the area of manipulation occurring within the first 30 postoperative days. The diagnostic criteria include: purulent drainage, isolation of microorganisms, and signs of infection. To describe the epidemiologic characteristics and differences among the types of prophylactic regimens associated with hospital-acquired infections at the general surgery service of a tertiary care hospital. The electronic case records of patients that underwent general surgery at a tertiary care hospital within the time frame of January 1, 2013 and December 31, 2014 were reviewed. A convenience sample of 728 patients was established and divided into the following groups: Group 1: n=728 for the epidemiologic study; Group 2: n=638 for the evaluation of antimicrobial prophylaxis; and Group 3: n=50 for the evaluation of multidrug-resistant bacterial strains in the intensive care unit. The statistical analysis was carried out with the SPSS 19 program, using the Mann-Whitney U test and the chi-square test. A total of 728 procedures were performed (65.9% were elective surgeries). Three hundred twelve of the patients were males and 416 were females. Only 3.98% of the patients complied with the recommended antimicrobial prophylaxis, and multidrug-resistant bacterial strains were found in the intensive care unit. A single prophylactic dose is effective, but adherence to this recommendation was not adequate. The prophylactic guidelines are not strictly adhered to in our environment. There was a significant association between the development of nosocomial infections from multidrug-resistant germs and admission to the intensive care unit. Copyright © 2016 Asociación Mexicana de Gastroenterología. Publicado por Masson Doyma México S.A. All rights reserved.

  17. Solid lipid nanoparticles loaded with iron to overcome barriers for treatment of iron deficiency anemia.

    PubMed

    Hosny, Khaled Mohamed; Banjar, Zainy Mohammed; Hariri, Amani H; Hassan, Ali Habiballah

    2015-01-01

    According to the World Health Organization, 46% of the world's children suffer from anemia, which is usually treated with iron supplements such as ferrous sulfate. The aim of this study was to prepare iron as solid lipid nanoparticles, in order to find an innovative way for alleviating the disadvantages associated with commercially available tablets. These limitations include adverse effects on the digestive system resulting in constipation and blood in the stool. The second drawback is the high variability in the absorption of iron and thus in its bioavailability. Iron solid lipid nanoparticles (Fe-SLNs) were prepared by hot homogenization/ultrasonication. Solubility of ferrous sulfate in different solid lipids was measured, and effects of process variables such as the surfactant type and concentration, homogenization and ultrasonication times, and charge-inducing agent on the particle size, zeta potential, and encapsulation efficiency were determined. Furthermore, in vitro drug release and in vivo pharmacokinetics were studied in rabbits. Results indicated that Fe-SLNs consisted of 3% Compritol 888 ATO, 1% Lecithin, 3% Poloxamer 188, and 0.2% dicetylphosphate, with an average particle size of 25 nm with 92.3% entrapment efficiency. In vivo pharmacokinetic study revealed more than fourfold enhanced bioavailability. In conclusion, Fe-SLNs could be a promising carrier for iron with enhanced oral bioavailability.

  18. Multidrug and heavy metal-resistant Raoultella planticola isolated from surface water.

    PubMed

    Koc, Serkan; Kabatas, Burak; Icgen, Bulent

    2013-08-01

    A surface water isolate of Raoultella sp. having both multidrug- and multimetal-resistant ability was isolated and identified as Raoultella planticola. R. planticola displayed resistance to 15 drugs like ampicillin, amoxicillin/clavulanic acid, aztreonam, erythromycin, imipenem, oxacillin, pefloxacin, penicillin, piperacillin, piperacillin/tazobactam, rifampin, sulbactam/cefoperazone, ticarsillin, ticarsillin/clavulanic acid, vancomycin, and to 11 heavy metals like aluminum, barium, copper, iron, lead, lithium, manganese, nickel, silver, strontium, and tin. The multidrug and multi-metal-resistant R. planticola may remain present in the environment for a long time. Due to a possible health risk of these pathogenic bacteria, a need exists for an accurate assessment of their acquired resistance to multiple drugs and metals.

  19. [Antimicrobial therapy in severe infections with multidrug-resistant Gram-negative bacterias].

    PubMed

    Duszyńska, Wiesława

    2010-01-01

    Multidrug-resistant Gram-negative bacteria pose a serious and rapidly emerging threat to patients in healthcare settings, and are especially prevalent and problematic in intensive therapy units. Recently, the emergence of pandrug-resistance in Gram-negative bacteria poses additional concerns. This review examines the clinical impact and epidemiology of multidrug-resistant Gram-negative bacteria as a cause of increased morbidity and mortality among ITU patients. Beta-lactamases, cephalosporinases and carbapenemases play the most important role in resistance to antibiotics. Despite the tendency to increased resistance, carbapenems administered by continuous infusion remain the most effective drugs in severe sepsis. Drug concentration monitoring, albeit rarely used in practice, is necessary to ensure an effective therapeutic effect.

  20. Application of fluorescent dye substrates for functional characterization of ABC multidrug transporters at a single cell level.

    PubMed

    Nerada, Zsuzsanna; Hegyi, Zoltán; Szepesi, Áron; Tóth, Szilárd; Hegedüs, Csilla; Várady, György; Matula, Zsolt; Homolya, László; Sarkadi, Balázs; Telbisz, Ágnes

    2016-09-01

    ABC multidrug transporters are key players in cancer multidrug resistance and in determining the ADME-Tox properties of drugs and xenobiotics. The most sensitive and specific detection of these transporters is based on functional assays. Assessment of the transporter-dependent reduction of cellular uptake of the fluorescent dyes, such as Hoechst 33342 (Ho) and more recently DyeCycle Violet (DCV), have been widely advocated for the characterization of both ABCB1 and ABCG2 multidrug transporters. Detailed comparison of these supravital DNA-binding dyes revealed that DCV is less toxic to ABCG2- and ABCB1-expressing cells than Ho. ATPase measurements imply that DCV and Ho are similarly handled by ABCB1, whereas ABCG2 seems to transport DVC more effectively. In addition, we have developed an image-based high content microscopy screening method for simultaneous in situ measurement of the cellular activity and expression of the ABCG2 multidrug transporter. We demonstrated the applicability of this method for identifying ABCG2-positive cells in heterogeneous cell population by a single dye uptake measurement. These results may promote multidrug transporter studies at a single cell level and allow the quantitative detection of clinically important drug-resistant sub-populations. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  1. Transferrin receptor-targeted pH-sensitive micellar system for diminution of drug resistance and targetable delivery in multidrug-resistant breast cancer

    PubMed Central

    Gao, Wei; Ye, Guihua; Duan, Xiaochuan; Yang, Xiaoying; Yang, Victor C

    2017-01-01

    The emergence of drug resistance is partially associated with overproduction of transferrin receptor (TfR). To overcome multidrug resistance (MDR) and achieve tumor target delivery, we designed a novel biodegradable pH-sensitive micellar system modified with HAIYPRH, a TfR ligand (7pep). First, the polymers poly(l-histidine)-coupled polyethylene glycol-2000 (PHIS-PEG2000) and 7pep-modified 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (7pep-DSPE-PEG2000) were synthesized, and the mixed micelles were prepared by blending of PHIS-PEG2000 and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-2000 (DSPE-PEG2000) or 7pep-DSPE-PEG2000 (7-pep HD micelles). The micelles exhibited good size uniformity, high encapsulation efficiency, and a low critical micelle concentration. By changing the polymer ratio in the micellar formulation, the pH response range was specially tailored to pH ~6.0. When loaded with antitumor drug doxorubicin (DOX), the micelle showed an acid pH-triggering drug release profile. The cellular uptake and cytotoxicity study demonstrated that 7-pep HD micelles could significantly enhance the intracellular level and antitumor efficacy of DOX in multidrug-resistant cells (MCF-7/Adr), which attributed to the synergistic effect of poly(l-histidine)-triggered endolysosom escape and TfR-mediated endocytosis. Most importantly, the in vivo imaging study confirmed the target-ability of 7-pep HD micelles to MDR tumor. These findings indicated that 7-pep HD micelles would be a promising drug delivery system in the treatment of drug-resistant tumors. PMID:28223798

  2. Bio-inspired formation of functional calcite/metal oxide nanoparticle composites.

    PubMed

    Kim, Yi-Yeoun; Schenk, Anna S; Walsh, Dominic; Kulak, Alexander N; Cespedes, Oscar; Meldrum, Fiona C

    2014-01-21

    Biominerals are invariably composite materials, where occlusion of organic macromolecules within single crystals can significantly modify their properties. In this article, we take inspiration from this biogenic strategy to generate composite crystals in which magnetite (Fe3O4) and zincite (ZnO) nanoparticles are embedded within a calcite single crystal host, thereby endowing it with new magnetic or optical properties. While growth of crystals in the presence of small molecules, macromolecules and particles can lead to their occlusion within the crystal host, this approach requires particles with specific surface chemistries. Overcoming this limitation, we here precipitate crystals within a nanoparticle-functionalised xyloglucan gel, where gels can also be incorporated within single crystals, according to their rigidity. This method is independent of the nanoparticle surface chemistry and as the gel maintains its overall structure when occluded within the crystal, the nanoparticles are maintained throughout the crystal, preventing, for example, their movement and accumulation at the crystal surface during crystal growth. This methodology is expected to be quite general, and could be used to endow a wide range of crystals with new functionalities.

  3. Nanoparticle-releasing nanofiber composites for enhanced in vivo vaginal retention.

    PubMed

    Krogstad, Emily A; Ramanathan, Renuka; Nhan, Christina; Kraft, John C; Blakney, Anna K; Cao, Shijie; Ho, Rodney J Y; Woodrow, Kim A

    2017-11-01

    Current approaches for topical vaginal administration of nanoparticles result in poor retention and extensive leakage. To overcome these challenges, we developed a nanoparticle-releasing nanofiber delivery platform and evaluated its ability to improve nanoparticle retention in a murine model. We individually tailored two components of this drug delivery system for optimal interaction with mucus, designing (1) mucoadhesive fibers for better retention in the vaginal tract, and (2) PEGylated nanoparticles that diffuse quickly through mucus. We hypothesized that this novel dual-functioning (mucoadhesive/mucus-penetrating) composite material would provide enhanced retention of nanoparticles in the vaginal mucosa. Equivalent doses of fluorescent nanoparticles were vaginally administered to mice in either water (aqueous suspension) or fiber composites, and fluorescent content was quantified in cervicovaginal mucus and vaginal tissue at time points from 24 h to 7d. We also fabricated composite fibers containing etravirine-loaded nanoparticles and evaluated the pharmacokinetics over 7d. We found that our composite materials provided approximately 30-fold greater retention of nanoparticles in the reproductive tract at 24 h compared to aqueous suspensions. Compared to nanoparticles in aqueous suspension, the nanoparticles in fiber composites exhibited sustained and higher etravirine concentrations after 24 h and up to 7d, demonstrating the capabilities of this new delivery platform to sustain nanoparticle release out to 3d and drug retention out to one week after a single administration. This is the first report of nanoparticle-releasing fibers for vaginal drug delivery, as well as the first study of a single delivery system that combines two components uniquely engineered for complementary interactions with mucus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Synthesis of biocompatible nanoparticle drug complexes for inhibition of mycobacteria

    NASA Astrophysics Data System (ADS)

    Bhave, Tejashree; Ghoderao, Prachi; Sanghavi, Sonali; Babrekar, Harshada; Bhoraskar, S. V.; Ganesan, V.; Kulkarni, Anjali

    2013-12-01

    Tuberculosis (TB) is one of the most critical infectious diseases affecting the world today. Current TB treatment involves six months long daily administration of four oral doses of antibiotics. Due to severe side effects and the long treatment, a patient's adherence is low and this results in relapse of symptoms causing an alarming increase in the prevalence of multi-drug resistant (MDR) TB. Hence, it is imperative to develop a new drug delivery technology wherein these effects can be reduced. Rifampicin (RIF) is one of the widely used anti-tubercular drugs (ATD). The present study discusses the development of biocompatible nanoparticle-RIF complexes with superior inhibitory activity against both Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis). Iron oxide nanoparticles (NPs) synthesized by gas phase condensation and NP-RIF complexes were tested against M. smegmatis SN2 strain as well as M. tuberculosis H37Rv laboratory strain. These complexes showed significantly better inhibition of M. smegmatis SN2 strain at a much lower effective concentration (27.5 μg ml-1) as compared to neat RIF (125 μg ml-1). Similarly M. tuberculosis H37Rv laboratory strain was susceptible to both nanoparticle-RIF complex and neat RIF at a minimum inhibitory concentration of 0.22 and 1 μg ml-1, respectively. Further studies are underway to determine the efficacy of NPs-RIF complexes in clinical isolates of M. tuberculosis as well as MDR isolates.

  5. Preparation and characterization of solid lipid nanoparticles-a review.

    PubMed

    Parhi, Rabinarayan; Suresh, Padilama

    2012-03-01

    In the present scenario, most of the developed and new discovered drugs are posing real challenge to the formulation scientists due to their poor aqueous solubility which in turn is responsible for poor bioavailability. One of the approach to overcome above problem is the packaging of the drug in to particulate carrier system. Among various carriers, lipid emerged as very attractive candidate because of its unique property of enhancing the bioavailability of poorly water soluble drugs. Solid lipid, one of the physical forms of lipid, is used to formulate nanoparticles, popularly known as Solid lipid nanoparticles (SLNs), as an alternative carrier system to emulsions, liposomes and polymeric micro- and nano-particles. SLNs combine advantages of the traditional systems but avoid some of their major disadvantages. This paper reviews numerous production techniques for SLNs along with their advantages and disadvantages. Special attention is paid to the characterization of the SLNs by using various analytical tools. It also emphasizes on physical state of lipid (supercooled melts, different lipid modifications).

  6. The effect of colloidal silica nanoparticles encapsulated fluorescein dye using micelle entrapment method

    NASA Astrophysics Data System (ADS)

    Ahmad, Atiqah; Zakaria, Nor Dyana; Lockman, Zainovia; Razak, Khairunisak Abdul

    2018-05-01

    The advancement of nanoparticle-based approaches such as quantum dots (QDs), metallic (Au and Ag) NPs, silica NPs and other types of nanomaterial have led to a large variety of biomolecular imaging and labelling reagents with controlled size and shaped to overcome the limitation of conventional organic dye. In this study, the yellowish green color of fluorescein dye was encapsulated into colloidal silica nanoparticles by using micelle entrapment approach. Two different size of silica nanoparticles encapsulated fluorescein dye (27.7 ± 5.6 and 46.73 ± 4.3 nm) with spherical and monodispered of nanoparticles were synthesised by varying the volume of co-solvent during the synthesis process. The particles size, particles morphology, absorption spectrum and the photostability of fluorescein dye was measured by using dynamic light scaterring (DLS), Transmission Electron Microscope (TEM) and UV-Vis spectrometer. Furthermore, the effect of photostability of of silica nanoparticles encapsulated fluorescein dye was measured under radiation of 200 W of Halogen lamp for 60 minutes. The silica nanoparticles encapsulated fluorescein dye was more stable compared to bare fluorescein dye after the exposure. In conclusion, the photostability of silica nanoparticles encapsulated fluorescein dye was improved compared to bare fluorescein dye, thus silica nanoparticles encapsulation successfully provides protection from the photobleaching and photodegradation of fluorescein dye.

  7. Health system factors influencing management of multidrug-resistant tuberculosis in four European Union countries - learning from country experiences.

    PubMed

    de Vries, Gerard; Tsolova, Svetla; Anderson, Laura F; Gebhard, Agnes C; Heldal, Einar; Hollo, Vahur; Cejudo, Laura Sánchez-Cambronero; Schmid, Daniela; Schreuder, Bert; Varleva, Tonka; van der Werf, Marieke J

    2017-04-19

    In the European Union and European Economic Area only 38% of multidrug-resistant tuberculosis patients notified in 2011 completed treatment successfully at 24 months' evaluation. Socio-economic factors and patient factors such as demographic characteristics, behaviour and attitudes are associated with treatment outcomes. Characteristics of healthcare systems also affect health outcomes. This study was conducted to identify and better understand the contribution of health system components to successful treatment of multidrug-resistant tuberculosis. We selected four European Union countries to provide for a broad range of geographical locations and levels of treatment success rates of the multidrug-resistant tuberculosis cohort in 2009. We conducted semi-structured interviews following a conceptual framework with representatives from policy and planning authorities, healthcare providers and civil society organisations. Responses were organised according to the six building blocks of the World Health Organization health systems framework. In the four included countries, Austria, Bulgaria, Spain, and the United Kingdom, the following healthcare system factors were perceived as key to achieving good treatment results for patients with multidrug-resistant tuberculosis: timely diagnosis of drug-resistant tuberculosis; financial systems that ensure access to a full course of treatment and support for multidrug-resistant tuberculosis patients; patient-centred approaches with strong intersectoral collaboration that address patients' emotional and social needs; motivated and dedicated healthcare workers with sufficient mandate and means to support patients; and cross-border management of multidrug-resistant tuberculosis to secure continuum of care between countries. We suggest that the following actions may improve the success of treatment for multidrug-resistant tuberculosis patients: deployment of rapid molecular diagnostic tests; development of context-specific treatment

  8. Mucosal delivery of liposome-chitosan nanoparticle complexes.

    PubMed

    Carvalho, Edison L S; Grenha, Ana; Remuñán-López, Carmen; Alonso, Maria José; Seijo, Begoña

    2009-01-01

    Designing adequate drug carriers has long been a major challenge for those working in drug delivery. Since drug delivery strategies have evolved for mucosal delivery as the outstanding alternative to parenteral administration, many new drug delivery systems have been developed which evidence promising properties to address specific issues. Colloidal carriers, such as nanoparticles and liposomes, have been referred to as the most valuable approaches, but still have some limitations that can become more inconvenient as a function of the specific characteristics of administration routes. To overcome these limitations, we developed a new drug delivery system that results from the combination of chitosan nanoparticles and liposomes, in an approach of combining their advantages, while avoiding their individual limitations. These lipid/chitosan nanoparticle complexes are, thus, expected to protect the encapsulated drug from harsh environmental conditions, while concomitantly providing its controlled release. To prepare these assemblies, two different strategies have been applied: one focusing on the simple hydration of a previously formed dry lipid film with a suspension of chitosan nanoparticles, and the other relying on the lyophilization of both basic structures (nanoparticles and liposomes) with a subsequent step of hydration with water. The developed systems are able to provide a controlled release of the encapsulated model peptide, insulin, evidencing release profiles that are dependent on their lipid composition. Moreover, satisfactory in vivo results have been obtained, confirming the potential of these newly developed drug delivery systems as drug carriers through distinct mucosal routes.

  9. Reversal of multidrug resistance in MCF-7/Adr cells by codelivery of doxorubicin and BCL2 siRNA using a folic acid-conjugated polyethylenimine hydroxypropyl-β-cyclodextrin nanocarrier

    PubMed Central

    Li, Jin-Ming; Zhang, Wei; Su, Hua; Wang, Yuan-Yuan; Tan, Cai-Ping; Ji, Liang-Nian; Mao, Zong-Wan

    2015-01-01

    Systemic administration of chemotherapy for cancer often faces drug resistance, limiting its applications in cancer therapy. In this study, we developed a simple multifunctional nanocarrier based on polyethylenimine (PEI) to codeliver doxorubicin (DOX) and BCL2 small interfering RNA (siRNA) for overcoming multidrug resistance (MDR) and enhancing apoptosis in MCF-7/Adr cancer cells by combining chemotherapy and RNA interference (RNAi) therapy. The low-molecular-weight branch PEI was used to conjugate hydroxypropyl-β-cyclodextrin (HP-β-CD) and folic acid (FA), forming the codelivery nanocarrier (FA-HP-β-CD-PEI) to encapsulate DOX with the cavity HP-β-CD and bind siRNA with the positive charge of PEI for tumor-targeting codelivering drugs. The drug-loaded nanocomplexes (FA-HP-β-CD-PEI/DOX/siRNA) showed uniform size distribution, high cellular uptake, and significant gene suppression of BCL2, displaying the potential of overcoming MDR for enhancing the effect of anticancer drugs. Furthermore, the nanocomplexes achieved significant cell apoptosis through a mechanism of downregulating the antiapoptotic protein BCL2, resulted in improving therapeutic efficacy of the coadministered DOX by tumor targeting and RNA interference. Our study indicated that combined RNAi therapy and chemotherapy using our functional codelivery nanocarrier could overcome MDR and enhance apoptosis in MDR cancer cells for a potential application in treating MDR cancers. PMID:25960653

  10. Engineering empty space between Si nanoparticles for lithium-ion battery anodes.

    PubMed

    Wu, Hui; Zheng, Guangyuan; Liu, Nian; Carney, Thomas J; Yang, Yuan; Cui, Yi

    2012-02-08

    Silicon is a promising high-capacity anode material for lithium-ion batteries yet attaining long cycle life remains a significant challenge due to pulverization of the silicon and unstable solid-electrolyte interphase (SEI) formation during the electrochemical cycles. Despite significant advances in nanostructured Si electrodes, challenges including short cycle life and scalability hinder its widespread implementation. To address these challenges, we engineered an empty space between Si nanoparticles by encapsulating them in hollow carbon tubes. The synthesis process used low-cost Si nanoparticles and electrospinning methods, both of which can be easily scaled. The empty space around the Si nanoparticles allowed the electrode to successfully overcome these problems Our anode demonstrated a high gravimetric capacity (~1000 mAh/g based on the total mass) and long cycle life (200 cycles with 90% capacity retention). © 2012 American Chemical Society

  11. Whole genome sequencing of multidrug-resistant Salmonella enterica serovar Typhimurium isolated from humans and poultry in Burkina Faso

    USDA-ARS?s Scientific Manuscript database

    Background. Multidrug-resistant Salmonella is an important cause of morbidity and mortality in developing countries. The aim of this study was to characterize and compare multidrug-resistant Salmonella enterica serovar Typhimurium isolates from patients and poultry feces. Methods. Salmonella strains...

  12. Multi-drug delivery of tuberculosis drugs by π-back bonded gold nanoparticles with multiblock copolyesters

    NASA Astrophysics Data System (ADS)

    Gajendiran, Mani; Balashanmugam, Pannerselvam; Kalaichelvan, P. T.; Balasubramanian, Sengottuvelan

    2016-06-01

    The effect of π-back-bonding between AuNPs and the carbonyl group of multiblock copolyester on tuberculosis multi-drug delivery has been investigated. The carbonyl group of copolyester has vacant p orbitals and these vacant orbitals accept electron clouds from the filled d orbitals of Au0 to form π-back-bonding, which enhances the electron density for the carbonyl oxygen. This high electron density results in the strong binding of drug molecules with multiblock copolyesters and hence sustained drug release is achieved for a longer duration when compared to polymer systems without AuNPs. A new series of tartarate-linked poly(lactic-co-glycolic acid) (PLGA)—polyethylene glycol (PEG)-based multiblock copolymers has been synthesized using a solvent-free melt reaction. The biocompatibility of multiblock copolyesters and AuNP nanoconjugates was investigated with an in vitro cytotoxicity study on the Vero cell line. Three major tuberculosis drugs, namely, rifampicin-, isoniazid- and pyrazinamide-loaded AuNP multiblock copolymer NPs were prepared by probe sonication followed by the self-assembly method. An in vitro drug release experiment was carried out and the amount of the three drugs released at various time intervals was determined simultaneously by the HPLC technique. The nanoconjugates exhibit 33%-40% RIF, 71%-95% INH, 77%-99% PYZ loading efficiencies, while the polymer NPs exhibit relatively lesser values. The nanoconjugates show sustained drug release for up to 264 h.

  13. Comparison of gene expression profiles between pansensitive and multidrug-resistant strains of Mycobacterium tuberculosis.

    PubMed

    Peñuelas-Urquides, K; González-Escalante, L; Villarreal-Treviño, L; Silva-Ramírez, B; Gutiérrez-Fuentes, D J; Mojica-Espinosa, R; Rangel-Escareño, C; Uribe-Figueroa, L; Molina-Salinas, G M; Dávila-Velderrain, J; Castorena-Torres, F; Bermúdez de León, M; Said-Fernández, S

    2013-09-01

    Mycobacterium tuberculosis has developed resistance to anti-tuberculosis first-line drugs. Multidrug-resistant strains complicate the control of tuberculosis and have converted it into a worldwide public health problem. Mutational studies of target genes have tried to envisage the resistance in clinical isolates; however, detection of these mutations in some cases is not sufficient to identify drug resistance, suggesting that other mechanisms are involved. Therefore, the identification of new markers of susceptibility or resistance to first-line drugs could contribute (1) to specifically diagnose the type of M. tuberculosis strain and prescribe an appropriate therapy, and (2) to elucidate the mechanisms of resistance in multidrug-resistant strains. In order to identify specific genes related to resistance in M. tuberculosis, we compared the gene expression profiles between the pansensitive H37Rv strain and a clinical CIBIN:UMF:15:99 multidrug-resistant isolate using microarray analysis. Quantitative real-time PCR confirmed that in the clinical multidrug-resistant isolate, the esxG, esxH, rpsA, esxI, and rpmI genes were upregulated, while the lipF, groES, and narG genes were downregulated. The modified genes could be involved in the mechanisms of resistance to first-line drugs in M. tuberculosis and could contribute to increased efficiency in molecular diagnosis approaches of infections with drug-resistant strains.

  14. Linezolid susceptibility in Helicobacter pylori, including strains with multidrug resistance.

    PubMed

    Boyanova, Lyudmila; Evstatiev, Ivailo; Gergova, Galina; Yaneva, Penka; Mitov, Ivan

    2015-12-01

    Only a few studies have evaluated Helicobacter pylori susceptibility to linezolid. The aim of the present study was to assess linezolid susceptibility in H. pylori, including strains with double/multidrug resistance. The susceptibility of 53 H. pylori strains was evaluated by Etest and a breakpoint susceptibility testing method. Helicobacter pylori resistance rates were as follows: amoxicillin, 1.9%; metronidazole, 37.7%; clarithromycin, 17.0%; tetracycline, 1.9%; levofloxacin, 24.5%; and linezolid (>4 mg/L), 39.6%. The linezolid MIC50 value was 31.2-fold higher than that of clarithromycin and 10.5-fold higher than that of levofloxacin; however, 4 of 11 strains with double/multidrug resistance were linezolid-susceptible. The MIC range of the oxazolidinone agent was larger (0.125-64 mg/L) compared with those in the previous two reports. The linezolid resistance rate was 2.2-fold higher in metronidazole-resistant strains and in strains resistant to at least one antibiotic compared with the remaining strains. Briefly, linezolid was less active against H. pylori compared with clarithromycin and levofloxacin, and linezolid resistance was linked to resistance to metronidazole as well as to resistance to at least one antibiotic. However, linezolid activity against some strains with double/multidrug resistance may render the agent appropriate to treat some associated H. pylori infections following in vitro susceptibility testing of the strains. Clinical trials are required to confirm this suggestion. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. Magnetically triggered dual functional nanoparticles for resistance-free apoptotic hyperthermia.

    PubMed

    Yoo, Dongwon; Jeong, Heeyeong; Noh, Seung-Hyun; Lee, Jae-Hyun; Cheon, Jinwoo

    2013-12-02

    Overcoming resistance: Heat-treated cancer cells possess a protective mechanism for resistance and survival. Resistance-free apoptosis-inducing magnetic nanoparticles (RAINs) successfully promote hyperthermic apoptosis, obstructing cell survival by triggering two functional units of heat generation and the release of geldanamycin (GM) for heat shock protein (Hsp) inhibition under an alternating magnetic field (AMF). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Facile production of ZnS quantum dot nanoparticles by Saccharomyces cerevisiae MTCC 2918.

    PubMed

    Sandana Mala, John Geraldine; Rose, Chellan

    2014-01-20

    Microbial synthesis of nanoparticles is a green route towards ecofriendly measures to overcome the toxicity and non-applicability of nanomaterials in clinical uses obtained by conventional physical and chemical approaches. Nanoparticles in the quantum regime have remarkable characteristics with excellent applicability in bioimaging. Yeasts have been commercially exploited for several industrial applications. ZnS nanoparticles as semiconductor quantum dots have mostly been synthesized by bacterial species. Here in, we have attempted to produce ZnS nanoparticles in quantum regime by Saccharomyces cerevisiae MTCC 2918 fungus and characterize its size and spectroscopic properties. Intracellular ZnS nanoparticles were produced by a facile procedure and freeze thaw extraction using 1mM zinc sulfate. The ZnS nanoparticles showed surface plasmon resonance band at 302.57nm. The ZnS nanoparticles were in low yield and in the size range of 30-40nm. Powder XRD analysis revealed that the nanoparticles were in the sphalerite phase. Photoluminescence spectra excited at 280nm and 325nm revealed quantum confinement effects. This suggests that yeasts have inherent sulfate metabolizing systems and are capable fungal sources to assimilate sulfate. Further insights are required to identify the transport/reducing processes that may have caused the synthesis of ZnS nanoparticles such as an oxidoreductase enzyme-mediated mechanism. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Tailoring magnetic PLGA nanoparticles suitable for doxorubicin delivery

    NASA Astrophysics Data System (ADS)

    Tansık, Gülistan; Yakar, Arzu; Gündüz, Ufuk

    2014-01-01

    One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells, which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale-based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an external magnetic field. Thus, the drug can be carried to the targeted site safely. The aim of this study is to prepare poly( dl-lactic- co-glycolic acid) (PLGA)-coated magnetic nanoparticles and load anti-cancer drug, doxorubicin to them. For this purpose, magnetite (Fe3O4) iron oxide nanoparticles were synthesized as a magnetic core material (MNP) and then coated with oleic acid. Oleic acid-coated MNP (OA-MNP) was encapsulated into PLGA. Effects of different OA-MNP/PLGA ratios on magnetite entrapment efficiency were investigated. Doxorubicin-loaded magnetic polymeric nanoparticles (DOX-PLGA-MNP) were prepared. After the characterization of prepared nanoparticles, their cytotoxic effects on MCF-7 cell line were studied. PLGA-coated magnetic nanoparticles (PLGA-MNP) had a proper size and superparamagnetic character. The highest magnetite entrapment efficiency of PLGA-MNP was estimated as 63 % at 1:8 ratio. Cytotoxicity studies of PLGA-MNP did not indicate any notable cell death between the concentration ranges of 2 and 125 μg/ml. Drug loading efficiency was estimated as 32 %, and it was observed that DOX-PLGA-MNP showed significant cytotoxicity on MCF-7 cells compared to PLGA-MNP. The results showed that prepared nanoparticles have desired size and superparamagnetic characteristics without serious toxic effects on cells. These nanoparticles may be suitable for targeted drug delivery applications.

  18. Co-delivery of docetaxel and verapamil by reduction-sensitive PEG-PLGA-SS-DTX conjugate micelles to reverse the multi-drug resistance of breast cancer.

    PubMed

    Guo, Yuanyuan; He, Wenxiu; Yang, Shengfeng; Zhao, Dujuan; Li, Zhonghao; Luan, Yuxia

    2017-03-01

    The clinical usage of docetaxel (DTX) has been blocked in the clinic because of its poor solubility and tumour multi-drug resistance (MDR). The dominating mechanism of MDR is the over-expression of p-gp on tumour cells. Traditional nano-medicines, such as nanoparticles and micelles, have been used to physically entrap DTX to improve their solubility, while the drug loading content was very low and the tumour resistance was neglected. In this study, the synthesized reduction-sensitive mPEG-PLGA-SS-DTX conjugate was utilized to load the p-gp inhibitor veraparmil (VRP) to prepare DTX and VRP co-delivered mPEG-PLGA-SS-DTX/VRP (PP-SS-DTX/VRP) multi-functional micelles to reverse MDR and enhance the anti-tumour effect of DTX. The micelles had a high drug loading content and showed an obvious reduction-sensitive release property for both DTX and VRP. In addition, an in vitro anti-tumour assay revealed that the micelles markedly inhibited the efflux activity of p-gp and accelerated cell apoptosis, resulting in the improvement of anti-tumour activity and reversal of MDR. The PP-SS-DTX micelles markedly enhanced the in vivo circulation time and increased the drug accumulation in tumour tissues. Therefore, the PP-SS-DTX/VRP micelle is a desirable drug delivery system for multi-drug resistance therapy of DTX and is very promising for clinical usage. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis and Characterization of Cefotaxime Conjugated Gold Nanoparticles and Their Use to Target Drug-Resistant CTX-M-Producing Bacterial Pathogens.

    PubMed

    Shaikh, Sibhghatulla; Rizvi, Syed Mohd Danish; Shakil, Shazi; Hussain, Talib; Alshammari, Thamir M; Ahmad, Waseem; Tabrez, Shams; Al-Qahtani, Mohammad H; Abuzenadah, Adel M

    2017-09-01

    Multidrug-resistance due to "β lactamases having the expanded spectrum" (ESBLs) in members of Enterobacteriaceae is a matter of continued clinical concern. CTX-M is among the most common ESBLs in Enterobacteriaceae family. In the present study, a nanoformulation of cefotaxime was prepared using gold nanoparticles to combat drug-resistance in ESBL producing strains. Here, two CTX-M-15 positive cefotaxime resistant bacterial strains (i.e., one Escherichia coli and one Klebsiella pneumoniae strain) were used for testing the efficacy of "cefotaxime loaded gold-nanoparticles." Bromelain was used for both reduction and capping in the process of synthesis of gold-nanoparticles. Thereafter, cefotaxime was conjugated onto it with the help of activator 1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide. For characterization of both unconjugated and cefotaxime conjugated gold nanoparticles; UV-Visible spectroscopy, Scanning, and Transmission type Electron Microscopy methods accompanied with Dynamic Light Scattering were used. We used agar diffusion method plus microbroth-dilution method for the estimation of the antibacterial-activity and determination of minimum inhibitory concentration or MIC values, respectively. MIC values of cefotaxime loaded gold nanoparticles against E. coli and K. pneumoniae were obtained as 1.009 and 2.018 mg/L, respectively. These bacterial strains were completely resistant to cefotaxime alone. These results reinforce the utility of conjugating an old unresponsive antibiotic with gold nanoparticles to restore its efficacy against otherwise resistant bacterial pathogens. J. Cell. Biochem. 118: 2802-2808, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Recent advances in porous nanoparticles for drug delivery in antitumoral applications: inorganic nanoparticles and nanoscale metal-organic frameworks.

    PubMed

    Baeza, Alejandro; Ruiz-Molina, Daniel; Vallet-Regí, María

    2017-06-01

    Nanotechnology has provided new tools for addressing unmet clinical situations, especially in the oncology field. The development of smart nanocarriers able to deliver chemotherapeutic agents specifically to the diseased cells and to release them in a controlled way has offered a paramount advantage over conventional therapy. Areas covered: Among the different types of nanoparticle that can be employed for this purpose, inorganic porous materials have received significant attention in the last decade due to their unique properties such as high loading capacity, chemical and physical robustness, low toxicity and easy and cheap production in the laboratory. This review discuss the recent advances performed in the application of porous inorganic and metal-organic materials for antitumoral therapy, paying special attention to the application of mesoporous silica, porous silicon and metal-organic nanoparticles. Expert opinion: The use of porous inorganic nanoparticles as drug carriers for cancer therapy has the potential to improve the life expectancy of the patients affected by this disease. However, much work is needed to overcome their drawbacks, which are aggravated by their hard nature, exploiting the advantages offered by highly the ordered pore network of these materials.

  1. Nanotoxicity of poly(n-butylcyano-acrylate) nanoparticles at the blood-brain barrier, in human whole blood and in vivo.

    PubMed

    Kolter, Marise; Ott, Melanie; Hauer, Christian; Reimold, Isolde; Fricker, Gert

    2015-01-10

    Therapy of diseases of the central nervous system is a major challenge since drugs have to overcome the blood-brain barrier (BBB). A powerful strategy to enhance cerebral drug concentration is administration of drug-loaded poly(n-butylcyano-acrylate) (PBCA) nanoparticles coated with polysorbate 80 (PS80). This study evaluates the toxicity of PBCA-nanoparticles at the BBB, representing the target organ, the inflammatory response in human whole blood, as the site of administration and in a rat model in vivo. PBCA-nanoparticles were prepared by a mini-emulsion method and characterized concerning size, surface charge, shape and PS80-adsorption. The influence on metabolic activity, cell viability and integrity of the BBB was analyzed in an in vitro model of the BBB. In ex vivo experiments in human whole blood the release of 12 inflammatory cytokines was investigated. In addition, the inflammatory response was studied in vivo in rats and complemented with the analysis of different organ toxicity parameters. PBCA-nanoparticles showed time- and concentration-dependent effects on metabolic activity, cell viability and BBB integrity. No cell death or loss of metabolic activity was observed for nanoparticle-concentrations ≤500μg/ml up to 3h of treatment. Within 12 tested inflammatory cytokines, only interleukin-8 displayed a significant release after nanoparticle exposure in human blood. No severe inflammatory processes or organ damages were identified in rats in vivo. Thus, PBCA-nanoparticles are a promising drug delivery system to overcome the BBB since they showed hardly any cytotoxic or inflammatory effect at therapeutic concentrations and incubation times. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. [MOLECULAR CHARACTERISTICS OF THE MULTIDRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS IN THE NORTHWEST RUSSIA].

    PubMed

    Vyazovaya, A A; Mokrousov, I V; Zhuravlev, V Yu; Solovieva, N S; Otten, T F; Manicheva, O A; Vishnevsky, B I; Narvskaya, O V

    2016-01-01

    The goal of this work was to study the genotypic characteristics of the multidrug-resistant (MDR, i.e., resistant to at least rifampicine and isoniazid) Mycobacterium tuberculosis strains isolated in 2011-2012 from tuberculosis (TB) patients in the Northwest Russia. Spoligotyping of 195 M. tuberculosis isolates identified 14 different spoligotypes and assigned isolates to the genetic families Beijing (n = 162, 83%), LAM (n = 15), H3/URAL (n = 14), as well as T, Haarlem and X. Spoligotypes SIT1 (Beijing), SIT42 (LAM) and SIT262 (H3/URAL) were the most prevalent. Irrespective to the genotype, all the isolates were resistant to streptomycin. The multidrug resistance was accompanied by the resistance to ethionamide (56%), amikacin (31%), kanamycin (40%), and capreomycin (33%). The ethambutol resistance was found in 71% (n = 115) and 42% (n = 14) of the Beijing and non-Beijing strains, respectively (p < 0.05). In conclusion, the multidrug resistant M. tuberculosis population circulating in the Northwest Russia continues to be dominated by the Beijing family strains.

  3. Gold-magnetite nanoparticle-biomolecule conjugates: Synthesis, properties and toxicity studies

    NASA Astrophysics Data System (ADS)

    Pariti, Akshay

    This thesis study focuses on synthesizing and characterizing gold-magnetite optically active magnetic nanoparticle and its conjugation with biomolecules for biomedical applications, especially magnetic fluid hyperthermia treatment for cancerous tissue. Gold nanoparticles have already displayed their potential in the biomedical field. They exhibit excellent optical properties and possess strong surface chemistry which renders them suitable for various biomolecule attachments. Studies have showed gold nanoparticles to be a perfect biocompatible vector. However, clinical trials for gold mediated drug delivery and treatment studied in rat models identified some problems. Of these problems, the low retention time in bloodstream and inability to maneuver externally has been the consequential. To further enhance their potential applications and overcome the problems faced in using gold nanoparticles alone, many researchers have synthesized multifunctional magnetic materials with gold at one terminal. Magnetite, among the investigated magnetic materials is a promising and reliable candidate because of its high magnetic saturation moment and low toxicity. This thesis showcases a simple and facile one pot synthesis of gold-magnetite nanoparticles with an average particle size of 80 nm through hot injection method. The as-synthesized nanoparticles were characterized by XRD, TEM, Mossbauer spectroscopy, SQUID and MTS toxicity studies. The superparamagnetism of the as-synthesized nanoparticles has an interestingly high saturation magnetization moment and low toxicity than the literature values reported earlier. L-cysteine and (-)-EGCG (epigallacatechin-3-gallate) were attached to this multifunctional nanoparticles through the gold terminal and characterized to show the particles applicability through Raman, FTIR and UV-Vis spectroscopy.

  4. [Risk factors for multidrug-resistant tuberculosis in the city of Kinshasa in the Democratic Republic of Congo].

    PubMed

    Misombo-Kalabela, André; Nguefack-Tsague, Georges; Kalla, Ginette Claude Mireille; Ze, Emmanuel Afane; Diangs, Kimpanga; Panda, Tshapenda; Kebela, Ilunga; Fueza, Serge Bisuta; Magazani, Nzanzu; Mbopi-Kéou, François-Xavier

    2016-01-01

    The aim of this study was to determine the risk factors for multidrug-resistant tuberculosis (TB) in the city of Kinshasa in the Democratic Republic of Congo. This was a case control study. The cases included all TB patients notified as resistant to rifampicin and isoniazid in Kinshasa from January 2012 to June 2013. The controls included TB patients treated during the same period as the cases and declared cured at the end of treatment. For this study, we obtained ethical clearance. The sample consisted of 213 participants, 132 men (62%) and 81 women (38%). The median age was 31 years (16-73 years). Factors associated with significant (p< 0,05) multidrug-resistant tuberculosis were the non-observance of the hours of taking drugs (0R = 111) (80% cases, 4% controls), the failure of treatment (0R = 20 (76% cases, 13% controls); the concept of multidrug-resistant tuberculosis in the family (0R = 6.4) (28% cases, 6% controls); a lack of knowledge of multidrug-resistant tuberculosis (0R = 3.2) (31% cases, 59% controls); a stay in prison (0R = 7.6) (10% cases, 1% controls) and the interruption of treatment (0R = 6.1) (59% cases, 19% controls). The emergence of multidrug-resistant tuberculosis can be avoided by the installation of suitable diagnosis and treatment strategies.

  5. Discovery of Novel Pyridone-Conjugated Monosulfactams as Potent and Broad-Spectrum Antibiotics for Multidrug-Resistant Gram-Negative Infections.

    PubMed

    Tan, Liang; Tao, Yunliang; Wang, Ting; Zou, Feng; Zhang, Shuhua; Kou, Qunhuan; Niu, Ao; Chen, Qian; Chu, Wenjing; Chen, Xiaoyan; Wang, Haidong; Yang, Yushe

    2017-04-13

    Conjugating a siderophore to an antibiotic is a promising strategy to overcome the permeability-mediated resistance of Gram-negative pathogens. On the basis of the structure of BAL30072, novel pyridone-conjugated monosulfactams incorporating diverse substituents into the methylene linker between the 1,3-dihydroxypyridin-4(1H)-one and the aminothiazole oxime were designed and synthesized. Structure-activity relationship studies revealed that a variety of substituents were tolerated, with isopropyl (compound 12c) and methylthiomethyl (compound 16a) showing the best efficacy against multidrug-resistant (MDR) Gram-negative pathogens. In addition, compound 12c exhibits a good free fraction rate in an in vitro human plasma protein binding test, along with a low clearance and favorable plasma exposure in vivo. In a murine systemic infection model with MDR Klebsiella pneumoniae, compound 12c shows an ED 50 of 10.20 mg/kg. Taken together, the results indicate that compound 12c is a promising drug candidate for the treatment of serious infections caused by MDR Gram-negative pathogens.

  6. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects

    NASA Astrophysics Data System (ADS)

    Prabhu, Sukumaran; Poulose, Eldho K.

    2012-10-01

    Silver nanoparticles are nanoparticles of silver which are in the range of 1 and 100 nm in size. Silver nanoparticles have unique properties which help in molecular diagnostics, in therapies, as well as in devices that are used in several medical procedures. The major methods used for silver nanoparticle synthesis are the physical and chemical methods. The problem with the chemical and physical methods is that the synthesis is expensive and can also have toxic substances absorbed onto them. To overcome this, the biological method provides a feasible alternative. The major biological systems involved in this are bacteria, fungi, and plant extracts. The major applications of silver nanoparticles in the medical field include diagnostic applications and therapeutic applications. In most of the therapeutic applications, it is the antimicrobial property that is being majorly explored, though the anti-inflammatory property has its fair share of applications. Though silver nanoparticles are rampantly used in many medical procedures and devices as well as in various biological fields, they have their drawbacks due to nanotoxicity. This review provides a comprehensive view on the mechanism of action, production, applications in the medical field, and the health and environmental concerns that are allegedly caused due to these nanoparticles. The focus is on effective and efficient synthesis of silver nanoparticles while exploring their various prospective applications besides trying to understand the current scenario in the debates on the toxicity concerns these nanoparticles pose.

  7. [Multidrug-Resistant Tuberculosis by Strains of Beijing Family, in Patients from Lisbon, Portugal: Preliminary Report].

    PubMed

    Maltez, Fernando; Martins, Teresa; Póvoas, Diana; Cabo, João; Peres, Helena; Antunes, Francisco; Perdigão, João; Portugal, Isabel

    2017-03-31

    Beijing family strains of Mycobacterium tuberculosis are associated with multidrug-resistance. Although strains of the Lisboa family are the most common among multidrug-resistant and extensively drug-resistant patients in the region, several studies have reported the presence of the Beijing family. However, the features of patients from whom they were isolated, are not yet known. Retrospective study involving 104 multidrug-resistant and extensively drug-resistant strains of Mycobacterium tuberculosis, from the same number of patients, isolated and genotyped between 1993 and 2015 in Lisbon. We assessed the prevalence of strains of both families and the epidemiologic and clinical features of those infected with Beijing family strains. Seventy-four strains (71.2%) belonged to the Lisboa family, 25 (24.0%) showed a unique genotypic pattern and five (4.8%) belonged to the Beijing family, the latter identified after 2009. Those infected with Beijing family strains were angolan (n = 1), ukrainian (n = 2) and portuguese (n = 2), mainly young-aged and, four of five immunocompetent and with no past history of tuberculosis. All had multidrug-resistant tuberculosis. We did not find any distinctive clinical or radiological features, neither a predominant resistance pattern. Cure rate was high (four patients). Although the number of infected patients with Beijing strains was small, it suggests an important proportion of primary tuberculosis, a potential for transmission in the community but also a better clinical outcome when compared to other reported strains, such as W-Beijing and Lisboa. Although Lisboa family strains account for most of the multidrug and extensively drug-resistant tuberculosis cases in Lisbon area, Beijing strains are transmitted in the city and might change the local characteristics of the epidemics.

  8. Molecular Surveillance for Multidrug-Resistant Plasmodium falciparum, Cambodia

    PubMed Central

    Shah, Naman K.; Alker, Alisa P.; Sem, Rithy; Susanti, Agustina Ika; Muth, Sinuon; Maguire, Jason D.; Duong, Socheat; Ariey, Frederic; Meshnick, Steven R.

    2008-01-01

    We conducted surveillance for multidrug-resistant Plasmodium falciparum in Cambodia during 2004–2006 by assessing molecular changes in pfmdr1. The high prevalence of isolates with multiple pfmdr1 copies found in western Cambodia near the Thai border, where artesunate–mefloquine therapy failures occur, contrasts with isolates from eastern Cambodia, where this combination therapy remains highly effective. PMID:18826834

  9. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    NASA Astrophysics Data System (ADS)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  10. In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing.

    PubMed

    Wu, Jian; Zheng, Yudong; Song, Wenhui; Luan, Jiabin; Wen, Xiaoxiao; Wu, Zhigu; Chen, Xiaohua; Wang, Qi; Guo, Shaolin

    2014-02-15

    Bacterial cellulose has attracted increasing attention as a novel wound dressing material, but it has no antimicrobial activity, which is one of critical skin-barrier functions in wound healing. To overcome such deficiency, we developed a novel method to synthesize and impregnate silver nanoparticles on to bacterial cellulose nanofibres (AgNP-BC). Uniform spherical silver nano-particles (10-30 nm) were generated and self-assembled on the surface of BC nano-fibers, forming a stable and evenly distributed Ag nanoparticles coated BC nanofiber. Such hybrid nanostructure prevented Ag nanoparticles from dropping off BC network and thus minimized the toxicity of nanoparticles. Regardless the slow Ag(+) release, AgNP-BC still exhibited significant antibacterial activities with more than 99% reductions in Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, AgNP-BC allowed attachment and growth of epidermal cells with no cytotoxicity emerged. The results demonstrated that AgNP-BC could reduce inflammation and promote wound healing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Mechanistic Basis of Antimicrobial Actions of Silver Nanoparticles

    PubMed Central

    Dakal, Tikam Chand; Kumar, Anu; Majumdar, Rita S.; Yadav, Vinod

    2016-01-01

    Multidrug resistance of the pathogenic microorganisms to the antimicrobial drugs has become a major impediment toward successful diagnosis and management of infectious diseases. Recent advancements in nanotechnology-based medicines have opened new horizons for combating multidrug resistance in microorganisms. In particular, the use of silver nanoparticles (AgNPs) as a potent antibacterial agent has received much attention. The most critical physico-chemical parameters that affect the antimicrobial potential of AgNPs include size, shape, surface charge, concentration and colloidal state. AgNPs exhibits their antimicrobial potential through multifaceted mechanisms. AgNPs adhesion to microbial cells, penetration inside the cells, ROS and free radical generation, and modulation of microbial signal transduction pathways have been recognized as the most prominent modes of antimicrobial action. On the other side, AgNPs exposure to human cells induces cytotoxicity, genotoxicity, and inflammatory response in human cells in a cell-type dependent manner. This has raised concerns regarding use of AgNPs in therapeutics and drug delivery. We have summarized the emerging endeavors that address current challenges in relation to safe use of AgNPs in therapeutics and drug delivery platforms. Based on research done so far, we believe that AgNPs can be engineered so as to increase their efficacy, stability, specificity, biosafety and biocompatibility. In this regard, three perspectives research directions have been suggested that include (1) synthesizing AgNPs with controlled physico-chemical properties, (2) examining microbial development of resistance toward AgNPs, and (3) ascertaining the susceptibility of cytoxicity, genotoxicity, and inflammatory response to human cells upon AgNPs exposure. PMID:27899918

  12. Carboxymethylcellulose-based and docetaxel-loaded nanoparticles circumvent P-glycoprotein mediated multidrug resistance

    PubMed Central

    Roy, Aniruddha; Murakami, Mami; Ernsting, Mark J.; Hoang, Bryan; Undzys, Elijus; Li, Shyh-Dar

    2014-01-01

    Taxanes are a class of anticancer agents with a broad spectrum and have been widely used to treat a variety of cancer. However, its long term use has been hampered by accumulating toxicity and development of drug resistance. The most extensively reported mechanism of resistance is the overexpression of P-glycoprotein (Pgp). We have developed a PEGylated carboxymethylcellulose conjugate of docetaxel (Cellax), which condenses into ~120 nm nanoparticles. Here we demonstrated that Cellax therapy did not upregulate Pgp expression in MDA-MB-231 and EMT-6 breast tumor cells whereas a significant increase in Pgp expression was measured with native docetaxel (DTX) treatment. Treatment with DTX led to 4 to 7-fold higher Pgp mRNA expression and 2-fold higher Pgp protein expression compared to Cellax treatment in the in vitro and in vivo system respectively. Cellax also exhibited significantly increased efficacy compared to DTX in a taxane-resistant breast tumor model. Against the highly Pgp expressing EMT6/AR1 cells, Cellax exhibited a 6.5 times lower IC50 compared to native DTX, and in the in vivo model, Cellax exhibited 90% tumor growth inhibition, while native DTX had no significant antitumor activity. PMID:24564177

  13. Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and Pgp siRNA to Overcome Drug Resistance in a Cancer Cell Line

    PubMed Central

    Meng, Huan; Liong, Monty; Xia, Tian; Li, Zongxi; Ji, Zhaoxia; Zink, Jeffrey I.; Nel, Andre E.

    2014-01-01

    Overexpression of drug efflux transporters such as P-glycoprotein (P-gp) protein is one of the major mechanisms for multiple drug resistance (MDR) in cancer cells. A new approach to overcome MDR is to use a co-delivery strategy that utilizes a siRNA to silence the expression of efflux transporter together with an appropriate anti-cancer drug for drug resistant cells. In this paper, we report that mesoporous silica nanoparticles (MSNP) can be functionalized to effectively deliver a chemotherapeutic agent doxorubicin (Dox) as well as Pgp siRNA to a drug-resistant cancer cell line (KB-V1 cells) to accomplish cell killing in an additive or synergistic fashion. The functionalization of the particle surface with a phosphonate group allows electrostatic binding of Dox to the porous interior, from where the drug could be released by acidification of the medium under abiotic and biotic conditions. In addition, phosphonate modification also allows exterior coating with the cationic polymer, polyethylenimine (PEI), which endows the MSNP contemporaneously deliver Pgp siRNA. The dual delivery of Dox and siRNA in KB-V1 cells was capable of increasing the intracellular as well as intranuclear drug concentration to levels exceeding that of free Dox or the drug being delivered by MSNP in the absence of siRNA co-delivery. These results demonstrate that it is possible to use the MSNP platform to effectively deliver a siRNA that knocks down gene expression of a drug exporter that can be used to improve drug sensitivity to a chemotherapeutic agent. PMID:20731437

  14. Nanoparticles in Higher-Order Multimodal Imaging

    NASA Astrophysics Data System (ADS)

    Rieffel, James Ki

    Imaging procedures are a cornerstone in our current medical infrastructure. In everything from screening, diagnostics, and treatment, medical imaging is perhaps our greatest tool in evaluating individual health. Recently, there has been tremendous increase in the development of multimodal systems that combine the strengths of complimentary imaging technologies to overcome their independent weaknesses. Clinically, this has manifested in the virtually universal manufacture of combined PET-CT scanners. With this push toward more integrated imaging, new contrast agents with multimodal functionality are needed. Nanoparticle-based systems are ideal candidates based on their unique size, properties, and diversity. In chapter 1, an extensive background on recent multimodal imaging agents capable of enhancing signal or contrast in three or more modalities is presented. Chapter 2 discusses the development and characterization of a nanoparticulate probe with hexamodal imaging functionality. It is my hope that the information contained in this thesis will demonstrate the many benefits of nanoparticles in multimodal imaging, and provide insight into the potential of fully integrated imaging.

  15. Bioengineered Nanoparticles for siRNA delivery

    PubMed Central

    Kozielski, Kristen L.; Tzeng, Stephany Y.; Green, Jordan J.

    2014-01-01

    Short interfering RNA (siRNA) has been an important laboratory tool in the last two decades and has allowed researchers to better understand the functions of non-protein-coding genes through RNA interference (RNAi). Although RNAi holds great promise for this purpose as well as for treatment of many diseases, efforts at using siRNA have been hampered by the difficulty of safely and effectively introducing it into cells of interest, both in vitro and in vivo. To overcome this challenge, many biomaterials and nanoparticles (NPs) have been developed and optimized for siRNA delivery, often taking cues from the DNA delivery field, although different barriers exist for these two types of molecules. In this review, we discuss general properties of biomaterials and nanoparticles that are necessary for effective nucleic acid delivery. We also discuss specific examples of bioengineered materials, including lipid-based NPs, polymeric NPs, inorganic NPs, and RNA-based NPs, which clearly illustrate the problems and successes in siRNA delivery. PMID:23821336

  16. Dental plaque bacteria with reduced susceptibility to chlorhexidine are multidrug resistant.

    PubMed

    Saleem, Hafiz Ghulam Murtaza; Seers, Christine Ann; Sabri, Anjum Nasim; Reynolds, Eric Charles

    2016-09-15

    Chlorhexidine (CHX) is used in oral care products to help control dental plaque. In this study dental plaque bacteria were grown on media containing 2 μg/ml chlorhexidine gluconate to screen for bacteria with reduced CHX susceptibility. The isolates were characterized by 16S rRNA gene sequencing and antibiotic resistance profiles were determined using the disc diffusion method. The isolates were variably resistant to multiple drugs including ampicillin, kanamycin, gentamicin and tetracycline. Two species, Chryseobacterium culicis and Chryseobacterium indologenes were able to grow planktonically and form biofilms in the presence of 32 μg/ml CHX. In the CHX and multidrug resistant C. indologenes we demonstrated a 19-fold up-regulation of expression of the HlyD-like periplasmic adaptor protein of a tripartite efflux pump upon exposure to 16 μg/ml CHX suggesting that multidrug resistance may be mediated by this system. Exposure of biofilms of these resistant species to undiluted commercial CHX mouthwash for intervals from 5 to 60 s indicated that the mouthwash was unlikely to eliminate them from dental plaque in vivo. The study highlights the requirement for increased vigilance of the presence of multidrug resistant bacteria in dental plaque and raises a potential risk of long-term use of oral care products containing antimicrobial agents for the control of dental plaque.

  17. Multidrug-resistant Neisseria gonorrhoeae failing treatment with ceftriaxone and doxycycline in France, November 2017.

    PubMed

    Poncin, Thibault; Fouere, Sebastien; Braille, Aymeric; Camelena, Francois; Agsous, Myriem; Bebear, Cecile; Kumanski, Sylvain; Lot, Florence; Mercier-Delarue, Severine; Ngangro, Ndeindo Ndeikoundam; Salmona, Maud; Schnepf, Nathalie; Timsit, Julie; Unemo, Magnus; Bercot, Beatrice

    2018-05-01

    We report a multidrug-resistant Neisseria gonorrhoeae urogenital and pharyngeal infection with ceftriaxone resistance and intermediate resistance to azithromycin in a heterosexual woman in her 20s in France. Treatment with ceftriaxone plus doxycycline failed for the pharyngeal localisation. Whole-genome sequencing of isolate F90 identified MLST 1903 , NG-MAST ST 3435 , NG-STAR 233 , and relevant resistance determinants. F90 showed phenotypic and genotypic similarities to an internationally spreading multidrug-resistant and ceftriaxone-resistant clone detected in Japan and subsequently in Australia, Canada and Denmark.

  18. Impact of DOTS compared with DOTS-plus on multidrug resistant tuberculosis and tuberculosis deaths: decision analysis.

    PubMed

    Sterling, Timothy R; Lehmann, Harold P; Frieden, Thomas R

    2003-03-15

    This study sought to determine the impact of the World Health Organization's directly observed treatment strategy (DOTS) compared with that of DOTS-plus on tuberculosis deaths, mainly in the developing world. Decision analysis with Monte Carlo simulation of a Markov decision tree. People with smear positive pulmonary tuberculosis. Analyses modelled different levels of programme effectiveness of DOTS and DOTS-plus, and high (10%) and intermediate (3%) proportions of primary multidrug resistant tuberculosis, while accounting for exogenous reinfection. The cumulative number of tuberculosis deaths per 100 000 population over 10 years. The model predicted that under DOTS, 276 people would die from tuberculosis (24 multidrug resistant and 252 not multidrug resistant) over 10 years under optimal implementation in an area with 3% primary multidrug resistant tuberculosis. Optimal implementation of DOTS-plus would result in four (1.5%) fewer deaths. If implementation of DOTS-plus were to result in a decrease of just 5% in the effectiveness of DOTS, 16% more people would die with tuberculosis than under DOTS alone. In an area with 10% primary multidrug resistant tuberculosis, 10% fewer deaths would occur under optimal DOTS-plus than under optimal DOTS, but 16% more deaths would occur if implementation of DOTS-plus were to result in a 5% decrease in the effectiveness of DOTS CONCLUSIONS: Under optimal implementation, fewer tuberculosis deaths would occur under DOTS-plus than under DOTS. If, however, implementation of DOTS-plus were associated with even minimal decreases in the effectiveness of treatment, substantially more patients would die than under DOTS.

  19. Multidrug therapy for leprosy: a game changer on the path to elimination.

    PubMed

    Smith, Cairns S; Aerts, Ann; Saunderson, Paul; Kawuma, Joseph; Kita, Etsuko; Virmond, Marcos

    2017-09-01

    Leprosy is present in more than 100 countries, where it remains a major cause of peripheral neuropathy and disability. Attempts to eliminate the disease have faced various obstacles, including characteristics of the causative bacillus Mycobacterium leprae: the long incubation period, limited knowledge about its mode of transmission, and its poor growth on culture media. Fortunately, the leprosy bacillus is sensitive to several antibiotics. The first antibiotic to be widely used for leprosy treatment was dapsone in the 1950s, which had to be taken over several years and was associated with increasing bacterial resistance. Therefore, in 1981, WHO recommended that all registered patients with leprosy should receive combination therapy with three antibiotics: rifampicin, clofazimine, and dapsone. Global implementation of this highly effective multidrug therapy took about 15 years. In 1985, 5·3 million patients were receiving multidrug therapy; by 1991, this figure had decreased to 3·1 million (a decrease of 42%) and, by 2000, to 597 232 (a decrease of almost 90%). This reduction in the number of patients registered for treatment was due to shortening of the treatment regimen and achievement of 100% coverage with multidrug therapy. This achievement, which owed much to WHO and the donors of the multidrug therapy components, prompted WHO in 1991 to set a global target of less than one case per 10 000 population by 2000 to eliminate the disease as a public health problem. All but 15 countries achieved this target. Since 2000, about 250 000 new cases of leprosy have been detected every year. We believe an all-out campaign by a global leprosy coalition is needed to bring that figure down to zero. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

    PubMed Central

    Miele, Evelina; Spinelli, Gian Paolo; Miele, Ermanno; Di Fabrizio, Enzo; Ferretti, Elisabetta; Tomao, Silverio; Gulino, Alberto

    2012-01-01

    During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and

  1. Isolation and characterization of antimicrobial compounds in plant extracts against multidrug-resistant Acinetobacter baumannii.

    PubMed

    Miyasaki, Yoko; Rabenstein, John D; Rhea, Joshua; Crouch, Marie-Laure; Mocek, Ulla M; Kittell, Patricia Emmett; Morgan, Margie A; Nichols, Wesley Stephen; Van Benschoten, M M; Hardy, William David; Liu, George Y

    2013-01-01

    The number of fully active antibiotic options that treat nosocomial infections due to multidrug-resistant Acinetobacter baumannii (A. baumannii) is extremely limited. Magnolia officinalis, Mahonia bealei, Rabdosia rubescens, Rosa rugosa, Rubus chingii, Scutellaria baicalensis, and Terminalia chebula plant extracts were previously shown to have growth inhibitory activity against a multidrug-resistant clinical strain of A. baumannii. In this study, the compounds responsible for their antimicrobial activity were identified by fractionating each plant extract using high performance liquid chromatography, and determining the antimicrobial activity of each fraction against A. baumannii. The chemical structures of the fractions inhibiting >40% of the bacterial growth were elucidated by liquid chromatography/mass spectrometry analysis and nuclear magnetic resonance spectroscopy. The six most active compounds were identified as: ellagic acid in Rosa rugosa; norwogonin in Scutellaria baicalensis; and chebulagic acid, chebulinic acid, corilagin, and terchebulin in Terminalia chebula. The most potent compound was identified as norwogonin with a minimum inhibitory concentration of 128 µg/mL, and minimum bactericidal concentration of 256 µg/mL against clinically relevant strains of A. baumannii. Combination studies of norwogonin with ten anti-Gram negative bacterial agents demonstrated that norwogonin did not enhance the antimicrobial activity of the synthetic antibiotics chosen for this study. In conclusion, of all identified antimicrobial compounds, norwogonin was the most potent against multidrug-resistant A. baumannii strains. Further studies are warranted to ascertain the prophylactic and therapeutic potential of norwogonin for infections due to multidrug-resistant A. baumannii.

  2. Nanoparticle-based B-cell targeting vaccines: Tailoring of humoral immune responses by functionalization with different TLR-ligands.

    PubMed

    Zilker, Claudia; Kozlova, Diana; Sokolova, Viktoriya; Yan, Huimin; Epple, Matthias; Überla, Klaus; Temchura, Vladimir

    2017-01-01

    Induction of an appropriate type of humoral immune response during vaccination is essential for protection against viral and bacterial infections. We recently observed that biodegradable calcium phosphate (CaP) nanoparticles coated with proteins efficiently targeted and activated naïve antigen-specific B-cells in vitro. We now compared different administration routes for CaP-nanoparticles and demonstrated that intramuscular immunization with such CaP-nanoparticles induced stronger immune responses than immunization with monovalent antigen. Additional functionalization of the CaP-nanoparticles with TRL-ligands allowed modulating the IgG subtype response and the level of mucosal IgA antibodies. CpG-containing CaP-nanoparticles were as immunogenic as a virus-like particle vaccine. Functionalization of CaP-nanoparticles with T-helper cell epitopes or CpG also allowed overcoming lack of T-cell help. Thus, our results indicate that CaP-nanoparticle-based B-cell targeting vaccines functionalized with TLR-ligands can serve as a versatile platform for efficient induction and modulation of humoral immune responses in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Antibacterial activity of exogenous glutathione and its synergism on antibiotics sensitize carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii.

    PubMed

    Alharbe, Roaa; Almansour, Ayidh; Kwon, Dong H

    2017-10-01

    A major clinical impact of A. baumannii is hospital-acquired infections including ventilator-associated pneumonia. The treatment of this pathogen is often difficult due to its innate and acquired resistance to almost all commercially available antibiotics. Infections with carbapenem-associated multidrug resistant A. baumannii is the most problematic. Glutathione is a tripeptide thiol-antioxidant and antibacterial activity of exogenous glutathione was reported in some bacteria. However, clinical relevance and molecular details of the antibacterial activity of glutathione are currently unclear. Seventy clinical isolates of A. baumannii including 63 carbapenem-associated multidrug resistant isolates and a type strain A. baumannii ATCC 19606 were used to determine minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Fractional inhibitory concentration (FIC) and time-killing activity with meropenem and/or glutathione were also determined in the carbapenem-associated multidrug resistant isolates. In addition, the roles of exogenous glutathione in multidrug efflux pumps and β-lactamase production were examined. Levels of MIC and MBC were ranged from 10 to 15mM of exogenous glutathione. All tested carbapenem-associated multidrug resistant isolates were sensitized by all tested antibiotics in combination with subinhibitory concentrations of glutathione. FIC levels of glutathione with carbapenem (meropenem) were all<0.5 and the carbapenem-associated multidrug resistant isolates were killed by subinhibitory concentrations of both glutathione and meropenem at>2log10 within 12h, suggesting glutathione synergistically interacts with meropenem. The roles of multidrug efflux pumps and β-lactamase production were excluded for the glutathione-mediated antibiotic susceptibility. Overall results demonstrate that the antibacterial activity of glutathione is clinically relevant and its synergism on antibiotics sensitizes clinical isolates of A

  4. Influx of multidrug-resistant organisms by country-to-country transfer of patients.

    PubMed

    Mutters, Nico T; Günther, Frank; Sander, Anja; Mischnik, Alexander; Frank, Uwe

    2015-10-28

    Multidrug-resistant organisms (MDRO) are a worldwide problem. International migration and travel facilitate the spread of MDRO. Therefore the goal of our study was to assess the risk of influx of MDRO from patients transferred to one of Central Europe's largest hospitals from abroad. A mono-centre study was conducted. All patients transferred from other countries were screened; additional data was collected on comorbidities, etc. Presence of carbapenemases of multidrug-resistant Gram-negatives was confirmed by PCR. The association between length of stay, being colonized and/or infected by a MDRO, country of origin, diagnosis and other factors was assessed by binomial regression analyses. From 2012 to 2013, one fifth of all patients were colonized with MDRO (Methicillin-resistant Staphylococcus aureus [4.1 %], Vancomycin-resistant Enterococci [2.9 %], multidrug-resistant Gram-negatives [12.8 %] and extensively drug-resistant Gram-negatives [3.4 %]). The Gram-negatives carried a variety of carbapenemases including OXA, VIM, KPC and NDM. The length of stay was significantly prolonged by 77.2 % in patients colonized with a MDRO, compared to those not colonized (p<0.0001). Country-to-Country transfer of patients to European hospitals represents a high risk of introduction of MDRO and infection control specialists should endorse containment and screening measures.

  5. Antiglioma activity of curcumin-loaded lipid nanoparticles and its enhanced bioavailability in brain tissue for effective glioblastoma therapy.

    PubMed

    Kundu, Paromita; Mohanty, Chandana; Sahoo, Sanjeeb K

    2012-07-01

    Glioblastoma, the most aggressive form of brain and central nervous system tumours, is characterized by high rates proliferation, migration and invasion. The major road block in the delivery of drugs to the brain is the blood-brain barrier, along with the expression of various multi-drug resistance (MDR) proteins that cause the efflux of a wide range of chemotherapeutic drugs. Curcumin, a herbal drug, is known to inhibit cellular proliferation, migration and invasion and induce apoptosis of glioma cells. It also has the potential to modulate MDR in glioma cells. However, the greatest challenge in the administration of curcumin stems from its low bioavailability and high rate of metabolism. To circumvent the above pitfalls of curcumin we have developed curcumin-loaded glyceryl monooleate (GMO) nanoparticles (NP) coated with the surfactant Pluronic F-68 and vitamin E D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) for brain delivery. We demonstrated that our curcumin-loaded NPs inhibit cellular proliferation, migration and invasion along with a higher percentage of cell cycle arrest and telomerase inhibition, thus leading to a greater percentage apoptotic cell death in glioma cells compared with native curcumin. An in vivo study demonstrated enhanced bioavailability of curcumin in blood serum and brain tissue when delivered by curcumin-loaded GMO NPs compared with native curcumin in a rat model. Thus, curcumin-loaded GMO NPs can be used as an effective delivery system to overcome the challenges of drug delivery to the brain, providing a new approach to glioblastoma therapy. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles.

    PubMed

    Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming

    2017-09-01

    Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment.

  7. Drug resistance reversal in ovarian cancer cells of paclitaxel and borneol combination therapy mediated by PEG-PAMAM nanoparticles

    PubMed Central

    Zou, Liang; Wang, Di; Hu, Yichen; Fu, Chaomei; Li, Wei; Dai, Liping; Yang, Lin; Zhang, Jinming

    2017-01-01

    Paclitaxel (PTX) is frequently suffered from multidrug resistance (MDR), resulting in lower chemotherapeutic efficacy and even chemotherapy failure. To combine the P-glycolprotein (P-gp) inhibitor would be a useful strategy to overcome MDR. However, what is needed now is an efficient vehicle to deliver multiple drugs into tumor simultaneously. In this study, PTX and Borneol (BNL), a natural compound with P-gp inhibition effect confirmed in intestinal absorption, were co-loaded in the fabricated PEG-PAMAM nanoparticle (NPs) by a one-step nano-precipitation method with high drug loading efficiency, narrow size distribution and low hemolysis rate. Based on P-gp inhibition activity of BNL, confirmed by drug efflux test and molecular docking model, the combination of PTX and BNL could improve intracellular concentration of PTX in A2780/PTX cells. Furthermore, compared to both free PTX and PTX+BNL, PB/NPs and P/NPs plus BNL exhibited higher cellular uptake and cytotoxicity in A2780/PTX cells, as well as the decreased MMP and enhanced apoptosis rate. More importantly, although PB/NPs and P/NPs+B showed similar tumor accumulation in tumor-bearing mice, PB/NPs could significantly decrease tumor growth of A2780/PTX tumor-bearing mice, in comparison to P/NPs+B. These results indicated the advantage of PTX and BNL co-delivery NPs for MDR reversal. These findings demonstrate that the co-delivery nano-sized system comprised by PEG-PAMAM polymer with PTX and BNL co-loaded would be a promising candidate for MDR treatment. PMID:28947984

  8. Nanoparticles and the blood coagulation system. Part II: safety concerns

    PubMed Central

    Ilinskaya, Anna N; Dobrovolskaia, Marina A

    2014-01-01

    Nanoparticle interactions with the blood coagulation system can be beneficial or adverse depending on the intended use of a nanomaterial. Nanoparticles can be engineered to be procoagulant or to carry coagulation-initiating factors to treat certain disorders. Likewise, they can be designed to be anticoagulant or to carry anticoagulant drugs to intervene in other pathological conditions in which coagulation is a concern. An overview of the coagulation system was given and a discussion of a desirable interface between this system and engineered nanomaterials was assessed in part I, which was published in the May 2013 issue of Nanomedicine. Unwanted pro- and anti-coagulant properties of nanoparticles represent significant concerns in the field of nanomedicine, and often hamper the development and transition into the clinic of many promising engineered nanocarriers. This part will focus on the undesirable effects of engineered nanomaterials on the blood coagulation system. We will discuss the relationship between the physicochemical properties of nanoparticles (e.g., size, charge and hydrophobicity) that determine their negative effects on the blood coagulation system in order to understand how manipulation of these properties can help to overcome unwanted side effects. PMID:23730696

  9. Synthesis of silica-polymer core-shell nanoparticles by reversible addition-fragmentation chain transfer polymerization.

    PubMed

    Moraes, John; Ohno, Kohji; Maschmeyer, Thomas; Perrier, Sébastien

    2013-10-14

    Hybrid nanoparticles hold great promise for a range of applications such as drug-delivery vectors or colloidal crystal self-assemblies. The challenge of preparing highly monodisperse particles for these applications has recently been overcome by using living radical polymerization techniques. In particular, the use of reversible addition-fragmentation chain transfer (RAFT), initiated from silica surfaces, yields well-defined particles from a range of precursor monomers resulting in nanoparticles of tailored sizes that are accessible via the rational selection of polymerization conditions. Furthermore, using RAFT allows post-polymerization modification to afford multifunctional, monodisperse, nanostructures under mild and non-stringent reaction conditions.

  10. Mixture model to assess the extent of cross-transmission of multidrug-resistant pathogens in hospitals.

    PubMed

    Mikolajczyk, Rafael T; Kauermann, Göran; Sagel, Ulrich; Kretzschmar, Mirjam

    2009-08-01

    Creation of a mixture model based on Poisson processes for assessment of the extent of cross-transmission of multidrug-resistant pathogens in the hospital. We propose a 2-component mixture of Poisson processes to describe the time series of detected cases of colonization. The first component describes the admission process of patients with colonization, and the second describes the cross-transmission. The data set used to illustrate the method consists of the routinely collected records for methicillin-resistant Staphylococcus aureus (MRSA), imipenem-resistant Pseudomonas aeruginosa, and multidrug-resistant Acinetobacter baumannii over a period of 3 years in a German tertiary care hospital. For MRSA and multidrug-resistant A. baumannii, cross-transmission was estimated to be responsible for more than 80% of cases; for imipenem-resistant P. aeruginosa, cross-transmission was estimated to be responsible for 59% of cases. For new cases observed within a window of less than 28 days for MRSA and multidrug-resistant A. baumannii or 40 days for imipenem-resistant P. aeruginosa, there was a 50% or greater probability that the cause was cross-transmission. The proposed method offers a solution to assessing of the extent of cross-transmission, which can be of clinical use. The method can be applied using freely available software (the package FlexMix in R) and it requires relatively little data.

  11. Iodine-131-labeled, transferrin-capped polypyrrole nanoparticles for tumor-targeted synergistic photothermal-radioisotope therapy.

    PubMed

    Song, Xuejiao; Liang, Chao; Feng, Liangzhu; Yang, Kai; Liu, Zhuang

    2017-08-22

    Combining different therapeutic functions within single tumor-targeted nanoscale delivery systems is promising to overcome the limitations of conventional cancer therapies. Herein, transferrin that recognizes transferrin receptors up-regulated on tumor cells is pre-labeled with iodine-131 ( 131 I) and then utilized as the stabilizer in the fabrication of polypyrrole (PPy) nanoparticles. The obtained transferrin-capped PPy@Tf- 131 I nanoparticles could be used for tumor-targeted radioisotope therapy (RIT) and photothermal therapy (PTT), by employing beta-emission from 131 I and the intrinsic high near-infrared (NIR) absorbance of PPy, respectively. Owing to the transferrin-mediated tumor targeting, PPy@Tf- 131 I nanoparticles exhibit obviously enhanced in vitro cancer cell binding and in vivo tumor uptake compared to its non-targeting counterpart. The combined RIT and PTT based on PPy@Tf- 131 I nanoparticles is then conducted, achieving a remarkable synergistic therapeutic effect. This work thus demonstrates a rather simple one-step approach to fabricate tumor-targeting nanoparticles based on protein-capped conjugated polymers, promising for combination cancer therapy with great efficacy and high safety.

  12. Respiratory nanoparticle-based vaccines and challenges associated with animal models and translation.

    PubMed

    Renukaradhya, Gourapura J; Narasimhan, Balaji; Mallapragada, Surya K

    2015-12-10

    Vaccine development has had a huge impact on human health. However, there is a significant need to develop efficacious vaccines for several existing as well as emerging respiratory infectious diseases. Several challenges need to be overcome to develop efficacious vaccines with translational potential. This review focuses on two aspects to overcome some barriers - 1) the development of nanoparticle-based vaccines, and 2) the choice of suitable animal models for respiratory infectious diseases that will allow for translation. Nanoparticle-based vaccines, including subunit vaccines involving synthetic and/or natural polymeric adjuvants and carriers, as well as those based on virus-like particles offer several key advantages to help overcome the barriers to effective vaccine development. These include the ability to deliver combinations of antigens, target the vaccine formulation to specific immune cells, enable cross-protection against divergent strains, act as adjuvants or immunomodulators, allow for sustained release of antigen, enable single dose delivery, and potentially obviate the cold chain. While mouse models have provided several important insights into the mechanisms of infectious diseases, they are often a limiting step in translation of new vaccines to the clinic. An overview of different animal models involved in vaccine research for respiratory infections, with advantages and disadvantages of each model, is discussed. Taken together, advances in nanotechnology, combined with the right animal models for evaluating vaccine efficacy, has the potential to revolutionize vaccine development for respiratory infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. New perspectives of cobalt tris(bipyridine) system: anti-cancer effect and its collateral sensitivity towards multidrug-resistant (MDR) cancers

    PubMed Central

    Mok, Simon Wing Fai; Liu, Hauwei; Zeng, Wu; Han, Yu; Gordillo-Martinez, Flora; Chan, Wai-Kit; Wong, Keith Man-Chung; Wong, Vincent Kam Wai

    2017-01-01

    Platinating compounds including cisplatin, carboplatin, and oxaliplatin are common chemotherapeutic agents, however, patients developed resistance to these clinical agents after initial therapeutic treatments. Therefore, different approaches have been applied to identify novel therapeutic agents, molecular mechanisms, and targets for overcoming drug resistance. In this study, we have identified a panel of cobalt complexes that were able to specifically induce collateral sensitivity in taxol-resistant and p53-deficient cancer cells. Consistently, our reported anti-cancer functions of cobalt complexes 1–6 towards multidrug-resistant cancers have suggested the protective and non-toxic properties of cobalt metal-ions based compounds in anti-cancer therapies. As demonstrated in xenograft mouse model, our results also confirmed the identified cobalt complex 2 was able to suppress tumor growth in vivo. The anti-cancer effect of the cobalt complex 2 was further demonstrated to be exerted via the induction of autophagy, cell cycle arrest, and inhibition of cell invasion and P-glycoprotein (P-gp) activity. These data have provided alternative metal ion compounds for targeting drug resistance cancers in chemotherapies. PMID:28903398

  14. Genetic diversity of drug and multidrug-resistant Mycobacterium tuberculosis circulating in Veracruz, Mexico

    PubMed Central

    Munro-Rojas, Daniela; Fernandez-Morales, Esdras; Zarrabal-Meza, José; Martínez-Cazares, Ma. Teresa; Parissi-Crivelli, Aurora; Fuentes-Domínguez, Javier; Séraphin, Marie Nancy; Lauzardo, Michael; González-y-Merchand, Jorge Alberto; Rivera-Gutierrez, Sandra

    2018-01-01

    Background Mexico is one of the most important contributors of drug and multidrug-resistant tuberculosis in Latin America; however, knowledge of the genetic diversity of drug-resistant tuberculosis isolates is limited. Methods In this study, the genetic structure of 112 Mycobacterium tuberculosis strains from the southeastern Mexico was determined by spoligotyping and 24-loci MIRU-VNTRs. Findings The results show eight major lineages, the most of which was T1 (24%), followed by LAM (16%) and H (15%). A total of 29 (25%) isolates were identified as orphan. The most abundant SITs were SIT53/T1 and SIT42/LAM9 with 10 isolates each and SIT50/H3 with eight isolates. Fifty-two spoligotype patterns, twenty-seven clusters and ten clonal complexes were observed, demonstrating an important genetic diversity of drug and multidrug-resistant tuberculosis isolates in circulation and transmission level of these aggravated forms of tuberculosis. Being defined as orphan or as part of an orphan cluster, was a risk factor for multidrug resistant-tuberculosis (OR 2.5, IC 1.05–5.86 and OR 3.3, IC 1–11.03, respectively). Multiple correspondence analyses showed association of some clusters and SITs with specific geographical locations. Conclusions Our study provides one of the most detailed description of the genetic structure of drug and multidrug-resistant tuberculosis strains in southeast Mexico, establishing for the first time a baseline of the genotypes observed in resistant isolates circulating, however further studies are required to better elucidate the genetic structure of tuberculosis in region and the factors that could be participating in their dispersion. PMID:29543819

  15. Development and evaluation of a novel topical treatment for acne with azelaic acid-loaded nanoparticles.

    PubMed

    Reis, Catarina Pinto; Gomes, Ana; Rijo, Patrícia; Candeias, Sara; Pinto, Pedro; Baptista, Marina; Martinho, Nuno; Ascensão, Lia

    2013-10-01

    Azelaic acid (AzA) is used in the treatment of acne. However, side effects and low compliance have been associated with several topical treatments with AzA. Nanotechnology presents a strategy that can overcome these problems. Polymeric nanoparticles can control drug release and targeting and reduce local drug toxicity. The aim of this study was to produce and evaluate an innovative topical treatment for acne with AzA-loaded poly-DL-lactide/glycolide copolymer nanoparticles. A soft white powder of nanoparticles was prepared. The mean size of loaded nanoparticles was < 400 nm and zeta potential was negative. Spherical nanoparticles were observed by scanning electron microscopy. Encapsulation efficiency was around 80% and a strong interaction between the polymer and the drug was confirmed by differential scanning calorimetric analysis. In vitro drug release studies suggested a controlled and pulsatile release profile. System efficacy tests suggested similar results between the loaded nanoparticles and the nonencapsulated drug against the most common bacteria associated with acne. Cytotoxicity of AzA-loaded nanoparticles was concentration dependent, although not pronounced. The occluded patch test seemed to indicate that the formulation excipients were safe and thus AzA-loaded nanoparticles appear to be an efficient and safe treatment for acne.

  16. Formulation and Evaluation of Solid Lipid Nanoparticles of Ramipril

    PubMed Central

    Ekambaram, P; Abdul, Hasan Sathali A

    2011-01-01

    Solid lipid nanoparticles are typically spherical with an average diameter between 1 and 1000 nm. It is an alternative carrier system to tradition colloidal carriers, such as, emulsions, liposomes, and polymeric micro and nanoparticles. Ramipril is an antihypertensive agent used in the treatment of hypertension. Its oral bioavailability is 28% and it is rapidly excreted through the renal route. This drug has many side effects such as, postural hypotension, hyperkalemia, and angioedema, when given as an immediate dosage form. To overcome the side effects and to increase the bioavailability of ramipril, solid lipid nanoparticles of ramipril are prepared by using lipids (glyceryl monostearate and glyceryl monooleate) with stabilizers (tween 80, poloxamer 188, and span 20). The prepared formulations have been evaluated for entrapment efficiency, drug content, in-vitro drug release, particle size analysis, scanning electron spectroscopy, Fourier transform-infrared studies, and stability. A formulation containing glyceryl monooleate, stabilized with span 20 as surfactant showed prolonged drug release, smaller particle size, and narrow particle size distribution, as compared to other formulations with different surfactants and lipids. PMID:21897661

  17. Potent antimicrobial and antibiofilm activities of bacteriogenically synthesized gold-silver nanoparticles against pathogenic bacteria and their physiochemical characterizations.

    PubMed

    Ramasamy, Mohankandhasamy; Lee, Jin-Hyung; Lee, Jintae

    2016-09-01

    The objective of this study was to develop a bimetallic nanoparticle with enhanced antibacterial activity that would improve the therapeutic efficacy against bacterial biofilms. Bimetallic gold-silver nanoparticles were bacteriogenically synthesized using γ-proteobacterium, Shewanella oneidensis MR-1. The antibacterial activities of gold-silver nanoparticles were assessed on the planktonic and biofilm phases of individual and mixed multi-cultures of pathogenic Gram negative (Escherichia coli and Pseudomonas aeruginosa) and Gram positive bacteria (Enterococcus faecalis and Staphylococcus aureus), respectively. The minimum inhibitory concentration of gold-silver nanoparticles was 30-50 µM than that of other nanoparticles (>100 µM) for the tested bacteria. Interestingly, gold-silver nanoparticles were more effective in inhibiting bacterial biofilm formation at 10 µM concentration. Both scanning and transmission electron microscopy results further accounted the impact of gold-silver nanoparticles on biocompatibility and bactericidal effect that the small size and bio-organic materials covering on gold-silver nanoparticles improves the internalization and thus caused bacterial inactivation. Thus, bacteriogenically synthesized gold-silver nanoparticles appear to be a promising nanoantibiotic for overcoming the bacterial resistance in the established bacterial biofilms. © The Author(s) 2016.

  18. Transport of drugs across the blood-brain barrier by nanoparticles.

    PubMed

    Wohlfart, Stefanie; Gelperina, Svetlana; Kreuter, Jörg

    2012-07-20

    The central nervous system is well protected by the blood-brain barrier (BBB) which maintains its homeostasis. Due to this barrier many potential drugs for the treatment of diseases of the central nervous system (CNS) cannot reach the brain in sufficient concentrations. One possibility to deliver drugs to the CNS is the employment of polymeric nanoparticles. The ability of these carriers to overcome the BBB and to produce biologic effects on the CNS was shown in a number of studies. Over the past few years, progress in understanding of the mechanism of the nanoparticle uptake into the brain was made. This mechanism appears to be receptor-mediated endocytosis in brain capillary endothelial cells. Modification of the nanoparticle surface with covalently attached targeting ligands or by coating with certain surfactants enabling the adsorption of specific plasma proteins are necessary for this receptor-mediated uptake. The delivery of drugs, which usually are not able to cross the BBB, into the brain was confirmed by the biodistribution studies and pharmacological assays in rodents. Furthermore, the presence of nanoparticles in the brain parenchyma was visualized by electron microscopy. The intravenously administered biodegradable polymeric nanoparticles loaded with doxorubicin were successfully used for the treatment of experimental glioblastoma. These data, together with the possibility to employ nanoparticles for delivery of proteins and other macromolecules across the BBB, suggest that this technology holds great promise for non-invasive therapy of the CNS diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    NASA Astrophysics Data System (ADS)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  20. Inhibition of multidrug resistant Listeria monocytogenes by peptides isolated from combinatorial phage display libraries.

    PubMed

    Flachbartova, Z; Pulzova, L; Bencurova, E; Potocnakova, L; Comor, L; Bednarikova, Z; Bhide, M

    2016-01-01

    The aim of the study was to isolate and characterize novel antimicrobial peptides from peptide phage library with antimicrobial activity against multidrug resistant Listeria monocytogenes. Combinatorial phage-display library was used to affinity select peptides binding to the cell surface of multidrug resistant L. monocytogenes. After several rounds of affinity selection followed by sequencing, three peptides were revealed as the most promising candidates. Peptide L2 exhibited features common to antimicrobial peptides (AMPs), and was rich in Asp, His and Lys residues. Peptide L3 (NSWIQAPDTKSI), like peptide L2, inhibited bacterial growth in vitro, without any hemolytic or cytotoxic effects on eukaryotic cells. L1 peptide showed no inhibitory effect on Listeria. Structurally, peptides L2 and L3 formed random coils composed of α-helix and β-sheet units. Peptides L2 and L3 exhibited antimicrobial activity against multidrug resistant isolates of L. monocytogenes with no haemolytic or toxic effects. Both peptides identified in this study have the potential to be beneficial in human and veterinary medicine. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. [Study on active constituents of traditional Chinese medicine reversing multidrug resistance of tumor cells in vitro].

    PubMed

    Zhang, H; Yang, L; Liu, S; Ren, L

    2001-09-01

    To screen drugs reversing multidrug resistance of tumor cells from active constituents of traditional Chinese medicine and to study the reversal action. The kill effects of the drugs on tumor cell lines in vitro were determined with MTT method. The Jin's formula was used to analyse the effect of drug combination. 5 micrograms/ml rhynchophylline, 2 micrograms/ml jatrorrhizine and 1.25 micrograms/ml indirulin could reverse multidrug resistance for vincristine on KBv200 cell line by 16.8, 5.1 and 4 fold respectively. 1.56-12.5 micrograms/ml curcumine combining with vincristine could sensitize antitumor effect both on KB and KBv200 cell lines. All rhynchophylline, jatrorrhizine and indirulin could reverse multidrug resistance for vincristine on KBv200 cell line. Curcumine combinating vincristine could sensitize antitumor effect both on kB and kBv200 cell lines.

  2. Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets

    PubMed Central

    Chiang, Yu-Chun; Liang, Chia-Chun; Chung, Chun-Ping

    2015-01-01

    Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt) nanoparticles were deposited on oxidized graphene sheets (cG). The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%). The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA) was 88 m2/g (Pt/cG), much higher than that of Pt/C (46 m2/g). The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33%) > Pt/cG (7%). The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C. PMID:28793577

  3. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin.

    PubMed

    Cui, Yan-Na; Xu, Qing-Xing; Davoodi, Pooya; Wang, De-Ping; Wang, Chi-Hwa

    2017-06-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors.

  4. Enhanced intracellular delivery and controlled drug release of magnetic PLGA nanoparticles modified with transferrin

    PubMed Central

    Cui, Yan-na; Xu, Qing-xing; Davoodi, Pooya; Wang, De-ping; Wang, Chi-Hwa

    2017-01-01

    Owing to the presence of multidrug resistance in tumor cells, conventional chemotherapy remains clinically intractable. To enhance the therapeutic efficacy of chemotherapeutic agents, targeting strategies based on magnetic polymeric nanoparticles modified with targeting ligands have gained significant attention in cancer therapy. In this study, we synthesized transferrin (Tf)-modified poly(D,L-lactic-co-glycolic acid) nanoparticles (PLGA NPs) loaded with paclitaxel (PTX) and superparamagnetic nanoparticle (MNP) using a solid-in-oil-in-water solvent evaporation method, followed by Tf adsorption on the surface of NPs. The Tf-modified magnetic PLGA NPs were characterized in terms of particle morphology and size, magnetic properties, encapsulation efficiency and drug release. Furthermore, the cytotoxicity and cellular uptake of the drug-loaded magnetic PLGA NPs were evaluated in both MCF-7 breast cancer and U-87 glioma cells in vitro. We found that Tf-modified PTX-MNP-PLGA NPs showed the highest cytotoxicity effect and cellular uptake efficiency under Tf receptor mediation in both MCF-7 and U-87 cells compared to unmodified PLGA NPs and free PTX. The cellular uptake efficiency of Tf-modified magnetic PLGA NPs appeared to be facilitated by the applied magnetic field, but the difference did not reach statistical significance. This study illustrates that this proposed formulation can be used as one new alternative treatment for patients bearing inaccessible tumors. PMID:28552909

  5. Multidrug resistance in parasites: ABC transporters, P-glycoproteins and molecular modelling.

    PubMed

    Jones, P M; George, A M

    2005-04-30

    Parasitic diseases, caused by protozoa, helminths and arthropods, rank among the most important problems in human and veterinary medicine, and in agriculture, leading to debilitating sicknesses and loss of life. In the absence of vaccines and with the general failure of vector eradication programs, drugs are the main line of defence, but the newest drugs are being tracked by the emergence of resistance in parasites, sharing ominous parallels with multidrug resistance in bacterial pathogens. Any of a number of mechanisms will elicit a drug resistance phenotype in parasites, including: active efflux, reduced uptake, target modification, drug modification, drug sequestration, by-pass shunting, or substrate competition. The role of ABC transporters in parasitic multidrug resistance mechanisms is being subjected to more scrutiny, due in part to the established roles of certain ABC transporters in human diseases, and also to an increasing portfolio of ABC transporters from parasite genome sequencing projects. For example, over 100 ABC transporters have been identified in the Escherichia coli genome, but to date only about 65 in all parasitic genomes. Long established laboratory investigations are now being assisted by molecular biology, bioinformatics, and computational modelling, and it is in these areas that the role of ABC transporters in parasitic multidrug resistance mechanisms may be defined and put in perspective with that of other proteins. We discuss ABC transporters in parasites, and conclude with an example of molecular modelling that identifies a new interaction between the structural domains of a parasite P-glycoprotein.

  6. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons.

    PubMed

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L; L'Abée-Lund, Trine M; Rudi, Knut

    2015-10-28

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance.

  7. The commensal infant gut meta-mobilome as a potential reservoir for persistent multidrug resistance integrons

    PubMed Central

    Ravi, Anuradha; Avershina, Ekaterina; Foley, Steven L.; Ludvigsen, Jane; Storrø, Ola; Øien, Torbjørn; Johnsen, Roar; McCartney, Anne L.; L’Abée-Lund, Trine M.; Rudi, Knut

    2015-01-01

    Despite the accumulating knowledge on the development and establishment of the gut microbiota, its role as a reservoir for multidrug resistance is not well understood. This study investigated the prevalence and persistence patterns of an integrase gene (int1), used as a proxy for integrons (which often carry multiple antimicrobial resistance genes), in the fecal microbiota of 147 mothers and their children sampled longitudinally from birth to 2 years. The study showed the int1 gene was detected in 15% of the study population, and apparently more persistent than the microbial community structure itself. We found int1 to be persistent throughout the first two years of life, as well as between mothers and their 2-year-old children. Metagenome sequencing revealed integrons in the gut meta-mobilome that were associated with plasmids and multidrug resistance. In conclusion, the persistent nature of integrons in the infant gut microbiota makes it a potential reservoir of mobile multidrug resistance. PMID:26507767

  8. Aloe vera extract functionalized zinc oxide nanoparticles as nanoantibiotics against multi-drug resistant clinical bacterial isolates.

    PubMed

    Ali, Khursheed; Dwivedi, Sourabh; Azam, Ameer; Saquib, Quaiser; Al-Said, Mansour S; Alkhedhairy, Abdulaziz A; Musarrat, Javed

    2016-06-15

    ZnO nanoparticles (ZnONPs) were synthesised through a simple and efficient biogenic synthesis approach, exploiting the reducing and capping potential of Aloe barbadensis Miller (A. vera) leaf extract (ALE). ALE-capped ZnO nanoparticles (ALE-ZnONPs) were characterized using UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM) analyses. XRD analysis provided the average size of ZnONPs as 15 nm. FTIR spectral analysis suggested the role of phenolic compounds, terpenoids and proteins present in ALE, in nucleation and stability of ZnONPs. Flow cytometry and atomic absorption spectrophotometry (AAS) data analyses revealed the surface binding and internalization of ZnONPs in Gram +ve (Staphylococcus aureus) and Gram -ve (Escherichia coli) cells, respectively. Significant antibacterial activity of ALE-ZnONPs was observed against extended spectrum beta lactamases (ESBL) positive E. coli, Pseudomonas aeruginosa, and methicillin resistant S. aureus (MRSA) clinical isolates exhibiting the MIC and MBC values of 2200, 2400 μg/ml and 2300, 2700 μg/ml, respectively. Substantial inhibitory effects of ALE-ZnONPs on bacterial growth kinetics, exopolysaccharides and biofilm formation, unequivocally suggested the antibiotic and anti-biofilm potential. Overall, the results elucidated a rapid, environmentally benign, cost-effective, and convenient method for ALE-ZnONPs synthesis, for possible applications as nanoantibiotics or drug carriers. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Intravenous immunoglobulin enhances the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria.

    PubMed

    Matsuo, Hidemasa; Itoh, Hiroshi; Kitamura, Naoko; Kamikubo, Yasuhiko; Higuchi, Takeshi; Shiga, Shuichi; Ichiyama, Satoshi; Kondo, Tadakazu; Takaori-Kondo, Akifumi; Adachi, Souichi

    2015-08-14

    Intravenous immunoglobulin (IVIG) is periodically administered to immunocompromised patients together with antimicrobial agents. The evidence that supports the effectiveness of IVIG is mostly based on data from randomized clinical trials; the underlying mechanisms are poorly understood. A recent study revealed that killing of multidrug-resistant bacteria and drug-sensitive strains by neutrophils isolated from healthy donors is enhanced by an IVIG preparation. However, the effectiveness of IVIG in immunocompromised patients remains unclear. The present study found that IVIG increased both killing activity and O2(-) release by neutrophils isolated from six patients receiving immune-suppressive drugs after hematopoietic stem cell transplantation (HSCT); these neutrophils killed both multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli (E. coli) and multidrug-resistant Pseudomonas aeruginosa (P. aeruginosa). Moreover, IVIG increased the autophagy of the neutrophils, which is known to play an important role in innate immunity. These results suggest that IVIG promotes both the killing activity and autophagy of neutrophils isolated from immunocompromised patients against multidrug-resistant bacteria. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. ATP-binding cassette transporters are enriched in non-caveolar detergent-insoluble glycosphingolipid-enriched membrane domains (DIGs) in human multidrug-resistant cancer cells.

    PubMed

    Hinrichs, John W J; Klappe, Karin; Hummel, Ina; Kok, Jan W

    2004-02-13

    In this study we show that P-glycoprotein in multidrug-resistant 2780AD human ovarian carcinoma cells and multidrug resistance-associated protein 1 in multidrug-resistant HT29col human colon carcinoma cells are predominantly located in Lubrol-based detergent-insoluble glycosphingolipid-enriched membrane domains. This localization is independent of caveolae, since 2780AD cells do not express caveolin-1. Although HT29col cells do express caveolin-1, the ATP-binding cassette transporter and caveolin-1 were dissociated on the basis of differential solubility in Triton X-100 and absence of microscopical colocalization. While both the multidrug resistance-associated protein 1 and caveolin-1 are located in Lubrol-based membrane domains, they occupy different regions of these domains.

  11. Overcoming breastfeeding problems

    MedlinePlus

    Plugged milk ducts; Nipple soreness when breastfeeding; Breastfeeding - overcoming problems; Let-down reflex ... Breastfeeding (nursing) your baby can be a good experience for both the mother and the baby. It ...

  12. Biodegradable polymer nanoparticles that rapidly penetrate the human mucus barrier

    PubMed Central

    Tang, Benjamin C.; Dawson, Michelle; Lai, Samuel K.; Wang, Ying-Ying; Suk, Jung Soo; Yang, Ming; Zeitlin, Pamela; Boyle, Michael P.; Fu, Jie; Hanes, Justin

    2009-01-01

    Protective mucus coatings typically trap and rapidly remove foreign particles from the eyes, gastrointestinal tract, airways, nasopharynx, and female reproductive tract, thereby strongly limiting opportunities for controlled drug delivery at mucosal surfaces. No synthetic drug delivery system composed of biodegradable polymers has been shown to penetrate highly viscoelastic human mucus, such as non-ovulatory cervicovaginal mucus, at a significant rate. We prepared nanoparticles composed of a biodegradable diblock copolymer of poly(sebacic acid) and poly(ethylene glycol) (PSA-PEG), both of which are routinely used in humans. In fresh undiluted human cervicovaginal mucus (CVM), which has a bulk viscosity approximately 1,800-fold higher than water at low shear, PSA-PEG nanoparticles diffused at an average speed only 12-fold lower than the same particles in pure water. In contrast, similarly sized biodegradable nanoparticles composed of PSA or poly(lactic-co-glycolic acid) (PLGA) diffused at least 3,300-fold slower in CVM than in water. PSA-PEG particles also rapidly penetrated sputum expectorated from the lungs of patients with cystic fibrosis, a disease characterized by hyperviscoelastic mucus secretions. Rapid nanoparticle transport in mucus is made possible by the efficient partitioning of PEG to the particle surface during formulation. Biodegradable polymeric nanoparticles capable of overcoming human mucus barriers and providing sustained drug release open significant opportunities for improved drug and gene delivery at mucosal surfaces. PMID:19901335

  13. Homologs of the Acinetobacter baumannii AceI transporter represent a new family of bacterial multidrug efflux systems.

    PubMed

    Hassan, Karl A; Liu, Qi; Henderson, Peter J F; Paulsen, Ian T

    2015-02-10

    Multidrug efflux systems are a major cause of resistance to antimicrobials in bacteria, including those pathogenic to humans, animals, and plants. These proteins are ubiquitous in these pathogens, and five families of bacterial multidrug efflux systems have been identified to date. By using transcriptomic and biochemical analyses, we recently identified the novel AceI (Acinetobacter chlorhexidine efflux) protein from Acinetobacter baumannii that conferred resistance to the biocide chlorhexidine, via an active efflux mechanism. Proteins homologous to AceI are encoded in the genomes of many other bacterial species and are particularly prominent within proteobacterial lineages. In this study, we expressed 23 homologs of AceI and examined their resistance and/or transport profiles. MIC analyses demonstrated that, like AceI, many of the homologs conferred resistance to chlorhexidine. Many of the AceI homologs conferred resistance to additional biocides, including benzalkonium, dequalinium, proflavine, and acriflavine. We conducted fluorimetric transport assays using the AceI homolog from Vibrio parahaemolyticus and confirmed that resistance to both proflavine and acriflavine was mediated by an active efflux mechanism. These results show that this group of AceI homologs represent a new family of bacterial multidrug efflux pumps, which we have designated the proteobacterial antimicrobial compound efflux (PACE) family of transport proteins. Bacterial multidrug efflux pumps are an important class of resistance determinants that can be found in every bacterial genome sequenced to date. These transport proteins have important protective functions for the bacterial cell but are a significant problem in the clinical setting, since a single efflux system can mediate resistance to many structurally and mechanistically diverse antibiotics and biocides. In this study, we demonstrate that proteins related to the Acinetobacter baumannii AceI transporter are a new class of multidrug

  14. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line.

    PubMed

    Meng, Huan; Liong, Monty; Xia, Tian; Li, Zongxi; Ji, Zhaoxia; Zink, Jeffrey I; Nel, Andre E

    2010-08-24

    Overexpression of drug efflux transporters such as P-glycoprotein (Pgp) protein is one of the major mechanisms for multiple drug resistance (MDR) in cancer cells. A new approach to overcome MDR is to use a co-delivery strategy that utilizes a siRNA to silence the expression of efflux transporter together with an appropriate anticancer drug for drug resistant cells. In this paper, we report that mesoporous silica nanoparticles (MSNP) can be functionalized to effectively deliver a chemotherapeutic agent doxorubicin (Dox) as well as Pgp siRNA to a drug-resistant cancer cell line (KB-V1 cells) to accomplish cell killing in an additive or synergistic fashion. The functionalization of the particle surface with a phosphonate group allows electrostatic binding of Dox to the porous interior, from where the drug could be released by acidification of the medium under abiotic and biotic conditions. In addition, phosphonate modification also allows exterior coating with the cationic polymer, polyethylenimine, which endows the MSNP to contemporaneously deliver Pgp siRNA. The dual delivery of Dox and siRNA in KB-V1 cells was capable of increasing the intracellular as well as intranuclear drug concentration to levels exceeding that of free Dox or the drug being delivered by MSNP in the absence of siRNA codelivery. These results demonstrate that it is possible to use the MSNP platform to effectively deliver a siRNA that knocks down gene expression of a drug exporter that can be used to improve drug sensitivity to a chemotherapeutic agent.

  15. Methotrexate-F127 conjugated mesoporous zinc hydroxyapatite as an efficient drug delivery system for overcoming chemotherapy resistance in osteosarcoma cells.

    PubMed

    Meshkini, Azadeh; Oveisi, Hamid

    2017-10-01

    The resistance of cancer cells to chemotherapeutic agents and the poor selectivity of drugs toward tumor cells are regarded as the main impediments in successful cancer therapy. Currently, the design and fabrication of stimulus-responsive drug delivery systems with high specificity toward cancer cells are gaining increasing attention and they show a promising potential for clinical applications. In this study, mesoporous zinc-substituted hydroxyapatite has been synthesized and served as a drug delivery vehicle owing to its biocompatibility and high drug loading capacity. The mesoporous nanoparticles were decorated with F127 and subsequently conjugated with methotrexate (MTX) through a stable amide linkage. Since folate receptors are overexpressed on many tumor cell surfaces, MTX on the nanocarrier system plays a dual role as a targeting molecule and a chemotherapeutic drug. The evaluation of the drug release profile revealed that MTX was cleaved from the nanoparticles by a certain type of enzyme under low pH conditions that are meant to simulate the intracellular conditions in the lysosome. Cell viability studies on primary osteosarcoma cells (Saos-2) and MTX-resistance cell lines (RSaos-2/MTX) revealed that the drug-loaded nanoparticles possess high antitumor efficacy on both of the cell lines relative to free MTX. It was also found that the inhibition of P-glycoproteins by F127 and the release of Zn 2+ ions from the nanoparticles in an acidic environment effectively potentiate the antitumor efficacy of the drug-loaded nanoparticles, leading to caspase-mediated cell death. Based on these data, MTX-F127@ZnHAP nanoparticles are pH-responsive nanocarriers with precise controlled drug release and targeting effect. Therefore, they are considered to be promising candidates capable of overcoming resistance in osteosarcoma cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Prevalence and behavior of multidrug-resistant Salmonella strains on raw whole and cut nopalitos (Opuntia ficus-indica L.) and on nopalitos salads.

    PubMed

    Gómez-Aldapa, Carlos A; Gutiérrez-Alcántara, Eduardo J; Torres-Vitela, M Refugio; Rangel-Vargas, Esmeralda; Villarruel-López, Angelica; Castro-Rosas, Javier

    2017-09-01

    The presence of multidrug-resistant Salmonella in vegetables is a significant public health concern. Nopalito is a cactaceous that is commonly consumed either raw or cooked in Mexico and other countries. The presence of antibiotic-resistant Salmonella strains on raw whole nopalitos (RWN, without prickles), raw nopalitos cut into squares (RNCS) and in cooked nopalitos salads (CNS) samples was determined. In addition, the behavior of multidrug-resistant Salmonella isolates on RWN, RNCS and CNS at 25° ± 2 °C and 3° ± 2 °C was investigated. One hundred samples of RWN, 100 of RNCS and 100 more of CNS were collected from public markets. Salmonella strains were isolated and identified in 30, 30 and 10% of the samples, respectively. Seventy multidrug-resistant Salmonella strains were isolated from all the nopalitos samples. Multidrug-resistant Salmonella isolates survived at least 15 days on RWN at 25° ± 2 °C or 3° ± 2 °C. Multidrug-resistant Salmonella isolates grew in the RNCS and CNS samples at 25° ± 2 °C. However, at 3° ± 2 °C the bacterial growth was inhibited. This is the first report about multidrug-resistant Salmonella isolation from raw nopalitos and nopalitos salads. Nopalitos from markets are very likely to be an important factor contributing to the endemicity of multidrug-resistant Salmonella-related gastroenteritis in Mexico. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Tris-EDTA significantly enhances antibiotic efficacy against multidrug-resistant Pseudomonas aeruginosa in vitro.

    PubMed

    Buckley, Laura M; McEwan, Neil A; Nuttall, Tim

    2013-10-01

    Multidrug-resistant Pseudomonas aeruginosa commonly complicates chronic bacterial otitis in dogs. The aim of this in vitro study was to determine the effect of ethylenediaminetetraacetic acid-tromethamine (Tris-EDTA) on the minimal bactericidal concentrations (MBCs) and minimal inhibitory concentrations (MICs) of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa isolates from cases of canine otitis. Eleven isolates were identified as multidrug resistant on disc diffusion; 10 were resistant to marbofloxacin and two were resistant to gentamicin. Isolates were incubated for 90 min with each antibiotic alone and in combination with Tris-EDTA at concentrations of 0.075 μg/mL to 5 mg/mL for marbofloxacin, 0.001 μg/mL to 10 mg/mL for gentamicin and 17.8:4.7 to 0.14:0.04 mg/mL for Tris-EDTA. Positive and negative controls were included. Aliquots of each antibiotic and/or Tris-EDTA concentration were subsequently transferred to sheep blood agar to determine the MBCs, and tryptone soy broth was added to the remaining suspensions to determine the MICs. Tris-EDTA alone was bacteriostatic but not bactericidal at any concentration. The addition of Tris-EDTA significantly reduced the median MBC (from 625 to 468.8 μg/mL; P < 0.001) and MIC (from 29.3 to 2.4 μg/mL; P = 0.008) of marbofloxacin, and the median MBC (from 625 to 39.1 μg/mL) and MIC (from 19.5 to 1.2 μg/mL) of gentamicin (both P < 0.001). Tris-EDTA significantly reduced the MBCs and MICs of marbofloxacin and gentamicin for multidrug-resistant P. aeruginosa in vitro. This may be of use to clinicians managing these infections in dogs. © 2013 ESVD and ACVD.

  18. On the physics of multidrug efflux through a biomolecular complex

    NASA Astrophysics Data System (ADS)

    Mishima, Hirokazu; Oshima, Hiraku; Yasuda, Satoshi; Amano, Ken-ichi; Kinoshita, Masahiro

    2013-11-01

    Insertion and release of a solute into and from a vessel comprising biopolymers is a fundamental function in a biological system. A typical example is found in a multidrug efflux transporter. "Multidrug efflux" signifies that solutes such as drug molecules with diverse properties can be handled. In our view, the mechanism of the multidrug efflux is not chemically specific but rather has to be based on a physical factor. In earlier works, we showed that the spatial distribution of the solute-vessel potential of mean force (PMF) induced by the solvent plays imperative roles in the insertion/release process. The PMF can be decomposed into the energetic and entropic components. The entropic component, which originates from the translational displacement of solvent molecules, is rather insensitive to the solute-solvent and vessel inner surface-solvent affinities. This feature is not shared with the energetic component. When the vessel inner surface is neither solvophobic nor solvophilic, the solvents within the vessel cavity and in the bulk offer almost the same environment to any solute with solvophobicity or solvophilicity, and the energetic component becomes much smaller than the entropic component (i.e., the latter predominates over the former). Our idea is that the multidrug efflux can be realized if the insertion/release process is accomplished by the entropic component exhibiting the insensitivity to the solute properties. However, we have recently argued that the entropic release of the solute is not feasible as long as the vessel geometry is fixed. Here we consider a model of TolC, a cylindrical vessel possessing an entrance at one end and an exit at the other end for the solute. The spatial distribution of the PMF is calculated by employing the three-dimensional integral equation theory with rigid-body models in which the constituents interact only through hard-body potentials. Since the behavior of these models is purely entropic in origin, our analysis is

  19. Multidrug-Resistant Escherichia fergusonii: a Case of Acute Cystitis▿

    PubMed Central

    Savini, Vincenzo; Catavitello, Chiara; Talia, Marzia; Manna, Assunta; Pompetti, Franca; Favaro, Marco; Fontana, Carla; Febbo, Fabio; Balbinot, Andrea; Di Berardino, Fabio; Di Bonaventura, Giovanni; Di Zacomo, Silvia; Esattore, Francesca; D'Antonio, Domenico

    2008-01-01

    We report a case in which Escherichia fergusonii, an emerging pathogen in various types of infections, was associated with cystitis in a 52-year-old woman. The offending strain was found to be multidrug resistant. Despite in vitro activity, beta-lactam treatment failed because of a lack of patient compliance with therapy. The work confirms the pathogenic potential of E. fergusonii. PMID:18256229

  20. mar Operon Involved in Multidrug Resistance of Enterobacter aerogenes

    PubMed Central

    Chollet, Renaud; Bollet, Claude; Chevalier, Jacqueline; Malléa, Monique; Pagès, Jean-Marie; Davin-Regli, Anne

    2002-01-01

    We determined the sequence of the entire marRAB operon in Enterobacter aerogenes. It is functionally and structurally analogous to the Escherichia coli operon. The overexpression of E. aerogenes MarA induces a multidrug resistance phenotype in a susceptible strain, demonstrated by a noticeable resistance to various antibiotics, a decrease in immunodetected porins, and active efflux of norfloxacin. PMID:11897595

  1. Enzyme-coated mesoporous silica nanoparticles as efficient antibacterial agents in vivo.

    PubMed

    Li, Li-Li; Wang, Hao

    2013-10-01

    Despite the fact that pathogenic infections are widely treated by antibiotics in the clinic nowadays, the increasing risk of multidrug-resistance associated with abuse of antibiotics is becoming a major concern in global public health. The increased death toll caused by pathogenic bacterial infection calls for effective antibiotic alternatives. Lysozyme-coated mesoporous silica nanoparticles (MSNs⊂Lys) are reported as antibacterial agents that exhibit efficient antibacterial activity both in vitro and in vivo with low cytotoxicity and negligible hemolytic side effect. The Lys corona provides multivalent interaction between MSNs⊂Lys and bacterial walls and consequently raises the local concentration of Lys on the surface of cell walls, which promotes hydrolysis of peptidoglycans and increases membrane-perturbation abilities. The minimal inhibition concentration (MIC) of MSNs⊂Lys is fivefold lower than that of free Lys in vitro. The antibacterial efficacy of MSNs⊂Lys is evaluated in vivo by using an intestine-infected mouse model. Experimental results indicate that the number of bacteria surviving in the colon is three orders of magnitude lower than in the untreated group. These natural antibacterial enzyme-modified nanoparticles open up a new avenue for design and synthesis of next-generation antibacterial agents as alternatives to antibiotics. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multidrug-Resistant Gram-Negative Bacterial and Carbapenem-Resistant Enterobacteriaceae Infections in the Department of the Navy: Annual Report 2013

    DTIC Science & Technology

    2015-03-19

    2013 .... 10 Table 3. Clinical Description of MDR Escherichia coli and Carbapenem- Resistant Enterobacteriaceae Burden in the DON and DOD, CY 2013...Multidrug- Resistant Escherichia coli Burden among DON Active Duty Service Members, CY 2013...17 Table 9. Clinical Description of Multidrug- Resistant Escherichia coli Burden among DON Active Duty Service

  3. Catalase-only nanoparticles prepared by shear alone: Characteristics, activity and stability evaluation.

    PubMed

    Huang, Xiao-Nan; Du, Xin-Ying; Xing, Jin-Feng; Ge, Zhi-Qiang

    2016-09-01

    Catalase is a promising therapeutic enzyme; however, it carries risks of inactivation and rapid degradation when it is used in practical bioprocess, such as delivery in vivo. To overcome the issue, we made catalase-only nanoparticles using shear stress alone at a moderate shear rate of 217s(-1) in a coaxial cylinder flow cell. Properties of nanoparticles, including particle size, polydispersity index and zeta potential, were characterized. The conformational changes of pre- and post-sheared catalase were determined using spectroscopy techniques. The results indicated that the conformational changes of catalase and reduction in α-helical content caused by shear alone were less significant than that by desolvation method. Catalase-only nanoparticles prepared by single shear retained over 90% of its initial activity when compared with the native catalase. Catalase nanoparticles lost only 20% of the activity when stored in phosphate buffer solution for 72h at 4°C, whereas native catalase lost 53% under the same condition. Especially, the activity of nanogranulated catalase was decreased only slightly in the simulated intestinal fluid containing α-chymotrypsin during 4h incubation at 37°C, implying that the catalase nanoparticle was more resistant to the degradation of proteases than native catalase molecules. Overall, catalase-only nanoparticles offered a great potential to stabilize enzymes for various pharmaceutical applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of free-flowing peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles via atomization with carbon dioxide.

    PubMed

    Yang, Junsi; Ciftci, Ozan Nazim

    2016-09-01

    The main objective of this study was to overcome the issues related to the volatility and strong smell that limit the efficient utilization of essential oils as "natural" antimicrobials in the food industry. Peppermint essential oil-loaded hollow solid lipid micro- and nanoparticles were successfully formed using a novel "green" method based on atomization of CO 2 -expanded lipid mixture. The highest essential oil loading efficiency (47.5%) was achieved at 50% initial essential oil concentration at 200bar expansion pressure and 50μm nozzle diameter, whereas there was no significant difference between the loading efficiencies (35%-39%) at 5%, 7%, 10%, and 20% initial essential oil concentrations (p>0.05). Particles generated at all initial essential oil concentrations were spherical but increasing the initial essential oil concentration to 20% and 50% generated a less smooth particle surface. After 4weeks of storage, 61.2%, 42.5%, 0.2%, and 2.0% of the loaded essential oil was released from the particles formed at 5%, 10%, 20%, and 50% initial essential oil concentrations, respectively. This innovative simple and clean process is able to form spherical hollow micro- and nanoparticles loaded with essential oil that can be used as food grade antimicrobials. These novel hollow solid lipid micro- and nanoparticles are alternatives to the solid lipid nanoparticles, and overcome the issues associated with the solid lipid nanoparticles. The dry free-flowing products make the handling and storage more convenient, and the simple and clean process makes the scaling up more feasible. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fabrication and characterization of sol-gel based nanoparticles for drug delivery

    NASA Astrophysics Data System (ADS)

    Yadav, Reeta

    Nanogels are cross linked polymeric sol-gel based nanoparticles that offer an interior network for incorporation and protection of biomolecules, exhibiting unique advantages for polymer based delivery systems. We have successfully synthesized stable sol-gel nanoparticles by means of [a] silicification reactions using cationic peptides like polylysine as gelating agents, and [b] lyophilization of sol-gels. Macromolecules such as Hemoglobin and Glucose Oxidase and small molecules such as Sodium Nitroprusside (SNP) and antibiotics were encapsulated within the nanogels. We have used transmission electron microscopy, dynamic light scattering, zeta potential analysis, and spectroscopy to perform a physicochemical characterization of the nanogels resulting from the two approaches. Our studies have indicated that the nanogel encapsulated proteins and small molecules remain intact, stable and functional. A Hydrogen Peroxide (H2O2) and Nitric Oxide (NO) generating drug carrier was synthesized using these nanogels and the effect of generation of H2O2 from Glucose Oxidase encapsulated nanogels and NO from SNP encapsulated nanogels was tested on E.coli. The results show that the nanoparticles exert antimicrobial activity against E.Coli, in addition NO generating nanogels potentiated H2O2 generating nanogels induced killing. These data suggest that these NO and H2O2 releasing nanogels have the potential to serve as a novel class of antimicrobials for the treatment of multidrug resistant bacteria. The unique properties of these protein/drug incorporated nanogels raise the prospect of fine tailoring to specific applications such as drug delivery and bio imaging.

  6. Antibacterial Efficacy of Polysaccharide Capped Silver Nanoparticles Is Not Compromised by AcrAB-TolC Efflux Pump

    PubMed Central

    Mishra, Mitali; Kumar, Satish; Majhi, Rakesh K.; Goswami, Luna; Goswami, Chandan; Mohapatra, Harapriya

    2018-01-01

    Antibacterial therapy is of paramount importance in treatment of several acute and chronic infectious diseases caused by pathogens. Over the years extensive use and misuse of antimicrobial agents has led to emergence of multidrug resistant (MDR) and extensive drug resistant (XDR) pathogens. This drastic escalation in resistant phenotype has limited the efficacy of available therapeutic options. Thus, the need of the hour is to look for alternative therapeutic approaches to mitigate healthcare concerns caused due to MDR bacterial infections. Nanoparticles have gathered much attention as potential candidates for antibacterial therapy. Equipped with advantages of, wide spectrum bactericidal activity at very low dosage, inhibitor of biofilm formation and ease of permeability, nanoparticles have been considered as leading therapeutic candidates to curtail infections resulting from MDR bacteria. However, substrate non-specificity of efflux pumps, particularly those belonging to resistance nodulation division super family, have been reported to reduce efficacy of many potent antibacterial therapeutic drugs. Previously, we had reported antibacterial activity of polysaccharide-capped silver nanoparticles (AgNPs) toward MDR bacteria. We showed that AgNPs inhibits biofilm formation and alters expression of cytoskeletal proteins FtsZ and FtsA, with minimal cytotoxicity toward mammalian cells. In the present study, we report no reduction in antibacterial efficacy of silver nanoparticles in presence of AcrAB-TolC efflux pump proteins. Antibacterial tests were performed according to CLSI macrobroth dilution method, which revealed that both silver nanoparticles exhibited bactericidal activity at very low concentrations. Further, immunoblotting results indicated that both the nanoparticles modulate the transporter AcrB protein expression. However, expression of the membrane fusion protein AcrA did show a significant increase after exposure to AgNPs. Our results indicate that both

  7. Overcoming job stress

    MedlinePlus

    ... medlineplus.gov/ency/patientinstructions/000884.htm Overcoming job stress To use the sharing features on this page, ... stay healthy and feel better. Causes of Job Stress Although the cause of job stress is different ...

  8. Worldwide Occurrence of Integrative Conjugative Element Encoding Multidrug Resistance Determinants in Epidemic Vibrio cholerae O1

    PubMed Central

    Marin, Michel A.; Fonseca, Erica L.; Andrade, Bruno N.; Cabral, Adriana C.; Vicente, Ana Carolina P.

    2014-01-01

    In the last decades, there has been an increase of cholera epidemics caused by multidrug resistant strains. Particularly, the integrative and conjugative element (ICE) seems to play a major role in the emergence of multidrug resistant Vibrio cholerae. This study fully characterized, by whole genome sequencing, new ICEs carried by multidrug resistant V. cholerae O1 strains from Nigeria (2010) (ICEVchNig1) and Nepal (1994) (ICEVchNep1). The gene content and gene order of these two ICEs are the same, and identical to ICEVchInd5, ICEVchBan5 and ICEVchHai1 previously identified in multidrug resistant V. cholerae O1. This ICE is characterized by dfrA1, sul2, strAB and floR antimicrobial resistance genes, and by unique gene content in HS4 and HS5 ICE regions. Screening for ICEs, in publicly available V. cholerae genomes, revealed the occurrence and widespread distribution of this ICE among V. cholerae O1. Metagenomic analysis found segments of this ICE in marine environments far from the direct influence of the cholera epidemic. Therefore, this study revealed the epidemiology of a spatio-temporal prevalent ICE in V. cholerae O1. Its occurrence and dispersion in V. cholerae O1 strains from different continents throughout more than two decades can be indicative of its role in the fitness of the current pandemic lineage. PMID:25265418

  9. A Potent Staphylococcus Aureus Growth Inhibitor Of A Dried Flower Extract Of Pinus Merkusii Jungh & De Vriese And Copper Nanoparticle

    NASA Astrophysics Data System (ADS)

    Masruri, Masruri; Norani Pangestin, Dinna; Mariyah Ulfa, Siti; Riyanto, Slamet; Srihardyastutie, Arie; Farid Rahman, Moh.

    2018-01-01

    The paper report antibacterial activity of flower extract from Pinus merkusii Jungh Et De Vriese and its mixture with copper nanoparticle on Staphylococcus aureus. This finding revealed the potency of pine forestry waste to overcome a bacterial-resistance problem on some commercially antibiotics. The extract was prepared by hot water extraction of a dried powder of pine flower. Copper nanoparticle was synthesized following “green synthesis technique” using phenolic-rich extract of pine’s flower as a reduction and capping agent. In short, a mixture of pine’s flower extract and copper nanoparticle importantly was able to inhibit the growth of Staphylococcus aureus four times higher than that using water extract.

  10. Multidrug Resistance among New Tuberculosis Cases: Detecting Local Variation through Lot Quality-Assurance Sampling

    PubMed Central

    Lynn Hedt, Bethany; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Viet Nhung, Nguyen; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-01-01

    Background Current methodology for multidrug-resistant TB (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. Methods We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored three classification systems—two-way static, three-way static, and three-way truncated sequential sampling—at two sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. Results The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Conclusions Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired. PMID:22249242

  11. Multidrug resistance among new tuberculosis cases: detecting local variation through lot quality-assurance sampling.

    PubMed

    Hedt, Bethany Lynn; van Leth, Frank; Zignol, Matteo; Cobelens, Frank; van Gemert, Wayne; Nhung, Nguyen Viet; Lyepshina, Svitlana; Egwaga, Saidi; Cohen, Ted

    2012-03-01

    Current methodology for multidrug-resistant tuberculosis (MDR TB) surveys endorsed by the World Health Organization provides estimates of MDR TB prevalence among new cases at the national level. On the aggregate, local variation in the burden of MDR TB may be masked. This paper investigates the utility of applying lot quality-assurance sampling to identify geographic heterogeneity in the proportion of new cases with multidrug resistance. We simulated the performance of lot quality-assurance sampling by applying these classification-based approaches to data collected in the most recent TB drug-resistance surveys in Ukraine, Vietnam, and Tanzania. We explored 3 classification systems- two-way static, three-way static, and three-way truncated sequential sampling-at 2 sets of thresholds: low MDR TB = 2%, high MDR TB = 10%, and low MDR TB = 5%, high MDR TB = 20%. The lot quality-assurance sampling systems identified local variability in the prevalence of multidrug resistance in both high-resistance (Ukraine) and low-resistance settings (Vietnam). In Tanzania, prevalence was uniformly low, and the lot quality-assurance sampling approach did not reveal variability. The three-way classification systems provide additional information, but sample sizes may not be obtainable in some settings. New rapid drug-sensitivity testing methods may allow truncated sequential sampling designs and early stopping within static designs, producing even greater efficiency gains. Lot quality-assurance sampling study designs may offer an efficient approach for collecting critical information on local variability in the burden of multidrug-resistant TB. Before this methodology is adopted, programs must determine appropriate classification thresholds, the most useful classification system, and appropriate weighting if unbiased national estimates are also desired.

  12. Enhanced Intracellular Delivery and Tissue Retention of Nanoparticles by Mussel-Inspired Surface Chemistry.

    PubMed

    Chen, Kai; Xu, Xiaoqiu; Guo, Jiawei; Zhang, Xuelin; Han, Songling; Wang, Ruibing; Li, Xiaohui; Zhang, Jianxiang

    2015-11-09

    Nanomaterials have been broadly studied for intracellular delivery of diverse compounds for diagnosis or therapy. Currently it remains challenging for discovering new biomolecules that can prominently enhance cellular internalization and tissue retention of nanoparticles (NPs). Herein we report for the first time that a mussel-inspired engineering approach may notably promote cellular uptake and tissue retention of NPs. In this strategy, the catechol moiety is covalently anchored onto biodegradable NPs. Thus, fabricated NPs can be more effectively internalized by sensitive and multidrug resistant tumor cells, as well as some normal cells, resulting in remarkably potentiated in vitro activity when an antitumor drug is packaged. Moreover, the newly engineered NPs afford increased tissue retention post local or oral delivery. This biomimetic approach is promising for creating functional nanomaterials for drug delivery, vaccination, and cell therapy.

  13. Multifunctional hyaluronic acid modified graphene oxide loaded with mitoxantrone for overcoming drug resistance in cancer

    NASA Astrophysics Data System (ADS)

    Hou, Lin; Feng, Qianhua; Wang, Yating; Yang, Xiaomin; Ren, Junxiao; Shi, Yuyang; Shan, Xiaoning; Yuan, Yujie; Wang, Yongchao; Zhang, Zhenzhong

    2016-01-01

    Multifunctional nanosheets (HA-GO/Pluronic) with targeted chemo-photothermal properties were successfully developed for controlled delivery of mitoxantrone (MIT) to overcome multidrug resistance (MDR). In vitro release profiles displayed that both an acidic environment and a NIR laser could trigger and accelerate the release of a drug, which ensured nanosheets were stable in blood circulation and released MIT within tumor cells under laser irradiation. HA-GO/Pluronic nanosheets were taken up into MCF-7/ADR cells via receptor-mediated endocytosis, which further facilitated escapement of P-gp efflux. Compared with MIT solution, MIT/HA-GO/Pluronic showed greater cytotoxicity and increase in cellular MIT accumulation in MCF-7/ADR cells. Cell apoptosis and cell cycle arrest studies also revealed that MIT/HA-GO/Pluronic was more potent than MIT/GO/Pluronic and MIT solution. The anticancer efficacy in vivo was evaluated in MCF-7 and MCF-7/ADR-bearing mice, and inhibition of tumors by MIT/HA-GO/Pluronic with NIR laser irradiation was the most effective among all MIT formulations. In summary, the MIT/HA-GO/Pluronic system had striking functions such as P-gp reversible inhibitor and anticancer efficacy, and could present a promising platform for drug-resistant cancer treatment.

  14. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles

    PubMed Central

    Engelberg, Shira; Modrejewski, Julia; Walter, Johanna G.; Livney, Yoav D.; Assaraf, Yehuda G.

    2018-01-01

    Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (Kd = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance. PMID:29765515

  15. Cancer cell-selective, clathrin-mediated endocytosis of aptamer decorated nanoparticles.

    PubMed

    Engelberg, Shira; Modrejewski, Julia; Walter, Johanna G; Livney, Yoav D; Assaraf, Yehuda G

    2018-04-20

    Lung cancer is the leading cause of cancer mortality worldwide, resulting in 88% deaths of all diagnosed patients. Hence, novel therapeutic modalities are urgently needed. Single-stranded oligonucleotide-based aptamers (APTs) are excellent ligands for tumor cell targeting. However, the molecular mechanisms underlying their internalization into living cells have been poorly studied. Towards the application of APTs for active drug targeting to cancer cells, we herein studied the mechanism underlying S15-APT internalization into human non-small cell lung cancer A549 cells. We thus delineated the mode of entry of a model nanomedical system based on quantum dots (QDs) decorated with S15-APTs as a selective targeting moiety for uptake by A549 cells. These APT-decorated QDs displayed selective binding to, and internalization by target A549 cells, but not by normal human bronchial epithelial BEAS2B, cervical carcinoma (HeLa) and colon adenocarcinoma CaCo-2 cells, hence demonstrating high specificity. Flow cytometric analysis revealed a remarkably low dissociation constant of S15-APTs-decorated QDs to A549 cells (K d = 13.1 ± 1.6 nM). Through the systematic application of a series of established inhibitors of known mechanisms of endocytosis, we show that the uptake of S15-APTs proceeds via a classical clathrin-dependent receptor-mediated endocytosis. This cancer cell-selective mode of entry could possibly be used in the future to evade plasma membrane-localized multidrug resistance efflux pumps, thereby overcoming an important mechanism of cancer multidrug resistance.

  16. Comparative genomics of the IncA/C multidrug resistance plasmid family

    USDA-ARS?s Scientific Manuscript database

    Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we...

  17. Multi-Modal Strategies for Overcoming Tumor Drug Resistance: Hypoxia, Warburg’s Effect, Stem Cells, and Multifunctional Nanotechnology

    PubMed Central

    Milane, Lara; Ganesh, Shanthi; Shah, Shruti; Duan, Zhen-feng; Amiji, Mansoor

    2011-01-01

    Inefficiency in systemic drug delivery and tumor residence as well microenvironmental selection pressures contribute to the development of multidrug resistance (MDR) in cancer. Characteristics of MDR include abnormal vasculature, regions of hypoxia, up-regulation of ABC-transporters, aerobic glycolysis, and an elevated apoptotic threshold. Nano-sized delivery vehicles are ideal for treating MDR cancer as they can improve the therapeutic index of drugs and they can be engineered to achieve multifunctional parameters. The multifunctional ability of nanocarriers makes them more adept at treating heterogeneous tumor mass than traditional chemotherapy. Nanocarriers also have preferential tumor accumulation via the EPR effect; this accumulation can be further enhanced by actively targeting the biological profile of MDR cells. Perhaps the most significant benefit of using nanocarrier drug delivery to treat MDR cancer is that nanocarrier delivery diverts the effects of ABC-transporter mediated drug efflux; which is the primary mechanism of MDR. This review discusses the capabilities, applications, and examples of multifunctional nanocarriers for the treatment of MDR. This review emphasizes multifunctional nanocarriers that enhance drug delivery efficiency, the application of RNAi, modulation of the tumor apoptotic threshold, and physical approaches to overcome MDR. PMID:21497176

  18. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    NASA Astrophysics Data System (ADS)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  19. A gold nanoparticle-linked glycoconjugate vaccine against Burkholderia mallei

    PubMed Central

    Gregory, Anthony E.; Judy, Barbara M.; Qazi, Omar; Blumentritt, Carla A.; Brown, Katherine A.; Shaw, Andrew M.; Torres, Alfredo G.; Titball, Richard W.

    2014-01-01

    Burkholderia mallei are Gram-negative bacteria, responsible for the disease glanders. B. mallei has recently been classified as a Tier 1 agent owing to the fact that this bacterial species can be weaponised for aerosol release, has a high mortality rate and demonstrates multi-drug resistance. Furthermore, there is no licensed vaccine available against this pathogen. Lipopolysaccharide (LPS) has previously been identified as playing an important role in generating host protection against Burkholderia infection. In this study, we present gold nanoparticles (AuNPs) functionalised with a glycoconjugate vaccine against glanders. AuNPs were covalently coupled with one of three different protein carriers (TetHc, Hcp1 and FliC) followed by conjugation to LPS purified from a non-virulent clonal relative, B. thailandensis. Glycoconjugated LPS generated significantly higher antibody titres and compared with LPS alone. Further, they improved protection against a lethal inhalation challenge of B. mallei in the murine model of infection. PMID:25194998

  20. Surface functionalized magnetic nanoparticles for cancer therapy applications

    NASA Astrophysics Data System (ADS)

    Wydra, Robert John

    Despite recent advances, cancer remains the second leading cause of deaths in the United States. Magnetic nanoparticles have found various applications in cancer research as drug delivery platforms, enhanced contrast agents for improved diagnostic imaging, and the delivery of thermal energy as standalone therapy. Iron oxide nanoparticles absorb the energy from an alternating magnetic field and convert it into heat through Brownian and Neel relaxations. To better utilize magnetic nanoparticles for cancer therapy, surface functionalization is essential for such factors as decreasing cytotoxicity of healthy tissue, extending circulation time, specific targeting of cancer cells, and manage the controlled delivery of therapeutics. In the first study, iron oxide nanoparticles were coated with a poly(ethylene glycol) (PEG) based polymer shell. The PEG coating was selected to prevent protein adsorption and thus improve circulation time and minimize host response to the nanoparticles. Thermal therapy application feasibility was demonstrated in vitro with a thermoablation study on lung carcinoma cells. Building on the thermal therapy demonstration with iron oxide nanoparticles, the second area of work focused on intracellular delivery. Nanoparticles can be appropriately tailored to enter the cell and deliver energy on the nanoscale eliminating individual cancer cells. The underlying mechanism of action is still under study, and we were interested in determining the role of reactive oxygen species (ROS) catalytically generated from the surface of iron oxide nanoparticles in this measured cytotoxicity. When exposed to an AMF, the nanoscale heating effects are capable of enhancing the Fenton-like generation of ROS determined through a methylene blue degradation assay. To deliver this enhanced ROS effect to cells, monosaccharide coated nanoparticles were developed and successfully internalized by colon cancer cell lines. Upon AMF exposure, there was a measured increase in

  1. Live Cell Imaging of the Endocytosis and the Intracellular Trafficking of Multifunctional Lipid Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tieqiao; Danthi, S. N.; Xie, Jianwu

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug deliverymore » system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.« less

  2. Live cell imaging of the endocytosis and the intracellular trafficking of multifunctional lipid nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Tieqiao; Danthi, S. Narasimhan; Xie, Jianwu; Hu, Dehong; Lu, Peter; Li, King

    2006-02-01

    Artificial lipid nanoparticles have drawn great attention due to their potential in medicine. Linked with targeting ligands, they can be used as probes and/or gene delivery vectors for specific types of target cells. Therefore, they are very promising agents in early detection, diagnosis and treatment of cancers and other genetic diseases. However, there are several barriers blocking the applications. Controlling the cellular uptake of the lipid nanoparticles is an important technical challenge to overcome. Understanding the mechanism of the endocytosis and the following intracellular trafficking is very important for improving the design and therefore the efficiency as a drug delivery system. By using fluorescence microscopy methods, we studied the endocytosis of lipid nanoparticles by live M21 cells. The movements of the nanoparticles inside the cell were quantitatively characterized and classified based on the diffusion behavior. The trajectories of nanoparticles movement over the cell membrane revealed hop-diffusion behavior prior to the endocytosis. Fast movement in large steps is observed in intracellular trafficking and is attributed to active movement along microtubule. These observations help to understand the mechanism of the endocytosis and the pathway of the particles in cells.

  3. Draft Genome Sequences of Six Multidrug-Resistant Clinical Strains of Acinetobacter baumannii, Isolated at Two Major Hospitals in Kuwait.

    PubMed

    Nasser, Kother; Mustafa, Abu Salim; Khan, Mohd Wasif; Purohit, Prashant; Al-Obaid, Inaam; Dhar, Rita; Al-Fouzan, Wadha

    2018-04-19

    Acinetobacter baumannii is an important opportunistic pathogen in global health care settings. Its dissemination and multidrug resistance pose an issue with treatment and outbreak control. Here, we present draft genome assemblies of six multidrug-resistant clinical strains of A. baumannii isolated from patients admitted to one of two major hospitals in Kuwait. Copyright © 2018 Nasser et al.

  4. PLGA-Chitosan nanoparticle-mediated gene delivery for oral cancer treatment: A brief review

    NASA Astrophysics Data System (ADS)

    Bakar, L. M.; Abdullah, M. Z.; Doolaanea, A. A.; Ichwan, S. J. A.

    2017-08-01

    Cancer becomes a serious issue on society with increasing of their growth and proliferation, either in well economic developed countries or not. Recent years, oral cancer is one of the most threatening diseases impairing the quality of life of the patient. Scientists have emphasised on application of gene therapy for oral cancer by using nanoparticle as transportation vectors as a new alternative platform in order to overcome the limitations of conventional approaches. In modern medicine, nanotechnologies’ application, such as nanoparticles-mediated gene delivery, is one of promising tool for therapeutic devices. The objective of this article is to present a brief review summarizes on the current progress of nanotechnology-based gene delivery treatment system targeted for oral cancer.

  5. An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump

    PubMed Central

    Wang, Zhao; Fan, Guizhen; Hryc, Corey F; Blaza, James N; Serysheva, Irina I; Schmid, Michael F; Chiu, Wah; Luisi, Ben F; Du, Dijun

    2017-01-01

    Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the Escherichia coli AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump. DOI: http://dx.doi.org/10.7554/eLife.24905.001 PMID:28355133

  6. Targeting the human macrophage with combinations of drugs and inhibitors of Ca2+ and K+ transport to enhance the killing of intracellular multi-drug resistant Mycobacterium tuberculosis (MDR-TB)--a novel, patentable approach to limit the emergence of XDR-TB.

    PubMed

    Martins, Marta

    2011-05-01

    The emergence of resistance in tuberculosis has become a serious problem for the control of this disease. For that reason, new therapeutic strategies that can be implemented in the clinical setting are urgently needed. The design of new compounds active against mycobacteria must take into account that tuberculosis is mainly an intracellular infection of the alveolar macrophage and therefore must maintain activity within the host cells. An alternative therapeutic approach will be described in this review, focusing on the activation of the phagocytic cell and the subsequent killing of the internalized bacteria. This approach explores the combined use of antibiotics and phenothiazines, or Ca(2+) and K(+) flux inhibitors, in the infected macrophage. Targeting the infected macrophage and not the internalized bacteria could overcome the problem of bacterial multi-drug resistance. This will potentially eliminate the appearance of new multi-drug resistant tuberculosis (MDR-TB) cases and subsequently prevent the emergence of extensively-drug resistant tuberculosis (XDR-TB). Patents resulting from this novel and innovative approach could be extremely valuable if they can be implemented in the clinical setting. Other patents will also be discussed such as the treatment of TB using immunomodulator compounds (for example: betaglycans).

  7. The secondary resistome of multidrug-resistant Klebsiella pneumoniae.

    PubMed

    Jana, Bimal; Cain, Amy K; Doerrler, William T; Boinett, Christine J; Fookes, Maria C; Parkhill, Julian; Guardabassi, Luca

    2017-02-15

    Klebsiella pneumoniae causes severe lung and bloodstream infections that are difficult to treat due to multidrug resistance. We hypothesized that antimicrobial resistance can be reversed by targeting chromosomal non-essential genes that are not responsible for acquired resistance but essential for resistant bacteria under therapeutic concentrations of antimicrobials. Conditional essentiality of individual genes to antimicrobial resistance was evaluated in an epidemic multidrug-resistant clone of K. pneumoniae (ST258). We constructed a high-density transposon mutant library of >430,000 unique Tn5 insertions and measured mutant depletion upon exposure to three clinically relevant antimicrobials (colistin, imipenem or ciprofloxacin) by Transposon Directed Insertion-site Sequencing (TraDIS). Using this high-throughput approach, we defined three sets of chromosomal non-essential genes essential for growth during exposure to colistin (n = 35), imipenem (n = 1) or ciprofloxacin (n = 1) in addition to known resistance determinants, collectively termed the "secondary resistome". As proof of principle, we demonstrated that inactivation of a non-essential gene not previously found linked to colistin resistance (dedA) restored colistin susceptibility by reducing the minimum inhibitory concentration from 8 to 0.5 μg/ml, 4-fold below the susceptibility breakpoint (S ≤ 2 μg/ml). This finding suggests that the secondary resistome is a potential target for developing antimicrobial "helper" drugs that restore the efficacy of existing antimicrobials.

  8. Induction of Multidrug Tolerance in Plasmodium falciparum by Extended Artemisinin Pressure

    PubMed Central

    Ménard, Sandie; Ben Haddou, Tanila; Ramadani, Arba Pramundita; Ariey, Frédéric; Iriart, Xavier; Beghain, Johann; Bouchier, Christiane; Witkowski, Benoit; Berry, Antoine; Mercereau-Puijalon, Odile

    2015-01-01

    Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia threatens global malaria control strategies. Whether delayed parasite clearance, which exposes larger parasite numbers to artemisinins for longer times, selects higher-grade resistance remains unexplored. We investigated whether long-lasting artemisinin pressure selects a novel multidrug-tolerance profile. Although 50% inhibitory concentrations for 10 antimalarial drugs tested were unchanged, drug-tolerant parasites showed higher recrudescence rates for endoperoxides, quinolones, and an antifolate, including partner drugs of recommended combination therapies, but remained susceptible to atovaquone. Moreover, the age range of intraerythrocytic stages able to resist artemisinin was extended to older ring forms and trophozoites. Multidrug tolerance results from drug-induced quiescence, which enables parasites to survive exposure to unrelated antimalarial drugs that inhibit a variety of metabolic pathways. This novel resistance pattern should be urgently monitored in the field because this pattern is not detected by current assays and represents a major threat to antimalarial drug policy. PMID:26401601

  9. Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups

    PubMed Central

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique

    2014-01-01

    Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126

  10. Control of metazoan heme homeostasis by a conserved multidrug resistance protein

    PubMed Central

    Korolnek, Tamara; Zhang, Jianbing; Beardsley, Simon; Scheffer, George L; Hamza, Iqbal

    2014-01-01

    Several lines of evidence predict that specific pathways must exist in metazoans for the escorted movement of heme, an essential but cytotoxic iron-containing organic ring, within and between cells and tissues, but these pathways remain obscure. In Caenorhabditis elegans, embryonic development is inextricably dependent on both maternally-derived heme and environmentally-acquired heme. Here, we show that the multidrug resistance protein, MRP-5/ABCC5, likely acts as a heme exporter and targeted depletion of mrp-5 in the intestine causes embryonic lethality. Transient knockdown of mrp5 in zebrafish leads to morphological defects and failure to hemoglobinize red blood cells. MRP5 resides on the plasma membrane and endosomal compartments and regulates export of cytosolic heme. Together, our genetic studies in worms, yeast, zebrafish, and mammalian cells identify a conserved, physiological role for a multidrug resistance protein in regulating systemic heme homeostasis. We envision other MRP family members may play similar unanticipated physiological roles in animal development. PMID:24836561

  11. Introduction for Design of Nanoparticle Based Drug Delivery Systems.

    PubMed

    Edgar, Jun Yan Chan; Wang, Hui

    2017-01-01

    Conventional drug delivery systems contain numerous limitations such as limited targeting, low therapeutic indices, poor water solubility, and the induction of drug resistances. In order to overcome the drawbacks of conventional pathway of drug delivery, nanoparticle delivery systems are therefore designed and used as the drug carriers. Nanoparticle based drug delivery systems have been rapidly growing and are being applied to various sections of biomedicine. Drug nanocarriers based on dendrimers, liposomes, self-assembling peptides, watersoluble polymers, and block copolymer micelles are the most extensively studied types of drug delivery systems and some of them are being used in clinical therapy. In particular for cancer therapy, antineoplastic drugs are taking advantage of nanoparticulate drug carriers to improve the cure efficacy. Nanoparticle based drug carriers are capable of improving the therapeutic effectiveness of the drugs by using active targeting for the site-specific delivery, passive targeting mechanisms such as enhanced permeability and retention (EPR), de novo synthesis and uptake of low density liposome in cancer cells or by being water-soluble to improve the suboptimal pharmacokinetics in limited water-soluble delivery methods. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Bactericidal Efficiency of Silver Nanoparticles Synthesized from Annona squamosa

    NASA Astrophysics Data System (ADS)

    Jayavardhanan, R.; Nanda, Anima

    2016-09-01

    Nanotechnology is described as an emerging technology that not only holds promise for society, but also is capable of providing novel approaches to overcome our common problems. The present study focused on the synthesis of silver nanoparticles using the metabolites of Annona squamosa seeds. The biological reduction procedure proposed in this method was considered as better one compared to chemical mediated reduction methods. The advantages include nontoxic to the environment, less energy consuming and highly suitable for further biological applications. The seeds were separated from the fruit pulp, grinded into powder and dissolved in distilled water. The suspension was used as reducing agent and treated with silver nitrate at the concentration of 1mM. The reduction reaction was continuously monitored by UV-visible photo spectrometer. Further the samples were subjected to AFM, SEM and XRD analysis for the confirmation of their size, structure, agglomerations and the arrangements of crystals. Finally the antibacterial properties of nanoparticles were tested against clinically important pathogenic microorganisms using disc diffusion method and compared with the activities of standard antibiotics. The combinational effects of nanoparticles with commercial antibiotics also were tested by the same method.

  13. Small-Angle Neutron Scattering Study of Interplay of Attractive and Repulsive Interactions in Nanoparticle-Polymer System.

    PubMed

    Kumar, Sugam; Aswal, Vinod K; Kohlbrecher, Joachim

    2016-02-16

    The phase behavior of nanoparticle (silica)-polymer (polyethylene glycol) system without and with an electrolyte (NaCl) has been studied. It is observed that nanoparticle-polymer system behaves very differently in the presence of electrolyte. In the absence of electrolyte, the nanoparticle-polymer system remains in one-phase even at very high polymer concentrations. On the other hand, a re-entrant phase behavior is found in the presence of electrolyte, where one-phase (individual) system undergoes two-phase (nanoparticle aggregation) and then back to one-phase with increasing polymer concentration. The regime of two-phase system has been tuned by varying the electrolyte concentration. The polymer concentration range over which the two-phase system exists is significantly enhanced with the increase in the electrolyte concentration. These systems have been characterized by small-angle neutron scattering (SANS) experiments of contrast-marching the polymer to the solvent. The data are modeled using a two-Yukawa potential accounting for both attractive and repulsive parts of the interaction between nanoparticles. The phase behavior of nanoparticle-polymer system is explained by interplay of attractive (polymer-induced attractive depletion between nanoparticles) and repulsive (nanoparticle-nanoparticle electrostatic repulsion and polymer-polymer repulsion) interactions present in the system. In the absence of electrolyte, the strong electrostatic repulsion between nanoparticles dominates over the polymer-induced depletion attraction and the nanoparticle system remains in one-phase. With addition of electrolyte, depletion attraction overcomes electrostatic repulsion at some polymer concentration, resulting into nanoparticle aggregation and two-phase system. Further addition of polymer increases the polymer-polymer repulsion which eventually reduces the strength of depletion and hence re-entrant phase behavior. The effects of varying electrolyte concentration on the phase

  14. Transdermal delivery of biomacromolecules using lipid-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Bello, Evelyn A.

    The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.

  15. Burden of Multidrug Resistant Mycobacterium tuberculosis Among New Cases in Al-Madinah Al-Monawarah, Saudi Arabia.

    PubMed

    Elhassan, Mogahid M; Hemeg, Hassan A; Elmekki, Miskelyemen A; Turkistani, Khalid A; Abdul-Aziz, Ahmed A

    2017-01-01

    The pattern of Mycobacterium tuberculosis susceptibility to first line drugs and multidrug resistance in Al-Madinah Al-Munawarah, a seasonally overcrowded are during Hajj and Omrah, is not well studied. This study aimed to investigate anti-tuberculosis drug resistance and its distribution among new cases in Al-Madinah Al-Monawarah. Study subjects included 622 patients with first time confirmed TB referred to the central tuberculosis laboratory in Al-Madinah between January 2012 and December 2014. Out of the 622 isolates, 99 (15.9%) were Mycobacteria Other Than Tuberculosis (MOTTS) and 25 (4.0%), three of which (12%) were children under five years of age, revealed multidrug resistance (MDR). Monoresistance to isoniazid (H) was (1.8%), to rifampin (R) was (1.4%), to streptomycin (S) was (1.9 %) to ethambutol (E) was (1.1 %) and to pyrazinamide (Z) was (2.1%). Being among the new cases, multidrug resistant tuberculosis (MDR TB) is supposed to be caused by strains which are originally multidrug resistant. Neither nationality nor gender was found to be associated with MDR TB. Since 12% of MDR cases were among children, a probability of primary infection with MDR strains is to be considered. Moreover, mass gathering during Hajj and Omrah seasons does not seem to increase the burden of MDR in the region. However, further investigation is needed to molecularly characterize MDR isolates and their phylogenetics and geographical origin. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents

    PubMed Central

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    Background Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract. Methods and results Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles

  17. Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents.

    PubMed

    Ghosh, Sougata; Patil, Sumersing; Ahire, Mehul; Kitture, Rohini; Kale, Sangeeta; Pardesi, Karishma; Cameotra, Swaranjit S; Bellare, Jayesh; Dhavale, Dilip D; Jabgunde, Amit; Chopade, Balu A

    2012-01-01

    Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag(+) ions using D. bulbifera tuber extract. Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag(+) ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO(3) solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. This is the first report on

  18. Modified live Edwardsiella ictaluri vaccine, AQUAVAC-ESC, lacks multidrug resistance plasmids

    USDA-ARS?s Scientific Manuscript database

    Plasmid mediated antibiotic resistance was first discovered in Edwardsiella ictaluri in the early 1990’s, and in 2007 an E. ictaluri isolate harboring an IncA/C plasmid was recovered from a moribund channel catfish infected with the bacterium. Due to the identification of multidrug resistance plasm...

  19. Clinical Oxidative Stress during Leprosy Multidrug Therapy: Impact of Dapsone Oxidation

    PubMed Central

    Schalcher, Taysa Ribeiro; Borges, Rosivaldo S.; Coleman, Michael D.; Batista Júnior, João; Salgado, Claudio G.; Vieira, Jose Luiz F.; Romão, Pedro R. T.; Oliveira, Fabio R.; Monteiro, Marta Chagas

    2014-01-01

    This study aims to assess the oxidative stress in leprosy patients under multidrug therapy (MDT; dapsone, clofazimine and rifampicin), evaluating the nitric oxide (NO) concentration, catalase (CAT) and superoxide dismutase (SOD) activities, glutathione (GSH) levels, total antioxidant capacity, lipid peroxidation, and methemoglobin formation. For this, we analyzed 23 leprosy patients and 20 healthy individuals from the Amazon region, Brazil, aged between 20 and 45 years. Blood sampling enabled the evaluation of leprosy patients prior to starting multidrug therapy (called MDT 0) and until the third month of multidrug therapy (MDT 3). With regard to dapsone (DDS) plasma levels, we showed that there was no statistical difference in drug plasma levels between multibacillary (0.518±0.029 µg/mL) and paucibacillary (0.662±0.123 µg/mL) patients. The methemoglobin levels and numbers of Heinz bodies were significantly enhanced after the third MDT-supervised dose, but this treatment did not significantly change the lipid peroxidation and NO levels in these leprosy patients. In addition, CAT activity was significantly reduced in MDT-treated leprosy patients, while GSH content was increased in these patients. However, SOD and Trolox equivalent antioxidant capacity levels were similar in patients with and without treatment. These data suggest that MDT can reduce the activity of some antioxidant enzyme and influence ROS accumulation, which may induce hematological changes, such as methemoglobinemia in patients with leprosy. We also explored some redox mechanisms associated with DDS and its main oxidative metabolite DDS-NHOH and we explored the possible binding of DDS to the active site of CYP2C19 with the aid of molecular modeling software. PMID:24465659

  20. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt

    PubMed Central

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-01-01

    Background Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. Objectives The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. Methods A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Results Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Conclusions Multidrug resistance was significantly associated with MBL production in P. aeruginosa. Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates. PMID:28138370

  1. Carbapenem Susceptibility and Multidrug-Resistance in Pseudomonas aeruginosa Isolates in Egypt.

    PubMed

    Hashem, Hany; Hanora, Amro; Abdalla, Salah; Shawky, Alaa; Saad, Alaa

    2016-11-01

    Resistant Pseudomonas aeruginosa is a serious concern for antimicrobial therapy, as the common isolates exhibit variable grades of resistance, involving beta-lactamase enzymes, beside native defense mechanisms. The present study was designed to determine the occurrence of Metallo-β- Lactamases (MBL) and Amp C harboring P. aeruginosa isolates from Suez Canal university hospital in Ismailia, Egypt. A total of 147 P. aeruginosa isolates, recovered from 311 patients during a 10-month period, were collected between May 2013 and February 2014; the isolates were collected from urine, wound and sputum. Minimum inhibitory concentration (MIC) determined by agar dilution methods was ≥2 μg/mL for meropenem and imipenem. Identification of P. aeruginosa was confirmed using API 20NE. Metallo-β- Lactamases and Amp C were detected based on different phenotypic methods. Overall, 26.5% of P. aeruginosa isolates (39/147) were carbapenem resistant isolates. Furthermore, 64.1% (25/39) were MBL producers, these isolates were screened by the combined disc and disc diffusion methods to determine the ability of MBL production. Both MBL and Amp C harbored P. aeruginosa isolates were 28% (7/25). Sixty-four percent of P. aeruginosa isolates were multidrug resistant (MDR) (16/25). The sensitivity toward polymyxin, imipenem, norfloxacin, piperacillin-tazobactam and gentamicin was 99%, 91%, 88%, 82% and 78%, respectively. The resistance rate towards cefotaxime, ceftazidime, cefepime, aztreonam and meropenem was 98.6%, 86%, 71.4%, 34% and 30%, respectively. Multidrug resistance was significantly associated with MBL production in P. aeruginosa . Early detection of MBL-producing P. aeruginosa and hospital antibiotic policy prescription helps proper antimicrobial therapy and avoidance of dissemination of these multidrug resistance isolates.

  2. Novel function of N,N-bis(2-chloroethyl)docos-13-enamide for reversal of multidrug resistance in tongue cancer.

    PubMed

    Qin, Qing; Ma, Peng-Fei; Kuang, Xiao-Cong; Gao, Ming-Xing; Mo, De-Huan; Xia, Shuang; Jin, Ning; Xia, Jun-Jie; Qi, Zhong-Quan; Lin, Cui-Wu

    2013-12-05

    Multidrug resistance (MDR) is a key element in the failure of chemotherapies, and development of agents to overcome MDR is crucial to improving cancer treatments. The overexpression of glutathione-S-transferases (GSTs) is one of the major mechanisms of MDR. Because some agents used in traditional Chinese medicine have strong antitumor effects coupled with low toxicity; we investigated the ability of N,N-bis(2-chloroethyl)docos-13-enamide (compound J), the synthesized analog of a highly unsaturated fatty acid from Isatis tinctoria L., to reverse the MDR induced by adriamycin (ADM) in TCA8113/ADM cells. We found that compound J significantly increased the cytotoxicity of ADM in TCA8113/ADM cells, with a reversal fold of 2.461. Analysis of the mechanisms through which compound J reversed MDR indicated that compound J significantly decreased the activity of GSTs and enhanced the depletion of GSH in TCA8113/ADM cells, but did not affect the P-glycoprotein (P-gp) efflux. Taken together, our data suggested that compound J was an excellent candidate for reversing MDR in cancer therapy. © 2013 Published by Elsevier B.V.

  3. Development of Cefotaxime Impregnated Chitosan as Nano-antibiotics: De Novo Strategy to Combat Biofilm Forming Multi-drug Resistant Pathogens

    PubMed Central

    Jamil, Bushra; Habib, Huma; Abbasi, Shahid A.; Ihsan, Ayesha; Nasir, Habib; Imran, Muhammad

    2016-01-01

    Frequent incidents of antibiotic-resistant biofilm forming pathogens in community-associated and hospital-acquired infections have become a global concern owing to failure of conventional therapies. Nano-antibiotics (NABs) are de novo tools to overcome the multi-drug resistant mechanisms employed by the superbugs. Inhibition of biofilm formation is one of those strategies to curb multi drug resistance phenomenon. In the current study, the anti-biofilm and antibacterial potential of newly synthesized cefotaxime loaded chitosan based NABs have been investigated. Both bare and cefotaxime loaded NABs were prepared by ionotropic gelation method. They were found carrying positive zeta potential of more than +50 mV, indicating highly stable nano-dispersion. Moreover, microscopic studies revealed their size as less than 100 nm. NABs were tested against clinical isolates of multi drug resistant Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and methicillin resistant Staphylococcus aureus and wherein they demonstrated broad-spectrum anti-biofilm and anti-pathogenic activity. Thus, in vitro synergistic action of cephalosporin drugs and chitosan polymer at nano-scale in contrast to free antibiotics can be an improved broad-spectrum strategy to thwart resistance mechanisms in both Gram-positive and Gram-negative resistant pathogens. PMID:27047457

  4. Biodegradable mucus-penetrating nanoparticles composed of diblock copolymers of polyethylene glycol and poly(lactic-co-glycolic acid)

    PubMed Central

    Yu, Tao; Wang, Ying-Ying; Yang, Ming; Schneider, Craig; Zhong, Weixi; Pulicare, Sarah; Choi, Woo-Jin; Mert, Olcay; Fu, Jie; Lai, Samuel K.; Hanes, Justin

    2013-01-01

    Mucus secretions coating entry points to the human body that are not covered by skin efficiently trap and clear conventional drug carriers, limiting controlled drug delivery at mucosal surfaces. To overcome this challenge, we recently engineered nanoparticles that readily penetrate a variety of human mucus secretions, which we termed mucus-penetrating particles (MPP). Here, we report a new biodegradable MPP formulation based on diblock copolymers of poly(lactic-co-glycolic acid) and poly(ethylene glycol) (PLGA-PEG). PLGA-PEG nanoparticles prepared by a solvent diffusion method rapidly diffused through fresh, undiluted human cervicovaginal mucus (CVM) with an average speed only eightfold lower than their theoretical speed in water. In contrast, PLGA nanoparticles were slowed more than 12,000-fold in the same CVM secretions. Based on the measured diffusivities, as much as 75% of the PLGA-PEG nanoparticles are expected to penetrate a 10-μm-thick mucus layer within 30 min, whereas virtually no PLGA nanoparticles are expected to do so over the same duration. These results encourage further development of PLGA-PEG nanoparticles as mucus-penetrating drug carriers for improved drug and gene delivery to mucosal surfaces. PMID:24205449

  5. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer

    NASA Astrophysics Data System (ADS)

    Lizotte, P. H.; Wen, A. M.; Sheen, M. R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N. F.; Fiering, S.

    2016-03-01

    Nanotechnology has tremendous potential to contribute to cancer immunotherapy. The ‘in situ vaccination’ immunotherapy strategy directly manipulates identified tumours to overcome local tumour-mediated immunosuppression and subsequently stimulates systemic antitumour immunity to treat metastases. We show that inhalation of self-assembling virus-like nanoparticles from cowpea mosaic virus (CPMV) reduces established B16F10 lung melanoma and simultaneously generates potent systemic antitumour immunity against poorly immunogenic B16F10 in the skin. Full efficacy required Il-12, Ifn-γ, adaptive immunity and neutrophils. Inhaled CPMV nanoparticles were rapidly taken up by and activated neutrophils in the tumour microenvironment as an important part of the antitumour immune response. CPMV also exhibited clear treatment efficacy and systemic antitumour immunity in ovarian, colon, and breast tumour models in multiple anatomic locations. CPMV nanoparticles are stable, nontoxic, modifiable with drugs and antigens, and their nanomanufacture is highly scalable. These properties, combined with their inherent immunogenicity and demonstrated efficacy against a poorly immunogenic tumour, make CPMV an attractive and novel immunotherapy against metastatic cancer.

  6. Antibacterial and Antimycotic Activity of Cotton Fabrics, Impregnated with Silver and Binary Silver/Copper Nanoparticles

    NASA Astrophysics Data System (ADS)

    Eremenko, A. M.; Petrik, I. S.; Smirnova, N. P.; Rudenko, A. V.; Marikvas, Y. S.

    2016-01-01

    Effective method of obtaining of the bactericidal bandage materials by impregnation of cotton fabric by aqueous solutions of silver and copper salts followed by a certain regime of heat treatment is developed. The study of obtained materials by methods of optical spectroscopy, electron microscopy, and X-ray phase analysis showed the formation of crystalline silver nanoparticles (NPs) and bimetallic Ag/Cu composites with the corresponding surface plasmon resonance (SPR) bands in the absorption spectra. High antimicrobial and antimycotic properties of tissues with low concentrations of Ag and Ag/Cu nanoparticles (Ag/Cu NPs) (in the range 0.06-0.25 weight percent (wt%) for Ag and 0.015-0.13 wt% for Ag/Cu) is confirmed in experiments with a wide range of multidrug-resistant bacteria and fungi: Escherichia coli, Enterobacter aerogenes, Proteus mirabilis, Klebsiella pneumoniae, Candida albicans yeasts, and micromycetes . Textile materials with Ag NPs demonstrate high antibacterial activity, while fabrics doped with bimetallic composite Ag/Cu have pronounced antimycotic properties. Bactericidal and antifungal properties of the obtained materials do not change after a washing. Production of such materials is extremely fast, convenient, and cost-effective.

  7. PLGA/polymeric liposome for targeted drug and gene co-delivery.

    PubMed

    Wang, Hanjie; Zhao, Peiqi; Su, Wenya; Wang, Sheng; Liao, Zhenyu; Niu, Ruifang; Chang, Jin

    2010-11-01

    Chemotherapy is one of the most effective approaches to treat cancers in the clinic, but the problems, such as multidrug resistance (MDR), low bioavailability and toxicity, severely constrain the further application of chemotherapy. Our group recently reported that cationic PLGA/folate coated PEGlated polymeric liposome core-shell nanoparticles (PLGA/FPL NPs). It was self-assembled from a hydrophobic PLGA core and a hydrophilic folate coated PEGlated lipid shell for targeting co-delivery of drug and gene. Hydrophobic drugs can be incorporated into the core and the cationic shell of the drug-loaded nanoparticles can be used to bind DNA. The drug-loaded PLGA/FPL NPs/DNA complexes offer advantages to overcome these problems mentioned above, such as co-delivery of drugs and DNA to improving the chemosensitivity of cancer cells at a gene level, and targeting delivery of drug to the cancer tissue that enhance the bioavailability and reduce the toxicity. The experiment showed that nanoparticles have core-shell structure with nanosize, sustained drug release profile and good DNA-binding ability. Importantly, the core-shell nanoparticles achieve the possibility of co-delivering drugs and genes to the same cells with high gene transfection and drug delivery efficiency. Our data suggest that the PLGA/FPL NPs may be a useful drug and gene co-delivery system. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Polyacylated oligosaccharides from medicinal Mexican morning glory species as antibacterials and inhibitors of multidrug resistance in Staphylococcus aureus.

    PubMed

    Pereda-Miranda, Rogelio; Kaatz, Glenn W; Gibbons, Simon

    2006-03-01

    Twenty-two convolvulaceous oligosaccharides selected from the tricolorin (1-7), scammonin (8, 9), and orizabin (10-22) series were evaluated for activity against a panel of Staphylococcus aureus strains possessing or lacking specific efflux pumps. The minimum inhibitory concentrations (MIC values) for most of the amphipatic compounds ranged from 4 to 32 microg/mL against XU-212 (possessing the TetK multidrug efflux pump) and SA-1199B (overexpressing the NorA multidrug efflux pump), compared with 64 and 0.25 microg/mL, respectively, for tetracycline. This activity was shown to be bactericidal. Two microbiologically inactive members of the orizabin series (10, 20) increased norfloxacin susceptibility of strain SA-1199B. At low concentrations, compound 10 was a more potent inhibitor of multidrug pump-mediated EtBr efflux than reserpine. The wide range of antimicrobial activity displayed by these compounds is an example of synergy between related components occurring in the same medicinal crude drug extract, i.e., microbiologically inactive components disabling a resistance mechanism, potentiating the antibiotic properties of the active substances. These results provide an insight into the antimicrobial potential of these complex macrocyclic lactones and open the possibility of using these compounds as starting points for the development of potent inhibitors of S. aureus multidrug efflux pumps.

  9. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes

    NASA Astrophysics Data System (ADS)

    Wibroe, Peter Popp; Anselmo, Aaron C.; Nilsson, Per H.; Sarode, Apoorva; Gupta, Vivek; Urbanics, Rudolf; Szebeni, Janos; Hunter, Alan Christy; Mitragotri, Samir; Mollnes, Tom Eirik; Moghimi, Seyed Moein

    2017-07-01

    Intravenously injected nanopharmaceuticals, including PEGylated nanoparticles, induce adverse cardiopulmonary reactions in sensitive human subjects, and these reactions are highly reproducible in pigs. Although the underlying mechanisms are poorly understood, roles for both the complement system and reactive macrophages have been implicated. Here, we show the dominance and importance of robust pulmonary intravascular macrophage clearance of nanoparticles in mediating adverse cardiopulmonary distress in pigs irrespective of complement activation. Specifically, we show that delaying particle recognition by macrophages within the first few minutes of injection overcomes adverse reactions in pigs using two independent approaches. First, we changed the particle geometry from a spherical shape (which triggers cardiopulmonary distress) to either rod- or disk-shape morphology. Second, we physically adhered spheres to the surface of erythrocytes. These strategies, which are distinct from commonly leveraged stealth engineering approaches such as nanoparticle surface functionalization with poly(ethylene glycol) and/or immunological modulators, prevent robust macrophage recognition, resulting in the reduction or mitigation of adverse cardiopulmonary distress associated with nanopharmaceutical administration.

  10. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    PubMed Central

    Yang, Xiaoqian; lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-01-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer. PMID:25687880

  11. MDR1 siRNA loaded hyaluronic acid-based CD44 targeted nanoparticle systems circumvent paclitaxel resistance in ovarian cancer

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqian; Lyer, Arun K.; Singh, Amit; Choy, Edwin; Hornicek, Francis J.; Amiji, Mansoor M.; Duan, Zhenfeng

    2015-02-01

    Development of multidrug resistance (MDR) is an almost universal phenomenon in patients with ovarian cancer, and this severely limits the ultimate success of chemotherapy in the clinic. Overexpression of the MDR1 gene and corresponding P-glycoprotein (Pgp) is one of the best known MDR mechanisms. MDR1 siRNA based strategies were proposed to circumvent MDR, however, systemic, safe, and effective targeted delivery is still a major challenge. Cluster of differentiation 44 (CD44) targeted hyaluronic acid (HA) based nanoparticle has been shown to successfully deliver chemotherapy agents or siRNAs into tumor cells. The goal of this study is to evaluate the ability of HA-PEI/HA-PEG to deliver MDR1 siRNA and the efficacy of the combination of HA-PEI/HA-PEG/MDR1 siRNA with paclitaxel to suppress growth of ovarian cancer. We observed that HA-PEI/HA-PEG nanoparticles can efficiently deliver MDR1 siRNA into MDR ovarian cancer cells, resulting in down-regulation of MDR1 and Pgp expression. Administration of HA-PEI/HA-PEG/MDR1 siRNA nanoparticles followed by paclitaxel treatment induced a significant inhibitory effect on the tumor growth, decreased Pgp expression and increased apoptosis in MDR ovarian cancer mice model. Our findings suggest that CD44 targeted HA-PEI/HA-PEG/MDR1 siRNA nanoparticles can serve as a therapeutic tool with great potentials to circumvent MDR in ovarian cancer.

  12. Antiproliferative effect of ASC-J9 delivered by PLGA nanoparticles against estrogen-dependent breast cancer cells.

    PubMed

    Verderio, Paolo; Pandolfi, Laura; Mazzucchelli, Serena; Marinozzi, Maria Rosaria; Vanna, Renzo; Gramatica, Furio; Corsi, Fabio; Colombo, Miriam; Morasso, Carlo; Prosperi, Davide

    2014-08-04

    Among polymeric nanoparticles designed for cancer therapy, PLGA nanoparticles have become one of the most popular polymeric devices for chemotherapeutic-based nanoformulations against several kinds of malignant diseases. Promising properties, including long-circulation time, enhanced tumor localization, interference with "multidrug" resistance effects, and environmental biodegradability, often result in an improvement of the drug bioavailability and effectiveness. In the present work, we have synthesized 1,7-bis(3,4-dimethoxyphenyl)-5-hydroxyhepta-1,4,6-trien-3-one (ASC-J9) and developed uniform ASC-J9-loaded PLGA nanoparticles of about 120 nm, which have been prepared by a single-emulsion process. Structural and morphological features of the nanoformulation were analyzed, followed by an accurate evaluation of the in vitro drug release kinetics, which exhibited Fickian law diffusion over 10 days. The intracellular degradation of ASC-J9-bearing nanoparticles within estrogen-dependent MCF-7 breast cancer cells was correlated to a time- and dose-dependent activity of the released drug. A cellular growth inhibition associated with a specific cell cycle G2/M blocking effect caused by ASC-J9 release inside the cytosol allowed us to put forward a hypothesis on the action mechanism of this nanosystem, which led to the final cell apoptosis. Our study was accomplished using Annexin V-based cell death analysis, MTT assessment of proliferation, radical scavenging activity, and intracellular ROS evaluation. Moreover, the intracellular localization of nanoformulated ASC-J9 was confirmed by a Raman optical imaging experiment designed ad hoc. PLGA nanoparticles and ASC-J9 proved also to be safe for a healthy embryo fibroblast cell line (3T3-L1), suggesting a possible clinical translation of this potential nanochemotherapeutic to expand the inherently poor bioavailability of hydrophobic ASC-J9 that could be proposed for the treatment of malignant breast cancer.

  13. The delivery of poly(lactic acid)-poly(ethylene glycol) nanoparticles loaded with non-toxic drug to overcome drug resistance for the treatment of neuroblastoma

    NASA Astrophysics Data System (ADS)

    Dhulekar, Jhilmil

    Neuroblastoma is a rare cancer of the sympathetic nervous system. A neuroblastoma tumor develops in the nerve tissue and is diagnosed in infants and children. Approximately 10.2 per million children under the age of 15 are affected in the United States and is slightly more common in boys. Neuroblastoma constitutes 6% of all childhood cancers and has a long-term survival rate of only 15%. There are approximately 700 new cases of neuroblastoma each year in the United States. With such a low rate of survival, the development of more effective treatment methods is necessary. A number of therapies are available for the treatment of these tumors; however, clinicians and their patients face the challenges of systemic side effects and drug resistance of the tumor cells. The application of nanoparticles has the potential to provide a safer and more effective method of delivery drugs to tumors. The advantage of using nanoparticles for drug delivery is the ability to specifically or passively target tumors while reducing the harmful side effects of chemotherapeutics. Drug delivery via nanoparticles can also allow for lower dosage requirements with controlled release of the drugs, which can further reduce systemic toxicity. The aim of this research was to develop a polymeric nanoparticle drug delivery system for the treatment of high-risk neuroblastoma. Nanoparticles composed of a poly(lactic acid)-poly(ethylene glycol) block copolymer were formulated to deliver a non-toxic drug in combination with Temozolomide, a commonly used chemotherapeutic drug for the treatment of neuroblastoma. The non-toxic drug acts as an inhibitor to the DNA-repair protein present in neuroblastoma cells that is responsible for inducing drug resistance in the cells, which would potentially allow for enhanced temozolomide activity. A variety of studies were completed to prove the nanoparticles' low toxicity, loading abilities, and uptake into cells. Additionally, studies were performed to determine the

  14. Repurposing ebselen for treatment of multidrug-resistant staphylococcal infections.

    PubMed

    Thangamani, Shankar; Younis, Waleed; Seleem, Mohamed N

    2015-06-26

    Novel antimicrobials and new approaches to developing them are urgently needed. Repurposing already-approved drugs with well-characterized toxicology and pharmacology is a novel way to reduce the time, cost, and risk associated with antibiotic innovation. Ebselen, an organoselenium compound, is known to be clinically safe and has a well-known pharmacology profile. It has shown potent bactericidal activity against multidrug-resistant clinical isolates of staphylococcus aureus, including methicillin- and vancomycin-resistant S. aureus (MRSA and VRSA). We demonstrated that ebselen acts through inhibition of protein synthesis and subsequently inhibited toxin production in MRSA. Additionally, ebselen was remarkably active and significantly reduced established staphylococcal biofilms. The therapeutic efficacy of ebselen was evaluated in a mouse model of staphylococcal skin infections. Ebselen 1% and 2% significantly reduced the bacterial load and the levels of the pro-inflammatory cytokines tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and monocyte chemo attractant protein-1 (MCP-1) in MRSA USA300 skin lesions. Furthermore, it acts synergistically with traditional antimicrobials. This study provides evidence that ebselen has great potential for topical treatment of MRSA skin infections and lays the foundation for further analysis and development of ebselen as a potential treatment for multidrug-resistant staphylococcal infections.

  15. Purification of a Multidrug Resistance Transporter for Crystallization Studies

    PubMed Central

    Alegre, Kamela O.; Law, Christopher J.

    2015-01-01

    Crystallization of integral membrane proteins is a challenging field and much effort has been invested in optimizing the overexpression and purification steps needed to obtain milligram amounts of pure, stable, monodisperse protein sample for crystallography studies. Our current work involves the structural and functional characterization of the Escherichia coli multidrug resistance transporter MdtM, a member of the major facilitator superfamily (MFS). Here we present a protocol for isolation of MdtM to increase yields of recombinant protein to the milligram quantities necessary for pursuit of structural studies using X-ray crystallography. Purification of MdtM was enhanced by introduction of an elongated His-tag, followed by identification and subsequent removal of chaperonin contamination. For crystallization trials of MdtM, detergent screening using size exclusion chromatography determined that decylmaltoside (DM) was the shortest-chain detergent that maintained the protein in a stable, monodispersed state. Crystallization trials of MdtM performed using the hanging-drop diffusion method with commercially available crystallization screens yielded 3D protein crystals under several different conditions. We contend that the purification protocol described here may be employed for production of high-quality protein of other multidrug efflux members of the MFS, a ubiquitous, physiologically and clinically important class of membrane transporters. PMID:27025617

  16. Multidrug-resistant gram-negative bacterial infections in a teaching hospital in Ghana.

    PubMed

    Agyepong, Nicholas; Govinden, Usha; Owusu-Ofori, Alex; Essack, Sabiha Yusuf

    2018-01-01

    Multidrug-resistant Gram-negative bacteria have emerged as major clinical and therapeutic dilemma in hospitals in Ghana.To describe the prevalence and profile of infections attributable to multidrug-resistant Gram-negative bacteria among patients at the Komfo Anokye Teaching Hospital in the Ashanti region of Ghana. Bacterial cultures were randomly selected from the microbiology laboratory from February to August, 2015. Bacterial identification and minimum inhibitory concentrations were conducted using standard microbiological techniques and the Vitek-2 automated system. Patient information was retrieved from the hospital data. Of the 200 isolates, consisting of K. pneumoniae , A. baumannii , P. aeruginosa , Enterobacter spp. , E. coli , Yersinia spp. , Proteus mirabilis , Pasteurella spp., Chromobacterium violaceum, Salmomella enterica , Vibrio spp. , Citrobacter koseri , Pantoea spp. , Serratia spp. , Providencia rettgeri Burkholderia cepacia , Aeromonas spp. , Cadecea lapagei and Sphingomonas paucimobilis , 101 (50.5%) and 99 (49.5%) recovered from male and female patients respectively The largest proportion of patients were from age-group ≥60 years (24.5%) followed by < 10 years (24.0%) and least 10-19 years (9.5%) with a mean patient age of 35.95 ± 27.11 (0.2-91) years. The decreasing order of specimen source was urine 97 (48.5%), wound swabs 47 (23.5%), sputum 22 (11.0%) bronchial lavage, nasal and pleural swabs 1 (0.50%). Urinary tract infection was diagnosed in 34.5% of patients, sepsis in 14.5%, wound infections (surgical and chronic wounds) in 11.0%, pulmonary tuberculosis in 9.0% and appendicitis, bacteremia and cystitis in 0.50%. The isolates showed high resistance to ampicillin (94.4%), trimethoprim/sulfamethoxazole (84.5%), cefuroxime (79.0%) and cefotaxime (71.3%) but low resistance to ertapenem (1.5%), meropenem (3%) and amikacin (11%). The average multi-drug resistance was 89.5%, and ranged from 53.8% in Enterobacter spp. to 100.0% in

  17. Efficient nanoparticle mediated sustained RNA interference in human primary endothelial cells

    NASA Astrophysics Data System (ADS)

    Mukerjee, Anindita; Shankardas, Jwalitha; Ranjan, Amalendu P.; Vishwanatha, Jamboor K.

    2011-11-01

    Endothelium forms an important target for drug and/or gene therapy since endothelial cells play critical roles in angiogenesis and vascular functions and are associated with various pathophysiological conditions. RNA mediated gene silencing presents a new therapeutic approach to overcome many such diseases, but the major challenge of such an approach is to ensure minimal toxicity and effective transfection efficiency of short hairpin RNA (shRNA) to primary endothelial cells. In the present study, we formulated shAnnexin A2 loaded poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles which produced intracellular small interfering RNA (siRNA) against Annexin A2 and brought about the downregulation of Annexin A2. The per cent encapsulation of the plasmid within the nanoparticle was found to be 57.65%. We compared our nanoparticle based transfections with Lipofectamine mediated transfection, and our studies show that nanoparticle based transfection efficiency is very high (~97%) and is more sustained compared to conventional Lipofectamine mediated transfections in primary retinal microvascular endothelial cells and human cancer cell lines. Our findings also show that the shAnnexin A2 loaded PLGA nanoparticles had minimal toxicity with almost 95% of cells being viable 24 h post-transfection while Lipofectamine based transfections resulted in only 30% viable cells. Therefore, PLGA nanoparticle based transfection may be used for efficient siRNA transfection to human primary endothelial and cancer cells. This may serve as a potential adjuvant treatment option for diseases such as diabetic retinopathy, retinopathy of prematurity and age related macular degeneration besides various cancers.

  18. Tri-membrane nanoparticles produced by combining liposome fusion and a novel patchwork of bicelles to overcome endosomal and nuclear membrane barriers to cargo delivery.

    PubMed

    Yamada, Asako; Mitsueda, Asako; Hasan, Mahadi; Ueda, Miho; Hama, Susumu; Warashina, Shota; Nakamura, Takashi; Harashima, Hideyoshi; Kogure, Kentaro

    2016-03-01

    Membrane fusion is a rational strategy for crossing intracellular membranes that present barriers to liposomal nanocarrier-mediated delivery of plasmid DNA into the nucleus of non-dividing cells, such as dendritic cells. Based on this strategy, we previously developed nanocarriers consisting of a nucleic acid core particle coated with four lipid membranes [Akita, et al., Biomaterials, 2009, 30, 2940-2949]. However, including the endosomal membrane and two nuclear membranes, cells possess three intracellular membranous barriers. Thus, after entering the nucleus, nanoparticles coated with four membranes would still have one lipid membrane remaining, and could impede cargo delivery. Until now, coating a core particle with an odd number of lipid membranes was challenging. To produce nanocarriers with an odd number of lipid membranes, we developed a novel coating method involving lipid nano-discs, also known as bicelles, as a material for packaging DNA in a carrier with an odd number of lipid membranes. In this procedure, bicelles fuse to form an outer coating that resembles a patchwork quilt, which allows the preparation of nanoparticles coated with only three lipid membranes. Moreover, the transfection activity of dendritic cells with these three-membrane nanoparticles was higher than that for nanoparticles coated with four lipid membranes. In summary, we developed novel nanoparticles coated with an odd number of lipid membranes using the novel "patchwork-packaging method" to deliver plasmid DNA into the nucleus via membrane fusion.

  19. Pure drug nanoparticles in tablets: what are the dissolution limitations?

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Ogawa, Keiko; Cutler, David J.; Chan, Hak-Kim; Raper, Judy A.; Ye, Lin; Yun, Jimmy

    2010-06-01

    There has been increasing interests for drug companies to incorporate drug nanoparticles into their existing formulations. However, technical knowledge in this area is still in its infancy and more study needs to be done to stimulate growth in this fledging field. There is a need to scrutinize the performance of pure drug nanoparticles in tablets, particularly relating formulation variables to their dissolution performance. Application of the pure form, synthesized without the use of surfactants or stabilizers, is often preferred to maximize drug loading and also to minimize toxicity. Cefuroxime axetil, a poorly water-soluble cephalosporin antibiotic, was used as the model drug in the formulation development. Drug release rate, tablet disintegration time, tensile strength and energy of failure were predominantly influenced by the amount of super-disintegrant, amount of surfactant, compression force and diluent species, respectively. The compression rate had minimal impact on the responses. The main hurdle confronting the effective use of pure drug nanoparticles in tablets is the difficulty in controlling aggregation in solution, which could potentially be aggravated by the tabletting process. Through the use of elevated levels of surfactants (8 w/w% sodium dodecyl sulphate), drug release from the nanoparticle preparation was enhanced from 58.0 ± 2.7% to 72.3 ± 0.7% in 10 min. Hence, it is recommended that physical formulations for pure drug nanoparticles be focused on the particle de-aggregation step in solution, if much higher rates are to be desired. In conclusion, even though pure drug nanoparticles could be easily synthesized, limitations from aggregation may need to be overcome, before successful application in tablets can be fully realized.

  20. Outbreak of mastitis in sheep caused by multi-drug resistant Enterococcus faecalis in Sardinia, Italy.

    PubMed

    Sanciu, G; Marogna, G; Paglietti, B; Cappuccinelli, P; Leori, G; Rappelli, P

    2013-03-01

    An outbreak of infective mastitis due to Enterococcus faecalis occurred in an intensive sheep farm in north Sardinia (Italy). E. faecalis, which is only rarely isolated from sheep milk, was unexpectedly found in 22·3% of positive samples at microbiological examination. Forty-five out of the 48 E. faecalis isolates showed the same multi-drug resistance pattern (cloxacillin, streptomycin, kanamycin, clindamycin, oxytetracycline). E. faecalis isolates were analysed by pulsed-field gel electrophoresis, and all 45 multi-drug resistant strains showed an indistinguishable macrorestiction profile, indicating their clonal origin. To our knowledge, this is the first report of an outbreak of mastitis in sheep caused by E. faecalis.

  1. Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy

    NASA Astrophysics Data System (ADS)

    Armijo, Leisha M.; Kopciuch, Michael; Olszá½¹wka, Zuzia; Wawrzyniec, Stephen J.; Rivera, Antonio C.; Plumley, John B.; Cook, Nathaniel C.; Brandt, Yekaterina I.; Huber, Dale L.; Smolyakov, Gennady A.; Adolphi, Natalie L.; Smyth, Hugh D. C.; Osiński, Marek

    2014-03-01

    Pseudomonas aeruginosa bacterium is a deadly pathogen, leading to respiratory failure in cystic fibrosis and nosocomial pneumonia, and responsible for high mortality rates in these diseases. P. aeruginosa has inherent as well as acquired resistance to many drug classes. In this paper, we investigate the effectiveness of two classes; aminoglycoside (tobramycin) and fluoroquinolone (ciprofloxacin) administered alone, as well as conjugated to iron oxide (magnetite) nanoparticles. P. aeruginosa possesses the ability to quickly alter its genetics to impart resistance to the presence of new, unrecognized treatments. As a response to this impending public health threat, we have synthesized and characterized magnetite nanoparticles capped with biodegradable short-chain carboxylic acid derivatives conjugated to common antibiotic drugs. The functionalized nanoparticles may carry the drug past the mucus and biofilm layers to target the bacterial colonies via magnetic gradient-guided transport. Additionally, the magnetic ferrofluid may be used under application of an oscillating magnetic field to raise the local temperature, causing biofilm disruption, slowed growth, and mechanical disruption. These abilities of the ferrofluid would also treat multi-drug resistant strains, which appear to be increasing in many nosocomial as well as acquired opportunistic infections. In this in vitro model, we show that the iron oxide alone can also inhibit bacterial growth and biofilm formation.

  2. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids.

    PubMed

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-11-01

    Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and delta 9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (-)-11-nor-9-carboxy-delta 9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates.

  3. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    PubMed

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. First Genome Sequence of a Mexican Multidrug-Resistant Acinetobacter baumannii Isolate

    PubMed Central

    Graña-Miraglia, Lucía; Lozano, Luis; Castro-Jaimes, Semiramis; Cevallos, Miguel A.; Volkow, Patricia

    2016-01-01

    Acinetobacter baumannii has emerged as an important nosocomial pathogen worldwide. Here, we present the draft genome of the first multidrug-resistant A. baumannii isolate, sampled from a tertiary hospital in Mexico City. This genome will provide a starting point for studying the genomic diversity of this species in Mexico. PMID:27013043

  5. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.

    PubMed

    Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume

    2015-10-01

    Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).

  6. Enhanced and Extended Anti-Hypertensive Effect of VP5 Nanoparticles

    PubMed Central

    Yu, Ting; Zhao, Shengnan; Li, Ziqiang; Wang, Yi; Xu, Bei; Fang, Dailong; Wang, Fazhan; Zhang, Zhi; He, Lili; Song, Xiangrong; Yang, Jian

    2016-01-01

    Hypertension has become a significant global public health concern and is also one of the most common risk factors of cardiovascular disease. Recent studies have shown the promising result of peptides inhibiting angiotensin converting enzyme (ACE) in lowering the blood pressure in both animal models and humans. However, the oral bioavailability and continuous antihypertensive effectiveness require further optimization. Novel nanoparticle-based drug delivery systems are helpful to overcome these barriers. Therefore, a poly-(lactic-co-glycolic) acid nanoparticle (PLGANPs) oral delivery system, of the antihypertensive small peptides Val-Leu-Pro-Val-Pro (VLPVP, VP5) model, was developed in this study and its antihypertensive effect was investigated in spontaneously hypertensive rats (SHRs) for the first time. The obtained VP5 nanoparticles (VP5-NPs) showed a small particle size of 223.7 ± 2.3 nm and high entrapment efficiency (EE%) of 87.37% ± 0.92%. Transmission electronic microscopy (TEM) analysis showed that the nanoparticles were spherical and homogeneous. The optimal preparation of VP5-NPs exhibited sustained release of VP5 in vitro and a 96 h long-term antihypertensive effect with enhanced efficacy in vivo. This study illustrated that PLGANPs might be an optimal formulation for oral delivery of antihypertensive small peptides and VP5-NPs might be worthy of further development and use as a potential therapeutic strategy for hypertension in the future. PMID:27898022

  7. Experimental Design for Multi-drug Combination Studies Using Signaling Networks

    PubMed Central

    Huang, Hengzhen; Fang, Hong-Bin; Tan, Ming T.

    2017-01-01

    Summary Combinations of multiple drugs are an important approach to maximize the chance for therapeutic success by inhibiting multiple pathways/targets. Analytic methods for studying drug combinations have received increasing attention because major advances in biomedical research have made available large number of potential agents for testing. The preclinical experiment on multi-drug combinations plays a key role in (especially cancer) drug development because of the complex nature of the disease, the need to reduce development time and costs. Despite recent progresses in statistical methods for assessing drug interaction, there is an acute lack of methods for designing experiments on multi-drug combinations. The number of combinations grows exponentially with the number of drugs and dose-levels and it quickly precludes laboratory testing. Utilizing experimental dose-response data of single drugs and a few combinations along with pathway/network information to obtain an estimate of the functional structure of the dose-response relationship in silico, we propose an optimal design that allows exploration of the dose-effect surface with the smallest possible sample size in this paper. The simulation studies show our proposed methods perform well. PMID:28960231

  8. Multidrug-resistant organisms, wounds and topical antimicrobial protection.

    PubMed

    Bowler, Philip G; Welsby, Sarah; Towers, Victoria; Booth, Rebecca; Hogarth, Andrea; Rowlands, Victoria; Joseph, Alexis; Jones, Samantha A

    2012-08-01

    Multidrug-resistant organisms (MDROs) are increasingly implicated in both acute and chronic wound infections. The limited therapeutic options are further compromised by the fact that wound bacteria often co-exist within a biofilm community which enhances bacterial tolerance to antibiotics. As a consequence, topical antiseptics may be an important consideration for minimising the opportunity for wound infections involving MDROs. The objective of this research was to investigate the antimicrobial activity of a silver-containing gelling fibre dressing against a variety of MDROs in free-living and biofilm states, using stringent in vitro models designed to simulate a variety of wound conditions. MDROs included Acinetobacter baumannii, community-associated methicillin-resistant Staphylococcus aureus, and extended-spectrum beta-lactamase-producing bacteria. Clostridium difficile was also included in the study because it carries many of the characteristics seen in MDROs and evidence of multidrug resistance is emerging. Sustained in vitro antimicrobial activity of the silver-containing dressing was shown against 10 MDROs in a simulated wound fluid over 7 days, and inhibitory and bactericidal effects against both free-living and biofilm phenotypes were also consistently shown in simulated colonised wound surface models. The in vitro data support consideration of the silver-containing gelling fibre dressing as part of a protocol of care in the management of wounds colonised or infected with MDROs. © 2012 The Authors. International Wound Journal © 2012 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  9. Multidrug Efflux Pumps in Staphylococcus aureus: an Update.

    PubMed

    Costa, Sofia Santos; Viveiros, Miguel; Amaral, Leonard; Couto, Isabel

    2013-01-01

    The emergence of infections caused by multi- or pan-resistant bacteria in the hospital or in the community settings is an increasing health concern. Albeit there is no single resistance mechanism behind multiresistance, multidrug efflux pumps, proteins that cells use to detoxify from noxious compounds, seem to play a key role in the emergence of these multidrug resistant (MDR) bacteria. During the last decades, experimental data has established their contribution to low level resistance to antimicrobials in bacteria and their potential role in the appearance of MDR phenotypes, by the extrusion of multiple, unrelated compounds. Recent studies suggest that efflux pumps may be used by the cell as a first-line defense mechanism, avoiding the drug to reach lethal concentrations, until a stable, more efficient alteration occurs, that allows survival in the presence of that agent. In this paper we review the current knowledge on MDR efflux pumps and their intricate regulatory network in Staphylococcus aureus, a major pathogen, responsible from mild to life-threatening infections. Particular emphasis will be given to the potential role that S. aureus MDR efflux pumps, either chromosomal or plasmid-encoded, have on resistance towards different antimicrobial agents and on the selection of drug - resistant strains. We will also discuss the many questions that still remain on the role of each specific efflux pump and the need to establish appropriate methodological approaches to address all these questions.

  10. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    PubMed

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Foam, a promising vehicle to deliver nanoparticles for vadose zone remediation.

    PubMed

    Shen, Xin; Zhao, Lin; Ding, Yuanzhao; Liu, Bo; Zeng, Hui; Zhong, Lirong; Li, Xiqing

    2011-02-28

    Foam delivery of remedial amendments for in situ immobilization of deep vadose zone contaminants can overcome the intrinsic problems associated with solution-based delivery, such as preferential flow and contaminant mobilization. In this work, the feasibility of using foam to deliver nanoparticles in unsaturated porous media was investigated. Carboxyl-modified polystyrene latex microspheres were used as surrogates for nanoparticles of remediation purposes. Foams generated from the solutions of six commonly available surfactants all had excellent abilities to carry the microspheres. The presence of the microspheres did not reduce the stabilities of the foams. When microsphere-laden foam was injected through the unsaturated columns, the fractions of microspheres exiting the column were much higher than that when the microsphere water suspensions were injected through the columns. The enhanced microsphere transport implies that foam delivery could significantly increase the radius of influence of injected nanoparticles of remediation purposes. Reduced tension at air-water interfaces by the surfactant and increased driving forces imparted on the microspheres at the interfaces by the flowing foam bubbles may have both contributed to the enhanced transport. Preliminary tests also demonstrated that foam can carry significant fractions of zero valent iron nanoparticles at concentrations relevant to field remediation conditions (up to 5.3 g L(-1)). As such, this study demonstrates that surfactant foam is potentially a promising vehicle to deliver nanoparticles for vadose zone remediation. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Light-Emitting Photon-Upconversion Nanoparticles in the Generation of Transdermal Reactive-Oxygen Species.

    PubMed

    Prieto, Martin; Rwei, Alina Y; Alejo, Teresa; Wei, Tuo; Lopez-Franco, Maria Teresa; Mendoza, Gracia; Sebastian, Victor; Kohane, Daniel S; Arruebo, Manuel

    2017-12-06

    Common photosensitizers used in photodynamic therapy do not penetrate the skin effectively. In addition, the visible blue and red lights used to excite such photosensitizers have shallow penetration depths through tissue. To overcome these limitations, we have synthesized ultraviolet- and visible-light-emitting, energy-transfer-based upconversion nanoparticles and coencapsulated them inside PLGA-PEG (methoxy poly(ethylene glycol)-b-poly(lactic-co-glycolic acid)) nanoparticles with the photosensitizer protoporphyrin IX. Nd 3+ has been introduced as a sensitizer in the upconversion nanostructure to allow its excitation at 808 nm. The subcytotoxic doses of the hybrid nanoparticles have been evaluated on different cell lines (i.e., fibroblasts, HaCaT, THP-1 monocytic cell line, U251MG (glioblastoma cell line), and mMSCs (murine mesenchymal stem cells). Upon NIR (near infrared)-light excitation, the upconversion nanoparticles emitted UV and VIS light, which consequently activated the generation of reactive-oxygen species (ROS). In addition, after irradiating at 808 nm, the resulting hybrid nanoparticles containing both upconversion nanoparticles and protoporphyrin IX generated 3.4 times more ROS than PLGA-PEG nanoparticles containing just the same dose of protoporphyrin IX. Their photodynamic effect was also assayed on different cell cultures, demonstrating their efficacy in selectively killing treated and irradiated cells. Compared to the topical application of the free photosensitizer, enhanced skin permeation and penetration were observed for the nanoparticulate formulation, using an ex vivo human-skin-permeation experiment. Whereas free protoporphyrin IX remained located at the outer layer of the skin, nanoparticle-encapsulated protoporphyrin IX was able to penetrate through the epidermal layer slightly into the dermis.

  13. The importance of microfluidics for the preparation of nanoparticles as advanced drug delivery systems.

    PubMed

    Martins, João Pedro; Torrieri, Giulia; Santos, Hélder A

    2018-05-01

    Nanoparticles are anticipated to overcome persistent challenges in efficient drug delivery, but the limitations associated with conventional methods of preparation are resulting in slow translation from research to clinical applications. Due to their enormous potential, microfluidic technologies have emerged as an advanced approach for the development of drug delivery systems with well-defined physicochemical characteristics and in a reproducible manner. Areas covered: This review provides an overview of microfluidic devices and materials used for their manufacturing, together with the flow patterns and regimes commonly used for nanoparticle preparation. Additionally, the different geometries used in droplet microfluidics are reviewed, with particular attention to the co-flow geometry used for the production of nanoparticles. Finally, this review summarizes the main and most recent nanoparticulate systems prepared using microfluidics, including drug nanosuspensions, polymeric, lipid, structured, and theranostic nanoparticles. Expert opinion: The production of nanoparticles at industrial scale is still a challenge, but the microfluidic technologies bring exciting opportunities to develop drug delivery systems that can be engineered in an easy, cost-effective and reproducible manner. As a highly interdisciplinary research field, more efforts and general acceptance are needed to allow for the translation of nanoparticulate drug delivery systems from academic research to the clinical practice.

  14. Structures of BmrR-Drug Complexes Reveal a Rigid Multidrug Binding Pocket And Transcription Activation Through Tyrosine Expulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newberry, K.J.; Huffman, J.L.; Miller, M.C.

    2009-05-22

    BmrR is a member of the MerR family and a multidrug binding transcription factor that up-regulates the expression of the bmr multidrug efflux transporter gene in response to myriad lipophilic cationic compounds. The structural mechanism by which BmrR binds these chemically and structurally different drugs and subsequently activates transcription is poorly understood. Here, we describe the crystal structures of BmrR bound to rhodamine 6G (R6G) or berberine (Ber) and cognate DNA. These structures reveal each drug stacks against multiple aromatic residues with their positive charges most proximal to the carboxylate group of Glu-253 and that, unlike other multidrug binding pockets,more » that of BmrR is rigid. Substitution of Glu-253 with either alanine (E253A) or glutamine (E253Q) results in unpredictable binding affinities for R6G, Ber, and tetraphenylphosphonium. Moreover, these drug binding studies reveal that the negative charge of Glu-253 is not important for high affinity binding to Ber and tetraphenylphosphonium but plays a more significant, but unpredictable, role in R6G binding. In vitro transcription data show that E253A and E253Q are constitutively active, and structures of the drug-free E253A-DNA and E253Q-DNA complexes support a transcription activation mechanism requiring the expulsion of Tyr-152 from the multidrug binding pocket. In sum, these data delineate the mechanism by which BmrR binds lipophilic, monovalent cationic compounds and suggest the importance of the redundant negative electrostatic nature of this rigid drug binding pocket that can be used to discriminate against molecules that are not substrates of the Bmr multidrug efflux pump.« less

  15. Self-Assembled Array of Tethered Manganese Oxide Nanoparticles for the Next Generation of Energy Storage

    PubMed Central

    Stevens, Tyler E.; Pearce, Charles J.; Whitten, Caleah N.; Grant, Richard P.; Monson, Todd C.

    2017-01-01

    Many challenges must be overcome in order to create reliable electrochemical energy storage devices with not only high energy but also high power densities. Gaps exist in both battery and supercapacitor technologies, with neither one satisfying the need for both large power and energy densities in a single device. To begin addressing these challenges (and others), we report a process to create a self-assembled array of electrochemically active nanoparticles bound directly to a current collector using extremely short (2 nm or less) conductive tethers. The tethered array of nanoparticles, MnO in this case, bound directly to a gold current collector via short conducting linkages eliminates the need for fillers, resulting in a material which achieves 99.9% active material by mass (excluding the current collector). This strategy is expected to be both scalable as well as effective for alternative tethers and metal oxide nanoparticles. PMID:28287183

  16. Microbial glycolipoprotein-capped silver nanoparticles as emerging antibacterial agents against cholera.

    PubMed

    Gahlawat, Geeta; Shikha, Sristy; Chaddha, Baldev Singh; Chaudhuri, Saumya Ray; Mayilraj, Shanmugam; Choudhury, Anirban Roy

    2016-02-01

    With the increased number of cholera outbreaks and emergence of multidrug resistance in Vibrio cholerae strains it has become necessary for the scientific community to devise and develop novel therapeutic approaches against cholera. Recent studies have indicated plausibility of therapeutic application of metal nano-materials. Among these, silver nanoparticles (AgNPs) have emerged as a potential antimicrobial agent to combat infectious diseases. At present nanoparticles are mostly produced using physical or chemical techniques which are toxic and hazardous. Thus exploitation of microbial systems could be a green eco-friendly approach for the synthesis of nanoparticles having similar or even better antimicrobial activity and biocompatibility. Hence, it would be worth to explore the possibility of utilization of microbial silver nanoparticles and their conjugates as potential novel therapeutic agent against infectious diseases like cholera. The present study attempted utilization of Ochrobactrum rhizosphaerae for the production of AgNPs and focused on investigating their role as antimicrobial agents against cholera. Later the exopolymer, purified from the culture supernatant, was used for the synthesis of spherical shaped AgNPs of around 10 nm size. Further the exopolymer was characterized as glycolipoprotein (GLP). Antibacterial activity of the novel GLP-AgNPs conjugate was evaluated by minimum inhibitory concentration, XTT reduction assay, scanning electron microscopy (SEM) and growth curve analysis. SEM studies revealed that AgNPs treatment resulted in intracellular contents leakage and cell lysis. The potential of microbially synthesized nanoparticles, as novel therapeutic agents, is still relatively less explored. In fact, the present study first time demonstrated that a glycolipoprotein secreted by the O. rhizosphaerae strain can be exploited for production of AgNPs which can further be employed to treat infectious diseases. Although this type of polymer has

  17. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria

    NASA Astrophysics Data System (ADS)

    Morsy, Reda; Ali, Sameh S.; El-Shetehy, Mohamed

    2017-09-01

    The several harmful effects on infected human skin resulting from exposure to the sun's UV radiation generate an interest in the development of a multifunctional hydroxyapatite-chitosan (HAp-chitosan) gel that works as an antibacterial sunscreen agent for skin care. In this work, HAp-chitosan gel was synthesized via coprecipitation method by dissolving chitosan in phosphoric acid and adding HAp. The characteristics of HAp-chitosan composite were investigated by conventional techniques, such as XRD, FTIR, and SEM techniques, while its sunscreen property was investigated by UV-spectroscopy. In addition to the influence of the gel on bacterial cell morphology, the antibacterial activity of HAp-chitosan gel against clinical multidrug resistant skin pathogens, such as Staphylococcus aureus, Klebsiella pneumoniae, and Pseudomonas aeruginosa has been studied. The results revealed the formation of HAp-chitosan gel having nanosized particles, which confers protection against UV-radiation. The antibacterial activity records showed that chitosan-HAp gel exhibits a significant effect on the growth and ultrastructure of multi-drug resistant bacterial activities. Therefore, the chitosan-HAp gel is promising for skin health care as an antibacterial sunscreen.

  18. Outbreak of multidrug-resistant acute postoperative endophthalmitis due to Enterobacter aerogenes.

    PubMed

    Bhat, Shailaja S; Undrakonda, Vivekanand; Mukhopadhyay, Chiranjay; Parmar, Prachi Vikramsinh

    2014-04-01

    To report the clinical features, management, and outcome of 7 cases of culture-proven multidrug-resistant Enterobacter postoperative endophthalmitis following cataract surgery. Medical records of 7 cases of acute postoperative endophthalmitis after uneventful cataract surgery were reviewed. Details regarding age, gender, visual acuity and clinical features at presentation, microbiological profile, treatment interventions, and visual acuity and clinical features at 1 week, 1 month, and 3 months follow-up were collected. All patients reported decreased visual acuity and pain as presenting symptoms. All patients were resistant to intravitreal antibiotics such as vancomycin (1 mg/0.1 mL) and ceftazidime (2.25 mg/0.1 mL). Culture of aqueous and vitreous sample was positive for Enterobacter aerogenes and sensitive to co-trimoxazole, cefoperazone-sulbactam, imipenem-meropenem, and piperacillin-tazobactem. Two patients with panophthalmitis and no perception of light underwent evisceration. Three patients had visual acuity of ≥6/24 at the final follow-up. Multidrug-resistant Enterobacter acute postoperative endophthalmitis has a poor prognosis if not intercepted early.

  19. Photochemically synthesized heparin-based silver nanoparticles: an antimicrobial activity study

    NASA Astrophysics Data System (ADS)

    Rodriguez-Torres, Maria del Pilar; Acosta-Torres, Laura Susana; Díaz-Torres, Luis Armando

    2017-08-01

    The antimicrobial activity of silver nanoparticles has been extensively studied in the last years. Such nanoparticles constitute a potential and promising approach for the development of new antimicrobial systems especially due to the fact that several microorganisms are developing resistance to some already existing antimicrobial agents, therefore making antibacterial and antimicrobial studies on alternative materials necessary to overcome this issue. Silver nanoparticle concentration and size are determining factors on the antimicrobial activity of these nano systems. Heparin is a polysaccharide that belongs to the glycosaminoglycans (GAGs) family, molecules formed by a base disaccharide whose components are joined by a glycosidic linkage that is a repeating unit along their structure. It is highly sulfated making it a negatively charged material that is also widely used as an anticoagulant in Medicine because its biocompatibility besides it is also produced within the human body, specifically in the mast cells. Heparin alone possesses antimicrobial activity although it has not been studied very much in detail, it only has been demonstrated that it inhibits E. coli, P. aeruginosa, S. aureus and S. epidermidis, so taking this into account, this study is dedicated to assess UV photochemically-synthesized (λ=254 nm) heparin-based silver nanoparticles antimicrobial activity using the agar disk diffusion method complemented by the broth microdilution method to estimate de minimum inhibitory concentration (MIC), that is the lowest concentration at which an antimicrobial will inhibit visible growth of a microorganism. The strains used were the ones aforementioned to assess the antimicrobial activity degree these heparinbased nanoparticles exhibit.

  20. Inhibiting fungal multidrug resistance by disrupting an activator-Mediator interaction.

    PubMed

    Nishikawa, Joy L; Boeszoermenyi, Andras; Vale-Silva, Luis A; Torelli, Riccardo; Posteraro, Brunella; Sohn, Yoo-Jin; Ji, Fei; Gelev, Vladimir; Sanglard, Dominique; Sanguinetti, Maurizio; Sadreyev, Ruslan I; Mukherjee, Goutam; Bhyravabhotla, Jayaram; Buhrlage, Sara J; Gray, Nathanael S; Wagner, Gerhard; Näär, Anders M; Arthanari, Haribabu

    2016-02-25

    Eukaryotic transcription activators stimulate the expression of specific sets of target genes through recruitment of co-activators such as the RNA polymerase II-interacting Mediator complex. Aberrant function of transcription activators has been implicated in several diseases. However, therapeutic targeting efforts have been hampered by a lack of detailed molecular knowledge of the mechanisms of gene activation by disease-associated transcription activators. We previously identified an activator-targeted three-helix bundle KIX domain in the human MED15 Mediator subunit that is structurally conserved in Gal11/Med15 Mediator subunits in fungi. The Gal11/Med15 KIX domain engages pleiotropic drug resistance transcription factor (Pdr1) orthologues, which are key regulators of the multidrug resistance pathway in Saccharomyces cerevisiae and in the clinically important human pathogen Candida glabrata. The prevalence of C. glabrata is rising, partly owing to its low intrinsic susceptibility to azoles, the most widely used antifungal agent. Drug-resistant clinical isolates of C. glabrata most commonly contain point mutations in Pdr1 that render it constitutively active, suggesting that this transcriptional activation pathway represents a linchpin in C. glabrata multidrug resistance. Here we perform sequential biochemical and in vivo high-throughput screens to identify small-molecule inhibitors of the interaction of the C. glabrata Pdr1 activation domain with the C. glabrata Gal11A KIX domain. The lead compound (iKIX1) inhibits Pdr1-dependent gene activation and re-sensitizes drug-resistant C. glabrata to azole antifungals in vitro and in animal models for disseminated and urinary tract C. glabrata infection. Determining the NMR structure of the C. glabrata Gal11A KIX domain provides a detailed understanding of the molecular mechanism of Pdr1 gene activation and multidrug resistance inhibition by iKIX1. We have demonstrated the feasibility of small-molecule targeting of a

  1. Multidrug-Resistant TB

    PubMed Central

    Cox, Helen; Coomans, Fons

    2016-01-01

    Abstract The right to enjoy the benefits of scientific progress (REBSP) is a little-known but potentially valuable right that can contribute to rights-based approaches to addressing multidrug-resistant TB (MDR-TB). We argue that better understanding of the REBSP may help to advance legal and civil society action for health rights. While the REBSP does not provide an individual entitlement to have a new drug developed for MDR-TB, it sets up entitlements to expect a state to establish a legislative and policy framework aimed at developing scientific capacity to address the most important health issues and at disseminating the outcomes of scientific research. By making scientific findings available and accessible, people can be enabled to claim the use of science for social benefits. Inasmuch as the market fails to address neglected diseases such as MDR-TB, the REBSP provides a potential counterbalance to frame a positive obligation on states to both marshal their own resources and to coordinate the actions of multiple other actors towards this goal, including non-state actors. While the latter do not hold the same level of accountability as states, the REBSP can still enable the recognition of obligations at a level of “soft law” responsibilities. PMID:27780997

  2. Interplay Between Antibiotic Resistance and Virulence During Disease Promoted by Multidrug-Resistant Bacteria

    PubMed Central

    Geisinger, Edward

    2017-01-01

    Abstract Diseases caused by antibiotic-resistant bacteria in hospitals are the outcome of complex relationships between several dynamic factors, including bacterial pathogenicity, the fitness costs of resistance in the human host, and selective forces resulting from interventions such as antibiotic therapy. The emergence and fate of mutations that drive antibiotic resistance are governed by these interactions. In this review, we will examine how different forms of antibiotic resistance modulate bacterial fitness and virulence potential, thus influencing the ability of pathogens to evolve in the context of nosocomial infections. We will focus on 3 important multidrug-resistant pathogens that are notoriously problematic in hospitals: Pseudomonas aeruginosa, Acinetobacter baumannii, and Staphylococcus aureus. An understanding of how antibiotic resistance mutations shape the pathobiology of multidrug-resistant infections has the potential to drive novel strategies that can control the development and spread of drug resistance. PMID:28375515

  3. A new fluorescent dye accumulation assay for parallel measurements of the ABCG2, ABCB1 and ABCC1 multidrug transporter functions.

    PubMed

    Szabó, Edit; Türk, Dóra; Telbisz, Ágnes; Kucsma, Nóra; Horváth, Tamás; Szakács, Gergely; Homolya, László; Sarkadi, Balázs; Várady, György

    2018-01-01

    ABC multidrug transporters are key players in cancer multidrug resistance and in general xenobiotic elimination, thus their functional assays provide important tools for research and diagnostic applications. In this study we have examined the potential interactions of three key human ABC multidrug transporters with PhenGreen diacetate (PGD), a cell permeable fluorescent metal ion indicator. The non-fluorescent, hydrophobic PGD rapidly enters the cells and, after cleavage by cellular esterases, in the absence of quenching metal ions, PhenGreen (PG) becomes highly fluorescent. We found that in cells expressing functional ABCG2, ABCB1, or ABCC1 transporters, cellular PG fluorescence is strongly reduced. This fluorescence signal in the presence of specific transporter inhibitors is increased to the fluorescence levels in the control cells. Thus the PG accumulation assay is a new, unique tool for the parallel determination of the function of the ABCG2, ABCB1, and ABCC1 multidrug transporters. Since PG has very low cellular toxicity, the PG accumulation assay also allows the selection, separation and culturing of selected cell populations expressing either of these transporters.

  4. Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS

    NASA Astrophysics Data System (ADS)

    Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis

    2011-03-01

    Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.

  5. Ribosomal mutations promote the evolution of antibiotic resistance in a multidrug environment.

    PubMed

    Gomez, James E; Kaufmann-Malaga, Benjamin B; Wivagg, Carl N; Kim, Peter B; Silvis, Melanie R; Renedo, Nikolai; Ioerger, Thomas R; Ahmad, Rushdy; Livny, Jonathan; Fishbein, Skye; Sacchettini, James C; Carr, Steven A; Hung, Deborah T

    2017-02-21

    Antibiotic resistance arising via chromosomal mutations is typically specific to a particular antibiotic or class of antibiotics. We have identified mutations in genes encoding ribosomal components in Mycobacterium smegmatis that confer resistance to several structurally and mechanistically unrelated classes of antibiotics and enhance survival following heat shock and membrane stress. These mutations affect ribosome assembly and cause large-scale transcriptomic and proteomic changes, including the downregulation of the catalase KatG, an activating enzyme required for isoniazid sensitivity, and upregulation of WhiB7, a transcription factor involved in innate antibiotic resistance. Importantly, while these ribosomal mutations have a fitness cost in antibiotic-free medium, in a multidrug environment they promote the evolution of high-level, target-based resistance. Further, suppressor mutations can then be easily acquired to restore wild-type growth. Thus, ribosomal mutations can serve as stepping-stones in an evolutionary path leading to the emergence of high-level, multidrug resistance.

  6. Multifunctional Core–Shell Nanoparticles: Discovery of Previously Invisible Biomarkers

    PubMed Central

    2011-01-01

    Many low-abundance biomarkers for early detection of cancer and other diseases are invisible to mass spectrometry because they exist in body fluids in very low concentrations, are masked by high-abundance proteins such as albumin and immunoglobulins, and are very labile. To overcome these barriers, we created porous, buoyant, core–shell hydrogel nanoparticles containing novel high affinity reactive chemical baits for protein and peptide harvesting, concentration, and preservation in body fluids. Poly(N-isopropylacrylamide-co-acrylic acid) nanoparticles were functionalized with amino-containing dyes via zero-length cross-linking amidation reactions. Nanoparticles functionalized in the core with 17 different (12 chemically novel) molecular baits showed preferential high affinities (KD < 10–11 M) for specific low-abundance protein analytes. A poly(N-isopropylacrylamide-co-vinylsulfonic acid) shell was added to the core particles. This shell chemistry selectively prevented unwanted entry of all size peptides derived from albumin without hindering the penetration of non-albumin small proteins and peptides. Proteins and peptides entered the core to be captured with high affinity by baits immobilized in the core. Nanoparticles effectively protected interleukin-6 from enzymatic degradation in sweat and increased the effective detection sensitivity of human growth hormone in human urine using multiple reaction monitoring analysis. Used in whole blood as a one-step, in-solution preprocessing step, the nanoparticles greatly enriched the concentration of low-molecular weight proteins and peptides while excluding albumin and other proteins above 30 kDa; this achieved a 10,000-fold effective amplification of the analyte concentration, enabling mass spectrometry (MS) discovery of candidate biomarkers that were previously undetectable. PMID:21999289

  7. Bypassing multidrug resistance in human breast cancer cells with lipid/polymer particle assemblies

    PubMed Central

    Li, Bo; Xu, Hui; Li, Zhen; Yao, Mingfei; Xie, Meng; Shen, Haijun; Shen, Song; Wang, Xinshi; Jin, Yi

    2012-01-01

    Background Multidrug resistance (MDR) mediated by the overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, such as P-glycoprotein (P-gp), remains one of the major obstacles to effective cancer chemotherapy. In this study, lipid/particle assemblies named LipoParticles (LNPs), consisting of a dimethyldidodecylammonium bromide (DMAB)-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticle core surrounded by a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) shell, were specially designed for anticancer drugs to bypass MDR in human breast cancer cells that overexpress P-gp. Methods Doxorubicin (DOX), a chemotherapy drug that is a P-gp substrate, was conjugated to PLGA and encapsulated in the self-assembled LNP structure. Physiochemical properties of the DOX-loaded LNPs were characterized in vitro. Cellular uptake, intracellular accumulation, and cytotoxicity were compared in parental Michigan Cancer Foundation (MCF)-7 cells and P-gp-overexpressing, resistant MCF-7/adriamycin (MCF-7/ADR) cells. Results This study found that the DOX formulated in LNPs showed a significantly increased accumulation in the nuclei of drug-resistant cells relative to the free drug, indicating that LNPs could alter intracellular traffic and bypass drug efflux. The cytotoxicity of DOX loaded-LNPs had a 30-fold lower half maximal inhibitory concentration (IC50) value than free DOX in MCF-7/ADR, measured by the colorimetric cell viability (MTT) assay, correlated with the strong nuclear retention of the drug. Conclusion The results show that this core-shell lipid/particle structure could be a promising strategy to bypass MDR. PMID:22275834

  8. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells

    NASA Astrophysics Data System (ADS)

    De Miguel, Diego; Gallego-Lleyda, Ana; María Ayuso, José; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; José Fernández, Luis; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-01

    Purpose. Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. Methods/patients. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. Results. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. Conclusion. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  9. TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells.

    PubMed

    De Miguel, Diego; Gallego-Lleyda, Ana; Ayuso, José María; Erviti-Ardanaz, Sandra; Pazo-Cid, Roberto; del Agua, Celia; Fernández, Luis José; Ochoa, Ignacio; Anel, Alberto; Martinez-Lostao, Luis

    2016-05-06

    Non-small cell lung cancer (NSCLC) is one the types of cancer with higher prevalence and mortality. Apo2-Ligand/TRAIL is a TNF family member able to induce apoptosis in tumor cells but not in normal cells. It has been tested in clinical trials against different types of human cancer including NSCLC. However, results of clinical trials have shown a limited efficacy of TRAIL-based therapies. Recently we have demonstrated that artificial lipid nanoparticles coated with bioactive Apo2L/TRAIL (LUV-TRAIL) greatly improved TRAIL cytotoxic ability being capable of killing chemoresistant hematological cancer cells. In the present work we have extended the study to NSCLC. LUV-TRAIL-induced cytotoxicity was assessed on different NSCLC cell lines with different sensitivity to soluble TRAIL and on primary human tumor cells from three patients suffering from NSCLC cancer. We also tested LUV-TRAIL-cytotoxic ability in combination with several anti-tumor agents. LUV-TRAIL exhibited a greater cytotoxic effect compared to soluble TRAIL both in A549 cells and primary human NSCLC cells. LUV-TRAIL-induced cell death was dependent on caspase-8 and caspase-3 activation. Moreover, combination of LUV-TRAIL with other anti-tumor agents such as flavopiridol, and SNS-032 clearly enhanced LUV-TRAIL-induced cytotoxicity against NSCLC cancer cells. The novel formulation of TRAIL based on displaying it on the surface of lipid nanoparticles greatly increases its anti-tumor activity and has clinical potential in cancer treatment.

  10. Polyclonal Pulmonary Tuberculosis Infections and Risk for Multidrug Resistance, Lima, Peru

    PubMed Central

    Shi, Cynthia X.; Chindelevitch, Leonid; Calderon, Roger; Zhang, Zibiao; Galea, Jerome T.; Contreras, Carmen; Yataco, Rosa; Lecca, Leonid; Becerra, Mercedes C.; Murray, Megan B.; Cohen, Ted

    2017-01-01

    Because within-host Mycobacterium tuberculosis diversity complicates diagnosis and treatment of tuberculosis (TB), we measured diversity prevalence and associated factors among 3,098 pulmonary TB patients in Lima, Peru. The 161 patients with polyclonal infection were more likely than the 115 with clonal or the 2,822 with simple infections to have multidrug-resistant TB. PMID:29048297

  11. S-nitrosocaptopril nanoparticles as nitric oxide-liberating and transnitrosylating anti-infective technology.

    PubMed

    Mordorski, Breanne; Pelgrift, Robert; Adler, Brandon; Krausz, Aimee; da Costa Neto, Alexandre Batista; Liang, Hongying; Gunther, Leslie; Clendaniel, Alicea; Harper, Stacey; Friedman, Joel M; Nosanchuk, Joshua D; Nacharaju, Parimala; Friedman, Adam J

    2015-02-01

    Nitric oxide (NO), an essential agent of the innate immune system, exhibits multi-mechanistic antimicrobial activity. Previously, NO-releasing nanoparticles (NO-np) demonstrated increased antimicrobial activity when combined with glutathione (GSH) due to formation of S-nitrosoglutathione (GSNO), a transnitrosylating agent. To capitalize on this finding, we incorporated the thiol-containing ACE-inhibitor, captopril, with NO-np to form SNO-CAP-np, nanoparticles that both release NO and form S-nitrosocaptopril. In the presence of GSH, SNO-CAP-np demonstrated increased transnitrosylation activity compared to NO-np, as exhibited by increased GSNO formation. Escherichia coli and methicillin-resistant Staphylococcus aureus were highly susceptible to SNO-CAP-np in a dose-dependent fashion, with E. coli being most susceptible, and SNO-CAP-np were nontoxic in zebrafish embryos at translatable concentrations. Given SNO-CAP-np's increased transnitrosylation activity and increased E. coli susceptibility compared to NO-np, transnitrosylation rather than free NO is likely responsible for overcoming E. coli's resistance mechanisms and ultimately killing the pathogen. This team of authors incorporated the thiol-containing ACE-inhibitor, captopril, into a nitric oxide releasing nanoparticle system, generating nanoparticles that both release NO and form S-nitrosocaptopril, with pronounced toxic effects on MRSA and E. coli in the presented model system. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Thermoresponsive Supramolecular Chemotherapy by "V"-Shaped Armed β-Cyclodextrin Star Polymer to Overcome Drug Resistance.

    PubMed

    Fan, Xiaoshan; Cheng, Hongwei; Wang, Xiaoyuan; Ye, Enyi; Loh, Xian Jun; Wu, Yun-Long; Li, Zibiao

    2018-04-01

    Pump mediated drug efflux is the key reason to result in the failure of chemotherapy. Herein, a novel star polymer β-CD-v-(PEG-β-PNIPAAm) 7 consisting of a β-CD core, grafted with thermo-responsive poly(N-isopropylacrylamide) (PNIPAAm) and biocompatible poly(ethylene glycol) (PEG) in the multiple "V"-shaped arms is designed and further fabricated into supramolecular nanocarriers for drug resistant cancer therapy. The star polymer could encapsulate chemotherapeutics between β-cyclodextrin and anti-cancer drug via inclusion complex (IC). Furthermore, the temperature induced chain association of PNIPAAm segments facilitated the IC to form supramolecular nanoparticles at 37 °C, whereas the presence of PEG impart great stability to the self-assemblies. When incubated with MDR-1 membrane pump regulated drug resistant tumor cells, much higher and faster cellular uptake of the supramolecular nanoparticles were detected, and the enhanced intracellular retention of drugs could lead to significant inhibition of cell growth. Further in vivo evaluation showed high therapeutic efficacy in suppressing drug resistant tumor growth without a significant impact on the normal functions of main organs. This work signifies thermo-responsive supramolecular chemotherapy is promising in combating pump mediated drug resistance in both in vitro and in vivo models, which may be encouraging for the advanced drug delivery platform design to overcome drug resistant cancer. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Reducing the price of treatment for multidrug-resistant tuberculosis through the Global Drug Facility.

    PubMed

    Lunte, Kaspars; Cordier-Lassalle, Thierry; Keravec, Joel

    2015-04-01

    Many countries have limited experience of securing the best prices for drugs and have little negotiating power. This is particularly true for the complex, lengthy and expensive regimens used to treat multidrug-resistant tuberculosis. The Stop TB Partnership's Global Drug Facility is dedicated to improving worldwide access to antituberculosis medicines and diagnostic techniques that meet international quality standards. The Global Drug Facility is able to secure price reductions through competitive tendering among prequalified drug manufacturers and by consolidating orders to achieve large purchase volumes. Consolidating the market in this way increases the incentives for suppliers of quality-assured medicines. In 2013 the Global Drug Facility reduced the price of the second-line drugs it supplies for multidrug-resistant tuberculosis: the overall cost of the longest and most expensive treatment regimen for a patient decreased by 26% - from 7890 United States dollars (US$) in 2011 to US$ 5822 in 2013. The price of treatment for multidrug-resistant tuberculosis supplied by the Global Drug Facility was reduced by consolidating orders to achieve large purchase volumes, by international, competitive bidding and by the existence of donor-funded medicine stockpiles. The rise in the number of suppliers of internationally quality-assured drugs was also important. The savings achieved from lower drug costs could be used to increase the number of patients on high-quality treatment.

  14. Directly observed treatment, short-course strategy and multidrug-resistant tuberculosis: are any modifications required?

    PubMed Central

    Bastian, I.; Rigouts, L.; Van Deun, A.; Portaels, F.

    2000-01-01

    Multidrug-resistant tuberculosis (MDRTB) should be defined as tuberculosis with resistance to at least isoniazid and rifampicin because these drugs are the cornerstone of short-course chemotherapy, and combined isoniazid and rifampicin resistance requires prolonged treatment with second-line agents. Short-course chemotherapy is a key ingredient in the tuberculosis control strategy known as directly observed treatment, short-course (DOTS). For populations in which multidrug-resistant tuberculosis is endemic, the outcome of the standard short-course chemotherapy regimen remains uncertain. Unacceptable failure rates have been reported and resistance to additional agents may be induced. As a consequence there have been calls for well-functioning DOTS programmes to provide additional services in areas with high rates of multidrug-resistant tuberculosis. These "DOTS-plus for MDRTB programmes" may need to modify all five elements of the DOTS strategy: the treatment may need to be individualized rather than standardized; laboratory services may need to provide facilities for on-site culture and antibiotic susceptibility testing; reliable supplies of a wide range of expensive second-line agents would have to be supplied; operational studies would be required to determine the indications for and format of the expanded programmes; financial and technical support from international organizations and Western governments would be needed in addition to that obtained from local governments. PMID:10743297

  15. Differential permeation of piroxicam-loaded PLGA micro/nanoparticles and their in vitro enhancement

    NASA Astrophysics Data System (ADS)

    Shankarayan, Raju; Kumar, Sumit; Mishra, Prashant

    2013-03-01

    Piroxicam is a non-steroidal anti-inflammatory drug used for the treatment of musculoskeletal pain. The main problem encountered when piroxicam is administered orally is its gastric side-effect (ulcer, bleeding and holes in the stomach). Transmucosal delivery and encapsulation of piroxicam in biodegradable particles offer potential advantages over conventional oral delivery. The present study was aimed to develop an alternative to piroxicam-delivery which could overcome the direct contact of the drug at the mucosal membrane and its permeation through the mucosal membrane was studied. To achieve this, the piroxicam was encapsulated in Poly (lactide- co-glycolide) (PLGA) microparticles (size 1-4 μm, encapsulation efficiency 80-85 %) and nanoparticles (size 151.6 ± 28.6 nm, encapsulation efficiency 92.17 ± 3.08 %). Various formulation process parameters were optimised for the preparation of piroxicam-loaded PLGA nanoparticles of optimal size and encapsulation efficiency. Transmucosal permeability of piroxicam-loaded PLGA micro- and nanoparticles through the porcine oesophageal mucosa was studied. Using fluorescently labelled PLGA micro- and nanoparticles, size-dependent permeation was demonstrated. Furthermore, the effect of different permeation enhancers on the flux rate and permeability coefficient for the permeation of nanoparticles was investigated. The results suggested that amongst the permeation enhancers used the most efficient enhancement of permeation was observed with 10 mM sodium dodecyl sulphate.

  16. Iron oxide nanoparticles with controlled morphology for advanced hyperthermia

    NASA Astrophysics Data System (ADS)

    Nemati Porshokouh, Zohreh; Khurshid, Hafsa; Alonso Messa, Javier; Phan, Manh-Huong; Srikanth, Hariharan

    2015-03-01

    Magnetic nanoparticles (NPs) are interesting for a wide range of applications. In biomedicine, they have been exploited for use in drug delivery, magnetic resonance imaging, and magnetic hyperthermia. While magnetic hyperthermia, using NPs to convert electromagnetic energy into heat to destroy the cancer cells, represents a novel cancer treatment technique, a poor heating conversion efficiency of the existing NPs restricts its practical use. Different strategies have been proposed to overcome this limitation, mainly by tuning the size, saturation magnetization and effective anisotropy of the NPs. Here we report a magnetic hyperthermia study on Fe3O4 NPs, where the effective anisotropy was tuned by varying particle morphology from the spherical to octopod shape. The Fe3O4 NPs were synthesized using a thermal decomposition method. Transmission electron microscopy (TEM) and high-resolution TEM images show high crystalline monodisperse nanoparticles. X-ray diffraction patterns confirm the presence of Fe3O4 phase. Hyperthermia experiments indicate that the octopods possess a higher SAR as compared to their spherical counterpart. Our findings provide an effective approach to improve the SAR of NPs by manipulating the shape anisotropy of the nanoparticles. Research was supported by USAMRMC through Grant Numbers W81XWH-07-1-0708 and W81XWH1020101/3349.

  17. Study of urological devices coated with fullerene-like nanoparticles.

    PubMed

    Goldbart, Ohad; Elianov, Olga; Shumalinsky, Dmitry; Lobik, Leonid; Cytron, Shmuel; Rosentsveig, Rita; Wagner, H Daniel; Tenne, Reshef

    2013-09-21

    Insertion of endoscopes and other medical devices into the human body are ubiquitous, especially among aged males. The applied force for the insertion/extraction of the device from the urethra must overcome endoscope-surface-human-tissue interactions. In daily practice a gel is applied on the endoscope surface, in order to facilitate its entry into the urethra, providing also for local anesthesia. In the present work, a new solid-state lubricant has been added to the gel, in order to reduce the metal-urethra interaction and alleviate the potential damage to the epithelial tissue. For that purpose, a urethra model was designed and fabricated, which allowed a quantitative assessment of the applied force for extraction of the endoscope from a soft polymer-based ring. It is shown that the addition of MoS2 nanoparticles with fullerene-like structure (IF-MoS2) and in particular rhenium-doped nanoparticles (Re:IF-MoS2) to Esracain gel applied on the metal-lead reduced the friction substantially. The Re:IF-MoS2 showed better results than the undoped fullerene-like nanoparticles and both performed better than the gel alone. The mechanism of friction reduction is attributed to fullerenes' ability to roll and act as a separator between the active parts of the model.

  18. Study of urological devices coated with fullerene-like nanoparticles

    NASA Astrophysics Data System (ADS)

    Goldbart, Ohad; Elianov, Olga; Shumalinsky, Dmitry; Lobik, Leonid; Cytron, Shmuel; Rosentsveig, Rita; Wagner, H. Daniel; Tenne, Reshef

    2013-08-01

    Insertion of endoscopes and other medical devices into the human body are ubiquitous, especially among aged males. The applied force for the insertion/extraction of the device from the urethra must overcome endoscope-surface-human-tissue interactions. In daily practice a gel is applied on the endoscope surface, in order to facilitate its entry into the urethra, providing also for local anesthesia. In the present work, a new solid-state lubricant has been added to the gel, in order to reduce the metal-urethra interaction and alleviate the potential damage to the epithelial tissue. For that purpose, a urethra model was designed and fabricated, which allowed a quantitative assessment of the applied force for extraction of the endoscope from a soft polymer-based ring. It is shown that the addition of MoS2 nanoparticles with fullerene-like structure (IF-MoS2) and in particular rhenium-doped nanoparticles (Re:IF-MoS2) to Esracain gel applied on the metal-lead reduced the friction substantially. The Re:IF-MoS2 showed better results than the undoped fullerene-like nanoparticles and both performed better than the gel alone. The mechanism of friction reduction is attributed to fullerenes' ability to roll and act as a separator between the active parts of the model.

  19. Safety and efficacy of composite collagen-silver nanoparticle hydrogels as tissue engineering scaffolds

    NASA Astrophysics Data System (ADS)

    Alarcon, Emilio I.; Udekwu, Klas I.; Noel, Christopher W.; Gagnon, Luke B.-P.; Taylor, Patrick K.; Vulesevic, Branka; Simpson, Madeline J.; Gkotzis, Spyridon; Islam, M. Mirazul; Lee, Chyan-Jang; Richter-Dahlfors, Agneta; Mah, Thien-Fah; Suuronen, Erik J.; Scaiano, Juan C.; Griffith, May

    2015-11-01

    The increasing number of multidrug resistant bacteria has revitalized interest in seeking alternative sources for controlling bacterial infection. Silver nanoparticles (AgNPs), are amongst the most promising candidates due to their wide microbial spectrum of action. In this work, we report on the safety and efficacy of the incorporation of collagen coated AgNPs into collagen hydrogels for tissue engineering. The resulting hybrid materials at [AgNPs] < 0.4 μM retained the mechanical properties and biocompatibility for primary human skin fibroblasts and keratinocytes of collagen hydrogels; they also displayed remarkable anti-infective properties against S. aureus, S. epidermidis, E. coli and P. aeruginosa at considerably lower concentrations than silver nitrate. Further, subcutaneous implants of materials containing 0.2 μM AgNPs in mice showed a reduction in the levels of IL-6 and other inflammation markers (CCL24, sTNFR-2, and TIMP1). Finally, an analysis of silver contents in implanted mice showed that silver accumulation primarily occurred within the tissue surrounding the implant.The increasing number of multidrug resistant bacteria has revitalized interest in seeking alternative sources for controlling bacterial infection. Silver nanoparticles (AgNPs), are amongst the most promising candidates due to their wide microbial spectrum of action. In this work, we report on the safety and efficacy of the incorporation of collagen coated AgNPs into collagen hydrogels for tissue engineering. The resulting hybrid materials at [AgNPs] < 0.4 μM retained the mechanical properties and biocompatibility for primary human skin fibroblasts and keratinocytes of collagen hydrogels; they also displayed remarkable anti-infective properties against S. aureus, S. epidermidis, E. coli and P. aeruginosa at considerably lower concentrations than silver nitrate. Further, subcutaneous implants of materials containing 0.2 μM AgNPs in mice showed a reduction in the levels of IL-6 and

  20. The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids

    PubMed Central

    Holland, M L; Lau, D T T; Allen, J D; Arnold, J C

    2007-01-01

    Background and purpose: Cannabinoids are used therapeutically for the palliation of the adverse side effects associated with cancer chemotherapy. However, cannabinoids also inhibit both the activity and expression of the multidrug transporter, P-glycoprotein in vitro. Here we address the interaction of cannabinol (CBN), cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) with the related multidrug transporter, ABCG2. Experimental approach: Cannabinoid inhibition of Abcg2/ABCG2 was assessed using flow cytometric analysis of substrate accumulation and ATPase activity assays. The cytotoxicity and chemosensitization by cannabinoids was determined with cell viability assays. Expression of cannabinoid and vanilloid receptors was assessed using reverse transcriptase polymerase chain reaction, and cannabinoid modulation of ABCG2 expression was examined using immunoblotting. Key results: CBN, CBD and THC increased the intracellular accumulation of the Abcg2/ABCG2 substrate, mitoxantrone, in an over-expressing cell line. The THC metabolite, (−)-11-nor-9-carboxy-Δ9-THC was much less potent. The plant cannabinoids inhibited both basal and substrate stimulated ATPase activity of human ABCG2. Cannabinoid cytotoxicity occurred in the absence of known cannabinoid cell surface receptors, and only at concentrations higher than those required for Abcg2/ABCG2 inhibition. Sub-toxic concentrations of the cannabinoids resensitized the overexpressing cell line to the cytotoxic effect of Abcg2/ABCG2 substrates, mitoxantrone and topotecan. This occurred in the absence of any effect on ABCG2 expression. Conclusions and implications: Cannabinoids are novel Abcg2/ABCG2 inhibitors, reversing the Abcg2-mediated multidrug-resistant phenotype in vitro. This finding may have implications for the co-administration of cannabinoids with pharmaceuticals that are ABCG2 substrates. PMID:17906686